1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 /** 952 * rw_mgr_mem_initialize() - Initialize RW Manager 953 * 954 * Initialize RW Manager. 955 */ 956 static void rw_mgr_mem_initialize(void) 957 { 958 debug("%s:%d\n", __func__, __LINE__); 959 960 /* The reset / cke part of initialization is broadcasted to all ranks */ 961 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 962 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 963 964 /* 965 * Here's how you load register for a loop 966 * Counters are located @ 0x800 967 * Jump address are located @ 0xC00 968 * For both, registers 0 to 3 are selected using bits 3 and 2, like 969 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 970 * I know this ain't pretty, but Avalon bus throws away the 2 least 971 * significant bits 972 */ 973 974 /* Start with memory RESET activated */ 975 976 /* tINIT = 200us */ 977 978 /* 979 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 980 * If a and b are the number of iteration in 2 nested loops 981 * it takes the following number of cycles to complete the operation: 982 * number_of_cycles = ((2 + n) * a + 2) * b 983 * where n is the number of instruction in the inner loop 984 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 985 * b = 6A 986 */ 987 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 988 SEQ_TINIT_CNTR2_VAL, 989 RW_MGR_INIT_RESET_0_CKE_0); 990 991 /* Indicate that memory is stable. */ 992 writel(1, &phy_mgr_cfg->reset_mem_stbl); 993 994 /* 995 * transition the RESET to high 996 * Wait for 500us 997 */ 998 999 /* 1000 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1001 * If a and b are the number of iteration in 2 nested loops 1002 * it takes the following number of cycles to complete the operation 1003 * number_of_cycles = ((2 + n) * a + 2) * b 1004 * where n is the number of instruction in the inner loop 1005 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1006 * b = FF 1007 */ 1008 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1009 SEQ_TRESET_CNTR2_VAL, 1010 RW_MGR_INIT_RESET_1_CKE_0); 1011 1012 /* Bring up clock enable. */ 1013 1014 /* tXRP < 250 ck cycles */ 1015 delay_for_n_mem_clocks(250); 1016 1017 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1018 0); 1019 } 1020 1021 /** 1022 * rw_mgr_mem_handoff() - Hand off the memory to user 1023 * 1024 * At the end of calibration we have to program the user settings in 1025 * and hand off the memory to the user. 1026 */ 1027 static void rw_mgr_mem_handoff(void) 1028 { 1029 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1030 /* 1031 * Need to wait tMOD (12CK or 15ns) time before issuing other 1032 * commands, but we will have plenty of NIOS cycles before actual 1033 * handoff so its okay. 1034 */ 1035 } 1036 1037 /** 1038 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1039 * @group: Write Group 1040 * @use_dm: Use DM 1041 * 1042 * Issue write test command. Two variants are provided, one that just tests 1043 * a write pattern and another that tests datamask functionality. 1044 */ 1045 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1046 u32 test_dm) 1047 { 1048 const u32 quick_write_mode = 1049 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1050 ENABLE_SUPER_QUICK_CALIBRATION; 1051 u32 mcc_instruction; 1052 u32 rw_wl_nop_cycles; 1053 1054 /* 1055 * Set counter and jump addresses for the right 1056 * number of NOP cycles. 1057 * The number of supported NOP cycles can range from -1 to infinity 1058 * Three different cases are handled: 1059 * 1060 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1061 * mechanism will be used to insert the right number of NOPs 1062 * 1063 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1064 * issuing the write command will jump straight to the 1065 * micro-instruction that turns on DQS (for DDRx), or outputs write 1066 * data (for RLD), skipping 1067 * the NOP micro-instruction all together 1068 * 1069 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1070 * turned on in the same micro-instruction that issues the write 1071 * command. Then we need 1072 * to directly jump to the micro-instruction that sends out the data 1073 * 1074 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1075 * (2 and 3). One jump-counter (0) is used to perform multiple 1076 * write-read operations. 1077 * one counter left to issue this command in "multiple-group" mode 1078 */ 1079 1080 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1081 1082 if (rw_wl_nop_cycles == -1) { 1083 /* 1084 * CNTR 2 - We want to execute the special write operation that 1085 * turns on DQS right away and then skip directly to the 1086 * instruction that sends out the data. We set the counter to a 1087 * large number so that the jump is always taken. 1088 */ 1089 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1090 1091 /* CNTR 3 - Not used */ 1092 if (test_dm) { 1093 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1094 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1095 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1096 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1097 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1098 } else { 1099 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1100 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1101 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1102 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1103 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1104 } 1105 } else if (rw_wl_nop_cycles == 0) { 1106 /* 1107 * CNTR 2 - We want to skip the NOP operation and go straight 1108 * to the DQS enable instruction. We set the counter to a large 1109 * number so that the jump is always taken. 1110 */ 1111 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1112 1113 /* CNTR 3 - Not used */ 1114 if (test_dm) { 1115 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1116 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1117 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1118 } else { 1119 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1120 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1121 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1122 } 1123 } else { 1124 /* 1125 * CNTR 2 - In this case we want to execute the next instruction 1126 * and NOT take the jump. So we set the counter to 0. The jump 1127 * address doesn't count. 1128 */ 1129 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1130 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1131 1132 /* 1133 * CNTR 3 - Set the nop counter to the number of cycles we 1134 * need to loop for, minus 1. 1135 */ 1136 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1137 if (test_dm) { 1138 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1139 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1140 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1141 } else { 1142 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1143 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1144 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1145 } 1146 } 1147 1148 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1149 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1150 1151 if (quick_write_mode) 1152 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1153 else 1154 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1155 1156 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1157 1158 /* 1159 * CNTR 1 - This is used to ensure enough time elapses 1160 * for read data to come back. 1161 */ 1162 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1163 1164 if (test_dm) { 1165 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1166 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1167 } else { 1168 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1169 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1170 } 1171 1172 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1173 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1174 (group << 2)); 1175 } 1176 1177 /** 1178 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1179 * @rank_bgn: Rank number 1180 * @write_group: Write Group 1181 * @use_dm: Use DM 1182 * @all_correct: All bits must be correct in the mask 1183 * @bit_chk: Resulting bit mask after the test 1184 * @all_ranks: Test all ranks 1185 * 1186 * Test writes, can check for a single bit pass or multiple bit pass. 1187 */ 1188 static int 1189 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1190 const u32 use_dm, const u32 all_correct, 1191 u32 *bit_chk, const u32 all_ranks) 1192 { 1193 const u32 rank_end = all_ranks ? 1194 RW_MGR_MEM_NUMBER_OF_RANKS : 1195 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1196 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1197 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1198 const u32 correct_mask_vg = param->write_correct_mask_vg; 1199 1200 u32 tmp_bit_chk, base_rw_mgr; 1201 int vg, r; 1202 1203 *bit_chk = param->write_correct_mask; 1204 1205 for (r = rank_bgn; r < rank_end; r++) { 1206 /* Request to skip the rank */ 1207 if (param->skip_ranks[r]) 1208 continue; 1209 1210 /* Set rank */ 1211 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1212 1213 tmp_bit_chk = 0; 1214 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1215 vg >= 0; vg--) { 1216 /* Reset the FIFOs to get pointers to known state. */ 1217 writel(0, &phy_mgr_cmd->fifo_reset); 1218 1219 rw_mgr_mem_calibrate_write_test_issue( 1220 write_group * 1221 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1222 use_dm); 1223 1224 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1225 tmp_bit_chk <<= shift_ratio; 1226 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1227 } 1228 1229 *bit_chk &= tmp_bit_chk; 1230 } 1231 1232 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1233 if (all_correct) { 1234 debug_cond(DLEVEL == 2, 1235 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1236 write_group, use_dm, *bit_chk, 1237 param->write_correct_mask, 1238 *bit_chk == param->write_correct_mask); 1239 return *bit_chk == param->write_correct_mask; 1240 } else { 1241 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1242 debug_cond(DLEVEL == 2, 1243 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1244 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1245 return *bit_chk != 0x00; 1246 } 1247 } 1248 1249 /** 1250 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1251 * @rank_bgn: Rank number 1252 * @group: Read/Write Group 1253 * @all_ranks: Test all ranks 1254 * 1255 * Performs a guaranteed read on the patterns we are going to use during a 1256 * read test to ensure memory works. 1257 */ 1258 static int 1259 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1260 const u32 all_ranks) 1261 { 1262 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1263 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1264 const u32 addr_offset = 1265 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1266 const u32 rank_end = all_ranks ? 