xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision ecd2334a1759fe671396596a2958dbc1741e1910)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 static void initialize(void)
117 {
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* USER calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136 		param->read_correct_mask_vg  = ((uint32_t)1 <<
137 			(RW_MGR_MEM_DQ_PER_READ_DQS /
138 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139 		param->write_correct_mask_vg = ((uint32_t)1 <<
140 			(RW_MGR_MEM_DQ_PER_READ_DQS /
141 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142 		param->read_correct_mask     = ((uint32_t)1 <<
143 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144 		param->write_correct_mask    = ((uint32_t)1 <<
145 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146 		param->dm_correct_mask       = ((uint32_t)1 <<
147 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148 			- 1;
149 	}
150 }
151 
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154 	uint32_t odt_mask_0 = 0;
155 	uint32_t odt_mask_1 = 0;
156 	uint32_t cs_and_odt_mask;
157 
158 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160 			/*
161 			 * 1 Rank
162 			 * Read: ODT = 0
163 			 * Write: ODT = 1
164 			 */
165 			odt_mask_0 = 0x0;
166 			odt_mask_1 = 0x1;
167 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168 			/* 2 Ranks */
169 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170 				/* - Dual-Slot , Single-Rank
171 				 * (1 chip-select per DIMM)
172 				 * OR
173 				 * - RDIMM, 4 total CS (2 CS per DIMM)
174 				 * means 2 DIMM
175 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
176 				 * both single rank
177 				 * with 2 CS each (special for RDIMM)
178 				 * Read: Turn on ODT on the opposite rank
179 				 * Write: Turn on ODT on all ranks
180 				 */
181 				odt_mask_0 = 0x3 & ~(1 << rank);
182 				odt_mask_1 = 0x3;
183 			} else {
184 				/*
185 				 * USER - Single-Slot , Dual-rank DIMMs
186 				 * (2 chip-selects per DIMM)
187 				 * USER Read: Turn on ODT off on all ranks
188 				 * USER Write: Turn on ODT on active rank
189 				 */
190 				odt_mask_0 = 0x0;
191 				odt_mask_1 = 0x3 & (1 << rank);
192 			}
193 		} else {
194 			/* 4 Ranks
195 			 * Read:
196 			 * ----------+-----------------------+
197 			 *           |                       |
198 			 *           |         ODT           |
199 			 * Read From +-----------------------+
200 			 *   Rank    |  3  |  2  |  1  |  0  |
201 			 * ----------+-----+-----+-----+-----+
202 			 *     0     |  0  |  1  |  0  |  0  |
203 			 *     1     |  1  |  0  |  0  |  0  |
204 			 *     2     |  0  |  0  |  0  |  1  |
205 			 *     3     |  0  |  0  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *
208 			 * Write:
209 			 * ----------+-----------------------+
210 			 *           |                       |
211 			 *           |         ODT           |
212 			 * Write To  +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  1  |
216 			 *     1     |  1  |  0  |  1  |  0  |
217 			 *     2     |  0  |  1  |  0  |  1  |
218 			 *     3     |  1  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 */
221 			switch (rank) {
222 			case 0:
223 				odt_mask_0 = 0x4;
224 				odt_mask_1 = 0x5;
225 				break;
226 			case 1:
227 				odt_mask_0 = 0x8;
228 				odt_mask_1 = 0xA;
229 				break;
230 			case 2:
231 				odt_mask_0 = 0x1;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 3:
235 				odt_mask_0 = 0x2;
236 				odt_mask_1 = 0xA;
237 				break;
238 			}
239 		}
240 	} else {
241 		odt_mask_0 = 0x0;
242 		odt_mask_1 = 0x0;
243 	}
244 
245 	cs_and_odt_mask =
246 		(0xFF & ~(1 << rank)) |
247 		((0xFF & odt_mask_0) << 8) |
248 		((0xFF & odt_mask_1) << 16);
249 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252 
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:	Base offset in SCC Manager space
256  * @grp:	Read/Write group
257  * @val:	Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265 
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273 	/*
274 	 * Clear register file for HPS. 16 (2^4) is the size of the
275 	 * full register file in the scc mgr:
276 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
278 	 */
279 	int i;
280 
281 	for (i = 0; i < 16; i++) {
282 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283 			   __func__, __LINE__, i);
284 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285 	}
286 }
287 
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292 
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297 
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302 
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307 
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311 		    delay);
312 }
313 
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318 
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327 		    delay);
328 }
329 
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334 		    delay);
335 }
336 
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340 	writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342 
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346 	writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348 
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354 
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358 	writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360 
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:	Base offset in SCC Manager space
364  * @grp:	Read/Write group
365  * @val:	Value to be set
366  * @update:	If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372 				  const int update)
373 {
374 	u32 r;
375 
376 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377 	     r += NUM_RANKS_PER_SHADOW_REG) {
378 		scc_mgr_set(off, grp, val);
379 
380 		if (update || (r == 0)) {
381 			writel(grp, &sdr_scc_mgr->dqs_ena);
382 			writel(0, &sdr_scc_mgr->update);
383 		}
384 	}
385 }
386 
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389 	/*
390 	 * USER although the h/w doesn't support different phases per
391 	 * shadow register, for simplicity our scc manager modeling
392 	 * keeps different phase settings per shadow reg, and it's
393 	 * important for us to keep them in sync to match h/w.
394 	 * for efficiency, the scan chain update should occur only
395 	 * once to sr0.
396 	 */
397 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398 			      read_group, phase, 0);
399 }
400 
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402 						     uint32_t phase)
403 {
404 	/*
405 	 * USER although the h/w doesn't support different phases per
406 	 * shadow register, for simplicity our scc manager modeling
407 	 * keeps different phase settings per shadow reg, and it's
408 	 * important for us to keep them in sync to match h/w.
409 	 * for efficiency, the scan chain update should occur only
410 	 * once to sr0.
411 	 */
412 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413 			      write_group, phase, 0);
414 }
415 
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417 					       uint32_t delay)
418 {
419 	/*
420 	 * In shadow register mode, the T11 settings are stored in
421 	 * registers in the core, which are updated by the DQS_ENA
422 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 	 * save lots of rank switching overhead, by calling
424 	 * select_shadow_regs_for_update with update_scan_chains
425 	 * set to 0.
426 	 */
427 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428 			      read_group, delay, 1);
429 	writel(0, &sdr_scc_mgr->update);
430 }
431 
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:	Write group
435  * @delay:		Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443 	const int base = write_group * ratio;
444 	int i;
445 	/*
446 	 * Load the setting in the SCC manager
447 	 * Although OCT affects only write data, the OCT delay is controlled
448 	 * by the DQS logic block which is instantiated once per read group.
449 	 * For protocols where a write group consists of multiple read groups,
450 	 * the setting must be set multiple times.
451 	 */
452 	for (i = 0; i < ratio; i++)
453 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455 
456 /**
457  * scc_mgr_set_hhp_extras() - Set HHP extras.
458  *
459  * Load the fixed setting in the SCC manager HHP extras.
460  */
461 static void scc_mgr_set_hhp_extras(void)
462 {
463 	/*
464 	 * Load the fixed setting in the SCC manager
465 	 * bits: 0:0 = 1'b1	- DQS bypass
466 	 * bits: 1:1 = 1'b1	- DQ bypass
467 	 * bits: 4:2 = 3'b001	- rfifo_mode
468 	 * bits: 6:5 = 2'b01	- rfifo clock_select
469 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
470 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
471 	 */
472 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473 			  (1 << 2) | (1 << 1) | (1 << 0);
474 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475 			 SCC_MGR_HHP_GLOBALS_OFFSET |
476 			 SCC_MGR_HHP_EXTRAS_OFFSET;
477 
478 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479 		   __func__, __LINE__);
480 	writel(value, addr);
481 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482 		   __func__, __LINE__);
483 }
484 
485 /**
486  * scc_mgr_zero_all() - Zero all DQS config
487  *
488  * Zero all DQS config.
489  */
490 static void scc_mgr_zero_all(void)
491 {
492 	int i, r;
493 
494 	/*
495 	 * USER Zero all DQS config settings, across all groups and all
496 	 * shadow registers
497 	 */
498 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
499 	     r += NUM_RANKS_PER_SHADOW_REG) {
500 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
501 			/*
502 			 * The phases actually don't exist on a per-rank basis,
503 			 * but there's no harm updating them several times, so
504 			 * let's keep the code simple.
505 			 */
506 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
507 			scc_mgr_set_dqs_en_phase(i, 0);
508 			scc_mgr_set_dqs_en_delay(i, 0);
509 		}
510 
511 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
512 			scc_mgr_set_dqdqs_output_phase(i, 0);
513 			/* Arria V/Cyclone V don't have out2. */
514 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
515 		}
516 	}
517 
518 	/* Multicast to all DQS group enables. */
519 	writel(0xff, &sdr_scc_mgr->dqs_ena);
520 	writel(0, &sdr_scc_mgr->update);
521 }
522 
523 /**
524  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
525  * @write_group:	Write group
526  *
527  * Set bypass mode and trigger SCC update.
528  */
529 static void scc_set_bypass_mode(const u32 write_group)
530 {
531 	/* Multicast to all DQ enables. */
532 	writel(0xff, &sdr_scc_mgr->dq_ena);
533 	writel(0xff, &sdr_scc_mgr->dm_ena);
534 
535 	/* Update current DQS IO enable. */
536 	writel(0, &sdr_scc_mgr->dqs_io_ena);
537 
538 	/* Update the DQS logic. */
539 	writel(write_group, &sdr_scc_mgr->dqs_ena);
540 
541 	/* Hit update. */
542 	writel(0, &sdr_scc_mgr->update);
543 }
544 
545 /**
546  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
547  * @write_group:	Write group
548  *
549  * Load DQS settings for Write Group, do not trigger SCC update.
550  */
551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
552 {
553 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
554 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
555 	const int base = write_group * ratio;
556 	int i;
557 	/*
558 	 * Load the setting in the SCC manager
559 	 * Although OCT affects only write data, the OCT delay is controlled
560 	 * by the DQS logic block which is instantiated once per read group.
561 	 * For protocols where a write group consists of multiple read groups,
562 	 * the setting must be set multiple times.
563 	 */
564 	for (i = 0; i < ratio; i++)
565 		writel(base + i, &sdr_scc_mgr->dqs_ena);
566 }
567 
568 /**
569  * scc_mgr_zero_group() - Zero all configs for a group
570  *
571  * Zero DQ, DM, DQS and OCT configs for a group.
572  */
573 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
574 {
575 	int i, r;
576 
577 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
578 	     r += NUM_RANKS_PER_SHADOW_REG) {
579 		/* Zero all DQ config settings. */
580 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
581 			scc_mgr_set_dq_out1_delay(i, 0);
582 			if (!out_only)
583 				scc_mgr_set_dq_in_delay(i, 0);
584 		}
585 
586 		/* Multicast to all DQ enables. */
587 		writel(0xff, &sdr_scc_mgr->dq_ena);
588 
589 		/* Zero all DM config settings. */
590 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
591 			scc_mgr_set_dm_out1_delay(i, 0);
592 
593 		/* Multicast to all DM enables. */
594 		writel(0xff, &sdr_scc_mgr->dm_ena);
595 
596 		/* Zero all DQS IO settings. */
597 		if (!out_only)
598 			scc_mgr_set_dqs_io_in_delay(0);
599 
600 		/* Arria V/Cyclone V don't have out2. */
601 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
602 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
603 		scc_mgr_load_dqs_for_write_group(write_group);
604 
605 		/* Multicast to all DQS IO enables (only 1 in total). */
606 		writel(0, &sdr_scc_mgr->dqs_io_ena);
607 
608 		/* Hit update to zero everything. */
609 		writel(0, &sdr_scc_mgr->update);
610 	}
611 }
612 
613 /*
614  * apply and load a particular input delay for the DQ pins in a group
615  * group_bgn is the index of the first dq pin (in the write group)
616  */
617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
618 {
619 	uint32_t i, p;
620 
621 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
622 		scc_mgr_set_dq_in_delay(p, delay);
623 		scc_mgr_load_dq(p);
624 	}
625 }
626 
627 /**
628  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
629  * @delay:		Delay value
630  *
631  * Apply and load a particular output delay for the DQ pins in a group.
