1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const u32 clocks) 762 { 763 u32 afi_clocks; 764 u16 c_loop = 0; 765 u8 inner = 0; 766 u8 outer = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 /* Scale (rounding up) to get afi clocks. */ 771 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); 772 if (afi_clocks) /* Temporary underflow protection */ 773 afi_clocks--; 774 775 /* 776 * Note, we don't bother accounting for being off a little 777 * bit because of a few extra instructions in outer loops. 778 * Note, the loops have a test at the end, and do the test 779 * before the decrement, and so always perform the loop 780 * 1 time more than the counter value 781 */ 782 if (afi_clocks == 0) { 783 ; 784 } else if (afi_clocks < 0x100) { 785 inner = afi_clocks; 786 outer = 0; 787 c_loop = 0; 788 } else if (afi_clocks < 0x10000) { 789 inner = 0xff; 790 outer = afi_clocks >> 8; 791 c_loop = 0; 792 } else { /* >= 0x10000 */ 793 inner = 0xff; 794 outer = 0xff; 795 c_loop = afi_clocks >> 16; 796 } 797 798 /* 799 * rom instructions are structured as follows: 800 * 801 * IDLE_LOOP2: jnz cntr0, TARGET_A 802 * IDLE_LOOP1: jnz cntr1, TARGET_B 803 * return 804 * 805 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 806 * TARGET_B is set to IDLE_LOOP2 as well 807 * 808 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 809 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 810 * 811 * a little confusing, but it helps save precious space in the inst_rom 812 * and sequencer rom and keeps the delays more accurate and reduces 813 * overhead 814 */ 815 if (afi_clocks < 0x100) { 816 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 817 &sdr_rw_load_mgr_regs->load_cntr1); 818 819 writel(RW_MGR_IDLE_LOOP1, 820 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 821 822 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 823 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 824 } else { 825 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 826 &sdr_rw_load_mgr_regs->load_cntr0); 827 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 829 &sdr_rw_load_mgr_regs->load_cntr1); 830 831 writel(RW_MGR_IDLE_LOOP2, 832 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 836 837 /* hack to get around compiler not being smart enough */ 838 if (afi_clocks <= 0x10000) { 839 /* only need to run once */ 840 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 841 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 842 } else { 843 do { 844 writel(RW_MGR_IDLE_LOOP2, 845 SDR_PHYGRP_RWMGRGRP_ADDRESS | 846 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 847 } while (c_loop-- != 0); 848 } 849 } 850 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 851 } 852 853 /** 854 * rw_mgr_mem_init_load_regs() - Load instruction registers 855 * @cntr0: Counter 0 value 856 * @cntr1: Counter 1 value 857 * @cntr2: Counter 2 value 858 * @jump: Jump instruction value 859 * 860 * Load instruction registers. 861 */ 862 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 863 { 864 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 865 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 866 867 /* Load counters */ 868 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 869 &sdr_rw_load_mgr_regs->load_cntr0); 870 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 871 &sdr_rw_load_mgr_regs->load_cntr1); 872 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 873 &sdr_rw_load_mgr_regs->load_cntr2); 874 875 /* Load jump address */ 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 878 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 879 880 /* Execute count instruction */ 881 writel(jump, grpaddr); 882 } 883 884 /** 885 * rw_mgr_mem_load_user() - Load user calibration values 886 * @fin1: Final instruction 1 887 * @fin2: Final instruction 2 888 * @precharge: If 1, precharge the banks at the end 889 * 890 * Load user calibration values and optionally precharge the banks. 891 */ 892 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 893 const int precharge) 894 { 895 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 896 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 897 u32 r; 898 899 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 900 if (param->skip_ranks[r]) { 901 /* request to skip the rank */ 902 continue; 903 } 904 905 /* set rank */ 906 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 907 908 /* precharge all banks ... */ 909 if (precharge) 910 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 911 912 /* 913 * USER Use Mirror-ed commands for odd ranks if address 914 * mirrorring is on 915 */ 916 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 917 set_jump_as_return(); 918 writel(RW_MGR_MRS2_MIRR, grpaddr); 919 delay_for_n_mem_clocks(4); 920 set_jump_as_return(); 921 writel(RW_MGR_MRS3_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS1_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(fin1, grpaddr); 928 } else { 929 set_jump_as_return(); 930 writel(RW_MGR_MRS2, grpaddr); 931 delay_for_n_mem_clocks(4); 932 set_jump_as_return(); 933 writel(RW_MGR_MRS3, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS1, grpaddr); 937 set_jump_as_return(); 938 writel(fin2, grpaddr); 939 } 940 941 if (precharge) 942 continue; 943 944 set_jump_as_return(); 945 writel(RW_MGR_ZQCL, grpaddr); 946 947 /* tZQinit = tDLLK = 512 ck cycles */ 948 delay_for_n_mem_clocks(512); 949 } 950 } 951 952 /** 953 * rw_mgr_mem_initialize() - Initialize RW Manager 954 * 955 * Initialize RW Manager. 956 */ 957 static void rw_mgr_mem_initialize(void) 958 { 959 debug("%s:%d\n", __func__, __LINE__); 960 961 /* The reset / cke part of initialization is broadcasted to all ranks */ 962 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 963 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 964 965 /* 966 * Here's how you load register for a loop 967 * Counters are located @ 0x800 968 * Jump address are located @ 0xC00 969 * For both, registers 0 to 3 are selected using bits 3 and 2, like 970 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 971 * I know this ain't pretty, but Avalon bus throws away the 2 least 972 * significant bits 973 */ 974 975 /* Start with memory RESET activated */ 976 977 /* tINIT = 200us */ 978 979 /* 980 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 981 * If a and b are the number of iteration in 2 nested loops 982 * it takes the following number of cycles to complete the operation: 983 * number_of_cycles = ((2 + n) * a + 2) * b 984 * where n is the number of instruction in the inner loop 985 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 986 * b = 6A 987 */ 988 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 989 SEQ_TINIT_CNTR2_VAL, 990 RW_MGR_INIT_RESET_0_CKE_0); 991 992 /* Indicate that memory is stable. */ 993 writel(1, &phy_mgr_cfg->reset_mem_stbl); 994 995 /* 996 * transition the RESET to high 997 * Wait for 500us 998 */ 999 1000 /* 1001 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1002 * If a and b are the number of iteration in 2 nested loops 1003 * it takes the following number of cycles to complete the operation 1004 * number_of_cycles = ((2 + n) * a + 2) * b 1005 * where n is the number of instruction in the inner loop 1006 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1007 * b = FF 1008 */ 1009 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1010 SEQ_TRESET_CNTR2_VAL, 1011 RW_MGR_INIT_RESET_1_CKE_0); 1012 1013 /* Bring up clock enable. */ 1014 1015 /* tXRP < 250 ck cycles */ 1016 delay_for_n_mem_clocks(250); 1017 1018 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1019 0); 1020 } 1021 1022 /** 1023 * rw_mgr_mem_handoff() - Hand off the memory to user 1024 * 1025 * At the end of calibration we have to program the user settings in 1026 * and hand off the memory to the user. 1027 */ 1028 static void rw_mgr_mem_handoff(void) 1029 { 1030 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1031 /* 1032 * Need to wait tMOD (12CK or 15ns) time before issuing other 1033 * commands, but we will have plenty of NIOS cycles before actual 1034 * handoff so its okay. 1035 */ 1036 } 1037 1038 /** 1039 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1040 * @group: Write Group 1041 * @use_dm: Use DM 1042 * 1043 * Issue write test command. Two variants are provided, one that just tests 1044 * a write pattern and another that tests datamask functionality. 1045 */ 1046 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1047 u32 test_dm) 1048 { 1049 const u32 quick_write_mode = 1050 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1051 ENABLE_SUPER_QUICK_CALIBRATION; 1052 u32 mcc_instruction; 1053 u32 rw_wl_nop_cycles; 1054 1055 /* 1056 * Set counter and jump addresses for the right 1057 * number of NOP cycles. 1058 * The number of supported NOP cycles can range from -1 to infinity 1059 * Three different cases are handled: 1060 * 1061 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1062 * mechanism will be used to insert the right number of NOPs 1063 * 1064 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1065 * issuing the write command will jump straight to the 1066 * micro-instruction that turns on DQS (for DDRx), or outputs write 1067 * data (for RLD), skipping 1068 * the NOP micro-instruction all together 1069 * 1070 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1071 * turned on in the same micro-instruction that issues the write 1072 * command. Then we need 1073 * to directly jump to the micro-instruction that sends out the data 1074 * 1075 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1076 * (2 and 3). One jump-counter (0) is used to perform multiple 1077 * write-read operations. 1078 * one counter left to issue this command in "multiple-group" mode 1079 */ 1080 1081 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1082 1083 if (rw_wl_nop_cycles == -1) { 1084 /* 1085 * CNTR 2 - We want to execute the special write operation that 1086 * turns on DQS right away and then skip directly to the 1087 * instruction that sends out the data. We set the counter to a 1088 * large number so that the jump is always taken. 1089 */ 1090 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1091 1092 /* CNTR 3 - Not used */ 1093 if (test_dm) { 1094 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1095 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1097 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1098 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1099 } else { 1100 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1101 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1102 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1103 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1104 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1105 } 1106 } else if (rw_wl_nop_cycles == 0) { 1107 /* 1108 * CNTR 2 - We want to skip the NOP operation and go straight 1109 * to the DQS enable instruction. We set the counter to a large 1110 * number so that the jump is always taken. 1111 */ 1112 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1113 1114 /* CNTR 3 - Not used */ 1115 if (test_dm) { 1116 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1117 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1118 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1119 } else { 1120 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1121 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1122 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1123 } 1124 } else { 1125 /* 1126 * CNTR 2 - In this case we want to execute the next instruction 1127 * and NOT take the jump. So we set the counter to 0. The jump 1128 * address doesn't count. 