1267 RW_MGR_MEM_NUMBER_OF_RANKS : 1268 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1269 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1270 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1271 const u32 correct_mask_vg = param->read_correct_mask_vg; 1272 1273 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1274 int vg, r; 1275 int ret = 0; 1276 1277 bit_chk = param->read_correct_mask; 1278 1279 for (r = rank_bgn; r < rank_end; r++) { 1280 /* Request to skip the rank */ 1281 if (param->skip_ranks[r]) 1282 continue; 1283 1284 /* Set rank */ 1285 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1286 1287 /* Load up a constant bursts of read commands */ 1288 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1289 writel(RW_MGR_GUARANTEED_READ, 1290 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1291 1292 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1293 writel(RW_MGR_GUARANTEED_READ_CONT, 1294 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1295 1296 tmp_bit_chk = 0; 1297 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1298 vg >= 0; vg--) { 1299 /* Reset the FIFOs to get pointers to known state. */ 1300 writel(0, &phy_mgr_cmd->fifo_reset); 1301 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1302 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1303 writel(RW_MGR_GUARANTEED_READ, 1304 addr + addr_offset + (vg << 2)); 1305 1306 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1307 tmp_bit_chk <<= shift_ratio; 1308 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1309 } 1310 1311 bit_chk &= tmp_bit_chk; 1312 } 1313 1314 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1315 1316 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1317 1318 if (bit_chk != param->read_correct_mask) 1319 ret = -EIO; 1320 1321 debug_cond(DLEVEL == 1, 1322 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1323 __func__, __LINE__, group, bit_chk, 1324 param->read_correct_mask, ret); 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1331 * @rank_bgn: Rank number 1332 * @all_ranks: Test all ranks 1333 * 1334 * Load up the patterns we are going to use during a read test. 1335 */ 1336 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1337 const int all_ranks) 1338 { 1339 const u32 rank_end = all_ranks ? 1340 RW_MGR_MEM_NUMBER_OF_RANKS : 1341 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1342 u32 r; 1343 1344 debug("%s:%d\n", __func__, __LINE__); 1345 1346 for (r = rank_bgn; r < rank_end; r++) { 1347 if (param->skip_ranks[r]) 1348 /* request to skip the rank */ 1349 continue; 1350 1351 /* set rank */ 1352 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1353 1354 /* Load up a constant bursts */ 1355 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1356 1357 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1358 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1359 1360 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1361 1362 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1363 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1364 1365 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1366 1367 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1368 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1369 1370 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1371 1372 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1373 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1374 1375 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1376 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1377 } 1378 1379 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1380 } 1381 1382 /** 1383 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1384 * @rank_bgn: Rank number 1385 * @group: Read/Write group 1386 * @num_tries: Number of retries of the test 1387 * @all_correct: All bits must be correct in the mask 1388 * @bit_chk: Resulting bit mask after the test 1389 * @all_groups: Test all R/W groups 1390 * @all_ranks: Test all ranks 1391 * 1392 * Try a read and see if it returns correct data back. Test has dummy reads 1393 * inserted into the mix used to align DQS enable. Test has more thorough 1394 * checks than the regular read test. 1395 */ 1396 static int 1397 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1398 const u32 num_tries, const u32 all_correct, 1399 u32 *bit_chk, 1400 const u32 all_groups, const u32 all_ranks) 1401 { 1402 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1403 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1404 const u32 quick_read_mode = 1405 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1406 ENABLE_SUPER_QUICK_CALIBRATION); 1407 u32 correct_mask_vg = param->read_correct_mask_vg; 1408 u32 tmp_bit_chk; 1409 u32 base_rw_mgr; 1410 u32 addr; 1411 1412 int r, vg, ret; 1413 1414 *bit_chk = param->read_correct_mask; 1415 1416 for (r = rank_bgn; r < rank_end; r++) { 1417 if (param->skip_ranks[r]) 1418 /* request to skip the rank */ 1419 continue; 1420 1421 /* set rank */ 1422 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1423 1424 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1425 1426 writel(RW_MGR_READ_B2B_WAIT1, 1427 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1428 1429 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1430 writel(RW_MGR_READ_B2B_WAIT2, 1431 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1432 1433 if (quick_read_mode) 1434 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1435 /* need at least two (1+1) reads to capture failures */ 1436 else if (all_groups) 1437 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1438 else 1439 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1440 1441 writel(RW_MGR_READ_B2B, 1442 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1443 if (all_groups) 1444 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1445 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1446 &sdr_rw_load_mgr_regs->load_cntr3); 1447 else 1448 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1449 1450 writel(RW_MGR_READ_B2B, 1451 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1452 1453 tmp_bit_chk = 0; 1454 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1455 vg--) { 1456 /* Reset the FIFOs to get pointers to known state. */ 1457 writel(0, &phy_mgr_cmd->fifo_reset); 1458 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1459 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1460 1461 if (all_groups) { 1462 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1463 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1464 } else { 1465 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1466 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1467 } 1468 1469 writel(RW_MGR_READ_B2B, addr + 1470 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1471 vg) << 2)); 1472 1473 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1474 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1475 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1476 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1477 } 1478 1479 *bit_chk &= tmp_bit_chk; 1480 } 1481 1482 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1483 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1484 1485 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1486 1487 if (all_correct) { 1488 ret = (*bit_chk == param->read_correct_mask); 1489 debug_cond(DLEVEL == 2, 1490 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1491 __func__, __LINE__, group, all_groups, *bit_chk, 1492 param->read_correct_mask, ret); 1493 } else { 1494 ret = (*bit_chk != 0x00); 1495 debug_cond(DLEVEL == 2, 1496 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1497 __func__, __LINE__, group, all_groups, *bit_chk, 1498 0, ret); 1499 } 1500 1501 return ret; 1502 } 1503 1504 /** 1505 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1506 * @grp: Read/Write group 1507 * @num_tries: Number of retries of the test 1508 * @all_correct: All bits must be correct in the mask 1509 * @all_groups: Test all R/W groups 1510 * 1511 * Perform a READ test across all memory ranks. 1512 */ 1513 static int 1514 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1515 const u32 all_correct, 1516 const u32 all_groups) 1517 { 1518 u32 bit_chk; 1519 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1520 &bit_chk, all_groups, 1); 1521 } 1522 1523 /** 1524 * rw_mgr_incr_vfifo() - Increase VFIFO value 1525 * @grp: Read/Write group 1526 * 1527 * Increase VFIFO value. 1528 */ 1529 static void rw_mgr_incr_vfifo(const u32 grp) 1530 { 1531 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1532 } 1533 1534 /** 1535 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1536 * @grp: Read/Write group 1537 * 1538 * Decrease VFIFO value. 1539 */ 1540 static void rw_mgr_decr_vfifo(const u32 grp) 1541 { 1542 u32 i; 1543 1544 for (i = 0; i < VFIFO_SIZE - 1; i++) 1545 rw_mgr_incr_vfifo(grp); 1546 } 1547 1548 /** 1549 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1550 * @grp: Read/Write group 1551 * 1552 * Push VFIFO until a failing read happens. 1553 */ 1554 static int find_vfifo_failing_read(const u32 grp) 1555 { 1556 u32 v, ret, fail_cnt = 0; 1557 1558 for (v = 0; v < VFIFO_SIZE; v++) { 1559 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1560 __func__, __LINE__, v); 1561 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1562 PASS_ONE_BIT, 0); 1563 if (!ret) { 1564 fail_cnt++; 1565 1566 if (fail_cnt == 2) 1567 return v; 1568 } 1569 1570 /* Fiddle with FIFO. */ 1571 rw_mgr_incr_vfifo(grp); 1572 } 1573 1574 /* No failing read found! Something must have gone wrong. */ 1575 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1576 return 0; 1577 } 1578 1579 /** 1580 * sdr_find_phase_delay() - Find DQS enable phase or delay 1581 * @working: If 1, look for working phase/delay, if 0, look for non-working 1582 * @delay: If 1, look for delay, if 0, look for phase 1583 * @grp: Read/Write group 1584 * @work: Working window position 1585 * @work_inc: Working window increment 1586 * @pd: DQS Phase/Delay Iterator 1587 * 1588 * Find working or non-working DQS enable phase setting. 1589 */ 1590 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1591 u32 *work, const u32 work_inc, u32 *pd) 1592 { 1593 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1594 u32 ret; 1595 1596 for (; *pd <= max; (*pd)++) { 1597 if (delay) 1598 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1599 else 1600 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1601 1602 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1603 PASS_ONE_BIT, 0); 1604 if (!working) 1605 ret = !ret; 1606 1607 if (ret) 1608 return 0; 1609 1610 if (work) 1611 *work += work_inc; 1612 } 1613 1614 return -EINVAL; 1615 } 1616 /** 1617 * sdr_find_phase() - Find DQS enable phase 1618 * @working: If 1, look for working phase, if 0, look for non-working phase 1619 * @grp: Read/Write group 1620 * @work: Working window position 1621 * @i: Iterator 1622 * @p: DQS Phase Iterator 1623 * 1624 * Find working or non-working DQS enable phase setting. 