xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision d844c7d43402f09c78ac4909945d9980cef6ccca)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1336 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337 			      uint32_t *v, uint32_t *d, uint32_t *p,
1338 			      uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340 	uint32_t found_begin = 0;
1341 	uint32_t tmp_delay = 0;
1342 	uint32_t test_status;
1343 
1344 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346 		*work_bgn = tmp_delay;
1347 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1348 
1349 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351 				IO_DELAY_PER_OPA_TAP) {
1352 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1353 
1354 				test_status =
1355 				rw_mgr_mem_calibrate_read_test_all_ranks
1356 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357 
1358 				if (test_status) {
1359 					*max_working_cnt = 1;
1360 					found_begin = 1;
1361 					break;
1362 				}
1363 			}
1364 
1365 			if (found_begin)
1366 				break;
1367 
1368 			if (*p > IO_DQS_EN_PHASE_MAX)
1369 				/* fiddle with FIFO */
1370 				rw_mgr_incr_vfifo(*grp, v);
1371 		}
1372 
1373 		if (found_begin)
1374 			break;
1375 	}
1376 
1377 	if (*i >= VFIFO_SIZE) {
1378 		/* cannot find working solution */
1379 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380 			   ptap/dtap\n", __func__, __LINE__);
1381 		return 0;
1382 	} else {
1383 		return 1;
1384 	}
1385 }
1386 
1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1388 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389 			     uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391 	uint32_t found_begin = 0;
1392 	uint32_t tmp_delay;
1393 
1394 	/* Special case code for backing up a phase */
1395 	if (*p == 0) {
1396 		*p = IO_DQS_EN_PHASE_MAX;
1397 		rw_mgr_decr_vfifo(*grp, v);
1398 	} else {
1399 		(*p)--;
1400 	}
1401 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1403 
1404 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1407 
1408 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1409 							     PASS_ONE_BIT,
1410 							     bit_chk, 0)) {
1411 			found_begin = 1;
1412 			*work_bgn = tmp_delay;
1413 			break;
1414 		}
1415 	}
1416 
1417 	/* We have found a working dtap before the ptap found above */
1418 	if (found_begin == 1)
1419 		(*max_working_cnt)++;
1420 
1421 	/*
1422 	 * Restore VFIFO to old state before we decremented it
1423 	 * (if needed).
1424 	 */
1425 	(*p)++;
1426 	if (*p > IO_DQS_EN_PHASE_MAX) {
1427 		*p = 0;
1428 		rw_mgr_incr_vfifo(*grp, v);
1429 	}
1430 
1431 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1432 }
1433 
1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1435 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437 			     uint32_t *work_end)
1438 {
1439 	uint32_t found_end = 0;
1440 
1441 	(*p)++;
1442 	*work_end += IO_DELAY_PER_OPA_TAP;
1443 	if (*p > IO_DQS_EN_PHASE_MAX) {
1444 		/* fiddle with FIFO */
1445 		*p = 0;
1446 		rw_mgr_incr_vfifo(*grp, v);
1447 	}
1448 
1449 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451 			+= IO_DELAY_PER_OPA_TAP) {
1452 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1453 
1454 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456 				found_end = 1;
1457 				break;
1458 			} else {
1459 				(*max_working_cnt)++;
1460 			}
1461 		}
1462 
1463 		if (found_end)
1464 			break;
1465 
1466 		if (*p > IO_DQS_EN_PHASE_MAX) {
1467 			/* fiddle with FIFO */
1468 			rw_mgr_incr_vfifo(*grp, v);
1469 			*p = 0;
1470 		}
1471 	}
1472 
1473 	if (*i >= VFIFO_SIZE + 1) {
1474 		/* cannot see edge of failing read */
1475 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476 			   failed\n", __func__, __LINE__);
1477 		return 0;
1478 	} else {
1479 		return 1;
1480 	}
1481 }
1482 
1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1484 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1485 				  uint32_t *p, uint32_t *work_mid,
1486 				  uint32_t *work_end)
1487 {
1488 	int i;
1489 	int tmp_delay = 0;
1490 
1491 	*work_mid = (*work_bgn + *work_end) / 2;
1492 
1493 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1494 		   *work_bgn, *work_end, *work_mid);
1495 	/* Get the middle delay to be less than a VFIFO delay */
1496 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1497 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1498 		;
1499 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1500 	while (*work_mid > tmp_delay)
1501 		*work_mid -= tmp_delay;
1502 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1503 
1504 	tmp_delay = 0;
1505 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1506 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1507 		;
1508 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1509 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1510 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1511 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1512 		;
1513 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1514 
1515 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1516 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1517 
1518 	/*
1519 	 * push vfifo until we can successfully calibrate. We can do this
1520 	 * because the largest possible margin in 1 VFIFO cycle.
1521 	 */
1522 	for (i = 0; i < VFIFO_SIZE; i++) {
1523 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1524 			   *v);
1525 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1526 							     PASS_ONE_BIT,
1527 							     bit_chk, 0)) {
1528 			break;
1529 		}
1530 
1531 		/* fiddle with FIFO */
1532 		rw_mgr_incr_vfifo(*grp, v);
1533 	}
1534 
1535 	if (i >= VFIFO_SIZE) {
1536 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1537 			   failed\n", __func__, __LINE__);
1538 		return 0;
1539 	} else {
1540 		return 1;
1541 	}
1542 }
1543 
1544 /* find a good dqs enable to use */
1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1546 {
1547 	uint32_t v, d, p, i;
1548 	uint32_t max_working_cnt;
1549 	uint32_t bit_chk;
1550 	uint32_t dtaps_per_ptap;
1551 	uint32_t work_bgn, work_mid, work_end;
1552 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1553 
1554 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1555 
1556 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1557 
1558 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1559 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1560 
1561 	/* ************************************************************** */
1562 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1563 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1564 
1565 	/* ********************************************************* */
1566 	/* * Step 1 : First push vfifo until we get a failing read * */
1567 	v = find_vfifo_read(grp, &bit_chk);
1568 
1569 	max_working_cnt = 0;
1570 
1571 	/* ******************************************************** */
1572 	/* * step 2: find first working phase, increment in ptaps * */
1573 	work_bgn = 0;
1574 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1575 				&p, &i, &max_working_cnt) == 0)
1576 		return 0;
1577 
1578 	work_end = work_bgn;
1579 
1580 	/*
1581 	 * If d is 0 then the working window covers a phase tap and
1582 	 * we can follow the old procedure otherwise, we've found the beginning,
1583 	 * and we need to increment the dtaps until we find the end.
1584 	 */
1585 	if (d == 0) {
1586 		/* ********************************************************* */
1587 		/* * step 3a: if we have room, back off by one and
1588 		increment in dtaps * */
1589 
1590 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1591 				 &max_working_cnt);
1592 
1593 		/* ********************************************************* */
1594 		/* * step 4a: go forward from working phase to non working
1595 		phase, increment in ptaps * */
1596 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1597 					 &i, &max_working_cnt, &work_end) == 0)
1598 			return 0;
1599 
1600 		/* ********************************************************* */
1601 		/* * step 5a:  back off one from last, increment in dtaps  * */
1602 
1603 		/* Special case code for backing up a phase */
1604 		if (p == 0) {
1605 			p = IO_DQS_EN_PHASE_MAX;
1606 			rw_mgr_decr_vfifo(grp, &v);
1607 		} else {
1608 			p = p - 1;
1609 		}
1610 
1611 		work_end -= IO_DELAY_PER_OPA_TAP;
1612 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1613 
1614 		/* * The actual increment of dtaps is done outside of
1615 		the if/else loop to share code */
1616 		d = 0;
1617 
1618 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1619 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1620 			   v, p);
1621 	} else {
1622 		/* ******************************************************* */
1623 		/* * step 3-5b:  Find the right edge of the window using
1624 		delay taps   * */
1625 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1626 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1627 			   v, p, d, work_bgn);
1628 
1629 		work_end = work_bgn;
1630 
1631 		/* * The actual increment of dtaps is done outside of the
1632 		if/else loop to share code */
1633 
1634 		/* Only here to counterbalance a subtract later on which is
1635 		not needed if this branch of the algorithm is taken */
1636 		max_working_cnt++;
1637 	}
1638 
1639 	/* The dtap increment to find the failing edge is done here */
1640 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1641 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1642 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1643 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1644 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1645 
1646 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1647 								      PASS_ONE_BIT,
1648 								      &bit_chk, 0)) {
1649 				break;
1650 			}
1651 	}
1652 
1653 	/* Go back to working dtap */
1654 	if (d != 0)
1655 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656 
1657 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1658 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1659 		   v, p, d-1, work_end);
1660 
1661 	if (work_end < work_bgn) {
1662 		/* nil range */
1663 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1664 			   failed\n", __func__, __LINE__);
1665 		return 0;
1666 	}
1667 
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1669 		   __func__, __LINE__, work_bgn, work_end);
1670 
1671 	/* *************************************************************** */
1672 	/*
1673 	 * * We need to calculate the number of dtaps that equal a ptap
1674 	 * * To do that we'll back up a ptap and re-find the edge of the
1675 	 * * window using dtaps
1676 	 */
1677 
1678 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1679 		   for tracking\n", __func__, __LINE__);
1680 
1681 	/* Special case code for backing up a phase */
1682 	if (p == 0) {
1683 		p = IO_DQS_EN_PHASE_MAX;
1684 		rw_mgr_decr_vfifo(grp, &v);
1685 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1686 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1687 			   v, p);
1688 	} else {
1689 		p = p - 1;
1690 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1691 			   phase only: v=%u p=%u", __func__, __LINE__,
1692 			   v, p);
1693 	}
1694 
1695 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1696 
1697 	/*
1698 	 * Increase dtap until we first see a passing read (in case the
1699 	 * window is smaller than a ptap),
1700 	 * and then a failing read to mark the edge of the window again
1701 	 */
1702 
1703 	/* Find a passing read */
1704 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1705 		   __func__, __LINE__);
1706 	found_passing_read = 0;
1707 	found_failing_read = 0;
1708 	initial_failing_dtap = d;
1709 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1710 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1711 			   read d=%u\n", __func__, __LINE__, d);
1712 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1713 
1714 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1715 							     PASS_ONE_BIT,
1716 							     &bit_chk, 0)) {
1717 			found_passing_read = 1;
1718 			break;
1719 		}
1720 	}
1721 
1722 	if (found_passing_read) {
1723 		/* Find a failing read */
1724 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1725 			   read\n", __func__, __LINE__);
1726 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1727 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1728 				   testing read d=%u\n", __func__, __LINE__, d);
1729 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1730 
1731 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1732 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1733 				found_failing_read = 1;
1734 				break;
1735 			}
1736 		}
1737 	} else {
1738 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1739 			   calculate dtaps", __func__, __LINE__);
1740 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1741 	}
1742 
1743 	/*
1744 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1745 	 * found a passing/failing read. If we didn't, it means d hit the max
1746 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1747 	 * statically calculated value.