1129 */ 1130 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1131 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1132 1133 /* 1134 * CNTR 3 - Set the nop counter to the number of cycles we 1135 * need to loop for, minus 1. 1136 */ 1137 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1138 if (test_dm) { 1139 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1140 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1141 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1142 } else { 1143 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1144 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1145 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1146 } 1147 } 1148 1149 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1150 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1151 1152 if (quick_write_mode) 1153 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1154 else 1155 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1156 1157 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1158 1159 /* 1160 * CNTR 1 - This is used to ensure enough time elapses 1161 * for read data to come back. 1162 */ 1163 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1164 1165 if (test_dm) { 1166 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1167 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1168 } else { 1169 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1170 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1171 } 1172 1173 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1174 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1175 (group << 2)); 1176 } 1177 1178 /** 1179 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1180 * @rank_bgn: Rank number 1181 * @write_group: Write Group 1182 * @use_dm: Use DM 1183 * @all_correct: All bits must be correct in the mask 1184 * @bit_chk: Resulting bit mask after the test 1185 * @all_ranks: Test all ranks 1186 * 1187 * Test writes, can check for a single bit pass or multiple bit pass. 1188 */ 1189 static int 1190 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1191 const u32 use_dm, const u32 all_correct, 1192 u32 *bit_chk, const u32 all_ranks) 1193 { 1194 const u32 rank_end = all_ranks ? 1195 RW_MGR_MEM_NUMBER_OF_RANKS : 1196 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1197 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1198 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1199 const u32 correct_mask_vg = param->write_correct_mask_vg; 1200 1201 u32 tmp_bit_chk, base_rw_mgr; 1202 int vg, r; 1203 1204 *bit_chk = param->write_correct_mask; 1205 1206 for (r = rank_bgn; r < rank_end; r++) { 1207 /* Request to skip the rank */ 1208 if (param->skip_ranks[r]) 1209 continue; 1210 1211 /* Set rank */ 1212 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1213 1214 tmp_bit_chk = 0; 1215 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1216 vg >= 0; vg--) { 1217 /* Reset the FIFOs to get pointers to known state. */ 1218 writel(0, &phy_mgr_cmd->fifo_reset); 1219 1220 rw_mgr_mem_calibrate_write_test_issue( 1221 write_group * 1222 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1223 use_dm); 1224 1225 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1226 tmp_bit_chk <<= shift_ratio; 1227 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1228 } 1229 1230 *bit_chk &= tmp_bit_chk; 1231 } 1232 1233 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1234 if (all_correct) { 1235 debug_cond(DLEVEL == 2, 1236 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1237 write_group, use_dm, *bit_chk, 1238 param->write_correct_mask, 1239 *bit_chk == param->write_correct_mask); 1240 return *bit_chk == param->write_correct_mask; 1241 } else { 1242 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1243 debug_cond(DLEVEL == 2, 1244 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1245 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1246 return *bit_chk != 0x00; 1247 } 1248 } 1249 1250 /** 1251 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1252 * @rank_bgn: Rank number 1253 * @group: Read/Write Group 1254 * @all_ranks: Test all ranks 1255 * 1256 * Performs a guaranteed read on the patterns we are going to use during a 1257 * read test to ensure memory works. 1258 */ 1259 static int 1260 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1261 const u32 all_ranks) 1262 { 1263 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1264 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1265 const u32 addr_offset = 1266 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1267 const u32 rank_end = all_ranks ? 1268 RW_MGR_MEM_NUMBER_OF_RANKS : 1269 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1270 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1271 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1272 const u32 correct_mask_vg = param->read_correct_mask_vg; 1273 1274 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1275 int vg, r; 1276 int ret = 0; 1277 1278 bit_chk = param->read_correct_mask; 1279 1280 for (r = rank_bgn; r < rank_end; r++) { 1281 /* Request to skip the rank */ 1282 if (param->skip_ranks[r]) 1283 continue; 1284 1285 /* Set rank */ 1286 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1287 1288 /* Load up a constant bursts of read commands */ 1289 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1290 writel(RW_MGR_GUARANTEED_READ, 1291 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1292 1293 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1294 writel(RW_MGR_GUARANTEED_READ_CONT, 1295 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1296 1297 tmp_bit_chk = 0; 1298 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1299 vg >= 0; vg--) { 1300 /* Reset the FIFOs to get pointers to known state. */ 1301 writel(0, &phy_mgr_cmd->fifo_reset); 1302 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1303 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1304 writel(RW_MGR_GUARANTEED_READ, 1305 addr + addr_offset + (vg << 2)); 1306 1307 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1308 tmp_bit_chk <<= shift_ratio; 1309 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1310 } 1311 1312 bit_chk &= tmp_bit_chk; 1313 } 1314 1315 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1316 1317 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1318 1319 if (bit_chk != param->read_correct_mask) 1320 ret = -EIO; 1321 1322 debug_cond(DLEVEL == 1, 1323 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1324 __func__, __LINE__, group, bit_chk, 1325 param->read_correct_mask, ret); 1326 1327 return ret; 1328 } 1329 1330 /** 1331 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1332 * @rank_bgn: Rank number 1333 * @all_ranks: Test all ranks 1334 * 1335 * Load up the patterns we are going to use during a read test. 1336 */ 1337 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1338 const int all_ranks) 1339 { 1340 const u32 rank_end = all_ranks ? 1341 RW_MGR_MEM_NUMBER_OF_RANKS : 1342 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1343 u32 r; 1344 1345 debug("%s:%d\n", __func__, __LINE__); 1346 1347 for (r = rank_bgn; r < rank_end; r++) { 1348 if (param->skip_ranks[r]) 1349 /* request to skip the rank */ 1350 continue; 1351 1352 /* set rank */ 1353 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1354 1355 /* Load up a constant bursts */ 1356 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1357 1358 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1359 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1360 1361 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1362 1363 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1364 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1365 1366 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1367 1368 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1369 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1370 1371 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1372 1373 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1374 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1375 1376 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1377 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1378 } 1379 1380 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1381 } 1382 1383 /** 1384 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1385 * @rank_bgn: Rank number 1386 * @group: Read/Write group 1387 * @num_tries: Number of retries of the test 1388 * @all_correct: All bits must be correct in the mask 1389 * @bit_chk: Resulting bit mask after the test 1390 * @all_groups: Test all R/W groups 1391 * @all_ranks: Test all ranks 1392 * 1393 * Try a read and see if it returns correct data back. Test has dummy reads 1394 * inserted into the mix used to align DQS enable. Test has more thorough 1395 * checks than the regular read test. 1396 */ 1397 static int 1398 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1399 const u32 num_tries, const u32 all_correct, 1400 u32 *bit_chk, 1401 const u32 all_groups, const u32 all_ranks) 1402 { 1403 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1404 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1405 const u32 quick_read_mode = 1406 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1407 ENABLE_SUPER_QUICK_CALIBRATION); 1408 u32 correct_mask_vg = param->read_correct_mask_vg; 1409 u32 tmp_bit_chk; 1410 u32 base_rw_mgr; 1411 u32 addr; 1412 1413 int r, vg, ret; 1414 1415 *bit_chk = param->read_correct_mask; 1416 1417 for (r = rank_bgn; r < rank_end; r++) { 1418 if (param->skip_ranks[r]) 1419 /* request to skip the rank */ 1420 continue; 1421 1422 /* set rank */ 1423 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1424 1425 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1426 1427 writel(RW_MGR_READ_B2B_WAIT1, 1428 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1429 1430 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1431 writel(RW_MGR_READ_B2B_WAIT2, 1432 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1433 1434 if (quick_read_mode) 1435 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1436 /* need at least two (1+1) reads to capture failures */ 1437 else if (all_groups) 1438 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1439 else 1440 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1441 1442 writel(RW_MGR_READ_B2B, 1443 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1444 if (all_groups) 1445 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1446 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1447 &sdr_rw_load_mgr_regs->load_cntr3); 1448 else 1449 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1450 1451 writel(RW_MGR_READ_B2B, 1452 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1453 1454 tmp_bit_chk = 0; 1455 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1456 vg--) { 1457 /* Reset the FIFOs to get pointers to known state. */ 1458 writel(0, &phy_mgr_cmd->fifo_reset); 1459 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1460 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1461 1462 if (all_groups) { 1463 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1464 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1465 } else { 1466 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1467 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1468 } 1469 1470 writel(RW_MGR_READ_B2B, addr + 1471 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1472 vg) << 2)); 1473 1474 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1475 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1476 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1477 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1478 } 1479 1480 *bit_chk &= tmp_bit_chk; 1481 } 1482 1483 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1484 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1485 1486 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1487 1488 if (all_correct) { 1489 ret = (*bit_chk == param->read_correct_mask); 1490 debug_cond(DLEVEL == 2, 1491 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1492 __func__, __LINE__, group, all_groups, *bit_chk, 1493 param->read_correct_mask, ret); 1494 } else { 1495 ret = (*bit_chk != 0x00); 1496 debug_cond(DLEVEL == 2, 1497 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1498 __func__, __LINE__, group, all_groups, *bit_chk, 1499 0, ret); 1500 } 1501 1502 return ret; 1503 } 1504 1505 /** 1506 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1507 * @grp: Read/Write group 1508 * @num_tries: Number of retries of the test 1509 * @all_correct: All bits must be correct in the mask 1510 * @all_groups: Test all R/W groups 1511 * 1512 * Perform a READ test across all memory ranks. 