1625 */ 1626 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1627 u32 *i, u32 *p) 1628 { 1629 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1630 int ret; 1631 1632 for (; *i < end; (*i)++) { 1633 if (working) 1634 *p = 0; 1635 1636 ret = sdr_find_phase_delay(working, 0, grp, work, 1637 IO_DELAY_PER_OPA_TAP, p); 1638 if (!ret) 1639 return 0; 1640 1641 if (*p > IO_DQS_EN_PHASE_MAX) { 1642 /* Fiddle with FIFO. */ 1643 rw_mgr_incr_vfifo(grp); 1644 if (!working) 1645 *p = 0; 1646 } 1647 } 1648 1649 return -EINVAL; 1650 } 1651 1652 /** 1653 * sdr_working_phase() - Find working DQS enable phase 1654 * @grp: Read/Write group 1655 * @work_bgn: Working window start position 1656 * @d: dtaps output value 1657 * @p: DQS Phase Iterator 1658 * @i: Iterator 1659 * 1660 * Find working DQS enable phase setting. 1661 */ 1662 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1663 u32 *p, u32 *i) 1664 { 1665 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1666 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1667 int ret; 1668 1669 *work_bgn = 0; 1670 1671 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1672 *i = 0; 1673 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1674 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1675 if (!ret) 1676 return 0; 1677 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1678 } 1679 1680 /* Cannot find working solution */ 1681 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1682 __func__, __LINE__); 1683 return -EINVAL; 1684 } 1685 1686 /** 1687 * sdr_backup_phase() - Find DQS enable backup phase 1688 * @grp: Read/Write group 1689 * @work_bgn: Working window start position 1690 * @p: DQS Phase Iterator 1691 * 1692 * Find DQS enable backup phase setting. 1693 */ 1694 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1695 { 1696 u32 tmp_delay, d; 1697 int ret; 1698 1699 /* Special case code for backing up a phase */ 1700 if (*p == 0) { 1701 *p = IO_DQS_EN_PHASE_MAX; 1702 rw_mgr_decr_vfifo(grp); 1703 } else { 1704 (*p)--; 1705 } 1706 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1707 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1708 1709 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1710 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1711 1712 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1713 PASS_ONE_BIT, 0); 1714 if (ret) { 1715 *work_bgn = tmp_delay; 1716 break; 1717 } 1718 1719 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1720 } 1721 1722 /* Restore VFIFO to old state before we decremented it (if needed). */ 1723 (*p)++; 1724 if (*p > IO_DQS_EN_PHASE_MAX) { 1725 *p = 0; 1726 rw_mgr_incr_vfifo(grp); 1727 } 1728 1729 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1730 } 1731 1732 /** 1733 * sdr_nonworking_phase() - Find non-working DQS enable phase 1734 * @grp: Read/Write group 1735 * @work_end: Working window end position 1736 * @p: DQS Phase Iterator 1737 * @i: Iterator 1738 * 1739 * Find non-working DQS enable phase setting. 1740 */ 1741 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1742 { 1743 int ret; 1744 1745 (*p)++; 1746 *work_end += IO_DELAY_PER_OPA_TAP; 1747 if (*p > IO_DQS_EN_PHASE_MAX) { 1748 /* Fiddle with FIFO. */ 1749 *p = 0; 1750 rw_mgr_incr_vfifo(grp); 1751 } 1752 1753 ret = sdr_find_phase(0, grp, work_end, i, p); 1754 if (ret) { 1755 /* Cannot see edge of failing read. */ 1756 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1757 __func__, __LINE__); 1758 } 1759 1760 return ret; 1761 } 1762 1763 /** 1764 * sdr_find_window_center() - Find center of the working DQS window. 1765 * @grp: Read/Write group 1766 * @work_bgn: First working settings 1767 * @work_end: Last working settings 1768 * 1769 * Find center of the working DQS enable window. 1770 */ 1771 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1772 const u32 work_end) 1773 { 1774 u32 work_mid; 1775 int tmp_delay = 0; 1776 int i, p, d; 1777 1778 work_mid = (work_bgn + work_end) / 2; 1779 1780 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1781 work_bgn, work_end, work_mid); 1782 /* Get the middle delay to be less than a VFIFO delay */ 1783 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1784 1785 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1786 work_mid %= tmp_delay; 1787 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1788 1789 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1790 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1791 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1792 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1793 1794 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1795 1796 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1797 if (d > IO_DQS_EN_DELAY_MAX) 1798 d = IO_DQS_EN_DELAY_MAX; 1799 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1800 1801 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1802 1803 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1804 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1805 1806 /* 1807 * push vfifo until we can successfully calibrate. We can do this 1808 * because the largest possible margin in 1 VFIFO cycle. 1809 */ 1810 for (i = 0; i < VFIFO_SIZE; i++) { 1811 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1812 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1813 PASS_ONE_BIT, 1814 0)) { 1815 debug_cond(DLEVEL == 2, 1816 "%s:%d center: found: ptap=%u dtap=%u\n", 1817 __func__, __LINE__, p, d); 1818 return 0; 1819 } 1820 1821 /* Fiddle with FIFO. */ 1822 rw_mgr_incr_vfifo(grp); 1823 } 1824 1825 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1826 __func__, __LINE__); 1827 return -EINVAL; 1828 } 1829 1830 /** 1831 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1832 * @grp: Read/Write Group 1833 * 1834 * Find a good DQS enable to use. 1835 */ 1836 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1837 { 1838 u32 d, p, i; 1839 u32 dtaps_per_ptap; 1840 u32 work_bgn, work_end; 1841 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1842 int ret; 1843 1844 debug("%s:%d %u\n", __func__, __LINE__, grp); 1845 1846 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1847 1848 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1849 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1850 1851 /* Step 0: Determine number of delay taps for each phase tap. */ 1852 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1853 1854 /* Step 1: First push vfifo until we get a failing read. */ 1855 find_vfifo_failing_read(grp); 1856 1857 /* Step 2: Find first working phase, increment in ptaps. */ 1858 work_bgn = 0; 1859 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1860 if (ret) 1861 return ret; 1862 1863 work_end = work_bgn; 1864 1865 /* 1866 * If d is 0 then the working window covers a phase tap and we can 1867 * follow the old procedure. Otherwise, we've found the beginning 1868 * and we need to increment the dtaps until we find the end. 1869 */ 1870 if (d == 0) { 1871 /* 1872 * Step 3a: If we have room, back off by one and 1873 * increment in dtaps. 1874 */ 1875 sdr_backup_phase(grp, &work_bgn, &p); 1876 1877 /* 1878 * Step 4a: go forward from working phase to non working 1879 * phase, increment in ptaps. 1880 */ 1881 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1882 if (ret) 1883 return ret; 1884 1885 /* Step 5a: Back off one from last, increment in dtaps. */ 1886 1887 /* Special case code for backing up a phase */ 1888 if (p == 0) { 1889 p = IO_DQS_EN_PHASE_MAX; 1890 rw_mgr_decr_vfifo(grp); 1891 } else { 1892 p = p - 1; 1893 } 1894 1895 work_end -= IO_DELAY_PER_OPA_TAP; 1896 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1897 1898 d = 0; 1899 1900 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1901 __func__, __LINE__, p); 1902 } 1903 1904 /* The dtap increment to find the failing edge is done here. */ 1905 sdr_find_phase_delay(0, 1, grp, &work_end, 1906 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1907 1908 /* Go back to working dtap */ 1909 if (d != 0) 1910 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1911 1912 debug_cond(DLEVEL == 2, 1913 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1914 __func__, __LINE__, p, d - 1, work_end); 1915 1916 if (work_end < work_bgn) { 1917 /* nil range */ 1918 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1919 __func__, __LINE__); 1920 return -EINVAL; 1921 } 1922 1923 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1924 __func__, __LINE__, work_bgn, work_end); 1925 1926 /* 1927 * We need to calculate the number of dtaps that equal a ptap. 1928 * To do that we'll back up a ptap and re-find the edge of the 1929 * window using dtaps 1930 */ 1931 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1932 __func__, __LINE__); 1933 1934 /* Special case code for backing up a phase */ 1935 if (p == 0) { 1936 p = IO_DQS_EN_PHASE_MAX; 1937 rw_mgr_decr_vfifo(grp); 1938 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1939 __func__, __LINE__, p); 1940 } else { 1941 p = p - 1; 1942 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1943 __func__, __LINE__, p); 1944 } 1945 1946 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1947 1948 /* 1949 * Increase dtap until we first see a passing read (in case the 1950 * window is smaller than a ptap), and then a failing read to 1951 * mark the edge of the window again. 1952 */ 1953 1954 /* Find a passing read. */ 1955 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1956 __func__, __LINE__); 1957 1958 initial_failing_dtap = d; 1959 1960 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1961 if (found_passing_read) { 1962 /* Find a failing read. */ 1963 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1964 __func__, __LINE__); 1965 d++; 1966 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1967 &d); 1968 } else { 1969 debug_cond(DLEVEL == 1, 1970 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1971 __func__, __LINE__); 1972 } 1973 1974 /* 1975 * The dynamically calculated dtaps_per_ptap is only valid if we 1976 * found a passing/failing read. If we didn't, it means d hit the max 1977 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1978 * statically calculated value. 1979 */ 1980 if (found_passing_read && found_failing_read) 1981 dtaps_per_ptap = d - initial_failing_dtap; 1982 1983 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1984 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1985 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1986 1987 /* Step 6: Find the centre of the window. */ 1988 ret = sdr_find_window_center(grp, work_bgn, work_end); 1989 1990 return ret; 1991 } 1992 1993 /** 1994 * search_stop_check() - Check if the detected edge is valid 1995 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1996 * @d: DQS delay 1997 * @rank_bgn: Rank number 1998 * @write_group: Write Group 1999 * @read_group: Read Group 2000 * @bit_chk: Resulting bit mask after the test 2001 * @sticky_bit_chk: Resulting sticky bit mask after the test 2002 * @use_read_test: Perform read test 2003 * 2004 * Test if the found edge is valid. 