1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t found_begin = 0; 1341 uint32_t tmp_delay = 0; 1342 uint32_t test_status; 1343 1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1346 *work_bgn = tmp_delay; 1347 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1348 1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1351 IO_DELAY_PER_OPA_TAP) { 1352 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1353 1354 test_status = 1355 rw_mgr_mem_calibrate_read_test_all_ranks 1356 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1357 1358 if (test_status) { 1359 *max_working_cnt = 1; 1360 found_begin = 1; 1361 break; 1362 } 1363 } 1364 1365 if (found_begin) 1366 break; 1367 1368 if (*p > IO_DQS_EN_PHASE_MAX) 1369 /* fiddle with FIFO */ 1370 rw_mgr_incr_vfifo(*grp, v); 1371 } 1372 1373 if (found_begin) 1374 break; 1375 } 1376 1377 if (*i >= VFIFO_SIZE) { 1378 /* cannot find working solution */ 1379 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1380 ptap/dtap\n", __func__, __LINE__); 1381 return 0; 1382 } else { 1383 return 1; 1384 } 1385 } 1386 1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1388 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1389 uint32_t *p, uint32_t *max_working_cnt) 1390 { 1391 uint32_t found_begin = 0; 1392 uint32_t tmp_delay; 1393 1394 /* Special case code for backing up a phase */ 1395 if (*p == 0) { 1396 *p = IO_DQS_EN_PHASE_MAX; 1397 rw_mgr_decr_vfifo(*grp, v); 1398 } else { 1399 (*p)--; 1400 } 1401 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1402 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1403 1404 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1405 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1406 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1407 1408 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1409 PASS_ONE_BIT, 1410 bit_chk, 0)) { 1411 found_begin = 1; 1412 *work_bgn = tmp_delay; 1413 break; 1414 } 1415 } 1416 1417 /* We have found a working dtap before the ptap found above */ 1418 if (found_begin == 1) 1419 (*max_working_cnt)++; 1420 1421 /* 1422 * Restore VFIFO to old state before we decremented it 1423 * (if needed). 1424 */ 1425 (*p)++; 1426 if (*p > IO_DQS_EN_PHASE_MAX) { 1427 *p = 0; 1428 rw_mgr_incr_vfifo(*grp, v); 1429 } 1430 1431 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1432 } 1433 1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1435 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1436 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1437 uint32_t *work_end) 1438 { 1439 uint32_t found_end = 0; 1440 1441 (*p)++; 1442 *work_end += IO_DELAY_PER_OPA_TAP; 1443 if (*p > IO_DQS_EN_PHASE_MAX) { 1444 /* fiddle with FIFO */ 1445 *p = 0; 1446 rw_mgr_incr_vfifo(*grp, v); 1447 } 1448 1449 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1450 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1451 += IO_DELAY_PER_OPA_TAP) { 1452 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1453 1454 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1455 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1456 found_end = 1; 1457 break; 1458 } else { 1459 (*max_working_cnt)++; 1460 } 1461 } 1462 1463 if (found_end) 1464 break; 1465 1466 if (*p > IO_DQS_EN_PHASE_MAX) { 1467 /* fiddle with FIFO */ 1468 rw_mgr_incr_vfifo(*grp, v); 1469 *p = 0; 1470 } 1471 } 1472 1473 if (*i >= VFIFO_SIZE + 1) { 1474 /* cannot see edge of failing read */ 1475 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1476 failed\n", __func__, __LINE__); 1477 return 0; 1478 } else { 1479 return 1; 1480 } 1481 } 1482 1483 static int sdr_find_window_centre(const u32 grp, const u32 work_bgn, 1484 const u32 work_end, const u32 val) 1485 { 1486 u32 bit_chk, work_mid, v = val; 1487 int tmp_delay = 0; 1488 int i, p, d; 1489 1490 work_mid = (work_bgn + work_end) / 2; 1491 1492 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1493 work_bgn, work_end, work_mid); 1494 /* Get the middle delay to be less than a VFIFO delay */ 1495 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1496 1497 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1498 work_mid %= tmp_delay; 1499 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1500 1501 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1502 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1503 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1504 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1505 1506 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1507 1508 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1509 if (d > IO_DQS_EN_DELAY_MAX) 1510 d = IO_DQS_EN_DELAY_MAX; 1511 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1512 1513 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1514 1515 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1516 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1517 1518 /* 1519 * push vfifo until we can successfully calibrate. We can do this 1520 * because the largest possible margin in 1 VFIFO cycle. 1521 */ 1522 for (i = 0; i < VFIFO_SIZE; i++) { 1523 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1524 v); 1525 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1526 PASS_ONE_BIT, 1527 &bit_chk, 0)) { 1528 break; 1529 } 1530 1531 /* fiddle with FIFO */ 1532 rw_mgr_incr_vfifo(grp, &v); 1533 } 1534 1535 if (i >= VFIFO_SIZE) { 1536 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1537 __func__, __LINE__); 1538 return 0; 1539 } else { 1540 debug_cond(DLEVEL == 2, 1541 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1542 __func__, __LINE__, v, p, d); 1543 return 1; 1544 } 1545 } 1546 1547 /* find a good dqs enable to use */ 1548 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1549 { 1550 uint32_t v, d, p, i; 1551 uint32_t max_working_cnt; 1552 uint32_t bit_chk; 1553 uint32_t dtaps_per_ptap; 1554 uint32_t work_bgn, work_end; 1555 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1556 1557 debug("%s:%d %u\n", __func__, __LINE__, grp); 1558 1559 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1560 1561 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1562 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1563 1564 /* ************************************************************** */ 1565 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1566 