xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision e11ef3d2)
1 // SPDX-License-Identifier: BSD-3-Clause
2 /*
3  * Copyright Altera Corporation (C) 2012-2015
4  */
5 
6 #include <common.h>
7 #include <asm/io.h>
8 #include <asm/arch/sdram.h>
9 #include <errno.h>
10 #include "sequencer.h"
11 
12 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
13 	(struct socfpga_sdr_rw_load_manager *)
14 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
15 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
16 	(struct socfpga_sdr_rw_load_jump_manager *)
17 		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
18 static struct socfpga_sdr_reg_file *sdr_reg_file =
19 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
20 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
21 	(struct socfpga_sdr_scc_mgr *)
22 		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
23 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
24 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
25 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
26 	(struct socfpga_phy_mgr_cfg *)
27 		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
28 static struct socfpga_data_mgr *data_mgr =
29 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
30 static struct socfpga_sdr_ctrl *sdr_ctrl =
31 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
32 
33 const struct socfpga_sdram_rw_mgr_config *rwcfg;
34 const struct socfpga_sdram_io_config *iocfg;
35 const struct socfpga_sdram_misc_config *misccfg;
36 
37 #define DELTA_D		1
38 
39 /*
40  * In order to reduce ROM size, most of the selectable calibration steps are
41  * decided at compile time based on the user's calibration mode selection,
42  * as captured by the STATIC_CALIB_STEPS selection below.
43  *
44  * However, to support simulation-time selection of fast simulation mode, where
45  * we skip everything except the bare minimum, we need a few of the steps to
46  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
47  * check, which is based on the rtl-supplied value, or we dynamically compute
48  * the value to use based on the dynamically-chosen calibration mode
49  */
50 
51 #define DLEVEL 0
52 #define STATIC_IN_RTL_SIM 0
53 #define STATIC_SKIP_DELAY_LOOPS 0
54 
55 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
56 	STATIC_SKIP_DELAY_LOOPS)
57 
58 /* calibration steps requested by the rtl */
59 static u16 dyn_calib_steps;
60 
61 /*
62  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
63  * instead of static, we use boolean logic to select between
64  * non-skip and skip values
65  *
66  * The mask is set to include all bits when not-skipping, but is
67  * zero when skipping
68  */
69 
70 static u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */
71 
72 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
73 	((non_skip_value) & skip_delay_mask)
74 
75 static struct gbl_type *gbl;
76 static struct param_type *param;
77 
78 static void set_failing_group_stage(u32 group, u32 stage,
79 	u32 substage)
80 {
81 	/*
82 	 * Only set the global stage if there was not been any other
83 	 * failing group
84 	 */
85 	if (gbl->error_stage == CAL_STAGE_NIL)	{
86 		gbl->error_substage = substage;
87 		gbl->error_stage = stage;
88 		gbl->error_group = group;
89 	}
90 }
91 
92 static void reg_file_set_group(u16 set_group)
93 {
94 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
95 }
96 
97 static void reg_file_set_stage(u8 set_stage)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
100 }
101 
102 static void reg_file_set_sub_stage(u8 set_sub_stage)
103 {
104 	set_sub_stage &= 0xff;
105 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
106 }
107 
108 /**
109  * phy_mgr_initialize() - Initialize PHY Manager
110  *
111  * Initialize PHY Manager.
112  */
113 static void phy_mgr_initialize(void)
114 {
115 	u32 ratio;
116 
117 	debug("%s:%d\n", __func__, __LINE__);
118 	/* Calibration has control over path to memory */
119 	/*
120 	 * In Hard PHY this is a 2-bit control:
121 	 * 0: AFI Mux Select
122 	 * 1: DDIO Mux Select
123 	 */
124 	writel(0x3, &phy_mgr_cfg->mux_sel);
125 
126 	/* USER memory clock is not stable we begin initialization  */
127 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
128 
129 	/* USER calibration status all set to zero */
130 	writel(0, &phy_mgr_cfg->cal_status);
131 
132 	writel(0, &phy_mgr_cfg->cal_debug_info);
133 
134 	/* Init params only if we do NOT skip calibration. */
135 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
136 		return;
137 
138 	ratio = rwcfg->mem_dq_per_read_dqs /
139 		rwcfg->mem_virtual_groups_per_read_dqs;
140 	param->read_correct_mask_vg = (1 << ratio) - 1;
141 	param->write_correct_mask_vg = (1 << ratio) - 1;
142 	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
143 	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
144 }
145 
146 /**
147  * set_rank_and_odt_mask() - Set Rank and ODT mask
148  * @rank:	Rank mask
149  * @odt_mode:	ODT mode, OFF or READ_WRITE
150  *
151  * Set Rank and ODT mask (On-Die Termination).
152  */
153 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
154 {
155 	u32 odt_mask_0 = 0;
156 	u32 odt_mask_1 = 0;
157 	u32 cs_and_odt_mask;
158 
159 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
160 		odt_mask_0 = 0x0;
161 		odt_mask_1 = 0x0;
162 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
163 		switch (rwcfg->mem_number_of_ranks) {
164 		case 1:	/* 1 Rank */
165 			/* Read: ODT = 0 ; Write: ODT = 1 */
166 			odt_mask_0 = 0x0;
167 			odt_mask_1 = 0x1;
168 			break;
169 		case 2:	/* 2 Ranks */
170 			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
171 				/*
172 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
173 				 *   OR
174 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
175 				 *
176 				 * Since MEM_NUMBER_OF_RANKS is 2, they
177 				 * are both single rank with 2 CS each
178 				 * (special for RDIMM).
179 				 *
180 				 * Read: Turn on ODT on the opposite rank
181 				 * Write: Turn on ODT on all ranks
182 				 */
183 				odt_mask_0 = 0x3 & ~(1 << rank);
184 				odt_mask_1 = 0x3;
185 			} else {
186 				/*
187 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
188 				 *
189 				 * Read: Turn on ODT off on all ranks
190 				 * Write: Turn on ODT on active rank
191 				 */
192 				odt_mask_0 = 0x0;
193 				odt_mask_1 = 0x3 & (1 << rank);
194 			}
195 			break;
196 		case 4:	/* 4 Ranks */
197 			/* Read:
198 			 * ----------+-----------------------+
199 			 *           |         ODT           |
200 			 * Read From +-----------------------+
201 			 *   Rank    |  3  |  2  |  1  |  0  |
202 			 * ----------+-----+-----+-----+-----+
203 			 *     0     |  0  |  1  |  0  |  0  |
204 			 *     1     |  1  |  0  |  0  |  0  |
205 			 *     2     |  0  |  0  |  0  |  1  |
206 			 *     3     |  0  |  0  |  1  |  0  |
207 			 * ----------+-----+-----+-----+-----+
208 			 *
209 			 * Write:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Write To  +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  1  |
216 			 *     1     |  1  |  0  |  1  |  0  |
217 			 *     2     |  0  |  1  |  0  |  1  |
218 			 *     3     |  1  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 */
221 			switch (rank) {
222 			case 0:
223 				odt_mask_0 = 0x4;
224 				odt_mask_1 = 0x5;
225 				break;
226 			case 1:
227 				odt_mask_0 = 0x8;
228 				odt_mask_1 = 0xA;
229 				break;
230 			case 2:
231 				odt_mask_0 = 0x1;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 3:
235 				odt_mask_0 = 0x2;
236 				odt_mask_1 = 0xA;
237 				break;
238 			}
239 			break;
240 		}
241 	}
242 
243 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
244 			  ((0xFF & odt_mask_0) << 8) |
245 			  ((0xFF & odt_mask_1) << 16);
246 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
247 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
248 }
249 
250 /**
251  * scc_mgr_set() - Set SCC Manager register
252  * @off:	Base offset in SCC Manager space
253  * @grp:	Read/Write group
254  * @val:	Value to be set
255  *
256  * This function sets the SCC Manager (Scan Chain Control Manager) register.
257  */
258 static void scc_mgr_set(u32 off, u32 grp, u32 val)
259 {
260 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
261 }
262 
263 /**
264  * scc_mgr_initialize() - Initialize SCC Manager registers
265  *
266  * Initialize SCC Manager registers.
267  */
268 static void scc_mgr_initialize(void)
269 {
270 	/*
271 	 * Clear register file for HPS. 16 (2^4) is the size of the
272 	 * full register file in the scc mgr:
273 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
274 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
275 	 */
276 	int i;
277 
278 	for (i = 0; i < 16; i++) {
279 		debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
280 			   __func__, __LINE__, i);
281 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
282 	}
283 }
284 
285 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
286 {
287 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
288 }
289 
290 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
291 {
292 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
293 }
294 
295 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
296 {
297 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
298 }
299 
300 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
301 {
302 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
303 }
304 
305 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
306 {
307 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
308 }
309 
310 static void scc_mgr_set_dqs_io_in_delay(u32 delay)
311 {
312 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
313 		    delay);
314 }
315 
316 static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
317 {
318 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
319 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dqs_out1_delay(u32 delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
331 		    delay);
332 }
333 
334 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
335 {
336 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
337 		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
338 		    delay);
339 }
340 
341 /* load up dqs config settings */
342 static void scc_mgr_load_dqs(u32 dqs)
343 {
344 	writel(dqs, &sdr_scc_mgr->dqs_ena);
345 }
346 
347 /* load up dqs io config settings */
348 static void scc_mgr_load_dqs_io(void)
349 {
350 	writel(0, &sdr_scc_mgr->dqs_io_ena);
351 }
352 
353 /* load up dq config settings */
354 static void scc_mgr_load_dq(u32 dq_in_group)
355 {
356 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
357 }
358 
359 /* load up dm config settings */
360 static void scc_mgr_load_dm(u32 dm)
361 {
362 	writel(dm, &sdr_scc_mgr->dm_ena);
363 }
364 
365 /**
366  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
367  * @off:	Base offset in SCC Manager space
368  * @grp:	Read/Write group
369  * @val:	Value to be set
370  * @update:	If non-zero, trigger SCC Manager update for all ranks
371  *
372  * This function sets the SCC Manager (Scan Chain Control Manager) register
373  * and optionally triggers the SCC update for all ranks.
374  */
375 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
376 				  const int update)
377 {
378 	u32 r;
379 
380 	for (r = 0; r < rwcfg->mem_number_of_ranks;
381 	     r += NUM_RANKS_PER_SHADOW_REG) {
382 		scc_mgr_set(off, grp, val);
383 
384 		if (update || (r == 0)) {
385 			writel(grp, &sdr_scc_mgr->dqs_ena);
386 			writel(0, &sdr_scc_mgr->update);
387 		}
388 	}
389 }
390 
391 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
392 {
393 	/*
394 	 * USER although the h/w doesn't support different phases per
395 	 * shadow register, for simplicity our scc manager modeling
396 	 * keeps different phase settings per shadow reg, and it's
397 	 * important for us to keep them in sync to match h/w.
398 	 * for efficiency, the scan chain update should occur only
399 	 * once to sr0.
400 	 */
401 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
402 			      read_group, phase, 0);
403 }
404 
405 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
406 						     u32 phase)
407 {
408 	/*
409 	 * USER although the h/w doesn't support different phases per
410 	 * shadow register, for simplicity our scc manager modeling
411 	 * keeps different phase settings per shadow reg, and it's
412 	 * important for us to keep them in sync to match h/w.
413 	 * for efficiency, the scan chain update should occur only
414 	 * once to sr0.
415 	 */
416 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
417 			      write_group, phase, 0);
418 }
419 
420 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
421 					       u32 delay)
422 {
423 	/*
424 	 * In shadow register mode, the T11 settings are stored in
425 	 * registers in the core, which are updated by the DQS_ENA
426 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
427 	 * save lots of rank switching overhead, by calling
428 	 * select_shadow_regs_for_update with update_scan_chains
429 	 * set to 0.
430 	 */
431 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
432 			      read_group, delay, 1);
433 }
434 
435 /**
436  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
437  * @write_group:	Write group
438  * @delay:		Delay value
439  *
440  * This function sets the OCT output delay in SCC manager.
441  */
442 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
443 {
444 	const int ratio = rwcfg->mem_if_read_dqs_width /
445 			  rwcfg->mem_if_write_dqs_width;
446 	const int base = write_group * ratio;
447 	int i;
448 	/*
449 	 * Load the setting in the SCC manager
450 	 * Although OCT affects only write data, the OCT delay is controlled
451 	 * by the DQS logic block which is instantiated once per read group.
452 	 * For protocols where a write group consists of multiple read groups,
453 	 * the setting must be set multiple times.
454 	 */
455 	for (i = 0; i < ratio; i++)
456 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
457 }
458 
459 /**
460  * scc_mgr_set_hhp_extras() - Set HHP extras.
461  *
462  * Load the fixed setting in the SCC manager HHP extras.
463  */
464 static void scc_mgr_set_hhp_extras(void)
465 {
466 	/*
467 	 * Load the fixed setting in the SCC manager
468 	 * bits: 0:0 = 1'b1	- DQS bypass
469 	 * bits: 1:1 = 1'b1	- DQ bypass
470 	 * bits: 4:2 = 3'b001	- rfifo_mode
471 	 * bits: 6:5 = 2'b01	- rfifo clock_select
472 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
473 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
474 	 */
475 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
476 			  (1 << 2) | (1 << 1) | (1 << 0);
477 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
478 			 SCC_MGR_HHP_GLOBALS_OFFSET |
479 			 SCC_MGR_HHP_EXTRAS_OFFSET;
480 
481 	debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
482 		   __func__, __LINE__);
483 	writel(value, addr);
484 	debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
485 		   __func__, __LINE__);
486 }
487 
488 /**
489  * scc_mgr_zero_all() - Zero all DQS config
490  *
491  * Zero all DQS config.
492  */
493 static void scc_mgr_zero_all(void)
494 {
495 	int i, r;
496 
497 	/*
498 	 * USER Zero all DQS config settings, across all groups and all
499 	 * shadow registers
500 	 */
501 	for (r = 0; r < rwcfg->mem_number_of_ranks;
502 	     r += NUM_RANKS_PER_SHADOW_REG) {
503 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
504 			/*
505 			 * The phases actually don't exist on a per-rank basis,
506 			 * but there's no harm updating them several times, so
507 			 * let's keep the code simple.