1513 */ 1514 static int 1515 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1516 const u32 all_correct, 1517 const u32 all_groups) 1518 { 1519 u32 bit_chk; 1520 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1521 &bit_chk, all_groups, 1); 1522 } 1523 1524 /** 1525 * rw_mgr_incr_vfifo() - Increase VFIFO value 1526 * @grp: Read/Write group 1527 * 1528 * Increase VFIFO value. 1529 */ 1530 static void rw_mgr_incr_vfifo(const u32 grp) 1531 { 1532 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1533 } 1534 1535 /** 1536 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1537 * @grp: Read/Write group 1538 * 1539 * Decrease VFIFO value. 1540 */ 1541 static void rw_mgr_decr_vfifo(const u32 grp) 1542 { 1543 u32 i; 1544 1545 for (i = 0; i < VFIFO_SIZE - 1; i++) 1546 rw_mgr_incr_vfifo(grp); 1547 } 1548 1549 /** 1550 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1551 * @grp: Read/Write group 1552 * 1553 * Push VFIFO until a failing read happens. 1554 */ 1555 static int find_vfifo_failing_read(const u32 grp) 1556 { 1557 u32 v, ret, fail_cnt = 0; 1558 1559 for (v = 0; v < VFIFO_SIZE; v++) { 1560 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1561 __func__, __LINE__, v); 1562 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1563 PASS_ONE_BIT, 0); 1564 if (!ret) { 1565 fail_cnt++; 1566 1567 if (fail_cnt == 2) 1568 return v; 1569 } 1570 1571 /* Fiddle with FIFO. */ 1572 rw_mgr_incr_vfifo(grp); 1573 } 1574 1575 /* No failing read found! Something must have gone wrong. */ 1576 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1577 return 0; 1578 } 1579 1580 /** 1581 * sdr_find_phase_delay() - Find DQS enable phase or delay 1582 * @working: If 1, look for working phase/delay, if 0, look for non-working 1583 * @delay: If 1, look for delay, if 0, look for phase 1584 * @grp: Read/Write group 1585 * @work: Working window position 1586 * @work_inc: Working window increment 1587 * @pd: DQS Phase/Delay Iterator 1588 * 1589 * Find working or non-working DQS enable phase setting. 1590 */ 1591 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1592 u32 *work, const u32 work_inc, u32 *pd) 1593 { 1594 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1595 u32 ret; 1596 1597 for (; *pd <= max; (*pd)++) { 1598 if (delay) 1599 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1600 else 1601 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1602 1603 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1604 PASS_ONE_BIT, 0); 1605 if (!working) 1606 ret = !ret; 1607 1608 if (ret) 1609 return 0; 1610 1611 if (work) 1612 *work += work_inc; 1613 } 1614 1615 return -EINVAL; 1616 } 1617 /** 1618 * sdr_find_phase() - Find DQS enable phase 1619 * @working: If 1, look for working phase, if 0, look for non-working phase 1620 * @grp: Read/Write group 1621 * @work: Working window position 1622 * @i: Iterator 1623 * @p: DQS Phase Iterator 1624 * 1625 * Find working or non-working DQS enable phase setting. 1626 */ 1627 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1628 u32 *i, u32 *p) 1629 { 1630 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1631 int ret; 1632 1633 for (; *i < end; (*i)++) { 1634 if (working) 1635 *p = 0; 1636 1637 ret = sdr_find_phase_delay(working, 0, grp, work, 1638 IO_DELAY_PER_OPA_TAP, p); 1639 if (!ret) 1640 return 0; 1641 1642 if (*p > IO_DQS_EN_PHASE_MAX) { 1643 /* Fiddle with FIFO. */ 1644 rw_mgr_incr_vfifo(grp); 1645 if (!working) 1646 *p = 0; 1647 } 1648 } 1649 1650 return -EINVAL; 1651 } 1652 1653 /** 1654 * sdr_working_phase() - Find working DQS enable phase 1655 * @grp: Read/Write group 1656 * @work_bgn: Working window start position 1657 * @d: dtaps output value 1658 * @p: DQS Phase Iterator 1659 * @i: Iterator 1660 * 1661 * Find working DQS enable phase setting. 1662 */ 1663 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1664 u32 *p, u32 *i) 1665 { 1666 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1667 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1668 int ret; 1669 1670 *work_bgn = 0; 1671 1672 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1673 *i = 0; 1674 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1675 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1676 if (!ret) 1677 return 0; 1678 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1679 } 1680 1681 /* Cannot find working solution */ 1682 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1683 __func__, __LINE__); 1684 return -EINVAL; 1685 } 1686 1687 /** 1688 * sdr_backup_phase() - Find DQS enable backup phase 1689 * @grp: Read/Write group 1690 * @work_bgn: Working window start position 1691 * @p: DQS Phase Iterator 1692 * 1693 * Find DQS enable backup phase setting. 1694 */ 1695 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1696 { 1697 u32 tmp_delay, d; 1698 int ret; 1699 1700 /* Special case code for backing up a phase */ 1701 if (*p == 0) { 1702 *p = IO_DQS_EN_PHASE_MAX; 1703 rw_mgr_decr_vfifo(grp); 1704 } else { 1705 (*p)--; 1706 } 1707 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1708 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1709 1710 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1711 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1712 1713 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1714 PASS_ONE_BIT, 0); 1715 if (ret) { 1716 *work_bgn = tmp_delay; 1717 break; 1718 } 1719 1720 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1721 } 1722 1723 /* Restore VFIFO to old state before we decremented it (if needed). */ 1724 (*p)++; 1725 if (*p > IO_DQS_EN_PHASE_MAX) { 1726 *p = 0; 1727 rw_mgr_incr_vfifo(grp); 1728 } 1729 1730 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1731 } 1732 1733 /** 1734 * sdr_nonworking_phase() - Find non-working DQS enable phase 1735 * @grp: Read/Write group 1736 * @work_end: Working window end position 1737 * @p: DQS Phase Iterator 1738 * @i: Iterator 1739 * 1740 * Find non-working DQS enable phase setting. 1741 */ 1742 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1743 { 1744 int ret; 1745 1746 (*p)++; 1747 *work_end += IO_DELAY_PER_OPA_TAP; 1748 if (*p > IO_DQS_EN_PHASE_MAX) { 1749 /* Fiddle with FIFO. */ 1750 *p = 0; 1751 rw_mgr_incr_vfifo(grp); 1752 } 1753 1754 ret = sdr_find_phase(0, grp, work_end, i, p); 1755 if (ret) { 1756 /* Cannot see edge of failing read. */ 1757 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1758 __func__, __LINE__); 1759 } 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * sdr_find_window_center() - Find center of the working DQS window. 1766 * @grp: Read/Write group 1767 * @work_bgn: First working settings 1768 * @work_end: Last working settings 1769 * 1770 * Find center of the working DQS enable window. 1771 */ 1772 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1773 const u32 work_end) 1774 { 1775 u32 work_mid; 1776 int tmp_delay = 0; 1777 int i, p, d; 1778 1779 work_mid = (work_bgn + work_end) / 2; 1780 1781 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1782 work_bgn, work_end, work_mid); 1783 /* Get the middle delay to be less than a VFIFO delay */ 1784 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1785 1786 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1787 work_mid %= tmp_delay; 1788 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1789 1790 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1791 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1792 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1793 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1794 1795 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1796 1797 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1798 if (d > IO_DQS_EN_DELAY_MAX) 1799 d = IO_DQS_EN_DELAY_MAX; 1800 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1801 1802 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1803 1804 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1805 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1806 1807 /* 1808 * push vfifo until we can successfully calibrate. We can do this 1809 * because the largest possible margin in 1 VFIFO cycle. 1810 */ 1811 for (i = 0; i < VFIFO_SIZE; i++) { 1812 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1813 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1814 PASS_ONE_BIT, 1815 0)) { 1816 debug_cond(DLEVEL == 2, 1817 "%s:%d center: found: ptap=%u dtap=%u\n", 1818 __func__, __LINE__, p, d); 1819 return 0; 1820 } 1821 1822 /* Fiddle with FIFO. */ 1823 rw_mgr_incr_vfifo(grp); 1824 } 1825 1826 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1827 __func__, __LINE__); 1828 return -EINVAL; 1829 } 1830 1831 /** 1832 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1833 * @grp: Read/Write Group 1834 * 1835 * Find a good DQS enable to use. 1836 */ 1837 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1838 { 1839 u32 d, p, i; 1840 u32 dtaps_per_ptap; 1841 u32 work_bgn, work_end; 1842 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1843 int ret; 1844 1845 debug("%s:%d %u\n", __func__, __LINE__, grp); 1846 1847 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1848 1849 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1850 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1851 1852 /* Step 0: Determine number of delay taps for each phase tap. */ 1853 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1854 1855 /* Step 1: First push vfifo until we get a failing read. */ 1856 find_vfifo_failing_read(grp); 1857 1858 /* Step 2: Find first working phase, increment in ptaps. */ 1859 work_bgn = 0; 1860 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1861 if (ret) 1862 return ret; 1863 1864 work_end = work_bgn; 1865 1866 /* 1867 * If d is 0 then the working window covers a phase tap and we can 1868 * follow the old procedure. Otherwise, we've found the beginning 1869 * and we need to increment the dtaps until we find the end. 1870 */ 1871 if (d == 0) { 1872 /* 1873 * Step 3a: If we have room, back off by one and 1874 * increment in dtaps. 1875 */ 1876 sdr_backup_phase(grp, &work_bgn, &p); 1877 1878 /* 1879 * Step 4a: go forward from working phase to non working 1880 * phase, increment in ptaps. 