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1567 1568 /* ********************************************************* */ 1569 /* * Step 1 : First push vfifo until we get a failing read * */ 1570 v = find_vfifo_read(grp, &bit_chk); 1571 1572 max_working_cnt = 0; 1573 1574 /* ******************************************************** */ 1575 /* * step 2: find first working phase, increment in ptaps * */ 1576 work_bgn = 0; 1577 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1578 &p, &i, &max_working_cnt) == 0) 1579 return 0; 1580 1581 work_end = work_bgn; 1582 1583 /* 1584 * If d is 0 then the working window covers a phase tap and 1585 * we can follow the old procedure otherwise, we've found the beginning, 1586 * and we need to increment the dtaps until we find the end. 1587 */ 1588 if (d == 0) { 1589 /* ********************************************************* */ 1590 /* * step 3a: if we have room, back off by one and 1591 increment in dtaps * */ 1592 1593 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1594 &max_working_cnt); 1595 1596 /* ********************************************************* */ 1597 /* * step 4a: go forward from working phase to non working 1598 phase, increment in ptaps * */ 1599 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1600 &i, &max_working_cnt, &work_end) == 0) 1601 return 0; 1602 1603 /* ********************************************************* */ 1604 /* * step 5a: back off one from last, increment in dtaps * */ 1605 1606 /* Special case code for backing up a phase */ 1607 if (p == 0) { 1608 p = IO_DQS_EN_PHASE_MAX; 1609 rw_mgr_decr_vfifo(grp, &v); 1610 } else { 1611 p = p - 1; 1612 } 1613 1614 work_end -= IO_DELAY_PER_OPA_TAP; 1615 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1616 1617 /* * The actual increment of dtaps is done outside of 1618 the if/else loop to share code */ 1619 d = 0; 1620 1621 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1622 vfifo=%u ptap=%u\n", __func__, __LINE__, 1623 v, p); 1624 } else { 1625 /* ******************************************************* */ 1626 /* * step 3-5b: Find the right edge of the window using 1627 delay taps * */ 1628 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1629 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1630 v, p, d, work_bgn); 1631 1632 work_end = work_bgn; 1633 1634 /* * The actual increment of dtaps is done outside of the 1635 if/else loop to share code */ 1636 1637 /* Only here to counterbalance a subtract later on which is 1638 not needed if this branch of the algorithm is taken */ 1639 max_working_cnt++; 1640 } 1641 1642 /* The dtap increment to find the failing edge is done here */ 1643 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1644 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1645 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1646 end-2: dtap=%u\n", __func__, __LINE__, d); 1647 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1648 1649 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1650 PASS_ONE_BIT, 1651 &bit_chk, 0)) { 1652 break; 1653 } 1654 } 1655 1656 /* Go back to working dtap */ 1657 if (d != 0) 1658 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1659 1660 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1661 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1662 v, p, d-1, work_end); 1663 1664 if (work_end < work_bgn) { 1665 /* nil range */ 1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1667 failed\n", __func__, __LINE__); 1668 return 0; 1669 } 1670 1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1672 __func__, __LINE__, work_bgn, work_end); 1673 1674 /* *************************************************************** */ 1675 /* 1676 * * We need to calculate the number of dtaps that equal a ptap 1677 * * To do that we'll back up a ptap and re-find the edge of the 1678 * * window using dtaps 1679 */ 1680 1681 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1682 for tracking\n", __func__, __LINE__); 1683 1684 /* Special case code for backing up a phase */ 1685 if (p == 0) { 1686 p = IO_DQS_EN_PHASE_MAX; 1687 rw_mgr_decr_vfifo(grp, &v); 1688 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1689 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1690 v, p); 1691 } else { 1692 p = p - 1; 1693 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1694 phase only: v=%u p=%u", __func__, __LINE__, 1695 v, p); 1696 } 1697 1698 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1699 1700 /* 1701 * Increase dtap until we first see a passing read (in case the 1702 * window is smaller than a ptap), 1703 * and then a failing read to mark the edge of the window again 1704 */ 1705 1706 /* Find a passing read */ 1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1708 __func__, __LINE__); 1709 found_passing_read = 0; 1710 found_failing_read = 0; 1711 initial_failing_dtap = d; 1712 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1713 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1714 read d=%u\n", __func__, __LINE__, d); 1715 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1716 1717 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1718 PASS_ONE_BIT, 1719 &bit_chk, 0)) { 1720 found_passing_read = 1; 1721 break; 1722 } 1723 } 1724 1725 if (found_passing_read) { 1726 /* Find a failing read */ 1727 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1728 read\n", __func__, __LINE__); 1729 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1730 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1731 testing read d=%u\n", __func__, __LINE__, d); 1732 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1733 1734 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1735 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1736 found_failing_read = 1; 1737 break; 1738 } 1739 } 1740 } else { 1741 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1742 calculate dtaps", __func__, __LINE__); 1743 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1744 } 1745 1746 /* 1747 * The dynamically calculated dtaps_per_ptap is only valid if we 1748 * found a passing/failing read. If we didn't, it means d hit the max 1749 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1750 * statically calculated value. 