508 			 */
509 			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
510 			scc_mgr_set_dqs_en_phase(i, 0);
511 			scc_mgr_set_dqs_en_delay(i, 0);
512 		}
513 
514 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
515 			scc_mgr_set_dqdqs_output_phase(i, 0);
516 			/* Arria V/Cyclone V don't have out2. */
517 			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
518 		}
519 	}
520 
521 	/* Multicast to all DQS group enables. */
522 	writel(0xff, &sdr_scc_mgr->dqs_ena);
523 	writel(0, &sdr_scc_mgr->update);
524 }
525 
526 /**
527  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
528  * @write_group:	Write group
529  *
530  * Set bypass mode and trigger SCC update.
531  */
532 static void scc_set_bypass_mode(const u32 write_group)
533 {
534 	/* Multicast to all DQ enables. */
535 	writel(0xff, &sdr_scc_mgr->dq_ena);
536 	writel(0xff, &sdr_scc_mgr->dm_ena);
537 
538 	/* Update current DQS IO enable. */
539 	writel(0, &sdr_scc_mgr->dqs_io_ena);
540 
541 	/* Update the DQS logic. */
542 	writel(write_group, &sdr_scc_mgr->dqs_ena);
543 
544 	/* Hit update. */
545 	writel(0, &sdr_scc_mgr->update);
546 }
547 
548 /**
549  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
550  * @write_group:	Write group
551  *
552  * Load DQS settings for Write Group, do not trigger SCC update.
553  */
554 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
555 {
556 	const int ratio = rwcfg->mem_if_read_dqs_width /
557 			  rwcfg->mem_if_write_dqs_width;
558 	const int base = write_group * ratio;
559 	int i;
560 	/*
561 	 * Load the setting in the SCC manager
562 	 * Although OCT affects only write data, the OCT delay is controlled
563 	 * by the DQS logic block which is instantiated once per read group.
564 	 * For protocols where a write group consists of multiple read groups,
565 	 * the setting must be set multiple times.
566 	 */
567 	for (i = 0; i < ratio; i++)
568 		writel(base + i, &sdr_scc_mgr->dqs_ena);
569 }
570 
571 /**
572  * scc_mgr_zero_group() - Zero all configs for a group
573  *
574  * Zero DQ, DM, DQS and OCT configs for a group.
575  */
576 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
577 {
578 	int i, r;
579 
580 	for (r = 0; r < rwcfg->mem_number_of_ranks;
581 	     r += NUM_RANKS_PER_SHADOW_REG) {
582 		/* Zero all DQ config settings. */
583 		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
584 			scc_mgr_set_dq_out1_delay(i, 0);
585 			if (!out_only)
586 				scc_mgr_set_dq_in_delay(i, 0);
587 		}
588 
589 		/* Multicast to all DQ enables. */
590 		writel(0xff, &sdr_scc_mgr->dq_ena);
591 
592 		/* Zero all DM config settings. */
593 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
594 			if (!out_only)
595 				scc_mgr_set_dm_in_delay(i, 0);
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 		}
598 
599 		/* Multicast to all DM enables. */
600 		writel(0xff, &sdr_scc_mgr->dm_ena);
601 
602 		/* Zero all DQS IO settings. */
603 		if (!out_only)
604 			scc_mgr_set_dqs_io_in_delay(0);
605 
606 		/* Arria V/Cyclone V don't have out2. */
607 		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
608 		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
609 		scc_mgr_load_dqs_for_write_group(write_group);
610 
611 		/* Multicast to all DQS IO enables (only 1 in total). */
612 		writel(0, &sdr_scc_mgr->dqs_io_ena);
613 
614 		/* Hit update to zero everything. */
615 		writel(0, &sdr_scc_mgr->update);
616 	}
617 }
618 
619 /*
620  * apply and load a particular input delay for the DQ pins in a group
621  * group_bgn is the index of the first dq pin (in the write group)
622  */
623 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
624 {
625 	u32 i, p;
626 
627 	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
628 		scc_mgr_set_dq_in_delay(p, delay);
629 		scc_mgr_load_dq(p);
630 	}
631 }
632 
633 /**
634  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
635  * @delay:		Delay value
636  *
637  * Apply and load a particular output delay for the DQ pins in a group.
638  */
639 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
640 {
641 	int i;
642 
643 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
644 		scc_mgr_set_dq_out1_delay(i, delay);
645 		scc_mgr_load_dq(i);
646 	}
647 }
648 
649 /* apply and load a particular output delay for the DM pins in a group */
650 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
651 {
652 	u32 i;
653 
654 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655 		scc_mgr_set_dm_out1_delay(i, delay1);
656 		scc_mgr_load_dm(i);
657 	}
658 }
659 
660 
661 /* apply and load delay on both DQS and OCT out1 */
662 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
663 						    u32 delay)
664 {
665 	scc_mgr_set_dqs_out1_delay(delay);
666 	scc_mgr_load_dqs_io();
667 
668 	scc_mgr_set_oct_out1_delay(write_group, delay);
669 	scc_mgr_load_dqs_for_write_group(write_group);
670 }
671 
672 /**
673  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
674  * @write_group:	Write group
675  * @delay:		Delay value
676  *
677  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
678  */
679 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
680 						  const u32 delay)
681 {
682 	u32 i, new_delay;
683 
684 	/* DQ shift */
685 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
686 		scc_mgr_load_dq(i);
687 
688 	/* DM shift */
689 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
690 		scc_mgr_load_dm(i);
691 
692 	/* DQS shift */
693 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
694 	if (new_delay > iocfg->io_out2_delay_max) {
695 		debug_cond(DLEVEL >= 1,
696 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
697 			   __func__, __LINE__, write_group, delay, new_delay,
698 			   iocfg->io_out2_delay_max,
699 			   new_delay - iocfg->io_out2_delay_max);
700 		new_delay -= iocfg->io_out2_delay_max;
701 		scc_mgr_set_dqs_out1_delay(new_delay);
702 	}
703 
704 	scc_mgr_load_dqs_io();
705 
706 	/* OCT shift */
707 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
708 	if (new_delay > iocfg->io_out2_delay_max) {
709 		debug_cond(DLEVEL >= 1,
710 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
711 			   __func__, __LINE__, write_group, delay,
712 			   new_delay, iocfg->io_out2_delay_max,
713 			   new_delay - iocfg->io_out2_delay_max);
714 		new_delay -= iocfg->io_out2_delay_max;
715 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
716 	}
717 
718 	scc_mgr_load_dqs_for_write_group(write_group);
719 }
720 
721 /**
722  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
723  * @write_group:	Write group
724  * @delay:		Delay value
725  *
726  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
727  */
728 static void
729 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
730 						const u32 delay)
731 {
732 	int r;
733 
734 	for (r = 0; r < rwcfg->mem_number_of_ranks;
735 	     r += NUM_RANKS_PER_SHADOW_REG) {
736 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
737 		writel(0, &sdr_scc_mgr->update);
738 	}
739 }
740 
741 /**
742  * set_jump_as_return() - Return instruction optimization
743  *
744  * Optimization used to recover some slots in ddr3 inst_rom could be
745  * applied to other protocols if we wanted to
746  */
747 static void set_jump_as_return(void)
748 {
749 	/*
750 	 * To save space, we replace return with jump to special shared
751 	 * RETURN instruction so we set the counter to large value so that
752 	 * we always jump.
753 	 */
754 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
755 	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
756 }
757 
758 /**
759  * delay_for_n_mem_clocks() - Delay for N memory clocks
760  * @clocks:	Length of the delay
761  *
762  * Delay for N memory clocks.
763  */
764 static void delay_for_n_mem_clocks(const u32 clocks)
765 {
766 	u32 afi_clocks;
767 	u16 c_loop;
768 	u8 inner;
769 	u8 outer;
770 
771 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772 
773 	/* Scale (rounding up) to get afi clocks. */
774 	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
775 	if (afi_clocks)	/* Temporary underflow protection */
776 		afi_clocks--;
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little
780 	 * bit because of a few extra instructions in outer loops.
781 	 * Note, the loops have a test at the end, and do the test
782 	 * before the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	c_loop = afi_clocks >> 16;
786 	outer = c_loop ? 0xff : (afi_clocks >> 8);
787 	inner = outer ? 0xff : afi_clocks;
788 
789 	/*
790 	 * rom instructions are structured as follows:
791 	 *
792 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
793 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
794 	 *                return
795 	 *
796 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
797 	 * TARGET_B is set to IDLE_LOOP2 as well
798 	 *
799 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
800 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
801 	 *
802 	 * a little confusing, but it helps save precious space in the inst_rom
803 	 * and sequencer rom and keeps the delays more accurate and reduces
804 	 * overhead
805 	 */
806 	if (afi_clocks < 0x100) {
807 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808 		       &sdr_rw_load_mgr_regs->load_cntr1);
809 
810 		writel(rwcfg->idle_loop1,
811 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
812 
813 		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
814 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
815 	} else {
816 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817 		       &sdr_rw_load_mgr_regs->load_cntr0);
818 
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
820 		       &sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(rwcfg->idle_loop2,
823 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
824 
825 		writel(rwcfg->idle_loop2,
826 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827 
828 		do {
829 			writel(rwcfg->idle_loop2,
830 			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
831 			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832 		} while (c_loop-- != 0);
833 	}
834 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
835 }
836 
837 /**
838  * rw_mgr_mem_init_load_regs() - Load instruction registers
839  * @cntr0:	Counter 0 value
840  * @cntr1:	Counter 1 value
841  * @cntr2:	Counter 2 value
842  * @jump:	Jump instruction value
843  *
844  * Load instruction registers.
845  */
846 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
847 {
848 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
850 
851 	/* Load counters */
852 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
853 	       &sdr_rw_load_mgr_regs->load_cntr0);
854 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
855 	       &sdr_rw_load_mgr_regs->load_cntr1);
856 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
857 	       &sdr_rw_load_mgr_regs->load_cntr2);
858 
859 	/* Load jump address */
860 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
862 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
863 
864 	/* Execute count instruction */
865 	writel(jump, grpaddr);
866 }
867 
868 /**
869  * rw_mgr_mem_load_user() - Load user calibration values
870  * @fin1:	Final instruction 1
871  * @fin2:	Final instruction 2
872  * @precharge:	If 1, precharge the banks at the end
873  *
874  * Load user calibration values and optionally precharge the banks.
875  */
876 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
877 				 const int precharge)
878 {
879 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
880 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
881 	u32 r;
882 
883 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
884 		/* set rank */
885 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
886 
887 		/* precharge all banks ... */
888 		if (precharge)
889 			writel(rwcfg->precharge_all, grpaddr);
890 
891 		/*
892 		 * USER Use Mirror-ed commands for odd ranks if address
893 		 * mirrorring is on
894 		 */
895 		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
896 			set_jump_as_return();
897 			writel(rwcfg->mrs2_mirr, grpaddr);
898 			delay_for_n_mem_clocks(4);
899 			set_jump_as_return();
900 			writel(rwcfg->mrs3_mirr, grpaddr);
901 			delay_for_n_mem_clocks(4);
902 			set_jump_as_return();
903 			writel(rwcfg->mrs1_mirr, grpaddr);
904 			delay_for_n_mem_clocks(4);
905 			set_jump_as_return();
906 			writel(fin1, grpaddr);
907 		} else {
908 			set_jump_as_return();
909 			writel(rwcfg->mrs2, grpaddr);
910 			delay_for_n_mem_clocks(4);
911 			set_jump_as_return();
912 			writel(rwcfg->mrs3, grpaddr);
913 			delay_for_n_mem_clocks(4);
914 			set_jump_as_return();
915 			writel(rwcfg->mrs1, grpaddr);
916 			set_jump_as_return();
917 			writel(fin2, grpaddr);
918 		}
919 
920 		if (precharge)
921 			continue;
922 
923 		set_jump_as_return();
924 		writel(rwcfg->zqcl, grpaddr);
925 
926 		/* tZQinit = tDLLK = 512 ck cycles */
927 		delay_for_n_mem_clocks(512);
928 	}
929 }
930 
931 /**
932  * rw_mgr_mem_initialize() - Initialize RW Manager
933  *
934  * Initialize RW Manager.
935  */
936 static void rw_mgr_mem_initialize(void)
937 {
938 	debug("%s:%d\n", __func__, __LINE__);
939 
940 	/* The reset / cke part of initialization is broadcasted to all ranks */
941 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
942 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
943 
944 	/*
945 	 * Here's how you load register for a loop
946 	 * Counters are located @ 0x800
947 	 * Jump address are located @ 0xC00
948 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
949 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
950 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
951 	 * significant bits
952 	 */
953 
954 	/* Start with memory RESET activated */
955 
956 	/* tINIT = 200us */
957 
958 	/*
959 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
960 	 * If a and b are the number of iteration in 2 nested loops
961 	 * it takes the following number of cycles to complete the operation:
962 	 * number_of_cycles = ((2 + n) * a + 2) * b
963 	 * where n is the number of instruction in the inner loop
964 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
965 	 * b = 6A
966 	 */
967 	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
968 				  misccfg->tinit_cntr1_val,
969 				  misccfg->tinit_cntr2_val,
970 				  rwcfg->init_reset_0_cke_0);
971 
972 	/* Indicate that memory is stable. */
973 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
974 
975 	/*
976 	 * transition the RESET to high
977 	 * Wait for 500us
978 	 */
979 
980 	/*
981 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982 	 * If a and b are the number of iteration in 2 nested loops
983 	 * it takes the following number of cycles to complete the operation
984 	 * number_of_cycles = ((2 + n) * a + 2) * b
985 	 * where n is the number of instruction in the inner loop
986 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987 	 * b = FF
988 	 */
989 	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
990 				  misccfg->treset_cntr1_val,
991 				  misccfg->treset_cntr2_val,
992 				  rwcfg->init_reset_1_cke_0);
993 
994 	/* Bring up clock enable. */
995 
996 	/* tXRP < 250 ck cycles */
997 	delay_for_n_mem_clocks(250);
998 
999 	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000 			     0);
1001 }
1002 
1003 /**
1004  * rw_mgr_mem_handoff() - Hand off the memory to user
1005  *
1006  * At the end of calibration we have to program the user settings in
1007  * and hand off the memory to the user.