1881 */ 1882 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1883 if (ret) 1884 return ret; 1885 1886 /* Step 5a: Back off one from last, increment in dtaps. */ 1887 1888 /* Special case code for backing up a phase */ 1889 if (p == 0) { 1890 p = IO_DQS_EN_PHASE_MAX; 1891 rw_mgr_decr_vfifo(grp); 1892 } else { 1893 p = p - 1; 1894 } 1895 1896 work_end -= IO_DELAY_PER_OPA_TAP; 1897 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1898 1899 d = 0; 1900 1901 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1902 __func__, __LINE__, p); 1903 } 1904 1905 /* The dtap increment to find the failing edge is done here. */ 1906 sdr_find_phase_delay(0, 1, grp, &work_end, 1907 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1908 1909 /* Go back to working dtap */ 1910 if (d != 0) 1911 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1912 1913 debug_cond(DLEVEL == 2, 1914 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1915 __func__, __LINE__, p, d - 1, work_end); 1916 1917 if (work_end < work_bgn) { 1918 /* nil range */ 1919 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1920 __func__, __LINE__); 1921 return -EINVAL; 1922 } 1923 1924 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1925 __func__, __LINE__, work_bgn, work_end); 1926 1927 /* 1928 * We need to calculate the number of dtaps that equal a ptap. 1929 * To do that we'll back up a ptap and re-find the edge of the 1930 * window using dtaps 1931 */ 1932 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1933 __func__, __LINE__); 1934 1935 /* Special case code for backing up a phase */ 1936 if (p == 0) { 1937 p = IO_DQS_EN_PHASE_MAX; 1938 rw_mgr_decr_vfifo(grp); 1939 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1940 __func__, __LINE__, p); 1941 } else { 1942 p = p - 1; 1943 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1944 __func__, __LINE__, p); 1945 } 1946 1947 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1948 1949 /* 1950 * Increase dtap until we first see a passing read (in case the 1951 * window is smaller than a ptap), and then a failing read to 1952 * mark the edge of the window again. 1953 */ 1954 1955 /* Find a passing read. */ 1956 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1957 __func__, __LINE__); 1958 1959 initial_failing_dtap = d; 1960 1961 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1962 if (found_passing_read) { 1963 /* Find a failing read. */ 1964 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1965 __func__, __LINE__); 1966 d++; 1967 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1968 &d); 1969 } else { 1970 debug_cond(DLEVEL == 1, 1971 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1972 __func__, __LINE__); 1973 } 1974 1975 /* 1976 * The dynamically calculated dtaps_per_ptap is only valid if we 1977 * found a passing/failing read. If we didn't, it means d hit the max 1978 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1979 * statically calculated value. 1980 */ 1981 if (found_passing_read && found_failing_read) 1982 dtaps_per_ptap = d - initial_failing_dtap; 1983 1984 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1985 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1986 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1987 1988 /* Step 6: Find the centre of the window. */ 1989 ret = sdr_find_window_center(grp, work_bgn, work_end); 1990 1991 return ret; 1992 } 1993 1994 /** 1995 * search_stop_check() - Check if the detected edge is valid 1996 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1997 * @d: DQS delay 1998 * @rank_bgn: Rank number 1999 * @write_group: Write Group 2000 * @read_group: Read Group 2001 * @bit_chk: Resulting bit mask after the test 2002 * @sticky_bit_chk: Resulting sticky bit mask after the test 2003 * @use_read_test: Perform read test 2004 * 2005 * Test if the found edge is valid. 2006 */ 2007 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 2008 const u32 write_group, const u32 read_group, 2009 u32 *bit_chk, u32 *sticky_bit_chk, 2010 const u32 use_read_test) 2011 { 2012 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 2013 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2014 const u32 correct_mask = write ? param->write_correct_mask : 2015 param->read_correct_mask; 2016 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2017 RW_MGR_MEM_DQ_PER_READ_DQS; 2018 u32 ret; 2019 /* 2020 * Stop searching when the read test doesn't pass AND when 2021 * we've seen a passing read on every bit. 2022 */ 2023 if (write) { /* WRITE-ONLY */ 2024 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2025 0, PASS_ONE_BIT, 2026 bit_chk, 0); 2027 } else if (use_read_test) { /* READ-ONLY */ 2028 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2029 NUM_READ_PB_TESTS, 2030 PASS_ONE_BIT, bit_chk, 2031 0, 0); 2032 } else { /* READ-ONLY */ 2033 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2034 PASS_ONE_BIT, bit_chk, 0); 2035 *bit_chk = *bit_chk >> (per_dqs * 2036 (read_group - (write_group * ratio))); 2037 ret = (*bit_chk == 0); 2038 } 2039 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2040 ret = ret && (*sticky_bit_chk == correct_mask); 2041 debug_cond(DLEVEL == 2, 2042 "%s:%d center(left): dtap=%u => %u == %u && %u", 2043 __func__, __LINE__, d, 2044 *sticky_bit_chk, correct_mask, ret); 2045 return ret; 2046 } 2047 2048 /** 2049 * search_left_edge() - Find left edge of DQ/DQS working phase 2050 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2051 * @rank_bgn: Rank number 2052 * @write_group: Write Group 2053 * @read_group: Read Group 2054 * @test_bgn: Rank number to begin the test 2055 * @sticky_bit_chk: Resulting sticky bit mask after the test 2056 * @left_edge: Left edge of the DQ/DQS phase 2057 * @right_edge: Right edge of the DQ/DQS phase 2058 * @use_read_test: Perform read test 2059 * 2060 * Find left edge of DQ/DQS working phase. 2061 */ 2062 static void search_left_edge(const int write, const int rank_bgn, 2063 const u32 write_group, const u32 read_group, const u32 test_bgn, 2064 u32 *sticky_bit_chk, 2065 int *left_edge, int *right_edge, const u32 use_read_test) 2066 { 2067 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2068 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2069 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2070 RW_MGR_MEM_DQ_PER_READ_DQS; 2071 u32 stop, bit_chk; 2072 int i, d; 2073 2074 for (d = 0; d <= dqs_max; d++) { 2075 if (write) 2076 scc_mgr_apply_group_dq_out1_delay(d); 2077 else 2078 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2079 2080 writel(0, &sdr_scc_mgr->update); 2081 2082 stop = search_stop_check(write, d, rank_bgn, write_group, 2083 read_group, &bit_chk, sticky_bit_chk, 2084 use_read_test); 2085 if (stop == 1) 2086 break; 2087 2088 /* stop != 1 */ 2089 for (i = 0; i < per_dqs; i++) { 2090 if (bit_chk & 1) { 2091 /* 2092 * Remember a passing test as 2093 * the left_edge. 2094 */ 2095 left_edge[i] = d; 2096 } else { 2097 /* 2098 * If a left edge has not been seen 2099 * yet, then a future passing test 2100 * will mark this edge as the right 2101 * edge. 2102 */ 2103 if (left_edge[i] == delay_max + 1) 2104 right_edge[i] = -(d + 1); 2105 } 2106 bit_chk >>= 1; 2107 } 2108 } 2109 2110 /* Reset DQ delay chains to 0 */ 2111 if (write) 2112 scc_mgr_apply_group_dq_out1_delay(0); 2113 else 2114 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2115 2116 *sticky_bit_chk = 0; 2117 for (i = per_dqs - 1; i >= 0; i--) { 2118 debug_cond(DLEVEL == 2, 2119 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2120 __func__, __LINE__, i, left_edge[i], 2121 i, right_edge[i]); 2122 2123 /* 2124 * Check for cases where we haven't found the left edge, 2125 * which makes our assignment of the the right edge invalid. 2126 * Reset it to the illegal value. 2127 */ 2128 if ((left_edge[i] == delay_max + 1) && 2129 (right_edge[i] != delay_max + 1)) { 2130 right_edge[i] = delay_max + 1; 2131 debug_cond(DLEVEL == 2, 2132 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2133 __func__, __LINE__, i, right_edge[i]); 2134 } 2135 2136 /* 2137 * Reset sticky bit 2138 * READ: except for bits where we have seen both 2139 * the left and right edge. 2140 * WRITE: except for bits where we have seen the 2141 * left edge. 2142 */ 2143 *sticky_bit_chk <<= 1; 2144 if (write) { 2145 if (left_edge[i] != delay_max + 1) 2146 *sticky_bit_chk |= 1; 2147 } else { 2148 if ((left_edge[i] != delay_max + 1) && 2149 (right_edge[i] != delay_max + 1)) 2150 *sticky_bit_chk |= 1; 2151 } 2152 } 2153 2154 2155 } 2156 2157 /** 2158 * search_right_edge() - Find right edge of DQ/DQS working phase 2159 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2160 * @rank_bgn: Rank number 2161 * @write_group: Write Group 2162 * @read_group: Read Group 2163 * @start_dqs: DQS start phase 2164 * @start_dqs_en: DQS enable start phase 2165 * @sticky_bit_chk: Resulting sticky bit mask after the test 2166 * @left_edge: Left edge of the DQ/DQS phase 2167 * @right_edge: Right edge of the DQ/DQS phase 2168 * @use_read_test: Perform read test 2169 * 2170 * Find right edge of DQ/DQS working phase. 2171 */ 2172 static int search_right_edge(const int write, const int rank_bgn, 2173 const u32 write_group, const u32 read_group, 2174 const int start_dqs, const int start_dqs_en, 2175 u32 *sticky_bit_chk, 2176 int *left_edge, int *right_edge, const u32 use_read_test) 2177 { 2178 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2179 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2180 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2181 RW_MGR_MEM_DQ_PER_READ_DQS; 2182 u32 stop, bit_chk; 2183 int i, d; 2184 2185 for (d = 0; d <= dqs_max - start_dqs; d++) { 2186 if (write) { /* WRITE-ONLY */ 2187 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2188 d + start_dqs); 2189 } else { /* READ-ONLY */ 2190 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2191 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2192 uint32_t delay = d + start_dqs_en; 2193 if (delay > IO_DQS_EN_DELAY_MAX) 2194 delay = IO_DQS_EN_DELAY_MAX; 2195 scc_mgr_set_dqs_en_delay(read_group, delay); 2196 } 2197 scc_mgr_load_dqs(read_group); 2198 } 2199 2200 writel(0, &sdr_scc_mgr->update); 2201 2202 stop = search_stop_check(write, d, rank_bgn, write_group, 2203 read_group, &bit_chk, sticky_bit_chk, 2204 use_read_test); 2205 if (stop == 1) { 2206 if (write && (d == 0)) { /* WRITE-ONLY */ 2207 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2208 /* 2209 * d = 0 failed, but it passed when 2210 * testing the left edge, so it must be 2211 * marginal, set it to -1 2212 */ 2213 if (right_edge[i] == delay_max + 1 && 2214 left_edge[i] != delay_max + 1) 2215 right_edge[i] = -1; 2216 } 2217 } 2218 break; 2219 } 2220 2221 /* stop != 1 */ 2222 for (i = 0; i < per_dqs; i++) { 2223 if (bit_chk & 1) { 2224 /* 2225 * Remember a passing test as 2226 * the right_edge. 2227 */ 2228 right_edge[i] = d; 2229 } else { 2230 if (d != 0) { 2231 /* 2232 * If a right edge has not 2233 * been seen yet, then a future 2234 * passing test will mark this 2235 * edge as the left edge. 2236 */ 2237 if (right_edge[i] == delay_max + 1) 2238 left_edge[i] = -(d + 1); 2239 } else { 2240 /* 2241 * d = 0 failed, but it passed 2242 * when testing the left edge, 2243 * so it must be marginal, set 2244 * it to -1 2245 */ 2246 if (right_edge[i] == delay_max + 1 && 2247 left_edge[i] != delay_max + 1) 2248 right_edge[i] = -1; 2249 /* 2250 * If a right edge has not been 2251 * seen yet, then a future 2252 * passing test will mark this 2253 * edge as the left edge. 2254 */ 2255 else if (right_edge[i] == delay_max + 1) 2256 left_edge[i] = -(d + 1); 2257 } 2258 } 2259 2260 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2261 __func__, __LINE__, d); 2262 debug_cond(DLEVEL == 2, 2263 "bit_chk_test=%i left_edge[%u]: %d ", 2264 bit_chk & 1, i, left_edge[i]); 2265 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2266 right_edge[i]); 2267 bit_chk >>= 1; 2268 } 2269 } 2270 2271 /* Check that all bits have a window */ 2272 for (i = 0; i < per_dqs; i++) { 2273 debug_cond(DLEVEL == 2, 2274 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2275 __func__, __LINE__, i, left_edge[i], 2276 i, right_edge[i]); 2277 if ((left_edge[i] == dqs_max + 1) || 2278 (right_edge[i] == dqs_max + 1)) 2279 return i + 1; /* FIXME: If we fail, retval > 0 */ 2280 } 2281 2282 return 0; 2283 } 2284 2285 /** 2286 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2287 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2288 * @left_edge: Left edge of the DQ/DQS phase 2289 * @right_edge: Right edge of the DQ/DQS phase 2290 * @mid_min: Best DQ/DQS phase middle setting 2291 * 2292 * Find index and value of the middle of the DQ/DQS working phase. 