xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision f1f22f7204ce933881f2e1026b4c9e7115d06d25)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763 	uint32_t afi_clocks;
764 	uint8_t inner = 0;
765 	uint8_t outer = 0;
766 	uint16_t c_loop = 0;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 
771 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772 	/* scale (rounding up) to get afi clocks */
773 
774 	/*
775 	 * Note, we don't bother accounting for being off a little bit
776 	 * because of a few extra instructions in outer loops
777 	 * Note, the loops have a test at the end, and do the test before
778 	 * the decrement, and so always perform the loop
779 	 * 1 time more than the counter value
780 	 */
781 	if (afi_clocks == 0) {
782 		;
783 	} else if (afi_clocks <= 0x100) {
784 		inner = afi_clocks-1;
785 		outer = 0;
786 		c_loop = 0;
787 	} else if (afi_clocks <= 0x10000) {
788 		inner = 0xff;
789 		outer = (afi_clocks-1) >> 8;
790 		c_loop = 0;
791 	} else {
792 		inner = 0xff;
793 		outer = 0xff;
794 		c_loop = (afi_clocks-1) >> 16;
795 	}
796 
797 	/*
798 	 * rom instructions are structured as follows:
799 	 *
800 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
801 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
802 	 *                return
803 	 *
804 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805 	 * TARGET_B is set to IDLE_LOOP2 as well
806 	 *
807 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809 	 *
810 	 * a little confusing, but it helps save precious space in the inst_rom
811 	 * and sequencer rom and keeps the delays more accurate and reduces
812 	 * overhead
813 	 */
814 	if (afi_clocks <= 0x100) {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr1);
817 
818 		writel(RW_MGR_IDLE_LOOP1,
819 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
820 
821 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823 	} else {
824 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825 			&sdr_rw_load_mgr_regs->load_cntr0);
826 
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828 			&sdr_rw_load_mgr_regs->load_cntr1);
829 
830 		writel(RW_MGR_IDLE_LOOP2,
831 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
835 
836 		/* hack to get around compiler not being smart enough */
837 		if (afi_clocks <= 0x10000) {
838 			/* only need to run once */
839 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841 		} else {
842 			do {
843 				writel(RW_MGR_IDLE_LOOP2,
844 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
845 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846 			} while (c_loop-- != 0);
847 		}
848 	}
849 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851 
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:	Counter 0 value
855  * @cntr1:	Counter 1 value
856  * @cntr2:	Counter 2 value
857  * @jump:	Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865 
866 	/* Load counters */
867 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868 	       &sdr_rw_load_mgr_regs->load_cntr0);
869 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870 	       &sdr_rw_load_mgr_regs->load_cntr1);
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872 	       &sdr_rw_load_mgr_regs->load_cntr2);
873 
874 	/* Load jump address */
875 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878 
879 	/* Execute count instruction */
880 	writel(jump, grpaddr);
881 }
882 
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:	Final instruction 1
886  * @fin2:	Final instruction 2
887  * @precharge:	If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892 				 const int precharge)
893 {
894 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896 	u32 r;
897 
898 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899 		if (param->skip_ranks[r]) {
900 			/* request to skip the rank */
901 			continue;
902 		}
903 
904 		/* set rank */
905 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906 
907 		/* precharge all banks ... */
908 		if (precharge)
909 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910 
911 		/*
912 		 * USER Use Mirror-ed commands for odd ranks if address
913 		 * mirrorring is on
914 		 */
915 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS2_MIRR, grpaddr);
918 			delay_for_n_mem_clocks(4);
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS3_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS1_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(fin1, grpaddr);
927 		} else {
928 			set_jump_as_return();
929 			writel(RW_MGR_MRS2, grpaddr);
930 			delay_for_n_mem_clocks(4);
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS3, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS1, grpaddr);
936 			set_jump_as_return();
937 			writel(fin2, grpaddr);
938 		}
939 
940 		if (precharge)
941 			continue;
942 
943 		set_jump_as_return();
944 		writel(RW_MGR_ZQCL, grpaddr);
945 
946 		/* tZQinit = tDLLK = 512 ck cycles */
947 		delay_for_n_mem_clocks(512);
948 	}
949 }
950 
951 /**
952  * rw_mgr_mem_initialize() - Initialize RW Manager
953  *
954  * Initialize RW Manager.
955  */
956 static void rw_mgr_mem_initialize(void)
957 {
958 	debug("%s:%d\n", __func__, __LINE__);
959 
960 	/* The reset / cke part of initialization is broadcasted to all ranks */
961 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
962 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
963 
964 	/*
965 	 * Here's how you load register for a loop
966 	 * Counters are located @ 0x800
967 	 * Jump address are located @ 0xC00
968 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
969 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
970 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
971 	 * significant bits
972 	 */
973 
974 	/* Start with memory RESET activated */
975 
976 	/* tINIT = 200us */
977 
978 	/*
979 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
980 	 * If a and b are the number of iteration in 2 nested loops
981 	 * it takes the following number of cycles to complete the operation:
982 	 * number_of_cycles = ((2 + n) * a + 2) * b
983 	 * where n is the number of instruction in the inner loop
984 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
985 	 * b = 6A
986 	 */
987 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
988 				  SEQ_TINIT_CNTR2_VAL,
989 				  RW_MGR_INIT_RESET_0_CKE_0);
990 
991 	/* Indicate that memory is stable. */
992 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
993 
994 	/*
995 	 * transition the RESET to high
996 	 * Wait for 500us
997 	 */
998 
999 	/*
1000 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1001 	 * If a and b are the number of iteration in 2 nested loops
1002 	 * it takes the following number of cycles to complete the operation
1003 	 * number_of_cycles = ((2 + n) * a + 2) * b
1004 	 * where n is the number of instruction in the inner loop
1005 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1006 	 * b = FF
1007 	 */
1008 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1009 				  SEQ_TRESET_CNTR2_VAL,
1010 				  RW_MGR_INIT_RESET_1_CKE_0);
1011 
1012 	/* Bring up clock enable. */
1013 
1014 	/* tXRP < 250 ck cycles */
1015 	delay_for_n_mem_clocks(250);
1016 
1017 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1018 			     0);
1019 }
1020 
1021 /**
1022  * rw_mgr_mem_handoff() - Hand off the memory to user
1023  *
1024  * At the end of calibration we have to program the user settings in
1025  * and hand off the memory to the user.
1026  */
1027 static void rw_mgr_mem_handoff(void)
1028 {
1029 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1030 	/*
1031 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1032 	 * commands, but we will have plenty of NIOS cycles before actual
1033 	 * handoff so its okay.
1034 	 */
1035 }
1036 
1037 /**
1038  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1039  * @group:	Write Group
1040  * @use_dm:	Use DM
1041  *
1042  * Issue write test command. Two variants are provided, one that just tests
1043  * a write pattern and another that tests datamask functionality.
1044  */
1045 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1046 						  u32 test_dm)
1047 {
1048 	const u32 quick_write_mode =
1049 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1050 		ENABLE_SUPER_QUICK_CALIBRATION;
1051 	u32 mcc_instruction;
1052 	u32 rw_wl_nop_cycles;
1053 
1054 	/*
1055 	 * Set counter and jump addresses for the right
1056 	 * number of NOP cycles.
1057 	 * The number of supported NOP cycles can range from -1 to infinity
1058 	 * Three different cases are handled:
1059 	 *
1060 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1061 	 *    mechanism will be used to insert the right number of NOPs
1062 	 *
1063 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1064 	 *    issuing the write command will jump straight to the
1065 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1066 	 *    data (for RLD), skipping
1067 	 *    the NOP micro-instruction all together
1068 	 *
1069 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1070 	 *    turned on in the same micro-instruction that issues the write
1071 	 *    command. Then we need
1072 	 *    to directly jump to the micro-instruction that sends out the data
1073 	 *
1074 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1075 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1076 	 *       write-read operations.
1077 	 *       one counter left to issue this command in "multiple-group" mode
1078 	 */
1079 
1080 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1081 
1082 	if (rw_wl_nop_cycles == -1) {
1083 		/*
1084 		 * CNTR 2 - We want to execute the special write operation that
1085 		 * turns on DQS right away and then skip directly to the
1086 		 * instruction that sends out the data. We set the counter to a
1087 		 * large number so that the jump is always taken.
1088 		 */
1089 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1090 
1091 		/* CNTR 3 - Not used */
1092 		if (test_dm) {
1093 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1094 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1095 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1096 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1097 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1098 		} else {
1099 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1100 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1101 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1102 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1103 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1104 		}
1105 	} else if (rw_wl_nop_cycles == 0) {
1106 		/*
1107 		 * CNTR 2 - We want to skip the NOP operation and go straight
1108 		 * to the DQS enable instruction. We set the counter to a large
1109 		 * number so that the jump is always taken.
1110 		 */
1111 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1112 
1113 		/* CNTR 3 - Not used */
1114 		if (test_dm) {
1115 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1116 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1117 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1118 		} else {
1119 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1120 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1121 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1122 		}
1123 	} else {
1124 		/*
1125 		 * CNTR 2 - In this case we want to execute the next instruction
1126 		 * and NOT take the jump. So we set the counter to 0. The jump
1127 		 * address doesn't count.
1128 		 */
1129 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1130 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1131 
1132 		/*
1133 		 * CNTR 3 - Set the nop counter to the number of cycles we
1134 		 * need to loop for, minus 1.
1135 		 */
1136 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1137 		if (test_dm) {
1138 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1139 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1140 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1141 		} else {
1142 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1143 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1144 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1145 		}
1146 	}
1147 
1148 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1149 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1150 
1151 	if (quick_write_mode)
1152 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1153 	else
1154 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1155 
1156 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1157 
1158 	/*
1159 	 * CNTR 1 - This is used to ensure enough time elapses
1160 	 * for read data to come back.
1161 	 */
1162 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1163 
1164 	if (test_dm) {
1165 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1166 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1167 	} else {
1168 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1169 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1170 	}
1171 
1172 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1173 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1174 				(group << 2));
1175 }
1176 
1177 /**
1178  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1179  * @rank_bgn:		Rank number
1180  * @write_group:	Write Group
1181  * @use_dm:		Use DM
1182  * @all_correct:	All bits must be correct in the mask
1183  * @bit_chk:		Resulting bit mask after the test
1184  * @all_ranks:		Test all ranks
1185  *
1186  * Test writes, can check for a single bit pass or multiple bit pass.
1187  */
1188 static int
1189 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1190 				const u32 use_dm, const u32 all_correct,
1191 				u32 *bit_chk, const u32 all_ranks)
1192 {
1193 	const u32 rank_end = all_ranks ?