1008  */
1009 static void rw_mgr_mem_handoff(void)
1010 {
1011 	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012 	/*
1013 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1014 	 * commands, but we will have plenty of NIOS cycles before actual
1015 	 * handoff so its okay.
1016 	 */
1017 }
1018 
1019 /**
1020  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021  * @group:	Write Group
1022  * @use_dm:	Use DM
1023  *
1024  * Issue write test command. Two variants are provided, one that just tests
1025  * a write pattern and another that tests datamask functionality.
1026  */
1027 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028 						  u32 test_dm)
1029 {
1030 	const u32 quick_write_mode =
1031 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032 		misccfg->enable_super_quick_calibration;
1033 	u32 mcc_instruction;
1034 	u32 rw_wl_nop_cycles;
1035 
1036 	/*
1037 	 * Set counter and jump addresses for the right
1038 	 * number of NOP cycles.
1039 	 * The number of supported NOP cycles can range from -1 to infinity
1040 	 * Three different cases are handled:
1041 	 *
1042 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043 	 *    mechanism will be used to insert the right number of NOPs
1044 	 *
1045 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046 	 *    issuing the write command will jump straight to the
1047 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048 	 *    data (for RLD), skipping
1049 	 *    the NOP micro-instruction all together
1050 	 *
1051 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052 	 *    turned on in the same micro-instruction that issues the write
1053 	 *    command. Then we need
1054 	 *    to directly jump to the micro-instruction that sends out the data
1055 	 *
1056 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1058 	 *       write-read operations.
1059 	 *       one counter left to issue this command in "multiple-group" mode
1060 	 */
1061 
1062 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063 
1064 	if (rw_wl_nop_cycles == -1) {
1065 		/*
1066 		 * CNTR 2 - We want to execute the special write operation that
1067 		 * turns on DQS right away and then skip directly to the
1068 		 * instruction that sends out the data. We set the counter to a
1069 		 * large number so that the jump is always taken.
1070 		 */
1071 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072 
1073 		/* CNTR 3 - Not used */
1074 		if (test_dm) {
1075 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080 		} else {
1081 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082 			writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086 		}
1087 	} else if (rw_wl_nop_cycles == 0) {
1088 		/*
1089 		 * CNTR 2 - We want to skip the NOP operation and go straight
1090 		 * to the DQS enable instruction. We set the counter to a large
1091 		 * number so that the jump is always taken.
1092 		 */
1093 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094 
1095 		/* CNTR 3 - Not used */
1096 		if (test_dm) {
1097 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100 		} else {
1101 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102 			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104 		}
1105 	} else {
1106 		/*
1107 		 * CNTR 2 - In this case we want to execute the next instruction
1108 		 * and NOT take the jump. So we set the counter to 0. The jump
1109 		 * address doesn't count.
1110 		 */
1111 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113 
1114 		/*
1115 		 * CNTR 3 - Set the nop counter to the number of cycles we
1116 		 * need to loop for, minus 1.
1117 		 */
1118 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119 		if (test_dm) {
1120 			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121 			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123 		} else {
1124 			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125 			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127 		}
1128 	}
1129 
1130 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132 
1133 	if (quick_write_mode)
1134 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135 	else
1136 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137 
1138 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139 
1140 	/*
1141 	 * CNTR 1 - This is used to ensure enough time elapses
1142 	 * for read data to come back.
1143 	 */
1144 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145 
1146 	if (test_dm) {
1147 		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149 	} else {
1150 		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152 	}
1153 
1154 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156 				(group << 2));
1157 }
1158 
1159 /**
1160  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161  * @rank_bgn:		Rank number
1162  * @write_group:	Write Group
1163  * @use_dm:		Use DM
1164  * @all_correct:	All bits must be correct in the mask
1165  * @bit_chk:		Resulting bit mask after the test
1166  * @all_ranks:		Test all ranks
1167  *
1168  * Test writes, can check for a single bit pass or multiple bit pass.
1169  */
1170 static int
1171 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172 				const u32 use_dm, const u32 all_correct,
1173 				u32 *bit_chk, const u32 all_ranks)
1174 {
1175 	const u32 rank_end = all_ranks ?
1176 				rwcfg->mem_number_of_ranks :
1177 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178 	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179 				rwcfg->mem_virtual_groups_per_write_dqs;
1180 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1181 
1182 	u32 tmp_bit_chk, base_rw_mgr;
1183 	int vg, r;
1184 
1185 	*bit_chk = param->write_correct_mask;
1186 
1187 	for (r = rank_bgn; r < rank_end; r++) {
1188 		/* Set rank */
1189 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190 
1191 		tmp_bit_chk = 0;
1192 		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193 		     vg >= 0; vg--) {
1194 			/* Reset the FIFOs to get pointers to known state. */
1195 			writel(0, &phy_mgr_cmd->fifo_reset);
1196 
1197 			rw_mgr_mem_calibrate_write_test_issue(
1198 				write_group *
1199 				rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200 				use_dm);
1201 
1202 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203 			tmp_bit_chk <<= shift_ratio;
1204 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205 		}
1206 
1207 		*bit_chk &= tmp_bit_chk;
1208 	}
1209 
1210 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211 	if (all_correct) {
1212 		debug_cond(DLEVEL >= 2,
1213 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214 			   write_group, use_dm, *bit_chk,
1215 			   param->write_correct_mask,
1216 			   *bit_chk == param->write_correct_mask);
1217 		return *bit_chk == param->write_correct_mask;
1218 	} else {
1219 		debug_cond(DLEVEL >= 2,
1220 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222 		return *bit_chk != 0x00;
1223 	}
1224 }
1225 
1226 /**
1227  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228  * @rank_bgn:	Rank number
1229  * @group:	Read/Write Group
1230  * @all_ranks:	Test all ranks
1231  *
1232  * Performs a guaranteed read on the patterns we are going to use during a
1233  * read test to ensure memory works.
1234  */
1235 static int
1236 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237 					const u32 all_ranks)
1238 {
1239 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241 	const u32 addr_offset =
1242 			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243 	const u32 rank_end = all_ranks ?
1244 				rwcfg->mem_number_of_ranks :
1245 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246 	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247 				rwcfg->mem_virtual_groups_per_read_dqs;
1248 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1249 
1250 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251 	int vg, r;
1252 	int ret = 0;
1253 
1254 	bit_chk = param->read_correct_mask;
1255 
1256 	for (r = rank_bgn; r < rank_end; r++) {
1257 		/* Set rank */
1258 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259 
1260 		/* Load up a constant bursts of read commands */
1261 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262 		writel(rwcfg->guaranteed_read,
1263 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264 
1265 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266 		writel(rwcfg->guaranteed_read_cont,
1267 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268 
1269 		tmp_bit_chk = 0;
1270 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271 		     vg >= 0; vg--) {
1272 			/* Reset the FIFOs to get pointers to known state. */
1273 			writel(0, &phy_mgr_cmd->fifo_reset);
1274 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276 			writel(rwcfg->guaranteed_read,
1277 			       addr + addr_offset + (vg << 2));
1278 
1279 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280 			tmp_bit_chk <<= shift_ratio;
1281 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282 		}
1283 
1284 		bit_chk &= tmp_bit_chk;
1285 	}
1286 
1287 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288 
1289 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290 
1291 	if (bit_chk != param->read_correct_mask)
1292 		ret = -EIO;
1293 
1294 	debug_cond(DLEVEL >= 1,
1295 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296 		   __func__, __LINE__, group, bit_chk,
1297 		   param->read_correct_mask, ret);
1298 
1299 	return ret;
1300 }
1301 
1302 /**
1303  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304  * @rank_bgn:	Rank number
1305  * @all_ranks:	Test all ranks
1306  *
1307  * Load up the patterns we are going to use during a read test.
1308  */
1309 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310 						    const int all_ranks)
1311 {
1312 	const u32 rank_end = all_ranks ?
1313 			rwcfg->mem_number_of_ranks :
1314 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315 	u32 r;
1316 
1317 	debug("%s:%d\n", __func__, __LINE__);
1318 
1319 	for (r = rank_bgn; r < rank_end; r++) {
1320 		/* set rank */
1321 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322 
1323 		/* Load up a constant bursts */
1324 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325 
1326 		writel(rwcfg->guaranteed_write_wait0,
1327 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328 
1329 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330 
1331 		writel(rwcfg->guaranteed_write_wait1,
1332 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333 
1334 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335 
1336 		writel(rwcfg->guaranteed_write_wait2,
1337 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338 
1339 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340 
1341 		writel(rwcfg->guaranteed_write_wait3,
1342 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343 
1344 		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346 	}
1347 
1348 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349 }
1350 
1351 /**
1352  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353  * @rank_bgn:		Rank number
1354  * @group:		Read/Write group
1355  * @num_tries:		Number of retries of the test
1356  * @all_correct:	All bits must be correct in the mask
1357  * @bit_chk:		Resulting bit mask after the test
1358  * @all_groups:		Test all R/W groups
1359  * @all_ranks:		Test all ranks
1360  *
1361  * Try a read and see if it returns correct data back. Test has dummy reads
1362  * inserted into the mix used to align DQS enable. Test has more thorough
1363  * checks than the regular read test.
1364  */
1365 static int
1366 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367 			       const u32 num_tries, const u32 all_correct,
1368 			       u32 *bit_chk,
1369 			       const u32 all_groups, const u32 all_ranks)
1370 {
1371 	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373 	const u32 quick_read_mode =
1374 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375 		 misccfg->enable_super_quick_calibration);
1376 	u32 correct_mask_vg = param->read_correct_mask_vg;
1377 	u32 tmp_bit_chk;
1378 	u32 base_rw_mgr;
1379 	u32 addr;
1380 
1381 	int r, vg, ret;
1382 
1383 	*bit_chk = param->read_correct_mask;
1384 
1385 	for (r = rank_bgn; r < rank_end; r++) {
1386 		/* set rank */
1387 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388 
1389 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390 
1391 		writel(rwcfg->read_b2b_wait1,
1392 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393 
1394 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395 		writel(rwcfg->read_b2b_wait2,
1396 		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397 
1398 		if (quick_read_mode)
1399 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400 			/* need at least two (1+1) reads to capture failures */
1401 		else if (all_groups)
1402 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403 		else
1404 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405 
1406 		writel(rwcfg->read_b2b,
1407 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408 		if (all_groups)
1409 			writel(rwcfg->mem_if_read_dqs_width *
1410 			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411 			       &sdr_rw_load_mgr_regs->load_cntr3);
1412 		else
1413 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414 
1415 		writel(rwcfg->read_b2b,
1416 		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417 
1418 		tmp_bit_chk = 0;
1419 		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420 		     vg--) {
1421 			/* Reset the FIFOs to get pointers to known state. */
1422 			writel(0, &phy_mgr_cmd->fifo_reset);
1423 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425 
1426 			if (all_groups) {
1427 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429 			} else {
1430 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432 			}
1433 
1434 			writel(rwcfg->read_b2b, addr +
1435 			       ((group *
1436 				 rwcfg->mem_virtual_groups_per_read_dqs +
1437 				 vg) << 2));
1438 
1439 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440 			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441 					rwcfg->mem_virtual_groups_per_read_dqs;
1442 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443 		}
1444 
1445 		*bit_chk &= tmp_bit_chk;
1446 	}
1447 
1448 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449 	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450 
1451 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452 
1453 	if (all_correct) {
1454 		ret = (*bit_chk == param->read_correct_mask);
1455 		debug_cond(DLEVEL >= 2,
1456 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457 			   __func__, __LINE__, group, all_groups, *bit_chk,
1458 			   param->read_correct_mask, ret);
1459 	} else	{
1460 		ret = (*bit_chk != 0x00);
1461 		debug_cond(DLEVEL >= 2,
1462 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463 			   __func__, __LINE__, group, all_groups, *bit_chk,
1464 			   0, ret);
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472  * @grp:		Read/Write group
1473  * @num_tries:		Number of retries of the test
1474  * @all_correct:	All bits must be correct in the mask
1475  * @all_groups:		Test all R/W groups
1476  *
1477  * Perform a READ test across all memory ranks.
1478  */
1479 static int
1480 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481 					 const u32 all_correct,
1482 					 const u32 all_groups)
1483 {
1484 	u32 bit_chk;
1485 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486 					      &bit_chk, all_groups, 1);
1487 }
1488 
1489 /**
1490  * rw_mgr_incr_vfifo() - Increase VFIFO value
1491  * @grp:	Read/Write group
1492  *
1493  * Increase VFIFO value.
1494  */
1495 static void rw_mgr_incr_vfifo(const u32 grp)
1496 {
1497 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498 }
1499 
1500 /**
1501  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502  * @grp:	Read/Write group
1503  *
1504  * Decrease VFIFO value.
1505  */
1506 static void rw_mgr_decr_vfifo(const u32 grp)
1507 {
1508 	u32 i;
1509 
1510 	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1511 		rw_mgr_incr_vfifo(grp);
1512 }
1513 
1514 /**
1515  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516  * @grp:	Read/Write group
1517  *
1518  * Push VFIFO until a failing read happens.
1519  */
1520 static int find_vfifo_failing_read(const u32 grp)
1521 {
1522 	u32 v, ret, fail_cnt = 0;
1523 
1524 	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1525 		debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1526 			   __func__, __LINE__, v);
1527 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528 						PASS_ONE_BIT, 0);
1529 		if (!ret) {
1530 			fail_cnt++;
1531 
1532 			if (fail_cnt == 2)
1533 				return v;
1534 		}
1535 
1536 		/* Fiddle with FIFO. */
1537 		rw_mgr_incr_vfifo(grp);
1538 	}
1539 
1540 	/* No failing read found! Something must have gone wrong. */
1541 	debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542 	return 0;
1543 }
1544 
1545 /**
1546  * sdr_find_phase_delay() - Find DQS enable phase or delay
1547  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1548  * @delay:	If 1, look for delay, if 0, look for phase
1549  * @grp:	Read/Write group
1550  * @work:	Working window position
1551  * @work_inc:	Working window increment
1552  * @pd:		DQS Phase/Delay Iterator
1553  *
1554  * Find working or non-working DQS enable phase setting.
