1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /** 1173 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1174 * @rank_bgn: Rank number 1175 * @group: Read/Write group 1176 * @num_tries: Number of retries of the test 1177 * @all_correct: All bits must be correct in the mask 1178 * @bit_chk: Resulting bit mask after the test 1179 * @all_groups: Test all R/W groups 1180 * @all_ranks: Test all ranks 1181 * 1182 * Try a read and see if it returns correct data back. Test has dummy reads 1183 * inserted into the mix used to align DQS enable. Test has more thorough 1184 * checks than the regular read test. 1185 */ 1186 static int 1187 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1188 const u32 num_tries, const u32 all_correct, 1189 u32 *bit_chk, 1190 const u32 all_groups, const u32 all_ranks) 1191 { 1192 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1193 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1194 const u32 quick_read_mode = 1195 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1196 ENABLE_SUPER_QUICK_CALIBRATION); 1197 u32 correct_mask_vg = param->read_correct_mask_vg; 1198 u32 tmp_bit_chk; 1199 u32 base_rw_mgr; 1200 u32 addr; 1201 1202 int r, vg, ret; 1203 1204 *bit_chk = param->read_correct_mask; 1205 1206 for (r = rank_bgn; r < rank_end; r++) { 1207 if (param->skip_ranks[r]) 1208 /* request to skip the rank */ 1209 continue; 1210 1211 /* set rank */ 1212 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1213 1214 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1215 1216 writel(RW_MGR_READ_B2B_WAIT1, 1217 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1218 1219 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1220 writel(RW_MGR_READ_B2B_WAIT2, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1222 1223 if (quick_read_mode) 1224 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1225 /* need at least two (1+1) reads to capture failures */ 1226 else if (all_groups) 1227 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1228 else 1229 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1230 1231 writel(RW_MGR_READ_B2B, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1233 if (all_groups) 1234 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1235 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1236 &sdr_rw_load_mgr_regs->load_cntr3); 1237 else 1238 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1239 1240 writel(RW_MGR_READ_B2B, 1241 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1242 1243 tmp_bit_chk = 0; 1244 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1245 vg--) { 1246 /* Reset the FIFOs to get pointers to known state. */ 1247 writel(0, &phy_mgr_cmd->fifo_reset); 1248 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1249 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1250 1251 if (all_groups) { 1252 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1253 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1254 } else { 1255 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1256 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1257 } 1258 1259 writel(RW_MGR_READ_B2B, addr + 1260 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1261 vg) << 2)); 1262 1263 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1264 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1265 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1266 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1267 } 1268 1269 *bit_chk &= tmp_bit_chk; 1270 } 1271 1272 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1273 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1274 1275 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1276 1277 if (all_correct) { 1278 ret = (*bit_chk == param->read_correct_mask); 1279 debug_cond(DLEVEL == 2, 1280 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1281 __func__, __LINE__, group, all_groups, *bit_chk, 1282 param->read_correct_mask, ret); 1283 } else { 1284 ret = (*bit_chk != 0x00); 1285 debug_cond(DLEVEL == 2, 1286 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1287 __func__, __LINE__, group, all_groups, *bit_chk, 1288 0, ret); 1289 } 1290 1291 return ret; 1292 } 1293 1294 /** 1295 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1296 * @grp: Read/Write group 1297 * @num_tries: Number of retries of the test 1298 * @all_correct: All bits must be correct in the mask 1299 * @all_groups: Test all R/W groups 1300 * 1301 * Perform a READ test across all memory ranks. 1302 */ 1303 static int 1304 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1305 const u32 all_correct, 1306 const u32 all_groups) 1307 { 1308 u32 bit_chk; 1309 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1310 &bit_chk, all_groups, 1); 1311 } 1312 1313 /** 1314 * rw_mgr_incr_vfifo() - Increase VFIFO value 1315 * @grp: Read/Write group 1316 * 1317 * Increase VFIFO value. 1318 */ 1319 static void rw_mgr_incr_vfifo(const u32 grp) 1320 { 1321 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1322 } 1323 1324 /** 1325 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1326 * @grp: Read/Write group 1327 * 1328 * Decrease VFIFO value. 1329 */ 1330 static void rw_mgr_decr_vfifo(const u32 grp) 1331 { 1332 u32 i; 1333 1334 for (i = 0; i < VFIFO_SIZE - 1; i++) 1335 rw_mgr_incr_vfifo(grp); 1336 } 1337 1338 /** 1339 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1340 * @grp: Read/Write group 1341 * 1342 * Push VFIFO until a failing read happens. 1343 */ 1344 static int find_vfifo_failing_read(const u32 grp) 1345 { 1346 u32 v, ret, fail_cnt = 0; 1347 1348 for (v = 0; v < VFIFO_SIZE; v++) { 1349 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1350 __func__, __LINE__, v); 1351 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1352 PASS_ONE_BIT, 0); 1353 if (!ret) { 1354 fail_cnt++; 1355 1356 if (fail_cnt == 2) 1357 return v; 1358 } 1359 1360 /* Fiddle with FIFO. */ 1361 rw_mgr_incr_vfifo(grp); 1362 } 1363 1364 /* No failing read found! Something must have gone wrong. */ 1365 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1366 return 0; 1367 } 1368 1369 /** 1370 * sdr_find_phase_delay() - Find DQS enable phase or delay 1371 * @working: If 1, look for working phase/delay, if 0, look for non-working 1372 * @delay: If 1, look for delay, if 0, look for phase 1373 * @grp: Read/Write group 1374 * @work: Working window position 1375 * @work_inc: Working window increment 1376 * @pd: DQS Phase/Delay Iterator 1377 * 1378 * Find working or non-working DQS enable phase setting. 1379 */ 1380 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1381 u32 *work, const u32 work_inc, u32 *pd) 1382 { 1383 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1384 u32 ret; 1385 1386 for (; *pd <= max; (*pd)++) { 1387 if (delay) 1388 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1389 else 1390 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1391 1392 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1393 PASS_ONE_BIT, 0); 1394 if (!working) 1395 ret = !ret; 1396 1397 if (ret) 1398 return 0; 1399 1400 if (work) 1401 *work += work_inc; 1402 } 1403 1404 return -EINVAL; 1405 } 1406 /** 1407 * sdr_find_phase() - Find DQS enable phase 1408 * @working: If 1, look for working phase, if 0, look for non-working phase 1409 * @grp: Read/Write group 1410 * @work: Working window position 1411 * @i: Iterator 1412 * @p: DQS Phase Iterator 1413 * 1414 * Find working or non-working DQS enable phase setting. 1415 */ 1416 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1417 u32 *i, u32 *p) 1418 { 1419 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1420 int ret; 1421 1422 for (; *i < end; (*i)++) { 1423 if (working) 1424 *p = 0; 1425 1426 ret = sdr_find_phase_delay(working, 0, grp, work, 1427 IO_DELAY_PER_OPA_TAP, p); 1428 if (!ret) 1429 return 0; 1430 1431 if (*p > IO_DQS_EN_PHASE_MAX) { 1432 /* Fiddle with FIFO. */ 1433 rw_mgr_incr_vfifo(grp); 1434 if (!working) 1435 *p = 0; 1436 } 1437 } 1438 1439 return -EINVAL; 1440 } 1441 1442 /** 1443 * sdr_working_phase() - Find working DQS enable phase 1444 * @grp: Read/Write group 1445 * @work_bgn: Working window start position 1446 * @d: dtaps output value 1447 * @p: DQS Phase Iterator 1448 * @i: Iterator 1449 * 1450 * Find working DQS enable phase setting. 1451 */ 1452 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1453 u32 *p, u32 *i) 1454 { 1455 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1456 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1457 int ret; 1458 1459 *work_bgn = 0; 1460 1461 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1462 *i = 0; 1463 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1464 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1465 if (!ret) 1466 return 0; 1467 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1468 } 1469 1470 /* Cannot find working solution */ 1471 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1472 __func__, __LINE__); 1473 return -EINVAL; 1474 } 1475 1476 /** 1477 * sdr_backup_phase() - Find DQS enable backup phase 1478 * @grp: Read/Write group 1479 * @work_bgn: Working window start position 1480 * @p: DQS Phase Iterator 1481 * 1482 * Find DQS enable backup phase setting. 1483 */ 1484 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1485 { 1486 u32 tmp_delay, d; 1487 int ret; 1488 1489 /* Special case code for backing up a phase */ 1490 if (*p == 0) { 1491 *p = IO_DQS_EN_PHASE_MAX; 1492 rw_mgr_decr_vfifo(grp); 1493 } else { 1494 (*p)--; 1495 } 1496 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1497 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1498 1499 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1500 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1501 1502 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1503 PASS_ONE_BIT, 0); 1504 if (ret) { 1505 *work_bgn = tmp_delay; 1506 break; 1507 } 1508 1509 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1510 } 1511 1512 /* Restore VFIFO to old state before we decremented it (if needed). */ 1513 (*p)++; 1514 if (*p > IO_DQS_EN_PHASE_MAX) { 1515 *p = 0; 1516 rw_mgr_incr_vfifo(grp); 1517 } 1518 1519 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1520 } 1521 1522 /** 1523 * sdr_nonworking_phase() - Find non-working DQS enable phase 1524 * @grp: Read/Write group 1525 * @work_end: Working window end position 1526 * @p: DQS Phase Iterator 1527 * @i: Iterator 1528 * 1529 * Find non-working DQS enable phase setting. 