1748 	 */
1749 	if (found_passing_read && found_failing_read)
1750 		dtaps_per_ptap = d - initial_failing_dtap;
1751 
1752 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1753 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1754 		   - %u = %u",  __func__, __LINE__, d,
1755 		   initial_failing_dtap, dtaps_per_ptap);
1756 
1757 	/* ******************************************** */
1758 	/* * step 6:  Find the centre of the window   * */
1759 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1760 				   &work_mid, &work_end) == 0)
1761 		return 0;
1762 
1763 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1764 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1765 		   v, p-1, d);
1766 	return 1;
1767 }
1768 
1769 /*
1770  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1771  * dq_in_delay values
1772  */
1773 static uint32_t
1774 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1775 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1776 {
1777 	uint32_t found;
1778 	uint32_t i;
1779 	uint32_t p;
1780 	uint32_t d;
1781 	uint32_t r;
1782 
1783 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1784 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1785 		/* we start at zero, so have one less dq to devide among */
1786 
1787 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1788 	      test_bgn);
1789 
1790 	/* try different dq_in_delays since the dq path is shorter than dqs */
1791 
1792 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1793 	     r += NUM_RANKS_PER_SHADOW_REG) {
1794 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1795 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1796 				   vfifo_find_dqs_", __func__, __LINE__);
1797 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1798 			       write_group, read_group);
1799 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1800 			scc_mgr_set_dq_in_delay(p, d);
1801 			scc_mgr_load_dq(p);
1802 		}
1803 		writel(0, &sdr_scc_mgr->update);
1804 	}
1805 
1806 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1807 
1808 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1809 		   en_phase_sweep_dq", __func__, __LINE__);
1810 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1811 		   chain to zero\n", write_group, read_group, found);
1812 
1813 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1814 	     r += NUM_RANKS_PER_SHADOW_REG) {
1815 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1816 			i++, p++) {
1817 			scc_mgr_set_dq_in_delay(p, 0);
1818 			scc_mgr_load_dq(p);
1819 		}
1820 		writel(0, &sdr_scc_mgr->update);
1821 	}
1822 
1823 	return found;
1824 }
1825 
1826 /* per-bit deskew DQ and center */
1827 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1828 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1829 	uint32_t use_read_test, uint32_t update_fom)
1830 {
1831 	uint32_t i, p, d, min_index;
1832 	/*
1833 	 * Store these as signed since there are comparisons with
1834 	 * signed numbers.
1835 	 */
1836 	uint32_t bit_chk;
1837 	uint32_t sticky_bit_chk;
1838 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1839 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1840 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1841 	int32_t mid;
1842 	int32_t orig_mid_min, mid_min;
1843 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1844 		final_dqs_en;
1845 	int32_t dq_margin, dqs_margin;
1846 	uint32_t stop;
1847 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1848 	uint32_t addr;
1849 
1850 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1851 
1852 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1853 	start_dqs = readl(addr + (read_group << 2));
1854 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1855 		start_dqs_en = readl(addr + ((read_group << 2)
1856 				     - IO_DQS_EN_DELAY_OFFSET));
1857 
1858 	/* set the left and right edge of each bit to an illegal value */
1859 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1860 	sticky_bit_chk = 0;
1861 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1862 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1863 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1864 	}
1865 
1866 	/* Search for the left edge of the window for each bit */
1867 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1868 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1869 
1870 		writel(0, &sdr_scc_mgr->update);
1871 
1872 		/*
1873 		 * Stop searching when the read test doesn't pass AND when
1874 		 * we've seen a passing read on every bit.
1875 		 */
1876 		if (use_read_test) {
1877 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1878 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1879 				&bit_chk, 0, 0);
1880 		} else {
1881 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1882 							0, PASS_ONE_BIT,
1883 							&bit_chk, 0);
1884 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1885 				(read_group - (write_group *
1886 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1887 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1888 			stop = (bit_chk == 0);
1889 		}
1890 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1891 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1892 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1893 			   && %u", __func__, __LINE__, d,
1894 			   sticky_bit_chk,
1895 			param->read_correct_mask, stop);
1896 
1897 		if (stop == 1) {
1898 			break;
1899 		} else {
1900 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1901 				if (bit_chk & 1) {
1902 					/* Remember a passing test as the
1903 					left_edge */
1904 					left_edge[i] = d;
1905 				} else {
1906 					/* If a left edge has not been seen yet,
1907 					then a future passing test will mark
1908 					this edge as the right edge */
1909 					if (left_edge[i] ==
1910 						IO_IO_IN_DELAY_MAX + 1) {
1911 						right_edge[i] = -(d + 1);
1912 					}
1913 				}
1914 				bit_chk = bit_chk >> 1;
1915 			}
1916 		}
1917 	}
1918 
1919 	/* Reset DQ delay chains to 0 */
1920 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1921 	sticky_bit_chk = 0;
1922 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1923 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1924 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1925 			   i, left_edge[i], i, right_edge[i]);
1926 
1927 		/*
1928 		 * Check for cases where we haven't found the left edge,
1929 		 * which makes our assignment of the the right edge invalid.
1930 		 * Reset it to the illegal value.
1931 		 */
1932 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1933 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1934 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1935 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1936 				   right_edge[%u]: %d\n", __func__, __LINE__,
1937 				   i, right_edge[i]);
1938 		}
1939 
1940 		/*
1941 		 * Reset sticky bit (except for bits where we have seen
1942 		 * both the left and right edge).
1943 		 */
1944 		sticky_bit_chk = sticky_bit_chk << 1;
1945 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1946 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1947 			sticky_bit_chk = sticky_bit_chk | 1;
1948 		}
1949 
1950 		if (i == 0)
1951 			break;
1952 	}
1953 
1954 	/* Search for the right edge of the window for each bit */
1955 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1956 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1957 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1958 			uint32_t delay = d + start_dqs_en;
1959 			if (delay > IO_DQS_EN_DELAY_MAX)
1960 				delay = IO_DQS_EN_DELAY_MAX;
1961 			scc_mgr_set_dqs_en_delay(read_group, delay);
1962 		}
1963 		scc_mgr_load_dqs(read_group);
1964 
1965 		writel(0, &sdr_scc_mgr->update);
1966 
1967 		/*
1968 		 * Stop searching when the read test doesn't pass AND when
1969 		 * we've seen a passing read on every bit.