632  */
633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
634 {
635 	int i;
636 
637 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
638 		scc_mgr_set_dq_out1_delay(i, delay);
639 		scc_mgr_load_dq(i);
640 	}
641 }
642 
643 /* apply and load a particular output delay for the DM pins in a group */
644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
645 {
646 	uint32_t i;
647 
648 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
649 		scc_mgr_set_dm_out1_delay(i, delay1);
650 		scc_mgr_load_dm(i);
651 	}
652 }
653 
654 
655 /* apply and load delay on both DQS and OCT out1 */
656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
657 						    uint32_t delay)
658 {
659 	scc_mgr_set_dqs_out1_delay(delay);
660 	scc_mgr_load_dqs_io();
661 
662 	scc_mgr_set_oct_out1_delay(write_group, delay);
663 	scc_mgr_load_dqs_for_write_group(write_group);
664 }
665 
666 /**
667  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
668  * @write_group:	Write group
669  * @delay:		Delay value
670  *
671  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
672  */
673 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
674 						  const u32 delay)
675 {
676 	u32 i, new_delay;
677 
678 	/* DQ shift */
679 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
680 		scc_mgr_load_dq(i);
681 
682 	/* DM shift */
683 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
684 		scc_mgr_load_dm(i);
685 
686 	/* DQS shift */
687 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
688 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
689 		debug_cond(DLEVEL == 1,
690 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
691 			   __func__, __LINE__, write_group, delay, new_delay,
692 			   IO_IO_OUT2_DELAY_MAX,
693 			   new_delay - IO_IO_OUT2_DELAY_MAX);
694 		new_delay -= IO_IO_OUT2_DELAY_MAX;
695 		scc_mgr_set_dqs_out1_delay(new_delay);
696 	}
697 
698 	scc_mgr_load_dqs_io();
699 
700 	/* OCT shift */
701 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
702 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
703 		debug_cond(DLEVEL == 1,
704 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
705 			   __func__, __LINE__, write_group, delay,
706 			   new_delay, IO_IO_OUT2_DELAY_MAX,
707 			   new_delay - IO_IO_OUT2_DELAY_MAX);
708 		new_delay -= IO_IO_OUT2_DELAY_MAX;
709 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
710 	}
711 
712 	scc_mgr_load_dqs_for_write_group(write_group);
713 }
714 
715 /**
716  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
717  * @write_group:	Write group
718  * @delay:		Delay value
719  *
720  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
721  */
722 static void
723 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
724 						const u32 delay)
725 {
726 	int r;
727 
728 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
729 	     r += NUM_RANKS_PER_SHADOW_REG) {
730 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
731 		writel(0, &sdr_scc_mgr->update);
732 	}
733 }
734 
735 /* optimization used to recover some slots in ddr3 inst_rom */
736 /* could be applied to other protocols if we wanted to */
737 static void set_jump_as_return(void)
738 {
739 	/*
740 	 * to save space, we replace return with jump to special shared
741 	 * RETURN instruction so we set the counter to large value so that
742 	 * we always jump
743 	 */
744 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
745 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
746 }
747 
748 /*
749  * should always use constants as argument to ensure all computations are
750  * performed at compile time
751  */
752 static void delay_for_n_mem_clocks(const uint32_t clocks)
753 {
754 	uint32_t afi_clocks;
755 	uint8_t inner = 0;
756 	uint8_t outer = 0;
757 	uint16_t c_loop = 0;
758 
759 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
760 
761 
762 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
763 	/* scale (rounding up) to get afi clocks */
764 
765 	/*
766 	 * Note, we don't bother accounting for being off a little bit
767 	 * because of a few extra instructions in outer loops
768 	 * Note, the loops have a test at the end, and do the test before
769 	 * the decrement, and so always perform the loop
770 	 * 1 time more than the counter value
771 	 */
772 	if (afi_clocks == 0) {
773 		;
774 	} else if (afi_clocks <= 0x100) {
775 		inner = afi_clocks-1;
776 		outer = 0;
777 		c_loop = 0;
778 	} else if (afi_clocks <= 0x10000) {
779 		inner = 0xff;
780 		outer = (afi_clocks-1) >> 8;
781 		c_loop = 0;
782 	} else {
783 		inner = 0xff;
784 		outer = 0xff;
785 		c_loop = (afi_clocks-1) >> 16;
786 	}
787 
788 	/*
789 	 * rom instructions are structured as follows:
790 	 *
791 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
792 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
793 	 *                return
794 	 *
795 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
796 	 * TARGET_B is set to IDLE_LOOP2 as well
797 	 *
798 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
799 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
800 	 *
801 	 * a little confusing, but it helps save precious space in the inst_rom
802 	 * and sequencer rom and keeps the delays more accurate and reduces
803 	 * overhead
804 	 */
805 	if (afi_clocks <= 0x100) {
806 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
807 			&sdr_rw_load_mgr_regs->load_cntr1);
808 
809 		writel(RW_MGR_IDLE_LOOP1,
810 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
811 
812 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
813 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
814 	} else {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr0);
817 
818 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
819 			&sdr_rw_load_mgr_regs->load_cntr1);
820 
821 		writel(RW_MGR_IDLE_LOOP2,
822 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
823 
824 		writel(RW_MGR_IDLE_LOOP2,
825 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
826 
827 		/* hack to get around compiler not being smart enough */
828 		if (afi_clocks <= 0x10000) {
829 			/* only need to run once */
830 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
831 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832 		} else {
833 			do {
834 				writel(RW_MGR_IDLE_LOOP2,
835 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
836 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
837 			} while (c_loop-- != 0);
838 		}
839 	}
840 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
841 }
842 
843 /**
844  * rw_mgr_mem_init_load_regs() - Load instruction registers
845  * @cntr0:	Counter 0 value
846  * @cntr1:	Counter 1 value
847  * @cntr2:	Counter 2 value
848  * @jump:	Jump instruction value
849  *
850  * Load instruction registers.
851  */
852 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
853 {
854 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
855 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
856 
857 	/* Load counters */
858 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
859 	       &sdr_rw_load_mgr_regs->load_cntr0);
860 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
861 	       &sdr_rw_load_mgr_regs->load_cntr1);
862 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
863 	       &sdr_rw_load_mgr_regs->load_cntr2);
864 
865 	/* Load jump address */
866 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
867 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
868 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
869 
870 	/* Execute count instruction */
871 	writel(jump, grpaddr);
872 }
873 
874 /**
875  * rw_mgr_mem_load_user() - Load user calibration values
876  * @fin1:	Final instruction 1
877  * @fin2:	Final instruction 2
878  * @precharge:	If 1, precharge the banks at the end
879  *
880  * Load user calibration values and optionally precharge the banks.
881  */
882 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
883 				 const int precharge)
884 {
885 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
886 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
887 	u32 r;
888 
889 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
890 		if (param->skip_ranks[r]) {
891 			/* request to skip the rank */
892 			continue;
893 		}
894 
895 		/* set rank */
896 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
897 
898 		/* precharge all banks ... */
899 		if (precharge)
900 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
901 
902 		/*
903 		 * USER Use Mirror-ed commands for odd ranks if address
904 		 * mirrorring is on
905 		 */
906 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
907 			set_jump_as_return();
908 			writel(RW_MGR_MRS2_MIRR, grpaddr);
909 			delay_for_n_mem_clocks(4);
910 			set_jump_as_return();
911 			writel(RW_MGR_MRS3_MIRR, grpaddr);
912 			delay_for_n_mem_clocks(4);
913 			set_jump_as_return();
914 			writel(RW_MGR_MRS1_MIRR, grpaddr);
915 			delay_for_n_mem_clocks(4);
916 			set_jump_as_return();
917 			writel(fin1, grpaddr);
918 		} else {
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS2, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS3, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(RW_MGR_MRS1, grpaddr);
927 			set_jump_as_return();
928 			writel(fin2, grpaddr);
929 		}
930 
931 		if (precharge)
932 			continue;
933 
934 		set_jump_as_return();
935 		writel(RW_MGR_ZQCL, grpaddr);
936 
937 		/* tZQinit = tDLLK = 512 ck cycles */
938 		delay_for_n_mem_clocks(512);
939 	}
940 }
941 
942 static void rw_mgr_mem_initialize(void)
943 {
944 	debug("%s:%d\n", __func__, __LINE__);
945 
946 	/* The reset / cke part of initialization is broadcasted to all ranks */
947 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
948 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
949 
950 	/*
951 	 * Here's how you load register for a loop
952 	 * Counters are located @ 0x800
953 	 * Jump address are located @ 0xC00
954 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
955 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
956 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
957 	 * significant bits
958 	 */
959 
960 	/* start with memory RESET activated */
961 
962 	/* tINIT = 200us */
963 
964 	/*
965 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
966 	 * If a and b are the number of iteration in 2 nested loops
967 	 * it takes the following number of cycles to complete the operation:
968 	 * number_of_cycles = ((2 + n) * a + 2) * b
969 	 * where n is the number of instruction in the inner loop
970 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
971 	 * b = 6A
972 	 */
973 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
974 				  SEQ_TINIT_CNTR2_VAL,
975 				  RW_MGR_INIT_RESET_0_CKE_0);
976 
977 	/* indicate that memory is stable */
978 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
979 
980 	/*
981 	 * transition the RESET to high
982 	 * Wait for 500us
983 	 */
984 
985 	/*
986 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
987 	 * If a and b are the number of iteration in 2 nested loops
988 	 * it takes the following number of cycles to complete the operation
989 	 * number_of_cycles = ((2 + n) * a + 2) * b
990 	 * where n is the number of instruction in the inner loop
991 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
992 	 * b = FF
993 	 */
994 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
995 				  SEQ_TRESET_CNTR2_VAL,
996 				  RW_MGR_INIT_RESET_1_CKE_0);
997 
998 	/* bring up clock enable */
999 
1000 	/* tXRP < 250 ck cycles */
1001 	delay_for_n_mem_clocks(250);
1002 
1003 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1004 			     0);
1005 }
1006 
1007 /*
1008  * At the end of calibration we have to program the user settings in, and
1009  * USER  hand off the memory to the user.
1010  */
1011 static void rw_mgr_mem_handoff(void)
1012 {
1013 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1014 	/*
1015 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1016 	 * other commands, but we will have plenty of NIOS cycles before
1017 	 * actual handoff so its okay.
1018 	 */
1019 }
1020 
1021 /*
1022  * performs a guaranteed read on the patterns we are going to use during a
1023  * read test to ensure memory works
1024  */
1025 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1026 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1027 	uint32_t all_ranks)
1028 {
1029 	uint32_t r, vg;
1030 	uint32_t correct_mask_vg;
1031 	uint32_t tmp_bit_chk;
1032 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1033 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1034 	uint32_t addr;
1035 	uint32_t base_rw_mgr;
1036 
1037 	*bit_chk = param->read_correct_mask;
1038 	correct_mask_vg = param->read_correct_mask_vg;
1039 
1040 	for (r = rank_bgn; r < rank_end; r++) {
1041 		if (param->skip_ranks[r])
1042 			/* request to skip the rank */
1043 			continue;
1044 
1045 		/* set rank */
1046 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1047 
1048 		/* Load up a constant bursts of read commands */
1049 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1050 		writel(RW_MGR_GUARANTEED_READ,
1051 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1052 
1053 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1054 		writel(RW_MGR_GUARANTEED_READ_CONT,
1055 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1056 
1057 		tmp_bit_chk = 0;
1058 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1059 			/* reset the fifos to get pointers to known state */
1060 
1061 			writel(0, &phy_mgr_cmd->fifo_reset);
1062 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1063 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1064 
1065 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1066 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1067 
1068 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1069 			writel(RW_MGR_GUARANTEED_READ, addr +
1070 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1071 				vg) << 2));
1072 
1073 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1074 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1075 
1076 			if (vg == 0)
1077 				break;
1078 		}
1079 		*bit_chk &= tmp_bit_chk;
1080 	}
1081 
1082 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1083 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1084 
1085 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1086 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1087 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1088 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1089 	return *bit_chk == param->read_correct_mask;
1090 }
1091 
1092 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1093 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1094 {
1095 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1096 		num_tries, bit_chk, 1);
1097 }
1098 
1099 /* load up the patterns we are going to use during a read test */
1100 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1101 	uint32_t all_ranks)
1102 {
1103 	uint32_t r;
1104 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1105 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1106 
1107 	debug("%s:%d\n", __func__, __LINE__);
1108 	for (r = rank_bgn; r < rank_end; r++) {
1109 		if (param->skip_ranks[r])
1110 			/* request to skip the rank */
1111 			continue;
1112 
1113 		/* set rank */
1114 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1115 
1116 		/* Load up a constant bursts */
1117 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1118 
1119 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1120 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1121 
1122 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1123 
1124 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1125 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1126 
1127 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1128 
1129 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1130 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1131 
1132 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1133 
1134 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1135 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1136 
1137 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1138 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1139 	}
1140 
1141 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1142 }
1143 
1144 /*
1145  * try a read and see if it returns correct data back. has dummy reads
1146  * inserted into the mix used to align dqs enable. has more thorough checks
1147  * than the regular read test.