1530 */ 1531 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1532 { 1533 int ret; 1534 1535 (*p)++; 1536 *work_end += IO_DELAY_PER_OPA_TAP; 1537 if (*p > IO_DQS_EN_PHASE_MAX) { 1538 /* Fiddle with FIFO. */ 1539 *p = 0; 1540 rw_mgr_incr_vfifo(grp); 1541 } 1542 1543 ret = sdr_find_phase(0, grp, work_end, i, p); 1544 if (ret) { 1545 /* Cannot see edge of failing read. */ 1546 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1547 __func__, __LINE__); 1548 } 1549 1550 return ret; 1551 } 1552 1553 /** 1554 * sdr_find_window_center() - Find center of the working DQS window. 1555 * @grp: Read/Write group 1556 * @work_bgn: First working settings 1557 * @work_end: Last working settings 1558 * 1559 * Find center of the working DQS enable window. 1560 */ 1561 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1562 const u32 work_end) 1563 { 1564 u32 work_mid; 1565 int tmp_delay = 0; 1566 int i, p, d; 1567 1568 work_mid = (work_bgn + work_end) / 2; 1569 1570 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1571 work_bgn, work_end, work_mid); 1572 /* Get the middle delay to be less than a VFIFO delay */ 1573 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1574 1575 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1576 work_mid %= tmp_delay; 1577 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1578 1579 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1580 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1581 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1582 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1583 1584 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1585 1586 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1587 if (d > IO_DQS_EN_DELAY_MAX) 1588 d = IO_DQS_EN_DELAY_MAX; 1589 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1590 1591 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1592 1593 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1594 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1595 1596 /* 1597 * push vfifo until we can successfully calibrate. We can do this 1598 * because the largest possible margin in 1 VFIFO cycle. 1599 */ 1600 for (i = 0; i < VFIFO_SIZE; i++) { 1601 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1602 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1603 PASS_ONE_BIT, 1604 0)) { 1605 debug_cond(DLEVEL == 2, 1606 "%s:%d center: found: ptap=%u dtap=%u\n", 1607 __func__, __LINE__, p, d); 1608 return 0; 1609 } 1610 1611 /* Fiddle with FIFO. */ 1612 rw_mgr_incr_vfifo(grp); 1613 } 1614 1615 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1616 __func__, __LINE__); 1617 return -EINVAL; 1618 } 1619 1620 /** 1621 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1622 * @grp: Read/Write Group 1623 * 1624 * Find a good DQS enable to use. 1625 */ 1626 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1627 { 1628 u32 d, p, i; 1629 u32 dtaps_per_ptap; 1630 u32 work_bgn, work_end; 1631 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1632 int ret; 1633 1634 debug("%s:%d %u\n", __func__, __LINE__, grp); 1635 1636 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1637 1638 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1639 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1640 1641 /* Step 0: Determine number of delay taps for each phase tap. */ 1642 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1643 1644 /* Step 1: First push vfifo until we get a failing read. */ 1645 find_vfifo_failing_read(grp); 1646 1647 /* Step 2: Find first working phase, increment in ptaps. */ 1648 work_bgn = 0; 1649 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1650 if (ret) 1651 return ret; 1652 1653 work_end = work_bgn; 1654 1655 /* 1656 * If d is 0 then the working window covers a phase tap and we can 1657 * follow the old procedure. Otherwise, we've found the beginning 1658 * and we need to increment the dtaps until we find the end. 1659 */ 1660 if (d == 0) { 1661 /* 1662 * Step 3a: If we have room, back off by one and 1663 * increment in dtaps. 1664 */ 1665 sdr_backup_phase(grp, &work_bgn, &p); 1666 1667 /* 1668 * Step 4a: go forward from working phase to non working 1669 * phase, increment in ptaps. 1670 */ 1671 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1672 if (ret) 1673 return ret; 1674 1675 /* Step 5a: Back off one from last, increment in dtaps. */ 1676 1677 /* Special case code for backing up a phase */ 1678 if (p == 0) { 1679 p = IO_DQS_EN_PHASE_MAX; 1680 rw_mgr_decr_vfifo(grp); 1681 } else { 1682 p = p - 1; 1683 } 1684 1685 work_end -= IO_DELAY_PER_OPA_TAP; 1686 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1687 1688 d = 0; 1689 1690 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1691 __func__, __LINE__, p); 1692 } 1693 1694 /* The dtap increment to find the failing edge is done here. */ 1695 sdr_find_phase_delay(0, 1, grp, &work_end, 1696 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1697 1698 /* Go back to working dtap */ 1699 if (d != 0) 1700 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1701 1702 debug_cond(DLEVEL == 2, 1703 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1704 __func__, __LINE__, p, d - 1, work_end); 1705 1706 if (work_end < work_bgn) { 1707 /* nil range */ 1708 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1709 __func__, __LINE__); 1710 return -EINVAL; 1711 } 1712 1713 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1714 __func__, __LINE__, work_bgn, work_end); 1715 1716 /* 1717 * We need to calculate the number of dtaps that equal a ptap. 1718 * To do that we'll back up a ptap and re-find the edge of the 1719 * window using dtaps 1720 */ 1721 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1722 __func__, __LINE__); 1723 1724 /* Special case code for backing up a phase */ 1725 if (p == 0) { 1726 p = IO_DQS_EN_PHASE_MAX; 1727 rw_mgr_decr_vfifo(grp); 1728 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1729 __func__, __LINE__, p); 1730 } else { 1731 p = p - 1; 1732 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1733 __func__, __LINE__, p); 1734 } 1735 1736 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1737 1738 /* 1739 * Increase dtap until we first see a passing read (in case the 1740 * window is smaller than a ptap), and then a failing read to 1741 * mark the edge of the window again. 1742 */ 1743 1744 /* Find a passing read. */ 1745 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1746 __func__, __LINE__); 1747 1748 initial_failing_dtap = d; 1749 1750 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1751 if (found_passing_read) { 1752 /* Find a failing read. */ 1753 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1754 __func__, __LINE__); 1755 d++; 1756 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1757 &d); 1758 } else { 1759 debug_cond(DLEVEL == 1, 1760 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1761 __func__, __LINE__); 1762 } 1763 1764 /* 1765 * The dynamically calculated dtaps_per_ptap is only valid if we 1766 * found a passing/failing read. If we didn't, it means d hit the max 1767 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1768 * statically calculated value. 1769 */ 1770 if (found_passing_read && found_failing_read) 1771 dtaps_per_ptap = d - initial_failing_dtap; 1772 1773 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1774 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1775 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1776 1777 /* Step 6: Find the centre of the window. */ 1778 ret = sdr_find_window_center(grp, work_bgn, work_end); 1779 1780 return ret; 1781 } 1782 1783 /** 1784 * search_stop_check() - Check if the detected edge is valid 1785 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1786 * @d: DQS delay 1787 * @rank_bgn: Rank number 1788 * @write_group: Write Group 1789 * @read_group: Read Group 1790 * @bit_chk: Resulting bit mask after the test 1791 * @sticky_bit_chk: Resulting sticky bit mask after the test 1792 * @use_read_test: Perform read test 1793 * 1794 * Test if the found edge is valid. 1795 */ 1796 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1797 const u32 write_group, const u32 read_group, 1798 u32 *bit_chk, u32 *sticky_bit_chk, 1799 const u32 use_read_test) 1800 { 1801 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 1802 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 1803 const u32 correct_mask = write ? param->write_correct_mask : 1804 param->read_correct_mask; 1805 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 1806 RW_MGR_MEM_DQ_PER_READ_DQS; 1807 u32 ret; 1808 /* 1809 * Stop searching when the read test doesn't pass AND when 1810 * we've seen a passing read on every bit. 1811 */ 1812 if (write) { /* WRITE-ONLY */ 1813 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1814 0, PASS_ONE_BIT, 1815 bit_chk, 0); 1816 } else if (use_read_test) { /* READ-ONLY */ 1817 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 1818 NUM_READ_PB_TESTS, 1819 PASS_ONE_BIT, bit_chk, 1820 0, 0); 1821 } else { /* READ-ONLY */ 1822 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 1823 PASS_ONE_BIT, bit_chk, 0); 1824 *bit_chk = *bit_chk >> (per_dqs * 1825 (read_group - (write_group * ratio))); 1826 ret = (*bit_chk == 0); 1827 } 1828 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 1829 ret = ret && (*sticky_bit_chk == correct_mask); 1830 debug_cond(DLEVEL == 2, 1831 "%s:%d center(left): dtap=%u => %u == %u && %u", 1832 __func__, __LINE__, d, 1833 *sticky_bit_chk, correct_mask, ret); 1834 return ret; 1835 } 1836 1837 /** 1838 * search_left_edge() - Find left edge of DQ/DQS working phase 1839 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1840 * @rank_bgn: Rank number 1841 * @write_group: Write Group 1842 * @read_group: Read Group 1843 * @test_bgn: Rank number to begin the test 1844 * @bit_chk: Resulting bit mask after the test 1845 * @sticky_bit_chk: Resulting sticky bit mask after the test 1846 * @left_edge: Left edge of the DQ/DQS phase 1847 * @right_edge: Right edge of the DQ/DQS phase 1848 * @use_read_test: Perform read test 1849 * 1850 * Find left edge of DQ/DQS working phase. 