1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 /** 256 * scc_mgr_set() - Set SCC Manager register 257 * @off: Base offset in SCC Manager space 258 * @grp: Read/Write group 259 * @val: Value to be set 260 * 261 * This function sets the SCC Manager (Scan Chain Control Manager) register. 262 */ 263 static void scc_mgr_set(u32 off, u32 grp, u32 val) 264 { 265 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 266 } 267 268 /** 269 * scc_mgr_initialize() - Initialize SCC Manager registers 270 * 271 * Initialize SCC Manager registers. 272 */ 273 static void scc_mgr_initialize(void) 274 { 275 /* 276 * Clear register file for HPS. 16 (2^4) is the size of the 277 * full register file in the scc mgr: 278 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 279 * MEM_IF_READ_DQS_WIDTH - 1); 280 */ 281 int i; 282 283 for (i = 0; i < 16; i++) { 284 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 285 __func__, __LINE__, i); 286 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 287 } 288 } 289 290 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 291 { 292 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 293 } 294 295 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 296 { 297 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 298 } 299 300 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 301 { 302 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 303 } 304 305 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 306 { 307 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 308 } 309 310 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 311 { 312 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 313 delay); 314 } 315 316 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 319 } 320 321 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 322 { 323 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 324 } 325 326 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 327 uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 330 delay); 331 } 332 333 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 336 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 337 delay); 338 } 339 340 /* load up dqs config settings */ 341 static void scc_mgr_load_dqs(uint32_t dqs) 342 { 343 writel(dqs, &sdr_scc_mgr->dqs_ena); 344 } 345 346 /* load up dqs io config settings */ 347 static void scc_mgr_load_dqs_io(void) 348 { 349 writel(0, &sdr_scc_mgr->dqs_io_ena); 350 } 351 352 /* load up dq config settings */ 353 static void scc_mgr_load_dq(uint32_t dq_in_group) 354 { 355 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 356 } 357 358 /* load up dm config settings */ 359 static void scc_mgr_load_dm(uint32_t dm) 360 { 361 writel(dm, &sdr_scc_mgr->dm_ena); 362 } 363 364 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 365 uint32_t phase) 366 { 367 uint32_t r; 368 uint32_t update_scan_chains; 369 370 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 371 r += NUM_RANKS_PER_SHADOW_REG) { 372 /* 373 * USER although the h/w doesn't support different phases per 374 * shadow register, for simplicity our scc manager modeling 375 * keeps different phase settings per shadow reg, and it's 376 * important for us to keep them in sync to match h/w. 377 * for efficiency, the scan chain update should occur only 378 * once to sr0. 379 */ 380 update_scan_chains = (r == 0) ? 1 : 0; 381 382 scc_mgr_set_dqs_en_phase(read_group, phase); 383 384 if (update_scan_chains) { 385 writel(read_group, &sdr_scc_mgr->dqs_ena); 386 writel(0, &sdr_scc_mgr->update); 387 } 388 } 389 } 390 391 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 392 uint32_t phase) 393 { 394 uint32_t r; 395 uint32_t update_scan_chains; 396 397 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 398 r += NUM_RANKS_PER_SHADOW_REG) { 399 /* 400 * USER although the h/w doesn't support different phases per 401 * shadow register, for simplicity our scc manager modeling 402 * keeps different phase settings per shadow reg, and it's 403 * important for us to keep them in sync to match h/w. 404 * for efficiency, the scan chain update should occur only 405 * once to sr0. 406 */ 407 update_scan_chains = (r == 0) ? 1 : 0; 408 409 scc_mgr_set_dqdqs_output_phase(write_group, phase); 410 411 if (update_scan_chains) { 412 writel(write_group, &sdr_scc_mgr->dqs_ena); 413 writel(0, &sdr_scc_mgr->update); 414 } 415 } 416 } 417 418 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 419 uint32_t delay) 420 { 421 uint32_t r; 422 423 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 424 r += NUM_RANKS_PER_SHADOW_REG) { 425 scc_mgr_set_dqs_en_delay(read_group, delay); 426 427 writel(read_group, &sdr_scc_mgr->dqs_ena); 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 writel(0, &sdr_scc_mgr->update); 437 } 438 /* 439 * In shadow register mode, the T11 settings are stored in 440 * registers in the core, which are updated by the DQS_ENA 441 * signals. Not issuing the SCC_MGR_UPD command allows us to 442 * save lots of rank switching overhead, by calling 443 * select_shadow_regs_for_update with update_scan_chains 444 * set to 0. 445 */ 446 writel(0, &sdr_scc_mgr->update); 447 } 448 449 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 450 { 451 uint32_t read_group; 452 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 453 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 462 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 463 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 464 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 465 writel(delay, addr + (read_group << 2)); 466 } 467 468 static void scc_mgr_set_hhp_extras(void) 469 { 470 /* 471 * Load the fixed setting in the SCC manager 472 * bits: 0:0 = 1'b1 - dqs bypass 473 * bits: 1:1 = 1'b1 - dq bypass 474 * bits: 4:2 = 3'b001 - rfifo_mode 475 * bits: 6:5 = 2'b01 - rfifo clock_select 476 * bits: 7:7 = 1'b0 - separate gating from ungating setting 477 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 478 */ 479 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 480 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 481 482 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 483 } 484 485 /* 486 * USER Zero all DQS config 487 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 488 */ 489 static void scc_mgr_zero_all(void) 490 { 491 uint32_t i, r; 492 493 /* 494 * USER Zero all DQS config settings, across all groups and all 495 * shadow registers 496 */ 497 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 498 NUM_RANKS_PER_SHADOW_REG) { 499 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 500 /* 501 * The phases actually don't exist on a per-rank basis, 502 * but there's no harm updating them several times, so 503 * let's keep the code simple. 504 */ 505 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 506 scc_mgr_set_dqs_en_phase(i, 0); 507 scc_mgr_set_dqs_en_delay(i, 0); 508 } 509 510 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 511 scc_mgr_set_dqdqs_output_phase(i, 0); 512 /* av/cv don't have out2 */ 513 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 514 } 515 } 516 517 /* multicast to all DQS group enables */ 518 writel(0xff, &sdr_scc_mgr->dqs_ena); 519 writel(0, &sdr_scc_mgr->update); 520 } 521 522 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 523 { 524 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 525 /* mode = 1 : Bypass - Full Rate Mode */ 526 527 /* only need to set once for all groups, pins, dq, dqs, dm */ 528 if (write_group == 0) { 529 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 530 __LINE__); 531 scc_mgr_set_hhp_extras(); 532 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 533 __func__, __LINE__); 534 } 535 /* multicast to all DQ enables */ 536 writel(0xff, &sdr_scc_mgr->dq_ena); 537 writel(0xff, &sdr_scc_mgr->dm_ena); 538 539 /* update current DQS IO enable */ 540 writel(0, &sdr_scc_mgr->dqs_io_ena); 541 542 /* update the DQS logic */ 543 writel(write_group, &sdr_scc_mgr->dqs_ena); 544 545 /* hit update */ 546 writel(0, &sdr_scc_mgr->update); 547 } 548 549 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 550 { 551 uint32_t read_group; 552 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 553 /* 554 * Although OCT affects only write data, the OCT delay is controlled 555 * by the DQS logic block which is instantiated once per read group. 556 * For protocols where a write group consists of multiple read groups, 557 * the setting must be scanned multiple times. 558 */ 559 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 560 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 561 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 562 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 563 writel(read_group, addr); 564 } 565 566 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 567 int32_t out_only) 568 { 569 uint32_t i, r; 570 571 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 572 NUM_RANKS_PER_SHADOW_REG) { 573 /* Zero all DQ config settings */ 574 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 575 scc_mgr_set_dq_out1_delay(i, 0); 576 if (!out_only) 577 scc_mgr_set_dq_in_delay(i, 0); 578 } 579 580 /* multicast to all DQ enables */ 581 writel(0xff, &sdr_scc_mgr->dq_ena); 582 583 /* Zero all DM config settings */ 584 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 585 scc_mgr_set_dm_out1_delay(i, 0); 586 } 587 588 /* multicast to all DM enables */ 589 writel(0xff, &sdr_scc_mgr->dm_ena); 590 591 /* zero all DQS io settings */ 592 if (!out_only) 593 scc_mgr_set_dqs_io_in_delay(write_group, 0); 594 /* av/cv don't have out2 */ 595 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 596 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 597 scc_mgr_load_dqs_for_write_group(write_group); 598 599 /* multicast to all DQS IO enables (only 1) */ 600 writel(0, &sdr_scc_mgr->dqs_io_ena); 601 602 /* hit update to zero everything */ 603 writel(0, &sdr_scc_mgr->update); 604 } 605 } 606 607 /* 608 * apply and load a particular input delay for the DQ pins in a group 609 * group_bgn is the index of the first dq pin (in the write group) 610 */ 611 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 612 uint32_t group_bgn, uint32_t delay) 613 { 614 uint32_t i, p; 615 616 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 617 scc_mgr_set_dq_in_delay(p, delay); 618 scc_mgr_load_dq(p); 619 } 620 } 621 622 /* apply and load a particular output delay for the DQ pins in a group */ 623 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 624 uint32_t group_bgn, 625 uint32_t delay1) 626 { 627 uint32_t i, p; 628 629 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 630 scc_mgr_set_dq_out1_delay(i, delay1); 631 scc_mgr_load_dq(i); 632 } 633 } 634 635 /* apply and load a particular output delay for the DM pins in a group */ 636 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 637 uint32_t delay1) 638 { 639 uint32_t i; 640 641 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 642 scc_mgr_set_dm_out1_delay(i, delay1); 643 scc_mgr_load_dm(i); 644 } 645 } 646 647 648 /* apply and load delay on both DQS and OCT out1 */ 649 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 650 uint32_t delay) 651 { 652 scc_mgr_set_dqs_out1_delay(write_group, delay); 653 scc_mgr_load_dqs_io(); 654 655 scc_mgr_set_oct_out1_delay(write_group, delay); 656 scc_mgr_load_dqs_for_write_group(write_group); 657 } 658 659 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 660 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 661 uint32_t group_bgn, 662 uint32_t delay) 663 { 664 uint32_t i, p, new_delay; 665 666 /* dq shift */ 667 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 668 new_delay = READ_SCC_DQ_OUT2_DELAY; 669 new_delay += delay; 670 671 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 672 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 673 %u > %lu => %lu", __func__, __LINE__, 674 write_group, group_bgn, delay, i, p, new_delay, 675 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 676 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 677 new_delay = IO_IO_OUT2_DELAY_MAX; 678 } 679 680 scc_mgr_load_dq(i); 681 } 682 683 /* dm shift */ 684 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 685 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 686 new_delay += delay; 687 688 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 689 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 690 %u > %lu => %lu\n", __func__, __LINE__, 691 write_group, group_bgn, delay, i, new_delay, 692 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 693 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 694 new_delay = IO_IO_OUT2_DELAY_MAX; 695 } 696 697 scc_mgr_load_dm(i); 698 } 699 700 /* dqs shift */ 701 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 702 new_delay += delay; 703 704 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 705 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 706 " adding %u to OUT1\n", __func__, __LINE__, 707 write_group, group_bgn, delay, new_delay, 708 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 709 new_delay - IO_IO_OUT2_DELAY_MAX); 710 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 711 IO_IO_OUT2_DELAY_MAX); 712 new_delay = IO_IO_OUT2_DELAY_MAX; 713 } 714 715 scc_mgr_load_dqs_io(); 716 717 /* oct shift */ 718 new_delay = READ_SCC_OCT_OUT2_DELAY; 719 new_delay += delay; 720 721 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 722 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 723 " adding %u to OUT1\n", __func__, __LINE__, 724 write_group, group_bgn, delay, new_delay, 725 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 726 new_delay - IO_IO_OUT2_DELAY_MAX); 727 scc_mgr_set_oct_out1_delay(write_group, new_delay - 728 IO_IO_OUT2_DELAY_MAX); 729 new_delay = IO_IO_OUT2_DELAY_MAX; 730 } 731 732 scc_mgr_load_dqs_for_write_group(write_group); 733 } 734 735 /* 736 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 737 * and to all ranks 