1751 */ 1752 if (found_passing_read && found_failing_read) 1753 dtaps_per_ptap = d - initial_failing_dtap; 1754 1755 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1756 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1757 - %u = %u", __func__, __LINE__, d, 1758 initial_failing_dtap, dtaps_per_ptap); 1759 1760 /* ******************************************** */ 1761 /* * step 6: Find the centre of the window * */ 1762 if (sdr_find_window_centre(grp, work_bgn, work_end, v) == 0) 1763 return 0; 1764 1765 return 1; 1766 } 1767 1768 /* per-bit deskew DQ and center */ 1769 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1770 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1771 uint32_t use_read_test, uint32_t update_fom) 1772 { 1773 uint32_t i, p, d, min_index; 1774 /* 1775 * Store these as signed since there are comparisons with 1776 * signed numbers. 1777 */ 1778 uint32_t bit_chk; 1779 uint32_t sticky_bit_chk; 1780 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1781 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1782 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1783 int32_t mid; 1784 int32_t orig_mid_min, mid_min; 1785 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1786 final_dqs_en; 1787 int32_t dq_margin, dqs_margin; 1788 uint32_t stop; 1789 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1790 uint32_t addr; 1791 1792 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1793 1794 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1795 start_dqs = readl(addr + (read_group << 2)); 1796 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1797 start_dqs_en = readl(addr + ((read_group << 2) 1798 - IO_DQS_EN_DELAY_OFFSET)); 1799 1800 /* set the left and right edge of each bit to an illegal value */ 1801 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1802 sticky_bit_chk = 0; 1803 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1804 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1805 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1806 } 1807 1808 /* Search for the left edge of the window for each bit */ 1809 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1810 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1811 1812 writel(0, &sdr_scc_mgr->update); 1813 1814 /* 1815 * Stop searching when the read test doesn't pass AND when 1816 * we've seen a passing read on every bit. 1817 */ 1818 if (use_read_test) { 1819 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1820 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1821 &bit_chk, 0, 0); 1822 } else { 1823 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1824 0, PASS_ONE_BIT, 1825 &bit_chk, 0); 1826 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1827 (read_group - (write_group * 1828 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1829 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1830 stop = (bit_chk == 0); 1831 } 1832 sticky_bit_chk = sticky_bit_chk | bit_chk; 1833 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1834 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1835 && %u", __func__, __LINE__, d, 1836 sticky_bit_chk, 1837 param->read_correct_mask, stop); 1838 1839 if (stop == 1) { 1840 break; 1841 } else { 1842 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1843 if (bit_chk & 1) { 1844 /* Remember a passing test as the 1845 left_edge */ 1846 left_edge[i] = d; 1847 } else { 1848 /* If a left edge has not been seen yet, 1849 then a future passing test will mark 1850 this edge as the right edge */ 1851 if (left_edge[i] == 1852 IO_IO_IN_DELAY_MAX + 1) { 1853 right_edge[i] = -(d + 1); 1854 } 1855 } 1856 bit_chk = bit_chk >> 1; 1857 } 1858 } 1859 } 1860 1861 /* Reset DQ delay chains to 0 */ 1862 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1863 sticky_bit_chk = 0; 1864 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1865 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1866 %d right_edge[%u]: %d\n", __func__, __LINE__, 1867 i, left_edge[i], i, right_edge[i]); 1868 1869 /* 1870 * Check for cases where we haven't found the left edge, 1871 * which makes our assignment of the the right edge invalid. 1872 * Reset it to the illegal value. 1873 */ 1874 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1875 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1876 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1877 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1878 right_edge[%u]: %d\n", __func__, __LINE__, 1879 i, right_edge[i]); 1880 } 1881 1882 /* 1883 * Reset sticky bit (except for bits where we have seen 1884 * both the left and right edge). 1885 */ 1886 sticky_bit_chk = sticky_bit_chk << 1; 1887 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1888 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1889 sticky_bit_chk = sticky_bit_chk | 1; 1890 } 1891 1892 if (i == 0) 1893 break; 1894 } 1895 1896 /* Search for the right edge of the window for each bit */ 1897 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1898 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1899 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1900 uint32_t delay = d + start_dqs_en; 1901 if (delay > IO_DQS_EN_DELAY_MAX) 1902 delay = IO_DQS_EN_DELAY_MAX; 1903 scc_mgr_set_dqs_en_delay(read_group, delay); 1904 } 1905 scc_mgr_load_dqs(read_group); 1906 1907 writel(0, &sdr_scc_mgr->update); 1908 1909 /* 1910 * Stop searching when the read test doesn't pass AND when 1911 * we've seen a passing read on every bit. 1912 */ 1913 if (use_read_test) { 1914 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1915 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1916 &bit_chk, 0, 0); 1917 } else { 1918 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1919 0, PASS_ONE_BIT, 1920 &bit_chk, 0); 1921 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1922 (read_group - (write_group * 1923 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1924 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1925 stop = (bit_chk == 0); 1926 } 1927 sticky_bit_chk = sticky_bit_chk | bit_chk; 1928 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1929 1930 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1931 %u && %u", __func__, __LINE__, d, 1932 sticky_bit_chk, param->read_correct_mask, stop); 1933 1934 if (stop == 1) { 1935 break; 1936 } else { 1937 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1938 if (bit_chk & 