1851 */ 1852 static void search_left_edge(const int write, const int rank_bgn, 1853 const u32 write_group, const u32 read_group, const u32 test_bgn, 1854 u32 *bit_chk, u32 *sticky_bit_chk, 1855 int *left_edge, int *right_edge, const u32 use_read_test) 1856 { 1857 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 1858 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 1859 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 1860 RW_MGR_MEM_DQ_PER_READ_DQS; 1861 u32 stop; 1862 int i, d; 1863 1864 for (d = 0; d <= dqs_max; d++) { 1865 if (write) 1866 scc_mgr_apply_group_dq_out1_delay(d); 1867 else 1868 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 1869 1870 writel(0, &sdr_scc_mgr->update); 1871 1872 stop = search_stop_check(write, d, rank_bgn, write_group, 1873 read_group, bit_chk, sticky_bit_chk, 1874 use_read_test); 1875 if (stop == 1) 1876 break; 1877 1878 /* stop != 1 */ 1879 for (i = 0; i < per_dqs; i++) { 1880 if (*bit_chk & 1) { 1881 /* 1882 * Remember a passing test as 1883 * the left_edge. 1884 */ 1885 left_edge[i] = d; 1886 } else { 1887 /* 1888 * If a left edge has not been seen 1889 * yet, then a future passing test 1890 * will mark this edge as the right 1891 * edge. 1892 */ 1893 if (left_edge[i] == delay_max + 1) 1894 right_edge[i] = -(d + 1); 1895 } 1896 *bit_chk = *bit_chk >> 1; 1897 } 1898 } 1899 1900 /* Reset DQ delay chains to 0 */ 1901 if (write) 1902 scc_mgr_apply_group_dq_out1_delay(0); 1903 else 1904 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1905 1906 *sticky_bit_chk = 0; 1907 for (i = per_dqs - 1; i >= 0; i--) { 1908 debug_cond(DLEVEL == 2, 1909 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 1910 __func__, __LINE__, i, left_edge[i], 1911 i, right_edge[i]); 1912 1913 /* 1914 * Check for cases where we haven't found the left edge, 1915 * which makes our assignment of the the right edge invalid. 1916 * Reset it to the illegal value. 1917 */ 1918 if ((left_edge[i] == delay_max + 1) && 1919 (right_edge[i] != delay_max + 1)) { 1920 right_edge[i] = delay_max + 1; 1921 debug_cond(DLEVEL == 2, 1922 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 1923 __func__, __LINE__, i, right_edge[i]); 1924 } 1925 1926 /* 1927 * Reset sticky bit 1928 * READ: except for bits where we have seen both 1929 * the left and right edge. 1930 * WRITE: except for bits where we have seen the 1931 * left edge. 1932 */ 1933 *sticky_bit_chk <<= 1; 1934 if (write) { 1935 if (left_edge[i] != delay_max + 1) 1936 *sticky_bit_chk |= 1; 1937 } else { 1938 if ((left_edge[i] != delay_max + 1) && 1939 (right_edge[i] != delay_max + 1)) 1940 *sticky_bit_chk |= 1; 1941 } 1942 } 1943 1944 1945 } 1946 1947 /** 1948 * search_right_edge() - Find right edge of DQ/DQS working phase 1949 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1950 * @rank_bgn: Rank number 1951 * @write_group: Write Group 1952 * @read_group: Read Group 1953 * @start_dqs: DQS start phase 1954 * @start_dqs_en: DQS enable start phase 1955 * @bit_chk: Resulting bit mask after the test 1956 * @sticky_bit_chk: Resulting sticky bit mask after the test 1957 * @left_edge: Left edge of the DQ/DQS phase 1958 * @right_edge: Right edge of the DQ/DQS phase 1959 * @use_read_test: Perform read test 1960 * 1961 * Find right edge of DQ/DQS working phase. 1962 */ 1963 static int search_right_edge(const int write, const int rank_bgn, 1964 const u32 write_group, const u32 read_group, 1965 const int start_dqs, const int start_dqs_en, 1966 u32 *bit_chk, u32 *sticky_bit_chk, 1967 int *left_edge, int *right_edge, const u32 use_read_test) 1968 { 1969 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 1970 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 1971 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 1972 RW_MGR_MEM_DQ_PER_READ_DQS; 1973 u32 stop; 1974 int i, d; 1975 1976 for (d = 0; d <= dqs_max - start_dqs; d++) { 1977 if (write) { /* WRITE-ONLY */ 1978 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 1979 d + start_dqs); 1980 } else { /* READ-ONLY */ 1981 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1982 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1983 uint32_t delay = d + start_dqs_en; 1984 if (delay > IO_DQS_EN_DELAY_MAX) 1985 delay = IO_DQS_EN_DELAY_MAX; 1986 scc_mgr_set_dqs_en_delay(read_group, delay); 1987 } 1988 scc_mgr_load_dqs(read_group); 1989 } 1990 1991 writel(0, &sdr_scc_mgr->update); 1992 1993 stop = search_stop_check(write, d, rank_bgn, write_group, 1994 read_group, bit_chk, sticky_bit_chk, 1995 use_read_test); 1996 if (stop == 1) { 1997 if (write && (d == 0)) { /* WRITE-ONLY */ 1998 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 1999 /* 2000 * d = 0 failed, but it passed when 2001 * testing the left edge, so it must be 2002 * marginal, set it to -1 2003 */ 2004 if (right_edge[i] == delay_max + 1 && 2005 left_edge[i] != delay_max + 1) 2006 right_edge[i] = -1; 2007 } 2008 } 2009 break; 2010 } 2011 2012 /* stop != 1 */ 2013 for (i = 0; i < per_dqs; i++) { 2014 if (*bit_chk & 1) { 2015 /* 2016 * Remember a passing test as 2017 * the right_edge. 2018 */ 2019 right_edge[i] = d; 2020 } else { 2021 if (d != 0) { 2022 /* 2023 * If a right edge has not 2024 * been seen yet, then a future 2025 * passing test will mark this 2026 * edge as the left edge. 2027 */ 2028 if (right_edge[i] == delay_max + 1) 2029 left_edge[i] = -(d + 1); 2030 } else { 2031 /* 2032 * d = 0 failed, but it passed 2033 * when testing the left edge, 2034 * so it must be marginal, set 2035 * it to -1 2036 */ 2037 if (right_edge[i] == delay_max + 1 && 2038 left_edge[i] != delay_max + 1) 2039 right_edge[i] = -1; 2040 /* 2041 * If a right edge has not been 2042 * seen yet, then a future 2043 * passing test will mark this 2044 * edge as the left edge. 2045 */ 2046 else if (right_edge[i] == delay_max + 1) 2047 left_edge[i] = -(d + 1); 2048 } 2049 } 2050 2051 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2052 __func__, __LINE__, d); 2053 debug_cond(DLEVEL == 2, 2054 "bit_chk_test=%i left_edge[%u]: %d ", 2055 *bit_chk & 1, i, left_edge[i]); 2056 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2057 right_edge[i]); 2058 *bit_chk = *bit_chk >> 1; 2059 } 2060 } 2061 2062 /* Check that all bits have a window */ 2063 for (i = 0; i < per_dqs; i++) { 2064 debug_cond(DLEVEL == 2, 2065 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2066 __func__, __LINE__, i, left_edge[i], 2067 i, right_edge[i]); 2068 if ((left_edge[i] == dqs_max + 1) || 2069 (right_edge[i] == dqs_max + 1)) 2070 return i + 1; /* FIXME: If we fail, retval > 0 */ 2071 } 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2078 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2079 * @left_edge: Left edge of the DQ/DQS phase 2080 * @right_edge: Right edge of the DQ/DQS phase 2081 * @mid_min: Best DQ/DQS phase middle setting 2082 * 2083 * Find index and value of the middle of the DQ/DQS working phase. 2084 */ 2085 static int get_window_mid_index(const int write, int *left_edge, 2086 int *right_edge, int *mid_min) 2087 { 2088 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2089 RW_MGR_MEM_DQ_PER_READ_DQS; 2090 int i, mid, min_index; 2091 2092 /* Find middle of window for each DQ bit */ 2093 *mid_min = left_edge[0] - right_edge[0]; 2094 min_index = 0; 2095 for (i = 1; i < per_dqs; i++) { 2096 mid = left_edge[i] - right_edge[i]; 2097 if (mid < *mid_min) { 2098 *mid_min = mid; 2099 min_index = i; 2100 } 2101 } 2102 2103 /* 2104 * -mid_min/2 represents the amount that we need to move DQS. 2105 * If mid_min is odd and positive we'll need to add one to make 2106 * sure the rounding in further calculations is correct (always 2107 * bias to the right), so just add 1 for all positive values. 2108 */ 2109 if (*mid_min > 0) 2110 (*mid_min)++; 2111 *mid_min = *mid_min / 2; 2112 2113 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2114 __func__, __LINE__, *mid_min, min_index); 2115 return min_index; 2116 } 2117 2118 /** 2119 * center_dq_windows() - Center the DQ/DQS windows 2120 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2121 * @left_edge: Left edge of the DQ/DQS phase 2122 * @right_edge: Right edge of the DQ/DQS phase 2123 * @mid_min: Adjusted DQ/DQS phase middle setting 2124 * @orig_mid_min: Original DQ/DQS phase middle setting 2125 * @min_index: DQ/DQS phase middle setting index 2126 * @test_bgn: Rank number to begin the test 2127 * @dq_margin: Amount of shift for the DQ 2128 * @dqs_margin: Amount of shift for the DQS 2129 * 2130 * Align the DQ/DQS windows in each group. 2131 */ 2132 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2133 const int mid_min, const int orig_mid_min, 2134 const int min_index, const int test_bgn, 2135 int *dq_margin, int *dqs_margin) 2136 { 2137 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2138 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2139 RW_MGR_MEM_DQ_PER_READ_DQS; 2140 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2141 SCC_MGR_IO_IN_DELAY_OFFSET; 2142 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2143 2144 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2145 int shift_dq, i, p; 2146 2147 /* Initialize data for export structures */ 2148 *dqs_margin = delay_max + 1; 2149 *dq_margin = delay_max + 1; 2150 2151 /* add delay to bring centre of all DQ windows to the same "level" */ 2152 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2153 /* Use values before divide by 2 to reduce round off error */ 2154 shift_dq = (left_edge[i] - right_edge[i] - 2155 (left_edge[min_index] - right_edge[min_index]))/2 + 2156 (orig_mid_min - mid_min); 2157 2158 debug_cond(DLEVEL == 2, 2159 "vfifo_center: before: shift_dq[%u]=%d\n", 2160 i, shift_dq); 2161 2162 temp_dq_io_delay1 = readl(addr + (p << 2)); 2163 temp_dq_io_delay2 = readl(addr + (i << 2)); 2164 2165 if (shift_dq + temp_dq_io_delay1 > delay_max) 2166 shift_dq = delay_max - temp_dq_io_delay2; 2167 else if (shift_dq + temp_dq_io_delay1 < 0) 2168 shift_dq = -temp_dq_io_delay1; 2169 2170 debug_cond(DLEVEL == 2, 2171 "vfifo_center: after: shift_dq[%u]=%d\n", 2172 i, shift_dq); 2173 2174 if (write) 2175 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2176 else 2177 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2178 2179 scc_mgr_load_dq(p); 2180 2181 debug_cond(DLEVEL == 2, 2182 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2183 left_edge[i] - shift_dq + (-mid_min), 2184 right_edge[i] + shift_dq - (-mid_min)); 2185 2186 /* To determine values for export structures */ 2187 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2188 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2189 2190 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2191 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2192 } 2193 2194 } 2195 2196 /* per-bit deskew DQ and center */ 2197 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 2198 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 2199 uint32_t use_read_test, uint32_t update_fom) 2200 { 2201 int i, min_index; 2202 /* 2203 * Store these as signed since there are comparisons with 2204 * signed numbers. 