738 */ 739 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 740 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 741 { 742 uint32_t r; 743 744 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 745 r += NUM_RANKS_PER_SHADOW_REG) { 746 scc_mgr_apply_group_all_out_delay_add(write_group, 747 group_bgn, delay); 748 writel(0, &sdr_scc_mgr->update); 749 } 750 } 751 752 /* optimization used to recover some slots in ddr3 inst_rom */ 753 /* could be applied to other protocols if we wanted to */ 754 static void set_jump_as_return(void) 755 { 756 /* 757 * to save space, we replace return with jump to special shared 758 * RETURN instruction so we set the counter to large value so that 759 * we always jump 760 */ 761 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 762 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 763 } 764 765 /* 766 * should always use constants as argument to ensure all computations are 767 * performed at compile time 768 */ 769 static void delay_for_n_mem_clocks(const uint32_t clocks) 770 { 771 uint32_t afi_clocks; 772 uint8_t inner = 0; 773 uint8_t outer = 0; 774 uint16_t c_loop = 0; 775 776 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 777 778 779 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 780 /* scale (rounding up) to get afi clocks */ 781 782 /* 783 * Note, we don't bother accounting for being off a little bit 784 * because of a few extra instructions in outer loops 785 * Note, the loops have a test at the end, and do the test before 786 * the decrement, and so always perform the loop 787 * 1 time more than the counter value 788 */ 789 if (afi_clocks == 0) { 790 ; 791 } else if (afi_clocks <= 0x100) { 792 inner = afi_clocks-1; 793 outer = 0; 794 c_loop = 0; 795 } else if (afi_clocks <= 0x10000) { 796 inner = 0xff; 797 outer = (afi_clocks-1) >> 8; 798 c_loop = 0; 799 } else { 800 inner = 0xff; 801 outer = 0xff; 802 c_loop = (afi_clocks-1) >> 16; 803 } 804 805 /* 806 * rom instructions are structured as follows: 807 * 808 * IDLE_LOOP2: jnz cntr0, TARGET_A 809 * IDLE_LOOP1: jnz cntr1, TARGET_B 810 * return 811 * 812 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 813 * TARGET_B is set to IDLE_LOOP2 as well 814 * 815 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 816 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 817 * 818 * a little confusing, but it helps save precious space in the inst_rom 819 * and sequencer rom and keeps the delays more accurate and reduces 820 * overhead 821 */ 822 if (afi_clocks <= 0x100) { 823 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 824 &sdr_rw_load_mgr_regs->load_cntr1); 825 826 writel(RW_MGR_IDLE_LOOP1, 827 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 828 829 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 830 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 831 } else { 832 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 833 &sdr_rw_load_mgr_regs->load_cntr0); 834 835 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 836 &sdr_rw_load_mgr_regs->load_cntr1); 837 838 writel(RW_MGR_IDLE_LOOP2, 839 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 840 841 writel(RW_MGR_IDLE_LOOP2, 842 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 843 844 /* hack to get around compiler not being smart enough */ 845 if (afi_clocks <= 0x10000) { 846 /* only need to run once */ 847 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 848 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 849 } else { 850 do { 851 writel(RW_MGR_IDLE_LOOP2, 852 SDR_PHYGRP_RWMGRGRP_ADDRESS | 853 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 854 } while (c_loop-- != 0); 855 } 856 } 857 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 858 } 859 860 static void rw_mgr_mem_initialize(void) 861 { 862 uint32_t r; 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 debug("%s:%d\n", __func__, __LINE__); 867 868 /* The reset / cke part of initialization is broadcasted to all ranks */ 869 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 870 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 871 872 /* 873 * Here's how you load register for a loop 874 * Counters are located @ 0x800 875 * Jump address are located @ 0xC00 876 * For both, registers 0 to 3 are selected using bits 3 and 2, like 877 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 878 * I know this ain't pretty, but Avalon bus throws away the 2 least 879 * significant bits 880 */ 881 882 /* start with memory RESET activated */ 883 884 /* tINIT = 200us */ 885 886 /* 887 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 888 * If a and b are the number of iteration in 2 nested loops 889 * it takes the following number of cycles to complete the operation: 890 * number_of_cycles = ((2 + n) * a + 2) * b 891 * where n is the number of instruction in the inner loop 892 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 893 * b = 6A 894 */ 895 896 /* Load counters */ 897 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 898 &sdr_rw_load_mgr_regs->load_cntr0); 899 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 900 &sdr_rw_load_mgr_regs->load_cntr1); 901 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 902 &sdr_rw_load_mgr_regs->load_cntr2); 903 904 /* Load jump address */ 905 writel(RW_MGR_INIT_RESET_0_CKE_0, 906 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 907 writel(RW_MGR_INIT_RESET_0_CKE_0, 908 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 909 writel(RW_MGR_INIT_RESET_0_CKE_0, 910 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 911 912 /* Execute count instruction */ 913 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 914 915 /* indicate that memory is stable */ 916 writel(1, &phy_mgr_cfg->reset_mem_stbl); 917 918 /* 919 * transition the RESET to high 920 * Wait for 500us 921 */ 922 923 /* 924 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 925 * If a and b are the number of iteration in 2 nested loops 926 * it takes the following number of cycles to complete the operation 927 * number_of_cycles = ((2 + n) * a + 2) * b 928 * where n is the number of instruction in the inner loop 929 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 930 * b = FF 931 */ 932 933 /* Load counters */ 934 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 935 &sdr_rw_load_mgr_regs->load_cntr0); 936 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 937 &sdr_rw_load_mgr_regs->load_cntr1); 938 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 939 &sdr_rw_load_mgr_regs->load_cntr2); 940 941 /* Load jump address */ 942 writel(RW_MGR_INIT_RESET_1_CKE_0, 943 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 944 writel(RW_MGR_INIT_RESET_1_CKE_0, 945 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 946 writel(RW_MGR_INIT_RESET_1_CKE_0, 947 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 948 949 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 950 951 /* bring up clock enable */ 952 953 /* tXRP < 250 ck cycles */ 954 delay_for_n_mem_clocks(250); 955 956 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 957 if (param->skip_ranks[r]) { 958 /* request to skip the rank */ 959 continue; 960 } 961 962 /* set rank */ 963 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 964 965 /* 966 * USER Use Mirror-ed commands for odd ranks if address 967 * mirrorring is on 968 */ 969 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 970 set_jump_as_return(); 971 writel(RW_MGR_MRS2_MIRR, grpaddr); 972 delay_for_n_mem_clocks(4); 973 set_jump_as_return(); 974 writel(RW_MGR_MRS3_MIRR, grpaddr); 975 delay_for_n_mem_clocks(4); 976 set_jump_as_return(); 977 writel(RW_MGR_MRS1_MIRR, grpaddr); 978 delay_for_n_mem_clocks(4); 979 set_jump_as_return(); 980 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 981 } else { 982 set_jump_as_return(); 983 writel(RW_MGR_MRS2, grpaddr); 984 delay_for_n_mem_clocks(4); 985 set_jump_as_return(); 986 writel(RW_MGR_MRS3, grpaddr); 987 delay_for_n_mem_clocks(4); 988 set_jump_as_return(); 989 writel(RW_MGR_MRS1, grpaddr); 990 set_jump_as_return(); 991 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 992 } 993 set_jump_as_return(); 994 writel(RW_MGR_ZQCL, grpaddr); 995 996 /* tZQinit = tDLLK = 512 ck cycles */ 997 delay_for_n_mem_clocks(512); 998 } 999 } 1000 1001 /* 1002 * At the end of calibration we have to program the user settings in, and 1003 * USER hand off the memory to the user. 1004 */ 1005 static void rw_mgr_mem_handoff(void) 1006 { 1007 uint32_t r; 1008 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1009 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1010 1011 debug("%s:%d\n", __func__, __LINE__); 1012 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1013 if (param->skip_ranks[r]) 1014 /* request to skip the rank */ 1015 continue; 1016 /* set rank */ 1017 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1018 1019 /* precharge all banks ... */ 1020 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1021 1022 /* load up MR settings specified by user */ 1023 1024 /* 1025 * Use Mirror-ed commands for odd ranks if address 1026 * mirrorring is on 1027 */ 1028 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1029 set_jump_as_return(); 1030 writel(RW_MGR_MRS2_MIRR, grpaddr); 1031 delay_for_n_mem_clocks(4); 1032 set_jump_as_return(); 1033 writel(RW_MGR_MRS3_MIRR, grpaddr); 1034 delay_for_n_mem_clocks(4); 1035 set_jump_as_return(); 1036 writel(RW_MGR_MRS1_MIRR, grpaddr); 1037 delay_for_n_mem_clocks(4); 1038 set_jump_as_return(); 1039 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1040 } else { 1041 set_jump_as_return(); 1042 writel(RW_MGR_MRS2, grpaddr); 1043 delay_for_n_mem_clocks(4); 1044 set_jump_as_return(); 1045 writel(RW_MGR_MRS3, grpaddr); 1046 delay_for_n_mem_clocks(4); 1047 set_jump_as_return(); 1048 writel(RW_MGR_MRS1, grpaddr); 1049 delay_for_n_mem_clocks(4); 1050 set_jump_as_return(); 1051 writel(RW_MGR_MRS0_USER, grpaddr); 1052 } 1053 /* 1054 * USER need to wait tMOD (12CK or 15ns) time before issuing 1055 * other commands, but we will have plenty of NIOS cycles before 1056 * actual handoff so its okay. 1057 */ 1058 } 1059 } 1060 1061 /* 1062 * performs a guaranteed read on the patterns we are going to use during a 1063 * read test to ensure memory works 1064 */ 1065 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1066 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1067 uint32_t all_ranks) 1068 { 1069 uint32_t r, vg; 1070 uint32_t correct_mask_vg; 1071 uint32_t tmp_bit_chk; 1072 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1073 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1074 uint32_t addr; 1075 uint32_t base_rw_mgr; 1076 1077 *bit_chk = param->read_correct_mask; 1078 correct_mask_vg = param->read_correct_mask_vg; 1079 1080 for (r = rank_bgn; r < rank_end; r++) { 1081 if (param->skip_ranks[r]) 1082 /* request to skip the rank */ 1083 continue; 1084 1085 /* set rank */ 1086 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1087 1088 /* Load up a constant bursts of read commands */ 1089 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1090 writel(RW_MGR_GUARANTEED_READ, 1091 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1092 1093 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1094 writel(RW_MGR_GUARANTEED_READ_CONT, 1095 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1096 1097 tmp_bit_chk = 0; 1098 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1099 /* reset the fifos to get pointers to known state */ 1100 1101 writel(0, &phy_mgr_cmd->fifo_reset); 1102 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1103 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1104 1105 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1106 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1107 1108 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1109 writel(RW_MGR_GUARANTEED_READ, addr + 1110 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1111 vg) << 2)); 1112 1113 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1114 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1115 1116 if (vg == 0) 1117 break; 1118 } 1119 *bit_chk &= tmp_bit_chk; 1120 } 1121 1122 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1123 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1124 1125 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1126 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1127 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1128 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1129 return *bit_chk == param->read_correct_mask; 1130 } 1131 1132 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1133 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1134 { 1135 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1136 num_tries, bit_chk, 1); 1137 } 1138 1139 /* load up the patterns we are going to use during a read test */ 1140 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1141 uint32_t all_ranks) 1142 { 1143 uint32_t r; 1144 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1145 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1146 1147 debug("%s:%d\n", __func__, __LINE__); 1148 for (r = rank_bgn; r < rank_end; r++) { 1149 if (param->skip_ranks[r]) 1150 /* request to skip the rank */ 1151 continue; 1152 1153 /* set rank */ 1154 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1155 1156 /* Load up a constant bursts */ 1157 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1158 1159 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1160 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1161 1162 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1163 1164 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1165 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1166 1167 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1168 1169 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1170 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1171 1172 