1) { 1939 /* Remember a passing test as 1940 the right_edge */ 1941 right_edge[i] = d; 1942 } else { 1943 if (d != 0) { 1944 /* If a right edge has not been 1945 seen yet, then a future passing 1946 test will mark this edge as the 1947 left edge */ 1948 if (right_edge[i] == 1949 IO_IO_IN_DELAY_MAX + 1) { 1950 left_edge[i] = -(d + 1); 1951 } 1952 } else { 1953 /* d = 0 failed, but it passed 1954 when testing the left edge, 1955 so it must be marginal, 1956 set it to -1 */ 1957 if (right_edge[i] == 1958 IO_IO_IN_DELAY_MAX + 1 && 1959 left_edge[i] != 1960 IO_IO_IN_DELAY_MAX 1961 + 1) { 1962 right_edge[i] = -1; 1963 } 1964 /* If a right edge has not been 1965 seen yet, then a future passing 1966 test will mark this edge as the 1967 left edge */ 1968 else if (right_edge[i] == 1969 IO_IO_IN_DELAY_MAX + 1970 1) { 1971 left_edge[i] = -(d + 1); 1972 } 1973 } 1974 } 1975 1976 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1977 d=%u]: ", __func__, __LINE__, d); 1978 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1979 (int)(bit_chk & 1), i, left_edge[i]); 1980 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1981 right_edge[i]); 1982 bit_chk = bit_chk >> 1; 1983 } 1984 } 1985 } 1986 1987 /* Check that all bits have a window */ 1988 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1989 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1990 %d right_edge[%u]: %d", __func__, __LINE__, 1991 i, left_edge[i], i, right_edge[i]); 1992 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1993 == IO_IO_IN_DELAY_MAX + 1)) { 1994 /* 1995 * Restore delay chain settings before letting the loop 1996 * in rw_mgr_mem_calibrate_vfifo to retry different 1997 * dqs/ck relationships. 1998 */ 1999 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2000 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2001 scc_mgr_set_dqs_en_delay(read_group, 2002 start_dqs_en); 2003 } 2004 scc_mgr_load_dqs(read_group); 2005 writel(0, &sdr_scc_mgr->update); 2006 2007 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2008 find edge [%u]: %d %d", __func__, __LINE__, 2009 i, left_edge[i], right_edge[i]); 2010 if (use_read_test) { 2011 set_failing_group_stage(read_group * 2012 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2013 CAL_STAGE_VFIFO, 2014 CAL_SUBSTAGE_VFIFO_CENTER); 2015 } else { 2016 set_failing_group_stage(read_group * 2017 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2018 CAL_STAGE_VFIFO_AFTER_WRITES, 2019 CAL_SUBSTAGE_VFIFO_CENTER); 2020 } 2021 return 0; 2022 } 2023 } 2024 2025 /* Find middle of window for each DQ bit */ 2026 mid_min = left_edge[0] - right_edge[0]; 2027 min_index = 0; 2028 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2029 mid = left_edge[i] - right_edge[i]; 2030 if (mid < mid_min) { 2031 mid_min = mid; 2032 min_index = i; 2033 } 2034 } 2035 2036 /* 2037 * -mid_min/2 represents the amount that we need to move DQS. 2038 * If mid_min is odd and positive we'll need to add one to 2039 * make sure the rounding in further calculations is correct 2040 * (always bias to the right), so just add 1 for all positive values. 2041 */ 2042 if (mid_min > 0) 2043 mid_min++; 2044 2045 mid_min = mid_min / 2; 2046 2047 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2048 __func__, __LINE__, mid_min, min_index); 2049 2050 /* Determine the amount we can change DQS (which is -mid_min) */ 2051 orig_mid_min = mid_min; 2052 new_dqs = start_dqs - mid_min; 2053 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2054 new_dqs = IO_DQS_IN_DELAY_MAX; 2055 else if (new_dqs < 0) 2056 new_dqs = 0; 2057 2058 mid_min = start_dqs - new_dqs; 2059 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2060 mid_min, new_dqs); 2061 2062 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2063 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2064 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2065 else if (start_dqs_en - mid_min < 0) 2066 mid_min += start_dqs_en - mid_min; 2067 } 2068 new_dqs = start_dqs - mid_min; 2069 2070 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2071 new_dqs=%d mid_min=%d\n", start_dqs, 2072 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2073 new_dqs, mid_min); 2074 2075 /* Initialize data for export structures */ 2076 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2077 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2078 2079 /* add delay to bring centre of all DQ windows to the same "level" */ 2080 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2081 /* Use values before divide by 2 to reduce round off error */ 2082 shift_dq = (left_edge[i] - right_edge[i] - 2083 (left_edge[min_index] - right_edge[min_index]))/2 + 2084 (orig_mid_min - mid_min); 2085 2086 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2087 shift_dq[%u]=%d\n", i, shift_dq); 2088 2089 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2090 temp_dq_in_delay1 = readl(addr + (p << 2)); 2091 temp_dq_in_delay2 = readl(addr + (i << 2)); 2092 2093 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2094 (int32_t)IO_IO_IN_DELAY_MAX) { 2095 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2096 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2097 shift_dq = -(int32_t)temp_dq_in_delay1; 2098 } 2099 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2100 shift_dq[%u]=%d\n", i, shift_dq); 2101 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2102 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2103 scc_mgr_load_dq(p); 2104 2105 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2106 left_edge[i] - shift_dq + (-mid_min), 2107 right_edge[i] + shift_dq - (-mid_min)); 2108 /* To determine values for export structures */ 2109 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2110 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2111 2112 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2113 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2114 } 2115 2116 final_dqs = new_dqs; 2117 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2118 final_dqs_en = start_dqs_en - mid_min; 2119 2120 /* Move DQS-en */ 2121 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2122 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2123 scc_mgr_load_dqs(read_group); 2124 } 2125 2126 /* Move DQS */ 2127 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2128 scc_mgr_load_dqs(read_group); 2129 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2130 dqs_margin=%d", __func__, __LINE__, 2131 dq_margin, dqs_margin); 2132 2133 /* 2134 * Do not remove this line as it makes sure all of our decisions 2135 * have been applied. Apply the update bit. 2136 */ 2137 writel(0, &sdr_scc_mgr->update); 2138 2139 return (dq_margin >= 0) && (dqs_margin >= 0); 2140 } 2141 2142 /** 2143 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2144 * @rw_group: Read/Write Group 2145 * @phase: DQ/DQS phase 2146 * 2147 * Because initially no communication ca be reliably performed with the memory 2148 * device, the sequencer uses a guaranteed write mechanism to write data into 2149 * the memory device. 