1194 				RW_MGR_MEM_NUMBER_OF_RANKS :
1195 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1196 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1197 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1198 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1199 
1200 	u32 tmp_bit_chk, base_rw_mgr;
1201 	int vg, r;
1202 
1203 	*bit_chk = param->write_correct_mask;
1204 
1205 	for (r = rank_bgn; r < rank_end; r++) {
1206 		/* Request to skip the rank */
1207 		if (param->skip_ranks[r])
1208 			continue;
1209 
1210 		/* Set rank */
1211 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1212 
1213 		tmp_bit_chk = 0;
1214 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1215 		     vg >= 0; vg--) {
1216 			/* Reset the FIFOs to get pointers to known state. */
1217 			writel(0, &phy_mgr_cmd->fifo_reset);
1218 
1219 			rw_mgr_mem_calibrate_write_test_issue(
1220 				write_group *
1221 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1222 				use_dm);
1223 
1224 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1225 			tmp_bit_chk <<= shift_ratio;
1226 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1227 		}
1228 
1229 		*bit_chk &= tmp_bit_chk;
1230 	}
1231 
1232 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1233 	if (all_correct) {
1234 		debug_cond(DLEVEL == 2,
1235 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1236 			   write_group, use_dm, *bit_chk,
1237 			   param->write_correct_mask,
1238 			   *bit_chk == param->write_correct_mask);
1239 		return *bit_chk == param->write_correct_mask;
1240 	} else {
1241 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1242 		debug_cond(DLEVEL == 2,
1243 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1244 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1245 		return *bit_chk != 0x00;
1246 	}
1247 }
1248 
1249 /**
1250  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1251  * @rank_bgn:	Rank number
1252  * @group:	Read/Write Group
1253  * @all_ranks:	Test all ranks
1254  *
1255  * Performs a guaranteed read on the patterns we are going to use during a
1256  * read test to ensure memory works.
1257  */
1258 static int
1259 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1260 					const u32 all_ranks)
1261 {
1262 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1263 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1264 	const u32 addr_offset =
1265 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1266 	const u32 rank_end = all_ranks ?
1267 				RW_MGR_MEM_NUMBER_OF_RANKS :
1268 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1269 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1270 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1271 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1272 
1273 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1274 	int vg, r;
1275 	int ret = 0;
1276 
1277 	bit_chk = param->read_correct_mask;
1278 
1279 	for (r = rank_bgn; r < rank_end; r++) {
1280 		/* Request to skip the rank */
1281 		if (param->skip_ranks[r])
1282 			continue;
1283 
1284 		/* Set rank */
1285 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1286 
1287 		/* Load up a constant bursts of read commands */
1288 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1289 		writel(RW_MGR_GUARANTEED_READ,
1290 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1291 
1292 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1293 		writel(RW_MGR_GUARANTEED_READ_CONT,
1294 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1295 
1296 		tmp_bit_chk = 0;
1297 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1298 		     vg >= 0; vg--) {
1299 			/* Reset the FIFOs to get pointers to known state. */
1300 			writel(0, &phy_mgr_cmd->fifo_reset);
1301 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1302 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1303 			writel(RW_MGR_GUARANTEED_READ,
1304 			       addr + addr_offset + (vg << 2));
1305 
1306 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1307 			tmp_bit_chk <<= shift_ratio;
1308 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1309 		}
1310 
1311 		bit_chk &= tmp_bit_chk;
1312 	}
1313 
1314 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1315 
1316 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1317 
1318 	if (bit_chk != param->read_correct_mask)
1319 		ret = -EIO;
1320 
1321 	debug_cond(DLEVEL == 1,
1322 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1323 		   __func__, __LINE__, group, bit_chk,
1324 		   param->read_correct_mask, ret);
1325 
1326 	return ret;
1327 }
1328 
1329 /**
1330  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1331  * @rank_bgn:	Rank number
1332  * @all_ranks:	Test all ranks
1333  *
1334  * Load up the patterns we are going to use during a read test.
1335  */
1336 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1337 						    const int all_ranks)
1338 {
1339 	const u32 rank_end = all_ranks ?
1340 			RW_MGR_MEM_NUMBER_OF_RANKS :
1341 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1342 	u32 r;
1343 
1344 	debug("%s:%d\n", __func__, __LINE__);
1345 
1346 	for (r = rank_bgn; r < rank_end; r++) {
1347 		if (param->skip_ranks[r])
1348 			/* request to skip the rank */
1349 			continue;
1350 
1351 		/* set rank */
1352 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1353 
1354 		/* Load up a constant bursts */
1355 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1356 
1357 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1358 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1359 
1360 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1361 
1362 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1363 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1364 
1365 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1366 
1367 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1368 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1369 
1370 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1371 
1372 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1373 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1374 
1375 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1376 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1377 	}
1378 
1379 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1380 }
1381 
1382 /**
1383  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1384  * @rank_bgn:		Rank number
1385  * @group:		Read/Write group
1386  * @num_tries:		Number of retries of the test
1387  * @all_correct:	All bits must be correct in the mask
1388  * @bit_chk:		Resulting bit mask after the test
1389  * @all_groups:		Test all R/W groups
1390  * @all_ranks:		Test all ranks
1391  *
1392  * Try a read and see if it returns correct data back. Test has dummy reads
1393  * inserted into the mix used to align DQS enable. Test has more thorough
1394  * checks than the regular read test.
1395  */
1396 static int
1397 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1398 			       const u32 num_tries, const u32 all_correct,
1399 			       u32 *bit_chk,
1400 			       const u32 all_groups, const u32 all_ranks)
1401 {
1402 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1403 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1404 	const u32 quick_read_mode =
1405 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1406 		 ENABLE_SUPER_QUICK_CALIBRATION);
1407 	u32 correct_mask_vg = param->read_correct_mask_vg;
1408 	u32 tmp_bit_chk;
1409 	u32 base_rw_mgr;
1410 	u32 addr;
1411 
1412 	int r, vg, ret;
1413 
1414 	*bit_chk = param->read_correct_mask;
1415 
1416 	for (r = rank_bgn; r < rank_end; r++) {
1417 		if (param->skip_ranks[r])
1418 			/* request to skip the rank */
1419 			continue;
1420 
1421 		/* set rank */
1422 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1423 
1424 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1425 
1426 		writel(RW_MGR_READ_B2B_WAIT1,
1427 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1428 
1429 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1430 		writel(RW_MGR_READ_B2B_WAIT2,
1431 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1432 
1433 		if (quick_read_mode)
1434 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1435 			/* need at least two (1+1) reads to capture failures */
1436 		else if (all_groups)
1437 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1438 		else
1439 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1440 
1441 		writel(RW_MGR_READ_B2B,
1442 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1443 		if (all_groups)
1444 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1445 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1446 			       &sdr_rw_load_mgr_regs->load_cntr3);
1447 		else
1448 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1449 
1450 		writel(RW_MGR_READ_B2B,
1451 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1452 
1453 		tmp_bit_chk = 0;
1454 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1455 		     vg--) {
1456 			/* Reset the FIFOs to get pointers to known state. */
1457 			writel(0, &phy_mgr_cmd->fifo_reset);
1458 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1459 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1460 
1461 			if (all_groups) {
1462 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1463 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1464 			} else {
1465 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1466 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1467 			}
1468 
1469 			writel(RW_MGR_READ_B2B, addr +
1470 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1471 			       vg) << 2));
1472 
1473 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1474 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1475 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1476 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1477 		}
1478 
1479 		*bit_chk &= tmp_bit_chk;
1480 	}
1481 
1482 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1483 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1484 
1485 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1486 
1487 	if (all_correct) {
1488 		ret = (*bit_chk == param->read_correct_mask);
1489 		debug_cond(DLEVEL == 2,
1490 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1491 			   __func__, __LINE__, group, all_groups, *bit_chk,
1492 			   param->read_correct_mask, ret);
1493 	} else	{
1494 		ret = (*bit_chk != 0x00);
1495 		debug_cond(DLEVEL == 2,
1496 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1497 			   __func__, __LINE__, group, all_groups, *bit_chk,
1498 			   0, ret);
1499 	}
1500 
1501 	return ret;
1502 }
1503 
1504 /**
1505  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1506  * @grp:		Read/Write group
1507  * @num_tries:		Number of retries of the test
1508  * @all_correct:	All bits must be correct in the mask
1509  * @all_groups:		Test all R/W groups
1510  *
1511  * Perform a READ test across all memory ranks.
1512  */
1513 static int
1514 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1515 					 const u32 all_correct,
1516 					 const u32 all_groups)
1517 {
1518 	u32 bit_chk;
1519 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1520 					      &bit_chk, all_groups, 1);
1521 }
1522 
1523 /**
1524  * rw_mgr_incr_vfifo() - Increase VFIFO value
1525  * @grp:	Read/Write group
1526  *
1527  * Increase VFIFO value.
1528  */
1529 static void rw_mgr_incr_vfifo(const u32 grp)
1530 {
1531 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1532 }
1533 
1534 /**
1535  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1536  * @grp:	Read/Write group
1537  *
1538  * Decrease VFIFO value.
1539  */
1540 static void rw_mgr_decr_vfifo(const u32 grp)
1541 {
1542 	u32 i;
1543 
1544 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1545 		rw_mgr_incr_vfifo(grp);
1546 }
1547 
1548 /**
1549  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1550  * @grp:	Read/Write group
1551  *
1552  * Push VFIFO until a failing read happens.
1553  */
1554 static int find_vfifo_failing_read(const u32 grp)
1555 {
1556 	u32 v, ret, fail_cnt = 0;
1557 
1558 	for (v = 0; v < VFIFO_SIZE; v++) {
1559 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1560 			   __func__, __LINE__, v);
1561 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1562 						PASS_ONE_BIT, 0);
1563 		if (!ret) {
1564 			fail_cnt++;
1565 
1566 			if (fail_cnt == 2)
1567 				return v;
1568 		}
1569 
1570 		/* Fiddle with FIFO. */
1571 		rw_mgr_incr_vfifo(grp);
1572 	}
1573 
1574 	/* No failing read found! Something must have gone wrong. */
1575 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1576 	return 0;
1577 }
1578 
1579 /**
1580  * sdr_find_phase_delay() - Find DQS enable phase or delay
1581  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1582  * @delay:	If 1, look for delay, if 0, look for phase
1583  * @grp:	Read/Write group
1584  * @work:	Working window position
1585  * @work_inc:	Working window increment
1586  * @pd:		DQS Phase/Delay Iterator
1587  *
1588  * Find working or non-working DQS enable phase setting.