2293 */ 2294 static int get_window_mid_index(const int write, int *left_edge, 2295 int *right_edge, int *mid_min) 2296 { 2297 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2298 RW_MGR_MEM_DQ_PER_READ_DQS; 2299 int i, mid, min_index; 2300 2301 /* Find middle of window for each DQ bit */ 2302 *mid_min = left_edge[0] - right_edge[0]; 2303 min_index = 0; 2304 for (i = 1; i < per_dqs; i++) { 2305 mid = left_edge[i] - right_edge[i]; 2306 if (mid < *mid_min) { 2307 *mid_min = mid; 2308 min_index = i; 2309 } 2310 } 2311 2312 /* 2313 * -mid_min/2 represents the amount that we need to move DQS. 2314 * If mid_min is odd and positive we'll need to add one to make 2315 * sure the rounding in further calculations is correct (always 2316 * bias to the right), so just add 1 for all positive values. 2317 */ 2318 if (*mid_min > 0) 2319 (*mid_min)++; 2320 *mid_min = *mid_min / 2; 2321 2322 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2323 __func__, __LINE__, *mid_min, min_index); 2324 return min_index; 2325 } 2326 2327 /** 2328 * center_dq_windows() - Center the DQ/DQS windows 2329 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2330 * @left_edge: Left edge of the DQ/DQS phase 2331 * @right_edge: Right edge of the DQ/DQS phase 2332 * @mid_min: Adjusted DQ/DQS phase middle setting 2333 * @orig_mid_min: Original DQ/DQS phase middle setting 2334 * @min_index: DQ/DQS phase middle setting index 2335 * @test_bgn: Rank number to begin the test 2336 * @dq_margin: Amount of shift for the DQ 2337 * @dqs_margin: Amount of shift for the DQS 2338 * 2339 * Align the DQ/DQS windows in each group. 2340 */ 2341 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2342 const int mid_min, const int orig_mid_min, 2343 const int min_index, const int test_bgn, 2344 int *dq_margin, int *dqs_margin) 2345 { 2346 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2347 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2348 RW_MGR_MEM_DQ_PER_READ_DQS; 2349 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2350 SCC_MGR_IO_IN_DELAY_OFFSET; 2351 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2352 2353 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2354 int shift_dq, i, p; 2355 2356 /* Initialize data for export structures */ 2357 *dqs_margin = delay_max + 1; 2358 *dq_margin = delay_max + 1; 2359 2360 /* add delay to bring centre of all DQ windows to the same "level" */ 2361 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2362 /* Use values before divide by 2 to reduce round off error */ 2363 shift_dq = (left_edge[i] - right_edge[i] - 2364 (left_edge[min_index] - right_edge[min_index]))/2 + 2365 (orig_mid_min - mid_min); 2366 2367 debug_cond(DLEVEL == 2, 2368 "vfifo_center: before: shift_dq[%u]=%d\n", 2369 i, shift_dq); 2370 2371 temp_dq_io_delay1 = readl(addr + (p << 2)); 2372 temp_dq_io_delay2 = readl(addr + (i << 2)); 2373 2374 if (shift_dq + temp_dq_io_delay1 > delay_max) 2375 shift_dq = delay_max - temp_dq_io_delay2; 2376 else if (shift_dq + temp_dq_io_delay1 < 0) 2377 shift_dq = -temp_dq_io_delay1; 2378 2379 debug_cond(DLEVEL == 2, 2380 "vfifo_center: after: shift_dq[%u]=%d\n", 2381 i, shift_dq); 2382 2383 if (write) 2384 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2385 else 2386 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2387 2388 scc_mgr_load_dq(p); 2389 2390 debug_cond(DLEVEL == 2, 2391 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2392 left_edge[i] - shift_dq + (-mid_min), 2393 right_edge[i] + shift_dq - (-mid_min)); 2394 2395 /* To determine values for export structures */ 2396 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2397 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2398 2399 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2400 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2401 } 2402 2403 } 2404 2405 /** 2406 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2407 * @rank_bgn: Rank number 2408 * @rw_group: Read/Write Group 2409 * @test_bgn: Rank at which the test begins 2410 * @use_read_test: Perform a read test 2411 * @update_fom: Update FOM 2412 * 2413 * Per-bit deskew DQ and centering. 2414 */ 2415 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2416 const u32 rw_group, const u32 test_bgn, 2417 const int use_read_test, const int update_fom) 2418 { 2419 const u32 addr = 2420 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2421 (rw_group << 2); 2422 /* 2423 * Store these as signed since there are comparisons with 2424 * signed numbers. 2425 */ 2426 uint32_t sticky_bit_chk; 2427 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2428 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2429 int32_t orig_mid_min, mid_min; 2430 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2431 int32_t dq_margin, dqs_margin; 2432 int i, min_index; 2433 int ret; 2434 2435 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2436 2437 start_dqs = readl(addr); 2438 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2439 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2440 2441 /* set the left and right edge of each bit to an illegal value */ 2442 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2443 sticky_bit_chk = 0; 2444 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2445 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2446 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2447 } 2448 2449 /* Search for the left edge of the window for each bit */ 2450 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2451 &sticky_bit_chk, 2452 left_edge, right_edge, use_read_test); 2453 2454 2455 /* Search for the right edge of the window for each bit */ 2456 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2457 start_dqs, start_dqs_en, 2458 &sticky_bit_chk, 2459 left_edge, right_edge, use_read_test); 2460 if (ret) { 2461 /* 2462 * Restore delay chain settings before letting the loop 2463 * in rw_mgr_mem_calibrate_vfifo to retry different 2464 * dqs/ck relationships. 2465 */ 2466 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2467 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2468 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2469 2470 scc_mgr_load_dqs(rw_group); 2471 writel(0, &sdr_scc_mgr->update); 2472 2473 debug_cond(DLEVEL == 1, 2474 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2475 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2476 if (use_read_test) { 2477 set_failing_group_stage(rw_group * 2478 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2479 CAL_STAGE_VFIFO, 2480 CAL_SUBSTAGE_VFIFO_CENTER); 2481 } else { 2482 set_failing_group_stage(rw_group * 2483 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2484 CAL_STAGE_VFIFO_AFTER_WRITES, 2485 CAL_SUBSTAGE_VFIFO_CENTER); 2486 } 2487 return -EIO; 2488 } 2489 2490 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2491 2492 /* Determine the amount we can change DQS (which is -mid_min) */ 2493 orig_mid_min = mid_min; 2494 new_dqs = start_dqs - mid_min; 2495 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2496 new_dqs = IO_DQS_IN_DELAY_MAX; 2497 else if (new_dqs < 0) 2498 new_dqs = 0; 2499 2500 mid_min = start_dqs - new_dqs; 2501 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2502 mid_min, new_dqs); 2503 2504 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2505 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2506 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2507 else if (start_dqs_en - mid_min < 0) 2508 mid_min += start_dqs_en - mid_min; 2509 } 2510 new_dqs = start_dqs - mid_min; 2511 2512 debug_cond(DLEVEL == 1, 2513 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2514 start_dqs, 2515 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2516 new_dqs, mid_min); 2517 2518 /* Add delay to bring centre of all DQ windows to the same "level". */ 2519 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2520 min_index, test_bgn, &dq_margin, &dqs_margin); 2521 2522 /* Move DQS-en */ 2523 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2524 final_dqs_en = start_dqs_en - mid_min; 2525 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2526 scc_mgr_load_dqs(rw_group); 2527 } 2528 2529 /* Move DQS */ 2530 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2531 scc_mgr_load_dqs(rw_group); 2532 debug_cond(DLEVEL == 2, 2533 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2534 __func__, __LINE__, dq_margin, dqs_margin); 2535 2536 /* 2537 * Do not remove this line as it makes sure all of our decisions 2538 * have been applied. Apply the update bit. 2539 */ 2540 writel(0, &sdr_scc_mgr->update); 2541 2542 if ((dq_margin < 0) || (dqs_margin < 0)) 2543 return -EINVAL; 2544 2545 return 0; 2546 } 2547 2548 /** 2549 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2550 * @rw_group: Read/Write Group 2551 * @phase: DQ/DQS phase 2552 * 2553 * Because initially no communication ca be reliably performed with the memory 2554 * device, the sequencer uses a guaranteed write mechanism to write data into 2555 * the memory device. 2556 */ 2557 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2558 const u32 phase) 2559 { 2560 int ret; 2561 2562 /* Set a particular DQ/DQS phase. */ 2563 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2564 2565 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2566 __func__, __LINE__, rw_group, phase); 2567 2568 /* 2569 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2570 * Load up the patterns used by read calibration using the 2571 * current DQDQS phase. 2572 */ 2573 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2574 2575 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2576 return 0; 2577 2578 /* 2579 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2580 * Back-to-Back reads of the patterns used for calibration. 2581 */ 2582 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2583 if (ret) 2584 debug_cond(DLEVEL == 1, 2585 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2586 __func__, __LINE__, rw_group, phase); 2587 return ret; 2588 } 2589 2590 /** 2591 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2592 * @rw_group: Read/Write Group 2593 * @test_bgn: Rank at which the test begins 2594 * 2595 * DQS enable calibration ensures reliable capture of the DQ signal without 2596 * glitches on the DQS line. 2597 */ 2598 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2599 const u32 test_bgn) 2600 { 2601 /* 2602 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2603 * DQS and DQS Eanble Signal Relationships. 2604 */ 2605 2606 /* We start at zero, so have one less dq to devide among */ 2607 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2608 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2609 int ret; 2610 u32 i, p, d, r; 2611 2612 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2613 2614 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2615 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2616 r += NUM_RANKS_PER_SHADOW_REG) { 2617 for (i = 0, p = test_bgn, d = 0; 2618 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2619 i++, p++, d += delay_step) { 2620 debug_cond(DLEVEL == 1, 2621 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2622 __func__, __LINE__, rw_group, r, i, p, d); 2623 2624 scc_mgr_set_dq_in_delay(p, d); 2625 scc_mgr_load_dq(p); 2626 } 2627 2628 writel(0, &sdr_scc_mgr->update); 2629 } 2630 2631 /* 2632 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2633 * dq_in_delay values 2634 */ 2635 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2636 2637 debug_cond(DLEVEL == 1, 2638 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2639 __func__, __LINE__, rw_group, !ret); 2640 2641 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2642 r += NUM_RANKS_PER_SHADOW_REG) { 2643 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2644 writel(0, &sdr_scc_mgr->update); 2645 } 2646 2647 return ret; 2648 } 2649 2650 /** 2651 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2652 * @rw_group: Read/Write Group 2653 * @test_bgn: Rank at which the test begins 2654 * @use_read_test: Perform a read test 2655 * @update_fom: Update FOM 2656 * 2657 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2658 * within a group. 