1148  */
1149 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1150 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1151 	uint32_t all_groups, uint32_t all_ranks)
1152 {
1153 	uint32_t r, vg;
1154 	uint32_t correct_mask_vg;
1155 	uint32_t tmp_bit_chk;
1156 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1157 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1158 	uint32_t addr;
1159 	uint32_t base_rw_mgr;
1160 
1161 	*bit_chk = param->read_correct_mask;
1162 	correct_mask_vg = param->read_correct_mask_vg;
1163 
1164 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1165 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1166 
1167 	for (r = rank_bgn; r < rank_end; r++) {
1168 		if (param->skip_ranks[r])
1169 			/* request to skip the rank */
1170 			continue;
1171 
1172 		/* set rank */
1173 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1174 
1175 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1176 
1177 		writel(RW_MGR_READ_B2B_WAIT1,
1178 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1179 
1180 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1181 		writel(RW_MGR_READ_B2B_WAIT2,
1182 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1183 
1184 		if (quick_read_mode)
1185 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1186 			/* need at least two (1+1) reads to capture failures */
1187 		else if (all_groups)
1188 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1189 		else
1190 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1191 
1192 		writel(RW_MGR_READ_B2B,
1193 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1194 		if (all_groups)
1195 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1196 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1197 			       &sdr_rw_load_mgr_regs->load_cntr3);
1198 		else
1199 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1200 
1201 		writel(RW_MGR_READ_B2B,
1202 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1203 
1204 		tmp_bit_chk = 0;
1205 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1206 			/* reset the fifos to get pointers to known state */
1207 			writel(0, &phy_mgr_cmd->fifo_reset);
1208 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1209 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1210 
1211 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1212 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1213 
1214 			if (all_groups)
1215 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1216 			else
1217 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1218 
1219 			writel(RW_MGR_READ_B2B, addr +
1220 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1221 			       vg) << 2));
1222 
1223 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1224 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1225 
1226 			if (vg == 0)
1227 				break;
1228 		}
1229 		*bit_chk &= tmp_bit_chk;
1230 	}
1231 
1232 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1233 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1234 
1235 	if (all_correct) {
1236 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1237 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1238 			   (%u == %u) => %lu", __func__, __LINE__, group,
1239 			   all_groups, *bit_chk, param->read_correct_mask,
1240 			   (long unsigned int)(*bit_chk ==
1241 			   param->read_correct_mask));
1242 		return *bit_chk == param->read_correct_mask;
1243 	} else	{
1244 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1245 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1246 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1247 			   group, all_groups, *bit_chk, (long unsigned int)0,
1248 			   (long unsigned int)(*bit_chk != 0x00));
1249 		return *bit_chk != 0x00;
1250 	}
1251 }
1252 
1253 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1254 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1255 	uint32_t all_groups)
1256 {
1257 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1258 					      bit_chk, all_groups, 1);
1259 }
1260 
1261 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1262 {
1263 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1264 	(*v)++;
1265 }
1266 
1267 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1268 {
1269 	uint32_t i;
1270 
1271 	for (i = 0; i < VFIFO_SIZE-1; i++)
1272 		rw_mgr_incr_vfifo(grp, v);
1273 }
1274 
1275 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1276 {
1277 	uint32_t  v;
1278 	uint32_t fail_cnt = 0;
1279 	uint32_t test_status;
1280 
1281 	for (v = 0; v < VFIFO_SIZE; ) {
1282 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1283 			   __func__, __LINE__, v);
1284 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1285 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1286 		if (!test_status) {
1287 			fail_cnt++;
1288 
1289 			if (fail_cnt == 2)
1290 				break;
1291 		}
1292 
1293 		/* fiddle with FIFO */
1294 		rw_mgr_incr_vfifo(grp, &v);
1295 	}
1296 
1297 	if (v >= VFIFO_SIZE) {
1298 		/* no failing read found!! Something must have gone wrong */
1299 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1300 			   __func__, __LINE__);
1301 		return 0;
1302 	} else {
1303 		return v;
1304 	}
1305 }
1306 
1307 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1308 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1309 			      uint32_t *v, uint32_t *d, uint32_t *p,
1310 			      uint32_t *i, uint32_t *max_working_cnt)
1311 {
1312 	uint32_t found_begin = 0;
1313 	uint32_t tmp_delay = 0;
1314 	uint32_t test_status;
1315 
1316 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1317 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1318 		*work_bgn = tmp_delay;
1319 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1320 
1321 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1322 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1323 				IO_DELAY_PER_OPA_TAP) {
1324 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1325 
1326 				test_status =
1327 				rw_mgr_mem_calibrate_read_test_all_ranks
1328 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1329 
1330 				if (test_status) {
1331 					*max_working_cnt = 1;
1332 					found_begin = 1;
1333 					break;
1334 				}
1335 			}
1336 
1337 			if (found_begin)
1338 				break;
1339 
1340 			if (*p > IO_DQS_EN_PHASE_MAX)
1341 				/* fiddle with FIFO */
1342 				rw_mgr_incr_vfifo(*grp, v);
1343 		}
1344 
1345 		if (found_begin)
1346 			break;
1347 	}
1348 
1349 	if (*i >= VFIFO_SIZE) {
1350 		/* cannot find working solution */
1351 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1352 			   ptap/dtap\n", __func__, __LINE__);
1353 		return 0;
1354 	} else {
1355 		return 1;
1356 	}
1357 }
1358 
1359 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1360 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1361 			     uint32_t *p, uint32_t *max_working_cnt)
1362 {
1363 	uint32_t found_begin = 0;
1364 	uint32_t tmp_delay;
1365 
1366 	/* Special case code for backing up a phase */
1367 	if (*p == 0) {
1368 		*p = IO_DQS_EN_PHASE_MAX;
1369 		rw_mgr_decr_vfifo(*grp, v);
1370 	} else {
1371 		(*p)--;
1372 	}
1373 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1374 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1375 
1376 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1377 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1378 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1379 
1380 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1381 							     PASS_ONE_BIT,
1382 							     bit_chk, 0)) {
1383 			found_begin = 1;
1384 			*work_bgn = tmp_delay;
1385 			break;
1386 		}
1387 	}
1388 
1389 	/* We have found a working dtap before the ptap found above */
1390 	if (found_begin == 1)
1391 		(*max_working_cnt)++;
1392 
1393 	/*
1394 	 * Restore VFIFO to old state before we decremented it
1395 	 * (if needed).
1396 	 */
1397 	(*p)++;
1398 	if (*p > IO_DQS_EN_PHASE_MAX) {
1399 		*p = 0;
1400 		rw_mgr_incr_vfifo(*grp, v);
1401 	}
1402 
1403 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1404 }
1405 
1406 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1407 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1408 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1409 			     uint32_t *work_end)
1410 {
1411 	uint32_t found_end = 0;
1412 
1413 	(*p)++;
1414 	*work_end += IO_DELAY_PER_OPA_TAP;
1415 	if (*p > IO_DQS_EN_PHASE_MAX) {
1416 		/* fiddle with FIFO */
1417 		*p = 0;
1418 		rw_mgr_incr_vfifo(*grp, v);
1419 	}
1420 
1421 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1422 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1423 			+= IO_DELAY_PER_OPA_TAP) {
1424 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1425 
1426 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1427 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1428 				found_end = 1;
1429 				break;
1430 			} else {
1431 				(*max_working_cnt)++;
1432 			}
1433 		}
1434 
1435 		if (found_end)
1436 			break;
1437 
1438 		if (*p > IO_DQS_EN_PHASE_MAX) {
1439 			/* fiddle with FIFO */
1440 			rw_mgr_incr_vfifo(*grp, v);
1441 			*p = 0;
1442 		}
1443 	}
1444 
1445 	if (*i >= VFIFO_SIZE + 1) {
1446 		/* cannot see edge of failing read */
1447 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1448 			   failed\n", __func__, __LINE__);
1449 		return 0;
1450 	} else {
1451 		return 1;
1452 	}
1453 }
1454 
1455 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1456 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1457 				  uint32_t *p, uint32_t *work_mid,
1458 				  uint32_t *work_end)
1459 {
1460 	int i;
1461 	int tmp_delay = 0;
1462 
1463 	*work_mid = (*work_bgn + *work_end) / 2;
1464 
1465 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1466 		   *work_bgn, *work_end, *work_mid);
1467 	/* Get the middle delay to be less than a VFIFO delay */
1468 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1469 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1470 		;
1471 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1472 	while (*work_mid > tmp_delay)
1473 		*work_mid -= tmp_delay;
1474 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1475 
1476 	tmp_delay = 0;
1477 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1478 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1479 		;
1480 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1481 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1482 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1483 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1484 		;
1485 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1486 
1487 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1488 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1489 
1490 	/*
1491 	 * push vfifo until we can successfully calibrate. We can do this
1492 	 * because the largest possible margin in 1 VFIFO cycle.
1493 	 */
1494 	for (i = 0; i < VFIFO_SIZE; i++) {
1495 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1496 			   *v);
1497 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1498 							     PASS_ONE_BIT,
1499 							     bit_chk, 0)) {
1500 			break;
1501 		}
1502 
1503 		/* fiddle with FIFO */
1504 		rw_mgr_incr_vfifo(*grp, v);
1505 	}
1506 
1507 	if (i >= VFIFO_SIZE) {
1508 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1509 			   failed\n", __func__, __LINE__);
1510 		return 0;
1511 	} else {
1512 		return 1;
1513 	}
1514 }
1515 
1516 /* find a good dqs enable to use */
1517 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1518 {
1519 	uint32_t v, d, p, i;
1520 	uint32_t max_working_cnt;
1521 	uint32_t bit_chk;
1522 	uint32_t dtaps_per_ptap;
1523 	uint32_t work_bgn, work_mid, work_end;
1524 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1525 
1526 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1527 
1528 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1529 
1530 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1531 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1532 
1533 	/* ************************************************************** */
1534 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1535 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1536 
1537 	/* ********************************************************* */
1538 	/* * Step 1 : First push vfifo until we get a failing read * */
1539 	v = find_vfifo_read(grp, &bit_chk);
1540 
1541 	max_working_cnt = 0;
1542 
1543 	/* ******************************************************** */
1544 	/* * step 2: find first working phase, increment in ptaps * */
1545 	work_bgn = 0;
1546 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1547 				&p, &i, &max_working_cnt) == 0)
1548 		return 0;
1549 
1550 	work_end = work_bgn;
1551 
1552 	/*
1553 	 * If d is 0 then the working window covers a phase tap and
1554 	 * we can follow the old procedure otherwise, we've found the beginning,
1555 	 * and we need to increment the dtaps until we find the end.