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1173 1174 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1175 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1176 1177 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1178 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1179 } 1180 1181 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1182 } 1183 1184 /* 1185 * try a read and see if it returns correct data back. has dummy reads 1186 * inserted into the mix used to align dqs enable. has more thorough checks 1187 * than the regular read test. 1188 */ 1189 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1190 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1191 uint32_t all_groups, uint32_t all_ranks) 1192 { 1193 uint32_t r, vg; 1194 uint32_t correct_mask_vg; 1195 uint32_t tmp_bit_chk; 1196 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1197 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1198 uint32_t addr; 1199 uint32_t base_rw_mgr; 1200 1201 *bit_chk = param->read_correct_mask; 1202 correct_mask_vg = param->read_correct_mask_vg; 1203 1204 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1205 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1206 1207 for (r = rank_bgn; r < rank_end; r++) { 1208 if (param->skip_ranks[r]) 1209 /* request to skip the rank */ 1210 continue; 1211 1212 /* set rank */ 1213 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1214 1215 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1216 1217 writel(RW_MGR_READ_B2B_WAIT1, 1218 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1219 1220 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1221 writel(RW_MGR_READ_B2B_WAIT2, 1222 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1223 1224 if (quick_read_mode) 1225 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1226 /* need at least two (1+1) reads to capture failures */ 1227 else if (all_groups) 1228 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1229 else 1230 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1231 1232 writel(RW_MGR_READ_B2B, 1233 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1234 if (all_groups) 1235 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1236 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1237 &sdr_rw_load_mgr_regs->load_cntr3); 1238 else 1239 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1240 1241 writel(RW_MGR_READ_B2B, 1242 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1243 1244 tmp_bit_chk = 0; 1245 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1246 /* reset the fifos to get pointers to known state */ 1247 writel(0, &phy_mgr_cmd->fifo_reset); 1248 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1249 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1250 1251 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1252 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1253 1254 if (all_groups) 1255 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1256 else 1257 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1258 1259 writel(RW_MGR_READ_B2B, addr + 1260 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1261 vg) << 2)); 1262 1263 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1264 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1265 1266 if (vg == 0) 1267 break; 1268 } 1269 *bit_chk &= tmp_bit_chk; 1270 } 1271 1272 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1273 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1274 1275 if (all_correct) { 1276 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1277 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1278 (%u == %u) => %lu", __func__, __LINE__, group, 1279 all_groups, *bit_chk, param->read_correct_mask, 1280 (long unsigned int)(*bit_chk == 1281 param->read_correct_mask)); 1282 return *bit_chk == param->read_correct_mask; 1283 } else { 1284 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1285 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1286 (%u != %lu) => %lu\n", __func__, __LINE__, 1287 group, all_groups, *bit_chk, (long unsigned int)0, 1288 (long unsigned int)(*bit_chk != 0x00)); 1289 return *bit_chk != 0x00; 1290 } 1291 } 1292 1293 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1294 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1295 uint32_t all_groups) 1296 { 1297 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1298 bit_chk, all_groups, 1); 1299 } 1300 1301 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1302 { 1303 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1304 (*v)++; 1305 } 1306 1307 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1308 { 1309 uint32_t i; 1310 1311 for (i = 0; i < VFIFO_SIZE-1; i++) 1312 rw_mgr_incr_vfifo(grp, v); 1313 } 1314 1315 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1316 { 1317 uint32_t v; 1318 uint32_t fail_cnt = 0; 1319 uint32_t test_status; 1320 1321 for (v = 0; v < VFIFO_SIZE; ) { 1322 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1323 __func__, __LINE__, v); 1324 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1325 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1326 if (!test_status) { 1327 fail_cnt++; 1328 1329 if (fail_cnt == 2) 1330 break; 1331 } 1332 1333 /* fiddle with FIFO */ 1334 rw_mgr_incr_vfifo(grp, &v); 1335 } 1336 1337 if (v >= VFIFO_SIZE) { 1338 /* no failing read found!! Something must have gone wrong */ 1339 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1340 __func__, __LINE__); 1341 return 0; 1342 } else { 1343 return v; 1344 } 1345 } 1346 1347 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1348 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1349 uint32_t *v, uint32_t *d, uint32_t *p, 1350 uint32_t *i, uint32_t *max_working_cnt) 1351 { 1352 uint32_t found_begin = 0; 1353 uint32_t tmp_delay = 0; 1354 uint32_t test_status; 1355 1356 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1357 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1358 *work_bgn = tmp_delay; 1359 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1360 1361 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1362 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1363 IO_DELAY_PER_OPA_TAP) { 1364 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1365 1366 test_status = 1367 rw_mgr_mem_calibrate_read_test_all_ranks 1368 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1369 1370 if (test_status) { 1371 *max_working_cnt = 1; 1372 found_begin = 1; 1373 break; 1374 } 1375 } 1376 1377 if (found_begin) 1378 break; 1379 1380 if (*p > IO_DQS_EN_PHASE_MAX) 1381 /* fiddle with FIFO */ 1382 rw_mgr_incr_vfifo(*grp, v); 1383 } 1384 1385 if (found_begin) 1386 break; 1387 } 1388 1389 if (*i >= VFIFO_SIZE) { 1390 /* cannot find working solution */ 1391 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1392 ptap/dtap\n", __func__, __LINE__); 1393 return 0; 1394 } else { 1395 return 1; 1396 } 1397 } 1398 1399 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1400 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1401 uint32_t *p, uint32_t *max_working_cnt) 1402 { 1403 uint32_t found_begin = 0; 1404 uint32_t tmp_delay; 1405 1406 /* Special case code for backing up a phase */ 1407 if (*p == 0) { 1408 *p = IO_DQS_EN_PHASE_MAX; 1409 rw_mgr_decr_vfifo(*grp, v); 1410 } else { 1411 (*p)--; 1412 } 1413 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1414 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1415 1416 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1417 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1418 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1419 1420 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1421 PASS_ONE_BIT, 1422 bit_chk, 0)) { 1423 found_begin = 1; 1424 *work_bgn = tmp_delay; 1425 break; 1426 } 1427 } 1428 1429 /* We have found a working dtap before the ptap found above */ 1430 if (found_begin == 1) 1431 (*max_working_cnt)++; 1432 1433 /* 1434 * Restore VFIFO to old state before we decremented it 1435 * (if needed). 1436 */ 1437 (*p)++; 1438 if (*p > IO_DQS_EN_PHASE_MAX) { 1439 *p = 0; 1440 rw_mgr_incr_vfifo(*grp, v); 1441 } 1442 1443 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1444 } 1445 1446 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1447 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1448 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1449 uint32_t *work_end) 1450 { 1451 uint32_t found_end = 0; 1452 1453 (*p)++; 1454 *work_end += IO_DELAY_PER_OPA_TAP; 1455 if (*p > IO_DQS_EN_PHASE_MAX) { 1456 /* fiddle with FIFO */ 1457 *p = 0; 1458 rw_mgr_incr_vfifo(*grp, v); 1459 } 1460 1461 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1462 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1463 += IO_DELAY_PER_OPA_TAP) { 1464 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1465 1466 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1467 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1468 found_end = 1; 1469 break; 1470 } else { 1471 (*max_working_cnt)++; 1472 } 1473 } 1474 1475 if (found_end) 1476 break; 1477 1478 if (*p > IO_DQS_EN_PHASE_MAX) { 1479 /* fiddle with FIFO */ 1480 rw_mgr_incr_vfifo(*grp, v); 1481 *p = 0; 1482 } 1483 } 1484 1485 if (*i >= VFIFO_SIZE + 1) { 1486 /* cannot see edge of failing read */ 1487 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1488 failed\n", __func__, __LINE__); 1489 return 0; 1490 } else { 1491 return 1; 1492 } 1493 } 1494 1495 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1496 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1497 uint32_t *p, uint32_t *work_mid, 1498 uint32_t *work_end) 1499 { 1500 int i; 1501 int tmp_delay = 0; 1502 1503 *work_mid = (*work_bgn + *work_end) / 2; 1504 1505 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1506 *work_bgn, *work_end, *work_mid); 1507 /* Get the middle delay to be less than a VFIFO delay */ 1508 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1509 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1510 ; 1511 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1512 while (*work_mid > tmp_delay) 1513 *work_mid -= tmp_delay; 1514 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1515 1516 tmp_delay = 0; 1517 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1518 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1519 ; 1520 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1521 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1522 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1523 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1524 ; 1525 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1526 1527 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1528 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1529 1530 /* 1531 * push vfifo until we can successfully calibrate. We can do this 1532 * because the largest possible margin in 1 VFIFO cycle. 1533 */ 1534 for (i = 0; i < VFIFO_SIZE; i++) { 1535 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1536 *v); 1537 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1538 PASS_ONE_BIT, 1539 bit_chk, 0)) { 1540 break; 1541 } 1542 1543 /* fiddle with FIFO */ 1544 rw_mgr_incr_vfifo(*grp, v); 1545 } 1546 1547 if (i >= VFIFO_SIZE) { 1548 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1549 failed\n", __func__, __LINE__); 1550 return 0; 1551 } else { 1552 return 1; 1553 } 1554 } 1555 1556 /* find a good dqs enable to use */ 1557 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1558 { 1559 uint32_t v, d, p, i; 1560 uint32_t max_working_cnt; 1561 uint32_t bit_chk; 1562 uint32_t dtaps_per_ptap; 1563 uint32_t work_bgn, work_mid, work_end; 1564 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1565 1566 debug("%s:%d %u\n", __func__, __LINE__, grp); 1567 1568 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1569 1570 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1571 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1572 1573 /* ************************************************************** */ 1574 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1575 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1576 1577 /* ********************************************************* */ 1578 /* * Step 1 : First push vfifo until we get a failing read * */ 1579 v = find_vfifo_read(grp, &bit_chk); 1580 1581 max_working_cnt = 0; 1582 1583 /* ******************************************************** */ 1584 /* * step 2: find first working phase, increment in ptaps * */ 1585 work_bgn = 0; 1586 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1587 &p, &i, &max_working_cnt) == 0) 1588 return 0; 1589 1590 work_end = work_bgn; 1591 1592 /* 1593 * If d is 0 then the working window covers a phase tap and 1594 * we can follow the old procedure otherwise, we've found the beginning, 1595 * and we need to increment the dtaps until we find the end. 1596 */ 1597 if (d == 0) { 1598 /* ********************************************************* */ 1599 /* * step 3a: if we have room, back off by one and 1600 increment in dtaps * */ 1601 1602 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1603 &max_working_cnt); 1604 1605 /* ********************************************************* */ 1606 /* * step 4a: go forward from working phase to non working 1607 phase, increment in ptaps * */ 1608 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1609 &i, &max_working_cnt, &work_end) == 0) 1610 return 0; 1611 1612 /* ********************************************************* */ 1613 /* * step 5a: back off one from last, increment in dtaps * */ 1614 1615 /* Special case code for backing up a phase */ 1616 if (p == 0) { 1617 p = IO_DQS_EN_PHASE_MAX; 1618 rw_mgr_decr_vfifo(grp, &v); 1619 } else { 1620 p = p - 1; 1621 } 1622 1623 work_end -= IO_DELAY_PER_OPA_TAP; 1624 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1625 1626 /* * The actual increment of dtaps is done outside of 1627 the if/else loop to share code */ 