1555  */
1556 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557 				u32 *work, const u32 work_inc, u32 *pd)
1558 {
1559 	const u32 max = delay ? iocfg->dqs_en_delay_max :
1560 				iocfg->dqs_en_phase_max;
1561 	u32 ret;
1562 
1563 	for (; *pd <= max; (*pd)++) {
1564 		if (delay)
1565 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1566 		else
1567 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1568 
1569 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1570 					PASS_ONE_BIT, 0);
1571 		if (!working)
1572 			ret = !ret;
1573 
1574 		if (ret)
1575 			return 0;
1576 
1577 		if (work)
1578 			*work += work_inc;
1579 	}
1580 
1581 	return -EINVAL;
1582 }
1583 /**
1584  * sdr_find_phase() - Find DQS enable phase
1585  * @working:	If 1, look for working phase, if 0, look for non-working phase
1586  * @grp:	Read/Write group
1587  * @work:	Working window position
1588  * @i:		Iterator
1589  * @p:		DQS Phase Iterator
1590  *
1591  * Find working or non-working DQS enable phase setting.
1592  */
1593 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1594 			  u32 *i, u32 *p)
1595 {
1596 	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1597 	int ret;
1598 
1599 	for (; *i < end; (*i)++) {
1600 		if (working)
1601 			*p = 0;
1602 
1603 		ret = sdr_find_phase_delay(working, 0, grp, work,
1604 					   iocfg->delay_per_opa_tap, p);
1605 		if (!ret)
1606 			return 0;
1607 
1608 		if (*p > iocfg->dqs_en_phase_max) {
1609 			/* Fiddle with FIFO. */
1610 			rw_mgr_incr_vfifo(grp);
1611 			if (!working)
1612 				*p = 0;
1613 		}
1614 	}
1615 
1616 	return -EINVAL;
1617 }
1618 
1619 /**
1620  * sdr_working_phase() - Find working DQS enable phase
1621  * @grp:	Read/Write group
1622  * @work_bgn:	Working window start position
1623  * @d:		dtaps output value
1624  * @p:		DQS Phase Iterator
1625  * @i:		Iterator
1626  *
1627  * Find working DQS enable phase setting.
1628  */
1629 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1630 			     u32 *p, u32 *i)
1631 {
1632 	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1633 				   iocfg->delay_per_dqs_en_dchain_tap;
1634 	int ret;
1635 
1636 	*work_bgn = 0;
1637 
1638 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1639 		*i = 0;
1640 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1641 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1642 		if (!ret)
1643 			return 0;
1644 		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1645 	}
1646 
1647 	/* Cannot find working solution */
1648 	debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1649 		   __func__, __LINE__);
1650 	return -EINVAL;
1651 }
1652 
1653 /**
1654  * sdr_backup_phase() - Find DQS enable backup phase
1655  * @grp:	Read/Write group
1656  * @work_bgn:	Working window start position
1657  * @p:		DQS Phase Iterator
1658  *
1659  * Find DQS enable backup phase setting.
1660  */
1661 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1662 {
1663 	u32 tmp_delay, d;
1664 	int ret;
1665 
1666 	/* Special case code for backing up a phase */
1667 	if (*p == 0) {
1668 		*p = iocfg->dqs_en_phase_max;
1669 		rw_mgr_decr_vfifo(grp);
1670 	} else {
1671 		(*p)--;
1672 	}
1673 	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1674 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1675 
1676 	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1677 	     d++) {
1678 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1679 
1680 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1681 					PASS_ONE_BIT, 0);
1682 		if (ret) {
1683 			*work_bgn = tmp_delay;
1684 			break;
1685 		}
1686 
1687 		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1688 	}
1689 
1690 	/* Restore VFIFO to old state before we decremented it (if needed). */
1691 	(*p)++;
1692 	if (*p > iocfg->dqs_en_phase_max) {
1693 		*p = 0;
1694 		rw_mgr_incr_vfifo(grp);
1695 	}
1696 
1697 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1698 }
1699 
1700 /**
1701  * sdr_nonworking_phase() - Find non-working DQS enable phase
1702  * @grp:	Read/Write group
1703  * @work_end:	Working window end position
1704  * @p:		DQS Phase Iterator
1705  * @i:		Iterator
1706  *
1707  * Find non-working DQS enable phase setting.
1708  */
1709 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1710 {
1711 	int ret;
1712 
1713 	(*p)++;
1714 	*work_end += iocfg->delay_per_opa_tap;
1715 	if (*p > iocfg->dqs_en_phase_max) {
1716 		/* Fiddle with FIFO. */
1717 		*p = 0;
1718 		rw_mgr_incr_vfifo(grp);
1719 	}
1720 
1721 	ret = sdr_find_phase(0, grp, work_end, i, p);
1722 	if (ret) {
1723 		/* Cannot see edge of failing read. */
1724 		debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1725 			   __func__, __LINE__);
1726 	}
1727 
1728 	return ret;
1729 }
1730 
1731 /**
1732  * sdr_find_window_center() - Find center of the working DQS window.
1733  * @grp:	Read/Write group
1734  * @work_bgn:	First working settings
1735  * @work_end:	Last working settings
1736  *
1737  * Find center of the working DQS enable window.
1738  */
1739 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1740 				  const u32 work_end)
1741 {
1742 	u32 work_mid;
1743 	int tmp_delay = 0;
1744 	int i, p, d;
1745 
1746 	work_mid = (work_bgn + work_end) / 2;
1747 
1748 	debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1749 		   work_bgn, work_end, work_mid);
1750 	/* Get the middle delay to be less than a VFIFO delay */
1751 	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1752 
1753 	debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1754 	work_mid %= tmp_delay;
1755 	debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1756 
1757 	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1758 	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1759 		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1760 	p = tmp_delay / iocfg->delay_per_opa_tap;
1761 
1762 	debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1763 
1764 	d = DIV_ROUND_UP(work_mid - tmp_delay,
1765 			 iocfg->delay_per_dqs_en_dchain_tap);
1766 	if (d > iocfg->dqs_en_delay_max)
1767 		d = iocfg->dqs_en_delay_max;
1768 	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1769 
1770 	debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1771 
1772 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1773 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1774 
1775 	/*
1776 	 * push vfifo until we can successfully calibrate. We can do this
1777 	 * because the largest possible margin in 1 VFIFO cycle.
1778 	 */
1779 	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1780 		debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1781 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1782 							     PASS_ONE_BIT,
1783 							     0)) {
1784 			debug_cond(DLEVEL >= 2,
1785 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1786 				   __func__, __LINE__, p, d);
1787 			return 0;
1788 		}
1789 
1790 		/* Fiddle with FIFO. */
1791 		rw_mgr_incr_vfifo(grp);
1792 	}
1793 
1794 	debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1795 		   __func__, __LINE__);
1796 	return -EINVAL;
1797 }
1798 
1799 /**
1800  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1801  * @grp:	Read/Write Group
1802  *
1803  * Find a good DQS enable to use.
1804  */
1805 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1806 {
1807 	u32 d, p, i;
1808 	u32 dtaps_per_ptap;
1809 	u32 work_bgn, work_end;
1810 	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1811 	int ret;
1812 
1813 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1814 
1815 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1816 
1817 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1818 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1819 
1820 	/* Step 0: Determine number of delay taps for each phase tap. */
1821 	dtaps_per_ptap = iocfg->delay_per_opa_tap /
1822 			 iocfg->delay_per_dqs_en_dchain_tap;
1823 
1824 	/* Step 1: First push vfifo until we get a failing read. */
1825 	find_vfifo_failing_read(grp);
1826 
1827 	/* Step 2: Find first working phase, increment in ptaps. */
1828 	work_bgn = 0;
1829 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1830 	if (ret)
1831 		return ret;
1832 
1833 	work_end = work_bgn;
1834 
1835 	/*
1836 	 * If d is 0 then the working window covers a phase tap and we can
1837 	 * follow the old procedure. Otherwise, we've found the beginning
1838 	 * and we need to increment the dtaps until we find the end.
1839 	 */
1840 	if (d == 0) {
1841 		/*
1842 		 * Step 3a: If we have room, back off by one and
1843 		 *          increment in dtaps.
1844 		 */
1845 		sdr_backup_phase(grp, &work_bgn, &p);
1846 
1847 		/*
1848 		 * Step 4a: go forward from working phase to non working
1849 		 * phase, increment in ptaps.
1850 		 */
1851 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1852 		if (ret)
1853 			return ret;
1854 
1855 		/* Step 5a: Back off one from last, increment in dtaps. */
1856 
1857 		/* Special case code for backing up a phase */
1858 		if (p == 0) {
1859 			p = iocfg->dqs_en_phase_max;
1860 			rw_mgr_decr_vfifo(grp);
1861 		} else {
1862 			p = p - 1;
1863 		}
1864 
1865 		work_end -= iocfg->delay_per_opa_tap;
1866 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1867 
1868 		d = 0;
1869 
1870 		debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1871 			   __func__, __LINE__, p);
1872 	}
1873 
1874 	/* The dtap increment to find the failing edge is done here. */
1875 	sdr_find_phase_delay(0, 1, grp, &work_end,
1876 			     iocfg->delay_per_dqs_en_dchain_tap, &d);
1877 
1878 	/* Go back to working dtap */
1879 	if (d != 0)
1880 		work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1881 
1882 	debug_cond(DLEVEL >= 2,
1883 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1884 		   __func__, __LINE__, p, d - 1, work_end);
1885 
1886 	if (work_end < work_bgn) {
1887 		/* nil range */
1888 		debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1889 			   __func__, __LINE__);
1890 		return -EINVAL;
1891 	}
1892 
1893 	debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1894 		   __func__, __LINE__, work_bgn, work_end);
1895 
1896 	/*
1897 	 * We need to calculate the number of dtaps that equal a ptap.
1898 	 * To do that we'll back up a ptap and re-find the edge of the
1899 	 * window using dtaps
1900 	 */
1901 	debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1902 		   __func__, __LINE__);
1903 
1904 	/* Special case code for backing up a phase */
1905 	if (p == 0) {
1906 		p = iocfg->dqs_en_phase_max;
1907 		rw_mgr_decr_vfifo(grp);
1908 		debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1909 			   __func__, __LINE__, p);
1910 	} else {
1911 		p = p - 1;
1912 		debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1913 			   __func__, __LINE__, p);
1914 	}
1915 
1916 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1917 
1918 	/*
1919 	 * Increase dtap until we first see a passing read (in case the
1920 	 * window is smaller than a ptap), and then a failing read to
1921 	 * mark the edge of the window again.
1922 	 */
1923 
1924 	/* Find a passing read. */
1925 	debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1926 		   __func__, __LINE__);
1927 
1928 	initial_failing_dtap = d;
1929 
1930 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1931 	if (found_passing_read) {
1932 		/* Find a failing read. */
1933 		debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1934 			   __func__, __LINE__);
1935 		d++;
1936 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1937 							   &d);
1938 	} else {
1939 		debug_cond(DLEVEL >= 1,
1940 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1941 			   __func__, __LINE__);
1942 	}
1943 
1944 	/*
1945 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1946 	 * found a passing/failing read. If we didn't, it means d hit the max
1947 	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1948 	 * statically calculated value.
1949 	 */
1950 	if (found_passing_read && found_failing_read)
1951 		dtaps_per_ptap = d - initial_failing_dtap;
1952 
1953 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1954 	debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1955 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1956 
1957 	/* Step 6: Find the centre of the window. */
1958 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1959 
1960 	return ret;
1961 }
1962 
1963 /**
1964  * search_stop_check() - Check if the detected edge is valid
1965  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1966  * @d:			DQS delay
1967  * @rank_bgn:		Rank number
1968  * @write_group:	Write Group
1969  * @read_group:		Read Group
1970  * @bit_chk:		Resulting bit mask after the test
1971  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1972  * @use_read_test:	Perform read test
1973  *
1974  * Test if the found edge is valid.
1975  */
1976 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1977 			     const u32 write_group, const u32 read_group,
1978 			     u32 *bit_chk, u32 *sticky_bit_chk,
1979 			     const u32 use_read_test)
1980 {
1981 	const u32 ratio = rwcfg->mem_if_read_dqs_width /
1982 			  rwcfg->mem_if_write_dqs_width;
1983 	const u32 correct_mask = write ? param->write_correct_mask :
1984 					 param->read_correct_mask;
1985 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1986 				    rwcfg->mem_dq_per_read_dqs;
1987 	u32 ret;
1988 	/*
1989 	 * Stop searching when the read test doesn't pass AND when
1990 	 * we've seen a passing read on every bit.
1991 	 */
1992 	if (write) {			/* WRITE-ONLY */
1993 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1994 							 0, PASS_ONE_BIT,
1995 							 bit_chk, 0);
1996 	} else if (use_read_test) {	/* READ-ONLY */
1997 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1998 							NUM_READ_PB_TESTS,
1999 							PASS_ONE_BIT, bit_chk,
2000 							0, 0);
2001 	} else {			/* READ-ONLY */
2002 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2003 						PASS_ONE_BIT, bit_chk, 0);
2004 		*bit_chk = *bit_chk >> (per_dqs *
2005 			(read_group - (write_group * ratio)));
2006 		ret = (*bit_chk == 0);
2007 	}
2008 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2009 	ret = ret && (*sticky_bit_chk == correct_mask);
2010 	debug_cond(DLEVEL >= 2,
2011 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2012 		   __func__, __LINE__, d,
2013 		   *sticky_bit_chk, correct_mask, ret);
2014 	return ret;
2015 }
2016 
2017 /**
2018  * search_left_edge() - Find left edge of DQ/DQS working phase
2019  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2020  * @rank_bgn:		Rank number
2021  * @write_group:	Write Group
2022  * @read_group:		Read Group
2023  * @test_bgn:		Rank number to begin the test
2024  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2025  * @left_edge:		Left edge of the DQ/DQS phase
2026  * @right_edge:		Right edge of the DQ/DQS phase
2027  * @use_read_test:	Perform read test
2028  *
2029  * Find left edge of DQ/DQS working phase.