1556 	 */
1557 	if (d == 0) {
1558 		/* ********************************************************* */
1559 		/* * step 3a: if we have room, back off by one and
1560 		increment in dtaps * */
1561 
1562 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1563 				 &max_working_cnt);
1564 
1565 		/* ********************************************************* */
1566 		/* * step 4a: go forward from working phase to non working
1567 		phase, increment in ptaps * */
1568 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1569 					 &i, &max_working_cnt, &work_end) == 0)
1570 			return 0;
1571 
1572 		/* ********************************************************* */
1573 		/* * step 5a:  back off one from last, increment in dtaps  * */
1574 
1575 		/* Special case code for backing up a phase */
1576 		if (p == 0) {
1577 			p = IO_DQS_EN_PHASE_MAX;
1578 			rw_mgr_decr_vfifo(grp, &v);
1579 		} else {
1580 			p = p - 1;
1581 		}
1582 
1583 		work_end -= IO_DELAY_PER_OPA_TAP;
1584 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1585 
1586 		/* * The actual increment of dtaps is done outside of
1587 		the if/else loop to share code */
1588 		d = 0;
1589 
1590 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1591 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1592 			   v, p);
1593 	} else {
1594 		/* ******************************************************* */
1595 		/* * step 3-5b:  Find the right edge of the window using
1596 		delay taps   * */
1597 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1598 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1599 			   v, p, d, work_bgn);
1600 
1601 		work_end = work_bgn;
1602 
1603 		/* * The actual increment of dtaps is done outside of the
1604 		if/else loop to share code */
1605 
1606 		/* Only here to counterbalance a subtract later on which is
1607 		not needed if this branch of the algorithm is taken */
1608 		max_working_cnt++;
1609 	}
1610 
1611 	/* The dtap increment to find the failing edge is done here */
1612 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1613 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1614 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1615 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1616 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1617 
1618 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1619 								      PASS_ONE_BIT,
1620 								      &bit_chk, 0)) {
1621 				break;
1622 			}
1623 	}
1624 
1625 	/* Go back to working dtap */
1626 	if (d != 0)
1627 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1628 
1629 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1630 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1631 		   v, p, d-1, work_end);
1632 
1633 	if (work_end < work_bgn) {
1634 		/* nil range */
1635 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1636 			   failed\n", __func__, __LINE__);
1637 		return 0;
1638 	}
1639 
1640 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1641 		   __func__, __LINE__, work_bgn, work_end);
1642 
1643 	/* *************************************************************** */
1644 	/*
1645 	 * * We need to calculate the number of dtaps that equal a ptap
1646 	 * * To do that we'll back up a ptap and re-find the edge of the
1647 	 * * window using dtaps
1648 	 */
1649 
1650 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1651 		   for tracking\n", __func__, __LINE__);
1652 
1653 	/* Special case code for backing up a phase */
1654 	if (p == 0) {
1655 		p = IO_DQS_EN_PHASE_MAX;
1656 		rw_mgr_decr_vfifo(grp, &v);
1657 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1658 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1659 			   v, p);
1660 	} else {
1661 		p = p - 1;
1662 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1663 			   phase only: v=%u p=%u", __func__, __LINE__,
1664 			   v, p);
1665 	}
1666 
1667 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1668 
1669 	/*
1670 	 * Increase dtap until we first see a passing read (in case the
1671 	 * window is smaller than a ptap),
1672 	 * and then a failing read to mark the edge of the window again
1673 	 */
1674 
1675 	/* Find a passing read */
1676 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1677 		   __func__, __LINE__);
1678 	found_passing_read = 0;
1679 	found_failing_read = 0;
1680 	initial_failing_dtap = d;
1681 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1682 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1683 			   read d=%u\n", __func__, __LINE__, d);
1684 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1685 
1686 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1687 							     PASS_ONE_BIT,
1688 							     &bit_chk, 0)) {
1689 			found_passing_read = 1;
1690 			break;
1691 		}
1692 	}
1693 
1694 	if (found_passing_read) {
1695 		/* Find a failing read */
1696 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1697 			   read\n", __func__, __LINE__);
1698 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1699 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1700 				   testing read d=%u\n", __func__, __LINE__, d);
1701 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1702 
1703 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1704 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1705 				found_failing_read = 1;
1706 				break;
1707 			}
1708 		}
1709 	} else {
1710 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1711 			   calculate dtaps", __func__, __LINE__);
1712 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1713 	}
1714 
1715 	/*
1716 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1717 	 * found a passing/failing read. If we didn't, it means d hit the max
1718 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1719 	 * statically calculated value.
1720 	 */
1721 	if (found_passing_read && found_failing_read)
1722 		dtaps_per_ptap = d - initial_failing_dtap;
1723 
1724 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1725 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1726 		   - %u = %u",  __func__, __LINE__, d,
1727 		   initial_failing_dtap, dtaps_per_ptap);
1728 
1729 	/* ******************************************** */
1730 	/* * step 6:  Find the centre of the window   * */
1731 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1732 				   &work_mid, &work_end) == 0)
1733 		return 0;
1734 
1735 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1736 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1737 		   v, p-1, d);
1738 	return 1;
1739 }
1740 
1741 /*
1742  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1743  * dq_in_delay values
1744  */
1745 static uint32_t
1746 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1747 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1748 {
1749 	uint32_t found;
1750 	uint32_t i;
1751 	uint32_t p;
1752 	uint32_t d;
1753 	uint32_t r;
1754 
1755 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1756 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1757 		/* we start at zero, so have one less dq to devide among */
1758 
1759 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1760 	      test_bgn);
1761 
1762 	/* try different dq_in_delays since the dq path is shorter than dqs */
1763 
1764 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1765 	     r += NUM_RANKS_PER_SHADOW_REG) {
1766 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1767 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1768 				   vfifo_find_dqs_", __func__, __LINE__);
1769 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1770 			       write_group, read_group);
1771 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1772 			scc_mgr_set_dq_in_delay(p, d);
1773 			scc_mgr_load_dq(p);
1774 		}
1775 		writel(0, &sdr_scc_mgr->update);
1776 	}
1777 
1778 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1779 
1780 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1781 		   en_phase_sweep_dq", __func__, __LINE__);
1782 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1783 		   chain to zero\n", write_group, read_group, found);
1784 
1785 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1786 	     r += NUM_RANKS_PER_SHADOW_REG) {
1787 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1788 			i++, p++) {
1789 			scc_mgr_set_dq_in_delay(p, 0);
1790 			scc_mgr_load_dq(p);
1791 		}
1792 		writel(0, &sdr_scc_mgr->update);
1793 	}
1794 
1795 	return found;
1796 }
1797 
1798 /* per-bit deskew DQ and center */
1799 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1800 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1801 	uint32_t use_read_test, uint32_t update_fom)
1802 {
1803 	uint32_t i, p, d, min_index;
1804 	/*
1805 	 * Store these as signed since there are comparisons with
1806 	 * signed numbers.
1807 	 */
1808 	uint32_t bit_chk;
1809 	uint32_t sticky_bit_chk;
1810 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1811 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1812 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1813 	int32_t mid;
1814 	int32_t orig_mid_min, mid_min;
1815 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1816 		final_dqs_en;
1817 	int32_t dq_margin, dqs_margin;
1818 	uint32_t stop;
1819 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1820 	uint32_t addr;
1821 
1822 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1823 
1824 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1825 	start_dqs = readl(addr + (read_group << 2));
1826 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1827 		start_dqs_en = readl(addr + ((read_group << 2)
1828 				     - IO_DQS_EN_DELAY_OFFSET));
1829 
1830 	/* set the left and right edge of each bit to an illegal value */
1831 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1832 	sticky_bit_chk = 0;
1833 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1834 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1835 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1836 	}
1837 
1838 	/* Search for the left edge of the window for each bit */
1839 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1840 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1841 
1842 		writel(0, &sdr_scc_mgr->update);
1843 
1844 		/*
1845 		 * Stop searching when the read test doesn't pass AND when
1846 		 * we've seen a passing read on every bit.
1847 		 */
1848 		if (use_read_test) {
1849 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1850 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1851 				&bit_chk, 0, 0);
1852 		} else {
1853 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1854 							0, PASS_ONE_BIT,
1855 							&bit_chk, 0);
1856 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1857 				(read_group - (write_group *
1858 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1859 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1860 			stop = (bit_chk == 0);
1861 		}
1862 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1863 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1864 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1865 			   && %u", __func__, __LINE__, d,
1866 			   sticky_bit_chk,
1867 			param->read_correct_mask, stop);
1868 
1869 		if (stop == 1) {
1870 			break;
1871 		} else {
1872 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1873 				if (bit_chk & 1) {
1874 					/* Remember a passing test as the
1875 					left_edge */
1876 					left_edge[i] = d;
1877 				} else {
1878 					/* If a left edge has not been seen yet,
1879 					then a future passing test will mark
1880 					this edge as the right edge */
1881 					if (left_edge[i] ==
1882 						IO_IO_IN_DELAY_MAX + 1) {
1883 						right_edge[i] = -(d + 1);
1884 					}
1885 				}
1886 				bit_chk = bit_chk >> 1;
1887 			}
1888 		}
1889 	}
1890 
1891 	/* Reset DQ delay chains to 0 */
1892 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1893 	sticky_bit_chk = 0;
1894 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1895 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1896 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1897 			   i, left_edge[i], i, right_edge[i]);
1898 
1899 		/*
1900 		 * Check for cases where we haven't found the left edge,
1901 		 * which makes our assignment of the the right edge invalid.
1902 		 * Reset it to the illegal value.
1903 		 */
1904 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1905 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1906 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1907 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1908 				   right_edge[%u]: %d\n", __func__, __LINE__,
1909 				   i, right_edge[i]);
1910 		}
1911 
1912 		/*
1913 		 * Reset sticky bit (except for bits where we have seen
1914 		 * both the left and right edge).
1915 		 */
1916 		sticky_bit_chk = sticky_bit_chk << 1;
1917 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1918 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1919 			sticky_bit_chk = sticky_bit_chk | 1;
1920 		}
1921 
1922 		if (i == 0)
1923 			break;
1924 	}
1925 
1926 	/* Search for the right edge of the window for each bit */
1927 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1928 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1929 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1930 			uint32_t delay = d + start_dqs_en;
1931 			if (delay > IO_DQS_EN_DELAY_MAX)
1932 				delay = IO_DQS_EN_DELAY_MAX;
1933 			scc_mgr_set_dqs_en_delay(read_group, delay);
1934 		}
1935 		scc_mgr_load_dqs(read_group);
1936 
1937 		writel(0, &sdr_scc_mgr->update);
1938 
1939 		/*
1940 		 * Stop searching when the read test doesn't pass AND when
1941 		 * we've seen a passing read on every bit.
1942 		 */
1943 		if (use_read_test) {
1944 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1945 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1946 				&bit_chk, 0, 0);
1947 		} else {
1948 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1949 							0, PASS_ONE_BIT,
1950 							&bit_chk, 0);
1951 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1952 				(read_group - (write_group *
1953 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1954 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1955 			stop = (bit_chk == 0);
1956 		}
1957 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1958 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1959 
1960 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1961 			   %u && %u", __func__, __LINE__, d,
1962 			   sticky_bit_chk, param->read_correct_mask, stop);
1963 
1964 		if (stop == 1) {
1965 			break;
1966 		} else {
1967 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1968 				if (bit_chk & 1) {
1969 					/* Remember a passing test as
1970 					the right_edge */
1971 					right_edge[i] = d;
1972 				} else {
1973 					if (d != 0) {
1974 						/* If a right edge has not been
1975 						seen yet, then a future passing
1976 						test will mark this edge as the
1977 						left edge */
1978 						if (right_edge[i] ==
1979 						IO_IO_IN_DELAY_MAX + 1) {
1980 							left_edge[i] = -(d + 1);
1981 						}
1982 					} else {
1983 						/* d = 0 failed, but it passed
1984 						when testing the left edge,
1985 						so it must be marginal,
1986 						set it to -1 */
1987 						if (right_edge[i] ==
1988 							IO_IO_IN_DELAY_MAX + 1 &&
1989 							left_edge[i] !=
1990 							IO_IO_IN_DELAY_MAX
1991 							+ 1) {
1992 							right_edge[i] = -1;
1993 						}
1994 						/* If a right edge has not been
1995 						seen yet, then a future passing
1996 						test will mark this edge as the
1997 						left edge */
1998 						else if (right_edge[i] ==
1999 							IO_IO_IN_DELAY_MAX +
2000 							1) {
2001 							left_edge[i] = -(d + 1);
2002 						}
2003 					}
2004 				}
2005 
2006 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2007 					   d=%u]: ", __func__, __LINE__, d);
2008 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2009 					   (int)(bit_chk & 1), i, left_edge[i]);
2010 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2011 					   right_edge[i]);
2012 				bit_chk = bit_chk >> 1;
2013 			}
2014 		}
2015 	}
2016 
2017 	/* Check that all bits have a window */
2018 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2019 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2020 			   %d right_edge[%u]: %d", __func__, __LINE__,
2021 			   i, left_edge[i], i, right_edge[i]);
2022 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2023 			== IO_IO_IN_DELAY_MAX + 1)) {
2024 			/*
2025 			 * Restore delay chain settings before letting the loop
2026 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2027 			 * dqs/ck relationships.
2028 			 */
2029 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2030 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2031 				scc_mgr_set_dqs_en_delay(read_group,
2032 							 start_dqs_en);
2033 			}
2034 			scc_mgr_load_dqs(read_group);
2035 			writel(0, &sdr_scc_mgr->update);
2036 
2037 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2038 				   find edge [%u]: %d %d", __func__, __LINE__,
2039 				   i, left_edge[i], right_edge[i]);
2040 			if (use_read_test) {
2041 				set_failing_group_stage(read_group *
2042 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2043 					CAL_STAGE_VFIFO,
2044 					CAL_SUBSTAGE_VFIFO_CENTER);
2045 			} else {
2046 				set_failing_group_stage(read_group *
2047 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2048 					CAL_STAGE_VFIFO_AFTER_WRITES,
2049 					CAL_SUBSTAGE_VFIFO_CENTER);
2050 			}
2051 			return 0;
2052 		}
2053 	}
2054 
2055 	/* Find middle of window for each DQ bit */
2056 	mid_min = left_edge[0] - right_edge[0];
2057 	min_index = 0;
2058 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2059 		mid = left_edge[i] - right_edge[i];
2060 		if (mid < mid_min) {
2061 			mid_min = mid;
2062 			min_index = i;
2063 		}
2064 	}
2065 
2066 	/*
2067 	 * -mid_min/2 represents the amount that we need to move DQS.