1628 d = 0; 1629 1630 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1631 vfifo=%u ptap=%u\n", __func__, __LINE__, 1632 v, p); 1633 } else { 1634 /* ******************************************************* */ 1635 /* * step 3-5b: Find the right edge of the window using 1636 delay taps * */ 1637 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1638 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1639 v, p, d, work_bgn); 1640 1641 work_end = work_bgn; 1642 1643 /* * The actual increment of dtaps is done outside of the 1644 if/else loop to share code */ 1645 1646 /* Only here to counterbalance a subtract later on which is 1647 not needed if this branch of the algorithm is taken */ 1648 max_working_cnt++; 1649 } 1650 1651 /* The dtap increment to find the failing edge is done here */ 1652 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1653 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1655 end-2: dtap=%u\n", __func__, __LINE__, d); 1656 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1657 1658 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1659 PASS_ONE_BIT, 1660 &bit_chk, 0)) { 1661 break; 1662 } 1663 } 1664 1665 /* Go back to working dtap */ 1666 if (d != 0) 1667 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1668 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1670 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1671 v, p, d-1, work_end); 1672 1673 if (work_end < work_bgn) { 1674 /* nil range */ 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1676 failed\n", __func__, __LINE__); 1677 return 0; 1678 } 1679 1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1681 __func__, __LINE__, work_bgn, work_end); 1682 1683 /* *************************************************************** */ 1684 /* 1685 * * We need to calculate the number of dtaps that equal a ptap 1686 * * To do that we'll back up a ptap and re-find the edge of the 1687 * * window using dtaps 1688 */ 1689 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1691 for tracking\n", __func__, __LINE__); 1692 1693 /* Special case code for backing up a phase */ 1694 if (p == 0) { 1695 p = IO_DQS_EN_PHASE_MAX; 1696 rw_mgr_decr_vfifo(grp, &v); 1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1698 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1699 v, p); 1700 } else { 1701 p = p - 1; 1702 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1703 phase only: v=%u p=%u", __func__, __LINE__, 1704 v, p); 1705 } 1706 1707 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1708 1709 /* 1710 * Increase dtap until we first see a passing read (in case the 1711 * window is smaller than a ptap), 1712 * and then a failing read to mark the edge of the window again 1713 */ 1714 1715 /* Find a passing read */ 1716 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1717 __func__, __LINE__); 1718 found_passing_read = 0; 1719 found_failing_read = 0; 1720 initial_failing_dtap = d; 1721 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1722 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1723 read d=%u\n", __func__, __LINE__, d); 1724 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1725 1726 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1727 PASS_ONE_BIT, 1728 &bit_chk, 0)) { 1729 found_passing_read = 1; 1730 break; 1731 } 1732 } 1733 1734 if (found_passing_read) { 1735 /* Find a failing read */ 1736 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1737 read\n", __func__, __LINE__); 1738 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1739 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1740 testing read d=%u\n", __func__, __LINE__, d); 1741 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1742 1743 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1744 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1745 found_failing_read = 1; 1746 break; 1747 } 1748 } 1749 } else { 1750 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1751 calculate dtaps", __func__, __LINE__); 1752 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1753 } 1754 1755 /* 1756 * The dynamically calculated dtaps_per_ptap is only valid if we 1757 * found a passing/failing read. If we didn't, it means d hit the max 1758 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1759 * statically calculated value. 1760 */ 1761 if (found_passing_read && found_failing_read) 1762 dtaps_per_ptap = d - initial_failing_dtap; 1763 1764 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1765 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1766 - %u = %u", __func__, __LINE__, d, 1767 initial_failing_dtap, dtaps_per_ptap); 1768 1769 /* ******************************************** */ 1770 /* * step 6: Find the centre of the window * */ 1771 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1772 &work_mid, &work_end) == 0) 1773 return 0; 1774 1775 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1776 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1777 v, p-1, d); 1778 return 1; 1779 } 1780 1781 /* 1782 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1783 * dq_in_delay values 1784 */ 1785 static uint32_t 1786 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1787 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1788 { 1789 uint32_t found; 1790 uint32_t i; 1791 uint32_t p; 1792 uint32_t d; 1793 uint32_t r; 1794 1795 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1796 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1797 /* we start at zero, so have one less dq to devide among */ 1798 1799 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1800 test_bgn); 1801 1802 /* try different dq_in_delays since the dq path is shorter than dqs */ 1803 1804 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1805 r += NUM_RANKS_PER_SHADOW_REG) { 1806 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1807 i++, p++, d += delay_step) { 1808 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1809 vfifo_find_dqs_", __func__, __LINE__); 1810 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1811 write_group, read_group); 1812 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1813 scc_mgr_set_dq_in_delay(p, d); 1814 scc_mgr_load_dq(p); 1815 } 1816 writel(0, &sdr_scc_mgr->update); 1817 } 1818 1819 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1820 1821 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1822 en_phase_sweep_dq", __func__, __LINE__); 1823 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1824 chain to zero\n", write_group, read_group, found); 1825 1826 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1827 r += NUM_RANKS_PER_SHADOW_REG) { 1828 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1829 i++, p++) { 1830 scc_mgr_set_dq_in_delay(p, 0); 1831 scc_mgr_load_dq(p); 1832 } 1833 writel(0, &sdr_scc_mgr->update); 1834 } 1835 1836 return found; 1837 } 1838 1839 /* per-bit deskew DQ and center */ 1840 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1841 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1842 uint32_t use_read_test, uint32_t update_fom) 1843 { 1844 uint32_t i, p, d, min_index; 1845 /* 1846 * Store these as signed since there are comparisons with 1847 * signed numbers. 1848 */ 1849 uint32_t bit_chk; 1850 uint32_t sticky_bit_chk; 1851 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1852 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1853 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1854 int32_t mid; 1855 int32_t orig_mid_min, mid_min; 1856 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1857 final_dqs_en; 1858 int32_t dq_margin, dqs_margin; 1859 uint32_t stop; 1860 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1861 uint32_t addr; 1862 1863 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1864 1865 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1866 start_dqs = readl(addr + (read_group << 2)); 1867 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1868 start_dqs_en = readl(addr + ((read_group << 2) 1869 - IO_DQS_EN_DELAY_OFFSET)); 1870 1871 /* set the left and right edge of each bit to an illegal value */ 1872 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1873 sticky_bit_chk = 0; 1874 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1875 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1876 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1877 } 1878 1879 /* Search for the left edge of the window for each bit */ 1880 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1881 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1882 1883 writel(0, &sdr_scc_mgr->update); 1884 1885 /* 1886 * Stop searching when the read test doesn't pass AND when 1887 * we've seen a passing read on every bit. 1888 */ 1889 if (use_read_test) { 1890 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1891 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1892 &bit_chk, 0, 0); 1893 } else { 1894 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1895 0, PASS_ONE_BIT, 1896 &bit_chk, 0); 1897 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1898 (read_group - (write_group * 1899 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1900 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1901 stop = (bit_chk == 0); 1902 } 1903 sticky_bit_chk = sticky_bit_chk | bit_chk; 1904 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1905 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1906 && %u", __func__, __LINE__, d, 1907 sticky_bit_chk, 1908 param->read_correct_mask, stop); 1909 1910 if (stop == 1) { 1911 break; 1912 } else { 1913 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1914 if (bit_chk & 1) { 1915 /* Remember a passing test as the 1916 left_edge */ 1917 left_edge[i] = d; 1918 } else { 1919 /* If a left edge has not been seen yet, 1920 then a future passing test will mark 1921 this edge as the right edge */ 1922 if (left_edge[i] == 1923 IO_IO_IN_DELAY_MAX + 1) { 1924 right_edge[i] = -(d + 1); 1925 } 1926 } 1927 bit_chk = bit_chk >> 1; 1928 } 1929 } 1930 } 1931 1932 /* Reset DQ delay chains to 0 */ 1933 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1934 sticky_bit_chk = 0; 1935 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1936 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1937 %d right_edge[%u]: %d\n", __func__, __LINE__, 1938 i, left_edge[i], i, right_edge[i]); 1939 1940 /* 1941 * Check for cases where we haven't found the left edge, 1942 * which makes our assignment of the the right edge invalid. 1943 * Reset it to the illegal value. 1944 */ 1945 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1946 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1947 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1948 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1949 right_edge[%u]: %d\n", __func__, __LINE__, 1950 i, right_edge[i]); 1951 } 1952 1953 /* 1954 * Reset sticky bit (except for bits where we have seen 1955 * both the left and right edge). 1956 */ 1957 sticky_bit_chk = sticky_bit_chk << 1; 1958 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1959 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1960 sticky_bit_chk = sticky_bit_chk | 1; 1961 } 1962 1963 if (i == 0) 1964 break; 1965 } 1966 1967 /* Search for the right edge of the window for each bit */ 1968 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1969 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1970 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1971 uint32_t delay = d + start_dqs_en; 1972 if (delay > IO_DQS_EN_DELAY_MAX) 1973 delay = IO_DQS_EN_DELAY_MAX; 1974 scc_mgr_set_dqs_en_delay(read_group, delay); 1975 } 1976 scc_mgr_load_dqs(read_group); 1977 1978 writel(0, &sdr_scc_mgr->update); 1979 1980 /* 1981 * Stop searching when the read test doesn't pass AND when 1982 * we've seen a passing read on every bit. 1983 */ 1984 if (use_read_test) { 1985 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1986 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1987 &bit_chk, 0, 0); 1988 } else { 1989 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1990 0, PASS_ONE_BIT, 1991 &bit_chk, 0); 1992 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1993 (read_group - (write_group * 1994 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1995 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1996 stop = (bit_chk == 0); 1997 } 1998 sticky_bit_chk = sticky_bit_chk | bit_chk; 1999 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2000 2001 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2002 %u && %u", __func__, __LINE__, d, 2003 sticky_bit_chk, param->read_correct_mask, stop); 2004 2005 if (stop == 1) { 2006 break; 2007 } else { 2008 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2009 if (bit_chk & 1) { 2010 /* Remember a passing test as 2011 the right_edge */ 2012 right_edge[i] = d; 2013 } else { 2014 if (d != 0) { 2015 /* If a right edge has not been 2016 seen yet, then a future passing 2017 test will mark this edge as the 2018 left edge */ 2019 if (right_edge[i] == 2020 IO_IO_IN_DELAY_MAX + 1) { 2021 left_edge[i] = -(d + 1); 2022 } 2023 } else { 2024 /* d = 0 failed, but it passed 2025 when testing the left edge, 2026 so it must be marginal, 2027 set it to -1 */ 2028 if (right_edge[i] == 2029 IO_IO_IN_DELAY_MAX + 1 && 2030 left_edge[i] != 2031 IO_IO_IN_DELAY_MAX 2032 + 1) { 2033 right_edge[i] = -1; 2034 } 2035 /* If a right edge has not been 2036 seen yet, then a future passing 2037 test will mark this edge as the 2038 left edge */ 2039 else if (right_edge[i] == 2040 IO_IO_IN_DELAY_MAX + 2041 1) { 2042 left_edge[i] = -(d + 1); 2043 } 2044 } 2045 } 2046 2047 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2048 d=%u]: ", __func__, __LINE__, d); 2049 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2050 (int)(bit_chk & 1), i, left_edge[i]); 2051 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2052 right_edge[i]); 2053 bit_chk = bit_chk >> 1; 2054 } 2055 } 2056 } 2057 2058 /* Check that all bits have a window */ 2059 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2060 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2061 %d right_edge[%u]: %d", __func__, __LINE__, 2062 i, left_edge[i], i, right_edge[i]); 2063 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2064 == IO_IO_IN_DELAY_MAX + 1)) { 2065 /* 2066 * Restore delay chain settings before letting the loop 2067 * in rw_mgr_mem_calibrate_vfifo to retry different 2068 * dqs/ck relationships. 