2030  */
2031 static void search_left_edge(const int write, const int rank_bgn,
2032 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2033 	u32 *sticky_bit_chk,
2034 	int *left_edge, int *right_edge, const u32 use_read_test)
2035 {
2036 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2037 				      iocfg->io_in_delay_max;
2038 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2039 				    iocfg->dqs_in_delay_max;
2040 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2041 				    rwcfg->mem_dq_per_read_dqs;
2042 	u32 stop, bit_chk;
2043 	int i, d;
2044 
2045 	for (d = 0; d <= dqs_max; d++) {
2046 		if (write)
2047 			scc_mgr_apply_group_dq_out1_delay(d);
2048 		else
2049 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2050 
2051 		writel(0, &sdr_scc_mgr->update);
2052 
2053 		stop = search_stop_check(write, d, rank_bgn, write_group,
2054 					 read_group, &bit_chk, sticky_bit_chk,
2055 					 use_read_test);
2056 		if (stop == 1)
2057 			break;
2058 
2059 		/* stop != 1 */
2060 		for (i = 0; i < per_dqs; i++) {
2061 			if (bit_chk & 1) {
2062 				/*
2063 				 * Remember a passing test as
2064 				 * the left_edge.
2065 				 */
2066 				left_edge[i] = d;
2067 			} else {
2068 				/*
2069 				 * If a left edge has not been seen
2070 				 * yet, then a future passing test
2071 				 * will mark this edge as the right
2072 				 * edge.
2073 				 */
2074 				if (left_edge[i] == delay_max + 1)
2075 					right_edge[i] = -(d + 1);
2076 			}
2077 			bit_chk >>= 1;
2078 		}
2079 	}
2080 
2081 	/* Reset DQ delay chains to 0 */
2082 	if (write)
2083 		scc_mgr_apply_group_dq_out1_delay(0);
2084 	else
2085 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2086 
2087 	*sticky_bit_chk = 0;
2088 	for (i = per_dqs - 1; i >= 0; i--) {
2089 		debug_cond(DLEVEL >= 2,
2090 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2091 			   __func__, __LINE__, i, left_edge[i],
2092 			   i, right_edge[i]);
2093 
2094 		/*
2095 		 * Check for cases where we haven't found the left edge,
2096 		 * which makes our assignment of the the right edge invalid.
2097 		 * Reset it to the illegal value.
2098 		 */
2099 		if ((left_edge[i] == delay_max + 1) &&
2100 		    (right_edge[i] != delay_max + 1)) {
2101 			right_edge[i] = delay_max + 1;
2102 			debug_cond(DLEVEL >= 2,
2103 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2104 				   __func__, __LINE__, i, right_edge[i]);
2105 		}
2106 
2107 		/*
2108 		 * Reset sticky bit
2109 		 * READ: except for bits where we have seen both
2110 		 *       the left and right edge.
2111 		 * WRITE: except for bits where we have seen the
2112 		 *        left edge.
2113 		 */
2114 		*sticky_bit_chk <<= 1;
2115 		if (write) {
2116 			if (left_edge[i] != delay_max + 1)
2117 				*sticky_bit_chk |= 1;
2118 		} else {
2119 			if ((left_edge[i] != delay_max + 1) &&
2120 			    (right_edge[i] != delay_max + 1))
2121 				*sticky_bit_chk |= 1;
2122 		}
2123 	}
2124 }
2125 
2126 /**
2127  * search_right_edge() - Find right edge of DQ/DQS working phase
2128  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2129  * @rank_bgn:		Rank number
2130  * @write_group:	Write Group
2131  * @read_group:		Read Group
2132  * @start_dqs:		DQS start phase
2133  * @start_dqs_en:	DQS enable start phase
2134  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2135  * @left_edge:		Left edge of the DQ/DQS phase
2136  * @right_edge:		Right edge of the DQ/DQS phase
2137  * @use_read_test:	Perform read test
2138  *
2139  * Find right edge of DQ/DQS working phase.
2140  */
2141 static int search_right_edge(const int write, const int rank_bgn,
2142 	const u32 write_group, const u32 read_group,
2143 	const int start_dqs, const int start_dqs_en,
2144 	u32 *sticky_bit_chk,
2145 	int *left_edge, int *right_edge, const u32 use_read_test)
2146 {
2147 	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2148 				      iocfg->io_in_delay_max;
2149 	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2150 				    iocfg->dqs_in_delay_max;
2151 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2152 				    rwcfg->mem_dq_per_read_dqs;
2153 	u32 stop, bit_chk;
2154 	int i, d;
2155 
2156 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2157 		if (write) {	/* WRITE-ONLY */
2158 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2159 								d + start_dqs);
2160 		} else {	/* READ-ONLY */
2161 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2162 			if (iocfg->shift_dqs_en_when_shift_dqs) {
2163 				u32 delay = d + start_dqs_en;
2164 				if (delay > iocfg->dqs_en_delay_max)
2165 					delay = iocfg->dqs_en_delay_max;
2166 				scc_mgr_set_dqs_en_delay(read_group, delay);
2167 			}
2168 			scc_mgr_load_dqs(read_group);
2169 		}
2170 
2171 		writel(0, &sdr_scc_mgr->update);
2172 
2173 		stop = search_stop_check(write, d, rank_bgn, write_group,
2174 					 read_group, &bit_chk, sticky_bit_chk,
2175 					 use_read_test);
2176 		if (stop == 1) {
2177 			if (write && (d == 0)) {	/* WRITE-ONLY */
2178 				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2179 				     i++) {
2180 					/*
2181 					 * d = 0 failed, but it passed when
2182 					 * testing the left edge, so it must be
2183 					 * marginal, set it to -1
2184 					 */
2185 					if (right_edge[i] == delay_max + 1 &&
2186 					    left_edge[i] != delay_max + 1)
2187 						right_edge[i] = -1;
2188 				}
2189 			}
2190 			break;
2191 		}
2192 
2193 		/* stop != 1 */
2194 		for (i = 0; i < per_dqs; i++) {
2195 			if (bit_chk & 1) {
2196 				/*
2197 				 * Remember a passing test as
2198 				 * the right_edge.
2199 				 */
2200 				right_edge[i] = d;
2201 			} else {
2202 				if (d != 0) {
2203 					/*
2204 					 * If a right edge has not
2205 					 * been seen yet, then a future
2206 					 * passing test will mark this
2207 					 * edge as the left edge.
2208 					 */
2209 					if (right_edge[i] == delay_max + 1)
2210 						left_edge[i] = -(d + 1);
2211 				} else {
2212 					/*
2213 					 * d = 0 failed, but it passed
2214 					 * when testing the left edge,
2215 					 * so it must be marginal, set
2216 					 * it to -1
2217 					 */
2218 					if (right_edge[i] == delay_max + 1 &&
2219 					    left_edge[i] != delay_max + 1)
2220 						right_edge[i] = -1;
2221 					/*
2222 					 * If a right edge has not been
2223 					 * seen yet, then a future
2224 					 * passing test will mark this
2225 					 * edge as the left edge.
2226 					 */
2227 					else if (right_edge[i] == delay_max + 1)
2228 						left_edge[i] = -(d + 1);
2229 				}
2230 			}
2231 
2232 			debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2233 				   __func__, __LINE__, d);
2234 			debug_cond(DLEVEL >= 2,
2235 				   "bit_chk_test=%i left_edge[%u]: %d ",
2236 				   bit_chk & 1, i, left_edge[i]);
2237 			debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2238 				   right_edge[i]);
2239 			bit_chk >>= 1;
2240 		}
2241 	}
2242 
2243 	/* Check that all bits have a window */
2244 	for (i = 0; i < per_dqs; i++) {
2245 		debug_cond(DLEVEL >= 2,
2246 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2247 			   __func__, __LINE__, i, left_edge[i],
2248 			   i, right_edge[i]);
2249 		if ((left_edge[i] == dqs_max + 1) ||
2250 		    (right_edge[i] == dqs_max + 1))
2251 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2259  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2260  * @left_edge:		Left edge of the DQ/DQS phase
2261  * @right_edge:		Right edge of the DQ/DQS phase
2262  * @mid_min:		Best DQ/DQS phase middle setting
2263  *
2264  * Find index and value of the middle of the DQ/DQS working phase.
2265  */
2266 static int get_window_mid_index(const int write, int *left_edge,
2267 				int *right_edge, int *mid_min)
2268 {
2269 	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2270 				    rwcfg->mem_dq_per_read_dqs;
2271 	int i, mid, min_index;
2272 
2273 	/* Find middle of window for each DQ bit */
2274 	*mid_min = left_edge[0] - right_edge[0];
2275 	min_index = 0;
2276 	for (i = 1; i < per_dqs; i++) {
2277 		mid = left_edge[i] - right_edge[i];
2278 		if (mid < *mid_min) {
2279 			*mid_min = mid;
2280 			min_index = i;
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * -mid_min/2 represents the amount that we need to move DQS.
2286 	 * If mid_min is odd and positive we'll need to add one to make
2287 	 * sure the rounding in further calculations is correct (always
2288 	 * bias to the right), so just add 1 for all positive values.
2289 	 */
2290 	if (*mid_min > 0)
2291 		(*mid_min)++;
2292 	*mid_min = *mid_min / 2;
2293 
2294 	debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2295 		   __func__, __LINE__, *mid_min, min_index);
2296 	return min_index;
2297 }
2298 
2299 /**
2300  * center_dq_windows() - Center the DQ/DQS windows
2301  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2302  * @left_edge:		Left edge of the DQ/DQS phase
2303  * @right_edge:		Right edge of the DQ/DQS phase
2304  * @mid_min:		Adjusted DQ/DQS phase middle setting
2305  * @orig_mid_min:	Original DQ/DQS phase middle setting
2306  * @min_index:		DQ/DQS phase middle setting index
2307  * @test_bgn:		Rank number to begin the test
2308  * @dq_margin:		Amount of shift for the DQ
2309  * @dqs_margin:		Amount of shift for the DQS
2310  *
2311  * Align the DQ/DQS windows in each group.
2312  */
2313 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2314 			      const int mid_min, const int orig_mid_min,
2315 			      const int min_index, const int test_bgn,
2316 			      int *dq_margin, int *dqs_margin)
2317 {
2318 	const s32 delay_max = write ? iocfg->io_out1_delay_max :
2319 				      iocfg->io_in_delay_max;
2320 	const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2321 				    rwcfg->mem_dq_per_read_dqs;
2322 	const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2323 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2324 	const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2325 
2326 	s32 temp_dq_io_delay1;
2327 	int shift_dq, i, p;
2328 
2329 	/* Initialize data for export structures */
2330 	*dqs_margin = delay_max + 1;
2331 	*dq_margin  = delay_max + 1;
2332 
2333 	/* add delay to bring centre of all DQ windows to the same "level" */
2334 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2335 		/* Use values before divide by 2 to reduce round off error */
2336 		shift_dq = (left_edge[i] - right_edge[i] -
2337 			(left_edge[min_index] - right_edge[min_index]))/2  +
2338 			(orig_mid_min - mid_min);
2339 
2340 		debug_cond(DLEVEL >= 2,
2341 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2342 			   i, shift_dq);
2343 
2344 		temp_dq_io_delay1 = readl(addr + (i << 2));
2345 
2346 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2347 			shift_dq = delay_max - temp_dq_io_delay1;
2348 		else if (shift_dq + temp_dq_io_delay1 < 0)
2349 			shift_dq = -temp_dq_io_delay1;
2350 
2351 		debug_cond(DLEVEL >= 2,
2352 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2353 			   i, shift_dq);
2354 
2355 		if (write)
2356 			scc_mgr_set_dq_out1_delay(i,
2357 						  temp_dq_io_delay1 + shift_dq);
2358 		else
2359 			scc_mgr_set_dq_in_delay(p,
2360 						temp_dq_io_delay1 + shift_dq);
2361 
2362 		scc_mgr_load_dq(p);
2363 
2364 		debug_cond(DLEVEL >= 2,
2365 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2366 			   left_edge[i] - shift_dq + (-mid_min),
2367 			   right_edge[i] + shift_dq - (-mid_min));
2368 
2369 		/* To determine values for export structures */
2370 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2371 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2372 
2373 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2374 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2375 	}
2376 }
2377 
2378 /**
2379  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2380  * @rank_bgn:		Rank number
2381  * @rw_group:		Read/Write Group
2382  * @test_bgn:		Rank at which the test begins
2383  * @use_read_test:	Perform a read test
2384  * @update_fom:		Update FOM
2385  *
2386  * Per-bit deskew DQ and centering.
2387  */
2388 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2389 			const u32 rw_group, const u32 test_bgn,
2390 			const int use_read_test, const int update_fom)
2391 {
2392 	const u32 addr =
2393 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2394 		(rw_group << 2);
2395 	/*
2396 	 * Store these as signed since there are comparisons with
2397 	 * signed numbers.
2398 	 */
2399 	u32 sticky_bit_chk;
2400 	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2401 	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2402 	int32_t orig_mid_min, mid_min;
2403 	int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2404 	int32_t dq_margin, dqs_margin;
2405 	int i, min_index;
2406 	int ret;
2407 
2408 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2409 
2410 	start_dqs = readl(addr);
2411 	if (iocfg->shift_dqs_en_when_shift_dqs)
2412 		start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2413 
2414 	/* set the left and right edge of each bit to an illegal value */
2415 	/* use (iocfg->io_in_delay_max + 1) as an illegal value */
2416 	sticky_bit_chk = 0;
2417 	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2418 		left_edge[i]  = iocfg->io_in_delay_max + 1;
2419 		right_edge[i] = iocfg->io_in_delay_max + 1;
2420 	}
2421 
2422 	/* Search for the left edge of the window for each bit */
2423 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2424 			 &sticky_bit_chk,
2425 			 left_edge, right_edge, use_read_test);
2426 
2427 
2428 	/* Search for the right edge of the window for each bit */
2429 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2430 				start_dqs, start_dqs_en,
2431 				&sticky_bit_chk,
2432 				left_edge, right_edge, use_read_test);
2433 	if (ret) {
2434 		/*
2435 		 * Restore delay chain settings before letting the loop
2436 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2437 		 * dqs/ck relationships.