2068 	 * If mid_min is odd and positive we'll need to add one to
2069 	 * make sure the rounding in further calculations is correct
2070 	 * (always bias to the right), so just add 1 for all positive values.
2071 	 */
2072 	if (mid_min > 0)
2073 		mid_min++;
2074 
2075 	mid_min = mid_min / 2;
2076 
2077 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2078 		   __func__, __LINE__, mid_min, min_index);
2079 
2080 	/* Determine the amount we can change DQS (which is -mid_min) */
2081 	orig_mid_min = mid_min;
2082 	new_dqs = start_dqs - mid_min;
2083 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2084 		new_dqs = IO_DQS_IN_DELAY_MAX;
2085 	else if (new_dqs < 0)
2086 		new_dqs = 0;
2087 
2088 	mid_min = start_dqs - new_dqs;
2089 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2090 		   mid_min, new_dqs);
2091 
2092 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2093 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2094 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2095 		else if (start_dqs_en - mid_min < 0)
2096 			mid_min += start_dqs_en - mid_min;
2097 	}
2098 	new_dqs = start_dqs - mid_min;
2099 
2100 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2101 		   new_dqs=%d mid_min=%d\n", start_dqs,
2102 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2103 		   new_dqs, mid_min);
2104 
2105 	/* Initialize data for export structures */
2106 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2107 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2108 
2109 	/* add delay to bring centre of all DQ windows to the same "level" */
2110 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2111 		/* Use values before divide by 2 to reduce round off error */
2112 		shift_dq = (left_edge[i] - right_edge[i] -
2113 			(left_edge[min_index] - right_edge[min_index]))/2  +
2114 			(orig_mid_min - mid_min);
2115 
2116 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2117 			   shift_dq[%u]=%d\n", i, shift_dq);
2118 
2119 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2120 		temp_dq_in_delay1 = readl(addr + (p << 2));
2121 		temp_dq_in_delay2 = readl(addr + (i << 2));
2122 
2123 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2124 			(int32_t)IO_IO_IN_DELAY_MAX) {
2125 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2126 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2127 			shift_dq = -(int32_t)temp_dq_in_delay1;
2128 		}
2129 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2130 			   shift_dq[%u]=%d\n", i, shift_dq);
2131 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2132 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2133 		scc_mgr_load_dq(p);
2134 
2135 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2136 			   left_edge[i] - shift_dq + (-mid_min),
2137 			   right_edge[i] + shift_dq - (-mid_min));
2138 		/* To determine values for export structures */
2139 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2140 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2141 
2142 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2143 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2144 	}
2145 
2146 	final_dqs = new_dqs;
2147 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2148 		final_dqs_en = start_dqs_en - mid_min;
2149 
2150 	/* Move DQS-en */
2151 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2152 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2153 		scc_mgr_load_dqs(read_group);
2154 	}
2155 
2156 	/* Move DQS */
2157 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2158 	scc_mgr_load_dqs(read_group);
2159 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2160 		   dqs_margin=%d", __func__, __LINE__,
2161 		   dq_margin, dqs_margin);
2162 
2163 	/*
2164 	 * Do not remove this line as it makes sure all of our decisions
2165 	 * have been applied. Apply the update bit.
2166 	 */
2167 	writel(0, &sdr_scc_mgr->update);
2168 
2169 	return (dq_margin >= 0) && (dqs_margin >= 0);
2170 }
2171 
2172 /*
2173  * calibrate the read valid prediction FIFO.
2174  *
2175  *  - read valid prediction will consist of finding a good DQS enable phase,
2176  * DQS enable delay, DQS input phase, and DQS input delay.
2177  *  - we also do a per-bit deskew on the DQ lines.
2178  */
2179 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2180 					   uint32_t test_bgn)
2181 {
2182 	uint32_t p, d, rank_bgn, sr;
2183 	uint32_t dtaps_per_ptap;
2184 	uint32_t tmp_delay;
2185 	uint32_t bit_chk;
2186 	uint32_t grp_calibrated;
2187 	uint32_t write_group, write_test_bgn;
2188 	uint32_t failed_substage;
2189 
2190 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2191 
2192 	/* update info for sims */
2193 	reg_file_set_stage(CAL_STAGE_VFIFO);
2194 
2195 	write_group = read_group;
2196 	write_test_bgn = test_bgn;
2197 
2198 	/* USER Determine number of delay taps for each phase tap */
2199 	dtaps_per_ptap = 0;
2200 	tmp_delay = 0;
2201 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2202 		dtaps_per_ptap++;
2203 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2204 	}
2205 	dtaps_per_ptap--;
2206 	tmp_delay = 0;
2207 
2208 	/* update info for sims */
2209 	reg_file_set_group(read_group);
2210 
2211 	grp_calibrated = 0;
2212 
2213 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2214 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2215 
2216 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2217 		/*
2218 		 * In RLDRAMX we may be messing the delay of pins in
2219 		 * the same write group but outside of the current read
2220 		 * the group, but that's ok because we haven't
2221 		 * calibrated output side yet.
2222 		 */
2223 		if (d > 0) {
2224 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2225 								write_group, d);
2226 		}
2227 
2228 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2229 			p++) {
2230 			/* set a particular dqdqs phase */
2231 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2232 
2233 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2234 				   p=%u d=%u\n", __func__, __LINE__,
2235 				   read_group, p, d);
2236 
2237 			/*
2238 			 * Load up the patterns used by read calibration
2239 			 * using current DQDQS phase.
2240 			 */
2241 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2242 			if (!(gbl->phy_debug_mode_flags &
2243 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2244 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2245 				    (read_group, 1, &bit_chk)) {
2246 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2247 						   __func__, __LINE__);
2248 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2249 						   read_group, p, d);
2250 					break;
2251 				}
2252 			}
2253 
2254 /* case:56390 */
2255 			grp_calibrated = 1;
2256 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2257 		    (write_group, read_group, test_bgn)) {
2258 				/*
2259 				 * USER Read per-bit deskew can be done on a
2260 				 * per shadow register basis.
2261 				 */
2262 				for (rank_bgn = 0, sr = 0;
2263 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2264 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2265 					++sr) {
2266 					/*
2267 					 * Determine if this set of ranks
2268 					 * should be skipped entirely.
2269 					 */
2270 					if (!param->skip_shadow_regs[sr]) {
2271 						/*
2272 						 * If doing read after write
2273 						 * calibration, do not update
2274 						 * FOM, now - do it then.
2275 						 */
2276 					if (!rw_mgr_mem_calibrate_vfifo_center
2277 						(rank_bgn, write_group,
2278 						read_group, test_bgn, 1, 0)) {
2279 							grp_calibrated = 0;
2280 							failed_substage =
2281 						CAL_SUBSTAGE_VFIFO_CENTER;
2282 						}
2283 					}
2284 				}
2285 			} else {
2286 				grp_calibrated = 0;
2287 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2288 			}
2289 		}
2290 	}
2291 
2292 	if (grp_calibrated == 0) {
2293 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2294 					failed_substage);
2295 		return 0;
2296 	}
2297 
2298 	/*
2299 	 * Reset the delay chains back to zero if they have moved > 1
2300 	 * (check for > 1 because loop will increase d even when pass in
2301 	 * first case).
2302 	 */
2303 	if (d > 2)
2304 		scc_mgr_zero_group(write_group, 1);
2305 
2306 	return 1;
2307 }
2308 
2309 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2310 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2311 					       uint32_t test_bgn)
2312 {
2313 	uint32_t rank_bgn, sr;
2314 	uint32_t grp_calibrated;
2315 	uint32_t write_group;
2316 
2317 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2318 
2319 	/* update info for sims */
2320 
2321 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2322 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2323 
2324 	write_group = read_group;
2325 
2326 	/* update info for sims */
2327 	reg_file_set_group(read_group);
2328 
2329 	grp_calibrated = 1;
2330 	/* Read per-bit deskew can be done on a per shadow register basis */
2331 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2332 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2333 		/* Determine if this set of ranks should be skipped entirely */
2334 		if (!param->skip_shadow_regs[sr]) {
2335 		/* This is the last calibration round, update FOM here */
2336 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2337 								write_group,
2338 								read_group,
2339 								test_bgn, 0,
2340 								1)) {
2341 				grp_calibrated = 0;
2342 			}
2343 		}
2344 	}
2345 
2346 
2347 	if (grp_calibrated == 0) {
2348 		set_failing_group_stage(write_group,
2349 					CAL_STAGE_VFIFO_AFTER_WRITES,
2350 					CAL_SUBSTAGE_VFIFO_CENTER);
2351 		return 0;
2352 	}
2353 
2354 	return 1;
2355 }
2356 
2357 /* Calibrate LFIFO to find smallest read latency */
2358 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2359 {
2360 	uint32_t found_one;
2361 	uint32_t bit_chk;
2362 
2363 	debug("%s:%d\n", __func__, __LINE__);
2364 
2365 	/* update info for sims */
2366 	reg_file_set_stage(CAL_STAGE_LFIFO);
2367 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2368 
2369 	/* Load up the patterns used by read calibration for all ranks */
2370 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2371 	found_one = 0;
2372 
2373 	do {
2374 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2375 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2376 			   __func__, __LINE__, gbl->curr_read_lat);
2377 
2378 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2379 							      NUM_READ_TESTS,
2380 							      PASS_ALL_BITS,
2381 							      &bit_chk, 1)) {
2382 			break;
2383 		}
2384 
2385 		found_one = 1;
2386 		/* reduce read latency and see if things are working */
2387 		/* correctly */
2388 		gbl->curr_read_lat--;
2389 	} while (gbl->curr_read_lat > 0);
2390 
2391 	/* reset the fifos to get pointers to known state */
2392 
2393 	writel(0, &phy_mgr_cmd->fifo_reset);
2394 
2395 	if (found_one) {
2396 		/* add a fudge factor to the read latency that was determined */
2397 		gbl->curr_read_lat += 2;
2398 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2399 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2400 			   read_lat=%u\n", __func__, __LINE__,
2401 			   gbl->curr_read_lat);
2402 		return 1;
2403 	} else {
2404 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2405 					CAL_SUBSTAGE_READ_LATENCY);
2406 
2407 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2408 			   read_lat=%u\n", __func__, __LINE__,
2409 			   gbl->curr_read_lat);
2410 		return 0;
2411 	}
2412 }
2413 
2414 /*
2415  * issue write test command.
2416  * two variants are provided. one that just tests a write pattern and
2417  * another that tests datamask functionality.
2418  */
2419 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2420 						  uint32_t test_dm)
2421 {
2422 	uint32_t mcc_instruction;
2423 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2424 		ENABLE_SUPER_QUICK_CALIBRATION);
2425 	uint32_t rw_wl_nop_cycles;
2426 	uint32_t addr;
2427 
2428 	/*
2429 	 * Set counter and jump addresses for the right
2430 	 * number of NOP cycles.
2431 	 * The number of supported NOP cycles can range from -1 to infinity
2432 	 * Three different cases are handled:
2433 	 *
2434 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2435 	 *    mechanism will be used to insert the right number of NOPs
2436 	 *
2437 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2438 	 *    issuing the write command will jump straight to the
2439 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2440 	 *    data (for RLD), skipping
2441 	 *    the NOP micro-instruction all together
2442 	 *
2443 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2444 	 *    turned on in the same micro-instruction that issues the write
2445 	 *    command. Then we need
2446 	 *    to directly jump to the micro-instruction that sends out the data
2447 	 *
2448 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2449 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2450 	 *       write-read operations.
2451 	 *       one counter left to issue this command in "multiple-group" mode
2452 	 */
2453 
2454 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2455 
2456 	if (rw_wl_nop_cycles == -1) {
2457 		/*
2458 		 * CNTR 2 - We want to execute the special write operation that
2459 		 * turns on DQS right away and then skip directly to the
2460 		 * instruction that sends out the data. We set the counter to a
2461 		 * large number so that the jump is always taken.