2069 */ 2070 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2071 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2072 scc_mgr_set_dqs_en_delay(read_group, 2073 start_dqs_en); 2074 } 2075 scc_mgr_load_dqs(read_group); 2076 writel(0, &sdr_scc_mgr->update); 2077 2078 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2079 find edge [%u]: %d %d", __func__, __LINE__, 2080 i, left_edge[i], right_edge[i]); 2081 if (use_read_test) { 2082 set_failing_group_stage(read_group * 2083 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2084 CAL_STAGE_VFIFO, 2085 CAL_SUBSTAGE_VFIFO_CENTER); 2086 } else { 2087 set_failing_group_stage(read_group * 2088 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2089 CAL_STAGE_VFIFO_AFTER_WRITES, 2090 CAL_SUBSTAGE_VFIFO_CENTER); 2091 } 2092 return 0; 2093 } 2094 } 2095 2096 /* Find middle of window for each DQ bit */ 2097 mid_min = left_edge[0] - right_edge[0]; 2098 min_index = 0; 2099 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2100 mid = left_edge[i] - right_edge[i]; 2101 if (mid < mid_min) { 2102 mid_min = mid; 2103 min_index = i; 2104 } 2105 } 2106 2107 /* 2108 * -mid_min/2 represents the amount that we need to move DQS. 2109 * If mid_min is odd and positive we'll need to add one to 2110 * make sure the rounding in further calculations is correct 2111 * (always bias to the right), so just add 1 for all positive values. 2112 */ 2113 if (mid_min > 0) 2114 mid_min++; 2115 2116 mid_min = mid_min / 2; 2117 2118 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2119 __func__, __LINE__, mid_min, min_index); 2120 2121 /* Determine the amount we can change DQS (which is -mid_min) */ 2122 orig_mid_min = mid_min; 2123 new_dqs = start_dqs - mid_min; 2124 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2125 new_dqs = IO_DQS_IN_DELAY_MAX; 2126 else if (new_dqs < 0) 2127 new_dqs = 0; 2128 2129 mid_min = start_dqs - new_dqs; 2130 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2131 mid_min, new_dqs); 2132 2133 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2134 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2135 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2136 else if (start_dqs_en - mid_min < 0) 2137 mid_min += start_dqs_en - mid_min; 2138 } 2139 new_dqs = start_dqs - mid_min; 2140 2141 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2142 new_dqs=%d mid_min=%d\n", start_dqs, 2143 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2144 new_dqs, mid_min); 2145 2146 /* Initialize data for export structures */ 2147 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2148 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2149 2150 /* add delay to bring centre of all DQ windows to the same "level" */ 2151 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2152 /* Use values before divide by 2 to reduce round off error */ 2153 shift_dq = (left_edge[i] - right_edge[i] - 2154 (left_edge[min_index] - right_edge[min_index]))/2 + 2155 (orig_mid_min - mid_min); 2156 2157 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2158 shift_dq[%u]=%d\n", i, shift_dq); 2159 2160 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2161 temp_dq_in_delay1 = readl(addr + (p << 2)); 2162 temp_dq_in_delay2 = readl(addr + (i << 2)); 2163 2164 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2165 (int32_t)IO_IO_IN_DELAY_MAX) { 2166 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2167 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2168 shift_dq = -(int32_t)temp_dq_in_delay1; 2169 } 2170 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2171 shift_dq[%u]=%d\n", i, shift_dq); 2172 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2173 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2174 scc_mgr_load_dq(p); 2175 2176 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2177 left_edge[i] - shift_dq + (-mid_min), 2178 right_edge[i] + shift_dq - (-mid_min)); 2179 /* To determine values for export structures */ 2180 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2181 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2182 2183 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2184 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2185 } 2186 2187 final_dqs = new_dqs; 2188 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2189 final_dqs_en = start_dqs_en - mid_min; 2190 2191 /* Move DQS-en */ 2192 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2193 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2194 scc_mgr_load_dqs(read_group); 2195 } 2196 2197 /* Move DQS */ 2198 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2199 scc_mgr_load_dqs(read_group); 2200 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2201 dqs_margin=%d", __func__, __LINE__, 2202 dq_margin, dqs_margin); 2203 2204 /* 2205 * Do not remove this line as it makes sure all of our decisions 2206 * have been applied. Apply the update bit. 2207 */ 2208 writel(0, &sdr_scc_mgr->update); 2209 2210 return (dq_margin >= 0) && (dqs_margin >= 0); 2211 } 2212 2213 /* 2214 * calibrate the read valid prediction FIFO. 2215 * 2216 * - read valid prediction will consist of finding a good DQS enable phase, 2217 * DQS enable delay, DQS input phase, and DQS input delay. 2218 * - we also do a per-bit deskew on the DQ lines. 2219 */ 2220 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2221 uint32_t test_bgn) 2222 { 2223 uint32_t p, d, rank_bgn, sr; 2224 uint32_t dtaps_per_ptap; 2225 uint32_t tmp_delay; 2226 uint32_t bit_chk; 2227 uint32_t grp_calibrated; 2228 uint32_t write_group, write_test_bgn; 2229 uint32_t failed_substage; 2230 2231 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2232 2233 /* update info for sims */ 2234 reg_file_set_stage(CAL_STAGE_VFIFO); 2235 2236 write_group = read_group; 2237 write_test_bgn = test_bgn; 2238 2239 /* USER Determine number of delay taps for each phase tap */ 2240 dtaps_per_ptap = 0; 2241 tmp_delay = 0; 2242 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2243 dtaps_per_ptap++; 2244 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2245 } 2246 dtaps_per_ptap--; 2247 tmp_delay = 0; 2248 2249 /* update info for sims */ 2250 reg_file_set_group(read_group); 2251 2252 grp_calibrated = 0; 2253 2254 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2255 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2256 2257 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2258 /* 2259 * In RLDRAMX we may be messing the delay of pins in 2260 * the same write group but outside of the current read 2261 * the group, but that's ok because we haven't 2262 * calibrated output side yet. 2263 */ 2264 if (d > 0) { 2265 scc_mgr_apply_group_all_out_delay_add_all_ranks 2266 (write_group, write_test_bgn, d); 2267 } 2268 2269 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2270 p++) { 2271 /* set a particular dqdqs phase */ 2272 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2273 2274 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2275 p=%u d=%u\n", __func__, __LINE__, 2276 read_group, p, d); 2277 2278 /* 2279 * Load up the patterns used by read calibration 2280 * using current DQDQS phase. 2281 */ 2282 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2283 if (!(gbl->phy_debug_mode_flags & 2284 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2285 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2286 (read_group, 1, &bit_chk)) { 2287 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2288 __func__, __LINE__); 2289 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2290 read_group, p, d); 2291 break; 2292 } 2293 } 2294 2295 /* case:56390 */ 2296 grp_calibrated = 1; 2297 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2298 (write_group, read_group, test_bgn)) { 2299 /* 2300 * USER Read per-bit deskew can be done on a 2301 * per shadow register basis. 2302 */ 2303 for (rank_bgn = 0, sr = 0; 2304 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2305 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2306 ++sr) { 2307 /* 2308 * Determine if this set of ranks 2309 * should be skipped entirely. 2310 */ 2311 if (!param->skip_shadow_regs[sr]) { 2312 /* 2313 * If doing read after write 2314 * calibration, do not update 2315 * FOM, now - do it then. 2316 */ 2317 if (!rw_mgr_mem_calibrate_vfifo_center 2318 (rank_bgn, write_group, 2319 read_group, test_bgn, 1, 0)) { 2320 grp_calibrated = 0; 2321 failed_substage = 2322 CAL_SUBSTAGE_VFIFO_CENTER; 2323 } 2324 } 2325 } 2326 } else { 2327 grp_calibrated = 0; 2328 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2329 } 2330 } 2331 } 2332 2333 if (grp_calibrated == 0) { 2334 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2335 failed_substage); 2336 return 0; 2337 } 2338 2339 /* 2340 * Reset the delay chains back to zero if they have moved > 1 2341 * (check for > 1 because loop will increase d even when pass in 2342 * first case). 2343 */ 2344 if (d > 2) 2345 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2346 2347 return 1; 2348 } 2349 2350 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2351 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2352 uint32_t test_bgn) 2353 { 2354 uint32_t rank_bgn, sr; 2355 uint32_t grp_calibrated; 2356 uint32_t write_group; 2357 2358 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2359 2360 /* update info for sims */ 2361 2362 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2363 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2364 2365 write_group = read_group; 2366 2367 /* update info for sims */ 2368 reg_file_set_group(read_group); 2369 2370 grp_calibrated = 1; 2371 /* Read per-bit deskew can be done on a per shadow register basis */ 2372 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2373 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2374 /* Determine if this set of ranks should be skipped entirely */ 2375 if (!param->skip_shadow_regs[sr]) { 2376 /* This is the last calibration round, update FOM here */ 2377 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2378 write_group, 2379 read_group, 2380 test_bgn, 0, 2381 1)) { 2382 grp_calibrated = 0; 2383 } 2384 } 2385 } 2386 2387 2388 if (grp_calibrated == 0) { 2389 set_failing_group_stage(write_group, 2390 CAL_STAGE_VFIFO_AFTER_WRITES, 2391 CAL_SUBSTAGE_VFIFO_CENTER); 2392 return 0; 2393 } 2394 2395 return 1; 2396 } 2397 2398 /* Calibrate LFIFO to find smallest read latency */ 2399 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2400 { 2401 uint32_t found_one; 2402 uint32_t bit_chk; 2403 2404 debug("%s:%d\n", __func__, __LINE__); 2405 2406 /* update info for sims */ 2407 reg_file_set_stage(CAL_STAGE_LFIFO); 2408 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2409 2410 /* Load up the patterns used by read calibration for all ranks */ 2411 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2412 found_one = 0; 2413 2414 do { 2415 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2416 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2417 __func__, __LINE__, gbl->curr_read_lat); 2418 2419 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2420 NUM_READ_TESTS, 2421 PASS_ALL_BITS, 2422 &bit_chk, 1)) { 2423 break; 2424 } 2425 2426 found_one = 1; 2427 /* reduce read latency and see if things are working */ 2428 /* correctly */ 2429 gbl->curr_read_lat--; 2430 } while (gbl->curr_read_lat > 0); 2431 2432 /* reset the fifos to get pointers to known state */ 2433 2434 writel(0, &phy_mgr_cmd->fifo_reset); 2435 2436 if (found_one) { 2437 /* add a fudge factor to the read latency that was determined */ 2438 gbl->curr_read_lat += 2; 2439 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2440 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2441 read_lat=%u\n", __func__, __LINE__, 2442 gbl->curr_read_lat); 2443 return 1; 2444 } else { 2445 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2446 CAL_SUBSTAGE_READ_LATENCY); 2447 2448 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2449 read_lat=%u\n", __func__, __LINE__, 2450 gbl->curr_read_lat); 2451 return 0; 2452 } 2453 } 2454 2455 /* 2456 * issue write test command. 2457 * two variants are provided. one that just tests a write pattern and 2458 * another that tests datamask functionality. 2459 */ 2460 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2461 uint32_t test_dm) 2462 { 2463 uint32_t mcc_instruction; 2464 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2465 ENABLE_SUPER_QUICK_CALIBRATION); 2466 uint32_t rw_wl_nop_cycles; 2467 uint32_t addr; 2468 2469 /* 2470 * Set counter and jump addresses for the right 2471 * number of NOP cycles. 2472 * The number of supported NOP cycles can range from -1 to infinity 2473 * Three different cases are handled: 2474 * 2475 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2476 * mechanism will be used to insert the right number of NOPs 2477 * 2478 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2479 * issuing the write command will jump straight to the 2480 * micro-instruction that turns on DQS (for DDRx), or outputs write 2481 * data (for RLD), skipping 2482 * the NOP micro-instruction all together 2483 * 2484 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2485 * turned on in the same micro-instruction that issues the write 2486 * command. Then we need 2487 * to directly jump to the micro-instruction that sends out the data 2488 * 2489 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2490 * (2 and 3). One jump-counter (0) is used to perform multiple 2491 * write-read operations. 