1589  */
1590 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1591 				u32 *work, const u32 work_inc, u32 *pd)
1592 {
1593 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1594 	u32 ret;
1595 
1596 	for (; *pd <= max; (*pd)++) {
1597 		if (delay)
1598 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1599 		else
1600 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1601 
1602 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1603 					PASS_ONE_BIT, 0);
1604 		if (!working)
1605 			ret = !ret;
1606 
1607 		if (ret)
1608 			return 0;
1609 
1610 		if (work)
1611 			*work += work_inc;
1612 	}
1613 
1614 	return -EINVAL;
1615 }
1616 /**
1617  * sdr_find_phase() - Find DQS enable phase
1618  * @working:	If 1, look for working phase, if 0, look for non-working phase
1619  * @grp:	Read/Write group
1620  * @work:	Working window position
1621  * @i:		Iterator
1622  * @p:		DQS Phase Iterator
1623  *
1624  * Find working or non-working DQS enable phase setting.
1625  */
1626 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1627 			  u32 *i, u32 *p)
1628 {
1629 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1630 	int ret;
1631 
1632 	for (; *i < end; (*i)++) {
1633 		if (working)
1634 			*p = 0;
1635 
1636 		ret = sdr_find_phase_delay(working, 0, grp, work,
1637 					   IO_DELAY_PER_OPA_TAP, p);
1638 		if (!ret)
1639 			return 0;
1640 
1641 		if (*p > IO_DQS_EN_PHASE_MAX) {
1642 			/* Fiddle with FIFO. */
1643 			rw_mgr_incr_vfifo(grp);
1644 			if (!working)
1645 				*p = 0;
1646 		}
1647 	}
1648 
1649 	return -EINVAL;
1650 }
1651 
1652 /**
1653  * sdr_working_phase() - Find working DQS enable phase
1654  * @grp:	Read/Write group
1655  * @work_bgn:	Working window start position
1656  * @d:		dtaps output value
1657  * @p:		DQS Phase Iterator
1658  * @i:		Iterator
1659  *
1660  * Find working DQS enable phase setting.
1661  */
1662 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1663 			     u32 *p, u32 *i)
1664 {
1665 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1666 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1667 	int ret;
1668 
1669 	*work_bgn = 0;
1670 
1671 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1672 		*i = 0;
1673 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1674 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1675 		if (!ret)
1676 			return 0;
1677 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1678 	}
1679 
1680 	/* Cannot find working solution */
1681 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1682 		   __func__, __LINE__);
1683 	return -EINVAL;
1684 }
1685 
1686 /**
1687  * sdr_backup_phase() - Find DQS enable backup phase
1688  * @grp:	Read/Write group
1689  * @work_bgn:	Working window start position
1690  * @p:		DQS Phase Iterator
1691  *
1692  * Find DQS enable backup phase setting.
1693  */
1694 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1695 {
1696 	u32 tmp_delay, d;
1697 	int ret;
1698 
1699 	/* Special case code for backing up a phase */
1700 	if (*p == 0) {
1701 		*p = IO_DQS_EN_PHASE_MAX;
1702 		rw_mgr_decr_vfifo(grp);
1703 	} else {
1704 		(*p)--;
1705 	}
1706 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1707 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1708 
1709 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1710 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1711 
1712 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1713 					PASS_ONE_BIT, 0);
1714 		if (ret) {
1715 			*work_bgn = tmp_delay;
1716 			break;
1717 		}
1718 
1719 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1720 	}
1721 
1722 	/* Restore VFIFO to old state before we decremented it (if needed). */
1723 	(*p)++;
1724 	if (*p > IO_DQS_EN_PHASE_MAX) {
1725 		*p = 0;
1726 		rw_mgr_incr_vfifo(grp);
1727 	}
1728 
1729 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1730 }
1731 
1732 /**
1733  * sdr_nonworking_phase() - Find non-working DQS enable phase
1734  * @grp:	Read/Write group
1735  * @work_end:	Working window end position
1736  * @p:		DQS Phase Iterator
1737  * @i:		Iterator
1738  *
1739  * Find non-working DQS enable phase setting.
1740  */
1741 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1742 {
1743 	int ret;
1744 
1745 	(*p)++;
1746 	*work_end += IO_DELAY_PER_OPA_TAP;
1747 	if (*p > IO_DQS_EN_PHASE_MAX) {
1748 		/* Fiddle with FIFO. */
1749 		*p = 0;
1750 		rw_mgr_incr_vfifo(grp);
1751 	}
1752 
1753 	ret = sdr_find_phase(0, grp, work_end, i, p);
1754 	if (ret) {
1755 		/* Cannot see edge of failing read. */
1756 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1757 			   __func__, __LINE__);
1758 	}
1759 
1760 	return ret;
1761 }
1762 
1763 /**
1764  * sdr_find_window_center() - Find center of the working DQS window.
1765  * @grp:	Read/Write group
1766  * @work_bgn:	First working settings
1767  * @work_end:	Last working settings
1768  *
1769  * Find center of the working DQS enable window.
1770  */
1771 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1772 				  const u32 work_end)
1773 {
1774 	u32 work_mid;
1775 	int tmp_delay = 0;
1776 	int i, p, d;
1777 
1778 	work_mid = (work_bgn + work_end) / 2;
1779 
1780 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1781 		   work_bgn, work_end, work_mid);
1782 	/* Get the middle delay to be less than a VFIFO delay */
1783 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1784 
1785 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1786 	work_mid %= tmp_delay;
1787 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1788 
1789 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1790 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1791 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1792 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1793 
1794 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1795 
1796 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1797 	if (d > IO_DQS_EN_DELAY_MAX)
1798 		d = IO_DQS_EN_DELAY_MAX;
1799 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1800 
1801 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1802 
1803 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1804 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1805 
1806 	/*
1807 	 * push vfifo until we can successfully calibrate. We can do this
1808 	 * because the largest possible margin in 1 VFIFO cycle.
1809 	 */
1810 	for (i = 0; i < VFIFO_SIZE; i++) {
1811 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1812 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1813 							     PASS_ONE_BIT,
1814 							     0)) {
1815 			debug_cond(DLEVEL == 2,
1816 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1817 				   __func__, __LINE__, p, d);
1818 			return 0;
1819 		}
1820 
1821 		/* Fiddle with FIFO. */
1822 		rw_mgr_incr_vfifo(grp);
1823 	}
1824 
1825 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1826 		   __func__, __LINE__);
1827 	return -EINVAL;
1828 }
1829 
1830 /**
1831  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1832  * @grp:	Read/Write Group
1833  *
1834  * Find a good DQS enable to use.
1835  */
1836 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1837 {
1838 	u32 d, p, i;
1839 	u32 dtaps_per_ptap;
1840 	u32 work_bgn, work_end;
1841 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1842 	int ret;
1843 
1844 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1845 
1846 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1847 
1848 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1849 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1850 
1851 	/* Step 0: Determine number of delay taps for each phase tap. */
1852 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1853 
1854 	/* Step 1: First push vfifo until we get a failing read. */
1855 	find_vfifo_failing_read(grp);
1856 
1857 	/* Step 2: Find first working phase, increment in ptaps. */
1858 	work_bgn = 0;
1859 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1860 	if (ret)
1861 		return ret;
1862 
1863 	work_end = work_bgn;
1864 
1865 	/*
1866 	 * If d is 0 then the working window covers a phase tap and we can
1867 	 * follow the old procedure. Otherwise, we've found the beginning
1868 	 * and we need to increment the dtaps until we find the end.
1869 	 */
1870 	if (d == 0) {
1871 		/*
1872 		 * Step 3a: If we have room, back off by one and
1873 		 *          increment in dtaps.
1874 		 */
1875 		sdr_backup_phase(grp, &work_bgn, &p);
1876 
1877 		/*
1878 		 * Step 4a: go forward from working phase to non working
1879 		 * phase, increment in ptaps.
1880 		 */
1881 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1882 		if (ret)
1883 			return ret;
1884 
1885 		/* Step 5a: Back off one from last, increment in dtaps. */
1886 
1887 		/* Special case code for backing up a phase */
1888 		if (p == 0) {
1889 			p = IO_DQS_EN_PHASE_MAX;
1890 			rw_mgr_decr_vfifo(grp);
1891 		} else {
1892 			p = p - 1;
1893 		}
1894 
1895 		work_end -= IO_DELAY_PER_OPA_TAP;
1896 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1897 
1898 		d = 0;
1899 
1900 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1901 			   __func__, __LINE__, p);
1902 	}
1903 
1904 	/* The dtap increment to find the failing edge is done here. */
1905 	sdr_find_phase_delay(0, 1, grp, &work_end,
1906 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1907 
1908 	/* Go back to working dtap */
1909 	if (d != 0)
1910 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1911 
1912 	debug_cond(DLEVEL == 2,
1913 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1914 		   __func__, __LINE__, p, d - 1, work_end);
1915 
1916 	if (work_end < work_bgn) {
1917 		/* nil range */
1918 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1919 			   __func__, __LINE__);
1920 		return -EINVAL;
1921 	}
1922 
1923 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1924 		   __func__, __LINE__, work_bgn, work_end);
1925 
1926 	/*
1927 	 * We need to calculate the number of dtaps that equal a ptap.
1928 	 * To do that we'll back up a ptap and re-find the edge of the
1929 	 * window using dtaps
1930 	 */
1931 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1932 		   __func__, __LINE__);
1933 
1934 	/* Special case code for backing up a phase */
1935 	if (p == 0) {
1936 		p = IO_DQS_EN_PHASE_MAX;
1937 		rw_mgr_decr_vfifo(grp);
1938 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1939 			   __func__, __LINE__, p);
1940 	} else {
1941 		p = p - 1;
1942 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1943 			   __func__, __LINE__, p);
1944 	}
1945 
1946 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1947 
1948 	/*
1949 	 * Increase dtap until we first see a passing read (in case the
1950 	 * window is smaller than a ptap), and then a failing read to
1951 	 * mark the edge of the window again.
1952 	 */
1953 
1954 	/* Find a passing read. */
1955 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1956 		   __func__, __LINE__);
1957 
1958 	initial_failing_dtap = d;
1959 
1960 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1961 	if (found_passing_read) {
1962 		/* Find a failing read. */
1963 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1964 			   __func__, __LINE__);
1965 		d++;
1966 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1967 							   &d);
1968 	} else {
1969 		debug_cond(DLEVEL == 1,
1970 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1971 			   __func__, __LINE__);
1972 	}
1973 
1974 	/*
1975 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1976 	 * found a passing/failing read. If we didn't, it means d hit the max
1977 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1978 	 * statically calculated value.
1979 	 */
1980 	if (found_passing_read && found_failing_read)
1981 		dtaps_per_ptap = d - initial_failing_dtap;
1982 
1983 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1984 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1985 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1986 
1987 	/* Step 6: Find the centre of the window. */
1988 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1989 
1990 	return ret;
1991 }
1992 
1993 /**
1994  * search_stop_check() - Check if the detected edge is valid
1995  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1996  * @d:			DQS delay
1997  * @rank_bgn:		Rank number
1998  * @write_group:	Write Group
1999  * @read_group:		Read Group
2000  * @bit_chk:		Resulting bit mask after the test
2001  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2002  * @use_read_test:	Perform read test
2003  *
2004  * Test if the found edge is valid.