2462 		 */
2463 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2464 
2465 		/* CNTR 3 - Not used */
2466 		if (test_dm) {
2467 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2468 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2469 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2470 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2471 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2472 		} else {
2473 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2474 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2475 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2476 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2477 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2478 		}
2479 	} else if (rw_wl_nop_cycles == 0) {
2480 		/*
2481 		 * CNTR 2 - We want to skip the NOP operation and go straight
2482 		 * to the DQS enable instruction. We set the counter to a large
2483 		 * number so that the jump is always taken.
2484 		 */
2485 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2486 
2487 		/* CNTR 3 - Not used */
2488 		if (test_dm) {
2489 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2490 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2491 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2492 		} else {
2493 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2494 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2495 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2496 		}
2497 	} else {
2498 		/*
2499 		 * CNTR 2 - In this case we want to execute the next instruction
2500 		 * and NOT take the jump. So we set the counter to 0. The jump
2501 		 * address doesn't count.
2502 		 */
2503 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2504 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2505 
2506 		/*
2507 		 * CNTR 3 - Set the nop counter to the number of cycles we
2508 		 * need to loop for, minus 1.
2509 		 */
2510 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2511 		if (test_dm) {
2512 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2513 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2514 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2515 		} else {
2516 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2517 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2518 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2519 		}
2520 	}
2521 
2522 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2523 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2524 
2525 	if (quick_write_mode)
2526 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2527 	else
2528 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2529 
2530 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2531 
2532 	/*
2533 	 * CNTR 1 - This is used to ensure enough time elapses
2534 	 * for read data to come back.
2535 	 */
2536 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2537 
2538 	if (test_dm) {
2539 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2540 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2541 	} else {
2542 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2543 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2544 	}
2545 
2546 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2547 	writel(mcc_instruction, addr + (group << 2));
2548 }
2549 
2550 /* Test writes, can check for a single bit pass or multiple bit pass */
2551 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2552 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2553 	uint32_t *bit_chk, uint32_t all_ranks)
2554 {
2555 	uint32_t r;
2556 	uint32_t correct_mask_vg;
2557 	uint32_t tmp_bit_chk;
2558 	uint32_t vg;
2559 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2560 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2561 	uint32_t addr_rw_mgr;
2562 	uint32_t base_rw_mgr;
2563 
2564 	*bit_chk = param->write_correct_mask;
2565 	correct_mask_vg = param->write_correct_mask_vg;
2566 
2567 	for (r = rank_bgn; r < rank_end; r++) {
2568 		if (param->skip_ranks[r]) {
2569 			/* request to skip the rank */
2570 			continue;
2571 		}
2572 
2573 		/* set rank */
2574 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2575 
2576 		tmp_bit_chk = 0;
2577 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2578 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2579 			/* reset the fifos to get pointers to known state */
2580 			writel(0, &phy_mgr_cmd->fifo_reset);
2581 
2582 			tmp_bit_chk = tmp_bit_chk <<
2583 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2584 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2585 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2586 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2587 				use_dm);
2588 
2589 			base_rw_mgr = readl(addr_rw_mgr);
2590 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2591 			if (vg == 0)
2592 				break;
2593 		}
2594 		*bit_chk &= tmp_bit_chk;
2595 	}
2596 
2597 	if (all_correct) {
2598 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2599 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2600 			   %u => %lu", write_group, use_dm,
2601 			   *bit_chk, param->write_correct_mask,
2602 			   (long unsigned int)(*bit_chk ==
2603 			   param->write_correct_mask));
2604 		return *bit_chk == param->write_correct_mask;
2605 	} else {
2606 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2607 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2608 		       write_group, use_dm, *bit_chk);
2609 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2610 			(long unsigned int)(*bit_chk != 0));
2611 		return *bit_chk != 0x00;
2612 	}
2613 }
2614 
2615 /*
2616  * center all windows. do per-bit-deskew to possibly increase size of
2617  * certain windows.
2618  */
2619 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2620 	uint32_t write_group, uint32_t test_bgn)
2621 {
2622 	uint32_t i, p, min_index;
2623 	int32_t d;
2624 	/*
2625 	 * Store these as signed since there are comparisons with
2626 	 * signed numbers.
2627 	 */
2628 	uint32_t bit_chk;
2629 	uint32_t sticky_bit_chk;
2630 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2631 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2632 	int32_t mid;
2633 	int32_t mid_min, orig_mid_min;
2634 	int32_t new_dqs, start_dqs, shift_dq;
2635 	int32_t dq_margin, dqs_margin, dm_margin;
2636 	uint32_t stop;
2637 	uint32_t temp_dq_out1_delay;
2638 	uint32_t addr;
2639 
2640 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2641 
2642 	dm_margin = 0;
2643 
2644 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2645 	start_dqs = readl(addr +
2646 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2647 
2648 	/* per-bit deskew */
2649 
2650 	/*
2651 	 * set the left and right edge of each bit to an illegal value
2652 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2653 	 */
2654 	sticky_bit_chk = 0;
2655 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2656 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2657 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2658 	}
2659 
2660 	/* Search for the left edge of the window for each bit */
2661 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2662 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2663 
2664 		writel(0, &sdr_scc_mgr->update);
2665 
2666 		/*
2667 		 * Stop searching when the read test doesn't pass AND when
2668 		 * we've seen a passing read on every bit.
2669 		 */
2670 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2671 			0, PASS_ONE_BIT, &bit_chk, 0);
2672 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2673 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2674 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2675 			   == %u && %u [bit_chk= %u ]\n",
2676 			d, sticky_bit_chk, param->write_correct_mask,
2677 			stop, bit_chk);
2678 
2679 		if (stop == 1) {
2680 			break;
2681 		} else {
2682 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2683 				if (bit_chk & 1) {
2684 					/*
2685 					 * Remember a passing test as the
2686 					 * left_edge.
2687 					 */
2688 					left_edge[i] = d;
2689 				} else {
2690 					/*
2691 					 * If a left edge has not been seen
2692 					 * yet, then a future passing test will
2693 					 * mark this edge as the right edge.
2694 					 */
2695 					if (left_edge[i] ==
2696 						IO_IO_OUT1_DELAY_MAX + 1) {
2697 						right_edge[i] = -(d + 1);
2698 					}
2699 				}
2700 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2701 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2702 					   (int)(bit_chk & 1), i, left_edge[i]);
2703 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2704 				       right_edge[i]);
2705 				bit_chk = bit_chk >> 1;
2706 			}
2707 		}
2708 	}
2709 
2710 	/* Reset DQ delay chains to 0 */
2711 	scc_mgr_apply_group_dq_out1_delay(0);
2712 	sticky_bit_chk = 0;
2713 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2714 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2715 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2716 			   i, left_edge[i], i, right_edge[i]);
2717 
2718 		/*
2719 		 * Check for cases where we haven't found the left edge,
2720 		 * which makes our assignment of the the right edge invalid.
2721 		 * Reset it to the illegal value.
2722 		 */
2723 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2724 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2725 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2726 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2727 				   right_edge[%u]: %d\n", __func__, __LINE__,
2728 				   i, right_edge[i]);
2729 		}
2730 
2731 		/*
2732 		 * Reset sticky bit (except for bits where we have
2733 		 * seen the left edge).
2734 		 */
2735 		sticky_bit_chk = sticky_bit_chk << 1;
2736 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2737 			sticky_bit_chk = sticky_bit_chk | 1;
2738 
2739 		if (i == 0)
2740 			break;
2741 	}
2742 
2743 	/* Search for the right edge of the window for each bit */
2744 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2745 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2746 							d + start_dqs);
2747 
2748 		writel(0, &sdr_scc_mgr->update);
2749 
2750 		/*
2751 		 * Stop searching when the read test doesn't pass AND when
2752 		 * we've seen a passing read on every bit.
2753 		 */
2754 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2755 			0, PASS_ONE_BIT, &bit_chk, 0);
2756 
2757 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2758 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2759 
2760 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2761 			   %u && %u\n", d, sticky_bit_chk,
2762 			   param->write_correct_mask, stop);
2763 
2764 		if (stop == 1) {
2765 			if (d == 0) {
2766 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2767 					i++) {
2768 					/* d = 0 failed, but it passed when
2769 					testing the left edge, so it must be
2770 					marginal, set it to -1 */
2771 					if (right_edge[i] ==
2772 						IO_IO_OUT1_DELAY_MAX + 1 &&
2773 						left_edge[i] !=
2774 						IO_IO_OUT1_DELAY_MAX + 1) {
2775 						right_edge[i] = -1;
2776 					}
2777 				}
2778 			}
2779 			break;
2780 		} else {
2781 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2782 				if (bit_chk & 1) {
2783 					/*
2784 					 * Remember a passing test as
2785 					 * the right_edge.
2786 					 */
2787 					right_edge[i] = d;
2788 				} else {
2789 					if (d != 0) {
2790 						/*
2791 						 * If a right edge has not
2792 						 * been seen yet, then a future
2793 						 * passing test will mark this
2794 						 * edge as the left edge.
2795 						 */
2796 						if (right_edge[i] ==
2797 						    IO_IO_OUT1_DELAY_MAX + 1)
2798 							left_edge[i] = -(d + 1);
2799 					} else {
2800 						/*
2801 						 * d = 0 failed, but it passed
2802 						 * when testing the left edge,
2803 						 * so it must be marginal, set
2804 						 * it to -1.
2805 						 */
2806 						if (right_edge[i] ==
2807 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2808 						    left_edge[i] !=
2809 						    IO_IO_OUT1_DELAY_MAX + 1)
2810 							right_edge[i] = -1;
2811 						/*
2812 						 * If a right edge has not been
2813 						 * seen yet, then a future
2814 						 * passing test will mark this
2815 						 * edge as the left edge.
2816 						 */
2817 						else if (right_edge[i] ==
2818 							IO_IO_OUT1_DELAY_MAX +
2819 							1)
2820 							left_edge[i] = -(d + 1);
2821 					}
2822 				}
2823 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2824 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2825 					   (int)(bit_chk & 1), i, left_edge[i]);
2826 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2827 					   right_edge[i]);
2828 				bit_chk = bit_chk >> 1;
2829 			}
2830 		}
2831 	}
2832 
2833 	/* Check that all bits have a window */
2834 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2835 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2836 			   %d right_edge[%u]: %d", __func__, __LINE__,
2837 			   i, left_edge[i], i, right_edge[i]);
2838 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2839 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2840 			set_failing_group_stage(test_bgn + i,
2841 						CAL_STAGE_WRITES,
2842 						CAL_SUBSTAGE_WRITES_CENTER);
2843 			return 0;
2844 		}
2845 	}
2846 
2847 	/* Find middle of window for each DQ bit */
2848 	mid_min = left_edge[0] - right_edge[0];
2849 	min_index = 0;
2850 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2851 		mid = left_edge[i] - right_edge[i];
2852 		if (mid < mid_min) {
2853 			mid_min = mid;
2854 			min_index = i;
2855 		}
2856 	}
2857 
2858 	/*
2859 	 * -mid_min/2 represents the amount that we need to move DQS.
2860 	 * If mid_min is odd and positive we'll need to add one to
2861 	 * make sure the rounding in further calculations is correct
2862 	 * (always bias to the right), so just add 1 for all positive values.
2863 	 */
2864 	if (mid_min > 0)
2865 		mid_min++;
2866 	mid_min = mid_min / 2;
2867 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2868 		   __LINE__, mid_min);
2869 
2870 	/* Determine the amount we can change DQS (which is -mid_min) */
2871 	orig_mid_min = mid_min;
2872 	new_dqs = start_dqs;
2873 	mid_min = 0;
2874 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2875 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2876 	/* Initialize data for export structures */
2877 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2878 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2879 
2880 	/* add delay to bring centre of all DQ windows to the same "level" */
2881 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2882 		/* Use values before divide by 2 to reduce round off error */
2883 		shift_dq = (left_edge[i] - right_edge[i] -
2884 			(left_edge[min_index] - right_edge[min_index]))/2  +
2885 		(orig_mid_min - mid_min);
2886 
2887 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2888 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2889 
2890 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2891 		temp_dq_out1_delay = readl(addr + (i << 2));
2892 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2893 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2894 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2895 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2896 			shift_dq = -(int32_t)temp_dq_out1_delay;
2897 		}
2898 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2899 			   i, shift_dq);
2900 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2901 		scc_mgr_load_dq(i);
2902 
2903 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2904 			   left_edge[i] - shift_dq + (-mid_min),
2905 			   right_edge[i] + shift_dq - (-mid_min));
2906 		/* To determine values for export structures */
2907 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2908 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2909 
2910 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2911 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2912 	}
2913 
2914 	/* Move DQS */
2915 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2916 	writel(0, &sdr_scc_mgr->update);
2917 
2918 	/* Centre DM */
2919 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2920 
2921 	/*
2922 	 * set the left and right edge of each bit to an illegal value,
2923 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2924 	 */
2925 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2926 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2927 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2928 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2929 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2930 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2931 	int32_t win_best = 0;
2932 
2933 	/* Search for the/part of the window with DM shift */
2934 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2935 		scc_mgr_apply_group_dm_out1_delay(d);
2936 		writel(0, &sdr_scc_mgr->update);
2937 
2938 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2939 						    PASS_ALL_BITS, &bit_chk,
2940 						    0)) {
2941 			/* USE Set current end of the window */
2942 			end_curr = -d;
2943 			/*
2944 			 * If a starting edge of our window has not been seen
2945 			 * this is our current start of the DM window.