2492 * one counter left to issue this command in "multiple-group" mode 2493 */ 2494 2495 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2496 2497 if (rw_wl_nop_cycles == -1) { 2498 /* 2499 * CNTR 2 - We want to execute the special write operation that 2500 * turns on DQS right away and then skip directly to the 2501 * instruction that sends out the data. We set the counter to a 2502 * large number so that the jump is always taken. 2503 */ 2504 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2505 2506 /* CNTR 3 - Not used */ 2507 if (test_dm) { 2508 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2509 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2510 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2511 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2512 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2513 } else { 2514 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2515 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2516 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2517 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2518 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2519 } 2520 } else if (rw_wl_nop_cycles == 0) { 2521 /* 2522 * CNTR 2 - We want to skip the NOP operation and go straight 2523 * to the DQS enable instruction. We set the counter to a large 2524 * number so that the jump is always taken. 2525 */ 2526 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2527 2528 /* CNTR 3 - Not used */ 2529 if (test_dm) { 2530 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2531 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2532 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2533 } else { 2534 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2535 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2536 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2537 } 2538 } else { 2539 /* 2540 * CNTR 2 - In this case we want to execute the next instruction 2541 * and NOT take the jump. So we set the counter to 0. The jump 2542 * address doesn't count. 2543 */ 2544 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2545 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2546 2547 /* 2548 * CNTR 3 - Set the nop counter to the number of cycles we 2549 * need to loop for, minus 1. 2550 */ 2551 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2552 if (test_dm) { 2553 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2554 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2555 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2556 } else { 2557 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2558 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2559 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2560 } 2561 } 2562 2563 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2564 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2565 2566 if (quick_write_mode) 2567 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2568 else 2569 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2570 2571 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2572 2573 /* 2574 * CNTR 1 - This is used to ensure enough time elapses 2575 * for read data to come back. 2576 */ 2577 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2578 2579 if (test_dm) { 2580 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2581 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2582 } else { 2583 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2584 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2585 } 2586 2587 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2588 writel(mcc_instruction, addr + (group << 2)); 2589 } 2590 2591 /* Test writes, can check for a single bit pass or multiple bit pass */ 2592 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2593 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2594 uint32_t *bit_chk, uint32_t all_ranks) 2595 { 2596 uint32_t r; 2597 uint32_t correct_mask_vg; 2598 uint32_t tmp_bit_chk; 2599 uint32_t vg; 2600 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2601 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2602 uint32_t addr_rw_mgr; 2603 uint32_t base_rw_mgr; 2604 2605 *bit_chk = param->write_correct_mask; 2606 correct_mask_vg = param->write_correct_mask_vg; 2607 2608 for (r = rank_bgn; r < rank_end; r++) { 2609 if (param->skip_ranks[r]) { 2610 /* request to skip the rank */ 2611 continue; 2612 } 2613 2614 /* set rank */ 2615 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2616 2617 tmp_bit_chk = 0; 2618 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2619 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2620 /* reset the fifos to get pointers to known state */ 2621 writel(0, &phy_mgr_cmd->fifo_reset); 2622 2623 tmp_bit_chk = tmp_bit_chk << 2624 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2625 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2626 rw_mgr_mem_calibrate_write_test_issue(write_group * 2627 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2628 use_dm); 2629 2630 base_rw_mgr = readl(addr_rw_mgr); 2631 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2632 if (vg == 0) 2633 break; 2634 } 2635 *bit_chk &= tmp_bit_chk; 2636 } 2637 2638 if (all_correct) { 2639 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2640 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2641 %u => %lu", write_group, use_dm, 2642 *bit_chk, param->write_correct_mask, 2643 (long unsigned int)(*bit_chk == 2644 param->write_correct_mask)); 2645 return *bit_chk == param->write_correct_mask; 2646 } else { 2647 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2648 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2649 write_group, use_dm, *bit_chk); 2650 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2651 (long unsigned int)(*bit_chk != 0)); 2652 return *bit_chk != 0x00; 2653 } 2654 } 2655 2656 /* 2657 * center all windows. do per-bit-deskew to possibly increase size of 2658 * certain windows. 2659 */ 2660 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2661 uint32_t write_group, uint32_t test_bgn) 2662 { 2663 uint32_t i, p, min_index; 2664 int32_t d; 2665 /* 2666 * Store these as signed since there are comparisons with 2667 * signed numbers. 2668 */ 2669 uint32_t bit_chk; 2670 uint32_t sticky_bit_chk; 2671 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2672 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2673 int32_t mid; 2674 int32_t mid_min, orig_mid_min; 2675 int32_t new_dqs, start_dqs, shift_dq; 2676 int32_t dq_margin, dqs_margin, dm_margin; 2677 uint32_t stop; 2678 uint32_t temp_dq_out1_delay; 2679 uint32_t addr; 2680 2681 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2682 2683 dm_margin = 0; 2684 2685 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2686 start_dqs = readl(addr + 2687 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2688 2689 /* per-bit deskew */ 2690 2691 /* 2692 * set the left and right edge of each bit to an illegal value 2693 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2694 */ 2695 sticky_bit_chk = 0; 2696 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2697 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2698 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2699 } 2700 2701 /* Search for the left edge of the window for each bit */ 2702 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2703 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2704 2705 writel(0, &sdr_scc_mgr->update); 2706 2707 /* 2708 * Stop searching when the read test doesn't pass AND when 2709 * we've seen a passing read on every bit. 2710 */ 2711 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2712 0, PASS_ONE_BIT, &bit_chk, 0); 2713 sticky_bit_chk = sticky_bit_chk | bit_chk; 2714 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2715 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2716 == %u && %u [bit_chk= %u ]\n", 2717 d, sticky_bit_chk, param->write_correct_mask, 2718 stop, bit_chk); 2719 2720 if (stop == 1) { 2721 break; 2722 } else { 2723 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2724 if (bit_chk & 1) { 2725 /* 2726 * Remember a passing test as the 2727 * left_edge. 2728 */ 2729 left_edge[i] = d; 2730 } else { 2731 /* 2732 * If a left edge has not been seen 2733 * yet, then a future passing test will 2734 * mark this edge as the right edge. 2735 */ 2736 if (left_edge[i] == 2737 IO_IO_OUT1_DELAY_MAX + 1) { 2738 right_edge[i] = -(d + 1); 2739 } 2740 } 2741 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2742 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2743 (int)(bit_chk & 1), i, left_edge[i]); 2744 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2745 right_edge[i]); 2746 bit_chk = bit_chk >> 1; 2747 } 2748 } 2749 } 2750 2751 /* Reset DQ delay chains to 0 */ 2752 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2753 sticky_bit_chk = 0; 2754 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2755 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2756 %d right_edge[%u]: %d\n", __func__, __LINE__, 2757 i, left_edge[i], i, right_edge[i]); 2758 2759 /* 2760 * Check for cases where we haven't found the left edge, 2761 * which makes our assignment of the the right edge invalid. 2762 * Reset it to the illegal value. 2763 */ 2764 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2765 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2766 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2767 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2768 right_edge[%u]: %d\n", __func__, __LINE__, 2769 i, right_edge[i]); 2770 } 2771 2772 /* 2773 * Reset sticky bit (except for bits where we have 2774 * seen the left edge). 2775 */ 2776 sticky_bit_chk = sticky_bit_chk << 1; 2777 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2778 sticky_bit_chk = sticky_bit_chk | 1; 2779 2780 if (i == 0) 2781 break; 2782 } 2783 2784 /* Search for the right edge of the window for each bit */ 2785 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2786 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2787 d + start_dqs); 2788 2789 writel(0, &sdr_scc_mgr->update); 2790 2791 /* 2792 * Stop searching when the read test doesn't pass AND when 2793 * we've seen a passing read on every bit. 2794 */ 2795 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2796 0, PASS_ONE_BIT, &bit_chk, 0); 2797 2798 sticky_bit_chk = sticky_bit_chk | bit_chk; 2799 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2800 2801 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2802 %u && %u\n", d, sticky_bit_chk, 2803 param->write_correct_mask, stop); 2804 2805 if (stop == 1) { 2806 if (d == 0) { 2807 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2808 i++) { 2809 /* d = 0 failed, but it passed when 2810 testing the left edge, so it must be 2811 marginal, set it to -1 */ 2812 if (right_edge[i] == 2813 IO_IO_OUT1_DELAY_MAX + 1 && 2814 left_edge[i] != 2815 IO_IO_OUT1_DELAY_MAX + 1) { 2816 right_edge[i] = -1; 2817 } 2818 } 2819 } 2820 break; 2821 } else { 2822 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2823 if (bit_chk & 1) { 2824 /* 2825 * Remember a passing test as 2826 * the right_edge. 2827 */ 2828 right_edge[i] = d; 2829 } else { 2830 if (d != 0) { 2831 /* 2832 * If a right edge has not 2833 * been seen yet, then a future 2834 * passing test will mark this 2835 * edge as the left edge. 2836 */ 2837 if (right_edge[i] == 2838 IO_IO_OUT1_DELAY_MAX + 1) 2839 left_edge[i] = -(d + 1); 2840 } else { 2841 /* 2842 * d = 0 failed, but it passed 2843 * when testing the left edge, 2844 * so it must be marginal, set 2845 * it to -1. 2846 */ 2847 if (right_edge[i] == 2848 IO_IO_OUT1_DELAY_MAX + 1 && 2849 left_edge[i] != 2850 IO_IO_OUT1_DELAY_MAX + 1) 2851 right_edge[i] = -1; 2852 /* 2853 * If a right edge has not been 2854 * seen yet, then a future 2855 * passing test will mark this 2856 * edge as the left edge. 2857 */ 2858 else if (right_edge[i] == 2859 IO_IO_OUT1_DELAY_MAX + 2860 1) 2861 left_edge[i] = -(d + 1); 2862 } 2863 } 2864 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2865 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2866 (int)(bit_chk & 1), i, left_edge[i]); 2867 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2868 right_edge[i]); 2869 bit_chk = bit_chk >> 1; 2870 } 2871 } 2872 } 2873 2874 /* Check that all bits have a window */ 2875 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2876 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2877 %d right_edge[%u]: %d", __func__, __LINE__, 2878 i, left_edge[i], i, right_edge[i]); 2879 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2880 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2881 set_failing_group_stage(test_bgn + i, 2882 CAL_STAGE_WRITES, 2883 CAL_SUBSTAGE_WRITES_CENTER); 2884 return 0; 2885 } 2886 } 2887 2888 /* Find middle of window for each DQ bit */ 2889 mid_min = left_edge[0] - right_edge[0]; 2890 min_index = 0; 2891 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2892 mid = left_edge[i] - right_edge[i]; 2893 if (mid < mid_min) { 2894 mid_min = mid; 2895 min_index = i; 2896 } 2897 } 2898 2899 /* 2900 * -mid_min/2 represents the amount that we need to move DQS. 2901 * If mid_min is odd and positive we'll need to add one to 2902 * make sure the rounding in further calculations is correct 2903 * (always bias to the right), so just add 1 for all positive values. 