2005 */ 2006 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 2007 const u32 write_group, const u32 read_group, 2008 u32 *bit_chk, u32 *sticky_bit_chk, 2009 const u32 use_read_test) 2010 { 2011 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 2012 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2013 const u32 correct_mask = write ? param->write_correct_mask : 2014 param->read_correct_mask; 2015 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2016 RW_MGR_MEM_DQ_PER_READ_DQS; 2017 u32 ret; 2018 /* 2019 * Stop searching when the read test doesn't pass AND when 2020 * we've seen a passing read on every bit. 2021 */ 2022 if (write) { /* WRITE-ONLY */ 2023 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2024 0, PASS_ONE_BIT, 2025 bit_chk, 0); 2026 } else if (use_read_test) { /* READ-ONLY */ 2027 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2028 NUM_READ_PB_TESTS, 2029 PASS_ONE_BIT, bit_chk, 2030 0, 0); 2031 } else { /* READ-ONLY */ 2032 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2033 PASS_ONE_BIT, bit_chk, 0); 2034 *bit_chk = *bit_chk >> (per_dqs * 2035 (read_group - (write_group * ratio))); 2036 ret = (*bit_chk == 0); 2037 } 2038 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2039 ret = ret && (*sticky_bit_chk == correct_mask); 2040 debug_cond(DLEVEL == 2, 2041 "%s:%d center(left): dtap=%u => %u == %u && %u", 2042 __func__, __LINE__, d, 2043 *sticky_bit_chk, correct_mask, ret); 2044 return ret; 2045 } 2046 2047 /** 2048 * search_left_edge() - Find left edge of DQ/DQS working phase 2049 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2050 * @rank_bgn: Rank number 2051 * @write_group: Write Group 2052 * @read_group: Read Group 2053 * @test_bgn: Rank number to begin the test 2054 * @sticky_bit_chk: Resulting sticky bit mask after the test 2055 * @left_edge: Left edge of the DQ/DQS phase 2056 * @right_edge: Right edge of the DQ/DQS phase 2057 * @use_read_test: Perform read test 2058 * 2059 * Find left edge of DQ/DQS working phase. 2060 */ 2061 static void search_left_edge(const int write, const int rank_bgn, 2062 const u32 write_group, const u32 read_group, const u32 test_bgn, 2063 u32 *sticky_bit_chk, 2064 int *left_edge, int *right_edge, const u32 use_read_test) 2065 { 2066 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2067 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2068 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2069 RW_MGR_MEM_DQ_PER_READ_DQS; 2070 u32 stop, bit_chk; 2071 int i, d; 2072 2073 for (d = 0; d <= dqs_max; d++) { 2074 if (write) 2075 scc_mgr_apply_group_dq_out1_delay(d); 2076 else 2077 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2078 2079 writel(0, &sdr_scc_mgr->update); 2080 2081 stop = search_stop_check(write, d, rank_bgn, write_group, 2082 read_group, &bit_chk, sticky_bit_chk, 2083 use_read_test); 2084 if (stop == 1) 2085 break; 2086 2087 /* stop != 1 */ 2088 for (i = 0; i < per_dqs; i++) { 2089 if (bit_chk & 1) { 2090 /* 2091 * Remember a passing test as 2092 * the left_edge. 2093 */ 2094 left_edge[i] = d; 2095 } else { 2096 /* 2097 * If a left edge has not been seen 2098 * yet, then a future passing test 2099 * will mark this edge as the right 2100 * edge. 2101 */ 2102 if (left_edge[i] == delay_max + 1) 2103 right_edge[i] = -(d + 1); 2104 } 2105 bit_chk >>= 1; 2106 } 2107 } 2108 2109 /* Reset DQ delay chains to 0 */ 2110 if (write) 2111 scc_mgr_apply_group_dq_out1_delay(0); 2112 else 2113 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2114 2115 *sticky_bit_chk = 0; 2116 for (i = per_dqs - 1; i >= 0; i--) { 2117 debug_cond(DLEVEL == 2, 2118 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2119 __func__, __LINE__, i, left_edge[i], 2120 i, right_edge[i]); 2121 2122 /* 2123 * Check for cases where we haven't found the left edge, 2124 * which makes our assignment of the the right edge invalid. 2125 * Reset it to the illegal value. 2126 */ 2127 if ((left_edge[i] == delay_max + 1) && 2128 (right_edge[i] != delay_max + 1)) { 2129 right_edge[i] = delay_max + 1; 2130 debug_cond(DLEVEL == 2, 2131 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2132 __func__, __LINE__, i, right_edge[i]); 2133 } 2134 2135 /* 2136 * Reset sticky bit 2137 * READ: except for bits where we have seen both 2138 * the left and right edge. 2139 * WRITE: except for bits where we have seen the 2140 * left edge. 2141 */ 2142 *sticky_bit_chk <<= 1; 2143 if (write) { 2144 if (left_edge[i] != delay_max + 1) 2145 *sticky_bit_chk |= 1; 2146 } else { 2147 if ((left_edge[i] != delay_max + 1) && 2148 (right_edge[i] != delay_max + 1)) 2149 *sticky_bit_chk |= 1; 2150 } 2151 } 2152 2153 2154 } 2155 2156 /** 2157 * search_right_edge() - Find right edge of DQ/DQS working phase 2158 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2159 * @rank_bgn: Rank number 2160 * @write_group: Write Group 2161 * @read_group: Read Group 2162 * @start_dqs: DQS start phase 2163 * @start_dqs_en: DQS enable start phase 2164 * @sticky_bit_chk: Resulting sticky bit mask after the test 2165 * @left_edge: Left edge of the DQ/DQS phase 2166 * @right_edge: Right edge of the DQ/DQS phase 2167 * @use_read_test: Perform read test 2168 * 2169 * Find right edge of DQ/DQS working phase. 2170 */ 2171 static int search_right_edge(const int write, const int rank_bgn, 2172 const u32 write_group, const u32 read_group, 2173 const int start_dqs, const int start_dqs_en, 2174 u32 *sticky_bit_chk, 2175 int *left_edge, int *right_edge, const u32 use_read_test) 2176 { 2177 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2178 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2179 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2180 RW_MGR_MEM_DQ_PER_READ_DQS; 2181 u32 stop, bit_chk; 2182 int i, d; 2183 2184 for (d = 0; d <= dqs_max - start_dqs; d++) { 2185 if (write) { /* WRITE-ONLY */ 2186 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2187 d + start_dqs); 2188 } else { /* READ-ONLY */ 2189 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2190 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2191 uint32_t delay = d + start_dqs_en; 2192 if (delay > IO_DQS_EN_DELAY_MAX) 2193 delay = IO_DQS_EN_DELAY_MAX; 2194 scc_mgr_set_dqs_en_delay(read_group, delay); 2195 } 2196 scc_mgr_load_dqs(read_group); 2197 } 2198 2199 writel(0, &sdr_scc_mgr->update); 2200 2201 stop = search_stop_check(write, d, rank_bgn, write_group, 2202 read_group, &bit_chk, sticky_bit_chk, 2203 use_read_test); 2204 if (stop == 1) { 2205 if (write && (d == 0)) { /* WRITE-ONLY */ 2206 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2207 /* 2208 * d = 0 failed, but it passed when 2209 * testing the left edge, so it must be 2210 * marginal, set it to -1 2211 */ 2212 if (right_edge[i] == delay_max + 1 && 2213 left_edge[i] != delay_max + 1) 2214 right_edge[i] = -1; 2215 } 2216 } 2217 break; 2218 } 2219 2220 /* stop != 1 */ 2221 for (i = 0; i < per_dqs; i++) { 2222 if (bit_chk & 1) { 2223 /* 2224 * Remember a passing test as 2225 * the right_edge. 2226 */ 2227 right_edge[i] = d; 2228 } else { 2229 if (d != 0) { 2230 /* 2231 * If a right edge has not 2232 * been seen yet, then a future 2233 * passing test will mark this 2234 * edge as the left edge. 2235 */ 2236 if (right_edge[i] == delay_max + 1) 2237 left_edge[i] = -(d + 1); 2238 } else { 2239 /* 2240 * d = 0 failed, but it passed 2241 * when testing the left edge, 2242 * so it must be marginal, set 2243 * it to -1 2244 */ 2245 if (right_edge[i] == delay_max + 1 && 2246 left_edge[i] != delay_max + 1) 2247 right_edge[i] = -1; 2248 /* 2249 * If a right edge has not been 2250 * seen yet, then a future 2251 * passing test will mark this 2252 * edge as the left edge. 2253 */ 2254 else if (right_edge[i] == delay_max + 1) 2255 left_edge[i] = -(d + 1); 2256 } 2257 } 2258 2259 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2260 __func__, __LINE__, d); 2261 debug_cond(DLEVEL == 2, 2262 "bit_chk_test=%i left_edge[%u]: %d ", 2263 bit_chk & 1, i, left_edge[i]); 2264 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2265 right_edge[i]); 2266 bit_chk >>= 1; 2267 } 2268 } 2269 2270 /* Check that all bits have a window */ 2271 for (i = 0; i < per_dqs; i++) { 2272 debug_cond(DLEVEL == 2, 2273 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2274 __func__, __LINE__, i, left_edge[i], 2275 i, right_edge[i]); 2276 if ((left_edge[i] == dqs_max + 1) || 2277 (right_edge[i] == dqs_max + 1)) 2278 return i + 1; /* FIXME: If we fail, retval > 0 */ 2279 } 2280 2281 return 0; 2282 } 2283 2284 /** 2285 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2286 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2287 * @left_edge: Left edge of the DQ/DQS phase 2288 * @right_edge: Right edge of the DQ/DQS phase 2289 * @mid_min: Best DQ/DQS phase middle setting 2290 * 2291 * Find index and value of the middle of the DQ/DQS working phase. 2292 */ 2293 static int get_window_mid_index(const int write, int *left_edge, 2294 int *right_edge, int *mid_min) 2295 { 2296 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2297 RW_MGR_MEM_DQ_PER_READ_DQS; 2298 int i, mid, min_index; 2299 2300 /* Find middle of window for each DQ bit */ 2301 *mid_min = left_edge[0] - right_edge[0]; 2302 min_index = 0; 2303 for (i = 1; i < per_dqs; i++) { 2304 mid = left_edge[i] - right_edge[i]; 2305 if (mid < *mid_min) { 2306 *mid_min = mid; 2307 min_index = i; 2308 } 2309 } 2310 2311 /* 2312 * -mid_min/2 represents the amount that we need to move DQS. 2313 * If mid_min is odd and positive we'll need to add one to make 2314 * sure the rounding in further calculations is correct (always 2315 * bias to the right), so just add 1 for all positive values. 2316 */ 2317 if (*mid_min > 0) 2318 (*mid_min)++; 2319 *mid_min = *mid_min / 2; 2320 2321 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2322 __func__, __LINE__, *mid_min, min_index); 2323 return min_index; 2324 } 2325 2326 /** 2327 * center_dq_windows() - Center the DQ/DQS windows 2328 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2329 * @left_edge: Left edge of the DQ/DQS phase 2330 * @right_edge: Right edge of the DQ/DQS phase 2331 * @mid_min: Adjusted DQ/DQS phase middle setting 2332 * @orig_mid_min: Original DQ/DQS phase middle setting 2333 * @min_index: DQ/DQS phase middle setting index 2334 * @test_bgn: Rank number to begin the test 2335 * @dq_margin: Amount of shift for the DQ 2336 * @dqs_margin: Amount of shift for the DQS 2337 * 2338 * Align the DQ/DQS windows in each group. 