1970 		 */
1971 		if (use_read_test) {
1972 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1973 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1974 				&bit_chk, 0, 0);
1975 		} else {
1976 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1977 							0, PASS_ONE_BIT,
1978 							&bit_chk, 0);
1979 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1980 				(read_group - (write_group *
1981 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1982 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1983 			stop = (bit_chk == 0);
1984 		}
1985 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1986 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1987 
1988 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1989 			   %u && %u", __func__, __LINE__, d,
1990 			   sticky_bit_chk, param->read_correct_mask, stop);
1991 
1992 		if (stop == 1) {
1993 			break;
1994 		} else {
1995 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1996 				if (bit_chk & 1) {
1997 					/* Remember a passing test as
1998 					the right_edge */
1999 					right_edge[i] = d;
2000 				} else {
2001 					if (d != 0) {
2002 						/* If a right edge has not been
2003 						seen yet, then a future passing
2004 						test will mark this edge as the
2005 						left edge */
2006 						if (right_edge[i] ==
2007 						IO_IO_IN_DELAY_MAX + 1) {
2008 							left_edge[i] = -(d + 1);
2009 						}
2010 					} else {
2011 						/* d = 0 failed, but it passed
2012 						when testing the left edge,
2013 						so it must be marginal,
2014 						set it to -1 */
2015 						if (right_edge[i] ==
2016 							IO_IO_IN_DELAY_MAX + 1 &&
2017 							left_edge[i] !=
2018 							IO_IO_IN_DELAY_MAX
2019 							+ 1) {
2020 							right_edge[i] = -1;
2021 						}
2022 						/* If a right edge has not been
2023 						seen yet, then a future passing
2024 						test will mark this edge as the
2025 						left edge */
2026 						else if (right_edge[i] ==
2027 							IO_IO_IN_DELAY_MAX +
2028 							1) {
2029 							left_edge[i] = -(d + 1);
2030 						}
2031 					}
2032 				}
2033 
2034 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2035 					   d=%u]: ", __func__, __LINE__, d);
2036 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2037 					   (int)(bit_chk & 1), i, left_edge[i]);
2038 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2039 					   right_edge[i]);
2040 				bit_chk = bit_chk >> 1;
2041 			}
2042 		}
2043 	}
2044 
2045 	/* Check that all bits have a window */
2046 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2047 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2048 			   %d right_edge[%u]: %d", __func__, __LINE__,
2049 			   i, left_edge[i], i, right_edge[i]);
2050 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2051 			== IO_IO_IN_DELAY_MAX + 1)) {
2052 			/*
2053 			 * Restore delay chain settings before letting the loop
2054 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2055 			 * dqs/ck relationships.
2056 			 */
2057 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2058 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2059 				scc_mgr_set_dqs_en_delay(read_group,
2060 							 start_dqs_en);
2061 			}
2062 			scc_mgr_load_dqs(read_group);
2063 			writel(0, &sdr_scc_mgr->update);
2064 
2065 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2066 				   find edge [%u]: %d %d", __func__, __LINE__,
2067 				   i, left_edge[i], right_edge[i]);
2068 			if (use_read_test) {
2069 				set_failing_group_stage(read_group *
2070 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2071 					CAL_STAGE_VFIFO,
2072 					CAL_SUBSTAGE_VFIFO_CENTER);
2073 			} else {
2074 				set_failing_group_stage(read_group *
2075 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2076 					CAL_STAGE_VFIFO_AFTER_WRITES,
2077 					CAL_SUBSTAGE_VFIFO_CENTER);
2078 			}
2079 			return 0;
2080 		}
2081 	}
2082 
2083 	/* Find middle of window for each DQ bit */
2084 	mid_min = left_edge[0] - right_edge[0];
2085 	min_index = 0;
2086 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2087 		mid = left_edge[i] - right_edge[i];
2088 		if (mid < mid_min) {
2089 			mid_min = mid;
2090 			min_index = i;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * -mid_min/2 represents the amount that we need to move DQS.
2096 	 * If mid_min is odd and positive we'll need to add one to
2097 	 * make sure the rounding in further calculations is correct
2098 	 * (always bias to the right), so just add 1 for all positive values.
2099 	 */
2100 	if (mid_min > 0)
2101 		mid_min++;
2102 
2103 	mid_min = mid_min / 2;
2104 
2105 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2106 		   __func__, __LINE__, mid_min, min_index);
2107 
2108 	/* Determine the amount we can change DQS (which is -mid_min) */
2109 	orig_mid_min = mid_min;
2110 	new_dqs = start_dqs - mid_min;
2111 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2112 		new_dqs = IO_DQS_IN_DELAY_MAX;
2113 	else if (new_dqs < 0)
2114 		new_dqs = 0;
2115 
2116 	mid_min = start_dqs - new_dqs;
2117 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2118 		   mid_min, new_dqs);
2119 
2120 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2121 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2122 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2123 		else if (start_dqs_en - mid_min < 0)
2124 			mid_min += start_dqs_en - mid_min;
2125 	}
2126 	new_dqs = start_dqs - mid_min;
2127 
2128 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2129 		   new_dqs=%d mid_min=%d\n", start_dqs,
2130 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2131 		   new_dqs, mid_min);
2132 
2133 	/* Initialize data for export structures */
2134 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2135 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2136 
2137 	/* add delay to bring centre of all DQ windows to the same "level" */
2138 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2139 		/* Use values before divide by 2 to reduce round off error */
2140 		shift_dq = (left_edge[i] - right_edge[i] -
2141 			(left_edge[min_index] - right_edge[min_index]))/2  +
2142 			(orig_mid_min - mid_min);
2143 
2144 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2145 			   shift_dq[%u]=%d\n", i, shift_dq);
2146 
2147 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2148 		temp_dq_in_delay1 = readl(addr + (p << 2));
2149 		temp_dq_in_delay2 = readl(addr + (i << 2));
2150 
2151 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2152 			(int32_t)IO_IO_IN_DELAY_MAX) {
2153 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2154 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2155 			shift_dq = -(int32_t)temp_dq_in_delay1;
2156 		}
2157 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2158 			   shift_dq[%u]=%d\n", i, shift_dq);
2159 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2160 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2161 		scc_mgr_load_dq(p);
2162 
2163 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2164 			   left_edge[i] - shift_dq + (-mid_min),
2165 			   right_edge[i] + shift_dq - (-mid_min));
2166 		/* To determine values for export structures */
2167 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2168 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2169 
2170 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2171 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2172 	}
2173 
2174 	final_dqs = new_dqs;
2175 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2176 		final_dqs_en = start_dqs_en - mid_min;
2177 
2178 	/* Move DQS-en */
2179 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2180 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2181 		scc_mgr_load_dqs(read_group);
2182 	}
2183 
2184 	/* Move DQS */
2185 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2186 	scc_mgr_load_dqs(read_group);
2187 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2188 		   dqs_margin=%d", __func__, __LINE__,
2189 		   dq_margin, dqs_margin);
2190 
2191 	/*
2192 	 * Do not remove this line as it makes sure all of our decisions
2193 	 * have been applied. Apply the update bit.
2194 	 */
2195 	writel(0, &sdr_scc_mgr->update);
2196 
2197 	return (dq_margin >= 0) && (dqs_margin >= 0);
2198 }
2199 
2200 /**
2201  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2202  * @rw_group:	Read/Write Group
2203  * @phase:	DQ/DQS phase
2204  *
2205  * Because initially no communication ca be reliably performed with the memory
2206  * device, the sequencer uses a guaranteed write mechanism to write data into
2207  * the memory device.
2208  */
2209 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2210 						 const u32 phase)
2211 {
2212 	int ret;
2213 
2214 	/* Set a particular DQ/DQS phase. */
2215 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2216 
2217 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2218 		   __func__, __LINE__, rw_group, phase);
2219 
2220 	/*
2221 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2222 	 * Load up the patterns used by read calibration using the
2223 	 * current DQDQS phase.
2224 	 */
2225 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2226 
2227 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2228 		return 0;
2229 
2230 	/*
2231 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2232 	 * Back-to-Back reads of the patterns used for calibration.
2233 	 */
2234 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2235 	if (ret)
2236 		debug_cond(DLEVEL == 1,
2237 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2238 			   __func__, __LINE__, rw_group, phase);
2239 	return ret;
2240 }
2241 
2242 /**
2243  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2244  * @rw_group:	Read/Write Group
2245  * @test_bgn:	Rank at which the test begins
2246  *
2247  * DQS enable calibration ensures reliable capture of the DQ signal without
2248  * glitches on the DQS line.
2249  */
2250 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2251 						       const u32 test_bgn)
2252 {
2253 	int ret;
2254 
2255 	/*
2256 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2257 	 * DQS and DQS Eanble Signal Relationships.
2258 	 */
2259 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
2260 						rw_group, rw_group, test_bgn);
2261 	if (!ret)	/* FIXME: 0 means failure in this old code :-( */
2262 		return -EIO;
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2269  * @rw_group:		Read/Write Group
2270  * @test_bgn:		Rank at which the test begins
2271  * @use_read_test:	Perform a read test
2272  * @update_fom:		Update FOM
2273  *
2274  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2275  * within a group.
2276  */
2277 static int
2278 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2279 				      const int use_read_test,
2280 				      const int update_fom)
2281 
2282 {
2283 	int ret, grp_calibrated;
2284 	u32 rank_bgn, sr;
2285 
2286 	/*
2287 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2288 	 * Read per-bit deskew can be done on a per shadow register basis.