2659 */ 2660 static int 2661 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2662 const int use_read_test, 2663 const int update_fom) 2664 2665 { 2666 int ret, grp_calibrated; 2667 u32 rank_bgn, sr; 2668 2669 /* 2670 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2671 * Read per-bit deskew can be done on a per shadow register basis. 2672 */ 2673 grp_calibrated = 1; 2674 for (rank_bgn = 0, sr = 0; 2675 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2676 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2677 /* Check if this set of ranks should be skipped entirely. */ 2678 if (param->skip_shadow_regs[sr]) 2679 continue; 2680 2681 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2682 test_bgn, 2683 use_read_test, 2684 update_fom); 2685 if (!ret) 2686 continue; 2687 2688 grp_calibrated = 0; 2689 } 2690 2691 if (!grp_calibrated) 2692 return -EIO; 2693 2694 return 0; 2695 } 2696 2697 /** 2698 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2699 * @rw_group: Read/Write Group 2700 * @test_bgn: Rank at which the test begins 2701 * 2702 * Stage 1: Calibrate the read valid prediction FIFO. 2703 * 2704 * This function implements UniPHY calibration Stage 1, as explained in 2705 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2706 * 2707 * - read valid prediction will consist of finding: 2708 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2709 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2710 * - we also do a per-bit deskew on the DQ lines. 2711 */ 2712 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2713 { 2714 uint32_t p, d; 2715 uint32_t dtaps_per_ptap; 2716 uint32_t failed_substage; 2717 2718 int ret; 2719 2720 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2721 2722 /* Update info for sims */ 2723 reg_file_set_group(rw_group); 2724 reg_file_set_stage(CAL_STAGE_VFIFO); 2725 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2726 2727 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2728 2729 /* USER Determine number of delay taps for each phase tap. */ 2730 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2731 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2732 2733 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2734 /* 2735 * In RLDRAMX we may be messing the delay of pins in 2736 * the same write rw_group but outside of the current read 2737 * the rw_group, but that's ok because we haven't calibrated 2738 * output side yet. 2739 */ 2740 if (d > 0) { 2741 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2742 rw_group, d); 2743 } 2744 2745 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2746 /* 1) Guaranteed Write */ 2747 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2748 if (ret) 2749 break; 2750 2751 /* 2) DQS Enable Calibration */ 2752 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2753 test_bgn); 2754 if (ret) { 2755 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2756 continue; 2757 } 2758 2759 /* 3) Centering DQ/DQS */ 2760 /* 2761 * If doing read after write calibration, do not update 2762 * FOM now. Do it then. 2763 */ 2764 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2765 test_bgn, 1, 0); 2766 if (ret) { 2767 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2768 continue; 2769 } 2770 2771 /* All done. */ 2772 goto cal_done_ok; 2773 } 2774 } 2775 2776 /* Calibration Stage 1 failed. */ 2777 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2778 return 0; 2779 2780 /* Calibration Stage 1 completed OK. */ 2781 cal_done_ok: 2782 /* 2783 * Reset the delay chains back to zero if they have moved > 1 2784 * (check for > 1 because loop will increase d even when pass in 2785 * first case). 2786 */ 2787 if (d > 2) 2788 scc_mgr_zero_group(rw_group, 1); 2789 2790 return 1; 2791 } 2792 2793 /** 2794 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2795 * @rw_group: Read/Write Group 2796 * @test_bgn: Rank at which the test begins 2797 * 2798 * Stage 3: DQ/DQS Centering. 2799 * 2800 * This function implements UniPHY calibration Stage 3, as explained in 2801 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2802 */ 2803 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2804 const u32 test_bgn) 2805 { 2806 int ret; 2807 2808 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2809 2810 /* Update info for sims. */ 2811 reg_file_set_group(rw_group); 2812 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2813 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2814 2815 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2816 if (ret) 2817 set_failing_group_stage(rw_group, 2818 CAL_STAGE_VFIFO_AFTER_WRITES, 2819 CAL_SUBSTAGE_VFIFO_CENTER); 2820 return ret; 2821 } 2822 2823 /** 2824 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2825 * 2826 * Stage 4: Minimize latency. 2827 * 2828 * This function implements UniPHY calibration Stage 4, as explained in 2829 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2830 * Calibrate LFIFO to find smallest read latency. 2831 */ 2832 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2833 { 2834 int found_one = 0; 2835 2836 debug("%s:%d\n", __func__, __LINE__); 2837 2838 /* Update info for sims. */ 2839 reg_file_set_stage(CAL_STAGE_LFIFO); 2840 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2841 2842 /* Load up the patterns used by read calibration for all ranks */ 2843 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2844 2845 do { 2846 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2847 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2848 __func__, __LINE__, gbl->curr_read_lat); 2849 2850 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2851 PASS_ALL_BITS, 1)) 2852 break; 2853 2854 found_one = 1; 2855 /* 2856 * Reduce read latency and see if things are 2857 * working correctly. 2858 */ 2859 gbl->curr_read_lat--; 2860 } while (gbl->curr_read_lat > 0); 2861 2862 /* Reset the fifos to get pointers to known state. */ 2863 writel(0, &phy_mgr_cmd->fifo_reset); 2864 2865 if (found_one) { 2866 /* Add a fudge factor to the read latency that was determined */ 2867 gbl->curr_read_lat += 2; 2868 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2869 debug_cond(DLEVEL == 2, 2870 "%s:%d lfifo: success: using read_lat=%u\n", 2871 __func__, __LINE__, gbl->curr_read_lat); 2872 } else { 2873 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2874 CAL_SUBSTAGE_READ_LATENCY); 2875 2876 debug_cond(DLEVEL == 2, 2877 "%s:%d lfifo: failed at initial read_lat=%u\n", 2878 __func__, __LINE__, gbl->curr_read_lat); 2879 } 2880 2881 return found_one; 2882 } 2883 2884 /** 2885 * search_window() - Search for the/part of the window with DM/DQS shift 2886 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2887 * @rank_bgn: Rank number 2888 * @write_group: Write Group 2889 * @bgn_curr: Current window begin 2890 * @end_curr: Current window end 2891 * @bgn_best: Current best window begin 2892 * @end_best: Current best window end 2893 * @win_best: Size of the best window 2894 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2895 * 2896 * Search for the/part of the window with DM/DQS shift. 2897 */ 2898 static void search_window(const int search_dm, 2899 const u32 rank_bgn, const u32 write_group, 2900 int *bgn_curr, int *end_curr, int *bgn_best, 2901 int *end_best, int *win_best, int new_dqs) 2902 { 2903 u32 bit_chk; 2904 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2905 int d, di; 2906 2907 /* Search for the/part of the window with DM/DQS shift. */ 2908 for (di = max; di >= 0; di -= DELTA_D) { 2909 if (search_dm) { 2910 d = di; 2911 scc_mgr_apply_group_dm_out1_delay(d); 2912 } else { 2913 /* For DQS, we go from 0...max */ 2914 d = max - di; 2915 /* 2916 * Note: This only shifts DQS, so are we limiting ourselve to 2917 * width of DQ unnecessarily. 2918 */ 2919 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2920 d + new_dqs); 2921 } 2922 2923 writel(0, &sdr_scc_mgr->update); 2924 2925 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2926 PASS_ALL_BITS, &bit_chk, 2927 0)) { 2928 /* Set current end of the window. */ 2929 *end_curr = search_dm ? -d : d; 2930 2931 /* 2932 * If a starting edge of our window has not been seen 2933 * this is our current start of the DM window. 2934 */ 2935 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2936 *bgn_curr = search_dm ? -d : d; 2937 2938 /* 2939 * If current window is bigger than best seen. 2940 * Set best seen to be current window. 2941 */ 2942 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2943 *win_best = *end_curr - *bgn_curr + 1; 2944 *bgn_best = *bgn_curr; 2945 *end_best = *end_curr; 2946 } 2947 } else { 2948 /* We just saw a failing test. Reset temp edge. */ 2949 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2950 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2951 2952 /* Early exit is only applicable to DQS. */ 2953 if (search_dm) 2954 continue; 2955 2956 /* 2957 * Early exit optimization: if the remaining delay 2958 * chain space is less than already seen largest 2959 * window we can exit. 2960 */ 2961 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2962 break; 2963 } 2964 } 2965 } 2966 2967 /* 2968 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2969 * @rank_bgn: Rank number 2970 * @write_group: Write group 2971 * @test_bgn: Rank at which the test begins 2972 * 2973 * Center all windows. Do per-bit-deskew to possibly increase size of 2974 * certain windows. 2975 */ 2976 static int 2977 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2978 const u32 test_bgn) 2979 { 2980 int i; 2981 u32 sticky_bit_chk; 2982 u32 min_index; 2983 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2984 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2985 int mid; 2986 int mid_min, orig_mid_min; 2987 int new_dqs, start_dqs; 2988 int dq_margin, dqs_margin, dm_margin; 2989 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2990 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2991 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2992 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2993 int win_best = 0; 2994 2995 int ret; 2996 2997 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2998 2999 dm_margin = 0; 3000 3001 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 3002 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 3003 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 3004 3005 /* Per-bit deskew. */ 3006 3007 /* 3008 * Set the left and right edge of each bit to an illegal value. 3009 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3010 */ 3011 sticky_bit_chk = 0; 3012 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3013 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3014 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3015 } 3016 3017 /* Search for the left edge of the window for each bit. */ 3018 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3019 &sticky_bit_chk, 3020 left_edge, right_edge, 0); 3021 3022 /* Search for the right edge of the window for each bit. */ 3023 ret = search_right_edge(1, rank_bgn, write_group, 0, 3024 start_dqs, 0, 3025 &sticky_bit_chk, 3026 left_edge, right_edge, 0); 3027 if (ret) { 3028 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3029 CAL_SUBSTAGE_WRITES_CENTER); 3030 return -EINVAL; 3031 } 3032 3033 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3034 3035 /* Determine the amount we can change DQS (which is -mid_min). */ 3036 orig_mid_min = mid_min; 3037 new_dqs = start_dqs; 3038 mid_min = 0; 3039 debug_cond(DLEVEL == 1, 3040 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3041 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3042 3043 /* Add delay to bring centre of all DQ windows to the same "level". */ 3044 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3045 min_index, 0, &dq_margin, &dqs_margin); 3046 3047 /* Move DQS */ 3048 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3049 writel(0, &sdr_scc_mgr->update); 3050 3051 /* Centre DM */ 3052 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3053 3054 /* 3055 * Set the left and right edge of each bit to an illegal value. 