2904 */ 2905 if (mid_min > 0) 2906 mid_min++; 2907 mid_min = mid_min / 2; 2908 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2909 __LINE__, mid_min); 2910 2911 /* Determine the amount we can change DQS (which is -mid_min) */ 2912 orig_mid_min = mid_min; 2913 new_dqs = start_dqs; 2914 mid_min = 0; 2915 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2916 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2917 /* Initialize data for export structures */ 2918 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2919 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2920 2921 /* add delay to bring centre of all DQ windows to the same "level" */ 2922 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2923 /* Use values before divide by 2 to reduce round off error */ 2924 shift_dq = (left_edge[i] - right_edge[i] - 2925 (left_edge[min_index] - right_edge[min_index]))/2 + 2926 (orig_mid_min - mid_min); 2927 2928 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2929 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2930 2931 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2932 temp_dq_out1_delay = readl(addr + (i << 2)); 2933 if (shift_dq + (int32_t)temp_dq_out1_delay > 2934 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2935 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2936 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2937 shift_dq = -(int32_t)temp_dq_out1_delay; 2938 } 2939 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2940 i, shift_dq); 2941 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2942 scc_mgr_load_dq(i); 2943 2944 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2945 left_edge[i] - shift_dq + (-mid_min), 2946 right_edge[i] + shift_dq - (-mid_min)); 2947 /* To determine values for export structures */ 2948 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2949 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2950 2951 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2952 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2953 } 2954 2955 /* Move DQS */ 2956 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2957 writel(0, &sdr_scc_mgr->update); 2958 2959 /* Centre DM */ 2960 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2961 2962 /* 2963 * set the left and right edge of each bit to an illegal value, 2964 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2965 */ 2966 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2967 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2968 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2969 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2970 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2971 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2972 int32_t win_best = 0; 2973 2974 /* Search for the/part of the window with DM shift */ 2975 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2976 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2977 writel(0, &sdr_scc_mgr->update); 2978 2979 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2980 PASS_ALL_BITS, &bit_chk, 2981 0)) { 2982 /* USE Set current end of the window */ 2983 end_curr = -d; 2984 /* 2985 * If a starting edge of our window has not been seen 2986 * this is our current start of the DM window. 2987 */ 2988 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2989 bgn_curr = -d; 2990 2991 /* 2992 * If current window is bigger than best seen. 2993 * Set best seen to be current window. 2994 */ 2995 if ((end_curr-bgn_curr+1) > win_best) { 2996 win_best = end_curr-bgn_curr+1; 2997 bgn_best = bgn_curr; 2998 end_best = end_curr; 2999 } 3000 } else { 3001 /* We just saw a failing test. Reset temp edge */ 3002 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3003 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3004 } 3005 } 3006 3007 3008 /* Reset DM delay chains to 0 */ 3009 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3010 3011 /* 3012 * Check to see if the current window nudges up aganist 0 delay. 3013 * If so we need to continue the search by shifting DQS otherwise DQS 3014 * search begins as a new search. */ 3015 if (end_curr != 0) { 3016 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3017 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3018 } 3019 3020 /* Search for the/part of the window with DQS shifts */ 3021 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3022 /* 3023 * Note: This only shifts DQS, so are we limiting ourselve to 3024 * width of DQ unnecessarily. 3025 */ 3026 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3027 d + new_dqs); 3028 3029 writel(0, &sdr_scc_mgr->update); 3030 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3031 PASS_ALL_BITS, &bit_chk, 3032 0)) { 3033 /* USE Set current end of the window */ 3034 end_curr = d; 3035 /* 3036 * If a beginning edge of our window has not been seen 3037 * this is our current begin of the DM window. 3038 */ 3039 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3040 bgn_curr = d; 3041 3042 /* 3043 * If current window is bigger than best seen. Set best 3044 * seen to be current window. 3045 */ 3046 if ((end_curr-bgn_curr+1) > win_best) { 3047 win_best = end_curr-bgn_curr+1; 3048 bgn_best = bgn_curr; 3049 end_best = end_curr; 3050 } 3051 } else { 3052 /* We just saw a failing test. Reset temp edge */ 3053 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3054 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3055 3056 /* Early exit optimization: if ther remaining delay 3057 chain space is less than already seen largest window 3058 we can exit */ 3059 if ((win_best-1) > 3060 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3061 break; 3062 } 3063 } 3064 } 3065 3066 /* assign left and right edge for cal and reporting; */ 3067 left_edge[0] = -1*bgn_best; 3068 right_edge[0] = end_best; 3069 3070 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3071 __LINE__, left_edge[0], right_edge[0]); 3072 3073 /* Move DQS (back to orig) */ 3074 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3075 3076 /* Move DM */ 3077 3078 /* Find middle of window for the DM bit */ 3079 mid = (left_edge[0] - right_edge[0]) / 2; 3080 3081 /* only move right, since we are not moving DQS/DQ */ 3082 if (mid < 0) 3083 mid = 0; 3084 3085 /* dm_marign should fail if we never find a window */ 3086 if (win_best == 0) 3087 dm_margin = -1; 3088 else 3089 dm_margin = left_edge[0] - mid; 3090 3091 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3092 writel(0, &sdr_scc_mgr->update); 3093 3094 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3095 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3096 right_edge[0], mid, dm_margin); 3097 /* Export values */ 3098 gbl->fom_out += dq_margin + dqs_margin; 3099 3100 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3101 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3102 dq_margin, dqs_margin, dm_margin); 3103 3104 /* 3105 * Do not remove this line as it makes sure all of our 3106 * decisions have been applied. 3107 */ 3108 writel(0, &sdr_scc_mgr->update); 3109 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3110 } 3111 3112 /* calibrate the write operations */ 3113 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3114 uint32_t test_bgn) 3115 { 3116 /* update info for sims */ 3117 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3118 3119 reg_file_set_stage(CAL_STAGE_WRITES); 3120 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3121 3122 reg_file_set_group(g); 3123 3124 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3125 set_failing_group_stage(g, CAL_STAGE_WRITES, 3126 CAL_SUBSTAGE_WRITES_CENTER); 3127 return 0; 3128 } 3129 3130 return 1; 3131 } 3132 3133 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3134 static void mem_precharge_and_activate(void) 3135 { 3136 uint32_t r; 3137 3138 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3139 if (param->skip_ranks[r]) { 3140 /* request to skip the rank */ 3141 continue; 3142 } 3143 3144 /* set rank */ 3145 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3146 3147 /* precharge all banks ... */ 3148 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3149 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3150 3151 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3152 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3153 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3154 3155 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3156 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3157 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3158 3159 /* activate rows */ 3160 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3161 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3162 } 3163 } 3164 3165 /* Configure various memory related parameters. */ 3166 static void mem_config(void) 3167 { 3168 uint32_t rlat, wlat; 3169 uint32_t rw_wl_nop_cycles; 3170 uint32_t max_latency; 3171 3172 debug("%s:%d\n", __func__, __LINE__); 3173 /* read in write and read latency */ 3174 wlat = readl(&data_mgr->t_wl_add); 3175 wlat += readl(&data_mgr->mem_t_add); 3176 3177 /* WL for hard phy does not include additive latency */ 3178 3179 /* 3180 * add addtional write latency to offset the address/command extra 3181 * clock cycle. We change the AC mux setting causing AC to be delayed 3182 * by one mem clock cycle. Only do this for DDR3 3183 */ 3184 wlat = wlat + 1; 3185 3186 rlat = readl(&data_mgr->t_rl_add); 3187 3188 rw_wl_nop_cycles = wlat - 2; 3189 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3190 3191 /* 3192 * For AV/CV, lfifo is hardened and always runs at full rate so 3193 * max latency in AFI clocks, used here, is correspondingly smaller. 3194 */ 3195 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3196 /* configure for a burst length of 8 */ 3197 3198 /* write latency */ 3199 /* Adjust Write Latency for Hard PHY */ 3200 wlat = wlat + 1; 3201 3202 /* set a pretty high read latency initially */ 3203 gbl->curr_read_lat = rlat + 16; 3204 3205 if (gbl->curr_read_lat > max_latency) 3206 gbl->curr_read_lat = max_latency; 3207 3208 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3209 3210 /* advertise write latency */ 3211 gbl->curr_write_lat = wlat; 3212 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3213 3214 /* initialize bit slips */ 3215 mem_precharge_and_activate(); 3216 } 3217 3218 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3219 static void mem_skip_calibrate(void) 3220 { 3221 uint32_t vfifo_offset; 3222 uint32_t i, j, r; 3223 3224 debug("%s:%d\n", __func__, __LINE__); 3225 /* Need to update every shadow register set used by the interface */ 3226 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3227 r += NUM_RANKS_PER_SHADOW_REG) { 3228 /* 3229 * Set output phase alignment settings appropriate for 3230 * skip calibration. 3231 */ 3232 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3233 scc_mgr_set_dqs_en_phase(i, 0); 3234 #if IO_DLL_CHAIN_LENGTH == 6 3235 scc_mgr_set_dqdqs_output_phase(i, 6); 3236 #else 3237 scc_mgr_set_dqdqs_output_phase(i, 7); 3238 #endif 3239 /* 3240 * Case:33398 3241 * 3242 * Write data arrives to the I/O two cycles before write 3243 * latency is reached (720 deg). 3244 * -> due to bit-slip in a/c bus 3245 * -> to allow board skew where dqs is longer than ck 3246 * -> how often can this happen!? 3247 * -> can claim back some ptaps for high freq 3248 * support if we can relax this, but i digress... 3249 * 3250 * The write_clk leads mem_ck by 90 deg 3251 * The minimum ptap of the OPA is 180 deg 3252 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3253 * The write_clk is always delayed by 2 ptaps 3254 * 3255 * Hence, to make DQS aligned to CK, we need to delay 3256 * DQS by: 3257 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3258 * 3259 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3260 * gives us the number of ptaps, which simplies to: 3261 * 3262 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3263 */ 3264 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3265 IO_DLL_CHAIN_LENGTH - 2)); 3266 } 3267 writel(0xff, &sdr_scc_mgr->dqs_ena); 3268 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3269 3270 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3271 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3272 SCC_MGR_GROUP_COUNTER_OFFSET); 3273 } 3274 writel(0xff, &sdr_scc_mgr->dq_ena); 3275 writel(0xff, &sdr_scc_mgr->dm_ena); 3276 writel(0, &sdr_scc_mgr->update); 3277 } 3278 3279 /* Compensate for simulation model behaviour */ 3280 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3281 scc_mgr_set_dqs_bus_in_delay(i, 10); 3282 scc_mgr_load_dqs(i); 3283 } 3284 writel(0, &sdr_scc_mgr->update); 3285 3286 /* 3287 * ArriaV has hard FIFOs that can only be initialized by incrementing 3288 * in sequencer. 3289 */ 3290 vfifo_offset = CALIB_VFIFO_OFFSET; 3291 for (j = 0; j < vfifo_offset; j++) { 3292 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3293 } 3294 writel(0, &phy_mgr_cmd->fifo_reset); 3295 3296 /* 3297 * For ACV with hard lfifo, we get the skip-cal setting from 3298 * generation-time constant. 3299 */ 3300 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3301 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3302 } 3303 3304 /* Memory calibration entry point */ 3305 static uint32_t mem_calibrate(void) 3306 { 3307 uint32_t i; 3308 uint32_t rank_bgn, sr; 3309 uint32_t write_group, write_test_bgn; 3310 uint32_t read_group, read_test_bgn; 3311 uint32_t run_groups, current_run; 3312 uint32_t failing_groups = 0; 3313 uint32_t group_failed = 0; 3314 uint32_t sr_failed = 0; 3315 3316 debug("%s:%d\n", __func__, __LINE__); 3317 /* Initialize the data settings */ 3318 3319 gbl->error_substage = CAL_SUBSTAGE_NIL; 3320 gbl->error_stage = CAL_STAGE_NIL; 3321 gbl->error_group = 0xff; 3322 gbl->fom_in = 0; 3323 gbl->fom_out = 0; 3324 3325 mem_config(); 3326 3327 uint32_t bypass_mode = 0x1; 3328 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3329 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3330 SCC_MGR_GROUP_COUNTER_OFFSET); 3331 scc_set_bypass_mode(i, bypass_mode); 3332 } 3333 3334 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3335 /* 3336 * Set VFIFO and LFIFO to instant-on settings in skip 3337 * calibration mode. 3338 */ 3339 mem_skip_calibrate(); 3340 } else { 3341 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3342 /* 3343 * Zero all delay chain/phase settings for all 3344 * groups and all shadow register sets. 3345 */ 3346 scc_mgr_zero_all(); 3347 3348 run_groups = ~param->skip_groups; 3349 3350 for (write_group = 0, write_test_bgn = 0; write_group 3351 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3352 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3353 /* Initialized the group failure */ 3354 group_failed = 0; 3355 3356 current_run = run_groups & ((1 << 3357 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3358 run_groups = run_groups >> 3359 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3360 3361 if (current_run == 0) 3362 continue; 3363 3364 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3365 SCC_MGR_GROUP_COUNTER_OFFSET); 3366 scc_mgr_zero_group(write_group, write_test_bgn, 3367 0); 3368 3369 for (read_group = write_group * 3370 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3371 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3372 read_test_bgn = 0; 3373 read_group < (write_group + 1) * 3374 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3375 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3376 group_failed == 0; 3377 read_group++, read_test_bgn += 3378 RW_MGR_MEM_DQ_PER_READ_DQS) { 3379 /* Calibrate the VFIFO */ 3380 if (!