2205 */ 2206 uint32_t bit_chk; 2207 uint32_t sticky_bit_chk; 2208 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2209 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2210 int32_t orig_mid_min, mid_min; 2211 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs, final_dqs_en; 2212 int32_t dq_margin, dqs_margin; 2213 uint32_t addr; 2214 int ret; 2215 2216 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 2217 2218 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 2219 start_dqs = readl(addr + (read_group << 2)); 2220 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2221 start_dqs_en = readl(addr + ((read_group << 2) 2222 - IO_DQS_EN_DELAY_OFFSET)); 2223 2224 /* set the left and right edge of each bit to an illegal value */ 2225 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2226 sticky_bit_chk = 0; 2227 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2228 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2229 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2230 } 2231 2232 /* Search for the left edge of the window for each bit */ 2233 search_left_edge(0, rank_bgn, write_group, read_group, test_bgn, 2234 &bit_chk, &sticky_bit_chk, 2235 left_edge, right_edge, use_read_test); 2236 2237 2238 /* Search for the right edge of the window for each bit */ 2239 ret = search_right_edge(0, rank_bgn, write_group, read_group, 2240 start_dqs, start_dqs_en, 2241 &bit_chk, &sticky_bit_chk, 2242 left_edge, right_edge, use_read_test); 2243 if (ret) { 2244 /* 2245 * Restore delay chain settings before letting the loop 2246 * in rw_mgr_mem_calibrate_vfifo to retry different 2247 * dqs/ck relationships. 2248 */ 2249 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2250 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2251 scc_mgr_set_dqs_en_delay(read_group, start_dqs_en); 2252 2253 scc_mgr_load_dqs(read_group); 2254 writel(0, &sdr_scc_mgr->update); 2255 2256 debug_cond(DLEVEL == 1, 2257 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2258 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2259 if (use_read_test) { 2260 set_failing_group_stage(read_group * 2261 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2262 CAL_STAGE_VFIFO, 2263 CAL_SUBSTAGE_VFIFO_CENTER); 2264 } else { 2265 set_failing_group_stage(read_group * 2266 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2267 CAL_STAGE_VFIFO_AFTER_WRITES, 2268 CAL_SUBSTAGE_VFIFO_CENTER); 2269 } 2270 return 0; 2271 } 2272 2273 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2274 2275 /* Determine the amount we can change DQS (which is -mid_min) */ 2276 orig_mid_min = mid_min; 2277 new_dqs = start_dqs - mid_min; 2278 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2279 new_dqs = IO_DQS_IN_DELAY_MAX; 2280 else if (new_dqs < 0) 2281 new_dqs = 0; 2282 2283 mid_min = start_dqs - new_dqs; 2284 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2285 mid_min, new_dqs); 2286 2287 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2288 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2289 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2290 else if (start_dqs_en - mid_min < 0) 2291 mid_min += start_dqs_en - mid_min; 2292 } 2293 new_dqs = start_dqs - mid_min; 2294 2295 debug_cond(DLEVEL == 1, 2296 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2297 start_dqs, 2298 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2299 new_dqs, mid_min); 2300 2301 /* Add delay to bring centre of all DQ windows to the same "level". */ 2302 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2303 min_index, test_bgn, &dq_margin, &dqs_margin); 2304 2305 final_dqs = new_dqs; 2306 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2307 final_dqs_en = start_dqs_en - mid_min; 2308 2309 /* Move DQS-en */ 2310 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2311 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2312 scc_mgr_load_dqs(read_group); 2313 } 2314 2315 /* Move DQS */ 2316 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2317 scc_mgr_load_dqs(read_group); 2318 debug_cond(DLEVEL == 2, 2319 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2320 __func__, __LINE__, dq_margin, dqs_margin); 2321 2322 /* 2323 * Do not remove this line as it makes sure all of our decisions 2324 * have been applied. Apply the update bit. 2325 */ 2326 writel(0, &sdr_scc_mgr->update); 2327 2328 return (dq_margin >= 0) && (dqs_margin >= 0); 2329 } 2330 2331 /** 2332 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2333 * @rw_group: Read/Write Group 2334 * @phase: DQ/DQS phase 2335 * 2336 * Because initially no communication ca be reliably performed with the memory 2337 * device, the sequencer uses a guaranteed write mechanism to write data into 2338 * the memory device. 2339 */ 2340 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2341 const u32 phase) 2342 { 2343 int ret; 2344 2345 /* Set a particular DQ/DQS phase. */ 2346 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2347 2348 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2349 __func__, __LINE__, rw_group, phase); 2350 2351 /* 2352 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2353 * Load up the patterns used by read calibration using the 2354 * current DQDQS phase. 2355 */ 2356 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2357 2358 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2359 return 0; 2360 2361 /* 2362 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2363 * Back-to-Back reads of the patterns used for calibration. 2364 */ 2365 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2366 if (ret) 2367 debug_cond(DLEVEL == 1, 2368 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2369 __func__, __LINE__, rw_group, phase); 2370 return ret; 2371 } 2372 2373 /** 2374 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2375 * @rw_group: Read/Write Group 2376 * @test_bgn: Rank at which the test begins 2377 * 2378 * DQS enable calibration ensures reliable capture of the DQ signal without 2379 * glitches on the DQS line. 2380 */ 2381 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2382 const u32 test_bgn) 2383 { 2384 /* 2385 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2386 * DQS and DQS Eanble Signal Relationships. 2387 */ 2388 2389 /* We start at zero, so have one less dq to devide among */ 2390 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2391 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2392 int ret; 2393 u32 i, p, d, r; 2394 2395 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2396 2397 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2398 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2399 r += NUM_RANKS_PER_SHADOW_REG) { 2400 for (i = 0, p = test_bgn, d = 0; 2401 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2402 i++, p++, d += delay_step) { 2403 debug_cond(DLEVEL == 1, 2404 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2405 __func__, __LINE__, rw_group, r, i, p, d); 2406 2407 scc_mgr_set_dq_in_delay(p, d); 2408 scc_mgr_load_dq(p); 2409 } 2410 2411 writel(0, &sdr_scc_mgr->update); 2412 } 2413 2414 /* 2415 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2416 * dq_in_delay values 2417 */ 2418 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2419 2420 debug_cond(DLEVEL == 1, 2421 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2422 __func__, __LINE__, rw_group, !ret); 2423 2424 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2425 r += NUM_RANKS_PER_SHADOW_REG) { 2426 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2427 writel(0, &sdr_scc_mgr->update); 2428 } 2429 2430 return ret; 2431 } 2432 2433 /** 2434 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2435 * @rw_group: Read/Write Group 2436 * @test_bgn: Rank at which the test begins 2437 * @use_read_test: Perform a read test 2438 * @update_fom: Update FOM 2439 * 2440 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2441 * within a group. 2442 */ 2443 static int 2444 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2445 const int use_read_test, 2446 const int update_fom) 2447 2448 { 2449 int ret, grp_calibrated; 2450 u32 rank_bgn, sr; 2451 2452 /* 2453 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2454 * Read per-bit deskew can be done on a per shadow register basis. 2455 */ 2456 grp_calibrated = 1; 2457 for (rank_bgn = 0, sr = 0; 2458 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2459 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2460 /* Check if this set of ranks should be skipped entirely. */ 2461 if (param->skip_shadow_regs[sr]) 2462 continue; 2463 2464 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2465 rw_group, test_bgn, 2466 use_read_test, 2467 update_fom); 2468 if (ret) 2469 continue; 2470 2471 grp_calibrated = 0; 2472 } 2473 2474 if (!grp_calibrated) 2475 return -EIO; 2476 2477 return 0; 2478 } 2479 2480 /** 2481 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2482 * @rw_group: Read/Write Group 2483 * @test_bgn: Rank at which the test begins 2484 * 2485 * Stage 1: Calibrate the read valid prediction FIFO. 2486 * 2487 * This function implements UniPHY calibration Stage 1, as explained in 2488 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2489 * 2490 * - read valid prediction will consist of finding: 2491 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2492 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2493 * - we also do a per-bit deskew on the DQ lines. 