2005  */
2006 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
2007 			     const u32 write_group, const u32 read_group,
2008 			     u32 *bit_chk, u32 *sticky_bit_chk,
2009 			     const u32 use_read_test)
2010 {
2011 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2012 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2013 	const u32 correct_mask = write ? param->write_correct_mask :
2014 					 param->read_correct_mask;
2015 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2016 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2017 	u32 ret;
2018 	/*
2019 	 * Stop searching when the read test doesn't pass AND when
2020 	 * we've seen a passing read on every bit.
2021 	 */
2022 	if (write) {			/* WRITE-ONLY */
2023 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2024 							 0, PASS_ONE_BIT,
2025 							 bit_chk, 0);
2026 	} else if (use_read_test) {	/* READ-ONLY */
2027 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2028 							NUM_READ_PB_TESTS,
2029 							PASS_ONE_BIT, bit_chk,
2030 							0, 0);
2031 	} else {			/* READ-ONLY */
2032 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2033 						PASS_ONE_BIT, bit_chk, 0);
2034 		*bit_chk = *bit_chk >> (per_dqs *
2035 			(read_group - (write_group * ratio)));
2036 		ret = (*bit_chk == 0);
2037 	}
2038 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2039 	ret = ret && (*sticky_bit_chk == correct_mask);
2040 	debug_cond(DLEVEL == 2,
2041 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2042 		   __func__, __LINE__, d,
2043 		   *sticky_bit_chk, correct_mask, ret);
2044 	return ret;
2045 }
2046 
2047 /**
2048  * search_left_edge() - Find left edge of DQ/DQS working phase
2049  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2050  * @rank_bgn:		Rank number
2051  * @write_group:	Write Group
2052  * @read_group:		Read Group
2053  * @test_bgn:		Rank number to begin the test
2054  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2055  * @left_edge:		Left edge of the DQ/DQS phase
2056  * @right_edge:		Right edge of the DQ/DQS phase
2057  * @use_read_test:	Perform read test
2058  *
2059  * Find left edge of DQ/DQS working phase.
2060  */
2061 static void search_left_edge(const int write, const int rank_bgn,
2062 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2063 	u32 *sticky_bit_chk,
2064 	int *left_edge, int *right_edge, const u32 use_read_test)
2065 {
2066 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2067 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2068 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2069 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2070 	u32 stop, bit_chk;
2071 	int i, d;
2072 
2073 	for (d = 0; d <= dqs_max; d++) {
2074 		if (write)
2075 			scc_mgr_apply_group_dq_out1_delay(d);
2076 		else
2077 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2078 
2079 		writel(0, &sdr_scc_mgr->update);
2080 
2081 		stop = search_stop_check(write, d, rank_bgn, write_group,
2082 					 read_group, &bit_chk, sticky_bit_chk,
2083 					 use_read_test);
2084 		if (stop == 1)
2085 			break;
2086 
2087 		/* stop != 1 */
2088 		for (i = 0; i < per_dqs; i++) {
2089 			if (bit_chk & 1) {
2090 				/*
2091 				 * Remember a passing test as
2092 				 * the left_edge.
2093 				 */
2094 				left_edge[i] = d;
2095 			} else {
2096 				/*
2097 				 * If a left edge has not been seen
2098 				 * yet, then a future passing test
2099 				 * will mark this edge as the right
2100 				 * edge.
2101 				 */
2102 				if (left_edge[i] == delay_max + 1)
2103 					right_edge[i] = -(d + 1);
2104 			}
2105 			bit_chk >>= 1;
2106 		}
2107 	}
2108 
2109 	/* Reset DQ delay chains to 0 */
2110 	if (write)
2111 		scc_mgr_apply_group_dq_out1_delay(0);
2112 	else
2113 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2114 
2115 	*sticky_bit_chk = 0;
2116 	for (i = per_dqs - 1; i >= 0; i--) {
2117 		debug_cond(DLEVEL == 2,
2118 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2119 			   __func__, __LINE__, i, left_edge[i],
2120 			   i, right_edge[i]);
2121 
2122 		/*
2123 		 * Check for cases where we haven't found the left edge,
2124 		 * which makes our assignment of the the right edge invalid.
2125 		 * Reset it to the illegal value.
2126 		 */
2127 		if ((left_edge[i] == delay_max + 1) &&
2128 		    (right_edge[i] != delay_max + 1)) {
2129 			right_edge[i] = delay_max + 1;
2130 			debug_cond(DLEVEL == 2,
2131 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2132 				   __func__, __LINE__, i, right_edge[i]);
2133 		}
2134 
2135 		/*
2136 		 * Reset sticky bit
2137 		 * READ: except for bits where we have seen both
2138 		 *       the left and right edge.
2139 		 * WRITE: except for bits where we have seen the
2140 		 *        left edge.
2141 		 */
2142 		*sticky_bit_chk <<= 1;
2143 		if (write) {
2144 			if (left_edge[i] != delay_max + 1)
2145 				*sticky_bit_chk |= 1;
2146 		} else {
2147 			if ((left_edge[i] != delay_max + 1) &&
2148 			    (right_edge[i] != delay_max + 1))
2149 				*sticky_bit_chk |= 1;
2150 		}
2151 	}
2152 
2153 
2154 }
2155 
2156 /**
2157  * search_right_edge() - Find right edge of DQ/DQS working phase
2158  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2159  * @rank_bgn:		Rank number
2160  * @write_group:	Write Group
2161  * @read_group:		Read Group
2162  * @start_dqs:		DQS start phase
2163  * @start_dqs_en:	DQS enable start phase
2164  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2165  * @left_edge:		Left edge of the DQ/DQS phase
2166  * @right_edge:		Right edge of the DQ/DQS phase
2167  * @use_read_test:	Perform read test
2168  *
2169  * Find right edge of DQ/DQS working phase.
2170  */
2171 static int search_right_edge(const int write, const int rank_bgn,
2172 	const u32 write_group, const u32 read_group,
2173 	const int start_dqs, const int start_dqs_en,
2174 	u32 *sticky_bit_chk,
2175 	int *left_edge, int *right_edge, const u32 use_read_test)
2176 {
2177 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2178 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2179 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2180 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2181 	u32 stop, bit_chk;
2182 	int i, d;
2183 
2184 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2185 		if (write) {	/* WRITE-ONLY */
2186 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2187 								d + start_dqs);
2188 		} else {	/* READ-ONLY */
2189 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2190 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2191 				uint32_t delay = d + start_dqs_en;
2192 				if (delay > IO_DQS_EN_DELAY_MAX)
2193 					delay = IO_DQS_EN_DELAY_MAX;
2194 				scc_mgr_set_dqs_en_delay(read_group, delay);
2195 			}
2196 			scc_mgr_load_dqs(read_group);
2197 		}
2198 
2199 		writel(0, &sdr_scc_mgr->update);
2200 
2201 		stop = search_stop_check(write, d, rank_bgn, write_group,
2202 					 read_group, &bit_chk, sticky_bit_chk,
2203 					 use_read_test);
2204 		if (stop == 1) {
2205 			if (write && (d == 0)) {	/* WRITE-ONLY */
2206 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2207 					/*
2208 					 * d = 0 failed, but it passed when
2209 					 * testing the left edge, so it must be
2210 					 * marginal, set it to -1
2211 					 */
2212 					if (right_edge[i] == delay_max + 1 &&
2213 					    left_edge[i] != delay_max + 1)
2214 						right_edge[i] = -1;
2215 				}
2216 			}
2217 			break;
2218 		}
2219 
2220 		/* stop != 1 */
2221 		for (i = 0; i < per_dqs; i++) {
2222 			if (bit_chk & 1) {
2223 				/*
2224 				 * Remember a passing test as
2225 				 * the right_edge.
2226 				 */
2227 				right_edge[i] = d;
2228 			} else {
2229 				if (d != 0) {
2230 					/*
2231 					 * If a right edge has not
2232 					 * been seen yet, then a future
2233 					 * passing test will mark this
2234 					 * edge as the left edge.
2235 					 */
2236 					if (right_edge[i] == delay_max + 1)
2237 						left_edge[i] = -(d + 1);
2238 				} else {
2239 					/*
2240 					 * d = 0 failed, but it passed
2241 					 * when testing the left edge,
2242 					 * so it must be marginal, set
2243 					 * it to -1
2244 					 */
2245 					if (right_edge[i] == delay_max + 1 &&
2246 					    left_edge[i] != delay_max + 1)
2247 						right_edge[i] = -1;
2248 					/*
2249 					 * If a right edge has not been
2250 					 * seen yet, then a future
2251 					 * passing test will mark this
2252 					 * edge as the left edge.
2253 					 */
2254 					else if (right_edge[i] == delay_max + 1)
2255 						left_edge[i] = -(d + 1);
2256 				}
2257 			}
2258 
2259 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2260 				   __func__, __LINE__, d);
2261 			debug_cond(DLEVEL == 2,
2262 				   "bit_chk_test=%i left_edge[%u]: %d ",
2263 				   bit_chk & 1, i, left_edge[i]);
2264 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2265 				   right_edge[i]);
2266 			bit_chk >>= 1;
2267 		}
2268 	}
2269 
2270 	/* Check that all bits have a window */
2271 	for (i = 0; i < per_dqs; i++) {
2272 		debug_cond(DLEVEL == 2,
2273 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2274 			   __func__, __LINE__, i, left_edge[i],
2275 			   i, right_edge[i]);
2276 		if ((left_edge[i] == dqs_max + 1) ||
2277 		    (right_edge[i] == dqs_max + 1))
2278 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /**
2285  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2286  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2287  * @left_edge:		Left edge of the DQ/DQS phase
2288  * @right_edge:		Right edge of the DQ/DQS phase
2289  * @mid_min:		Best DQ/DQS phase middle setting
2290  *
2291  * Find index and value of the middle of the DQ/DQS working phase.
2292  */
2293 static int get_window_mid_index(const int write, int *left_edge,
2294 				int *right_edge, int *mid_min)
2295 {
2296 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2297 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2298 	int i, mid, min_index;
2299 
2300 	/* Find middle of window for each DQ bit */
2301 	*mid_min = left_edge[0] - right_edge[0];
2302 	min_index = 0;
2303 	for (i = 1; i < per_dqs; i++) {
2304 		mid = left_edge[i] - right_edge[i];
2305 		if (mid < *mid_min) {
2306 			*mid_min = mid;
2307 			min_index = i;
2308 		}
2309 	}
2310 
2311 	/*
2312 	 * -mid_min/2 represents the amount that we need to move DQS.