2289 	 */
2290 	grp_calibrated = 1;
2291 	for (rank_bgn = 0, sr = 0;
2292 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2293 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2294 		/* Check if this set of ranks should be skipped entirely. */
2295 		if (param->skip_shadow_regs[sr])
2296 			continue;
2297 
2298 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2299 							rw_group, test_bgn,
2300 							use_read_test,
2301 							update_fom);
2302 		if (ret)
2303 			continue;
2304 
2305 		grp_calibrated = 0;
2306 	}
2307 
2308 	if (!grp_calibrated)
2309 		return -EIO;
2310 
2311 	return 0;
2312 }
2313 
2314 /**
2315  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2316  * @rw_group:		Read/Write Group
2317  * @test_bgn:		Rank at which the test begins
2318  *
2319  * Stage 1: Calibrate the read valid prediction FIFO.
2320  *
2321  * This function implements UniPHY calibration Stage 1, as explained in
2322  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2323  *
2324  * - read valid prediction will consist of finding:
2325  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2326  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2327  *  - we also do a per-bit deskew on the DQ lines.
2328  */
2329 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2330 {
2331 	uint32_t p, d;
2332 	uint32_t dtaps_per_ptap;
2333 	uint32_t failed_substage;
2334 
2335 	int ret;
2336 
2337 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2338 
2339 	/* Update info for sims */
2340 	reg_file_set_group(rw_group);
2341 	reg_file_set_stage(CAL_STAGE_VFIFO);
2342 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2343 
2344 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2345 
2346 	/* USER Determine number of delay taps for each phase tap. */
2347 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2348 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2349 
2350 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2351 		/*
2352 		 * In RLDRAMX we may be messing the delay of pins in
2353 		 * the same write rw_group but outside of the current read
2354 		 * the rw_group, but that's ok because we haven't calibrated
2355 		 * output side yet.
2356 		 */
2357 		if (d > 0) {
2358 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2359 								rw_group, d);
2360 		}
2361 
2362 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2363 			/* 1) Guaranteed Write */
2364 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2365 			if (ret)
2366 				break;
2367 
2368 			/* 2) DQS Enable Calibration */
2369 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2370 									  test_bgn);
2371 			if (ret) {
2372 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2373 				continue;
2374 			}
2375 
2376 			/* 3) Centering DQ/DQS */
2377 			/*
2378 			 * If doing read after write calibration, do not update
2379 			 * FOM now. Do it then.
2380 			 */
2381 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2382 								test_bgn, 1, 0);
2383 			if (ret) {
2384 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2385 				continue;
2386 			}
2387 
2388 			/* All done. */
2389 			goto cal_done_ok;
2390 		}
2391 	}
2392 
2393 	/* Calibration Stage 1 failed. */
2394 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2395 	return 0;
2396 
2397 	/* Calibration Stage 1 completed OK. */
2398 cal_done_ok:
2399 	/*
2400 	 * Reset the delay chains back to zero if they have moved > 1
2401 	 * (check for > 1 because loop will increase d even when pass in
2402 	 * first case).
2403 	 */
2404 	if (d > 2)
2405 		scc_mgr_zero_group(rw_group, 1);
2406 
2407 	return 1;
2408 }
2409 
2410 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2411 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2412 					       uint32_t test_bgn)
2413 {
2414 	uint32_t rank_bgn, sr;
2415 	uint32_t grp_calibrated;
2416 	uint32_t write_group;
2417 
2418 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2419 
2420 	/* update info for sims */
2421 
2422 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2423 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2424 
2425 	write_group = read_group;
2426 
2427 	/* update info for sims */
2428 	reg_file_set_group(read_group);
2429 
2430 	grp_calibrated = 1;
2431 	/* Read per-bit deskew can be done on a per shadow register basis */
2432 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2433 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2434 		/* Determine if this set of ranks should be skipped entirely */
2435 		if (!param->skip_shadow_regs[sr]) {
2436 		/* This is the last calibration round, update FOM here */
2437 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2438 								write_group,
2439 								read_group,
2440 								test_bgn, 0,
2441 								1)) {
2442 				grp_calibrated = 0;
2443 			}
2444 		}
2445 	}
2446 
2447 
2448 	if (grp_calibrated == 0) {
2449 		set_failing_group_stage(write_group,
2450 					CAL_STAGE_VFIFO_AFTER_WRITES,
2451 					CAL_SUBSTAGE_VFIFO_CENTER);
2452 		return 0;
2453 	}
2454 
2455 	return 1;
2456 }
2457 
2458 /* Calibrate LFIFO to find smallest read latency */
2459 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2460 {
2461 	uint32_t found_one;
2462 	uint32_t bit_chk;
2463 
2464 	debug("%s:%d\n", __func__, __LINE__);
2465 
2466 	/* update info for sims */
2467 	reg_file_set_stage(CAL_STAGE_LFIFO);
2468 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2469 
2470 	/* Load up the patterns used by read calibration for all ranks */
2471 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2472 	found_one = 0;
2473 
2474 	do {
2475 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2476 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2477 			   __func__, __LINE__, gbl->curr_read_lat);
2478 
2479 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2480 							      NUM_READ_TESTS,
2481 							      PASS_ALL_BITS,
2482 							      &bit_chk, 1)) {
2483 			break;
2484 		}
2485 
2486 		found_one = 1;
2487 		/* reduce read latency and see if things are working */
2488 		/* correctly */
2489 		gbl->curr_read_lat--;
2490 	} while (gbl->curr_read_lat > 0);
2491 
2492 	/* reset the fifos to get pointers to known state */
2493 
2494 	writel(0, &phy_mgr_cmd->fifo_reset);
2495 
2496 	if (found_one) {
2497 		/* add a fudge factor to the read latency that was determined */
2498 		gbl->curr_read_lat += 2;
2499 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2500 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2501 			   read_lat=%u\n", __func__, __LINE__,
2502 			   gbl->curr_read_lat);
2503 		return 1;
2504 	} else {
2505 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2506 					CAL_SUBSTAGE_READ_LATENCY);
2507 
2508 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2509 			   read_lat=%u\n", __func__, __LINE__,
2510 			   gbl->curr_read_lat);
2511 		return 0;
2512 	}
2513 }
2514 
2515 /*
2516  * issue write test command.
2517  * two variants are provided. one that just tests a write pattern and
2518  * another that tests datamask functionality.
2519  */
2520 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2521 						  uint32_t test_dm)
2522 {
2523 	uint32_t mcc_instruction;
2524 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2525 		ENABLE_SUPER_QUICK_CALIBRATION);
2526 	uint32_t rw_wl_nop_cycles;
2527 	uint32_t addr;
2528 
2529 	/*
2530 	 * Set counter and jump addresses for the right
2531 	 * number of NOP cycles.
2532 	 * The number of supported NOP cycles can range from -1 to infinity
2533 	 * Three different cases are handled:
2534 	 *
2535 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2536 	 *    mechanism will be used to insert the right number of NOPs
2537 	 *
2538 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2539 	 *    issuing the write command will jump straight to the
2540 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2541 	 *    data (for RLD), skipping
2542 	 *    the NOP micro-instruction all together
2543 	 *
2544 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2545 	 *    turned on in the same micro-instruction that issues the write
2546 	 *    command. Then we need
2547 	 *    to directly jump to the micro-instruction that sends out the data
2548 	 *
2549 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2550 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2551 	 *       write-read operations.
2552 	 *       one counter left to issue this command in "multiple-group" mode
2553 	 */
2554 
2555 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2556 
2557 	if (rw_wl_nop_cycles == -1) {
2558 		/*
2559 		 * CNTR 2 - We want to execute the special write operation that
2560 		 * turns on DQS right away and then skip directly to the
2561 		 * instruction that sends out the data. We set the counter to a
2562 		 * large number so that the jump is always taken.
2563 		 */
2564 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2565 
2566 		/* CNTR 3 - Not used */
2567 		if (test_dm) {
2568 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2569 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2570 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2571 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2572 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2573 		} else {
2574 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2575 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2576 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2577 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2578 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2579 		}
2580 	} else if (rw_wl_nop_cycles == 0) {
2581 		/*
2582 		 * CNTR 2 - We want to skip the NOP operation and go straight
2583 		 * to the DQS enable instruction. We set the counter to a large
2584 		 * number so that the jump is always taken.
2585 		 */
2586 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2587 
2588 		/* CNTR 3 - Not used */
2589 		if (test_dm) {
2590 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2591 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2592 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2593 		} else {
2594 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2595 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2596 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2597 		}
2598 	} else {
2599 		/*
2600 		 * CNTR 2 - In this case we want to execute the next instruction
2601 		 * and NOT take the jump. So we set the counter to 0. The jump
2602 		 * address doesn't count.