2494 */ 2495 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2496 { 2497 uint32_t p, d; 2498 uint32_t dtaps_per_ptap; 2499 uint32_t failed_substage; 2500 2501 int ret; 2502 2503 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2504 2505 /* Update info for sims */ 2506 reg_file_set_group(rw_group); 2507 reg_file_set_stage(CAL_STAGE_VFIFO); 2508 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2509 2510 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2511 2512 /* USER Determine number of delay taps for each phase tap. */ 2513 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2514 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2515 2516 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2517 /* 2518 * In RLDRAMX we may be messing the delay of pins in 2519 * the same write rw_group but outside of the current read 2520 * the rw_group, but that's ok because we haven't calibrated 2521 * output side yet. 2522 */ 2523 if (d > 0) { 2524 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2525 rw_group, d); 2526 } 2527 2528 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2529 /* 1) Guaranteed Write */ 2530 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2531 if (ret) 2532 break; 2533 2534 /* 2) DQS Enable Calibration */ 2535 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2536 test_bgn); 2537 if (ret) { 2538 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2539 continue; 2540 } 2541 2542 /* 3) Centering DQ/DQS */ 2543 /* 2544 * If doing read after write calibration, do not update 2545 * FOM now. Do it then. 2546 */ 2547 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2548 test_bgn, 1, 0); 2549 if (ret) { 2550 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2551 continue; 2552 } 2553 2554 /* All done. */ 2555 goto cal_done_ok; 2556 } 2557 } 2558 2559 /* Calibration Stage 1 failed. */ 2560 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2561 return 0; 2562 2563 /* Calibration Stage 1 completed OK. */ 2564 cal_done_ok: 2565 /* 2566 * Reset the delay chains back to zero if they have moved > 1 2567 * (check for > 1 because loop will increase d even when pass in 2568 * first case). 2569 */ 2570 if (d > 2) 2571 scc_mgr_zero_group(rw_group, 1); 2572 2573 return 1; 2574 } 2575 2576 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2577 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2578 uint32_t test_bgn) 2579 { 2580 uint32_t rank_bgn, sr; 2581 uint32_t grp_calibrated; 2582 uint32_t write_group; 2583 2584 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2585 2586 /* update info for sims */ 2587 2588 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2589 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2590 2591 write_group = read_group; 2592 2593 /* update info for sims */ 2594 reg_file_set_group(read_group); 2595 2596 grp_calibrated = 1; 2597 /* Read per-bit deskew can be done on a per shadow register basis */ 2598 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2599 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2600 /* Determine if this set of ranks should be skipped entirely */ 2601 if (!param->skip_shadow_regs[sr]) { 2602 /* This is the last calibration round, update FOM here */ 2603 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2604 write_group, 2605 read_group, 2606 test_bgn, 0, 2607 1)) { 2608 grp_calibrated = 0; 2609 } 2610 } 2611 } 2612 2613 2614 if (grp_calibrated == 0) { 2615 set_failing_group_stage(write_group, 2616 CAL_STAGE_VFIFO_AFTER_WRITES, 2617 CAL_SUBSTAGE_VFIFO_CENTER); 2618 return 0; 2619 } 2620 2621 return 1; 2622 } 2623 2624 /* Calibrate LFIFO to find smallest read latency */ 2625 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2626 { 2627 uint32_t found_one; 2628 2629 debug("%s:%d\n", __func__, __LINE__); 2630 2631 /* update info for sims */ 2632 reg_file_set_stage(CAL_STAGE_LFIFO); 2633 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2634 2635 /* Load up the patterns used by read calibration for all ranks */ 2636 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2637 found_one = 0; 2638 2639 do { 2640 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2641 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2642 __func__, __LINE__, gbl->curr_read_lat); 2643 2644 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2645 NUM_READ_TESTS, 2646 PASS_ALL_BITS, 2647 1)) { 2648 break; 2649 } 2650 2651 found_one = 1; 2652 /* reduce read latency and see if things are working */ 2653 /* correctly */ 2654 gbl->curr_read_lat--; 2655 } while (gbl->curr_read_lat > 0); 2656 2657 /* reset the fifos to get pointers to known state */ 2658 2659 writel(0, &phy_mgr_cmd->fifo_reset); 2660 2661 if (found_one) { 2662 /* add a fudge factor to the read latency that was determined */ 2663 gbl->curr_read_lat += 2; 2664 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2665 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2666 read_lat=%u\n", __func__, __LINE__, 2667 gbl->curr_read_lat); 2668 return 1; 2669 } else { 2670 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2671 CAL_SUBSTAGE_READ_LATENCY); 2672 2673 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2674 read_lat=%u\n", __func__, __LINE__, 2675 gbl->curr_read_lat); 2676 return 0; 2677 } 2678 } 2679 2680 /* 2681 * issue write test command. 2682 * two variants are provided. one that just tests a write pattern and 2683 * another that tests datamask functionality. 2684 */ 2685 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2686 uint32_t test_dm) 2687 { 2688 uint32_t mcc_instruction; 2689 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2690 ENABLE_SUPER_QUICK_CALIBRATION); 2691 uint32_t rw_wl_nop_cycles; 2692 uint32_t addr; 2693 2694 /* 2695 * Set counter and jump addresses for the right 2696 * number of NOP cycles. 2697 * The number of supported NOP cycles can range from -1 to infinity 2698 * Three different cases are handled: 2699 * 2700 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2701 * mechanism will be used to insert the right number of NOPs 2702 * 2703 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2704 * issuing the write command will jump straight to the 2705 * micro-instruction that turns on DQS (for DDRx), or outputs write 2706 * data (for RLD), skipping 2707 * the NOP micro-instruction all together 2708 * 2709 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2710 * turned on in the same micro-instruction that issues the write 2711 * command. Then we need 2712 * to directly jump to the micro-instruction that sends out the data 2713 * 2714 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2715 * (2 and 3). One jump-counter (0) is used to perform multiple 2716 * write-read operations. 2717 * one counter left to issue this command in "multiple-group" mode 2718 */ 2719 2720 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2721 2722 if (rw_wl_nop_cycles == -1) { 2723 /* 2724 * CNTR 2 - We want to execute the special write operation that 2725 * turns on DQS right away and then skip directly to the 2726 * instruction that sends out the data. We set the counter to a 2727 * large number so that the jump is always taken. 2728 */ 2729 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2730 2731 /* CNTR 3 - Not used */ 2732 if (test_dm) { 2733 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2734 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2735 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2736 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2737 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2738 } else { 2739 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2740 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2741 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2742 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2743 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2744 } 2745 } else if (rw_wl_nop_cycles == 0) { 2746 /* 2747 * CNTR 2 - We want to skip the NOP operation and go straight 2748 * to the DQS enable instruction. We set the counter to a large 2749 * number so that the jump is always taken. 2750 */ 2751 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2752 2753 /* CNTR 3 - Not used */ 2754 if (test_dm) { 2755 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2756 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2757 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2758 } else { 2759 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2760 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2761 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2762 } 2763 } else { 2764 /* 2765 * CNTR 2 - In this case we want to execute the next instruction 2766 * and NOT take the jump. So we set the counter to 0. The jump 2767 * address doesn't count. 2768 */ 2769 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2770 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2771 2772 /* 2773 * CNTR 3 - Set the nop counter to the number of cycles we 2774 * need to loop for, minus 1. 