2313 	 * If mid_min is odd and positive we'll need to add one to make
2314 	 * sure the rounding in further calculations is correct (always
2315 	 * bias to the right), so just add 1 for all positive values.
2316 	 */
2317 	if (*mid_min > 0)
2318 		(*mid_min)++;
2319 	*mid_min = *mid_min / 2;
2320 
2321 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2322 		   __func__, __LINE__, *mid_min, min_index);
2323 	return min_index;
2324 }
2325 
2326 /**
2327  * center_dq_windows() - Center the DQ/DQS windows
2328  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2329  * @left_edge:		Left edge of the DQ/DQS phase
2330  * @right_edge:		Right edge of the DQ/DQS phase
2331  * @mid_min:		Adjusted DQ/DQS phase middle setting
2332  * @orig_mid_min:	Original DQ/DQS phase middle setting
2333  * @min_index:		DQ/DQS phase middle setting index
2334  * @test_bgn:		Rank number to begin the test
2335  * @dq_margin:		Amount of shift for the DQ
2336  * @dqs_margin:		Amount of shift for the DQS
2337  *
2338  * Align the DQ/DQS windows in each group.
2339  */
2340 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2341 			      const int mid_min, const int orig_mid_min,
2342 			      const int min_index, const int test_bgn,
2343 			      int *dq_margin, int *dqs_margin)
2344 {
2345 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2346 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2347 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2348 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2349 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2350 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2351 
2352 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2353 	int shift_dq, i, p;
2354 
2355 	/* Initialize data for export structures */
2356 	*dqs_margin = delay_max + 1;
2357 	*dq_margin  = delay_max + 1;
2358 
2359 	/* add delay to bring centre of all DQ windows to the same "level" */
2360 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2361 		/* Use values before divide by 2 to reduce round off error */
2362 		shift_dq = (left_edge[i] - right_edge[i] -
2363 			(left_edge[min_index] - right_edge[min_index]))/2  +
2364 			(orig_mid_min - mid_min);
2365 
2366 		debug_cond(DLEVEL == 2,
2367 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2368 			   i, shift_dq);
2369 
2370 		temp_dq_io_delay1 = readl(addr + (p << 2));
2371 		temp_dq_io_delay2 = readl(addr + (i << 2));
2372 
2373 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2374 			shift_dq = delay_max - temp_dq_io_delay2;
2375 		else if (shift_dq + temp_dq_io_delay1 < 0)
2376 			shift_dq = -temp_dq_io_delay1;
2377 
2378 		debug_cond(DLEVEL == 2,
2379 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2380 			   i, shift_dq);
2381 
2382 		if (write)
2383 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2384 		else
2385 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2386 
2387 		scc_mgr_load_dq(p);
2388 
2389 		debug_cond(DLEVEL == 2,
2390 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2391 			   left_edge[i] - shift_dq + (-mid_min),
2392 			   right_edge[i] + shift_dq - (-mid_min));
2393 
2394 		/* To determine values for export structures */
2395 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2396 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2397 
2398 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2399 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2400 	}
2401 
2402 }
2403 
2404 /**
2405  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2406  * @rank_bgn:		Rank number
2407  * @rw_group:		Read/Write Group
2408  * @test_bgn:		Rank at which the test begins
2409  * @use_read_test:	Perform a read test
2410  * @update_fom:		Update FOM
2411  *
2412  * Per-bit deskew DQ and centering.
2413  */
2414 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2415 			const u32 rw_group, const u32 test_bgn,
2416 			const int use_read_test, const int update_fom)
2417 {
2418 	const u32 addr =
2419 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2420 		(rw_group << 2);
2421 	/*
2422 	 * Store these as signed since there are comparisons with
2423 	 * signed numbers.
2424 	 */
2425 	uint32_t sticky_bit_chk;
2426 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2427 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2428 	int32_t orig_mid_min, mid_min;
2429 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2430 	int32_t dq_margin, dqs_margin;
2431 	int i, min_index;
2432 	int ret;
2433 
2434 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2435 
2436 	start_dqs = readl(addr);
2437 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2438 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2439 
2440 	/* set the left and right edge of each bit to an illegal value */
2441 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2442 	sticky_bit_chk = 0;
2443 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2444 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2445 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2446 	}
2447 
2448 	/* Search for the left edge of the window for each bit */
2449 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2450 			 &sticky_bit_chk,
2451 			 left_edge, right_edge, use_read_test);
2452 
2453 
2454 	/* Search for the right edge of the window for each bit */
2455 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2456 				start_dqs, start_dqs_en,
2457 				&sticky_bit_chk,
2458 				left_edge, right_edge, use_read_test);
2459 	if (ret) {
2460 		/*
2461 		 * Restore delay chain settings before letting the loop
2462 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2463 		 * dqs/ck relationships.
2464 		 */
2465 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2466 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2467 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2468 
2469 		scc_mgr_load_dqs(rw_group);
2470 		writel(0, &sdr_scc_mgr->update);
2471 
2472 		debug_cond(DLEVEL == 1,
2473 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2474 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2475 		if (use_read_test) {
2476 			set_failing_group_stage(rw_group *
2477 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2478 				CAL_STAGE_VFIFO,
2479 				CAL_SUBSTAGE_VFIFO_CENTER);
2480 		} else {
2481 			set_failing_group_stage(rw_group *
2482 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2483 				CAL_STAGE_VFIFO_AFTER_WRITES,
2484 				CAL_SUBSTAGE_VFIFO_CENTER);
2485 		}
2486 		return -EIO;
2487 	}
2488 
2489 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2490 
2491 	/* Determine the amount we can change DQS (which is -mid_min) */
2492 	orig_mid_min = mid_min;
2493 	new_dqs = start_dqs - mid_min;
2494 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2495 		new_dqs = IO_DQS_IN_DELAY_MAX;
2496 	else if (new_dqs < 0)
2497 		new_dqs = 0;
2498 
2499 	mid_min = start_dqs - new_dqs;
2500 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2501 		   mid_min, new_dqs);
2502 
2503 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2504 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2505 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2506 		else if (start_dqs_en - mid_min < 0)
2507 			mid_min += start_dqs_en - mid_min;
2508 	}
2509 	new_dqs = start_dqs - mid_min;
2510 
2511 	debug_cond(DLEVEL == 1,
2512 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2513 		   start_dqs,
2514 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2515 		   new_dqs, mid_min);
2516 
2517 	/* Add delay to bring centre of all DQ windows to the same "level". */
2518 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2519 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2520 
2521 	/* Move DQS-en */
2522 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2523 		final_dqs_en = start_dqs_en - mid_min;
2524 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2525 		scc_mgr_load_dqs(rw_group);
2526 	}
2527 
2528 	/* Move DQS */
2529 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2530 	scc_mgr_load_dqs(rw_group);
2531 	debug_cond(DLEVEL == 2,
2532 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2533 		   __func__, __LINE__, dq_margin, dqs_margin);
2534 
2535 	/*
2536 	 * Do not remove this line as it makes sure all of our decisions
2537 	 * have been applied. Apply the update bit.
2538 	 */
2539 	writel(0, &sdr_scc_mgr->update);
2540 
2541 	if ((dq_margin < 0) || (dqs_margin < 0))
2542 		return -EINVAL;
2543 
2544 	return 0;
2545 }
2546 
2547 /**
2548  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2549  * @rw_group:	Read/Write Group
2550  * @phase:	DQ/DQS phase
2551  *
2552  * Because initially no communication ca be reliably performed with the memory
2553  * device, the sequencer uses a guaranteed write mechanism to write data into
2554  * the memory device.
2555  */
2556 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2557 						 const u32 phase)
2558 {
2559 	int ret;
2560 
2561 	/* Set a particular DQ/DQS phase. */
2562 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2563 
2564 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2565 		   __func__, __LINE__, rw_group, phase);
2566 
2567 	/*
2568 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2569 	 * Load up the patterns used by read calibration using the
2570 	 * current DQDQS phase.
2571 	 */
2572 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2573 
2574 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2575 		return 0;
2576 
2577 	/*
2578 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2579 	 * Back-to-Back reads of the patterns used for calibration.
2580 	 */
2581 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2582 	if (ret)
2583 		debug_cond(DLEVEL == 1,
2584 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2585 			   __func__, __LINE__, rw_group, phase);
2586 	return ret;
2587 }
2588 
2589 /**
2590  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2591  * @rw_group:	Read/Write Group
2592  * @test_bgn:	Rank at which the test begins
2593  *
2594  * DQS enable calibration ensures reliable capture of the DQ signal without
2595  * glitches on the DQS line.
2596  */
2597 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2598 						       const u32 test_bgn)
2599 {
2600 	/*
2601 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2602 	 * DQS and DQS Eanble Signal Relationships.
2603 	 */
2604 
2605 	/* We start at zero, so have one less dq to devide among */
2606 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2607 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2608 	int ret;
2609 	u32 i, p, d, r;
2610 
2611 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2612 
2613 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2614 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2615 	     r += NUM_RANKS_PER_SHADOW_REG) {
2616 		for (i = 0, p = test_bgn, d = 0;
2617 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2618 		     i++, p++, d += delay_step) {
2619 			debug_cond(DLEVEL == 1,
2620 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2621 				   __func__, __LINE__, rw_group, r, i, p, d);
2622 
2623 			scc_mgr_set_dq_in_delay(p, d);
2624 			scc_mgr_load_dq(p);
2625 		}
2626 
2627 		writel(0, &sdr_scc_mgr->update);
2628 	}
2629 
2630 	/*
2631 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2632 	 * dq_in_delay values
2633 	 */
2634 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2635 
2636 	debug_cond(DLEVEL == 1,
2637 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2638 		   __func__, __LINE__, rw_group, !ret);
2639 
2640 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2641 	     r += NUM_RANKS_PER_SHADOW_REG) {
2642 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2643 		writel(0, &sdr_scc_mgr->update);
2644 	}
2645 
2646 	return ret;
2647 }
2648 
2649 /**
2650  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2651  * @rw_group:		Read/Write Group
2652  * @test_bgn:		Rank at which the test begins
2653  * @use_read_test:	Perform a read test
2654  * @update_fom:		Update FOM
2655  *
2656  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2657  * within a group.
2658  */
2659 static int
2660 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2661 				      const int use_read_test,
2662 				      const int update_fom)
2663 
2664 {
2665 	int ret, grp_calibrated;
2666 	u32 rank_bgn, sr;
2667 
2668 	/*
2669 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2670 	 * Read per-bit deskew can be done on a per shadow register basis.