2603 		 */
2604 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2605 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2606 
2607 		/*
2608 		 * CNTR 3 - Set the nop counter to the number of cycles we
2609 		 * need to loop for, minus 1.
2610 		 */
2611 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2612 		if (test_dm) {
2613 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2614 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2615 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2616 		} else {
2617 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2618 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2619 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2620 		}
2621 	}
2622 
2623 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2624 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2625 
2626 	if (quick_write_mode)
2627 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2628 	else
2629 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2630 
2631 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2632 
2633 	/*
2634 	 * CNTR 1 - This is used to ensure enough time elapses
2635 	 * for read data to come back.
2636 	 */
2637 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2638 
2639 	if (test_dm) {
2640 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2641 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2642 	} else {
2643 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2644 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2645 	}
2646 
2647 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2648 	writel(mcc_instruction, addr + (group << 2));
2649 }
2650 
2651 /* Test writes, can check for a single bit pass or multiple bit pass */
2652 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2653 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2654 	uint32_t *bit_chk, uint32_t all_ranks)
2655 {
2656 	uint32_t r;
2657 	uint32_t correct_mask_vg;
2658 	uint32_t tmp_bit_chk;
2659 	uint32_t vg;
2660 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2661 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2662 	uint32_t addr_rw_mgr;
2663 	uint32_t base_rw_mgr;
2664 
2665 	*bit_chk = param->write_correct_mask;
2666 	correct_mask_vg = param->write_correct_mask_vg;
2667 
2668 	for (r = rank_bgn; r < rank_end; r++) {
2669 		if (param->skip_ranks[r]) {
2670 			/* request to skip the rank */
2671 			continue;
2672 		}
2673 
2674 		/* set rank */
2675 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2676 
2677 		tmp_bit_chk = 0;
2678 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2679 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2680 			/* reset the fifos to get pointers to known state */
2681 			writel(0, &phy_mgr_cmd->fifo_reset);
2682 
2683 			tmp_bit_chk = tmp_bit_chk <<
2684 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2685 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2686 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2687 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2688 				use_dm);
2689 
2690 			base_rw_mgr = readl(addr_rw_mgr);
2691 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2692 			if (vg == 0)
2693 				break;
2694 		}
2695 		*bit_chk &= tmp_bit_chk;
2696 	}
2697 
2698 	if (all_correct) {
2699 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2700 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2701 			   %u => %lu", write_group, use_dm,
2702 			   *bit_chk, param->write_correct_mask,
2703 			   (long unsigned int)(*bit_chk ==
2704 			   param->write_correct_mask));
2705 		return *bit_chk == param->write_correct_mask;
2706 	} else {
2707 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2708 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2709 		       write_group, use_dm, *bit_chk);
2710 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2711 			(long unsigned int)(*bit_chk != 0));
2712 		return *bit_chk != 0x00;
2713 	}
2714 }
2715 
2716 /*
2717  * center all windows. do per-bit-deskew to possibly increase size of
2718  * certain windows.
2719  */
2720 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2721 	uint32_t write_group, uint32_t test_bgn)
2722 {
2723 	uint32_t i, p, min_index;
2724 	int32_t d;
2725 	/*
2726 	 * Store these as signed since there are comparisons with
2727 	 * signed numbers.
2728 	 */
2729 	uint32_t bit_chk;
2730 	uint32_t sticky_bit_chk;
2731 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2732 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2733 	int32_t mid;
2734 	int32_t mid_min, orig_mid_min;
2735 	int32_t new_dqs, start_dqs, shift_dq;
2736 	int32_t dq_margin, dqs_margin, dm_margin;
2737 	uint32_t stop;
2738 	uint32_t temp_dq_out1_delay;
2739 	uint32_t addr;
2740 
2741 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2742 
2743 	dm_margin = 0;
2744 
2745 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2746 	start_dqs = readl(addr +
2747 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2748 
2749 	/* per-bit deskew */
2750 
2751 	/*
2752 	 * set the left and right edge of each bit to an illegal value
2753 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2754 	 */
2755 	sticky_bit_chk = 0;
2756 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2757 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2758 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2759 	}
2760 
2761 	/* Search for the left edge of the window for each bit */
2762 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2763 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2764 
2765 		writel(0, &sdr_scc_mgr->update);
2766 
2767 		/*
2768 		 * Stop searching when the read test doesn't pass AND when
2769 		 * we've seen a passing read on every bit.
2770 		 */
2771 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2772 			0, PASS_ONE_BIT, &bit_chk, 0);
2773 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2774 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2775 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2776 			   == %u && %u [bit_chk= %u ]\n",
2777 			d, sticky_bit_chk, param->write_correct_mask,
2778 			stop, bit_chk);
2779 
2780 		if (stop == 1) {
2781 			break;
2782 		} else {
2783 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2784 				if (bit_chk & 1) {
2785 					/*
2786 					 * Remember a passing test as the
2787 					 * left_edge.
2788 					 */
2789 					left_edge[i] = d;
2790 				} else {
2791 					/*
2792 					 * If a left edge has not been seen
2793 					 * yet, then a future passing test will
2794 					 * mark this edge as the right edge.
2795 					 */
2796 					if (left_edge[i] ==
2797 						IO_IO_OUT1_DELAY_MAX + 1) {
2798 						right_edge[i] = -(d + 1);
2799 					}
2800 				}
2801 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2802 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2803 					   (int)(bit_chk & 1), i, left_edge[i]);
2804 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2805 				       right_edge[i]);
2806 				bit_chk = bit_chk >> 1;
2807 			}
2808 		}
2809 	}
2810 
2811 	/* Reset DQ delay chains to 0 */
2812 	scc_mgr_apply_group_dq_out1_delay(0);
2813 	sticky_bit_chk = 0;
2814 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2815 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2816 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2817 			   i, left_edge[i], i, right_edge[i]);
2818 
2819 		/*
2820 		 * Check for cases where we haven't found the left edge,
2821 		 * which makes our assignment of the the right edge invalid.
2822 		 * Reset it to the illegal value.
2823 		 */
2824 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2825 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2826 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2827 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2828 				   right_edge[%u]: %d\n", __func__, __LINE__,
2829 				   i, right_edge[i]);
2830 		}
2831 
2832 		/*
2833 		 * Reset sticky bit (except for bits where we have
2834 		 * seen the left edge).
2835 		 */
2836 		sticky_bit_chk = sticky_bit_chk << 1;
2837 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2838 			sticky_bit_chk = sticky_bit_chk | 1;
2839 
2840 		if (i == 0)
2841 			break;
2842 	}
2843 
2844 	/* Search for the right edge of the window for each bit */
2845 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2846 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2847 							d + start_dqs);
2848 
2849 		writel(0, &sdr_scc_mgr->update);
2850 
2851 		/*
2852 		 * Stop searching when the read test doesn't pass AND when
2853 		 * we've seen a passing read on every bit.
2854 		 */
2855 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2856 			0, PASS_ONE_BIT, &bit_chk, 0);
2857 
2858 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2859 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2860 
2861 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2862 			   %u && %u\n", d, sticky_bit_chk,
2863 			   param->write_correct_mask, stop);
2864 
2865 		if (stop == 1) {
2866 			if (d == 0) {
2867 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2868 					i++) {
2869 					/* d = 0 failed, but it passed when
2870 					testing the left edge, so it must be
2871 					marginal, set it to -1 */
2872 					if (right_edge[i] ==
2873 						IO_IO_OUT1_DELAY_MAX + 1 &&
2874 						left_edge[i] !=
2875 						IO_IO_OUT1_DELAY_MAX + 1) {
2876 						right_edge[i] = -1;
2877 					}
2878 				}
2879 			}
2880 			break;
2881 		} else {
2882 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2883 				if (bit_chk & 1) {
2884 					/*
2885 					 * Remember a passing test as
2886 					 * the right_edge.
2887 					 */
2888 					right_edge[i] = d;
2889 				} else {
2890 					if (d != 0) {
2891 						/*
2892 						 * If a right edge has not
2893 						 * been seen yet, then a future
2894 						 * passing test will mark this
2895 						 * edge as the left edge.
2896 						 */
2897 						if (right_edge[i] ==
2898 						    IO_IO_OUT1_DELAY_MAX + 1)
2899 							left_edge[i] = -(d + 1);
2900 					} else {
2901 						/*
2902 						 * d = 0 failed, but it passed
2903 						 * when testing the left edge,
2904 						 * so it must be marginal, set
2905 						 * it to -1.
2906 						 */
2907 						if (right_edge[i] ==
2908 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2909 						    left_edge[i] !=
2910 						    IO_IO_OUT1_DELAY_MAX + 1)
2911 							right_edge[i] = -1;
2912 						/*
2913 						 * If a right edge has not been
2914 						 * seen yet, then a future
2915 						 * passing test will mark this
2916 						 * edge as the left edge.