((STATIC_CALIB_STEPS) & 3381 CALIB_SKIP_VFIFO)) { 3382 if (!rw_mgr_mem_calibrate_vfifo 3383 (read_group, 3384 read_test_bgn)) { 3385 group_failed = 1; 3386 3387 if (!(gbl-> 3388 phy_debug_mode_flags & 3389 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3390 return 0; 3391 } 3392 } 3393 } 3394 } 3395 3396 /* Calibrate the output side */ 3397 if (group_failed == 0) { 3398 for (rank_bgn = 0, sr = 0; rank_bgn 3399 < RW_MGR_MEM_NUMBER_OF_RANKS; 3400 rank_bgn += 3401 NUM_RANKS_PER_SHADOW_REG, 3402 ++sr) { 3403 sr_failed = 0; 3404 if (!((STATIC_CALIB_STEPS) & 3405 CALIB_SKIP_WRITES)) { 3406 if ((STATIC_CALIB_STEPS) 3407 & CALIB_SKIP_DELAY_SWEEPS) { 3408 /* not needed in quick mode! */ 3409 } else { 3410 /* 3411 * Determine if this set of 3412 * ranks should be skipped 3413 * entirely. 3414 */ 3415 if (!param->skip_shadow_regs[sr]) { 3416 if (!rw_mgr_mem_calibrate_writes 3417 (rank_bgn, write_group, 3418 write_test_bgn)) { 3419 sr_failed = 1; 3420 if (!(gbl-> 3421 phy_debug_mode_flags & 3422 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3423 return 0; 3424 } 3425 } 3426 } 3427 } 3428 } 3429 if (sr_failed != 0) 3430 group_failed = 1; 3431 } 3432 } 3433 3434 if (group_failed == 0) { 3435 for (read_group = write_group * 3436 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3437 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3438 read_test_bgn = 0; 3439 read_group < (write_group + 1) 3440 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3441 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3442 group_failed == 0; 3443 read_group++, read_test_bgn += 3444 RW_MGR_MEM_DQ_PER_READ_DQS) { 3445 if (!((STATIC_CALIB_STEPS) & 3446 CALIB_SKIP_WRITES)) { 3447 if (!rw_mgr_mem_calibrate_vfifo_end 3448 (read_group, read_test_bgn)) { 3449 group_failed = 1; 3450 3451 if (!(gbl->phy_debug_mode_flags 3452 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3453 return 0; 3454 } 3455 } 3456 } 3457 } 3458 } 3459 3460 if (group_failed != 0) 3461 failing_groups++; 3462 } 3463 3464 /* 3465 * USER If there are any failing groups then report 3466 * the failure. 3467 */ 3468 if (failing_groups != 0) 3469 return 0; 3470 3471 /* Calibrate the LFIFO */ 3472 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3473 /* 3474 * If we're skipping groups as part of debug, 3475 * don't calibrate LFIFO. 3476 */ 3477 if (param->skip_groups == 0) { 3478 if (!rw_mgr_mem_calibrate_lfifo()) 3479 return 0; 3480 } 3481 } 3482 } 3483 } 3484 3485 /* 3486 * Do not remove this line as it makes sure all of our decisions 3487 * have been applied. 3488 */ 3489 writel(0, &sdr_scc_mgr->update); 3490 return 1; 3491 } 3492 3493 static uint32_t run_mem_calibrate(void) 3494 { 3495 uint32_t pass; 3496 uint32_t debug_info; 3497 3498 debug("%s:%d\n", __func__, __LINE__); 3499 3500 /* Reset pass/fail status shown on afi_cal_success/fail */ 3501 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3502 3503 /* stop tracking manger */ 3504 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3505 3506 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3507 3508 initialize(); 3509 rw_mgr_mem_initialize(); 3510 3511 pass = mem_calibrate(); 3512 3513 mem_precharge_and_activate(); 3514 writel(0, &phy_mgr_cmd->fifo_reset); 3515 3516 /* 3517 * Handoff: 3518 * Don't return control of the PHY back to AFI when in debug mode. 3519 */ 3520 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3521 rw_mgr_mem_handoff(); 3522 /* 3523 * In Hard PHY this is a 2-bit control: 3524 * 0: AFI Mux Select 3525 * 1: DDIO Mux Select 3526 */ 3527 writel(0x2, &phy_mgr_cfg->mux_sel); 3528 } 3529 3530 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3531 3532 if (pass) { 3533 printf("%s: CALIBRATION PASSED\n", __FILE__); 3534 3535 gbl->fom_in /= 2; 3536 gbl->fom_out /= 2; 3537 3538 if (gbl->fom_in > 0xff) 3539 gbl->fom_in = 0xff; 3540 3541 if (gbl->fom_out > 0xff) 3542 gbl->fom_out = 0xff; 3543 3544 /* Update the FOM in the register file */ 3545 debug_info = gbl->fom_in; 3546 debug_info |= gbl->fom_out << 8; 3547 writel(debug_info, &sdr_reg_file->fom); 3548 3549 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3550 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3551 } else { 3552 printf("%s: CALIBRATION FAILED\n", __FILE__); 3553 3554 debug_info = gbl->error_stage; 3555 debug_info |= gbl->error_substage << 8; 3556 debug_info |= gbl->error_group << 16; 3557 3558 writel(debug_info, &sdr_reg_file->failing_stage); 3559 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3560 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3561 3562 /* Update the failing group/stage in the register file */ 3563 debug_info = gbl->error_stage; 3564 debug_info |= gbl->error_substage << 8; 3565 debug_info |= gbl->error_group << 16; 3566 writel(debug_info, &sdr_reg_file->failing_stage); 3567 } 3568 3569 return pass; 3570 } 3571 3572 /** 3573 * hc_initialize_rom_data() - Initialize ROM data 3574 * 3575 * Initialize ROM data. 3576 */ 3577 static void hc_initialize_rom_data(void) 3578 { 3579 u32 i, addr; 3580 3581 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3582 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3583 writel(inst_rom_init[i], addr + (i << 2)); 3584 3585 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3586 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3587 writel(ac_rom_init[i], addr + (i << 2)); 3588 } 3589 3590 /** 3591 * initialize_reg_file() - Initialize SDR register file 3592 * 3593 * Initialize SDR register file. 3594 */ 3595 static void initialize_reg_file(void) 3596 { 3597 /* Initialize the register file with the correct data */ 3598 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3599 writel(0, &sdr_reg_file->debug_data_addr); 3600 writel(0, &sdr_reg_file->cur_stage); 3601 writel(0, &sdr_reg_file->fom); 3602 writel(0, &sdr_reg_file->failing_stage); 3603 writel(0, &sdr_reg_file->debug1); 3604 writel(0, &sdr_reg_file->debug2); 3605 } 3606 3607 /** 3608 * initialize_hps_phy() - Initialize HPS PHY 3609 * 3610 * Initialize HPS PHY. 3611 */ 3612 static void initialize_hps_phy(void) 3613 { 3614 uint32_t reg; 3615 /* 3616 * Tracking also gets configured here because it's in the 3617 * same register. 3618 */ 3619 uint32_t trk_sample_count = 7500; 3620 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3621 /* 3622 * Format is number of outer loops in the 16 MSB, sample 3623 * count in 16 LSB. 3624 */ 3625 3626 reg = 0; 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3630 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3631 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3633 /* 3634 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3635 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3636 */ 3637 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3638 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3639 trk_sample_count); 3640 writel(reg, &sdr_ctrl->phy_ctrl0); 3641 3642 reg = 0; 3643 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3644 trk_sample_count >> 3645 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3646 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3647 trk_long_idle_sample_count); 3648 writel(reg, &sdr_ctrl->phy_ctrl1); 3649 3650 reg = 0; 3651 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3652 trk_long_idle_sample_count >> 3653 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3654 writel(reg, &sdr_ctrl->phy_ctrl2); 3655 } 3656 3657 static void initialize_tracking(void) 3658 { 3659 uint32_t concatenated_longidle = 0x0; 3660 uint32_t concatenated_delays = 0x0; 3661 uint32_t concatenated_rw_addr = 0x0; 3662 uint32_t concatenated_refresh = 0x0; 3663 uint32_t trk_sample_count = 7500; 3664 uint32_t dtaps_per_ptap; 3665 uint32_t tmp_delay; 3666 3667 /* 3668 * compute usable version of value in case we skip full 3669 * computation later 3670 */ 3671 dtaps_per_ptap = 0; 3672 tmp_delay = 0; 3673 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3674 dtaps_per_ptap++; 3675 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3676 } 3677 dtaps_per_ptap--; 3678 3679 concatenated_longidle = concatenated_longidle ^ 10; 3680 /*longidle outer loop */ 3681 concatenated_longidle = concatenated_longidle << 16; 3682 concatenated_longidle = concatenated_longidle ^ 100; 3683 /*longidle sample count */ 3684 concatenated_delays = concatenated_delays ^ 243; 3685 /* trfc, worst case of 933Mhz 4Gb */ 3686 concatenated_delays = concatenated_delays << 8; 3687 concatenated_delays = concatenated_delays ^ 14; 3688 /* trcd, worst case */ 3689 concatenated_delays = concatenated_delays << 8; 3690 concatenated_delays = concatenated_delays ^ 10; 3691 /* vfifo wait */ 3692 concatenated_delays = concatenated_delays << 8; 3693 concatenated_delays = concatenated_delays ^ 4; 3694 /* mux delay */ 3695 3696 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3697 concatenated_rw_addr = concatenated_rw_addr << 8; 3698 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3699 concatenated_rw_addr = concatenated_rw_addr << 8; 3700 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3701 concatenated_rw_addr = concatenated_rw_addr << 8; 3702 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3703 3704 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3705 concatenated_refresh = concatenated_refresh << 24; 3706 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3707 3708 /* Initialize the register file with the correct data */ 3709 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3710 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3711 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3712 writel(concatenated_delays, &sdr_reg_file->delays); 3713 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3714 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3715 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3716 } 3717 3718 int sdram_calibration_full(void) 3719 { 3720 struct param_type my_param; 3721 struct gbl_type my_gbl; 3722 uint32_t pass; 3723 uint32_t i; 3724 3725 param = &my_param; 3726 gbl = &my_gbl; 3727 3728 /* Initialize the debug mode flags */ 3729 gbl->phy_debug_mode_flags = 0; 3730 /* Set the calibration enabled by default */ 3731 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3732 /* 3733 * Only sweep all groups (regardless of fail state) by default 3734 * Set enabled read test by default. 3735 */ 3736 #if DISABLE_GUARANTEED_READ 3737 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3738 #endif 3739 /* Initialize the register file */ 3740 initialize_reg_file(); 3741 3742 /* Initialize any PHY CSR */ 3743 initialize_hps_phy(); 3744 3745 scc_mgr_initialize(); 3746 3747 initialize_tracking(); 3748 3749 /* USER Enable all ranks, groups */ 3750 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3751 param->skip_ranks[i] = 0; 3752 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3753 param->skip_shadow_regs[i] = 0; 3754 param->skip_groups = 0; 3755 3756 printf("%s: Preparing to start memory calibration\n", __FILE__); 3757 3758 debug("%s:%d\n", __func__, __LINE__); 3759 debug_cond(DLEVEL == 1, 3760 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3761 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3762 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3763 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3764 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3765 debug_cond(DLEVEL == 1, 3766 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3767 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3768 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3769 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3770 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3771 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3772 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3773 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3774 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3775 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3776 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3777 IO_IO_OUT2_DELAY_MAX); 3778 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3779 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3780 3781 hc_initialize_rom_data(); 3782 3783 /* update info for sims */ 3784 reg_file_set_stage(CAL_STAGE_NIL); 3785 reg_file_set_group(0); 3786 3787 /* 3788 * Load global needed for those actions that require 3789 * some dynamic calibration support. 3790 */ 3791 dyn_calib_steps = STATIC_CALIB_STEPS; 3792 /* 3793 * Load global to allow dynamic selection of delay loop settings 3794 * based on calibration mode. 3795 */ 3796 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3797 skip_delay_mask = 0xff; 3798 else 3799 skip_delay_mask = 0x0; 3800 3801 pass = run_mem_calibrate(); 3802 3803 printf("%s: Calibration complete\n", __FILE__); 3804 return pass; 3805 } 3806