1 /*
2  * Copyright 2008 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0
5  */
6 
7 #include <common.h>
8 #include <fsl_ddr_sdram.h>
9 
10 #include <fsl_ddr.h>
11 /*
12  * Calculate the Density of each Physical Rank.
13  * Returned size is in bytes.
14  *
15  * Study these table from Byte 31 of JEDEC SPD Spec.
16  *
17  *		DDR I	DDR II
18  *	Bit	Size	Size
19  *	---	-----	------
20  *	7 high	512MB	512MB
21  *	6	256MB	256MB
22  *	5	128MB	128MB
23  *	4	 64MB	 16GB
24  *	3	 32MB	  8GB
25  *	2	 16MB	  4GB
26  *	1	  2GB	  2GB
27  *	0 low	  1GB	  1GB
28  *
29  * Reorder Table to be linear by stripping the bottom
30  * 2 or 5 bits off and shifting them up to the top.
31  *
32  */
33 static unsigned long long
34 compute_ranksize(unsigned int mem_type, unsigned char row_dens)
35 {
36 	unsigned long long bsize;
37 
38 	/* Bottom 5 bits up to the top. */
39 	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
40 	bsize <<= 27ULL;
41 	debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
42 
43 	return bsize;
44 }
45 
46 /*
47  * Convert a two-nibble BCD value into a cycle time.
48  * While the spec calls for nano-seconds, picos are returned.
49  *
50  * This implements the tables for bytes 9, 23 and 25 for both
51  * DDR I and II.  No allowance for distinguishing the invalid
52  * fields absent for DDR I yet present in DDR II is made.
53  * (That is, cycle times of .25, .33, .66 and .75 ns are
54  * allowed for both DDR II and I.)
55  */
56 static unsigned int
57 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
58 {
59 	/* Table look up the lower nibble, allow DDR I & II. */
60 	unsigned int tenths_ps[16] = {
61 		0,
62 		100,
63 		200,
64 		300,
65 		400,
66 		500,
67 		600,
68 		700,
69 		800,
70 		900,
71 		250,	/* This and the next 3 entries valid ... */
72 		330,	/* ...  only for tCK calculations. */
73 		660,
74 		750,
75 		0,	/* undefined */
76 		0	/* undefined */
77 	};
78 
79 	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
80 	unsigned int tenth_ns = spd_val & 0x0F;
81 	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
82 
83 	return ps;
84 }
85 
86 static unsigned int
87 convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
88 {
89 	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
90 	unsigned int hundredth_ns = spd_val & 0x0F;
91 	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
92 
93 	return ps;
94 }
95 
96 static unsigned int byte40_table_ps[8] = {
97 	0,
98 	250,
99 	330,
100 	500,
101 	660,
102 	750,
103 	0,	/* supposed to be RFC, but not sure what that means */
104 	0	/* Undefined */
105 };
106 
107 static unsigned int
108 compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
109 {
110 	return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
111 		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
112 }
113 
114 static unsigned int
115 compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
116 {
117 	return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
118 }
119 
120 /*
121  * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
122  * Table from SPD Spec, Byte 12, converted to picoseconds and
123  * filled in with "default" normal values.
124  */
125 static unsigned int
126 determine_refresh_rate_ps(const unsigned int spd_refresh)
127 {
128 	unsigned int refresh_time_ps[8] = {
129 		15625000,	/* 0 Normal    1.00x */
130 		3900000,	/* 1 Reduced    .25x */
131 		7800000,	/* 2 Extended   .50x */
132 		31300000,	/* 3 Extended  2.00x */
133 		62500000,	/* 4 Extended  4.00x */
134 		125000000,	/* 5 Extended  8.00x */
135 		15625000,	/* 6 Normal    1.00x  filler */
136 		15625000,	/* 7 Normal    1.00x  filler */
137 	};
138 
139 	return refresh_time_ps[spd_refresh & 0x7];
140 }
141 
142 /*
143  * The purpose of this function is to compute a suitable
144  * CAS latency given the DRAM clock period.  The SPD only
145  * defines at most 3 CAS latencies.  Typically the slower in
146  * frequency the DIMM runs at, the shorter its CAS latency can.
147  * be.  If the DIMM is operating at a sufficiently low frequency,
148  * it may be able to run at a CAS latency shorter than the
149  * shortest SPD-defined CAS latency.
150  *
151  * If a CAS latency is not found, 0 is returned.
152  *
153  * Do this by finding in the standard speed bin table the longest
154  * tCKmin that doesn't exceed the value of mclk_ps (tCK).
155  *
156  * An assumption made is that the SDRAM device allows the
157  * CL to be programmed for a value that is lower than those
158  * advertised by the SPD.  This is not always the case,
159  * as those modes not defined in the SPD are optional.