2917 						 */
2918 						else if (right_edge[i] ==
2919 							IO_IO_OUT1_DELAY_MAX +
2920 							1)
2921 							left_edge[i] = -(d + 1);
2922 					}
2923 				}
2924 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2925 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2926 					   (int)(bit_chk & 1), i, left_edge[i]);
2927 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2928 					   right_edge[i]);
2929 				bit_chk = bit_chk >> 1;
2930 			}
2931 		}
2932 	}
2933 
2934 	/* Check that all bits have a window */
2935 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2936 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2937 			   %d right_edge[%u]: %d", __func__, __LINE__,
2938 			   i, left_edge[i], i, right_edge[i]);
2939 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2940 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2941 			set_failing_group_stage(test_bgn + i,
2942 						CAL_STAGE_WRITES,
2943 						CAL_SUBSTAGE_WRITES_CENTER);
2944 			return 0;
2945 		}
2946 	}
2947 
2948 	/* Find middle of window for each DQ bit */
2949 	mid_min = left_edge[0] - right_edge[0];
2950 	min_index = 0;
2951 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2952 		mid = left_edge[i] - right_edge[i];
2953 		if (mid < mid_min) {
2954 			mid_min = mid;
2955 			min_index = i;
2956 		}
2957 	}
2958 
2959 	/*
2960 	 * -mid_min/2 represents the amount that we need to move DQS.
2961 	 * If mid_min is odd and positive we'll need to add one to
2962 	 * make sure the rounding in further calculations is correct
2963 	 * (always bias to the right), so just add 1 for all positive values.
2964 	 */
2965 	if (mid_min > 0)
2966 		mid_min++;
2967 	mid_min = mid_min / 2;
2968 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2969 		   __LINE__, mid_min);
2970 
2971 	/* Determine the amount we can change DQS (which is -mid_min) */
2972 	orig_mid_min = mid_min;
2973 	new_dqs = start_dqs;
2974 	mid_min = 0;
2975 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2976 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2977 	/* Initialize data for export structures */
2978 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2979 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2980 
2981 	/* add delay to bring centre of all DQ windows to the same "level" */
2982 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2983 		/* Use values before divide by 2 to reduce round off error */
2984 		shift_dq = (left_edge[i] - right_edge[i] -
2985 			(left_edge[min_index] - right_edge[min_index]))/2  +
2986 		(orig_mid_min - mid_min);
2987 
2988 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2989 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2990 
2991 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2992 		temp_dq_out1_delay = readl(addr + (i << 2));
2993 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2994 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2995 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2996 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2997 			shift_dq = -(int32_t)temp_dq_out1_delay;
2998 		}
2999 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3000 			   i, shift_dq);
3001 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3002 		scc_mgr_load_dq(i);
3003 
3004 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3005 			   left_edge[i] - shift_dq + (-mid_min),
3006 			   right_edge[i] + shift_dq - (-mid_min));
3007 		/* To determine values for export structures */
3008 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3009 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3010 
3011 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3012 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3013 	}
3014 
3015 	/* Move DQS */
3016 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3017 	writel(0, &sdr_scc_mgr->update);
3018 
3019 	/* Centre DM */
3020 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3021 
3022 	/*
3023 	 * set the left and right edge of each bit to an illegal value,
3024 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3025 	 */
3026 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3027 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3028 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3029 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3030 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3031 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3032 	int32_t win_best = 0;
3033 
3034 	/* Search for the/part of the window with DM shift */
3035 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3036 		scc_mgr_apply_group_dm_out1_delay(d);
3037 		writel(0, &sdr_scc_mgr->update);
3038 
3039 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3040 						    PASS_ALL_BITS, &bit_chk,
3041 						    0)) {
3042 			/* USE Set current end of the window */
3043 			end_curr = -d;
3044 			/*
3045 			 * If a starting edge of our window has not been seen
3046 			 * this is our current start of the DM window.
3047 			 */
3048 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3049 				bgn_curr = -d;
3050 
3051 			/*
3052 			 * If current window is bigger than best seen.
3053 			 * Set best seen to be current window.
3054 			 */
3055 			if ((end_curr-bgn_curr+1) > win_best) {
3056 				win_best = end_curr-bgn_curr+1;
3057 				bgn_best = bgn_curr;
3058 				end_best = end_curr;
3059 			}
3060 		} else {
3061 			/* We just saw a failing test. Reset temp edge */
3062 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 			}
3065 		}
3066 
3067 
3068 	/* Reset DM delay chains to 0 */
3069 	scc_mgr_apply_group_dm_out1_delay(0);
3070 
3071 	/*
3072 	 * Check to see if the current window nudges up aganist 0 delay.
3073 	 * If so we need to continue the search by shifting DQS otherwise DQS
3074 	 * search begins as a new search. */
3075 	if (end_curr != 0) {
3076 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3078 	}
3079 
3080 	/* Search for the/part of the window with DQS shifts */
3081 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3082 		/*
3083 		 * Note: This only shifts DQS, so are we limiting ourselve to
3084 		 * width of DQ unnecessarily.
3085 		 */
3086 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3087 							d + new_dqs);
3088 
3089 		writel(0, &sdr_scc_mgr->update);
3090 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3091 						    PASS_ALL_BITS, &bit_chk,
3092 						    0)) {
3093 			/* USE Set current end of the window */
3094 			end_curr = d;
3095 			/*
3096 			 * If a beginning edge of our window has not been seen
3097 			 * this is our current begin of the DM window.
3098 			 */
3099 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3100 				bgn_curr = d;
3101 
3102 			/*
3103 			 * If current window is bigger than best seen. Set best
3104 			 * seen to be current window.
3105 			 */
3106 			if ((end_curr-bgn_curr+1) > win_best) {
3107 				win_best = end_curr-bgn_curr+1;
3108 				bgn_best = bgn_curr;
3109 				end_best = end_curr;
3110 			}
3111 		} else {
3112 			/* We just saw a failing test. Reset temp edge */
3113 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3114 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3115 
3116 			/* Early exit optimization: if ther remaining delay
3117 			chain space is less than already seen largest window
3118 			we can exit */
3119 			if ((win_best-1) >
3120 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3121 					break;
3122 				}
3123 			}
3124 		}
3125 
3126 	/* assign left and right edge for cal and reporting; */
3127 	left_edge[0] = -1*bgn_best;
3128 	right_edge[0] = end_best;
3129 
3130 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3131 		   __LINE__, left_edge[0], right_edge[0]);
3132 
3133 	/* Move DQS (back to orig) */
3134 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3135 
3136 	/* Move DM */
3137 
3138 	/* Find middle of window for the DM bit */
3139 	mid = (left_edge[0] - right_edge[0]) / 2;
3140 
3141 	/* only move right, since we are not moving DQS/DQ */
3142 	if (mid < 0)
3143 		mid = 0;
3144 
3145 	/* dm_marign should fail if we never find a window */
3146 	if (win_best == 0)
3147 		dm_margin = -1;
3148 	else
3149 		dm_margin = left_edge[0] - mid;
3150 
3151 	scc_mgr_apply_group_dm_out1_delay(mid);
3152 	writel(0, &sdr_scc_mgr->update);
3153 
3154 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3155 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3156 		   right_edge[0], mid, dm_margin);
3157 	/* Export values */
3158 	gbl->fom_out += dq_margin + dqs_margin;
3159 
3160 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3161 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3162 		   dq_margin, dqs_margin, dm_margin);
3163 
3164 	/*
3165 	 * Do not remove this line as it makes sure all of our
3166 	 * decisions have been applied.
3167 	 */
3168 	writel(0, &sdr_scc_mgr->update);
3169 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3170 }
3171 
3172 /* calibrate the write operations */
3173 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3174 	uint32_t test_bgn)
3175 {
3176 	/* update info for sims */
3177 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3178 
3179 	reg_file_set_stage(CAL_STAGE_WRITES);
3180 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3181 
3182 	reg_file_set_group(g);
3183 
3184 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3185 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3186 					CAL_SUBSTAGE_WRITES_CENTER);
3187 		return 0;
3188 	}
3189 
3190 	return 1;
3191 }
3192 
3193 /**
3194  * mem_precharge_and_activate() - Precharge all banks and activate
3195  *
3196  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3197  */
3198 static void mem_precharge_and_activate(void)
3199 {
3200 	int r;
3201 
3202 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3203 		/* Test if the rank should be skipped. */
3204 		if (param->skip_ranks[r])
3205 			continue;
3206 
3207 		/* Set rank. */
3208 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3209 
3210 		/* Precharge all banks. */
3211 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3212 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3213 
3214 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3215 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3216 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3217 
3218 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3219 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3220 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3221 
3222 		/* Activate rows. */
3223 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3224 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3225 	}
3226 }
3227 
3228 /**
3229  * mem_init_latency() - Configure memory RLAT and WLAT settings
3230  *
3231  * Configure memory RLAT and WLAT parameters.
3232  */
3233 static void mem_init_latency(void)
3234 {
3235 	/*
3236 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3237 	 * so max latency in AFI clocks, used here, is correspondingly
3238 	 * smaller.