2339 */ 2340 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2341 const int mid_min, const int orig_mid_min, 2342 const int min_index, const int test_bgn, 2343 int *dq_margin, int *dqs_margin) 2344 { 2345 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2346 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2347 RW_MGR_MEM_DQ_PER_READ_DQS; 2348 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2349 SCC_MGR_IO_IN_DELAY_OFFSET; 2350 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2351 2352 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2353 int shift_dq, i, p; 2354 2355 /* Initialize data for export structures */ 2356 *dqs_margin = delay_max + 1; 2357 *dq_margin = delay_max + 1; 2358 2359 /* add delay to bring centre of all DQ windows to the same "level" */ 2360 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2361 /* Use values before divide by 2 to reduce round off error */ 2362 shift_dq = (left_edge[i] - right_edge[i] - 2363 (left_edge[min_index] - right_edge[min_index]))/2 + 2364 (orig_mid_min - mid_min); 2365 2366 debug_cond(DLEVEL == 2, 2367 "vfifo_center: before: shift_dq[%u]=%d\n", 2368 i, shift_dq); 2369 2370 temp_dq_io_delay1 = readl(addr + (p << 2)); 2371 temp_dq_io_delay2 = readl(addr + (i << 2)); 2372 2373 if (shift_dq + temp_dq_io_delay1 > delay_max) 2374 shift_dq = delay_max - temp_dq_io_delay2; 2375 else if (shift_dq + temp_dq_io_delay1 < 0) 2376 shift_dq = -temp_dq_io_delay1; 2377 2378 debug_cond(DLEVEL == 2, 2379 "vfifo_center: after: shift_dq[%u]=%d\n", 2380 i, shift_dq); 2381 2382 if (write) 2383 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2384 else 2385 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2386 2387 scc_mgr_load_dq(p); 2388 2389 debug_cond(DLEVEL == 2, 2390 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2391 left_edge[i] - shift_dq + (-mid_min), 2392 right_edge[i] + shift_dq - (-mid_min)); 2393 2394 /* To determine values for export structures */ 2395 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2396 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2397 2398 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2399 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2400 } 2401 2402 } 2403 2404 /** 2405 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2406 * @rank_bgn: Rank number 2407 * @rw_group: Read/Write Group 2408 * @test_bgn: Rank at which the test begins 2409 * @use_read_test: Perform a read test 2410 * @update_fom: Update FOM 2411 * 2412 * Per-bit deskew DQ and centering. 2413 */ 2414 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2415 const u32 rw_group, const u32 test_bgn, 2416 const int use_read_test, const int update_fom) 2417 { 2418 const u32 addr = 2419 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2420 (rw_group << 2); 2421 /* 2422 * Store these as signed since there are comparisons with 2423 * signed numbers. 2424 */ 2425 uint32_t sticky_bit_chk; 2426 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2427 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2428 int32_t orig_mid_min, mid_min; 2429 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2430 int32_t dq_margin, dqs_margin; 2431 int i, min_index; 2432 int ret; 2433 2434 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2435 2436 start_dqs = readl(addr); 2437 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2438 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2439 2440 /* set the left and right edge of each bit to an illegal value */ 2441 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2442 sticky_bit_chk = 0; 2443 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2444 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2445 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2446 } 2447 2448 /* Search for the left edge of the window for each bit */ 2449 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2450 &sticky_bit_chk, 2451 left_edge, right_edge, use_read_test); 2452 2453 2454 /* Search for the right edge of the window for each bit */ 2455 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2456 start_dqs, start_dqs_en, 2457 &sticky_bit_chk, 2458 left_edge, right_edge, use_read_test); 2459 if (ret) { 2460 /* 2461 * Restore delay chain settings before letting the loop 2462 * in rw_mgr_mem_calibrate_vfifo to retry different 2463 * dqs/ck relationships. 2464 */ 2465 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2466 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2467 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2468 2469 scc_mgr_load_dqs(rw_group); 2470 writel(0, &sdr_scc_mgr->update); 2471 2472 debug_cond(DLEVEL == 1, 2473 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2474 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2475 if (use_read_test) { 2476 set_failing_group_stage(rw_group * 2477 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2478 CAL_STAGE_VFIFO, 2479 CAL_SUBSTAGE_VFIFO_CENTER); 2480 } else { 2481 set_failing_group_stage(rw_group * 2482 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2483 CAL_STAGE_VFIFO_AFTER_WRITES, 2484 CAL_SUBSTAGE_VFIFO_CENTER); 2485 } 2486 return -EIO; 2487 } 2488 2489 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2490 2491 /* Determine the amount we can change DQS (which is -mid_min) */ 2492 orig_mid_min = mid_min; 2493 new_dqs = start_dqs - mid_min; 2494 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2495 new_dqs = IO_DQS_IN_DELAY_MAX; 2496 else if (new_dqs < 0) 2497 new_dqs = 0; 2498 2499 mid_min = start_dqs - new_dqs; 2500 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2501 mid_min, new_dqs); 2502 2503 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2504 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2505 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2506 else if (start_dqs_en - mid_min < 0) 2507 mid_min += start_dqs_en - mid_min; 2508 } 2509 new_dqs = start_dqs - mid_min; 2510 2511 debug_cond(DLEVEL == 1, 2512 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2513 start_dqs, 2514 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2515 new_dqs, mid_min); 2516 2517 /* Add delay to bring centre of all DQ windows to the same "level". */ 2518 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2519 min_index, test_bgn, &dq_margin, &dqs_margin); 2520 2521 /* Move DQS-en */ 2522 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2523 final_dqs_en = start_dqs_en - mid_min; 2524 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2525 scc_mgr_load_dqs(rw_group); 2526 } 2527 2528 /* Move DQS */ 2529 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2530 scc_mgr_load_dqs(rw_group); 2531 debug_cond(DLEVEL == 2, 2532 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2533 __func__, __LINE__, dq_margin, dqs_margin); 2534 2535 /* 2536 * Do not remove this line as it makes sure all of our decisions 2537 * have been applied. Apply the update bit. 2538 */ 2539 writel(0, &sdr_scc_mgr->update); 2540 2541 if ((dq_margin < 0) || (dqs_margin < 0)) 2542 return -EINVAL; 2543 2544 return 0; 2545 } 2546 2547 /** 2548 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2549 * @rw_group: Read/Write Group 2550 * @phase: DQ/DQS phase 2551 * 2552 * Because initially no communication ca be reliably performed with the memory 2553 * device, the sequencer uses a guaranteed write mechanism to write data into 2554 * the memory device. 2555 */ 2556 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2557 const u32 phase) 2558 { 2559 int ret; 2560 2561 /* Set a particular DQ/DQS phase. */ 2562 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2563 2564 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2565 __func__, __LINE__, rw_group, phase); 2566 2567 /* 2568 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2569 * Load up the patterns used by read calibration using the 2570 * current DQDQS phase. 2571 */ 2572 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2573 2574 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2575 return 0; 2576 2577 /* 2578 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2579 * Back-to-Back reads of the patterns used for calibration. 2580 */ 2581 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2582 if (ret) 2583 debug_cond(DLEVEL == 1, 2584 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2585 __func__, __LINE__, rw_group, phase); 2586 return ret; 2587 } 2588 2589 /** 2590 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2591 * @rw_group: Read/Write Group 2592 * @test_bgn: Rank at which the test begins 2593 * 2594 * DQS enable calibration ensures reliable capture of the DQ signal without 2595 * glitches on the DQS line. 2596 */ 2597 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2598 const u32 test_bgn) 2599 { 2600 /* 2601 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2602 * DQS and DQS Eanble Signal Relationships. 2603 */ 2604 2605 /* We start at zero, so have one less dq to devide among */ 2606 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2607 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2608 int ret; 2609 u32 i, p, d, r; 2610 2611 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2612 2613 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2614 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2615 r += NUM_RANKS_PER_SHADOW_REG) { 2616 for (i = 0, p = test_bgn, d = 0; 2617 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2618 i++, p++, d += delay_step) { 2619 debug_cond(DLEVEL == 1, 2620 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2621 __func__, __LINE__, rw_group, r, i, p, d); 2622 2623 scc_mgr_set_dq_in_delay(p, d); 2624 scc_mgr_load_dq(p); 2625 } 2626 2627 writel(0, &sdr_scc_mgr->update); 2628 } 2629 2630 /* 2631 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2632 * dq_in_delay values 2633 */ 2634 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2635 2636 debug_cond(DLEVEL == 1, 2637 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2638 __func__, __LINE__, rw_group, !ret); 2639 2640 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2641 r += NUM_RANKS_PER_SHADOW_REG) { 2642 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2643 writel(0, &sdr_scc_mgr->update); 2644 } 2645 2646 return ret; 2647 } 2648 2649 /** 2650 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2651 * @rw_group: Read/Write Group 2652 * @test_bgn: Rank at which the test begins 2653 * @use_read_test: Perform a read test 2654 * @update_fom: Update FOM 2655 * 2656 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2657 * within a group. 2658 */ 2659 static int 2660 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2661 const int use_read_test, 2662 const int update_fom) 2663 2664 { 2665 int ret, grp_calibrated; 2666 u32 rank_bgn, sr; 2667 2668 /* 2669 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2670 * Read per-bit deskew can be done on a per shadow register basis. 2671 */ 2672 grp_calibrated = 1; 2673 for (rank_bgn = 0, sr = 0; 2674 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2675 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2676 /* Check if this set of ranks should be skipped entirely. */ 2677 if (param->skip_shadow_regs[sr]) 2678 continue; 2679 2680 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2681 test_bgn, 2682 use_read_test, 2683 update_fom); 2684 if (!ret) 2685 continue; 2686 2687 grp_calibrated = 0; 2688 } 2689 2690 if (!grp_calibrated) 2691 return -EIO; 2692 2693 return 0; 2694 } 2695 2696 /** 2697 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2698 * @rw_group: Read/Write Group 2699 * @test_bgn: Rank at which the test begins 2700 * 2701 * Stage 1: Calibrate the read valid prediction FIFO. 2702 * 2703 * This function implements UniPHY calibration Stage 1, as explained in 2704 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2705 * 2706 * - read valid prediction will consist of finding: 2707 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2708 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2709 * - we also do a per-bit deskew on the DQ lines. 