2438 		 */
2439 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2440 		if (iocfg->shift_dqs_en_when_shift_dqs)
2441 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2442 
2443 		scc_mgr_load_dqs(rw_group);
2444 		writel(0, &sdr_scc_mgr->update);
2445 
2446 		debug_cond(DLEVEL >= 1,
2447 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2448 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2449 		if (use_read_test) {
2450 			set_failing_group_stage(rw_group *
2451 				rwcfg->mem_dq_per_read_dqs + i,
2452 				CAL_STAGE_VFIFO,
2453 				CAL_SUBSTAGE_VFIFO_CENTER);
2454 		} else {
2455 			set_failing_group_stage(rw_group *
2456 				rwcfg->mem_dq_per_read_dqs + i,
2457 				CAL_STAGE_VFIFO_AFTER_WRITES,
2458 				CAL_SUBSTAGE_VFIFO_CENTER);
2459 		}
2460 		return -EIO;
2461 	}
2462 
2463 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2464 
2465 	/* Determine the amount we can change DQS (which is -mid_min) */
2466 	orig_mid_min = mid_min;
2467 	new_dqs = start_dqs - mid_min;
2468 	if (new_dqs > iocfg->dqs_in_delay_max)
2469 		new_dqs = iocfg->dqs_in_delay_max;
2470 	else if (new_dqs < 0)
2471 		new_dqs = 0;
2472 
2473 	mid_min = start_dqs - new_dqs;
2474 	debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2475 		   mid_min, new_dqs);
2476 
2477 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2478 		if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2479 			mid_min += start_dqs_en - mid_min -
2480 				   iocfg->dqs_en_delay_max;
2481 		else if (start_dqs_en - mid_min < 0)
2482 			mid_min += start_dqs_en - mid_min;
2483 	}
2484 	new_dqs = start_dqs - mid_min;
2485 
2486 	debug_cond(DLEVEL >= 1,
2487 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2488 		   start_dqs,
2489 		   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2490 		   new_dqs, mid_min);
2491 
2492 	/* Add delay to bring centre of all DQ windows to the same "level". */
2493 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2494 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2495 
2496 	/* Move DQS-en */
2497 	if (iocfg->shift_dqs_en_when_shift_dqs) {
2498 		final_dqs_en = start_dqs_en - mid_min;
2499 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2500 		scc_mgr_load_dqs(rw_group);
2501 	}
2502 
2503 	/* Move DQS */
2504 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2505 	scc_mgr_load_dqs(rw_group);
2506 	debug_cond(DLEVEL >= 2,
2507 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2508 		   __func__, __LINE__, dq_margin, dqs_margin);
2509 
2510 	/*
2511 	 * Do not remove this line as it makes sure all of our decisions
2512 	 * have been applied. Apply the update bit.
2513 	 */
2514 	writel(0, &sdr_scc_mgr->update);
2515 
2516 	if ((dq_margin < 0) || (dqs_margin < 0))
2517 		return -EINVAL;
2518 
2519 	return 0;
2520 }
2521 
2522 /**
2523  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2524  * @rw_group:	Read/Write Group
2525  * @phase:	DQ/DQS phase
2526  *
2527  * Because initially no communication ca be reliably performed with the memory
2528  * device, the sequencer uses a guaranteed write mechanism to write data into
2529  * the memory device.
2530  */
2531 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2532 						 const u32 phase)
2533 {
2534 	int ret;
2535 
2536 	/* Set a particular DQ/DQS phase. */
2537 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2538 
2539 	debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2540 		   __func__, __LINE__, rw_group, phase);
2541 
2542 	/*
2543 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2544 	 * Load up the patterns used by read calibration using the
2545 	 * current DQDQS phase.
2546 	 */
2547 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2548 
2549 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2550 		return 0;
2551 
2552 	/*
2553 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2554 	 * Back-to-Back reads of the patterns used for calibration.
2555 	 */
2556 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2557 	if (ret)
2558 		debug_cond(DLEVEL >= 1,
2559 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2560 			   __func__, __LINE__, rw_group, phase);
2561 	return ret;
2562 }
2563 
2564 /**
2565  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2566  * @rw_group:	Read/Write Group
2567  * @test_bgn:	Rank at which the test begins
2568  *
2569  * DQS enable calibration ensures reliable capture of the DQ signal without
2570  * glitches on the DQS line.
2571  */
2572 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2573 						       const u32 test_bgn)
2574 {
2575 	/*
2576 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2577 	 * DQS and DQS Eanble Signal Relationships.
2578 	 */
2579 
2580 	/* We start at zero, so have one less dq to devide among */
2581 	const u32 delay_step = iocfg->io_in_delay_max /
2582 			       (rwcfg->mem_dq_per_read_dqs - 1);
2583 	int ret;
2584 	u32 i, p, d, r;
2585 
2586 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2587 
2588 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2589 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2590 	     r += NUM_RANKS_PER_SHADOW_REG) {
2591 		for (i = 0, p = test_bgn, d = 0;
2592 		     i < rwcfg->mem_dq_per_read_dqs;
2593 		     i++, p++, d += delay_step) {
2594 			debug_cond(DLEVEL >= 1,
2595 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2596 				   __func__, __LINE__, rw_group, r, i, p, d);
2597 
2598 			scc_mgr_set_dq_in_delay(p, d);
2599 			scc_mgr_load_dq(p);
2600 		}
2601 
2602 		writel(0, &sdr_scc_mgr->update);
2603 	}
2604 
2605 	/*
2606 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2607 	 * dq_in_delay values
2608 	 */
2609 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2610 
2611 	debug_cond(DLEVEL >= 1,
2612 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2613 		   __func__, __LINE__, rw_group, !ret);
2614 
2615 	for (r = 0; r < rwcfg->mem_number_of_ranks;
2616 	     r += NUM_RANKS_PER_SHADOW_REG) {
2617 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2618 		writel(0, &sdr_scc_mgr->update);
2619 	}
2620 
2621 	return ret;
2622 }
2623 
2624 /**
2625  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2626  * @rw_group:		Read/Write Group
2627  * @test_bgn:		Rank at which the test begins
2628  * @use_read_test:	Perform a read test
2629  * @update_fom:		Update FOM
2630  *
2631  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2632  * within a group.
2633  */
2634 static int
2635 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2636 				      const int use_read_test,
2637 				      const int update_fom)
2638 
2639 {
2640 	int ret, grp_calibrated;
2641 	u32 rank_bgn, sr;
2642 
2643 	/*
2644 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2645 	 * Read per-bit deskew can be done on a per shadow register basis.
2646 	 */
2647 	grp_calibrated = 1;
2648 	for (rank_bgn = 0, sr = 0;
2649 	     rank_bgn < rwcfg->mem_number_of_ranks;
2650 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2651 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2652 							test_bgn,
2653 							use_read_test,
2654 							update_fom);
2655 		if (!ret)
2656 			continue;
2657 
2658 		grp_calibrated = 0;
2659 	}
2660 
2661 	if (!grp_calibrated)
2662 		return -EIO;
2663 
2664 	return 0;
2665 }
2666 
2667 /**
2668  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2669  * @rw_group:		Read/Write Group
2670  * @test_bgn:		Rank at which the test begins
2671  *
2672  * Stage 1: Calibrate the read valid prediction FIFO.
2673  *
2674  * This function implements UniPHY calibration Stage 1, as explained in
2675  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2676  *
2677  * - read valid prediction will consist of finding:
2678  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2679  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2680  *  - we also do a per-bit deskew on the DQ lines.
2681  */
2682 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2683 {
2684 	u32 p, d;
2685 	u32 dtaps_per_ptap;
2686 	u32 failed_substage;
2687 
2688 	int ret;
2689 
2690 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2691 
2692 	/* Update info for sims */
2693 	reg_file_set_group(rw_group);
2694 	reg_file_set_stage(CAL_STAGE_VFIFO);
2695 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2696 
2697 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2698 
2699 	/* USER Determine number of delay taps for each phase tap. */
2700 	dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2701 				      iocfg->delay_per_dqs_en_dchain_tap) - 1;
2702 
2703 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2704 		/*
2705 		 * In RLDRAMX we may be messing the delay of pins in
2706 		 * the same write rw_group but outside of the current read
2707 		 * the rw_group, but that's ok because we haven't calibrated
2708 		 * output side yet.
2709 		 */
2710 		if (d > 0) {
2711 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2712 								rw_group, d);
2713 		}
2714 
2715 		for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2716 			/* 1) Guaranteed Write */
2717 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2718 			if (ret)
2719 				break;
2720 
2721 			/* 2) DQS Enable Calibration */
2722 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2723 									  test_bgn);
2724 			if (ret) {
2725 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2726 				continue;
2727 			}
2728 
2729 			/* 3) Centering DQ/DQS */
2730 			/*
2731 			 * If doing read after write calibration, do not update
2732 			 * FOM now. Do it then.
2733 			 */
2734 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2735 								test_bgn, 1, 0);
2736 			if (ret) {
2737 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2738 				continue;
2739 			}
2740 
2741 			/* All done. */
2742 			goto cal_done_ok;
2743 		}
2744 	}
2745 
2746 	/* Calibration Stage 1 failed. */
2747 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2748 	return 0;
2749 
2750 	/* Calibration Stage 1 completed OK. */
2751 cal_done_ok:
2752 	/*
2753 	 * Reset the delay chains back to zero if they have moved > 1
2754 	 * (check for > 1 because loop will increase d even when pass in
2755 	 * first case).
2756 	 */
2757 	if (d > 2)
2758 		scc_mgr_zero_group(rw_group, 1);
2759 
2760 	return 1;
2761 }
2762 
2763 /**
2764  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2765  * @rw_group:		Read/Write Group
2766  * @test_bgn:		Rank at which the test begins
2767  *
2768  * Stage 3: DQ/DQS Centering.
2769  *
2770  * This function implements UniPHY calibration Stage 3, as explained in
2771  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2772  */
2773 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2774 					  const u32 test_bgn)
2775 {
2776 	int ret;
2777 
2778 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2779 
2780 	/* Update info for sims. */
2781 	reg_file_set_group(rw_group);
2782 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2783 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2784 
2785 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2786 	if (ret)
2787 		set_failing_group_stage(rw_group,
2788 					CAL_STAGE_VFIFO_AFTER_WRITES,
2789 					CAL_SUBSTAGE_VFIFO_CENTER);
2790 	return ret;
2791 }
2792 
2793 /**
2794  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2795  *
2796  * Stage 4: Minimize latency.
2797  *
2798  * This function implements UniPHY calibration Stage 4, as explained in
2799  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800  * Calibrate LFIFO to find smallest read latency.
2801  */
2802 static u32 rw_mgr_mem_calibrate_lfifo(void)
2803 {
2804 	int found_one = 0;
2805 
2806 	debug("%s:%d\n", __func__, __LINE__);
2807 
2808 	/* Update info for sims. */
2809 	reg_file_set_stage(CAL_STAGE_LFIFO);
2810 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2811 
2812 	/* Load up the patterns used by read calibration for all ranks */
2813 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2814 
2815 	do {
2816 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2817 		debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2818 			   __func__, __LINE__, gbl->curr_read_lat);
2819 
2820 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2821 							      PASS_ALL_BITS, 1))
2822 			break;
2823 
2824 		found_one = 1;
2825 		/*
2826 		 * Reduce read latency and see if things are
2827 		 * working correctly.
2828 		 */
2829 		gbl->curr_read_lat--;
2830 	} while (gbl->curr_read_lat > 0);
2831 
2832 	/* Reset the fifos to get pointers to known state. */
2833 	writel(0, &phy_mgr_cmd->fifo_reset);
2834 
2835 	if (found_one) {
2836 		/* Add a fudge factor to the read latency that was determined */
2837 		gbl->curr_read_lat += 2;
2838 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2839 		debug_cond(DLEVEL >= 2,
2840 			   "%s:%d lfifo: success: using read_lat=%u\n",
2841 			   __func__, __LINE__, gbl->curr_read_lat);
2842 	} else {
2843 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2844 					CAL_SUBSTAGE_READ_LATENCY);
2845 
2846 		debug_cond(DLEVEL >= 2,
2847 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2848 			   __func__, __LINE__, gbl->curr_read_lat);
2849 	}
2850 
2851 	return found_one;
2852 }
2853 
2854 /**
2855  * search_window() - Search for the/part of the window with DM/DQS shift
2856  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2857  * @rank_bgn:		Rank number
2858  * @write_group:	Write Group
2859  * @bgn_curr:		Current window begin
2860  * @end_curr:		Current window end
2861  * @bgn_best:		Current best window begin
2862  * @end_best:		Current best window end
2863  * @win_best:		Size of the best window
2864  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2865  *
2866  * Search for the/part of the window with DM/DQS shift.
2867  */
2868 static void search_window(const int search_dm,
2869 			  const u32 rank_bgn, const u32 write_group,
2870 			  int *bgn_curr, int *end_curr, int *bgn_best,
2871 			  int *end_best, int *win_best, int new_dqs)
2872 {
2873 	u32 bit_chk;
2874 	const int max = iocfg->io_out1_delay_max - new_dqs;
2875 	int d, di;
2876 
2877 	/* Search for the/part of the window with DM/DQS shift. */
2878 	for (di = max; di >= 0; di -= DELTA_D) {
2879 		if (search_dm) {
2880 			d = di;
2881 			scc_mgr_apply_group_dm_out1_delay(d);
2882 		} else {
2883 			/* For DQS, we go from 0...max */
2884 			d = max - di;
2885 			/*
2886 			 * Note: This only shifts DQS, so are we limiting
2887 			 *       ourselves to width of DQ unnecessarily.