2671 	 */
2672 	grp_calibrated = 1;
2673 	for (rank_bgn = 0, sr = 0;
2674 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2675 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2676 		/* Check if this set of ranks should be skipped entirely. */
2677 		if (param->skip_shadow_regs[sr])
2678 			continue;
2679 
2680 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2681 							test_bgn,
2682 							use_read_test,
2683 							update_fom);
2684 		if (!ret)
2685 			continue;
2686 
2687 		grp_calibrated = 0;
2688 	}
2689 
2690 	if (!grp_calibrated)
2691 		return -EIO;
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2698  * @rw_group:		Read/Write Group
2699  * @test_bgn:		Rank at which the test begins
2700  *
2701  * Stage 1: Calibrate the read valid prediction FIFO.
2702  *
2703  * This function implements UniPHY calibration Stage 1, as explained in
2704  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2705  *
2706  * - read valid prediction will consist of finding:
2707  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2708  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2709  *  - we also do a per-bit deskew on the DQ lines.
2710  */
2711 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2712 {
2713 	uint32_t p, d;
2714 	uint32_t dtaps_per_ptap;
2715 	uint32_t failed_substage;
2716 
2717 	int ret;
2718 
2719 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2720 
2721 	/* Update info for sims */
2722 	reg_file_set_group(rw_group);
2723 	reg_file_set_stage(CAL_STAGE_VFIFO);
2724 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2725 
2726 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2727 
2728 	/* USER Determine number of delay taps for each phase tap. */
2729 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2730 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2731 
2732 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2733 		/*
2734 		 * In RLDRAMX we may be messing the delay of pins in
2735 		 * the same write rw_group but outside of the current read
2736 		 * the rw_group, but that's ok because we haven't calibrated
2737 		 * output side yet.
2738 		 */
2739 		if (d > 0) {
2740 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2741 								rw_group, d);
2742 		}
2743 
2744 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2745 			/* 1) Guaranteed Write */
2746 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2747 			if (ret)
2748 				break;
2749 
2750 			/* 2) DQS Enable Calibration */
2751 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2752 									  test_bgn);
2753 			if (ret) {
2754 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2755 				continue;
2756 			}
2757 
2758 			/* 3) Centering DQ/DQS */
2759 			/*
2760 			 * If doing read after write calibration, do not update
2761 			 * FOM now. Do it then.
2762 			 */
2763 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2764 								test_bgn, 1, 0);
2765 			if (ret) {
2766 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2767 				continue;
2768 			}
2769 
2770 			/* All done. */
2771 			goto cal_done_ok;
2772 		}
2773 	}
2774 
2775 	/* Calibration Stage 1 failed. */
2776 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2777 	return 0;
2778 
2779 	/* Calibration Stage 1 completed OK. */
2780 cal_done_ok:
2781 	/*
2782 	 * Reset the delay chains back to zero if they have moved > 1
2783 	 * (check for > 1 because loop will increase d even when pass in
2784 	 * first case).
2785 	 */
2786 	if (d > 2)
2787 		scc_mgr_zero_group(rw_group, 1);
2788 
2789 	return 1;
2790 }
2791 
2792 /**
2793  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2794  * @rw_group:		Read/Write Group
2795  * @test_bgn:		Rank at which the test begins
2796  *
2797  * Stage 3: DQ/DQS Centering.
2798  *
2799  * This function implements UniPHY calibration Stage 3, as explained in
2800  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2801  */
2802 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2803 					  const u32 test_bgn)
2804 {
2805 	int ret;
2806 
2807 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2808 
2809 	/* Update info for sims. */
2810 	reg_file_set_group(rw_group);
2811 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2812 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2813 
2814 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2815 	if (ret)
2816 		set_failing_group_stage(rw_group,
2817 					CAL_STAGE_VFIFO_AFTER_WRITES,
2818 					CAL_SUBSTAGE_VFIFO_CENTER);
2819 	return ret;
2820 }
2821 
2822 /**
2823  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2824  *
2825  * Stage 4: Minimize latency.
2826  *
2827  * This function implements UniPHY calibration Stage 4, as explained in
2828  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2829  * Calibrate LFIFO to find smallest read latency.
2830  */
2831 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2832 {
2833 	int found_one = 0;
2834 
2835 	debug("%s:%d\n", __func__, __LINE__);
2836 
2837 	/* Update info for sims. */
2838 	reg_file_set_stage(CAL_STAGE_LFIFO);
2839 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2840 
2841 	/* Load up the patterns used by read calibration for all ranks */
2842 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2843 
2844 	do {
2845 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2846 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2847 			   __func__, __LINE__, gbl->curr_read_lat);
2848 
2849 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2850 							      PASS_ALL_BITS, 1))
2851 			break;
2852 
2853 		found_one = 1;
2854 		/*
2855 		 * Reduce read latency and see if things are
2856 		 * working correctly.
2857 		 */
2858 		gbl->curr_read_lat--;
2859 	} while (gbl->curr_read_lat > 0);
2860 
2861 	/* Reset the fifos to get pointers to known state. */
2862 	writel(0, &phy_mgr_cmd->fifo_reset);
2863 
2864 	if (found_one) {
2865 		/* Add a fudge factor to the read latency that was determined */
2866 		gbl->curr_read_lat += 2;
2867 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2868 		debug_cond(DLEVEL == 2,
2869 			   "%s:%d lfifo: success: using read_lat=%u\n",
2870 			   __func__, __LINE__, gbl->curr_read_lat);
2871 	} else {
2872 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2873 					CAL_SUBSTAGE_READ_LATENCY);
2874 
2875 		debug_cond(DLEVEL == 2,
2876 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2877 			   __func__, __LINE__, gbl->curr_read_lat);
2878 	}
2879 
2880 	return found_one;
2881 }
2882 
2883 /**
2884  * search_window() - Search for the/part of the window with DM/DQS shift
2885  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2886  * @rank_bgn:		Rank number
2887  * @write_group:	Write Group
2888  * @bgn_curr:		Current window begin
2889  * @end_curr:		Current window end
2890  * @bgn_best:		Current best window begin
2891  * @end_best:		Current best window end
2892  * @win_best:		Size of the best window
2893  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2894  *
2895  * Search for the/part of the window with DM/DQS shift.
2896  */
2897 static void search_window(const int search_dm,
2898 			  const u32 rank_bgn, const u32 write_group,
2899 			  int *bgn_curr, int *end_curr, int *bgn_best,
2900 			  int *end_best, int *win_best, int new_dqs)
2901 {
2902 	u32 bit_chk;
2903 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2904 	int d, di;
2905 
2906 	/* Search for the/part of the window with DM/DQS shift. */
2907 	for (di = max; di >= 0; di -= DELTA_D) {
2908 		if (search_dm) {
2909 			d = di;
2910 			scc_mgr_apply_group_dm_out1_delay(d);
2911 		} else {
2912 			/* For DQS, we go from 0...max */
2913 			d = max - di;
2914 			/*
2915 			 * Note: This only shifts DQS, so are we limiting ourselve to
2916 			 * width of DQ unnecessarily.
2917 			 */
2918 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2919 								d + new_dqs);
2920 		}
2921 
2922 		writel(0, &sdr_scc_mgr->update);
2923 
2924 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2925 						    PASS_ALL_BITS, &bit_chk,
2926 						    0)) {
2927 			/* Set current end of the window. */
2928 			*end_curr = search_dm ? -d : d;
2929 
2930 			/*
2931 			 * If a starting edge of our window has not been seen
2932 			 * this is our current start of the DM window.
2933 			 */
2934 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2935 				*bgn_curr = search_dm ? -d : d;
2936 
2937 			/*
2938 			 * If current window is bigger than best seen.
2939 			 * Set best seen to be current window.
2940 			 */
2941 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2942 				*win_best = *end_curr - *bgn_curr + 1;
2943 				*bgn_best = *bgn_curr;
2944 				*end_best = *end_curr;
2945 			}
2946 		} else {
2947 			/* We just saw a failing test. Reset temp edge. */
2948 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2950 
2951 			/* Early exit is only applicable to DQS. */
2952 			if (search_dm)
2953 				continue;
2954 
2955 			/*
2956 			 * Early exit optimization: if the remaining delay
2957 			 * chain space is less than already seen largest
2958 			 * window we can exit.
2959 			 */
2960 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2961 				break;
2962 		}
2963 	}
2964 }
2965 
2966 /*
2967  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2968  * @rank_bgn:		Rank number
2969  * @write_group:	Write group
2970  * @test_bgn:		Rank at which the test begins
2971  *
2972  * Center all windows. Do per-bit-deskew to possibly increase size of
2973  * certain windows.
2974  */
2975 static int
2976 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2977 				   const u32 test_bgn)
2978 {
2979 	int i;
2980 	u32 sticky_bit_chk;
2981 	u32 min_index;
2982 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2983 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2984 	int mid;
2985 	int mid_min, orig_mid_min;
2986 	int new_dqs, start_dqs;
2987 	int dq_margin, dqs_margin, dm_margin;
2988 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2989 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2990 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2991 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2992 	int win_best = 0;
2993 
2994 	int ret;
2995 
2996 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2997 
2998 	dm_margin = 0;
2999 
3000 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3001 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3002 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3003 
3004 	/* Per-bit deskew. */
3005 
3006 	/*
3007 	 * Set the left and right edge of each bit to an illegal value.
3008 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3009 	 */
3010 	sticky_bit_chk = 0;
3011 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3012 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3013 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3014 	}
3015 
3016 	/* Search for the left edge of the window for each bit. */
3017 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3018 			 &sticky_bit_chk,
3019 			 left_edge, right_edge, 0);
3020 
3021 	/* Search for the right edge of the window for each bit. */
3022 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3023 				start_dqs, 0,
3024 				&sticky_bit_chk,
3025 				left_edge, right_edge, 0);
3026 	if (ret) {
3027 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3028 					CAL_SUBSTAGE_WRITES_CENTER);
3029 		return -EINVAL;
3030 	}
3031 
3032 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3033 
3034 	/* Determine the amount we can change DQS (which is -mid_min). */
3035 	orig_mid_min = mid_min;
3036 	new_dqs = start_dqs;
3037 	mid_min = 0;
3038 	debug_cond(DLEVEL == 1,
3039 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3040 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3041 
3042 	/* Add delay to bring centre of all DQ windows to the same "level". */
3043 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3044 			  min_index, 0, &dq_margin, &dqs_margin);
3045 
3046 	/* Move DQS */
3047 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3048 	writel(0, &sdr_scc_mgr->update);
3049 
3050 	/* Centre DM */
3051 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3052 
3053 	/*
3054 	 * Set the left and right edge of each bit to an illegal value.
3055 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3056 	 */
3057 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3058 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3059 
3060 	/* Search for the/part of the window with DM shift. */
3061 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3062 		      &bgn_best, &end_best, &win_best, 0);
3063 
3064 	/* Reset DM delay chains to 0. */
3065 	scc_mgr_apply_group_dm_out1_delay(0);
3066 
3067 	/*
3068 	 * Check to see if the current window nudges up aganist 0 delay.