2150 */ 2151 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2152 const u32 phase) 2153 { 2154 int ret; 2155 2156 /* Set a particular DQ/DQS phase. */ 2157 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2158 2159 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2160 __func__, __LINE__, rw_group, phase); 2161 2162 /* 2163 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2164 * Load up the patterns used by read calibration using the 2165 * current DQDQS phase. 2166 */ 2167 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2168 2169 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2170 return 0; 2171 2172 /* 2173 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2174 * Back-to-Back reads of the patterns used for calibration. 2175 */ 2176 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2177 if (ret) 2178 debug_cond(DLEVEL == 1, 2179 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2180 __func__, __LINE__, rw_group, phase); 2181 return ret; 2182 } 2183 2184 /** 2185 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2186 * @rw_group: Read/Write Group 2187 * @test_bgn: Rank at which the test begins 2188 * 2189 * DQS enable calibration ensures reliable capture of the DQ signal without 2190 * glitches on the DQS line. 2191 */ 2192 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2193 const u32 test_bgn) 2194 { 2195 /* 2196 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2197 * DQS and DQS Eanble Signal Relationships. 2198 */ 2199 2200 /* We start at zero, so have one less dq to devide among */ 2201 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2202 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2203 int found; 2204 u32 i, p, d, r; 2205 2206 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2207 2208 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2209 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2210 r += NUM_RANKS_PER_SHADOW_REG) { 2211 for (i = 0, p = test_bgn, d = 0; 2212 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2213 i++, p++, d += delay_step) { 2214 debug_cond(DLEVEL == 1, 2215 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2216 __func__, __LINE__, rw_group, r, i, p, d); 2217 2218 scc_mgr_set_dq_in_delay(p, d); 2219 scc_mgr_load_dq(p); 2220 } 2221 2222 writel(0, &sdr_scc_mgr->update); 2223 } 2224 2225 /* 2226 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2227 * dq_in_delay values 2228 */ 2229 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2230 2231 debug_cond(DLEVEL == 1, 2232 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2233 __func__, __LINE__, rw_group, found); 2234 2235 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2236 r += NUM_RANKS_PER_SHADOW_REG) { 2237 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2238 writel(0, &sdr_scc_mgr->update); 2239 } 2240 2241 if (!found) 2242 return -EINVAL; 2243 2244 return 0; 2245 2246 } 2247 2248 /** 2249 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2250 * @rw_group: Read/Write Group 2251 * @test_bgn: Rank at which the test begins 2252 * @use_read_test: Perform a read test 2253 * @update_fom: Update FOM 2254 * 2255 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2256 * within a group. 2257 */ 2258 static int 2259 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2260 const int use_read_test, 2261 const int update_fom) 2262 2263 { 2264 int ret, grp_calibrated; 2265 u32 rank_bgn, sr; 2266 2267 /* 2268 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2269 * Read per-bit deskew can be done on a per shadow register basis. 2270 */ 2271 grp_calibrated = 1; 2272 for (rank_bgn = 0, sr = 0; 2273 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2274 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2275 /* Check if this set of ranks should be skipped entirely. */ 2276 if (param->skip_shadow_regs[sr]) 2277 continue; 2278 2279 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2280 rw_group, test_bgn, 2281 use_read_test, 2282 update_fom); 2283 if (ret) 2284 continue; 2285 2286 grp_calibrated = 0; 2287 } 2288 2289 if (!grp_calibrated) 2290 return -EIO; 2291 2292 return 0; 2293 } 2294 2295 /** 2296 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2297 * @rw_group: Read/Write Group 2298 * @test_bgn: Rank at which the test begins 2299 * 2300 * Stage 1: Calibrate the read valid prediction FIFO. 2301 * 2302 * This function implements UniPHY calibration Stage 1, as explained in 2303 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2304 * 2305 * - read valid prediction will consist of finding: 2306 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2307 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2308 * - we also do a per-bit deskew on the DQ lines. 