2710 */ 2711 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2712 { 2713 uint32_t p, d; 2714 uint32_t dtaps_per_ptap; 2715 uint32_t failed_substage; 2716 2717 int ret; 2718 2719 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2720 2721 /* Update info for sims */ 2722 reg_file_set_group(rw_group); 2723 reg_file_set_stage(CAL_STAGE_VFIFO); 2724 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2725 2726 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2727 2728 /* USER Determine number of delay taps for each phase tap. */ 2729 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2730 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2731 2732 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2733 /* 2734 * In RLDRAMX we may be messing the delay of pins in 2735 * the same write rw_group but outside of the current read 2736 * the rw_group, but that's ok because we haven't calibrated 2737 * output side yet. 2738 */ 2739 if (d > 0) { 2740 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2741 rw_group, d); 2742 } 2743 2744 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2745 /* 1) Guaranteed Write */ 2746 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2747 if (ret) 2748 break; 2749 2750 /* 2) DQS Enable Calibration */ 2751 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2752 test_bgn); 2753 if (ret) { 2754 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2755 continue; 2756 } 2757 2758 /* 3) Centering DQ/DQS */ 2759 /* 2760 * If doing read after write calibration, do not update 2761 * FOM now. Do it then. 2762 */ 2763 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2764 test_bgn, 1, 0); 2765 if (ret) { 2766 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2767 continue; 2768 } 2769 2770 /* All done. */ 2771 goto cal_done_ok; 2772 } 2773 } 2774 2775 /* Calibration Stage 1 failed. */ 2776 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2777 return 0; 2778 2779 /* Calibration Stage 1 completed OK. */ 2780 cal_done_ok: 2781 /* 2782 * Reset the delay chains back to zero if they have moved > 1 2783 * (check for > 1 because loop will increase d even when pass in 2784 * first case). 2785 */ 2786 if (d > 2) 2787 scc_mgr_zero_group(rw_group, 1); 2788 2789 return 1; 2790 } 2791 2792 /** 2793 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2794 * @rw_group: Read/Write Group 2795 * @test_bgn: Rank at which the test begins 2796 * 2797 * Stage 3: DQ/DQS Centering. 2798 * 2799 * This function implements UniPHY calibration Stage 3, as explained in 2800 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2801 */ 2802 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2803 const u32 test_bgn) 2804 { 2805 int ret; 2806 2807 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2808 2809 /* Update info for sims. */ 2810 reg_file_set_group(rw_group); 2811 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2812 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2813 2814 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2815 if (ret) 2816 set_failing_group_stage(rw_group, 2817 CAL_STAGE_VFIFO_AFTER_WRITES, 2818 CAL_SUBSTAGE_VFIFO_CENTER); 2819 return ret; 2820 } 2821 2822 /** 2823 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2824 * 2825 * Stage 4: Minimize latency. 2826 * 2827 * This function implements UniPHY calibration Stage 4, as explained in 2828 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2829 * Calibrate LFIFO to find smallest read latency. 2830 */ 2831 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2832 { 2833 int found_one = 0; 2834 2835 debug("%s:%d\n", __func__, __LINE__); 2836 2837 /* Update info for sims. */ 2838 reg_file_set_stage(CAL_STAGE_LFIFO); 2839 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2840 2841 /* Load up the patterns used by read calibration for all ranks */ 2842 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2843 2844 do { 2845 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2846 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2847 __func__, __LINE__, gbl->curr_read_lat); 2848 2849 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2850 PASS_ALL_BITS, 1)) 2851 break; 2852 2853 found_one = 1; 2854 /* 2855 * Reduce read latency and see if things are 2856 * working correctly. 2857 */ 2858 gbl->curr_read_lat--; 2859 } while (gbl->curr_read_lat > 0); 2860 2861 /* Reset the fifos to get pointers to known state. */ 2862 writel(0, &phy_mgr_cmd->fifo_reset); 2863 2864 if (found_one) { 2865 /* Add a fudge factor to the read latency that was determined */ 2866 gbl->curr_read_lat += 2; 2867 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2868 debug_cond(DLEVEL == 2, 2869 "%s:%d lfifo: success: using read_lat=%u\n", 2870 __func__, __LINE__, gbl->curr_read_lat); 2871 } else { 2872 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2873 CAL_SUBSTAGE_READ_LATENCY); 2874 2875 debug_cond(DLEVEL == 2, 2876 "%s:%d lfifo: failed at initial read_lat=%u\n", 2877 __func__, __LINE__, gbl->curr_read_lat); 2878 } 2879 2880 return found_one; 2881 } 2882 2883 /** 2884 * search_window() - Search for the/part of the window with DM/DQS shift 2885 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2886 * @rank_bgn: Rank number 2887 * @write_group: Write Group 2888 * @bgn_curr: Current window begin 2889 * @end_curr: Current window end 2890 * @bgn_best: Current best window begin 2891 * @end_best: Current best window end 2892 * @win_best: Size of the best window 2893 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2894 * 2895 * Search for the/part of the window with DM/DQS shift. 2896 */ 2897 static void search_window(const int search_dm, 2898 const u32 rank_bgn, const u32 write_group, 2899 int *bgn_curr, int *end_curr, int *bgn_best, 2900 int *end_best, int *win_best, int new_dqs) 2901 { 2902 u32 bit_chk; 2903 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2904 int d, di; 2905 2906 /* Search for the/part of the window with DM/DQS shift. */ 2907 for (di = max; di >= 0; di -= DELTA_D) { 2908 if (search_dm) { 2909 d = di; 2910 scc_mgr_apply_group_dm_out1_delay(d); 2911 } else { 2912 /* For DQS, we go from 0...max */ 2913 d = max - di; 2914 /* 2915 * Note: This only shifts DQS, so are we limiting ourselve to 2916 * width of DQ unnecessarily. 2917 */ 2918 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2919 d + new_dqs); 2920 } 2921 2922 writel(0, &sdr_scc_mgr->update); 2923 2924 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2925 PASS_ALL_BITS, &bit_chk, 2926 0)) { 2927 /* Set current end of the window. */ 2928 *end_curr = search_dm ? -d : d; 2929 2930 /* 2931 * If a starting edge of our window has not been seen 2932 * this is our current start of the DM window. 2933 */ 2934 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2935 *bgn_curr = search_dm ? -d : d; 2936 2937 /* 2938 * If current window is bigger than best seen. 2939 * Set best seen to be current window. 2940 */ 2941 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2942 *win_best = *end_curr - *bgn_curr + 1; 2943 *bgn_best = *bgn_curr; 2944 *end_best = *end_curr; 2945 } 2946 } else { 2947 /* We just saw a failing test. Reset temp edge. */ 2948 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2949 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2950 2951 /* Early exit is only applicable to DQS. */ 2952 if (search_dm) 2953 continue; 2954 2955 /* 2956 * Early exit optimization: if the remaining delay 2957 * chain space is less than already seen largest 2958 * window we can exit. 2959 */ 2960 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2961 break; 2962 } 2963 } 2964 } 2965 2966 /* 2967 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2968 * @rank_bgn: Rank number 2969 * @write_group: Write group 2970 * @test_bgn: Rank at which the test begins 2971 * 2972 * Center all windows. Do per-bit-deskew to possibly increase size of 2973 * certain windows. 2974 */ 2975 static int 2976 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2977 const u32 test_bgn) 2978 { 2979 int i; 2980 u32 sticky_bit_chk; 2981 u32 min_index; 2982 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2983 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2984 int mid; 2985 int mid_min, orig_mid_min; 2986 int new_dqs, start_dqs; 2987 int dq_margin, dqs_margin, dm_margin; 2988 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2989 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2990 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2991 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2992 int win_best = 0; 2993 2994 int ret; 2995 2996 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2997 2998 dm_margin = 0; 2999 3000 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 3001 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 3002 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 3003 3004 /* Per-bit deskew. */ 3005 3006 /* 3007 * Set the left and right edge of each bit to an illegal value. 3008 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3009 */ 3010 sticky_bit_chk = 0; 3011 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3012 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3013 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3014 } 3015 3016 /* Search for the left edge of the window for each bit. */ 3017 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3018 &sticky_bit_chk, 3019 left_edge, right_edge, 0); 3020 3021 /* Search for the right edge of the window for each bit. */ 3022 ret = search_right_edge(1, rank_bgn, write_group, 0, 3023 start_dqs, 0, 3024 &sticky_bit_chk, 3025 left_edge, right_edge, 0); 3026 if (ret) { 3027 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3028 CAL_SUBSTAGE_WRITES_CENTER); 3029 return -EINVAL; 3030 } 3031 3032 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3033 3034 /* Determine the amount we can change DQS (which is -mid_min). */ 3035 orig_mid_min = mid_min; 3036 new_dqs = start_dqs; 3037 mid_min = 0; 3038 debug_cond(DLEVEL == 1, 3039 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3040 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3041 3042 /* Add delay to bring centre of all DQ windows to the same "level". */ 3043 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3044 min_index, 0, &dq_margin, &dqs_margin); 3045 3046 /* Move DQS */ 3047 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3048 writel(0, &sdr_scc_mgr->update); 3049 3050 /* Centre DM */ 3051 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3052 3053 /* 3054 * Set the left and right edge of each bit to an illegal value. 3055 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3056 */ 3057 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3058 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3059 3060 /* Search for the/part of the window with DM shift. */ 3061 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3062 &bgn_best, &end_best, &win_best, 0); 3063 3064 /* Reset DM delay chains to 0. */ 3065 scc_mgr_apply_group_dm_out1_delay(0); 3066 3067 /* 3068 * Check to see if the current window nudges up aganist 0 delay. 