3069 	 * If so we need to continue the search by shifting DQS otherwise DQS
3070 	 * search begins as a new search.
3071 	 */
3072 	if (end_curr != 0) {
3073 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3074 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3075 	}
3076 
3077 	/* Search for the/part of the window with DQS shifts. */
3078 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3079 		      &bgn_best, &end_best, &win_best, new_dqs);
3080 
3081 	/* Assign left and right edge for cal and reporting. */
3082 	left_edge[0] = -1 * bgn_best;
3083 	right_edge[0] = end_best;
3084 
3085 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3086 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3087 
3088 	/* Move DQS (back to orig). */
3089 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3090 
3091 	/* Move DM */
3092 
3093 	/* Find middle of window for the DM bit. */
3094 	mid = (left_edge[0] - right_edge[0]) / 2;
3095 
3096 	/* Only move right, since we are not moving DQS/DQ. */
3097 	if (mid < 0)
3098 		mid = 0;
3099 
3100 	/* dm_marign should fail if we never find a window. */
3101 	if (win_best == 0)
3102 		dm_margin = -1;
3103 	else
3104 		dm_margin = left_edge[0] - mid;
3105 
3106 	scc_mgr_apply_group_dm_out1_delay(mid);
3107 	writel(0, &sdr_scc_mgr->update);
3108 
3109 	debug_cond(DLEVEL == 2,
3110 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3111 		   __func__, __LINE__, left_edge[0], right_edge[0],
3112 		   mid, dm_margin);
3113 	/* Export values. */
3114 	gbl->fom_out += dq_margin + dqs_margin;
3115 
3116 	debug_cond(DLEVEL == 2,
3117 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3118 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3119 
3120 	/*
3121 	 * Do not remove this line as it makes sure all of our
3122 	 * decisions have been applied.
3123 	 */
3124 	writel(0, &sdr_scc_mgr->update);
3125 
3126 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3127 		return -EINVAL;
3128 
3129 	return 0;
3130 }
3131 
3132 /**
3133  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3134  * @rank_bgn:		Rank number
3135  * @group:		Read/Write Group
3136  * @test_bgn:		Rank at which the test begins
3137  *
3138  * Stage 2: Write Calibration Part One.
3139  *
3140  * This function implements UniPHY calibration Stage 2, as explained in
3141  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3142  */
3143 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3144 				       const u32 test_bgn)
3145 {
3146 	int ret;
3147 
3148 	/* Update info for sims */
3149 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3150 
3151 	reg_file_set_group(group);
3152 	reg_file_set_stage(CAL_STAGE_WRITES);
3153 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3154 
3155 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3156 	if (ret)
3157 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3158 					CAL_SUBSTAGE_WRITES_CENTER);
3159 
3160 	return ret;
3161 }
3162 
3163 /**
3164  * mem_precharge_and_activate() - Precharge all banks and activate
3165  *
3166  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3167  */
3168 static void mem_precharge_and_activate(void)
3169 {
3170 	int r;
3171 
3172 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3173 		/* Test if the rank should be skipped. */
3174 		if (param->skip_ranks[r])
3175 			continue;
3176 
3177 		/* Set rank. */
3178 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3179 
3180 		/* Precharge all banks. */
3181 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3182 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3183 
3184 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3185 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3186 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3187 
3188 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3189 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3190 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3191 
3192 		/* Activate rows. */
3193 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3194 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3195 	}
3196 }
3197 
3198 /**
3199  * mem_init_latency() - Configure memory RLAT and WLAT settings
3200  *
3201  * Configure memory RLAT and WLAT parameters.
3202  */
3203 static void mem_init_latency(void)
3204 {
3205 	/*
3206 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3207 	 * so max latency in AFI clocks, used here, is correspondingly
3208 	 * smaller.
3209 	 */
3210 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3211 	u32 rlat, wlat;
3212 
3213 	debug("%s:%d\n", __func__, __LINE__);
3214 
3215 	/*
3216 	 * Read in write latency.
3217 	 * WL for Hard PHY does not include additive latency.
3218 	 */
3219 	wlat = readl(&data_mgr->t_wl_add);
3220 	wlat += readl(&data_mgr->mem_t_add);
3221 
3222 	gbl->rw_wl_nop_cycles = wlat - 1;
3223 
3224 	/* Read in readl latency. */
3225 	rlat = readl(&data_mgr->t_rl_add);
3226 
3227 	/* Set a pretty high read latency initially. */
3228 	gbl->curr_read_lat = rlat + 16;
3229 	if (gbl->curr_read_lat > max_latency)
3230 		gbl->curr_read_lat = max_latency;
3231 
3232 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3233 
3234 	/* Advertise write latency. */
3235 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3236 }
3237 
3238 /**
3239  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3240  *
3241  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3242  */
3243 static void mem_skip_calibrate(void)
3244 {
3245 	uint32_t vfifo_offset;
3246 	uint32_t i, j, r;
3247 
3248 	debug("%s:%d\n", __func__, __LINE__);
3249 	/* Need to update every shadow register set used by the interface */
3250 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3251 	     r += NUM_RANKS_PER_SHADOW_REG) {
3252 		/*
3253 		 * Set output phase alignment settings appropriate for
3254 		 * skip calibration.
3255 		 */
3256 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3257 			scc_mgr_set_dqs_en_phase(i, 0);
3258 #if IO_DLL_CHAIN_LENGTH == 6
3259 			scc_mgr_set_dqdqs_output_phase(i, 6);
3260 #else
3261 			scc_mgr_set_dqdqs_output_phase(i, 7);
3262 #endif
3263 			/*
3264 			 * Case:33398
3265 			 *
3266 			 * Write data arrives to the I/O two cycles before write
3267 			 * latency is reached (720 deg).
3268 			 *   -> due to bit-slip in a/c bus
3269 			 *   -> to allow board skew where dqs is longer than ck
3270 			 *      -> how often can this happen!?
3271 			 *      -> can claim back some ptaps for high freq
3272 			 *       support if we can relax this, but i digress...
3273 			 *
3274 			 * The write_clk leads mem_ck by 90 deg
3275 			 * The minimum ptap of the OPA is 180 deg
3276 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3277 			 * The write_clk is always delayed by 2 ptaps
3278 			 *
3279 			 * Hence, to make DQS aligned to CK, we need to delay
3280 			 * DQS by:
3281 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3282 			 *
3283 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3284 			 * gives us the number of ptaps, which simplies to:
3285 			 *
3286 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3287 			 */
3288 			scc_mgr_set_dqdqs_output_phase(i,
3289 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3290 		}
3291 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3292 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3293 
3294 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3295 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3296 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3297 		}
3298 		writel(0xff, &sdr_scc_mgr->dq_ena);
3299 		writel(0xff, &sdr_scc_mgr->dm_ena);
3300 		writel(0, &sdr_scc_mgr->update);
3301 	}
3302 
3303 	/* Compensate for simulation model behaviour */
3304 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3305 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3306 		scc_mgr_load_dqs(i);
3307 	}
3308 	writel(0, &sdr_scc_mgr->update);
3309 
3310 	/*
3311 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3312 	 * in sequencer.
3313 	 */
3314 	vfifo_offset = CALIB_VFIFO_OFFSET;
3315 	for (j = 0; j < vfifo_offset; j++)
3316 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3317 	writel(0, &phy_mgr_cmd->fifo_reset);
3318 
3319 	/*
3320 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3321 	 * setting from generation-time constant.
3322 	 */
3323 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3324 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3325 }
3326 
3327 /**
3328  * mem_calibrate() - Memory calibration entry point.
3329  *
3330  * Perform memory calibration.
3331  */
3332 static uint32_t mem_calibrate(void)
3333 {
3334 	uint32_t i;
3335 	uint32_t rank_bgn, sr;
3336 	uint32_t write_group, write_test_bgn;
3337 	uint32_t read_group, read_test_bgn;
3338 	uint32_t run_groups, current_run;
3339 	uint32_t failing_groups = 0;
3340 	uint32_t group_failed = 0;
3341 
3342 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3343 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3344 
3345 	debug("%s:%d\n", __func__, __LINE__);
3346 
3347 	/* Initialize the data settings */
3348 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3349 	gbl->error_stage = CAL_STAGE_NIL;
3350 	gbl->error_group = 0xff;
3351 	gbl->fom_in = 0;
3352 	gbl->fom_out = 0;
3353 
3354 	/* Initialize WLAT and RLAT. */
3355 	mem_init_latency();
3356 
3357 	/* Initialize bit slips. */
3358 	mem_precharge_and_activate();
3359 
3360 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3361 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3362 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3363 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3364 		if (i == 0)
3365 			scc_mgr_set_hhp_extras();
3366 
3367 		scc_set_bypass_mode(i);
3368 	}
3369 
3370 	/* Calibration is skipped. */
3371 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3372 		/*
3373 		 * Set VFIFO and LFIFO to instant-on settings in skip
3374 		 * calibration mode.
3375 		 */
3376 		mem_skip_calibrate();
3377 
3378 		/*
3379 		 * Do not remove this line as it makes sure all of our
3380 		 * decisions have been applied.
3381 		 */
3382 		writel(0, &sdr_scc_mgr->update);
3383 		return 1;
3384 	}
3385 
3386 	/* Calibration is not skipped. */
3387 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3388 		/*
3389 		 * Zero all delay chain/phase settings for all
3390 		 * groups and all shadow register sets.
3391 		 */
3392 		scc_mgr_zero_all();
3393 
3394 		run_groups = ~param->skip_groups;
3395 
3396 		for (write_group = 0, write_test_bgn = 0; write_group
3397 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3398 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3399 
3400 			/* Initialize the group failure */
3401 			group_failed = 0;
3402 
3403 			current_run = run_groups & ((1 <<
3404 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3405 			run_groups = run_groups >>
3406 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3407 
3408 			if (current_run == 0)
3409 				continue;
3410 
3411 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3412 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3413 			scc_mgr_zero_group(write_group, 0);
3414 
3415 			for (read_group = write_group * rwdqs_ratio,
3416 			     read_test_bgn = 0;
3417 			     read_group < (write_group + 1) * rwdqs_ratio;
3418 			     read_group++,
3419 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3420 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3421 					continue;
3422 
3423 				/* Calibrate the VFIFO */
3424 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3425 							       read_test_bgn))
3426 					continue;
3427 
3428 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3429 					return 0;
3430 
3431 				/* The group failed, we're done. */
3432 				goto grp_failed;
3433 			}
3434 
3435 			/* Calibrate the output side */
3436 			for (rank_bgn = 0, sr = 0;
3437 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3438 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3439 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3440 					continue;
3441 
3442 				/* Not needed in quick mode! */
3443 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3444 					continue;
3445 
3446 				/*
3447 				 * Determine if this set of ranks
3448 				 * should be skipped entirely.