2309 */ 2310 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2311 { 2312 uint32_t p, d; 2313 uint32_t dtaps_per_ptap; 2314 uint32_t failed_substage; 2315 2316 int ret; 2317 2318 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2319 2320 /* Update info for sims */ 2321 reg_file_set_group(rw_group); 2322 reg_file_set_stage(CAL_STAGE_VFIFO); 2323 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2324 2325 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2326 2327 /* USER Determine number of delay taps for each phase tap. */ 2328 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2329 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2330 2331 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2332 /* 2333 * In RLDRAMX we may be messing the delay of pins in 2334 * the same write rw_group but outside of the current read 2335 * the rw_group, but that's ok because we haven't calibrated 2336 * output side yet. 2337 */ 2338 if (d > 0) { 2339 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2340 rw_group, d); 2341 } 2342 2343 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2344 /* 1) Guaranteed Write */ 2345 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2346 if (ret) 2347 break; 2348 2349 /* 2) DQS Enable Calibration */ 2350 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2351 test_bgn); 2352 if (ret) { 2353 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2354 continue; 2355 } 2356 2357 /* 3) Centering DQ/DQS */ 2358 /* 2359 * If doing read after write calibration, do not update 2360 * FOM now. Do it then. 2361 */ 2362 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2363 test_bgn, 1, 0); 2364 if (ret) { 2365 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2366 continue; 2367 } 2368 2369 /* All done. */ 2370 goto cal_done_ok; 2371 } 2372 } 2373 2374 /* Calibration Stage 1 failed. */ 2375 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2376 return 0; 2377 2378 /* Calibration Stage 1 completed OK. */ 2379 cal_done_ok: 2380 /* 2381 * Reset the delay chains back to zero if they have moved > 1 2382 * (check for > 1 because loop will increase d even when pass in 2383 * first case). 2384 */ 2385 if (d > 2) 2386 scc_mgr_zero_group(rw_group, 1); 2387 2388 return 1; 2389 } 2390 2391 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2392 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2393 uint32_t test_bgn) 2394 { 2395 uint32_t rank_bgn, sr; 2396 uint32_t grp_calibrated; 2397 uint32_t write_group; 2398 2399 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2400 2401 /* update info for sims */ 2402 2403 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2404 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2405 2406 write_group = read_group; 2407 2408 /* update info for sims */ 2409 reg_file_set_group(read_group); 2410 2411 grp_calibrated = 1; 2412 /* Read per-bit deskew can be done on a per shadow register basis */ 2413 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2414 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2415 /* Determine if this set of ranks should be skipped entirely */ 2416 if (!param->skip_shadow_regs[sr]) { 2417 /* This is the last calibration round, update FOM here */ 2418 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2419 write_group, 2420 read_group, 2421 test_bgn, 0, 2422 1)) { 2423 grp_calibrated = 0; 2424 } 2425 } 2426 } 2427 2428 2429 if (grp_calibrated == 0) { 2430 set_failing_group_stage(write_group, 2431 CAL_STAGE_VFIFO_AFTER_WRITES, 2432 CAL_SUBSTAGE_VFIFO_CENTER); 2433 return 0; 2434 } 2435 2436 return 1; 2437 } 2438 2439 /* Calibrate LFIFO to find smallest read latency */ 2440 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2441 { 2442 uint32_t found_one; 2443 uint32_t bit_chk; 2444 2445 debug("%s:%d\n", __func__, __LINE__); 2446 2447 /* update info for sims */ 2448 reg_file_set_stage(CAL_STAGE_LFIFO); 2449 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2450 2451 /* Load up the patterns used by read calibration for all ranks */ 2452 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2453 found_one = 0; 2454 2455 do { 2456 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2457 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2458 __func__, __LINE__, gbl->curr_read_lat); 2459 2460 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2461 NUM_READ_TESTS, 2462 PASS_ALL_BITS, 2463 &bit_chk, 1)) { 2464 break; 2465 } 2466 2467 found_one = 1; 2468 /* reduce read latency and see if things are working */ 2469 /* correctly */ 2470 gbl->curr_read_lat--; 2471 } while (gbl->curr_read_lat > 0); 2472 2473 /* reset the fifos to get pointers to known state */ 2474 2475 writel(0, &phy_mgr_cmd->fifo_reset); 2476 2477 if (found_one) { 2478 /* add a fudge factor to the read latency that was determined */ 2479 gbl->curr_read_lat += 2; 2480 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2481 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2482 read_lat=%u\n", __func__, __LINE__, 2483 gbl->curr_read_lat); 2484 return 1; 2485 } else { 2486 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2487 CAL_SUBSTAGE_READ_LATENCY); 2488 2489 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2490 read_lat=%u\n", __func__, __LINE__, 2491 gbl->curr_read_lat); 2492 return 0; 2493 } 2494 } 2495 2496 /* 2497 * issue write test command. 2498 * two variants are provided. one that just tests a write pattern and 2499 * another that tests datamask functionality. 2500 */ 2501 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2502 uint32_t test_dm) 2503 { 2504 uint32_t mcc_instruction; 2505 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2506 ENABLE_SUPER_QUICK_CALIBRATION); 2507 uint32_t rw_wl_nop_cycles; 2508 uint32_t addr; 2509 2510 /* 2511 * Set counter and jump addresses for the right 2512 * number of NOP cycles. 2513 * The number of supported NOP cycles can range from -1 to infinity 2514 * Three different cases are handled: 2515 * 2516 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2517 * mechanism will be used to insert the right number of NOPs 2518 * 2519 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2520 * issuing the write command will jump straight to the 2521 * micro-instruction that turns on DQS (for DDRx), or outputs write 2522 * data (for RLD), skipping 2523 * the NOP micro-instruction all together 2524 * 2525 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2526 * turned on in the same micro-instruction that issues the write 2527 * command. Then we need 2528 * to directly jump to the micro-instruction that sends out the data 2529 * 2530 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2531 * (2 and 3). One jump-counter (0) is used to perform multiple 2532 * write-read operations. 2533 * one counter left to issue this command in "multiple-group" mode 2534 */ 2535 2536 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2537 2538 if (rw_wl_nop_cycles == -1) { 2539 /* 2540 * CNTR 2 - We want to execute the special write operation that 2541 * turns on DQS right away and then skip directly to the 2542 * instruction that sends out the data. We set the counter to a 2543 * large number so that the jump is always taken. 