2946 			 */
2947 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2948 				bgn_curr = -d;
2949 
2950 			/*
2951 			 * If current window is bigger than best seen.
2952 			 * Set best seen to be current window.
2953 			 */
2954 			if ((end_curr-bgn_curr+1) > win_best) {
2955 				win_best = end_curr-bgn_curr+1;
2956 				bgn_best = bgn_curr;
2957 				end_best = end_curr;
2958 			}
2959 		} else {
2960 			/* We just saw a failing test. Reset temp edge */
2961 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2962 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2963 			}
2964 		}
2965 
2966 
2967 	/* Reset DM delay chains to 0 */
2968 	scc_mgr_apply_group_dm_out1_delay(0);
2969 
2970 	/*
2971 	 * Check to see if the current window nudges up aganist 0 delay.
2972 	 * If so we need to continue the search by shifting DQS otherwise DQS
2973 	 * search begins as a new search. */
2974 	if (end_curr != 0) {
2975 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2976 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2977 	}
2978 
2979 	/* Search for the/part of the window with DQS shifts */
2980 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2981 		/*
2982 		 * Note: This only shifts DQS, so are we limiting ourselve to
2983 		 * width of DQ unnecessarily.
2984 		 */
2985 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2986 							d + new_dqs);
2987 
2988 		writel(0, &sdr_scc_mgr->update);
2989 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2990 						    PASS_ALL_BITS, &bit_chk,
2991 						    0)) {
2992 			/* USE Set current end of the window */
2993 			end_curr = d;
2994 			/*
2995 			 * If a beginning edge of our window has not been seen
2996 			 * this is our current begin of the DM window.
2997 			 */
2998 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2999 				bgn_curr = d;
3000 
3001 			/*
3002 			 * If current window is bigger than best seen. Set best
3003 			 * seen to be current window.
3004 			 */
3005 			if ((end_curr-bgn_curr+1) > win_best) {
3006 				win_best = end_curr-bgn_curr+1;
3007 				bgn_best = bgn_curr;
3008 				end_best = end_curr;
3009 			}
3010 		} else {
3011 			/* We just saw a failing test. Reset temp edge */
3012 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014 
3015 			/* Early exit optimization: if ther remaining delay
3016 			chain space is less than already seen largest window
3017 			we can exit */
3018 			if ((win_best-1) >
3019 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3020 					break;
3021 				}
3022 			}
3023 		}
3024 
3025 	/* assign left and right edge for cal and reporting; */
3026 	left_edge[0] = -1*bgn_best;
3027 	right_edge[0] = end_best;
3028 
3029 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3030 		   __LINE__, left_edge[0], right_edge[0]);
3031 
3032 	/* Move DQS (back to orig) */
3033 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3034 
3035 	/* Move DM */
3036 
3037 	/* Find middle of window for the DM bit */
3038 	mid = (left_edge[0] - right_edge[0]) / 2;
3039 
3040 	/* only move right, since we are not moving DQS/DQ */
3041 	if (mid < 0)
3042 		mid = 0;
3043 
3044 	/* dm_marign should fail if we never find a window */
3045 	if (win_best == 0)
3046 		dm_margin = -1;
3047 	else
3048 		dm_margin = left_edge[0] - mid;
3049 
3050 	scc_mgr_apply_group_dm_out1_delay(mid);
3051 	writel(0, &sdr_scc_mgr->update);
3052 
3053 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3054 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3055 		   right_edge[0], mid, dm_margin);
3056 	/* Export values */
3057 	gbl->fom_out += dq_margin + dqs_margin;
3058 
3059 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3060 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3061 		   dq_margin, dqs_margin, dm_margin);
3062 
3063 	/*
3064 	 * Do not remove this line as it makes sure all of our
3065 	 * decisions have been applied.
3066 	 */
3067 	writel(0, &sdr_scc_mgr->update);
3068 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3069 }
3070 
3071 /* calibrate the write operations */
3072 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3073 	uint32_t test_bgn)
3074 {
3075 	/* update info for sims */
3076 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3077 
3078 	reg_file_set_stage(CAL_STAGE_WRITES);
3079 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3080 
3081 	reg_file_set_group(g);
3082 
3083 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3084 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3085 					CAL_SUBSTAGE_WRITES_CENTER);
3086 		return 0;
3087 	}
3088 
3089 	return 1;
3090 }
3091 
3092 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3093 static void mem_precharge_and_activate(void)
3094 {
3095 	uint32_t r;
3096 
3097 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3098 		if (param->skip_ranks[r]) {
3099 			/* request to skip the rank */
3100 			continue;
3101 		}
3102 
3103 		/* set rank */
3104 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3105 
3106 		/* precharge all banks ... */
3107 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3108 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3109 
3110 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3111 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3112 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3113 
3114 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3115 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3116 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3117 
3118 		/* activate rows */
3119 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3120 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3121 	}
3122 }
3123 
3124 /* Configure various memory related parameters. */
3125 static void mem_config(void)
3126 {
3127 	uint32_t rlat, wlat;
3128 	uint32_t rw_wl_nop_cycles;
3129 	uint32_t max_latency;
3130 
3131 	debug("%s:%d\n", __func__, __LINE__);
3132 	/* read in write and read latency */
3133 	wlat = readl(&data_mgr->t_wl_add);
3134 	wlat += readl(&data_mgr->mem_t_add);
3135 
3136 	/* WL for hard phy does not include additive latency */
3137 
3138 	/*
3139 	 * add addtional write latency to offset the address/command extra
3140 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3141 	 * by one mem clock cycle. Only do this for DDR3
3142 	 */
3143 	wlat = wlat + 1;
3144 
3145 	rlat = readl(&data_mgr->t_rl_add);
3146 
3147 	rw_wl_nop_cycles = wlat - 2;
3148 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3149 
3150 	/*
3151 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3152 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3153 	 */
3154 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3155 	/* configure for a burst length of 8 */
3156 
3157 	/* write latency */
3158 	/* Adjust Write Latency for Hard PHY */
3159 	wlat = wlat + 1;
3160 
3161 	/* set a pretty high read latency initially */
3162 	gbl->curr_read_lat = rlat + 16;
3163 
3164 	if (gbl->curr_read_lat > max_latency)
3165 		gbl->curr_read_lat = max_latency;
3166 
3167 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3168 
3169 	/* advertise write latency */
3170 	gbl->curr_write_lat = wlat;
3171 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3172 
3173 	/* initialize bit slips */
3174 	mem_precharge_and_activate();
3175 }
3176 
3177 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3178 static void mem_skip_calibrate(void)
3179 {
3180 	uint32_t vfifo_offset;
3181 	uint32_t i, j, r;
3182 
3183 	debug("%s:%d\n", __func__, __LINE__);
3184 	/* Need to update every shadow register set used by the interface */
3185 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3186 		r += NUM_RANKS_PER_SHADOW_REG) {
3187 		/*
3188 		 * Set output phase alignment settings appropriate for
3189 		 * skip calibration.
3190 		 */
3191 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3192 			scc_mgr_set_dqs_en_phase(i, 0);
3193 #if IO_DLL_CHAIN_LENGTH == 6
3194 			scc_mgr_set_dqdqs_output_phase(i, 6);
3195 #else
3196 			scc_mgr_set_dqdqs_output_phase(i, 7);
3197 #endif
3198 			/*
3199 			 * Case:33398
3200 			 *
3201 			 * Write data arrives to the I/O two cycles before write
3202 			 * latency is reached (720 deg).
3203 			 *   -> due to bit-slip in a/c bus
3204 			 *   -> to allow board skew where dqs is longer than ck
3205 			 *      -> how often can this happen!?
3206 			 *      -> can claim back some ptaps for high freq
3207 			 *       support if we can relax this, but i digress...
3208 			 *
3209 			 * The write_clk leads mem_ck by 90 deg
3210 			 * The minimum ptap of the OPA is 180 deg
3211 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3212 			 * The write_clk is always delayed by 2 ptaps
3213 			 *
3214 			 * Hence, to make DQS aligned to CK, we need to delay
3215 			 * DQS by:
3216 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3217 			 *
3218 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3219 			 * gives us the number of ptaps, which simplies to:
3220 			 *
3221 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3222 			 */
3223 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3224 				IO_DLL_CHAIN_LENGTH - 2));
3225 		}
3226 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3227 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3228 
3229 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3230 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3231 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3232 		}
3233 		writel(0xff, &sdr_scc_mgr->dq_ena);
3234 		writel(0xff, &sdr_scc_mgr->dm_ena);
3235 		writel(0, &sdr_scc_mgr->update);
3236 	}
3237 
3238 	/* Compensate for simulation model behaviour */
3239 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3240 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3241 		scc_mgr_load_dqs(i);
3242 	}
3243 	writel(0, &sdr_scc_mgr->update);
3244 
3245 	/*
3246 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3247 	 * in sequencer.
3248 	 */
3249 	vfifo_offset = CALIB_VFIFO_OFFSET;
3250 	for (j = 0; j < vfifo_offset; j++) {
3251 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3252 	}
3253 	writel(0, &phy_mgr_cmd->fifo_reset);
3254 
3255 	/*
3256 	 * For ACV with hard lfifo, we get the skip-cal setting from
3257 	 * generation-time constant.
3258 	 */
3259 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3260 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3261 }
3262 
3263 /* Memory calibration entry point */
3264 static uint32_t mem_calibrate(void)
3265 {
3266 	uint32_t i;
3267 	uint32_t rank_bgn, sr;
3268 	uint32_t write_group, write_test_bgn;
3269 	uint32_t read_group, read_test_bgn;
3270 	uint32_t run_groups, current_run;
3271 	uint32_t failing_groups = 0;
3272 	uint32_t group_failed = 0;
3273 	uint32_t sr_failed = 0;
3274 
3275 	debug("%s:%d\n", __func__, __LINE__);
3276 	/* Initialize the data settings */
3277 
3278 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3279 	gbl->error_stage = CAL_STAGE_NIL;
3280 	gbl->error_group = 0xff;
3281 	gbl->fom_in = 0;
3282 	gbl->fom_out = 0;
3283 
3284 	mem_config();
3285 
3286 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3288 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3289 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3290 		if (i == 0)
3291 			scc_mgr_set_hhp_extras();
3292 
3293 		scc_set_bypass_mode(i);
3294 	}
3295 
3296 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3297 		/*
3298 		 * Set VFIFO and LFIFO to instant-on settings in skip
3299 		 * calibration mode.
3300 		 */
3301 		mem_skip_calibrate();
3302 	} else {
3303 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3304 			/*
3305 			 * Zero all delay chain/phase settings for all
3306 			 * groups and all shadow register sets.
3307 			 */
3308 			scc_mgr_zero_all();
3309 
3310 			run_groups = ~param->skip_groups;
3311 
3312 			for (write_group = 0, write_test_bgn = 0; write_group
3313 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3314 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3315 				/* Initialized the group failure */
3316 				group_failed = 0;
3317 
3318 				current_run = run_groups & ((1 <<
3319 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3320 				run_groups = run_groups >>
3321 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3322 
3323 				if (current_run == 0)
3324 					continue;
3325 
3326 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3327 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3328 				scc_mgr_zero_group(write_group, 0);
3329 
3330 				for (read_group = write_group *
3331 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3332 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3333 					read_test_bgn = 0;
3334 					read_group < (write_group + 1) *
3335 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3336 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3337 					group_failed == 0;
3338 					read_group++, read_test_bgn +=
3339 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3340 					/* Calibrate the VFIFO */
3341 					if (!((STATIC_CALIB_STEPS) &
3342 						CALIB_SKIP_VFIFO)) {
3343 						if (!rw_mgr_mem_calibrate_vfifo
3344 							(read_group,
3345 							read_test_bgn)) {
3346 							group_failed = 1;
3347 
3348 							if (!(gbl->
3349 							phy_debug_mode_flags &
3350 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3351 								return 0;
3352 							}
3353 						}
3354 					}
3355 				}
3356 
3357 				/* Calibrate the output side */
3358 				if (group_failed == 0)	{
3359 					for (rank_bgn = 0, sr = 0; rank_bgn
3360 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3361 						rank_bgn +=
3362 						NUM_RANKS_PER_SHADOW_REG,
3363 						++sr) {
3364 						sr_failed = 0;
3365 						if (!((STATIC_CALIB_STEPS) &
3366 						CALIB_SKIP_WRITES)) {
3367 							if ((STATIC_CALIB_STEPS)
3368 						& CALIB_SKIP_DELAY_SWEEPS) {
3369 						/* not needed in quick mode! */
3370 							} else {
3371 						/*
3372 						 * Determine if this set of
3373 						 * ranks should be skipped
3374 						 * entirely.