3056 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3057 */ 3058 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3059 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3060 3061 /* Search for the/part of the window with DM shift. */ 3062 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3063 &bgn_best, &end_best, &win_best, 0); 3064 3065 /* Reset DM delay chains to 0. */ 3066 scc_mgr_apply_group_dm_out1_delay(0); 3067 3068 /* 3069 * Check to see if the current window nudges up aganist 0 delay. 3070 * If so we need to continue the search by shifting DQS otherwise DQS 3071 * search begins as a new search. 3072 */ 3073 if (end_curr != 0) { 3074 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3075 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3076 } 3077 3078 /* Search for the/part of the window with DQS shifts. */ 3079 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3080 &bgn_best, &end_best, &win_best, new_dqs); 3081 3082 /* Assign left and right edge for cal and reporting. */ 3083 left_edge[0] = -1 * bgn_best; 3084 right_edge[0] = end_best; 3085 3086 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3087 __func__, __LINE__, left_edge[0], right_edge[0]); 3088 3089 /* Move DQS (back to orig). */ 3090 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3091 3092 /* Move DM */ 3093 3094 /* Find middle of window for the DM bit. */ 3095 mid = (left_edge[0] - right_edge[0]) / 2; 3096 3097 /* Only move right, since we are not moving DQS/DQ. */ 3098 if (mid < 0) 3099 mid = 0; 3100 3101 /* dm_marign should fail if we never find a window. */ 3102 if (win_best == 0) 3103 dm_margin = -1; 3104 else 3105 dm_margin = left_edge[0] - mid; 3106 3107 scc_mgr_apply_group_dm_out1_delay(mid); 3108 writel(0, &sdr_scc_mgr->update); 3109 3110 debug_cond(DLEVEL == 2, 3111 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3112 __func__, __LINE__, left_edge[0], right_edge[0], 3113 mid, dm_margin); 3114 /* Export values. */ 3115 gbl->fom_out += dq_margin + dqs_margin; 3116 3117 debug_cond(DLEVEL == 2, 3118 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3119 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3120 3121 /* 3122 * Do not remove this line as it makes sure all of our 3123 * decisions have been applied. 3124 */ 3125 writel(0, &sdr_scc_mgr->update); 3126 3127 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3128 return -EINVAL; 3129 3130 return 0; 3131 } 3132 3133 /** 3134 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3135 * @rank_bgn: Rank number 3136 * @group: Read/Write Group 3137 * @test_bgn: Rank at which the test begins 3138 * 3139 * Stage 2: Write Calibration Part One. 3140 * 3141 * This function implements UniPHY calibration Stage 2, as explained in 3142 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3143 */ 3144 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3145 const u32 test_bgn) 3146 { 3147 int ret; 3148 3149 /* Update info for sims */ 3150 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3151 3152 reg_file_set_group(group); 3153 reg_file_set_stage(CAL_STAGE_WRITES); 3154 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3155 3156 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3157 if (ret) 3158 set_failing_group_stage(group, CAL_STAGE_WRITES, 3159 CAL_SUBSTAGE_WRITES_CENTER); 3160 3161 return ret; 3162 } 3163 3164 /** 3165 * mem_precharge_and_activate() - Precharge all banks and activate 3166 * 3167 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3168 */ 3169 static void mem_precharge_and_activate(void) 3170 { 3171 int r; 3172 3173 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3174 /* Test if the rank should be skipped. */ 3175 if (param->skip_ranks[r]) 3176 continue; 3177 3178 /* Set rank. */ 3179 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3180 3181 /* Precharge all banks. */ 3182 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3183 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3184 3185 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3186 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3187 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3188 3189 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3190 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3191 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3192 3193 /* Activate rows. */ 3194 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3195 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3196 } 3197 } 3198 3199 /** 3200 * mem_init_latency() - Configure memory RLAT and WLAT settings 3201 * 3202 * Configure memory RLAT and WLAT parameters. 3203 */ 3204 static void mem_init_latency(void) 3205 { 3206 /* 3207 * For AV/CV, LFIFO is hardened and always runs at full rate 3208 * so max latency in AFI clocks, used here, is correspondingly 3209 * smaller. 3210 */ 3211 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3212 u32 rlat, wlat; 3213 3214 debug("%s:%d\n", __func__, __LINE__); 3215 3216 /* 3217 * Read in write latency. 3218 * WL for Hard PHY does not include additive latency. 3219 */ 3220 wlat = readl(&data_mgr->t_wl_add); 3221 wlat += readl(&data_mgr->mem_t_add); 3222 3223 gbl->rw_wl_nop_cycles = wlat - 1; 3224 3225 /* Read in readl latency. */ 3226 rlat = readl(&data_mgr->t_rl_add); 3227 3228 /* Set a pretty high read latency initially. */ 3229 gbl->curr_read_lat = rlat + 16; 3230 if (gbl->curr_read_lat > max_latency) 3231 gbl->curr_read_lat = max_latency; 3232 3233 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3234 3235 /* Advertise write latency. */ 3236 writel(wlat, &phy_mgr_cfg->afi_wlat); 3237 } 3238 3239 /** 3240 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3241 * 3242 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3243 */ 3244 static void mem_skip_calibrate(void) 3245 { 3246 uint32_t vfifo_offset; 3247 uint32_t i, j, r; 3248 3249 debug("%s:%d\n", __func__, __LINE__); 3250 /* Need to update every shadow register set used by the interface */ 3251 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3252 r += NUM_RANKS_PER_SHADOW_REG) { 3253 /* 3254 * Set output phase alignment settings appropriate for 3255 * skip calibration. 3256 */ 3257 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3258 scc_mgr_set_dqs_en_phase(i, 0); 3259 #if IO_DLL_CHAIN_LENGTH == 6 3260 scc_mgr_set_dqdqs_output_phase(i, 6); 3261 #else 3262 scc_mgr_set_dqdqs_output_phase(i, 7); 3263 #endif 3264 /* 3265 * Case:33398 3266 * 3267 * Write data arrives to the I/O two cycles before write 3268 * latency is reached (720 deg). 3269 * -> due to bit-slip in a/c bus 3270 * -> to allow board skew where dqs is longer than ck 3271 * -> how often can this happen!? 3272 * -> can claim back some ptaps for high freq 3273 * support if we can relax this, but i digress... 3274 * 3275 * The write_clk leads mem_ck by 90 deg 3276 * The minimum ptap of the OPA is 180 deg 3277 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3278 * The write_clk is always delayed by 2 ptaps 3279 * 3280 * Hence, to make DQS aligned to CK, we need to delay 3281 * DQS by: 3282 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3283 * 3284 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3285 * gives us the number of ptaps, which simplies to: 3286 * 3287 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3288 */ 3289 scc_mgr_set_dqdqs_output_phase(i, 3290 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3291 } 3292 writel(0xff, &sdr_scc_mgr->dqs_ena); 3293 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3294 3295 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3296 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3297 SCC_MGR_GROUP_COUNTER_OFFSET); 3298 } 3299 writel(0xff, &sdr_scc_mgr->dq_ena); 3300 writel(0xff, &sdr_scc_mgr->dm_ena); 3301 writel(0, &sdr_scc_mgr->update); 3302 } 3303 3304 /* Compensate for simulation model behaviour */ 3305 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3306 scc_mgr_set_dqs_bus_in_delay(i, 10); 3307 scc_mgr_load_dqs(i); 3308 } 3309 writel(0, &sdr_scc_mgr->update); 3310 3311 /* 3312 * ArriaV has hard FIFOs that can only be initialized by incrementing 3313 * in sequencer. 3314 */ 3315 vfifo_offset = CALIB_VFIFO_OFFSET; 3316 for (j = 0; j < vfifo_offset; j++) 3317 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3318 writel(0, &phy_mgr_cmd->fifo_reset); 3319 3320 /* 3321 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3322 * setting from generation-time constant. 3323 */ 3324 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3325 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3326 } 3327 3328 /** 3329 * mem_calibrate() - Memory calibration entry point. 3330 * 3331 * Perform memory calibration. 3332 */ 3333 static uint32_t mem_calibrate(void) 3334 { 3335 uint32_t i; 3336 uint32_t rank_bgn, sr; 3337 uint32_t write_group, write_test_bgn; 3338 uint32_t read_group, read_test_bgn; 3339 uint32_t run_groups, current_run; 3340 uint32_t failing_groups = 0; 3341 uint32_t group_failed = 0; 3342 3343 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3344 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3345 3346 debug("%s:%d\n", __func__, __LINE__); 3347 3348 /* Initialize the data settings */ 3349 gbl->error_substage = CAL_SUBSTAGE_NIL; 3350 gbl->error_stage = CAL_STAGE_NIL; 3351 gbl->error_group = 0xff; 3352 gbl->fom_in = 0; 3353 gbl->fom_out = 0; 3354 3355 /* Initialize WLAT and RLAT. */ 3356 mem_init_latency(); 3357 3358 /* Initialize bit slips. */ 3359 mem_precharge_and_activate(); 3360 3361 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3362 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3363 SCC_MGR_GROUP_COUNTER_OFFSET); 3364 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3365 if (i == 0) 3366 scc_mgr_set_hhp_extras(); 3367 3368 scc_set_bypass_mode(i); 3369 } 3370 3371 /* Calibration is skipped. */ 3372 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3373 /* 3374 * Set VFIFO and LFIFO to instant-on settings in skip 3375 * calibration mode. 3376 */ 3377 mem_skip_calibrate(); 3378 3379 /* 3380 * Do not remove this line as it makes sure all of our 3381 * decisions have been applied. 