2544 */ 2545 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2546 2547 /* CNTR 3 - Not used */ 2548 if (test_dm) { 2549 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2550 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2551 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2552 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2553 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2554 } else { 2555 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2556 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2557 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2558 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2559 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2560 } 2561 } else if (rw_wl_nop_cycles == 0) { 2562 /* 2563 * CNTR 2 - We want to skip the NOP operation and go straight 2564 * to the DQS enable instruction. We set the counter to a large 2565 * number so that the jump is always taken. 2566 */ 2567 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2568 2569 /* CNTR 3 - Not used */ 2570 if (test_dm) { 2571 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2572 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2573 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2574 } else { 2575 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2576 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2577 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2578 } 2579 } else { 2580 /* 2581 * CNTR 2 - In this case we want to execute the next instruction 2582 * and NOT take the jump. So we set the counter to 0. The jump 2583 * address doesn't count. 2584 */ 2585 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2586 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2587 2588 /* 2589 * CNTR 3 - Set the nop counter to the number of cycles we 2590 * need to loop for, minus 1. 2591 */ 2592 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2593 if (test_dm) { 2594 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2595 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2596 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2597 } else { 2598 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2599 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2600 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2601 } 2602 } 2603 2604 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2605 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2606 2607 if (quick_write_mode) 2608 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2609 else 2610 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2611 2612 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2613 2614 /* 2615 * CNTR 1 - This is used to ensure enough time elapses 2616 * for read data to come back. 2617 */ 2618 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2619 2620 if (test_dm) { 2621 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2622 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2623 } else { 2624 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2625 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2626 } 2627 2628 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2629 writel(mcc_instruction, addr + (group << 2)); 2630 } 2631 2632 /* Test writes, can check for a single bit pass or multiple bit pass */ 2633 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2634 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2635 uint32_t *bit_chk, uint32_t all_ranks) 2636 { 2637 uint32_t r; 2638 uint32_t correct_mask_vg; 2639 uint32_t tmp_bit_chk; 2640 uint32_t vg; 2641 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2642 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2643 uint32_t addr_rw_mgr; 2644 uint32_t base_rw_mgr; 2645 2646 *bit_chk = param->write_correct_mask; 2647 correct_mask_vg = param->write_correct_mask_vg; 2648 2649 for (r = rank_bgn; r < rank_end; r++) { 2650 if (param->skip_ranks[r]) { 2651 /* request to skip the rank */ 2652 continue; 2653 } 2654 2655 /* set rank */ 2656 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2657 2658 tmp_bit_chk = 0; 2659 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2660 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2661 /* reset the fifos to get pointers to known state */ 2662 writel(0, &phy_mgr_cmd->fifo_reset); 2663 2664 tmp_bit_chk = tmp_bit_chk << 2665 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2666 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2667 rw_mgr_mem_calibrate_write_test_issue(write_group * 2668 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2669 use_dm); 2670 2671 base_rw_mgr = readl(addr_rw_mgr); 2672 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2673 if (vg == 0) 2674 break; 2675 } 2676 *bit_chk &= tmp_bit_chk; 2677 } 2678 2679 if (all_correct) { 2680 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2681 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2682 %u => %lu", write_group, use_dm, 2683 *bit_chk, param->write_correct_mask, 2684 (long unsigned int)(*bit_chk == 2685 param->write_correct_mask)); 2686 return *bit_chk == param->write_correct_mask; 2687 } else { 2688 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2689 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2690 write_group, use_dm, *bit_chk); 2691 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2692 (long unsigned int)(*bit_chk != 0)); 2693 return *bit_chk != 0x00; 2694 } 2695 } 2696 2697 /* 2698 * center all windows. do per-bit-deskew to possibly increase size of 2699 * certain windows. 2700 */ 2701 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2702 uint32_t write_group, uint32_t test_bgn) 2703 { 2704 uint32_t i, p, min_index; 2705 int32_t d; 2706 /* 2707 * Store these as signed since there are comparisons with 2708 * signed numbers. 