3375 						 */
3376 					if (!param->skip_shadow_regs[sr]) {
3377 						if (!rw_mgr_mem_calibrate_writes
3378 						(rank_bgn, write_group,
3379 						write_test_bgn)) {
3380 							sr_failed = 1;
3381 							if (!(gbl->
3382 							phy_debug_mode_flags &
3383 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3384 								return 0;
3385 									}
3386 									}
3387 								}
3388 							}
3389 						}
3390 						if (sr_failed != 0)
3391 							group_failed = 1;
3392 					}
3393 				}
3394 
3395 				if (group_failed == 0) {
3396 					for (read_group = write_group *
3397 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3398 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3399 					read_test_bgn = 0;
3400 						read_group < (write_group + 1)
3401 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3402 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3403 						group_failed == 0;
3404 						read_group++, read_test_bgn +=
3405 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3406 						if (!((STATIC_CALIB_STEPS) &
3407 							CALIB_SKIP_WRITES)) {
3408 					if (!rw_mgr_mem_calibrate_vfifo_end
3409 						(read_group, read_test_bgn)) {
3410 							group_failed = 1;
3411 
3412 						if (!(gbl->phy_debug_mode_flags
3413 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3414 								return 0;
3415 								}
3416 							}
3417 						}
3418 					}
3419 				}
3420 
3421 				if (group_failed != 0)
3422 					failing_groups++;
3423 			}
3424 
3425 			/*
3426 			 * USER If there are any failing groups then report
3427 			 * the failure.
3428 			 */
3429 			if (failing_groups != 0)
3430 				return 0;
3431 
3432 			/* Calibrate the LFIFO */
3433 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3434 				/*
3435 				 * If we're skipping groups as part of debug,
3436 				 * don't calibrate LFIFO.
3437 				 */
3438 				if (param->skip_groups == 0) {
3439 					if (!rw_mgr_mem_calibrate_lfifo())
3440 						return 0;
3441 				}
3442 			}
3443 		}
3444 	}
3445 
3446 	/*
3447 	 * Do not remove this line as it makes sure all of our decisions
3448 	 * have been applied.
3449 	 */
3450 	writel(0, &sdr_scc_mgr->update);
3451 	return 1;
3452 }
3453 
3454 static uint32_t run_mem_calibrate(void)
3455 {
3456 	uint32_t pass;
3457 	uint32_t debug_info;
3458 
3459 	debug("%s:%d\n", __func__, __LINE__);
3460 
3461 	/* Reset pass/fail status shown on afi_cal_success/fail */
3462 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3463 
3464 	/* stop tracking manger */
3465 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3466 
3467 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3468 
3469 	initialize();
3470 	rw_mgr_mem_initialize();
3471 
3472 	pass = mem_calibrate();
3473 
3474 	mem_precharge_and_activate();
3475 	writel(0, &phy_mgr_cmd->fifo_reset);
3476 
3477 	/*
3478 	 * Handoff:
3479 	 * Don't return control of the PHY back to AFI when in debug mode.
3480 	 */
3481 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3482 		rw_mgr_mem_handoff();
3483 		/*
3484 		 * In Hard PHY this is a 2-bit control:
3485 		 * 0: AFI Mux Select
3486 		 * 1: DDIO Mux Select
3487 		 */
3488 		writel(0x2, &phy_mgr_cfg->mux_sel);
3489 	}
3490 
3491 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3492 
3493 	if (pass) {
3494 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3495 
3496 		gbl->fom_in /= 2;
3497 		gbl->fom_out /= 2;
3498 
3499 		if (gbl->fom_in > 0xff)
3500 			gbl->fom_in = 0xff;
3501 
3502 		if (gbl->fom_out > 0xff)
3503 			gbl->fom_out = 0xff;
3504 
3505 		/* Update the FOM in the register file */
3506 		debug_info = gbl->fom_in;
3507 		debug_info |= gbl->fom_out << 8;
3508 		writel(debug_info, &sdr_reg_file->fom);
3509 
3510 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3511 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3512 	} else {
3513 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3514 
3515 		debug_info = gbl->error_stage;
3516 		debug_info |= gbl->error_substage << 8;
3517 		debug_info |= gbl->error_group << 16;
3518 
3519 		writel(debug_info, &sdr_reg_file->failing_stage);
3520 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3521 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3522 
3523 		/* Update the failing group/stage in the register file */
3524 		debug_info = gbl->error_stage;
3525 		debug_info |= gbl->error_substage << 8;
3526 		debug_info |= gbl->error_group << 16;
3527 		writel(debug_info, &sdr_reg_file->failing_stage);
3528 	}
3529 
3530 	return pass;
3531 }
3532 
3533 /**
3534  * hc_initialize_rom_data() - Initialize ROM data
3535  *
3536  * Initialize ROM data.
3537  */
3538 static void hc_initialize_rom_data(void)
3539 {
3540 	u32 i, addr;
3541 
3542 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3543 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3544 		writel(inst_rom_init[i], addr + (i << 2));
3545 
3546 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3547 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3548 		writel(ac_rom_init[i], addr + (i << 2));
3549 }
3550 
3551 /**
3552  * initialize_reg_file() - Initialize SDR register file
3553  *
3554  * Initialize SDR register file.
3555  */
3556 static void initialize_reg_file(void)
3557 {
3558 	/* Initialize the register file with the correct data */
3559 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3560 	writel(0, &sdr_reg_file->debug_data_addr);
3561 	writel(0, &sdr_reg_file->cur_stage);
3562 	writel(0, &sdr_reg_file->fom);
3563 	writel(0, &sdr_reg_file->failing_stage);
3564 	writel(0, &sdr_reg_file->debug1);
3565 	writel(0, &sdr_reg_file->debug2);
3566 }
3567 
3568 /**
3569  * initialize_hps_phy() - Initialize HPS PHY
3570  *
3571  * Initialize HPS PHY.
3572  */
3573 static void initialize_hps_phy(void)
3574 {
3575 	uint32_t reg;
3576 	/*
3577 	 * Tracking also gets configured here because it's in the
3578 	 * same register.
3579 	 */
3580 	uint32_t trk_sample_count = 7500;
3581 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3582 	/*
3583 	 * Format is number of outer loops in the 16 MSB, sample
3584 	 * count in 16 LSB.
3585 	 */
3586 
3587 	reg = 0;
3588 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3589 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3590 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3591 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3592 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3593 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3594 	/*
3595 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3596 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3597 	 */
3598 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3599 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3600 		trk_sample_count);
3601 	writel(reg, &sdr_ctrl->phy_ctrl0);
3602 
3603 	reg = 0;
3604 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3605 		trk_sample_count >>
3606 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3607 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3608 		trk_long_idle_sample_count);
3609 	writel(reg, &sdr_ctrl->phy_ctrl1);
3610 
3611 	reg = 0;
3612 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3613 		trk_long_idle_sample_count >>
3614 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3615 	writel(reg, &sdr_ctrl->phy_ctrl2);
3616 }
3617 
3618 static void initialize_tracking(void)
3619 {
3620 	uint32_t concatenated_longidle = 0x0;
3621 	uint32_t concatenated_delays = 0x0;
3622 	uint32_t concatenated_rw_addr = 0x0;
3623 	uint32_t concatenated_refresh = 0x0;
3624 	uint32_t trk_sample_count = 7500;
3625 	uint32_t dtaps_per_ptap;
3626 	uint32_t tmp_delay;
3627 
3628 	/*
3629 	 * compute usable version of value in case we skip full
3630 	 * computation later
3631 	 */
3632 	dtaps_per_ptap = 0;
3633 	tmp_delay = 0;
3634 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3635 		dtaps_per_ptap++;
3636 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3637 	}
3638 	dtaps_per_ptap--;
3639 
3640 	concatenated_longidle = concatenated_longidle ^ 10;
3641 		/*longidle outer loop */
3642 	concatenated_longidle = concatenated_longidle << 16;
3643 	concatenated_longidle = concatenated_longidle ^ 100;
3644 		/*longidle sample count */
3645 	concatenated_delays = concatenated_delays ^ 243;
3646 		/* trfc, worst case of 933Mhz 4Gb */
3647 	concatenated_delays = concatenated_delays << 8;
3648 	concatenated_delays = concatenated_delays ^ 14;
3649 		/* trcd, worst case */
3650 	concatenated_delays = concatenated_delays << 8;
3651 	concatenated_delays = concatenated_delays ^ 10;
3652 		/* vfifo wait */
3653 	concatenated_delays = concatenated_delays << 8;
3654 	concatenated_delays = concatenated_delays ^ 4;
3655 		/* mux delay */
3656 
3657 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3658 	concatenated_rw_addr = concatenated_rw_addr << 8;
3659 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3660 	concatenated_rw_addr = concatenated_rw_addr << 8;
3661 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3662 	concatenated_rw_addr = concatenated_rw_addr << 8;
3663 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3664 
3665 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3666 	concatenated_refresh = concatenated_refresh << 24;
3667 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3668 
3669 	/* Initialize the register file with the correct data */
3670 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3671 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3672 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3673 	writel(concatenated_delays, &sdr_reg_file->delays);
3674 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3675 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3676 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3677 }
3678 
3679 int sdram_calibration_full(void)
3680 {
3681 	struct param_type my_param;
3682 	struct gbl_type my_gbl;
3683 	uint32_t pass;
3684 	uint32_t i;
3685 
3686 	param = &my_param;
3687 	gbl = &my_gbl;
3688 
3689 	/* Initialize the debug mode flags */
3690 	gbl->phy_debug_mode_flags = 0;
3691 	/* Set the calibration enabled by default */
3692 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3693 	/*
3694 	 * Only sweep all groups (regardless of fail state) by default
3695 	 * Set enabled read test by default.
3696 	 */
3697 #if DISABLE_GUARANTEED_READ
3698 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3699 #endif
3700 	/* Initialize the register file */
3701 	initialize_reg_file();
3702 
3703 	/* Initialize any PHY CSR */
3704 	initialize_hps_phy();
3705 
3706 	scc_mgr_initialize();
3707 
3708 	initialize_tracking();
3709 
3710 	/* USER Enable all ranks, groups */
3711 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3712 		param->skip_ranks[i] = 0;
3713 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3714 		param->skip_shadow_regs[i] = 0;
3715 	param->skip_groups = 0;
3716 
3717 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3718 
3719 	debug("%s:%d\n", __func__, __LINE__);
3720 	debug_cond(DLEVEL == 1,
3721 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3722 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3723 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3724 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3725 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3726 	debug_cond(DLEVEL == 1,
3727 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3728 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3729 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3730 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3731 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3732 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3733 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3734 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3735 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3736 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3737 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3738 		   IO_IO_OUT2_DELAY_MAX);
3739 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3740 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3741 
3742 	hc_initialize_rom_data();
3743 
3744 	/* update info for sims */
3745 	reg_file_set_stage(CAL_STAGE_NIL);
3746 	reg_file_set_group(0);
3747 
3748 	/*
3749 	 * Load global needed for those actions that require
3750 	 * some dynamic calibration support.
3751 	 */
3752 	dyn_calib_steps = STATIC_CALIB_STEPS;
3753 	/*
3754 	 * Load global to allow dynamic selection of delay loop settings
3755 	 * based on calibration mode.
3756 	 */
3757 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3758 		skip_delay_mask = 0xff;
3759 	else
3760 		skip_delay_mask = 0x0;
3761 
3762 	pass = run_mem_calibrate();
3763 
3764 	printf("%s: Calibration complete\n", __FILE__);
3765 	return pass;
3766 }
3767