3449 				 */
3450 				if (param->skip_shadow_regs[sr])
3451 					continue;
3452 
3453 				/* Calibrate WRITEs */
3454 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3455 						write_group, write_test_bgn))
3456 					continue;
3457 
3458 				group_failed = 1;
3459 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3460 					return 0;
3461 			}
3462 
3463 			/* Some group failed, we're done. */
3464 			if (group_failed)
3465 				goto grp_failed;
3466 
3467 			for (read_group = write_group * rwdqs_ratio,
3468 			     read_test_bgn = 0;
3469 			     read_group < (write_group + 1) * rwdqs_ratio;
3470 			     read_group++,
3471 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3472 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3473 					continue;
3474 
3475 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3476 								read_test_bgn))
3477 					continue;
3478 
3479 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3480 					return 0;
3481 
3482 				/* The group failed, we're done. */
3483 				goto grp_failed;
3484 			}
3485 
3486 			/* No group failed, continue as usual. */
3487 			continue;
3488 
3489 grp_failed:		/* A group failed, increment the counter. */
3490 			failing_groups++;
3491 		}
3492 
3493 		/*
3494 		 * USER If there are any failing groups then report
3495 		 * the failure.
3496 		 */
3497 		if (failing_groups != 0)
3498 			return 0;
3499 
3500 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3501 			continue;
3502 
3503 		/*
3504 		 * If we're skipping groups as part of debug,
3505 		 * don't calibrate LFIFO.
3506 		 */
3507 		if (param->skip_groups != 0)
3508 			continue;
3509 
3510 		/* Calibrate the LFIFO */
3511 		if (!rw_mgr_mem_calibrate_lfifo())
3512 			return 0;
3513 	}
3514 
3515 	/*
3516 	 * Do not remove this line as it makes sure all of our decisions
3517 	 * have been applied.
3518 	 */
3519 	writel(0, &sdr_scc_mgr->update);
3520 	return 1;
3521 }
3522 
3523 /**
3524  * run_mem_calibrate() - Perform memory calibration
3525  *
3526  * This function triggers the entire memory calibration procedure.
3527  */
3528 static int run_mem_calibrate(void)
3529 {
3530 	int pass;
3531 
3532 	debug("%s:%d\n", __func__, __LINE__);
3533 
3534 	/* Reset pass/fail status shown on afi_cal_success/fail */
3535 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3536 
3537 	/* Stop tracking manager. */
3538 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3539 
3540 	phy_mgr_initialize();
3541 	rw_mgr_mem_initialize();
3542 
3543 	/* Perform the actual memory calibration. */
3544 	pass = mem_calibrate();
3545 
3546 	mem_precharge_and_activate();
3547 	writel(0, &phy_mgr_cmd->fifo_reset);
3548 
3549 	/* Handoff. */
3550 	rw_mgr_mem_handoff();
3551 	/*
3552 	 * In Hard PHY this is a 2-bit control:
3553 	 * 0: AFI Mux Select
3554 	 * 1: DDIO Mux Select
3555 	 */
3556 	writel(0x2, &phy_mgr_cfg->mux_sel);
3557 
3558 	/* Start tracking manager. */
3559 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3560 
3561 	return pass;
3562 }
3563 
3564 /**
3565  * debug_mem_calibrate() - Report result of memory calibration
3566  * @pass:	Value indicating whether calibration passed or failed
3567  *
3568  * This function reports the results of the memory calibration
3569  * and writes debug information into the register file.
3570  */
3571 static void debug_mem_calibrate(int pass)
3572 {
3573 	uint32_t debug_info;
3574 
3575 	if (pass) {
3576 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3577 
3578 		gbl->fom_in /= 2;
3579 		gbl->fom_out /= 2;
3580 
3581 		if (gbl->fom_in > 0xff)
3582 			gbl->fom_in = 0xff;
3583 
3584 		if (gbl->fom_out > 0xff)
3585 			gbl->fom_out = 0xff;
3586 
3587 		/* Update the FOM in the register file */
3588 		debug_info = gbl->fom_in;
3589 		debug_info |= gbl->fom_out << 8;
3590 		writel(debug_info, &sdr_reg_file->fom);
3591 
3592 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3593 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3594 	} else {
3595 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3596 
3597 		debug_info = gbl->error_stage;
3598 		debug_info |= gbl->error_substage << 8;
3599 		debug_info |= gbl->error_group << 16;
3600 
3601 		writel(debug_info, &sdr_reg_file->failing_stage);
3602 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3603 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3604 
3605 		/* Update the failing group/stage in the register file */
3606 		debug_info = gbl->error_stage;
3607 		debug_info |= gbl->error_substage << 8;
3608 		debug_info |= gbl->error_group << 16;
3609 		writel(debug_info, &sdr_reg_file->failing_stage);
3610 	}
3611 
3612 	printf("%s: Calibration complete\n", __FILE__);
3613 }
3614 
3615 /**
3616  * hc_initialize_rom_data() - Initialize ROM data
3617  *
3618  * Initialize ROM data.
3619  */
3620 static void hc_initialize_rom_data(void)
3621 {
3622 	u32 i, addr;
3623 
3624 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3625 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3626 		writel(inst_rom_init[i], addr + (i << 2));
3627 
3628 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3629 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3630 		writel(ac_rom_init[i], addr + (i << 2));
3631 }
3632 
3633 /**
3634  * initialize_reg_file() - Initialize SDR register file
3635  *
3636  * Initialize SDR register file.
3637  */
3638 static void initialize_reg_file(void)
3639 {
3640 	/* Initialize the register file with the correct data */
3641 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3642 	writel(0, &sdr_reg_file->debug_data_addr);
3643 	writel(0, &sdr_reg_file->cur_stage);
3644 	writel(0, &sdr_reg_file->fom);
3645 	writel(0, &sdr_reg_file->failing_stage);
3646 	writel(0, &sdr_reg_file->debug1);
3647 	writel(0, &sdr_reg_file->debug2);
3648 }
3649 
3650 /**
3651  * initialize_hps_phy() - Initialize HPS PHY
3652  *
3653  * Initialize HPS PHY.
3654  */
3655 static void initialize_hps_phy(void)
3656 {
3657 	uint32_t reg;
3658 	/*
3659 	 * Tracking also gets configured here because it's in the
3660 	 * same register.
3661 	 */
3662 	uint32_t trk_sample_count = 7500;
3663 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3664 	/*
3665 	 * Format is number of outer loops in the 16 MSB, sample
3666 	 * count in 16 LSB.
3667 	 */
3668 
3669 	reg = 0;
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3671 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3672 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3675 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3676 	/*
3677 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3678 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3679 	 */
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3681 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3682 		trk_sample_count);
3683 	writel(reg, &sdr_ctrl->phy_ctrl0);
3684 
3685 	reg = 0;
3686 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3687 		trk_sample_count >>
3688 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3690 		trk_long_idle_sample_count);
3691 	writel(reg, &sdr_ctrl->phy_ctrl1);
3692 
3693 	reg = 0;
3694 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3695 		trk_long_idle_sample_count >>
3696 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3697 	writel(reg, &sdr_ctrl->phy_ctrl2);
3698 }
3699 
3700 /**
3701  * initialize_tracking() - Initialize tracking
3702  *
3703  * Initialize the register file with usable initial data.
3704  */
3705 static void initialize_tracking(void)
3706 {
3707 	/*
3708 	 * Initialize the register file with the correct data.
3709 	 * Compute usable version of value in case we skip full
3710 	 * computation later.
3711 	 */
3712 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3713 	       &sdr_reg_file->dtaps_per_ptap);
3714 
3715 	/* trk_sample_count */
3716 	writel(7500, &sdr_reg_file->trk_sample_count);
3717 
3718 	/* longidle outer loop [15:0] */
3719 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3720 
3721 	/*
3722 	 * longidle sample count [31:24]
3723 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3724 	 * trcd, worst case [15:8]
3725 	 * vfifo wait [7:0]
3726 	 */
3727 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3728 	       &sdr_reg_file->delays);
3729 
3730 	/* mux delay */
3731 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3732 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3733 	       &sdr_reg_file->trk_rw_mgr_addr);
3734 
3735 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3736 	       &sdr_reg_file->trk_read_dqs_width);
3737 
3738 	/* trefi [7:0] */
3739 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3740 	       &sdr_reg_file->trk_rfsh);
3741 }
3742 
3743 int sdram_calibration_full(void)
3744 {
3745 	struct param_type my_param;
3746 	struct gbl_type my_gbl;
3747 	uint32_t pass;
3748 
3749 	memset(&my_param, 0, sizeof(my_param));
3750 	memset(&my_gbl, 0, sizeof(my_gbl));
3751 
3752 	param = &my_param;
3753 	gbl = &my_gbl;
3754 
3755 	/* Set the calibration enabled by default */
3756 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3757 	/*
3758 	 * Only sweep all groups (regardless of fail state) by default
3759 	 * Set enabled read test by default.
3760 	 */
3761 #if DISABLE_GUARANTEED_READ
3762 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3763 #endif
3764 	/* Initialize the register file */
3765 	initialize_reg_file();
3766 
3767 	/* Initialize any PHY CSR */
3768 	initialize_hps_phy();
3769 
3770 	scc_mgr_initialize();
3771 
3772 	initialize_tracking();
3773 
3774 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3775 
3776 	debug("%s:%d\n", __func__, __LINE__);
3777 	debug_cond(DLEVEL == 1,
3778 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3779 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3780 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3781 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3782 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3783 	debug_cond(DLEVEL == 1,
3784 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3785 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3786 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3787 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3788 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3789 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3790 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3791 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3792 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3793 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3794 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3795 		   IO_IO_OUT2_DELAY_MAX);
3796 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3797 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3798 
3799 	hc_initialize_rom_data();
3800 
3801 	/* update info for sims */
3802 	reg_file_set_stage(CAL_STAGE_NIL);
3803 	reg_file_set_group(0);
3804 
3805 	/*
3806 	 * Load global needed for those actions that require
3807 	 * some dynamic calibration support.
3808 	 */
3809 	dyn_calib_steps = STATIC_CALIB_STEPS;
3810 	/*
3811 	 * Load global to allow dynamic selection of delay loop settings
3812 	 * based on calibration mode.
3813 	 */
3814 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3815 		skip_delay_mask = 0xff;
3816 	else
3817 		skip_delay_mask = 0x0;
3818 
3819 	pass = run_mem_calibrate();
3820 	debug_mem_calibrate(pass);
3821 	return pass;
3822 }
3823