3069 * If so we need to continue the search by shifting DQS otherwise DQS 3070 * search begins as a new search. 3071 */ 3072 if (end_curr != 0) { 3073 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3074 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3075 } 3076 3077 /* Search for the/part of the window with DQS shifts. */ 3078 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3079 &bgn_best, &end_best, &win_best, new_dqs); 3080 3081 /* Assign left and right edge for cal and reporting. */ 3082 left_edge[0] = -1 * bgn_best; 3083 right_edge[0] = end_best; 3084 3085 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3086 __func__, __LINE__, left_edge[0], right_edge[0]); 3087 3088 /* Move DQS (back to orig). */ 3089 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3090 3091 /* Move DM */ 3092 3093 /* Find middle of window for the DM bit. */ 3094 mid = (left_edge[0] - right_edge[0]) / 2; 3095 3096 /* Only move right, since we are not moving DQS/DQ. */ 3097 if (mid < 0) 3098 mid = 0; 3099 3100 /* dm_marign should fail if we never find a window. */ 3101 if (win_best == 0) 3102 dm_margin = -1; 3103 else 3104 dm_margin = left_edge[0] - mid; 3105 3106 scc_mgr_apply_group_dm_out1_delay(mid); 3107 writel(0, &sdr_scc_mgr->update); 3108 3109 debug_cond(DLEVEL == 2, 3110 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3111 __func__, __LINE__, left_edge[0], right_edge[0], 3112 mid, dm_margin); 3113 /* Export values. */ 3114 gbl->fom_out += dq_margin + dqs_margin; 3115 3116 debug_cond(DLEVEL == 2, 3117 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3118 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3119 3120 /* 3121 * Do not remove this line as it makes sure all of our 3122 * decisions have been applied. 3123 */ 3124 writel(0, &sdr_scc_mgr->update); 3125 3126 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3127 return -EINVAL; 3128 3129 return 0; 3130 } 3131 3132 /** 3133 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3134 * @rank_bgn: Rank number 3135 * @group: Read/Write Group 3136 * @test_bgn: Rank at which the test begins 3137 * 3138 * Stage 2: Write Calibration Part One. 3139 * 3140 * This function implements UniPHY calibration Stage 2, as explained in 3141 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3142 */ 3143 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3144 const u32 test_bgn) 3145 { 3146 int ret; 3147 3148 /* Update info for sims */ 3149 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3150 3151 reg_file_set_group(group); 3152 reg_file_set_stage(CAL_STAGE_WRITES); 3153 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3154 3155 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3156 if (ret) 3157 set_failing_group_stage(group, CAL_STAGE_WRITES, 3158 CAL_SUBSTAGE_WRITES_CENTER); 3159 3160 return ret; 3161 } 3162 3163 /** 3164 * mem_precharge_and_activate() - Precharge all banks and activate 3165 * 3166 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3167 */ 3168 static void mem_precharge_and_activate(void) 3169 { 3170 int r; 3171 3172 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3173 /* Test if the rank should be skipped. */ 3174 if (param->skip_ranks[r]) 3175 continue; 3176 3177 /* Set rank. */ 3178 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3179 3180 /* Precharge all banks. */ 3181 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3182 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3183 3184 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3185 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3186 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3187 3188 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3189 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3190 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3191 3192 /* Activate rows. */ 3193 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3194 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3195 } 3196 } 3197 3198 /** 3199 * mem_init_latency() - Configure memory RLAT and WLAT settings 3200 * 3201 * Configure memory RLAT and WLAT parameters. 3202 */ 3203 static void mem_init_latency(void) 3204 { 3205 /* 3206 * For AV/CV, LFIFO is hardened and always runs at full rate 3207 * so max latency in AFI clocks, used here, is correspondingly 3208 * smaller. 3209 */ 3210 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3211 u32 rlat, wlat; 3212 3213 debug("%s:%d\n", __func__, __LINE__); 3214 3215 /* 3216 * Read in write latency. 3217 * WL for Hard PHY does not include additive latency. 3218 */ 3219 wlat = readl(&data_mgr->t_wl_add); 3220 wlat += readl(&data_mgr->mem_t_add); 3221 3222 gbl->rw_wl_nop_cycles = wlat - 1; 3223 3224 /* Read in readl latency. */ 3225 rlat = readl(&data_mgr->t_rl_add); 3226 3227 /* Set a pretty high read latency initially. */ 3228 gbl->curr_read_lat = rlat + 16; 3229 if (gbl->curr_read_lat > max_latency) 3230 gbl->curr_read_lat = max_latency; 3231 3232 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3233 3234 /* Advertise write latency. */ 3235 writel(wlat, &phy_mgr_cfg->afi_wlat); 3236 } 3237 3238 /** 3239 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3240 * 3241 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3242 */ 3243 static void mem_skip_calibrate(void) 3244 { 3245 uint32_t vfifo_offset; 3246 uint32_t i, j, r; 3247 3248 debug("%s:%d\n", __func__, __LINE__); 3249 /* Need to update every shadow register set used by the interface */ 3250 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3251 r += NUM_RANKS_PER_SHADOW_REG) { 3252 /* 3253 * Set output phase alignment settings appropriate for 3254 * skip calibration. 3255 */ 3256 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3257 scc_mgr_set_dqs_en_phase(i, 0); 3258 #if IO_DLL_CHAIN_LENGTH == 6 3259 scc_mgr_set_dqdqs_output_phase(i, 6); 3260 #else 3261 scc_mgr_set_dqdqs_output_phase(i, 7); 3262 #endif 3263 /* 3264 * Case:33398 3265 * 3266 * Write data arrives to the I/O two cycles before write 3267 * latency is reached (720 deg). 3268 * -> due to bit-slip in a/c bus 3269 * -> to allow board skew where dqs is longer than ck 3270 * -> how often can this happen!? 3271 * -> can claim back some ptaps for high freq 3272 * support if we can relax this, but i digress... 3273 * 3274 * The write_clk leads mem_ck by 90 deg 3275 * The minimum ptap of the OPA is 180 deg 3276 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3277 * The write_clk is always delayed by 2 ptaps 3278 * 3279 * Hence, to make DQS aligned to CK, we need to delay 3280 * DQS by: 3281 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3282 * 3283 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3284 * gives us the number of ptaps, which simplies to: 3285 * 3286 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3287 */ 3288 scc_mgr_set_dqdqs_output_phase(i, 3289 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3290 } 3291 writel(0xff, &sdr_scc_mgr->dqs_ena); 3292 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3293 3294 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3295 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3296 SCC_MGR_GROUP_COUNTER_OFFSET); 3297 } 3298 writel(0xff, &sdr_scc_mgr->dq_ena); 3299 writel(0xff, &sdr_scc_mgr->dm_ena); 3300 writel(0, &sdr_scc_mgr->update); 3301 } 3302 3303 /* Compensate for simulation model behaviour */ 3304 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3305 scc_mgr_set_dqs_bus_in_delay(i, 10); 3306 scc_mgr_load_dqs(i); 3307 } 3308 writel(0, &sdr_scc_mgr->update); 3309 3310 /* 3311 * ArriaV has hard FIFOs that can only be initialized by incrementing 3312 * in sequencer. 3313 */ 3314 vfifo_offset = CALIB_VFIFO_OFFSET; 3315 for (j = 0; j < vfifo_offset; j++) 3316 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3317 writel(0, &phy_mgr_cmd->fifo_reset); 3318 3319 /* 3320 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3321 * setting from generation-time constant. 3322 */ 3323 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3324 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3325 } 3326 3327 /** 3328 * mem_calibrate() - Memory calibration entry point. 3329 * 3330 * Perform memory calibration. 3331 */ 3332 static uint32_t mem_calibrate(void) 3333 { 3334 uint32_t i; 3335 uint32_t rank_bgn, sr; 3336 uint32_t write_group, write_test_bgn; 3337 uint32_t read_group, read_test_bgn; 3338 uint32_t run_groups, current_run; 3339 uint32_t failing_groups = 0; 3340 uint32_t group_failed = 0; 3341 3342 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3343 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3344 3345 debug("%s:%d\n", __func__, __LINE__); 3346 3347 /* Initialize the data settings */ 3348 gbl->error_substage = CAL_SUBSTAGE_NIL; 3349 gbl->error_stage = CAL_STAGE_NIL; 3350 gbl->error_group = 0xff; 3351 gbl->fom_in = 0; 3352 gbl->fom_out = 0; 3353 3354 /* Initialize WLAT and RLAT. */ 3355 mem_init_latency(); 3356 3357 /* Initialize bit slips. */ 3358 mem_precharge_and_activate(); 3359 3360 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3361 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3362 SCC_MGR_GROUP_COUNTER_OFFSET); 3363 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3364 if (i == 0) 3365 scc_mgr_set_hhp_extras(); 3366 3367 scc_set_bypass_mode(i); 3368 } 3369 3370 /* Calibration is skipped. */ 3371 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3372 /* 3373 * Set VFIFO and LFIFO to instant-on settings in skip 3374 * calibration mode. 3375 */ 3376 mem_skip_calibrate(); 3377 3378 /* 3379 * Do not remove this line as it makes sure all of our 3380 * decisions have been applied. 3381 */ 3382 writel(0, &sdr_scc_mgr->update); 3383 return 1; 3384 } 3385 3386 /* Calibration is not skipped. */ 3387 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3388 /* 3389 * Zero all delay chain/phase settings for all 3390 * groups and all shadow register sets. 3391 */ 3392 scc_mgr_zero_all(); 3393 3394 run_groups = ~param->skip_groups; 3395 3396 for (write_group = 0, write_test_bgn = 0; write_group 3397 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3398 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3399 3400 /* Initialize the group failure */ 3401 group_failed = 0; 3402 3403 current_run = run_groups & ((1 << 3404 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3405 run_groups = run_groups >> 3406 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3407 3408 if (current_run == 0) 3409 continue; 3410 3411 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3412 SCC_MGR_GROUP_COUNTER_OFFSET); 3413 scc_mgr_zero_group(write_group, 0); 3414 3415 for (read_group = write_group * rwdqs_ratio, 3416 read_test_bgn = 0; 3417 read_group < (write_group + 1) * rwdqs_ratio; 3418 read_group++, 3419 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3420 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3421 continue; 3422 3423 /* Calibrate the VFIFO */ 3424 if (rw_mgr_mem_calibrate_vfifo(read_group, 3425 read_test_bgn)) 3426 continue; 3427 3428 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3429 return 0; 3430 3431 /* The group failed, we're done. */ 3432 goto grp_failed; 3433 } 3434 3435 /* Calibrate the output side */ 3436 for (rank_bgn = 0, sr = 0; 3437 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3438 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3439 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3440 continue; 3441 3442 /* Not needed in quick mode! */ 3443 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3444 continue; 3445 3446 /* 3447 * Determine if this set of ranks 3448 * should be skipped entirely. 