2888 			 */
2889 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2890 								d + new_dqs);
2891 		}
2892 
2893 		writel(0, &sdr_scc_mgr->update);
2894 
2895 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2896 						    PASS_ALL_BITS, &bit_chk,
2897 						    0)) {
2898 			/* Set current end of the window. */
2899 			*end_curr = search_dm ? -d : d;
2900 
2901 			/*
2902 			 * If a starting edge of our window has not been seen
2903 			 * this is our current start of the DM window.
2904 			 */
2905 			if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2906 				*bgn_curr = search_dm ? -d : d;
2907 
2908 			/*
2909 			 * If current window is bigger than best seen.
2910 			 * Set best seen to be current window.
2911 			 */
2912 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2913 				*win_best = *end_curr - *bgn_curr + 1;
2914 				*bgn_best = *bgn_curr;
2915 				*end_best = *end_curr;
2916 			}
2917 		} else {
2918 			/* We just saw a failing test. Reset temp edge. */
2919 			*bgn_curr = iocfg->io_out1_delay_max + 1;
2920 			*end_curr = iocfg->io_out1_delay_max + 1;
2921 
2922 			/* Early exit is only applicable to DQS. */
2923 			if (search_dm)
2924 				continue;
2925 
2926 			/*
2927 			 * Early exit optimization: if the remaining delay
2928 			 * chain space is less than already seen largest
2929 			 * window we can exit.
2930 			 */
2931 			if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2932 				break;
2933 		}
2934 	}
2935 }
2936 
2937 /*
2938  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2939  * @rank_bgn:		Rank number
2940  * @write_group:	Write group
2941  * @test_bgn:		Rank at which the test begins
2942  *
2943  * Center all windows. Do per-bit-deskew to possibly increase size of
2944  * certain windows.
2945  */
2946 static int
2947 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2948 				   const u32 test_bgn)
2949 {
2950 	int i;
2951 	u32 sticky_bit_chk;
2952 	u32 min_index;
2953 	int left_edge[rwcfg->mem_dq_per_write_dqs];
2954 	int right_edge[rwcfg->mem_dq_per_write_dqs];
2955 	int mid;
2956 	int mid_min, orig_mid_min;
2957 	int new_dqs, start_dqs;
2958 	int dq_margin, dqs_margin, dm_margin;
2959 	int bgn_curr = iocfg->io_out1_delay_max + 1;
2960 	int end_curr = iocfg->io_out1_delay_max + 1;
2961 	int bgn_best = iocfg->io_out1_delay_max + 1;
2962 	int end_best = iocfg->io_out1_delay_max + 1;
2963 	int win_best = 0;
2964 
2965 	int ret;
2966 
2967 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2968 
2969 	dm_margin = 0;
2970 
2971 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2972 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2973 			  (rwcfg->mem_dq_per_write_dqs << 2));
2974 
2975 	/* Per-bit deskew. */
2976 
2977 	/*
2978 	 * Set the left and right edge of each bit to an illegal value.
2979 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2980 	 */
2981 	sticky_bit_chk = 0;
2982 	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2983 		left_edge[i]  = iocfg->io_out1_delay_max + 1;
2984 		right_edge[i] = iocfg->io_out1_delay_max + 1;
2985 	}
2986 
2987 	/* Search for the left edge of the window for each bit. */
2988 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2989 			 &sticky_bit_chk,
2990 			 left_edge, right_edge, 0);
2991 
2992 	/* Search for the right edge of the window for each bit. */
2993 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2994 				start_dqs, 0,
2995 				&sticky_bit_chk,
2996 				left_edge, right_edge, 0);
2997 	if (ret) {
2998 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2999 					CAL_SUBSTAGE_WRITES_CENTER);
3000 		return -EINVAL;
3001 	}
3002 
3003 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3004 
3005 	/* Determine the amount we can change DQS (which is -mid_min). */
3006 	orig_mid_min = mid_min;
3007 	new_dqs = start_dqs;
3008 	mid_min = 0;
3009 	debug_cond(DLEVEL >= 1,
3010 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3011 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3012 
3013 	/* Add delay to bring centre of all DQ windows to the same "level". */
3014 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3015 			  min_index, 0, &dq_margin, &dqs_margin);
3016 
3017 	/* Move DQS */
3018 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3019 	writel(0, &sdr_scc_mgr->update);
3020 
3021 	/* Centre DM */
3022 	debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3023 
3024 	/*
3025 	 * Set the left and right edge of each bit to an illegal value.
3026 	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3027 	 */
3028 	left_edge[0]  = iocfg->io_out1_delay_max + 1;
3029 	right_edge[0] = iocfg->io_out1_delay_max + 1;
3030 
3031 	/* Search for the/part of the window with DM shift. */
3032 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3033 		      &bgn_best, &end_best, &win_best, 0);
3034 
3035 	/* Reset DM delay chains to 0. */
3036 	scc_mgr_apply_group_dm_out1_delay(0);
3037 
3038 	/*
3039 	 * Check to see if the current window nudges up aganist 0 delay.
3040 	 * If so we need to continue the search by shifting DQS otherwise DQS
3041 	 * search begins as a new search.
3042 	 */
3043 	if (end_curr != 0) {
3044 		bgn_curr = iocfg->io_out1_delay_max + 1;
3045 		end_curr = iocfg->io_out1_delay_max + 1;
3046 	}
3047 
3048 	/* Search for the/part of the window with DQS shifts. */
3049 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3050 		      &bgn_best, &end_best, &win_best, new_dqs);
3051 
3052 	/* Assign left and right edge for cal and reporting. */
3053 	left_edge[0] = -1 * bgn_best;
3054 	right_edge[0] = end_best;
3055 
3056 	debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3057 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3058 
3059 	/* Move DQS (back to orig). */
3060 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3061 
3062 	/* Move DM */
3063 
3064 	/* Find middle of window for the DM bit. */
3065 	mid = (left_edge[0] - right_edge[0]) / 2;
3066 
3067 	/* Only move right, since we are not moving DQS/DQ. */
3068 	if (mid < 0)
3069 		mid = 0;
3070 
3071 	/* dm_marign should fail if we never find a window. */
3072 	if (win_best == 0)
3073 		dm_margin = -1;
3074 	else
3075 		dm_margin = left_edge[0] - mid;
3076 
3077 	scc_mgr_apply_group_dm_out1_delay(mid);
3078 	writel(0, &sdr_scc_mgr->update);
3079 
3080 	debug_cond(DLEVEL >= 2,
3081 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3082 		   __func__, __LINE__, left_edge[0], right_edge[0],
3083 		   mid, dm_margin);
3084 	/* Export values. */
3085 	gbl->fom_out += dq_margin + dqs_margin;
3086 
3087 	debug_cond(DLEVEL >= 2,
3088 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3089 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3090 
3091 	/*
3092 	 * Do not remove this line as it makes sure all of our
3093 	 * decisions have been applied.
3094 	 */
3095 	writel(0, &sdr_scc_mgr->update);
3096 
3097 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3098 		return -EINVAL;
3099 
3100 	return 0;
3101 }
3102 
3103 /**
3104  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3105  * @rank_bgn:		Rank number
3106  * @group:		Read/Write Group
3107  * @test_bgn:		Rank at which the test begins
3108  *
3109  * Stage 2: Write Calibration Part One.
3110  *
3111  * This function implements UniPHY calibration Stage 2, as explained in
3112  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3113  */
3114 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3115 				       const u32 test_bgn)
3116 {
3117 	int ret;
3118 
3119 	/* Update info for sims */
3120 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3121 
3122 	reg_file_set_group(group);
3123 	reg_file_set_stage(CAL_STAGE_WRITES);
3124 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3125 
3126 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3127 	if (ret)
3128 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3129 					CAL_SUBSTAGE_WRITES_CENTER);
3130 
3131 	return ret;
3132 }
3133 
3134 /**
3135  * mem_precharge_and_activate() - Precharge all banks and activate
3136  *
3137  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3138  */
3139 static void mem_precharge_and_activate(void)
3140 {
3141 	int r;
3142 
3143 	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3144 		/* Set rank. */
3145 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3146 
3147 		/* Precharge all banks. */
3148 		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3149 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3150 
3151 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3152 		writel(rwcfg->activate_0_and_1_wait1,
3153 		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3154 
3155 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3156 		writel(rwcfg->activate_0_and_1_wait2,
3157 		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3158 
3159 		/* Activate rows. */
3160 		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162 	}
3163 }
3164 
3165 /**
3166  * mem_init_latency() - Configure memory RLAT and WLAT settings
3167  *
3168  * Configure memory RLAT and WLAT parameters.
3169  */
3170 static void mem_init_latency(void)
3171 {
3172 	/*
3173 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3174 	 * so max latency in AFI clocks, used here, is correspondingly
3175 	 * smaller.
3176 	 */
3177 	const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3178 	u32 rlat, wlat;
3179 
3180 	debug("%s:%d\n", __func__, __LINE__);
3181 
3182 	/*
3183 	 * Read in write latency.
3184 	 * WL for Hard PHY does not include additive latency.
3185 	 */
3186 	wlat = readl(&data_mgr->t_wl_add);
3187 	wlat += readl(&data_mgr->mem_t_add);
3188 
3189 	gbl->rw_wl_nop_cycles = wlat - 1;
3190 
3191 	/* Read in readl latency. */
3192 	rlat = readl(&data_mgr->t_rl_add);
3193 
3194 	/* Set a pretty high read latency initially. */
3195 	gbl->curr_read_lat = rlat + 16;
3196 	if (gbl->curr_read_lat > max_latency)
3197 		gbl->curr_read_lat = max_latency;
3198 
3199 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3200 
3201 	/* Advertise write latency. */
3202 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3203 }
3204 
3205 /**
3206  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3207  *
3208  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3209  */
3210 static void mem_skip_calibrate(void)
3211 {
3212 	u32 vfifo_offset;
3213 	u32 i, j, r;
3214 
3215 	debug("%s:%d\n", __func__, __LINE__);
3216 	/* Need to update every shadow register set used by the interface */
3217 	for (r = 0; r < rwcfg->mem_number_of_ranks;
3218 	     r += NUM_RANKS_PER_SHADOW_REG) {
3219 		/*
3220 		 * Set output phase alignment settings appropriate for
3221 		 * skip calibration.
3222 		 */
3223 		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3224 			scc_mgr_set_dqs_en_phase(i, 0);
3225 			if (iocfg->dll_chain_length == 6)
3226 				scc_mgr_set_dqdqs_output_phase(i, 6);
3227 			else
3228 				scc_mgr_set_dqdqs_output_phase(i, 7);
3229 			/*
3230 			 * Case:33398
3231 			 *
3232 			 * Write data arrives to the I/O two cycles before write
3233 			 * latency is reached (720 deg).
3234 			 *   -> due to bit-slip in a/c bus
3235 			 *   -> to allow board skew where dqs is longer than ck
3236 			 *      -> how often can this happen!?
3237 			 *      -> can claim back some ptaps for high freq
3238 			 *       support if we can relax this, but i digress...
3239 			 *
3240 			 * The write_clk leads mem_ck by 90 deg
3241 			 * The minimum ptap of the OPA is 180 deg
3242 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3243 			 * The write_clk is always delayed by 2 ptaps
3244 			 *
3245 			 * Hence, to make DQS aligned to CK, we need to delay
3246 			 * DQS by:
3247 			 *    (720 - 90 - 180 - 2) *
3248 			 *      (360 / iocfg->dll_chain_length)
3249 			 *
3250 			 * Dividing the above by (360 / iocfg->dll_chain_length)
3251 			 * gives us the number of ptaps, which simplies to:
3252 			 *
3253 			 *    (1.25 * iocfg->dll_chain_length - 2)
3254 			 */
3255 			scc_mgr_set_dqdqs_output_phase(i,
3256 				       ((125 * iocfg->dll_chain_length) / 100) - 2);
3257 		}
3258 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3259 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3260 
3261 		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3262 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3263 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3264 		}
3265 		writel(0xff, &sdr_scc_mgr->dq_ena);
3266 		writel(0xff, &sdr_scc_mgr->dm_ena);
3267 		writel(0, &sdr_scc_mgr->update);
3268 	}
3269 
3270 	/* Compensate for simulation model behaviour */
3271 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3272 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3273 		scc_mgr_load_dqs(i);
3274 	}
3275 	writel(0, &sdr_scc_mgr->update);
3276 
3277 	/*
3278 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3279 	 * in sequencer.
3280 	 */
3281 	vfifo_offset = misccfg->calib_vfifo_offset;
3282 	for (j = 0; j < vfifo_offset; j++)
3283 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3284 	writel(0, &phy_mgr_cmd->fifo_reset);
3285 
3286 	/*
3287 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3288 	 * setting from generation-time constant.
3289 	 */
3290 	gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3291 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3292 }
3293 
3294 /**
3295  * mem_calibrate() - Memory calibration entry point.
3296  *
3297  * Perform memory calibration.
3298  */
3299 static u32 mem_calibrate(void)
3300 {
3301 	u32 i;
3302 	u32 rank_bgn, sr;
3303 	u32 write_group, write_test_bgn;
3304 	u32 read_group, read_test_bgn;
3305 	u32 run_groups, current_run;
3306 	u32 failing_groups = 0;
3307 	u32 group_failed = 0;
3308 
3309 	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3310 				rwcfg->mem_if_write_dqs_width;
3311 
3312 	debug("%s:%d\n", __func__, __LINE__);
3313 
3314 	/* Initialize the data settings */
3315 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3316 	gbl->error_stage = CAL_STAGE_NIL;
3317 	gbl->error_group = 0xff;
3318 	gbl->fom_in = 0;
3319 	gbl->fom_out = 0;
3320 
3321 	/* Initialize WLAT and RLAT. */
3322 	mem_init_latency();
3323 
3324 	/* Initialize bit slips. */
3325 	mem_precharge_and_activate();
3326 
3327 	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3328 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3329 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3330 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3331 		if (i == 0)
3332 			scc_mgr_set_hhp_extras();
3333 
3334 		scc_set_bypass_mode(i);
3335 	}
3336 
3337 	/* Calibration is skipped. */
3338 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3339 		/*
3340 		 * Set VFIFO and LFIFO to instant-on settings in skip
3341 		 * calibration mode.