3239 	 */
3240 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3241 	u32 rlat, wlat;
3242 
3243 	debug("%s:%d\n", __func__, __LINE__);
3244 
3245 	/*
3246 	 * Read in write latency.
3247 	 * WL for Hard PHY does not include additive latency.
3248 	 */
3249 	wlat = readl(&data_mgr->t_wl_add);
3250 	wlat += readl(&data_mgr->mem_t_add);
3251 
3252 	gbl->rw_wl_nop_cycles = wlat - 1;
3253 
3254 	/* Read in readl latency. */
3255 	rlat = readl(&data_mgr->t_rl_add);
3256 
3257 	/* Set a pretty high read latency initially. */
3258 	gbl->curr_read_lat = rlat + 16;
3259 	if (gbl->curr_read_lat > max_latency)
3260 		gbl->curr_read_lat = max_latency;
3261 
3262 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3263 
3264 	/* Advertise write latency. */
3265 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3266 }
3267 
3268 /**
3269  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3270  *
3271  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3272  */
3273 static void mem_skip_calibrate(void)
3274 {
3275 	uint32_t vfifo_offset;
3276 	uint32_t i, j, r;
3277 
3278 	debug("%s:%d\n", __func__, __LINE__);
3279 	/* Need to update every shadow register set used by the interface */
3280 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3281 	     r += NUM_RANKS_PER_SHADOW_REG) {
3282 		/*
3283 		 * Set output phase alignment settings appropriate for
3284 		 * skip calibration.
3285 		 */
3286 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3287 			scc_mgr_set_dqs_en_phase(i, 0);
3288 #if IO_DLL_CHAIN_LENGTH == 6
3289 			scc_mgr_set_dqdqs_output_phase(i, 6);
3290 #else
3291 			scc_mgr_set_dqdqs_output_phase(i, 7);
3292 #endif
3293 			/*
3294 			 * Case:33398
3295 			 *
3296 			 * Write data arrives to the I/O two cycles before write
3297 			 * latency is reached (720 deg).
3298 			 *   -> due to bit-slip in a/c bus
3299 			 *   -> to allow board skew where dqs is longer than ck
3300 			 *      -> how often can this happen!?
3301 			 *      -> can claim back some ptaps for high freq
3302 			 *       support if we can relax this, but i digress...
3303 			 *
3304 			 * The write_clk leads mem_ck by 90 deg
3305 			 * The minimum ptap of the OPA is 180 deg
3306 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3307 			 * The write_clk is always delayed by 2 ptaps
3308 			 *
3309 			 * Hence, to make DQS aligned to CK, we need to delay
3310 			 * DQS by:
3311 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3312 			 *
3313 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3314 			 * gives us the number of ptaps, which simplies to:
3315 			 *
3316 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3317 			 */
3318 			scc_mgr_set_dqdqs_output_phase(i,
3319 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3320 		}
3321 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3322 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3323 
3324 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3325 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3326 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3327 		}
3328 		writel(0xff, &sdr_scc_mgr->dq_ena);
3329 		writel(0xff, &sdr_scc_mgr->dm_ena);
3330 		writel(0, &sdr_scc_mgr->update);
3331 	}
3332 
3333 	/* Compensate for simulation model behaviour */
3334 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3335 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3336 		scc_mgr_load_dqs(i);
3337 	}
3338 	writel(0, &sdr_scc_mgr->update);
3339 
3340 	/*
3341 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3342 	 * in sequencer.
3343 	 */
3344 	vfifo_offset = CALIB_VFIFO_OFFSET;
3345 	for (j = 0; j < vfifo_offset; j++)
3346 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3347 	writel(0, &phy_mgr_cmd->fifo_reset);
3348 
3349 	/*
3350 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3351 	 * setting from generation-time constant.
3352 	 */
3353 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3354 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3355 }
3356 
3357 /**
3358  * mem_calibrate() - Memory calibration entry point.
3359  *
3360  * Perform memory calibration.
3361  */
3362 static uint32_t mem_calibrate(void)
3363 {
3364 	uint32_t i;
3365 	uint32_t rank_bgn, sr;
3366 	uint32_t write_group, write_test_bgn;
3367 	uint32_t read_group, read_test_bgn;
3368 	uint32_t run_groups, current_run;
3369 	uint32_t failing_groups = 0;
3370 	uint32_t group_failed = 0;
3371 
3372 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3373 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3374 
3375 	debug("%s:%d\n", __func__, __LINE__);
3376 
3377 	/* Initialize the data settings */
3378 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3379 	gbl->error_stage = CAL_STAGE_NIL;
3380 	gbl->error_group = 0xff;
3381 	gbl->fom_in = 0;
3382 	gbl->fom_out = 0;
3383 
3384 	/* Initialize WLAT and RLAT. */
3385 	mem_init_latency();
3386 
3387 	/* Initialize bit slips. */
3388 	mem_precharge_and_activate();
3389 
3390 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3391 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3392 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3393 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3394 		if (i == 0)
3395 			scc_mgr_set_hhp_extras();
3396 
3397 		scc_set_bypass_mode(i);
3398 	}
3399 
3400 	/* Calibration is skipped. */
3401 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3402 		/*
3403 		 * Set VFIFO and LFIFO to instant-on settings in skip
3404 		 * calibration mode.
3405 		 */
3406 		mem_skip_calibrate();
3407 
3408 		/*
3409 		 * Do not remove this line as it makes sure all of our
3410 		 * decisions have been applied.
3411 		 */
3412 		writel(0, &sdr_scc_mgr->update);
3413 		return 1;
3414 	}
3415 
3416 	/* Calibration is not skipped. */
3417 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3418 		/*
3419 		 * Zero all delay chain/phase settings for all
3420 		 * groups and all shadow register sets.
3421 		 */
3422 		scc_mgr_zero_all();
3423 
3424 		run_groups = ~param->skip_groups;
3425 
3426 		for (write_group = 0, write_test_bgn = 0; write_group
3427 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3428 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3429 
3430 			/* Initialize the group failure */
3431 			group_failed = 0;
3432 
3433 			current_run = run_groups & ((1 <<
3434 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3435 			run_groups = run_groups >>
3436 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3437 
3438 			if (current_run == 0)
3439 				continue;
3440 
3441 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3442 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3443 			scc_mgr_zero_group(write_group, 0);
3444 
3445 			for (read_group = write_group * rwdqs_ratio,
3446 			     read_test_bgn = 0;
3447 			     read_group < (write_group + 1) * rwdqs_ratio;
3448 			     read_group++,
3449 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3450 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3451 					continue;
3452 
3453 				/* Calibrate the VFIFO */
3454 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3455 							       read_test_bgn))
3456 					continue;
3457 
3458 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459 					return 0;
3460 
3461 				/* The group failed, we're done. */
3462 				goto grp_failed;
3463 			}
3464 
3465 			/* Calibrate the output side */
3466 			for (rank_bgn = 0, sr = 0;
3467 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3468 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3469 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3470 					continue;
3471 
3472 				/* Not needed in quick mode! */
3473 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3474 					continue;
3475 
3476 				/*
3477 				 * Determine if this set of ranks
3478 				 * should be skipped entirely.
3479 				 */
3480 				if (param->skip_shadow_regs[sr])
3481 					continue;
3482 
3483 				/* Calibrate WRITEs */
3484 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3485 						write_group, write_test_bgn))
3486 					continue;
3487 
3488 				group_failed = 1;
3489 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3490 					return 0;
3491 			}
3492 
3493 			/* Some group failed, we're done. */
3494 			if (group_failed)
3495 				goto grp_failed;
3496 
3497 			for (read_group = write_group * rwdqs_ratio,
3498 			     read_test_bgn = 0;
3499 			     read_group < (write_group + 1) * rwdqs_ratio;
3500 			     read_group++,
3501 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3502 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3503 					continue;
3504 
3505 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3506 								read_test_bgn))
3507 					continue;
3508 
3509 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3510 					return 0;
3511 
3512 				/* The group failed, we're done. */
3513 				goto grp_failed;
3514 			}
3515 
3516 			/* No group failed, continue as usual. */
3517 			continue;
3518 
3519 grp_failed:		/* A group failed, increment the counter. */
3520 			failing_groups++;
3521 		}
3522 
3523 		/*
3524 		 * USER If there are any failing groups then report
3525 		 * the failure.
3526 		 */
3527 		if (failing_groups != 0)
3528 			return 0;
3529 
3530 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3531 			continue;
3532 
3533 		/*
3534 		 * If we're skipping groups as part of debug,
3535 		 * don't calibrate LFIFO.
3536 		 */
3537 		if (param->skip_groups != 0)
3538 			continue;
3539 
3540 		/* Calibrate the LFIFO */
3541 		if (!rw_mgr_mem_calibrate_lfifo())
3542 			return 0;
3543 	}
3544 
3545 	/*
3546 	 * Do not remove this line as it makes sure all of our decisions
3547 	 * have been applied.