3449 */ 3450 if (param->skip_shadow_regs[sr]) 3451 continue; 3452 3453 /* Calibrate WRITEs */ 3454 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3455 write_group, write_test_bgn)) 3456 continue; 3457 3458 group_failed = 1; 3459 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3460 return 0; 3461 } 3462 3463 /* Some group failed, we're done. */ 3464 if (group_failed) 3465 goto grp_failed; 3466 3467 for (read_group = write_group * rwdqs_ratio, 3468 read_test_bgn = 0; 3469 read_group < (write_group + 1) * rwdqs_ratio; 3470 read_group++, 3471 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3472 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3473 continue; 3474 3475 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3476 read_test_bgn)) 3477 continue; 3478 3479 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3480 return 0; 3481 3482 /* The group failed, we're done. */ 3483 goto grp_failed; 3484 } 3485 3486 /* No group failed, continue as usual. */ 3487 continue; 3488 3489 grp_failed: /* A group failed, increment the counter. */ 3490 failing_groups++; 3491 } 3492 3493 /* 3494 * USER If there are any failing groups then report 3495 * the failure. 3496 */ 3497 if (failing_groups != 0) 3498 return 0; 3499 3500 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3501 continue; 3502 3503 /* 3504 * If we're skipping groups as part of debug, 3505 * don't calibrate LFIFO. 3506 */ 3507 if (param->skip_groups != 0) 3508 continue; 3509 3510 /* Calibrate the LFIFO */ 3511 if (!rw_mgr_mem_calibrate_lfifo()) 3512 return 0; 3513 } 3514 3515 /* 3516 * Do not remove this line as it makes sure all of our decisions 3517 * have been applied. 3518 */ 3519 writel(0, &sdr_scc_mgr->update); 3520 return 1; 3521 } 3522 3523 /** 3524 * run_mem_calibrate() - Perform memory calibration 3525 * 3526 * This function triggers the entire memory calibration procedure. 3527 */ 3528 static int run_mem_calibrate(void) 3529 { 3530 int pass; 3531 3532 debug("%s:%d\n", __func__, __LINE__); 3533 3534 /* Reset pass/fail status shown on afi_cal_success/fail */ 3535 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3536 3537 /* Stop tracking manager. */ 3538 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3539 3540 phy_mgr_initialize(); 3541 rw_mgr_mem_initialize(); 3542 3543 /* Perform the actual memory calibration. */ 3544 pass = mem_calibrate(); 3545 3546 mem_precharge_and_activate(); 3547 writel(0, &phy_mgr_cmd->fifo_reset); 3548 3549 /* Handoff. */ 3550 rw_mgr_mem_handoff(); 3551 /* 3552 * In Hard PHY this is a 2-bit control: 3553 * 0: AFI Mux Select 3554 * 1: DDIO Mux Select 3555 */ 3556 writel(0x2, &phy_mgr_cfg->mux_sel); 3557 3558 /* Start tracking manager. */ 3559 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3560 3561 return pass; 3562 } 3563 3564 /** 3565 * debug_mem_calibrate() - Report result of memory calibration 3566 * @pass: Value indicating whether calibration passed or failed 3567 * 3568 * This function reports the results of the memory calibration 3569 * and writes debug information into the register file. 3570 */ 3571 static void debug_mem_calibrate(int pass) 3572 { 3573 uint32_t debug_info; 3574 3575 if (pass) { 3576 printf("%s: CALIBRATION PASSED\n", __FILE__); 3577 3578 gbl->fom_in /= 2; 3579 gbl->fom_out /= 2; 3580 3581 if (gbl->fom_in > 0xff) 3582 gbl->fom_in = 0xff; 3583 3584 if (gbl->fom_out > 0xff) 3585 gbl->fom_out = 0xff; 3586 3587 /* Update the FOM in the register file */ 3588 debug_info = gbl->fom_in; 3589 debug_info |= gbl->fom_out << 8; 3590 writel(debug_info, &sdr_reg_file->fom); 3591 3592 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3593 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3594 } else { 3595 printf("%s: CALIBRATION FAILED\n", __FILE__); 3596 3597 debug_info = gbl->error_stage; 3598 debug_info |= gbl->error_substage << 8; 3599 debug_info |= gbl->error_group << 16; 3600 3601 writel(debug_info, &sdr_reg_file->failing_stage); 3602 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3603 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3604 3605 /* Update the failing group/stage in the register file */ 3606 debug_info = gbl->error_stage; 3607 debug_info |= gbl->error_substage << 8; 3608 debug_info |= gbl->error_group << 16; 3609 writel(debug_info, &sdr_reg_file->failing_stage); 3610 } 3611 3612 printf("%s: Calibration complete\n", __FILE__); 3613 } 3614 3615 /** 3616 * hc_initialize_rom_data() - Initialize ROM data 3617 * 3618 * Initialize ROM data. 3619 */ 3620 static void hc_initialize_rom_data(void) 3621 { 3622 u32 i, addr; 3623 3624 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3625 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3626 writel(inst_rom_init[i], addr + (i << 2)); 3627 3628 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3629 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3630 writel(ac_rom_init[i], addr + (i << 2)); 3631 } 3632 3633 /** 3634 * initialize_reg_file() - Initialize SDR register file 3635 * 3636 * Initialize SDR register file. 3637 */ 3638 static void initialize_reg_file(void) 3639 { 3640 /* Initialize the register file with the correct data */ 3641 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3642 writel(0, &sdr_reg_file->debug_data_addr); 3643 writel(0, &sdr_reg_file->cur_stage); 3644 writel(0, &sdr_reg_file->fom); 3645 writel(0, &sdr_reg_file->failing_stage); 3646 writel(0, &sdr_reg_file->debug1); 3647 writel(0, &sdr_reg_file->debug2); 3648 } 3649 3650 /** 3651 * initialize_hps_phy() - Initialize HPS PHY 3652 * 3653 * Initialize HPS PHY. 3654 */ 3655 static void initialize_hps_phy(void) 3656 { 3657 uint32_t reg; 3658 /* 3659 * Tracking also gets configured here because it's in the 3660 * same register. 3661 */ 3662 uint32_t trk_sample_count = 7500; 3663 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3664 /* 3665 * Format is number of outer loops in the 16 MSB, sample 3666 * count in 16 LSB. 3667 */ 3668 3669 reg = 0; 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3676 /* 3677 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3678 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3679 */ 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3682 trk_sample_count); 3683 writel(reg, &sdr_ctrl->phy_ctrl0); 3684 3685 reg = 0; 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3687 trk_sample_count >> 3688 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3690 trk_long_idle_sample_count); 3691 writel(reg, &sdr_ctrl->phy_ctrl1); 3692 3693 reg = 0; 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3695 trk_long_idle_sample_count >> 3696 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3697 writel(reg, &sdr_ctrl->phy_ctrl2); 3698 } 3699 3700 /** 3701 * initialize_tracking() - Initialize tracking 3702 * 3703 * Initialize the register file with usable initial data. 3704 */ 3705 static void initialize_tracking(void) 3706 { 3707 /* 3708 * Initialize the register file with the correct data. 3709 * Compute usable version of value in case we skip full 3710 * computation later. 3711 */ 3712 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3713 &sdr_reg_file->dtaps_per_ptap); 3714 3715 /* trk_sample_count */ 3716 writel(7500, &sdr_reg_file->trk_sample_count); 3717 3718 /* longidle outer loop [15:0] */ 3719 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3720 3721 /* 3722 * longidle sample count [31:24] 3723 * trfc, worst case of 933Mhz 4Gb [23:16] 3724 * trcd, worst case [15:8] 3725 * vfifo wait [7:0] 3726 */ 3727 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3728 &sdr_reg_file->delays); 3729 3730 /* mux delay */ 3731 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3732 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3733 &sdr_reg_file->trk_rw_mgr_addr); 3734 3735 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3736 &sdr_reg_file->trk_read_dqs_width); 3737 3738 /* trefi [7:0] */ 3739 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3740 &sdr_reg_file->trk_rfsh); 3741 } 3742 3743 int sdram_calibration_full(void) 3744 { 3745 struct param_type my_param; 3746 struct gbl_type my_gbl; 3747 uint32_t pass; 3748 3749 memset(&my_param, 0, sizeof(my_param)); 3750 memset(&my_gbl, 0, sizeof(my_gbl)); 3751 3752 param = &my_param; 3753 gbl = &my_gbl; 3754 3755 /* Set the calibration enabled by default */ 3756 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3757 /* 3758 * Only sweep all groups (regardless of fail state) by default 3759 * Set enabled read test by default. 3760 */ 3761 #if DISABLE_GUARANTEED_READ 3762 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3763 #endif 3764 /* Initialize the register file */ 3765 initialize_reg_file(); 3766 3767 /* Initialize any PHY CSR */ 3768 initialize_hps_phy(); 3769 3770 scc_mgr_initialize(); 3771 3772 initialize_tracking(); 3773 3774 printf("%s: Preparing to start memory calibration\n", __FILE__); 3775 3776 debug("%s:%d\n", __func__, __LINE__); 3777 debug_cond(DLEVEL == 1, 3778 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3779 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3780 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3781 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3782 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3783 debug_cond(DLEVEL == 1, 3784 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3785 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3786 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3787 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3788 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3789 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3790 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3791 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3792 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3793 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3794 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3795 IO_IO_OUT2_DELAY_MAX); 3796 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3797 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3798 3799 hc_initialize_rom_data(); 3800 3801 /* update info for sims */ 3802 reg_file_set_stage(CAL_STAGE_NIL); 3803 reg_file_set_group(0); 3804 3805 /* 3806 * Load global needed for those actions that require 3807 * some dynamic calibration support. 3808 */ 3809 dyn_calib_steps = STATIC_CALIB_STEPS; 3810 /* 3811 * Load global to allow dynamic selection of delay loop settings 3812 * based on calibration mode. 3813 */ 3814 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3815 skip_delay_mask = 0xff; 3816 else 3817 skip_delay_mask = 0x0; 3818 3819 pass = run_mem_calibrate(); 3820 debug_mem_calibrate(pass); 3821 return pass; 3822 } 3823