2775 */ 2776 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2777 if (test_dm) { 2778 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2779 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2780 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2781 } else { 2782 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2783 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2784 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2785 } 2786 } 2787 2788 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2789 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2790 2791 if (quick_write_mode) 2792 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2793 else 2794 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2795 2796 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2797 2798 /* 2799 * CNTR 1 - This is used to ensure enough time elapses 2800 * for read data to come back. 2801 */ 2802 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2803 2804 if (test_dm) { 2805 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2806 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2807 } else { 2808 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2809 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2810 } 2811 2812 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2813 writel(mcc_instruction, addr + (group << 2)); 2814 } 2815 2816 /* Test writes, can check for a single bit pass or multiple bit pass */ 2817 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2818 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2819 uint32_t *bit_chk, uint32_t all_ranks) 2820 { 2821 uint32_t r; 2822 uint32_t correct_mask_vg; 2823 uint32_t tmp_bit_chk; 2824 uint32_t vg; 2825 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2826 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2827 uint32_t addr_rw_mgr; 2828 uint32_t base_rw_mgr; 2829 2830 *bit_chk = param->write_correct_mask; 2831 correct_mask_vg = param->write_correct_mask_vg; 2832 2833 for (r = rank_bgn; r < rank_end; r++) { 2834 if (param->skip_ranks[r]) { 2835 /* request to skip the rank */ 2836 continue; 2837 } 2838 2839 /* set rank */ 2840 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2841 2842 tmp_bit_chk = 0; 2843 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2844 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2845 /* reset the fifos to get pointers to known state */ 2846 writel(0, &phy_mgr_cmd->fifo_reset); 2847 2848 tmp_bit_chk = tmp_bit_chk << 2849 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2850 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2851 rw_mgr_mem_calibrate_write_test_issue(write_group * 2852 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2853 use_dm); 2854 2855 base_rw_mgr = readl(addr_rw_mgr); 2856 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2857 if (vg == 0) 2858 break; 2859 } 2860 *bit_chk &= tmp_bit_chk; 2861 } 2862 2863 if (all_correct) { 2864 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2865 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2866 %u => %lu", write_group, use_dm, 2867 *bit_chk, param->write_correct_mask, 2868 (long unsigned int)(*bit_chk == 2869 param->write_correct_mask)); 2870 return *bit_chk == param->write_correct_mask; 2871 } else { 2872 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2873 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2874 write_group, use_dm, *bit_chk); 2875 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2876 (long unsigned int)(*bit_chk != 0)); 2877 return *bit_chk != 0x00; 2878 } 2879 } 2880 2881 /* 2882 * center all windows. do per-bit-deskew to possibly increase size of 2883 * certain windows. 2884 */ 2885 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2886 uint32_t write_group, uint32_t test_bgn) 2887 { 2888 uint32_t i, min_index; 2889 int32_t d; 2890 /* 2891 * Store these as signed since there are comparisons with 2892 * signed numbers. 2893 */ 2894 uint32_t bit_chk; 2895 uint32_t sticky_bit_chk; 2896 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2897 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2898 int32_t mid; 2899 int32_t mid_min, orig_mid_min; 2900 int32_t new_dqs, start_dqs; 2901 int32_t dq_margin, dqs_margin, dm_margin; 2902 uint32_t addr; 2903 2904 int ret; 2905 2906 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2907 2908 dm_margin = 0; 2909 2910 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2911 start_dqs = readl(addr + 2912 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2913 2914 /* per-bit deskew */ 2915 2916 /* 2917 * set the left and right edge of each bit to an illegal value 2918 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2919 */ 2920 sticky_bit_chk = 0; 2921 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2922 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2923 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2924 } 2925 2926 /* Search for the left edge of the window for each bit */ 2927 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 2928 &bit_chk, &sticky_bit_chk, 2929 left_edge, right_edge, 0); 2930 2931 /* Search for the right edge of the window for each bit */ 2932 ret = search_right_edge(1, rank_bgn, write_group, 0, 2933 start_dqs, 0, 2934 &bit_chk, &sticky_bit_chk, 2935 left_edge, right_edge, 0); 2936 if (ret) { 2937 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 2938 CAL_SUBSTAGE_WRITES_CENTER); 2939 return 0; 2940 } 2941 2942 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 2943 2944 /* Determine the amount we can change DQS (which is -mid_min) */ 2945 orig_mid_min = mid_min; 2946 new_dqs = start_dqs; 2947 mid_min = 0; 2948 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2949 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2950 2951 /* Add delay to bring centre of all DQ windows to the same "level". */ 2952 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 2953 min_index, 0, &dq_margin, &dqs_margin); 2954 2955 /* Move DQS */ 2956 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2957 writel(0, &sdr_scc_mgr->update); 2958 2959 /* Centre DM */ 2960 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2961 2962 /* 2963 * set the left and right edge of each bit to an illegal value, 2964 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2965 */ 2966 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2967 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2968 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2969 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2970 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2971 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2972 int32_t win_best = 0; 2973 2974 /* Search for the/part of the window with DM shift */ 2975 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2976 scc_mgr_apply_group_dm_out1_delay(d); 2977 writel(0, &sdr_scc_mgr->update); 2978 2979 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2980 PASS_ALL_BITS, &bit_chk, 2981 0)) { 2982 /* USE Set current end of the window */ 2983 end_curr = -d; 2984 /* 2985 * If a starting edge of our window has not been seen 2986 * this is our current start of the DM window. 2987 */ 2988 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2989 bgn_curr = -d; 2990 2991 /* 2992 * If current window is bigger than best seen. 2993 * Set best seen to be current window. 2994 */ 2995 if ((end_curr-bgn_curr+1) > win_best) { 2996 win_best = end_curr-bgn_curr+1; 2997 bgn_best = bgn_curr; 2998 end_best = end_curr; 2999 } 3000 } else { 3001 /* We just saw a failing test. Reset temp edge */ 3002 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3003 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3004 } 3005 } 3006 3007 3008 /* Reset DM delay chains to 0 */ 3009 scc_mgr_apply_group_dm_out1_delay(0); 3010 3011 /* 3012 * Check to see if the current window nudges up aganist 0 delay. 3013 * If so we need to continue the search by shifting DQS otherwise DQS 3014 * search begins as a new search. */ 3015 if (end_curr != 0) { 3016 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3017 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3018 } 3019 3020 /* Search for the/part of the window with DQS shifts */ 3021 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3022 /* 3023 * Note: This only shifts DQS, so are we limiting ourselve to 3024 * width of DQ unnecessarily. 3025 */ 3026 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3027 d + new_dqs); 3028 3029 writel(0, &sdr_scc_mgr->update); 3030 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3031 PASS_ALL_BITS, &bit_chk, 3032 0)) { 3033 /* USE Set current end of the window */ 3034 end_curr = d; 3035 /* 3036 * If a beginning edge of our window has not been seen 3037 * this is our current begin of the DM window. 3038 */ 3039 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3040 bgn_curr = d; 3041 3042 /* 3043 * If current window is bigger than best seen. Set best 3044 * seen to be current window. 3045 */ 3046 if ((end_curr-bgn_curr+1) > win_best) { 3047 win_best = end_curr-bgn_curr+1; 3048 bgn_best = bgn_curr; 3049 end_best = end_curr; 3050 } 3051 } else { 3052 /* We just saw a failing test. Reset temp edge */ 3053 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3054 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3055 3056 /* Early exit optimization: if ther remaining delay 3057 chain space is less than already seen largest window 3058 we can exit */ 3059 if ((win_best-1) > 3060 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3061 break; 3062 } 3063 } 3064 } 3065 3066 /* assign left and right edge for cal and reporting; */ 3067 left_edge[0] = -1*bgn_best; 3068 right_edge[0] = end_best; 3069 3070 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3071 __LINE__, left_edge[0], right_edge[0]); 3072 3073 /* Move DQS (back to orig) */ 3074 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3075 3076 /* Move DM */ 3077 3078 /* Find middle of window for the DM bit */ 3079 mid = (left_edge[0] - right_edge[0]) / 2; 3080 3081 /* only move right, since we are not moving DQS/DQ */ 3082 if (mid < 0) 3083 mid = 0; 3084 3085 /* dm_marign should fail if we never find a window */ 3086 if (win_best == 0) 3087 dm_margin = -1; 3088 else 3089 dm_margin = left_edge[0] - mid; 3090 3091 scc_mgr_apply_group_dm_out1_delay(mid); 3092 writel(0, &sdr_scc_mgr->update); 3093 3094 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3095 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3096 right_edge[0], mid, dm_margin); 3097 /* Export values */ 3098 gbl->fom_out += dq_margin + dqs_margin; 3099 3100 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3101 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3102 dq_margin, dqs_margin, dm_margin); 3103 3104 /* 3105 * Do not remove this line as it makes sure all of our 3106 * decisions have been applied. 