160  *
161  * CAS latency de-rating based upon values JEDEC Standard No. 79-2C
162  * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
163  * and tRC for corresponding bin"
164  *
165  * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
166  * Not certain if any good value exists for CL=2
167  */
168 				 /* CL2   CL3   CL4   CL5   CL6  CL7*/
169 unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500, 1875 };
170 
171 unsigned int
172 compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
173 {
174 	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
175 	unsigned int lowest_tCKmin_found = 0;
176 	unsigned int lowest_tCKmin_CL = 0;
177 	unsigned int i;
178 
179 	debug("mclk_ps = %u\n", mclk_ps);
180 
181 	for (i = 0; i < num_speed_bins; i++) {
182 		unsigned int x = ddr2_speed_bins[i];
183 		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
184 		      i, x, lowest_tCKmin_found);
185 		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
186 			lowest_tCKmin_found = x;
187 			lowest_tCKmin_CL = i + 2;
188 		}
189 	}
190 
191 	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
192 
193 	return lowest_tCKmin_CL;
194 }
195 
196 /*
197  * ddr_compute_dimm_parameters for DDR2 SPD
198  *
199  * Compute DIMM parameters based upon the SPD information in spd.
200  * Writes the results to the dimm_params_t structure pointed by pdimm.
201  *
202  * FIXME: use #define for the retvals
203  */
204 unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
205 					 const ddr2_spd_eeprom_t *spd,
206 					 dimm_params_t *pdimm,
207 					 unsigned int dimm_number)
208 {
209 	unsigned int retval;
210 
211 	if (spd->mem_type) {
212 		if (spd->mem_type != SPD_MEMTYPE_DDR2) {
213 			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
214 			return 1;
215 		}
216 	} else {
217 		memset(pdimm, 0, sizeof(dimm_params_t));
218 		return 1;
219 	}
220 
221 	retval = ddr2_spd_check(spd);
222 	if (retval) {
223 		printf("DIMM %u: failed checksum\n", dimm_number);
224 		return 2;
225 	}
226 
227 	/*
228 	 * The part name in ASCII in the SPD EEPROM is not null terminated.
229 	 * Guarantee null termination here by presetting all bytes to 0
230 	 * and copying the part name in ASCII from the SPD onto it
231 	 */
232 	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
233 	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
234 
235 	/* DIMM organization parameters */
236 	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
237 	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
238 	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
239 	pdimm->data_width = spd->dataw;
240 	pdimm->primary_sdram_width = spd->primw;
241 	pdimm->ec_sdram_width = spd->ecw;
242 
243 	/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
244 	switch (spd->dimm_type) {
245 	case DDR2_SPD_DIMMTYPE_RDIMM:
246 	case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
247 	case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
248 		/* Registered/buffered DIMMs */
249 		pdimm->registered_dimm = 1;
250 		break;
251 
252 	case DDR2_SPD_DIMMTYPE_UDIMM:
253 	case DDR2_SPD_DIMMTYPE_SO_DIMM:
254 	case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
255 	case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
256 		/* Unbuffered DIMMs */
257 		pdimm->registered_dimm = 0;
258 		break;
259 
260 	case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
261 	default:
262 		printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
263 		return 1;
264 	}
265 
266 	/* SDRAM device parameters */
267 	pdimm->n_row_addr = spd->nrow_addr;
268 	pdimm->n_col_addr = spd->ncol_addr;
269 	pdimm->n_banks_per_sdram_device = spd->nbanks;
270 	pdimm->edc_config = spd->config;
271 	pdimm->burst_lengths_bitmask = spd->burstl;
272 	pdimm->row_density = spd->rank_dens;
273 
274 	/*
275 	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
276 	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
277 	 * nanoseconds and represented as BCD.
278 	 */
279 	pdimm->tckmin_x_ps
280 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
281 	pdimm->tckmin_x_minus_1_ps
282 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
283 	pdimm->tckmin_x_minus_2_ps
284 		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
285 
286 	pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
287 
288 	/*
289 	 * Compute CAS latencies defined by SPD
290 	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
291 	 *
292 	 * If cas_lat after masking is 0, the __ilog2 function returns
293 	 * 255 into the variable.   This behavior is abused once.
294 	 */
295 	pdimm->caslat_x  = __ilog2(spd->cas_lat);
296 	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
297 					  & ~(1 << pdimm->caslat_x));
298 	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
299 					  & ~(1 << pdimm->caslat_x)
300 					  & ~(1 << pdimm->caslat_x_minus_1));
301 
302 	/* Compute CAS latencies below that defined by SPD */
303 	pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
304 					get_memory_clk_period_ps(ctrl_num));
305 
306 	/* Compute timing parameters */
307 	pdimm->trcd_ps = spd->trcd * 250;
308 	pdimm->trp_ps = spd->trp * 250;
309 	pdimm->tras_ps = spd->tras * 1000;
310 
311 	pdimm->twr_ps = spd->twr * 250;
312 	pdimm->twtr_ps = spd->twtr * 250;
313 	pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
314 
315 	pdimm->trrd_ps = spd->trrd * 250;
316 	pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
317 
318 	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
319 
320 	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
321 	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
322 	pdimm->tds_ps
323 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
324 	pdimm->tdh_ps
325 		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
326 
327 	pdimm->trtp_ps = spd->trtp * 250;
328 	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
329 	pdimm->tqhs_ps = spd->tqhs * 10;
330 
331 	return 0;
332 }
333