3342 		 */
3343 		mem_skip_calibrate();
3344 
3345 		/*
3346 		 * Do not remove this line as it makes sure all of our
3347 		 * decisions have been applied.
3348 		 */
3349 		writel(0, &sdr_scc_mgr->update);
3350 		return 1;
3351 	}
3352 
3353 	/* Calibration is not skipped. */
3354 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3355 		/*
3356 		 * Zero all delay chain/phase settings for all
3357 		 * groups and all shadow register sets.
3358 		 */
3359 		scc_mgr_zero_all();
3360 
3361 		run_groups = ~0;
3362 
3363 		for (write_group = 0, write_test_bgn = 0; write_group
3364 			< rwcfg->mem_if_write_dqs_width; write_group++,
3365 			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3366 			/* Initialize the group failure */
3367 			group_failed = 0;
3368 
3369 			current_run = run_groups & ((1 <<
3370 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3371 			run_groups = run_groups >>
3372 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3373 
3374 			if (current_run == 0)
3375 				continue;
3376 
3377 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3378 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3379 			scc_mgr_zero_group(write_group, 0);
3380 
3381 			for (read_group = write_group * rwdqs_ratio,
3382 			     read_test_bgn = 0;
3383 			     read_group < (write_group + 1) * rwdqs_ratio;
3384 			     read_group++,
3385 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3386 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3387 					continue;
3388 
3389 				/* Calibrate the VFIFO */
3390 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3391 							       read_test_bgn))
3392 					continue;
3393 
3394 				if (!(gbl->phy_debug_mode_flags &
3395 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3396 					return 0;
3397 
3398 				/* The group failed, we're done. */
3399 				goto grp_failed;
3400 			}
3401 
3402 			/* Calibrate the output side */
3403 			for (rank_bgn = 0, sr = 0;
3404 			     rank_bgn < rwcfg->mem_number_of_ranks;
3405 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3406 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3407 					continue;
3408 
3409 				/* Not needed in quick mode! */
3410 				if (STATIC_CALIB_STEPS &
3411 				    CALIB_SKIP_DELAY_SWEEPS)
3412 					continue;
3413 
3414 				/* Calibrate WRITEs */
3415 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3416 								 write_group,
3417 								 write_test_bgn))
3418 					continue;
3419 
3420 				group_failed = 1;
3421 				if (!(gbl->phy_debug_mode_flags &
3422 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3423 					return 0;
3424 			}
3425 
3426 			/* Some group failed, we're done. */
3427 			if (group_failed)
3428 				goto grp_failed;
3429 
3430 			for (read_group = write_group * rwdqs_ratio,
3431 			     read_test_bgn = 0;
3432 			     read_group < (write_group + 1) * rwdqs_ratio;
3433 			     read_group++,
3434 			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3435 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3436 					continue;
3437 
3438 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3439 								    read_test_bgn))
3440 					continue;
3441 
3442 				if (!(gbl->phy_debug_mode_flags &
3443 				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3444 					return 0;
3445 
3446 				/* The group failed, we're done. */
3447 				goto grp_failed;
3448 			}
3449 
3450 			/* No group failed, continue as usual. */
3451 			continue;
3452 
3453 grp_failed:		/* A group failed, increment the counter. */
3454 			failing_groups++;
3455 		}
3456 
3457 		/*
3458 		 * USER If there are any failing groups then report
3459 		 * the failure.
3460 		 */
3461 		if (failing_groups != 0)
3462 			return 0;
3463 
3464 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3465 			continue;
3466 
3467 		/* Calibrate the LFIFO */
3468 		if (!rw_mgr_mem_calibrate_lfifo())
3469 			return 0;
3470 	}
3471 
3472 	/*
3473 	 * Do not remove this line as it makes sure all of our decisions
3474 	 * have been applied.
3475 	 */
3476 	writel(0, &sdr_scc_mgr->update);
3477 	return 1;
3478 }
3479 
3480 /**
3481  * run_mem_calibrate() - Perform memory calibration
3482  *
3483  * This function triggers the entire memory calibration procedure.
3484  */
3485 static int run_mem_calibrate(void)
3486 {
3487 	int pass;
3488 	u32 ctrl_cfg;
3489 
3490 	debug("%s:%d\n", __func__, __LINE__);
3491 
3492 	/* Reset pass/fail status shown on afi_cal_success/fail */
3493 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3494 
3495 	/* Stop tracking manager. */
3496 	ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3497 	writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3498 	       &sdr_ctrl->ctrl_cfg);
3499 
3500 	phy_mgr_initialize();
3501 	rw_mgr_mem_initialize();
3502 
3503 	/* Perform the actual memory calibration. */
3504 	pass = mem_calibrate();
3505 
3506 	mem_precharge_and_activate();
3507 	writel(0, &phy_mgr_cmd->fifo_reset);
3508 
3509 	/* Handoff. */
3510 	rw_mgr_mem_handoff();
3511 	/*
3512 	 * In Hard PHY this is a 2-bit control:
3513 	 * 0: AFI Mux Select
3514 	 * 1: DDIO Mux Select
3515 	 */
3516 	writel(0x2, &phy_mgr_cfg->mux_sel);
3517 
3518 	/* Start tracking manager. */
3519 	writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3520 
3521 	return pass;
3522 }
3523 
3524 /**
3525  * debug_mem_calibrate() - Report result of memory calibration
3526  * @pass:	Value indicating whether calibration passed or failed
3527  *
3528  * This function reports the results of the memory calibration
3529  * and writes debug information into the register file.
3530  */
3531 static void debug_mem_calibrate(int pass)
3532 {
3533 	u32 debug_info;
3534 
3535 	if (pass) {
3536 		debug("%s: CALIBRATION PASSED\n", __FILE__);
3537 
3538 		gbl->fom_in /= 2;
3539 		gbl->fom_out /= 2;
3540 
3541 		if (gbl->fom_in > 0xff)
3542 			gbl->fom_in = 0xff;
3543 
3544 		if (gbl->fom_out > 0xff)
3545 			gbl->fom_out = 0xff;
3546 
3547 		/* Update the FOM in the register file */
3548 		debug_info = gbl->fom_in;
3549 		debug_info |= gbl->fom_out << 8;
3550 		writel(debug_info, &sdr_reg_file->fom);
3551 
3552 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3553 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3554 	} else {
3555 		debug("%s: CALIBRATION FAILED\n", __FILE__);
3556 
3557 		debug_info = gbl->error_stage;
3558 		debug_info |= gbl->error_substage << 8;
3559 		debug_info |= gbl->error_group << 16;
3560 
3561 		writel(debug_info, &sdr_reg_file->failing_stage);
3562 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3563 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3564 
3565 		/* Update the failing group/stage in the register file */
3566 		debug_info = gbl->error_stage;
3567 		debug_info |= gbl->error_substage << 8;
3568 		debug_info |= gbl->error_group << 16;
3569 		writel(debug_info, &sdr_reg_file->failing_stage);
3570 	}
3571 
3572 	debug("%s: Calibration complete\n", __FILE__);
3573 }
3574 
3575 /**
3576  * hc_initialize_rom_data() - Initialize ROM data
3577  *
3578  * Initialize ROM data.
3579  */
3580 static void hc_initialize_rom_data(void)
3581 {
3582 	unsigned int nelem = 0;
3583 	const u32 *rom_init;
3584 	u32 i, addr;
3585 
3586 	socfpga_get_seq_inst_init(&rom_init, &nelem);
3587 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3588 	for (i = 0; i < nelem; i++)
3589 		writel(rom_init[i], addr + (i << 2));
3590 
3591 	socfpga_get_seq_ac_init(&rom_init, &nelem);
3592 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3593 	for (i = 0; i < nelem; i++)
3594 		writel(rom_init[i], addr + (i << 2));
3595 }
3596 
3597 /**
3598  * initialize_reg_file() - Initialize SDR register file
3599  *
3600  * Initialize SDR register file.
3601  */
3602 static void initialize_reg_file(void)
3603 {
3604 	/* Initialize the register file with the correct data */
3605 	writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3606 	writel(0, &sdr_reg_file->debug_data_addr);
3607 	writel(0, &sdr_reg_file->cur_stage);
3608 	writel(0, &sdr_reg_file->fom);
3609 	writel(0, &sdr_reg_file->failing_stage);
3610 	writel(0, &sdr_reg_file->debug1);
3611 	writel(0, &sdr_reg_file->debug2);
3612 }
3613 
3614 /**
3615  * initialize_hps_phy() - Initialize HPS PHY
3616  *
3617  * Initialize HPS PHY.
3618  */
3619 static void initialize_hps_phy(void)
3620 {
3621 	u32 reg;
3622 	/*
3623 	 * Tracking also gets configured here because it's in the
3624 	 * same register.
3625 	 */
3626 	u32 trk_sample_count = 7500;
3627 	u32 trk_long_idle_sample_count = (10 << 16) | 100;
3628 	/*
3629 	 * Format is number of outer loops in the 16 MSB, sample
3630 	 * count in 16 LSB.
3631 	 */
3632 
3633 	reg = 0;
3634 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3636 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3637 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3638 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3639 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3640 	/*
3641 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3642 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3643 	 */
3644 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3645 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3646 		trk_sample_count);
3647 	writel(reg, &sdr_ctrl->phy_ctrl0);
3648 
3649 	reg = 0;
3650 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3651 		trk_sample_count >>
3652 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3653 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3654 		trk_long_idle_sample_count);
3655 	writel(reg, &sdr_ctrl->phy_ctrl1);
3656 
3657 	reg = 0;
3658 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3659 		trk_long_idle_sample_count >>
3660 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3661 	writel(reg, &sdr_ctrl->phy_ctrl2);
3662 }
3663 
3664 /**
3665  * initialize_tracking() - Initialize tracking
3666  *
3667  * Initialize the register file with usable initial data.
3668  */
3669 static void initialize_tracking(void)
3670 {
3671 	/*
3672 	 * Initialize the register file with the correct data.
3673 	 * Compute usable version of value in case we skip full
3674 	 * computation later.
3675 	 */
3676 	writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3677 			    iocfg->delay_per_dchain_tap) - 1,
3678 	       &sdr_reg_file->dtaps_per_ptap);
3679 
3680 	/* trk_sample_count */
3681 	writel(7500, &sdr_reg_file->trk_sample_count);
3682 
3683 	/* longidle outer loop [15:0] */
3684 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3685 
3686 	/*
3687 	 * longidle sample count [31:24]
3688 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3689 	 * trcd, worst case [15:8]
3690 	 * vfifo wait [7:0]
3691 	 */
3692 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3693 	       &sdr_reg_file->delays);
3694 
3695 	/* mux delay */
3696 	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3697 	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3698 	       &sdr_reg_file->trk_rw_mgr_addr);
3699 
3700 	writel(rwcfg->mem_if_read_dqs_width,
3701 	       &sdr_reg_file->trk_read_dqs_width);
3702 
3703 	/* trefi [7:0] */
3704 	writel((rwcfg->refresh_all << 24) | (1000 << 0),
3705 	       &sdr_reg_file->trk_rfsh);
3706 }
3707 
3708 int sdram_calibration_full(void)
3709 {
3710 	struct param_type my_param;
3711 	struct gbl_type my_gbl;
3712 	u32 pass;
3713 
3714 	memset(&my_param, 0, sizeof(my_param));
3715 	memset(&my_gbl, 0, sizeof(my_gbl));
3716 
3717 	param = &my_param;
3718 	gbl = &my_gbl;
3719 
3720 	rwcfg = socfpga_get_sdram_rwmgr_config();
3721 	iocfg = socfpga_get_sdram_io_config();
3722 	misccfg = socfpga_get_sdram_misc_config();
3723 
3724 	/* Set the calibration enabled by default */
3725 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3726 	/*
3727 	 * Only sweep all groups (regardless of fail state) by default
3728 	 * Set enabled read test by default.
3729 	 */
3730 #if DISABLE_GUARANTEED_READ
3731 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3732 #endif
3733 	/* Initialize the register file */
3734 	initialize_reg_file();
3735 
3736 	/* Initialize any PHY CSR */
3737 	initialize_hps_phy();
3738 
3739 	scc_mgr_initialize();
3740 
3741 	initialize_tracking();
3742 
3743 	debug("%s: Preparing to start memory calibration\n", __FILE__);
3744 
3745 	debug("%s:%d\n", __func__, __LINE__);
3746 	debug_cond(DLEVEL >= 1,
3747 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3748 		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3749 		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3750 		   rwcfg->mem_virtual_groups_per_read_dqs,
3751 		   rwcfg->mem_virtual_groups_per_write_dqs);
3752 	debug_cond(DLEVEL >= 1,
3753 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3754 		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3755 		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3756 		   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3757 	debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3758 		   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3759 	debug_cond(DLEVEL >= 1,
3760 		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3761 		   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3762 		   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3763 	debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3764 		   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3765 		   iocfg->io_out2_delay_max);
3766 	debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3767 		   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3768 
3769 	hc_initialize_rom_data();
3770 
3771 	/* update info for sims */
3772 	reg_file_set_stage(CAL_STAGE_NIL);
3773 	reg_file_set_group(0);
3774 
3775 	/*
3776 	 * Load global needed for those actions that require
3777 	 * some dynamic calibration support.
3778 	 */
3779 	dyn_calib_steps = STATIC_CALIB_STEPS;
3780 	/*
3781 	 * Load global to allow dynamic selection of delay loop settings
3782 	 * based on calibration mode.
3783 	 */
3784 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3785 		skip_delay_mask = 0xff;
3786 	else
3787 		skip_delay_mask = 0x0;
3788 
3789 	pass = run_mem_calibrate();
3790 	debug_mem_calibrate(pass);
3791 	return pass;
3792 }
3793