3107 */ 3108 writel(0, &sdr_scc_mgr->update); 3109 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3110 } 3111 3112 /** 3113 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3114 * @rank_bgn: Rank number 3115 * @group: Read/Write Group 3116 * @test_bgn: Rank at which the test begins 3117 * 3118 * Stage 2: Write Calibration Part One. 3119 * 3120 * This function implements UniPHY calibration Stage 2, as explained in 3121 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3122 */ 3123 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3124 const u32 test_bgn) 3125 { 3126 int ret; 3127 3128 /* Update info for sims */ 3129 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3130 3131 reg_file_set_group(group); 3132 reg_file_set_stage(CAL_STAGE_WRITES); 3133 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3134 3135 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3136 if (!ret) { 3137 set_failing_group_stage(group, CAL_STAGE_WRITES, 3138 CAL_SUBSTAGE_WRITES_CENTER); 3139 return -EIO; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /** 3146 * mem_precharge_and_activate() - Precharge all banks and activate 3147 * 3148 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3149 */ 3150 static void mem_precharge_and_activate(void) 3151 { 3152 int r; 3153 3154 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3155 /* Test if the rank should be skipped. */ 3156 if (param->skip_ranks[r]) 3157 continue; 3158 3159 /* Set rank. */ 3160 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3161 3162 /* Precharge all banks. */ 3163 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3164 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3165 3166 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3167 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3168 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3169 3170 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3171 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3172 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3173 3174 /* Activate rows. */ 3175 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3176 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3177 } 3178 } 3179 3180 /** 3181 * mem_init_latency() - Configure memory RLAT and WLAT settings 3182 * 3183 * Configure memory RLAT and WLAT parameters. 3184 */ 3185 static void mem_init_latency(void) 3186 { 3187 /* 3188 * For AV/CV, LFIFO is hardened and always runs at full rate 3189 * so max latency in AFI clocks, used here, is correspondingly 3190 * smaller. 3191 */ 3192 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3193 u32 rlat, wlat; 3194 3195 debug("%s:%d\n", __func__, __LINE__); 3196 3197 /* 3198 * Read in write latency. 3199 * WL for Hard PHY does not include additive latency. 3200 */ 3201 wlat = readl(&data_mgr->t_wl_add); 3202 wlat += readl(&data_mgr->mem_t_add); 3203 3204 gbl->rw_wl_nop_cycles = wlat - 1; 3205 3206 /* Read in readl latency. */ 3207 rlat = readl(&data_mgr->t_rl_add); 3208 3209 /* Set a pretty high read latency initially. */ 3210 gbl->curr_read_lat = rlat + 16; 3211 if (gbl->curr_read_lat > max_latency) 3212 gbl->curr_read_lat = max_latency; 3213 3214 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3215 3216 /* Advertise write latency. */ 3217 writel(wlat, &phy_mgr_cfg->afi_wlat); 3218 } 3219 3220 /** 3221 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3222 * 3223 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3224 */ 3225 static void mem_skip_calibrate(void) 3226 { 3227 uint32_t vfifo_offset; 3228 uint32_t i, j, r; 3229 3230 debug("%s:%d\n", __func__, __LINE__); 3231 /* Need to update every shadow register set used by the interface */ 3232 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3233 r += NUM_RANKS_PER_SHADOW_REG) { 3234 /* 3235 * Set output phase alignment settings appropriate for 3236 * skip calibration. 3237 */ 3238 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3239 scc_mgr_set_dqs_en_phase(i, 0); 3240 #if IO_DLL_CHAIN_LENGTH == 6 3241 scc_mgr_set_dqdqs_output_phase(i, 6); 3242 #else 3243 scc_mgr_set_dqdqs_output_phase(i, 7); 3244 #endif 3245 /* 3246 * Case:33398 3247 * 3248 * Write data arrives to the I/O two cycles before write 3249 * latency is reached (720 deg). 3250 * -> due to bit-slip in a/c bus 3251 * -> to allow board skew where dqs is longer than ck 3252 * -> how often can this happen!? 3253 * -> can claim back some ptaps for high freq 3254 * support if we can relax this, but i digress... 3255 * 3256 * The write_clk leads mem_ck by 90 deg 3257 * The minimum ptap of the OPA is 180 deg 3258 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3259 * The write_clk is always delayed by 2 ptaps 3260 * 3261 * Hence, to make DQS aligned to CK, we need to delay 3262 * DQS by: 3263 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3264 * 3265 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3266 * gives us the number of ptaps, which simplies to: 3267 * 3268 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3269 */ 3270 scc_mgr_set_dqdqs_output_phase(i, 3271 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3272 } 3273 writel(0xff, &sdr_scc_mgr->dqs_ena); 3274 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3275 3276 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3277 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3278 SCC_MGR_GROUP_COUNTER_OFFSET); 3279 } 3280 writel(0xff, &sdr_scc_mgr->dq_ena); 3281 writel(0xff, &sdr_scc_mgr->dm_ena); 3282 writel(0, &sdr_scc_mgr->update); 3283 } 3284 3285 /* Compensate for simulation model behaviour */ 3286 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3287 scc_mgr_set_dqs_bus_in_delay(i, 10); 3288 scc_mgr_load_dqs(i); 3289 } 3290 writel(0, &sdr_scc_mgr->update); 3291 3292 /* 3293 * ArriaV has hard FIFOs that can only be initialized by incrementing 3294 * in sequencer. 3295 */ 3296 vfifo_offset = CALIB_VFIFO_OFFSET; 3297 for (j = 0; j < vfifo_offset; j++) 3298 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3299 writel(0, &phy_mgr_cmd->fifo_reset); 3300 3301 /* 3302 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3303 * setting from generation-time constant. 3304 */ 3305 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3306 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3307 } 3308 3309 /** 3310 * mem_calibrate() - Memory calibration entry point. 3311 * 3312 * Perform memory calibration. 3313 */ 3314 static uint32_t mem_calibrate(void) 3315 { 3316 uint32_t i; 3317 uint32_t rank_bgn, sr; 3318 uint32_t write_group, write_test_bgn; 3319 uint32_t read_group, read_test_bgn; 3320 uint32_t run_groups, current_run; 3321 uint32_t failing_groups = 0; 3322 uint32_t group_failed = 0; 3323 3324 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3325 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3326 3327 debug("%s:%d\n", __func__, __LINE__); 3328 3329 /* Initialize the data settings */ 3330 gbl->error_substage = CAL_SUBSTAGE_NIL; 3331 gbl->error_stage = CAL_STAGE_NIL; 3332 gbl->error_group = 0xff; 3333 gbl->fom_in = 0; 3334 gbl->fom_out = 0; 3335 3336 /* Initialize WLAT and RLAT. */ 3337 mem_init_latency(); 3338 3339 /* Initialize bit slips. */ 3340 mem_precharge_and_activate(); 3341 3342 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3343 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3344 SCC_MGR_GROUP_COUNTER_OFFSET); 3345 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3346 if (i == 0) 3347 scc_mgr_set_hhp_extras(); 3348 3349 scc_set_bypass_mode(i); 3350 } 3351 3352 /* Calibration is skipped. */ 3353 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3354 /* 3355 * Set VFIFO and LFIFO to instant-on settings in skip 3356 * calibration mode. 3357 */ 3358 mem_skip_calibrate(); 3359 3360 /* 3361 * Do not remove this line as it makes sure all of our 3362 * decisions have been applied. 3363 */ 3364 writel(0, &sdr_scc_mgr->update); 3365 return 1; 3366 } 3367 3368 /* Calibration is not skipped. */ 3369 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3370 /* 3371 * Zero all delay chain/phase settings for all 3372 * groups and all shadow register sets. 3373 */ 3374 scc_mgr_zero_all(); 3375 3376 run_groups = ~param->skip_groups; 3377 3378 for (write_group = 0, write_test_bgn = 0; write_group 3379 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3380 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3381 3382 /* Initialize the group failure */ 3383 group_failed = 0; 3384 3385 current_run = run_groups & ((1 << 3386 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3387 run_groups = run_groups >> 3388 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3389 3390 if (current_run == 0) 3391 continue; 3392 3393 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3394 SCC_MGR_GROUP_COUNTER_OFFSET); 3395 scc_mgr_zero_group(write_group, 0); 3396 3397 for (read_group = write_group * rwdqs_ratio, 3398 read_test_bgn = 0; 3399 read_group < (write_group + 1) * rwdqs_ratio; 3400 read_group++, 3401 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3402 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3403 continue; 3404 3405 /* Calibrate the VFIFO */ 3406 if (rw_mgr_mem_calibrate_vfifo(read_group, 3407 read_test_bgn)) 3408 continue; 3409 3410 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3411 return 0; 3412 3413 /* The group failed, we're done. */ 3414 goto grp_failed; 3415 } 3416 3417 /* Calibrate the output side */ 3418 for (rank_bgn = 0, sr = 0; 3419 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3420 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3421 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3422 continue; 3423 3424 /* Not needed in quick mode! */ 3425 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3426 continue; 3427 3428 /* 3429 * Determine if this set of ranks 3430 * should be skipped entirely. 3431 */ 3432 if (param->skip_shadow_regs[sr]) 3433 continue; 3434 3435 /* Calibrate WRITEs */ 3436 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3437 write_group, write_test_bgn)) 3438 continue; 3439 3440 group_failed = 1; 3441 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3442 return 0; 3443 } 3444 3445 /* Some group failed, we're done. */ 3446 if (group_failed) 3447 goto grp_failed; 3448 3449 for (read_group = write_group * rwdqs_ratio, 3450 read_test_bgn = 0; 3451 read_group < (write_group + 1) * rwdqs_ratio; 3452 read_group++, 3453 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3454 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3455 continue; 3456 3457 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3458 read_test_bgn)) 3459 continue; 3460 3461 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3462 return 0; 3463 3464 /* The group failed, we're done. */ 3465 goto grp_failed; 3466 } 3467 3468 /* No group failed, continue as usual. */ 3469 continue; 3470 3471 grp_failed: /* A group failed, increment the counter. */ 3472 failing_groups++; 3473 } 3474 3475 /* 3476 * USER If there are any failing groups then report 3477 * the failure. 