3382 */ 3383 writel(0, &sdr_scc_mgr->update); 3384 return 1; 3385 } 3386 3387 /* Calibration is not skipped. */ 3388 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3389 /* 3390 * Zero all delay chain/phase settings for all 3391 * groups and all shadow register sets. 3392 */ 3393 scc_mgr_zero_all(); 3394 3395 run_groups = ~param->skip_groups; 3396 3397 for (write_group = 0, write_test_bgn = 0; write_group 3398 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3399 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3400 3401 /* Initialize the group failure */ 3402 group_failed = 0; 3403 3404 current_run = run_groups & ((1 << 3405 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3406 run_groups = run_groups >> 3407 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3408 3409 if (current_run == 0) 3410 continue; 3411 3412 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3413 SCC_MGR_GROUP_COUNTER_OFFSET); 3414 scc_mgr_zero_group(write_group, 0); 3415 3416 for (read_group = write_group * rwdqs_ratio, 3417 read_test_bgn = 0; 3418 read_group < (write_group + 1) * rwdqs_ratio; 3419 read_group++, 3420 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3421 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3422 continue; 3423 3424 /* Calibrate the VFIFO */ 3425 if (rw_mgr_mem_calibrate_vfifo(read_group, 3426 read_test_bgn)) 3427 continue; 3428 3429 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3430 return 0; 3431 3432 /* The group failed, we're done. */ 3433 goto grp_failed; 3434 } 3435 3436 /* Calibrate the output side */ 3437 for (rank_bgn = 0, sr = 0; 3438 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3439 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3440 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3441 continue; 3442 3443 /* Not needed in quick mode! */ 3444 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3445 continue; 3446 3447 /* 3448 * Determine if this set of ranks 3449 * should be skipped entirely. 3450 */ 3451 if (param->skip_shadow_regs[sr]) 3452 continue; 3453 3454 /* Calibrate WRITEs */ 3455 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3456 write_group, write_test_bgn)) 3457 continue; 3458 3459 group_failed = 1; 3460 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3461 return 0; 3462 } 3463 3464 /* Some group failed, we're done. */ 3465 if (group_failed) 3466 goto grp_failed; 3467 3468 for (read_group = write_group * rwdqs_ratio, 3469 read_test_bgn = 0; 3470 read_group < (write_group + 1) * rwdqs_ratio; 3471 read_group++, 3472 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3473 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3474 continue; 3475 3476 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3477 read_test_bgn)) 3478 continue; 3479 3480 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3481 return 0; 3482 3483 /* The group failed, we're done. */ 3484 goto grp_failed; 3485 } 3486 3487 /* No group failed, continue as usual. */ 3488 continue; 3489 3490 grp_failed: /* A group failed, increment the counter. */ 3491 failing_groups++; 3492 } 3493 3494 /* 3495 * USER If there are any failing groups then report 3496 * the failure. 3497 */ 3498 if (failing_groups != 0) 3499 return 0; 3500 3501 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3502 continue; 3503 3504 /* 3505 * If we're skipping groups as part of debug, 3506 * don't calibrate LFIFO. 3507 */ 3508 if (param->skip_groups != 0) 3509 continue; 3510 3511 /* Calibrate the LFIFO */ 3512 if (!rw_mgr_mem_calibrate_lfifo()) 3513 return 0; 3514 } 3515 3516 /* 3517 * Do not remove this line as it makes sure all of our decisions 3518 * have been applied. 3519 */ 3520 writel(0, &sdr_scc_mgr->update); 3521 return 1; 3522 } 3523 3524 /** 3525 * run_mem_calibrate() - Perform memory calibration 3526 * 3527 * This function triggers the entire memory calibration procedure. 3528 */ 3529 static int run_mem_calibrate(void) 3530 { 3531 int pass; 3532 3533 debug("%s:%d\n", __func__, __LINE__); 3534 3535 /* Reset pass/fail status shown on afi_cal_success/fail */ 3536 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3537 3538 /* Stop tracking manager. */ 3539 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3540 3541 phy_mgr_initialize(); 3542 rw_mgr_mem_initialize(); 3543 3544 /* Perform the actual memory calibration. */ 3545 pass = mem_calibrate(); 3546 3547 mem_precharge_and_activate(); 3548 writel(0, &phy_mgr_cmd->fifo_reset); 3549 3550 /* Handoff. */ 3551 rw_mgr_mem_handoff(); 3552 /* 3553 * In Hard PHY this is a 2-bit control: 3554 * 0: AFI Mux Select 3555 * 1: DDIO Mux Select 3556 */ 3557 writel(0x2, &phy_mgr_cfg->mux_sel); 3558 3559 /* Start tracking manager. */ 3560 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3561 3562 return pass; 3563 } 3564 3565 /** 3566 * debug_mem_calibrate() - Report result of memory calibration 3567 * @pass: Value indicating whether calibration passed or failed 3568 * 3569 * This function reports the results of the memory calibration 3570 * and writes debug information into the register file. 3571 */ 3572 static void debug_mem_calibrate(int pass) 3573 { 3574 uint32_t debug_info; 3575 3576 if (pass) { 3577 printf("%s: CALIBRATION PASSED\n", __FILE__); 3578 3579 gbl->fom_in /= 2; 3580 gbl->fom_out /= 2; 3581 3582 if (gbl->fom_in > 0xff) 3583 gbl->fom_in = 0xff; 3584 3585 if (gbl->fom_out > 0xff) 3586 gbl->fom_out = 0xff; 3587 3588 /* Update the FOM in the register file */ 3589 debug_info = gbl->fom_in; 3590 debug_info |= gbl->fom_out << 8; 3591 writel(debug_info, &sdr_reg_file->fom); 3592 3593 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3594 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3595 } else { 3596 printf("%s: CALIBRATION FAILED\n", __FILE__); 3597 3598 debug_info = gbl->error_stage; 3599 debug_info |= gbl->error_substage << 8; 3600 debug_info |= gbl->error_group << 16; 3601 3602 writel(debug_info, &sdr_reg_file->failing_stage); 3603 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3604 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3605 3606 /* Update the failing group/stage in the register file */ 3607 debug_info = gbl->error_stage; 3608 debug_info |= gbl->error_substage << 8; 3609 debug_info |= gbl->error_group << 16; 3610 writel(debug_info, &sdr_reg_file->failing_stage); 3611 } 3612 3613 printf("%s: Calibration complete\n", __FILE__); 3614 } 3615 3616 /** 3617 * hc_initialize_rom_data() - Initialize ROM data 3618 * 3619 * Initialize ROM data. 3620 */ 3621 static void hc_initialize_rom_data(void) 3622 { 3623 u32 i, addr; 3624 3625 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3626 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3627 writel(inst_rom_init[i], addr + (i << 2)); 3628 3629 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3630 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3631 writel(ac_rom_init[i], addr + (i << 2)); 3632 } 3633 3634 /** 3635 * initialize_reg_file() - Initialize SDR register file 3636 * 3637 * Initialize SDR register file. 3638 */ 3639 static void initialize_reg_file(void) 3640 { 3641 /* Initialize the register file with the correct data */ 3642 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3643 writel(0, &sdr_reg_file->debug_data_addr); 3644 writel(0, &sdr_reg_file->cur_stage); 3645 writel(0, &sdr_reg_file->fom); 3646 writel(0, &sdr_reg_file->failing_stage); 3647 writel(0, &sdr_reg_file->debug1); 3648 writel(0, &sdr_reg_file->debug2); 3649 } 3650 3651 /** 3652 * initialize_hps_phy() - Initialize HPS PHY 3653 * 3654 * Initialize HPS PHY. 3655 */ 3656 static void initialize_hps_phy(void) 3657 { 3658 uint32_t reg; 3659 /* 3660 * Tracking also gets configured here because it's in the 3661 * same register. 3662 */ 3663 uint32_t trk_sample_count = 7500; 3664 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3665 /* 3666 * Format is number of outer loops in the 16 MSB, sample 3667 * count in 16 LSB. 3668 */ 3669 3670 reg = 0; 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3677 /* 3678 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3679 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3680 */ 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3683 trk_sample_count); 3684 writel(reg, &sdr_ctrl->phy_ctrl0); 3685 3686 reg = 0; 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3688 trk_sample_count >> 3689 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3691 trk_long_idle_sample_count); 3692 writel(reg, &sdr_ctrl->phy_ctrl1); 3693 3694 reg = 0; 3695 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3696 trk_long_idle_sample_count >> 3697 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3698 writel(reg, &sdr_ctrl->phy_ctrl2); 3699 } 3700 3701 /** 3702 * initialize_tracking() - Initialize tracking 3703 * 3704 * Initialize the register file with usable initial data. 3705 */ 3706 static void initialize_tracking(void) 3707 { 3708 /* 3709 * Initialize the register file with the correct data. 3710 * Compute usable version of value in case we skip full 3711 * computation later. 3712 */ 3713 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3714 &sdr_reg_file->dtaps_per_ptap); 3715 3716 /* trk_sample_count */ 3717 writel(7500, &sdr_reg_file->trk_sample_count); 3718 3719 /* longidle outer loop [15:0] */ 3720 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3721 3722 /* 3723 * longidle sample count [31:24] 3724 * trfc, worst case of 933Mhz 4Gb [23:16] 3725 * trcd, worst case [15:8] 3726 * vfifo wait [7:0] 3727 */ 3728 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3729 &sdr_reg_file->delays); 3730 3731 /* mux delay */ 3732 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3733 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3734 &sdr_reg_file->trk_rw_mgr_addr); 3735 3736 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3737 &sdr_reg_file->trk_read_dqs_width); 3738 3739 /* trefi [7:0] */ 3740 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3741 &sdr_reg_file->trk_rfsh); 3742 } 3743 3744 int sdram_calibration_full(void) 3745 { 3746 struct param_type my_param; 3747 struct gbl_type my_gbl; 3748 uint32_t pass; 3749 3750 memset(&my_param, 0, sizeof(my_param)); 3751 memset(&my_gbl, 0, sizeof(my_gbl)); 3752 3753 param = &my_param; 3754 gbl = &my_gbl; 3755 3756 /* Set the calibration enabled by default */ 3757 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3758 /* 3759 * Only sweep all groups (regardless of fail state) by default 3760 * Set enabled read test by default. 3761 */ 3762 #if DISABLE_GUARANTEED_READ 3763 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3764 #endif 3765 /* Initialize the register file */ 3766 initialize_reg_file(); 3767 3768 /* Initialize any PHY CSR */ 3769 initialize_hps_phy(); 3770 3771 scc_mgr_initialize(); 3772 3773 initialize_tracking(); 3774 3775 printf("%s: Preparing to start memory calibration\n", __FILE__); 3776 3777 debug("%s:%d\n", __func__, __LINE__); 3778 debug_cond(DLEVEL == 1, 3779 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3780 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3781 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3782 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3783 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3784 debug_cond(DLEVEL == 1, 3785 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3786 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3787 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3788 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3789 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3790 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3791 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3792 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3793 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3794 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3795 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3796 IO_IO_OUT2_DELAY_MAX); 3797 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3798 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3799 3800 hc_initialize_rom_data(); 3801 3802 /* update info for sims */ 3803 reg_file_set_stage(CAL_STAGE_NIL); 3804 reg_file_set_group(0); 3805 3806 /* 3807 * Load global needed for those actions that require 3808 * some dynamic calibration support. 3809 */ 3810 dyn_calib_steps = STATIC_CALIB_STEPS; 3811 /* 3812 * Load global to allow dynamic selection of delay loop settings 3813 * based on calibration mode. 3814 */ 3815 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3816 skip_delay_mask = 0xff; 3817 else 3818 skip_delay_mask = 0x0; 3819 3820 pass = run_mem_calibrate(); 3821 debug_mem_calibrate(pass); 3822 return pass; 3823 } 3824