3548 	 */
3549 	writel(0, &sdr_scc_mgr->update);
3550 	return 1;
3551 }
3552 
3553 /**
3554  * run_mem_calibrate() - Perform memory calibration
3555  *
3556  * This function triggers the entire memory calibration procedure.
3557  */
3558 static int run_mem_calibrate(void)
3559 {
3560 	int pass;
3561 
3562 	debug("%s:%d\n", __func__, __LINE__);
3563 
3564 	/* Reset pass/fail status shown on afi_cal_success/fail */
3565 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3566 
3567 	/* Stop tracking manager. */
3568 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3569 
3570 	phy_mgr_initialize();
3571 	rw_mgr_mem_initialize();
3572 
3573 	/* Perform the actual memory calibration. */
3574 	pass = mem_calibrate();
3575 
3576 	mem_precharge_and_activate();
3577 	writel(0, &phy_mgr_cmd->fifo_reset);
3578 
3579 	/* Handoff. */
3580 	rw_mgr_mem_handoff();
3581 	/*
3582 	 * In Hard PHY this is a 2-bit control:
3583 	 * 0: AFI Mux Select
3584 	 * 1: DDIO Mux Select
3585 	 */
3586 	writel(0x2, &phy_mgr_cfg->mux_sel);
3587 
3588 	/* Start tracking manager. */
3589 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3590 
3591 	return pass;
3592 }
3593 
3594 /**
3595  * debug_mem_calibrate() - Report result of memory calibration
3596  * @pass:	Value indicating whether calibration passed or failed
3597  *
3598  * This function reports the results of the memory calibration
3599  * and writes debug information into the register file.
3600  */
3601 static void debug_mem_calibrate(int pass)
3602 {
3603 	uint32_t debug_info;
3604 
3605 	if (pass) {
3606 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3607 
3608 		gbl->fom_in /= 2;
3609 		gbl->fom_out /= 2;
3610 
3611 		if (gbl->fom_in > 0xff)
3612 			gbl->fom_in = 0xff;
3613 
3614 		if (gbl->fom_out > 0xff)
3615 			gbl->fom_out = 0xff;
3616 
3617 		/* Update the FOM in the register file */
3618 		debug_info = gbl->fom_in;
3619 		debug_info |= gbl->fom_out << 8;
3620 		writel(debug_info, &sdr_reg_file->fom);
3621 
3622 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3623 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3624 	} else {
3625 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3626 
3627 		debug_info = gbl->error_stage;
3628 		debug_info |= gbl->error_substage << 8;
3629 		debug_info |= gbl->error_group << 16;
3630 
3631 		writel(debug_info, &sdr_reg_file->failing_stage);
3632 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3633 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3634 
3635 		/* Update the failing group/stage in the register file */
3636 		debug_info = gbl->error_stage;
3637 		debug_info |= gbl->error_substage << 8;
3638 		debug_info |= gbl->error_group << 16;
3639 		writel(debug_info, &sdr_reg_file->failing_stage);
3640 	}
3641 
3642 	printf("%s: Calibration complete\n", __FILE__);
3643 }
3644 
3645 /**
3646  * hc_initialize_rom_data() - Initialize ROM data
3647  *
3648  * Initialize ROM data.
3649  */
3650 static void hc_initialize_rom_data(void)
3651 {
3652 	u32 i, addr;
3653 
3654 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3655 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3656 		writel(inst_rom_init[i], addr + (i << 2));
3657 
3658 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3659 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3660 		writel(ac_rom_init[i], addr + (i << 2));
3661 }
3662 
3663 /**
3664  * initialize_reg_file() - Initialize SDR register file
3665  *
3666  * Initialize SDR register file.
3667  */
3668 static void initialize_reg_file(void)
3669 {
3670 	/* Initialize the register file with the correct data */
3671 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3672 	writel(0, &sdr_reg_file->debug_data_addr);
3673 	writel(0, &sdr_reg_file->cur_stage);
3674 	writel(0, &sdr_reg_file->fom);
3675 	writel(0, &sdr_reg_file->failing_stage);
3676 	writel(0, &sdr_reg_file->debug1);
3677 	writel(0, &sdr_reg_file->debug2);
3678 }
3679 
3680 /**
3681  * initialize_hps_phy() - Initialize HPS PHY
3682  *
3683  * Initialize HPS PHY.
3684  */
3685 static void initialize_hps_phy(void)
3686 {
3687 	uint32_t reg;
3688 	/*
3689 	 * Tracking also gets configured here because it's in the
3690 	 * same register.
3691 	 */
3692 	uint32_t trk_sample_count = 7500;
3693 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3694 	/*
3695 	 * Format is number of outer loops in the 16 MSB, sample
3696 	 * count in 16 LSB.
3697 	 */
3698 
3699 	reg = 0;
3700 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3701 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3702 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3703 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3704 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3705 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3706 	/*
3707 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3708 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3709 	 */
3710 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3711 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3712 		trk_sample_count);
3713 	writel(reg, &sdr_ctrl->phy_ctrl0);
3714 
3715 	reg = 0;
3716 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3717 		trk_sample_count >>
3718 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3719 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3720 		trk_long_idle_sample_count);
3721 	writel(reg, &sdr_ctrl->phy_ctrl1);
3722 
3723 	reg = 0;
3724 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3725 		trk_long_idle_sample_count >>
3726 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3727 	writel(reg, &sdr_ctrl->phy_ctrl2);
3728 }
3729 
3730 /**
3731  * initialize_tracking() - Initialize tracking
3732  *
3733  * Initialize the register file with usable initial data.
3734  */
3735 static void initialize_tracking(void)
3736 {
3737 	/*
3738 	 * Initialize the register file with the correct data.
3739 	 * Compute usable version of value in case we skip full
3740 	 * computation later.
3741 	 */
3742 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3743 	       &sdr_reg_file->dtaps_per_ptap);
3744 
3745 	/* trk_sample_count */
3746 	writel(7500, &sdr_reg_file->trk_sample_count);
3747 
3748 	/* longidle outer loop [15:0] */
3749 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3750 
3751 	/*
3752 	 * longidle sample count [31:24]
3753 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3754 	 * trcd, worst case [15:8]
3755 	 * vfifo wait [7:0]
3756 	 */
3757 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3758 	       &sdr_reg_file->delays);
3759 
3760 	/* mux delay */
3761 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3762 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3763 	       &sdr_reg_file->trk_rw_mgr_addr);
3764 
3765 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3766 	       &sdr_reg_file->trk_read_dqs_width);
3767 
3768 	/* trefi [7:0] */
3769 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3770 	       &sdr_reg_file->trk_rfsh);
3771 }
3772 
3773 int sdram_calibration_full(void)
3774 {
3775 	struct param_type my_param;
3776 	struct gbl_type my_gbl;
3777 	uint32_t pass;
3778 
3779 	memset(&my_param, 0, sizeof(my_param));
3780 	memset(&my_gbl, 0, sizeof(my_gbl));
3781 
3782 	param = &my_param;
3783 	gbl = &my_gbl;
3784 
3785 	/* Set the calibration enabled by default */
3786 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3787 	/*
3788 	 * Only sweep all groups (regardless of fail state) by default
3789 	 * Set enabled read test by default.
3790 	 */
3791 #if DISABLE_GUARANTEED_READ
3792 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3793 #endif
3794 	/* Initialize the register file */
3795 	initialize_reg_file();
3796 
3797 	/* Initialize any PHY CSR */
3798 	initialize_hps_phy();
3799 
3800 	scc_mgr_initialize();
3801 
3802 	initialize_tracking();
3803 
3804 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3805 
3806 	debug("%s:%d\n", __func__, __LINE__);
3807 	debug_cond(DLEVEL == 1,
3808 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3809 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3810 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3811 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3812 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3813 	debug_cond(DLEVEL == 1,
3814 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3815 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3816 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3817 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3818 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3819 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3820 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3821 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3822 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3823 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3824 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3825 		   IO_IO_OUT2_DELAY_MAX);
3826 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3827 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3828 
3829 	hc_initialize_rom_data();
3830 
3831 	/* update info for sims */
3832 	reg_file_set_stage(CAL_STAGE_NIL);
3833 	reg_file_set_group(0);
3834 
3835 	/*
3836 	 * Load global needed for those actions that require
3837 	 * some dynamic calibration support.
3838 	 */
3839 	dyn_calib_steps = STATIC_CALIB_STEPS;
3840 	/*
3841 	 * Load global to allow dynamic selection of delay loop settings
3842 	 * based on calibration mode.
3843 	 */
3844 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3845 		skip_delay_mask = 0xff;
3846 	else
3847 		skip_delay_mask = 0x0;
3848 
3849 	pass = run_mem_calibrate();
3850 	debug_mem_calibrate(pass);
3851 	return pass;
3852 }
3853