3478 */ 3479 if (failing_groups != 0) 3480 return 0; 3481 3482 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3483 continue; 3484 3485 /* 3486 * If we're skipping groups as part of debug, 3487 * don't calibrate LFIFO. 3488 */ 3489 if (param->skip_groups != 0) 3490 continue; 3491 3492 /* Calibrate the LFIFO */ 3493 if (!rw_mgr_mem_calibrate_lfifo()) 3494 return 0; 3495 } 3496 3497 /* 3498 * Do not remove this line as it makes sure all of our decisions 3499 * have been applied. 3500 */ 3501 writel(0, &sdr_scc_mgr->update); 3502 return 1; 3503 } 3504 3505 /** 3506 * run_mem_calibrate() - Perform memory calibration 3507 * 3508 * This function triggers the entire memory calibration procedure. 3509 */ 3510 static int run_mem_calibrate(void) 3511 { 3512 int pass; 3513 3514 debug("%s:%d\n", __func__, __LINE__); 3515 3516 /* Reset pass/fail status shown on afi_cal_success/fail */ 3517 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3518 3519 /* Stop tracking manager. */ 3520 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3521 3522 phy_mgr_initialize(); 3523 rw_mgr_mem_initialize(); 3524 3525 /* Perform the actual memory calibration. */ 3526 pass = mem_calibrate(); 3527 3528 mem_precharge_and_activate(); 3529 writel(0, &phy_mgr_cmd->fifo_reset); 3530 3531 /* Handoff. */ 3532 rw_mgr_mem_handoff(); 3533 /* 3534 * In Hard PHY this is a 2-bit control: 3535 * 0: AFI Mux Select 3536 * 1: DDIO Mux Select 3537 */ 3538 writel(0x2, &phy_mgr_cfg->mux_sel); 3539 3540 /* Start tracking manager. */ 3541 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3542 3543 return pass; 3544 } 3545 3546 /** 3547 * debug_mem_calibrate() - Report result of memory calibration 3548 * @pass: Value indicating whether calibration passed or failed 3549 * 3550 * This function reports the results of the memory calibration 3551 * and writes debug information into the register file. 3552 */ 3553 static void debug_mem_calibrate(int pass) 3554 { 3555 uint32_t debug_info; 3556 3557 if (pass) { 3558 printf("%s: CALIBRATION PASSED\n", __FILE__); 3559 3560 gbl->fom_in /= 2; 3561 gbl->fom_out /= 2; 3562 3563 if (gbl->fom_in > 0xff) 3564 gbl->fom_in = 0xff; 3565 3566 if (gbl->fom_out > 0xff) 3567 gbl->fom_out = 0xff; 3568 3569 /* Update the FOM in the register file */ 3570 debug_info = gbl->fom_in; 3571 debug_info |= gbl->fom_out << 8; 3572 writel(debug_info, &sdr_reg_file->fom); 3573 3574 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3575 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3576 } else { 3577 printf("%s: CALIBRATION FAILED\n", __FILE__); 3578 3579 debug_info = gbl->error_stage; 3580 debug_info |= gbl->error_substage << 8; 3581 debug_info |= gbl->error_group << 16; 3582 3583 writel(debug_info, &sdr_reg_file->failing_stage); 3584 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3585 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3586 3587 /* Update the failing group/stage in the register file */ 3588 debug_info = gbl->error_stage; 3589 debug_info |= gbl->error_substage << 8; 3590 debug_info |= gbl->error_group << 16; 3591 writel(debug_info, &sdr_reg_file->failing_stage); 3592 } 3593 3594 printf("%s: Calibration complete\n", __FILE__); 3595 } 3596 3597 /** 3598 * hc_initialize_rom_data() - Initialize ROM data 3599 * 3600 * Initialize ROM data. 3601 */ 3602 static void hc_initialize_rom_data(void) 3603 { 3604 u32 i, addr; 3605 3606 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3607 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3608 writel(inst_rom_init[i], addr + (i << 2)); 3609 3610 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3611 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3612 writel(ac_rom_init[i], addr + (i << 2)); 3613 } 3614 3615 /** 3616 * initialize_reg_file() - Initialize SDR register file 3617 * 3618 * Initialize SDR register file. 3619 */ 3620 static void initialize_reg_file(void) 3621 { 3622 /* Initialize the register file with the correct data */ 3623 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3624 writel(0, &sdr_reg_file->debug_data_addr); 3625 writel(0, &sdr_reg_file->cur_stage); 3626 writel(0, &sdr_reg_file->fom); 3627 writel(0, &sdr_reg_file->failing_stage); 3628 writel(0, &sdr_reg_file->debug1); 3629 writel(0, &sdr_reg_file->debug2); 3630 } 3631 3632 /** 3633 * initialize_hps_phy() - Initialize HPS PHY 3634 * 3635 * Initialize HPS PHY. 3636 */ 3637 static void initialize_hps_phy(void) 3638 { 3639 uint32_t reg; 3640 /* 3641 * Tracking also gets configured here because it's in the 3642 * same register. 3643 */ 3644 uint32_t trk_sample_count = 7500; 3645 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3646 /* 3647 * Format is number of outer loops in the 16 MSB, sample 3648 * count in 16 LSB. 3649 */ 3650 3651 reg = 0; 3652 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3653 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3654 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3655 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3656 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3657 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3658 /* 3659 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3660 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3661 */ 3662 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3663 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3664 trk_sample_count); 3665 writel(reg, &sdr_ctrl->phy_ctrl0); 3666 3667 reg = 0; 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3669 trk_sample_count >> 3670 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3672 trk_long_idle_sample_count); 3673 writel(reg, &sdr_ctrl->phy_ctrl1); 3674 3675 reg = 0; 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3677 trk_long_idle_sample_count >> 3678 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3679 writel(reg, &sdr_ctrl->phy_ctrl2); 3680 } 3681 3682 /** 3683 * initialize_tracking() - Initialize tracking 3684 * 3685 * Initialize the register file with usable initial data. 3686 */ 3687 static void initialize_tracking(void) 3688 { 3689 /* 3690 * Initialize the register file with the correct data. 3691 * Compute usable version of value in case we skip full 3692 * computation later. 3693 */ 3694 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3695 &sdr_reg_file->dtaps_per_ptap); 3696 3697 /* trk_sample_count */ 3698 writel(7500, &sdr_reg_file->trk_sample_count); 3699 3700 /* longidle outer loop [15:0] */ 3701 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3702 3703 /* 3704 * longidle sample count [31:24] 3705 * trfc, worst case of 933Mhz 4Gb [23:16] 3706 * trcd, worst case [15:8] 3707 * vfifo wait [7:0] 3708 */ 3709 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3710 &sdr_reg_file->delays); 3711 3712 /* mux delay */ 3713 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3714 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3715 &sdr_reg_file->trk_rw_mgr_addr); 3716 3717 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3718 &sdr_reg_file->trk_read_dqs_width); 3719 3720 /* trefi [7:0] */ 3721 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3722 &sdr_reg_file->trk_rfsh); 3723 } 3724 3725 int sdram_calibration_full(void) 3726 { 3727 struct param_type my_param; 3728 struct gbl_type my_gbl; 3729 uint32_t pass; 3730 3731 memset(&my_param, 0, sizeof(my_param)); 3732 memset(&my_gbl, 0, sizeof(my_gbl)); 3733 3734 param = &my_param; 3735 gbl = &my_gbl; 3736 3737 /* Set the calibration enabled by default */ 3738 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3739 /* 3740 * Only sweep all groups (regardless of fail state) by default 3741 * Set enabled read test by default. 3742 */ 3743 #if DISABLE_GUARANTEED_READ 3744 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3745 #endif 3746 /* Initialize the register file */ 3747 initialize_reg_file(); 3748 3749 /* Initialize any PHY CSR */ 3750 initialize_hps_phy(); 3751 3752 scc_mgr_initialize(); 3753 3754 initialize_tracking(); 3755 3756 printf("%s: Preparing to start memory calibration\n", __FILE__); 3757 3758 debug("%s:%d\n", __func__, __LINE__); 3759 debug_cond(DLEVEL == 1, 3760 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3761 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3762 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3763 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3764 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3765 debug_cond(DLEVEL == 1, 3766 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3767 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3768 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3769 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3770 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3771 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3772 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3773 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3774 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3775 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3776 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3777 IO_IO_OUT2_DELAY_MAX); 3778 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3779 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3780 3781 hc_initialize_rom_data(); 3782 3783 /* update info for sims */ 3784 reg_file_set_stage(CAL_STAGE_NIL); 3785 reg_file_set_group(0); 3786 3787 /* 3788 * Load global needed for those actions that require 3789 * some dynamic calibration support. 3790 */ 3791 dyn_calib_steps = STATIC_CALIB_STEPS; 3792 /* 3793 * Load global to allow dynamic selection of delay loop settings 3794 * based on calibration mode. 3795 */ 3796 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3797 skip_delay_mask = 0xff; 3798 else 3799 skip_delay_mask = 0x0; 3800 3801 pass = run_mem_calibrate(); 3802 debug_mem_calibrate(pass); 3803 return pass; 3804 } 3805