2709 */ 2710 uint32_t bit_chk; 2711 uint32_t sticky_bit_chk; 2712 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2713 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2714 int32_t mid; 2715 int32_t mid_min, orig_mid_min; 2716 int32_t new_dqs, start_dqs, shift_dq; 2717 int32_t dq_margin, dqs_margin, dm_margin; 2718 uint32_t stop; 2719 uint32_t temp_dq_out1_delay; 2720 uint32_t addr; 2721 2722 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2723 2724 dm_margin = 0; 2725 2726 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2727 start_dqs = readl(addr + 2728 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2729 2730 /* per-bit deskew */ 2731 2732 /* 2733 * set the left and right edge of each bit to an illegal value 2734 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2735 */ 2736 sticky_bit_chk = 0; 2737 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2738 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2739 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2740 } 2741 2742 /* Search for the left edge of the window for each bit */ 2743 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2744 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2745 2746 writel(0, &sdr_scc_mgr->update); 2747 2748 /* 2749 * Stop searching when the read test doesn't pass AND when 2750 * we've seen a passing read on every bit. 2751 */ 2752 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2753 0, PASS_ONE_BIT, &bit_chk, 0); 2754 sticky_bit_chk = sticky_bit_chk | bit_chk; 2755 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2756 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2757 == %u && %u [bit_chk= %u ]\n", 2758 d, sticky_bit_chk, param->write_correct_mask, 2759 stop, bit_chk); 2760 2761 if (stop == 1) { 2762 break; 2763 } else { 2764 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2765 if (bit_chk & 1) { 2766 /* 2767 * Remember a passing test as the 2768 * left_edge. 2769 */ 2770 left_edge[i] = d; 2771 } else { 2772 /* 2773 * If a left edge has not been seen 2774 * yet, then a future passing test will 2775 * mark this edge as the right edge. 2776 */ 2777 if (left_edge[i] == 2778 IO_IO_OUT1_DELAY_MAX + 1) { 2779 right_edge[i] = -(d + 1); 2780 } 2781 } 2782 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2783 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2784 (int)(bit_chk & 1), i, left_edge[i]); 2785 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2786 right_edge[i]); 2787 bit_chk = bit_chk >> 1; 2788 } 2789 } 2790 } 2791 2792 /* Reset DQ delay chains to 0 */ 2793 scc_mgr_apply_group_dq_out1_delay(0); 2794 sticky_bit_chk = 0; 2795 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2796 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2797 %d right_edge[%u]: %d\n", __func__, __LINE__, 2798 i, left_edge[i], i, right_edge[i]); 2799 2800 /* 2801 * Check for cases where we haven't found the left edge, 2802 * which makes our assignment of the the right edge invalid. 2803 * Reset it to the illegal value. 2804 */ 2805 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2806 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2807 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2808 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2809 right_edge[%u]: %d\n", __func__, __LINE__, 2810 i, right_edge[i]); 2811 } 2812 2813 /* 2814 * Reset sticky bit (except for bits where we have 2815 * seen the left edge). 2816 */ 2817 sticky_bit_chk = sticky_bit_chk << 1; 2818 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2819 sticky_bit_chk = sticky_bit_chk | 1; 2820 2821 if (i == 0) 2822 break; 2823 } 2824 2825 /* Search for the right edge of the window for each bit */ 2826 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2827 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2828 d + start_dqs); 2829 2830 writel(0, &sdr_scc_mgr->update); 2831 2832 /* 2833 * Stop searching when the read test doesn't pass AND when 2834 * we've seen a passing read on every bit. 2835 */ 2836 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2837 0, PASS_ONE_BIT, &bit_chk, 0); 2838 2839 sticky_bit_chk = sticky_bit_chk | bit_chk; 2840 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2841 2842 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2843 %u && %u\n", d, sticky_bit_chk, 2844 param->write_correct_mask, stop); 2845 2846 if (stop == 1) { 2847 if (d == 0) { 2848 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2849 i++) { 2850 /* d = 0 failed, but it passed when 2851 testing the left edge, so it must be 2852 marginal, set it to -1 */ 2853 if (right_edge[i] == 2854 IO_IO_OUT1_DELAY_MAX + 1 && 2855 left_edge[i] != 2856 IO_IO_OUT1_DELAY_MAX + 1) { 2857 right_edge[i] = -1; 2858 } 2859 } 2860 } 2861 break; 2862 } else { 2863 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2864 if (bit_chk & 1) { 2865 /* 2866 * Remember a passing test as 2867 * the right_edge. 2868 */ 2869 right_edge[i] = d; 2870 } else { 2871 if (d != 0) { 2872 /* 2873 * If a right edge has not 2874 * been seen yet, then a future 2875 * passing test will mark this 2876 * edge as the left edge. 2877 */ 2878 if (right_edge[i] == 2879 IO_IO_OUT1_DELAY_MAX + 1) 2880 left_edge[i] = -(d + 1); 2881 } else { 2882 /* 2883 * d = 0 failed, but it passed 2884 * when testing the left edge, 2885 * so it must be marginal, set 2886 * it to -1. 2887 */ 2888 if (right_edge[i] == 2889 IO_IO_OUT1_DELAY_MAX + 1 && 2890 left_edge[i] != 2891 IO_IO_OUT1_DELAY_MAX + 1) 2892 right_edge[i] = -1; 2893 /* 2894 * If a right edge has not been 2895 * seen yet, then a future 2896 * passing test will mark this 2897 * edge as the left edge. 2898 */ 2899 else if (right_edge[i] == 2900 IO_IO_OUT1_DELAY_MAX + 2901 1) 2902 left_edge[i] = -(d + 1); 2903 } 2904 } 2905 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2906 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2907 (int)(bit_chk & 1), i, left_edge[i]); 2908 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2909 right_edge[i]); 2910 bit_chk = bit_chk >> 1; 2911 } 2912 } 2913 } 2914 2915 /* Check that all bits have a window */ 2916 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2917 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2918 %d right_edge[%u]: %d", __func__, __LINE__, 2919 i, left_edge[i], i, right_edge[i]); 2920 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2921 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2922 set_failing_group_stage(test_bgn + i, 2923 CAL_STAGE_WRITES, 2924 CAL_SUBSTAGE_WRITES_CENTER); 2925 return 0; 2926 } 2927 } 2928 2929 /* Find middle of window for each DQ bit */ 2930 mid_min = left_edge[0] - right_edge[0]; 2931 min_index = 0; 2932 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2933 mid = left_edge[i] - right_edge[i]; 2934 if (mid < mid_min) { 2935 mid_min = mid; 2936 min_index = i; 2937 } 2938 } 2939 2940 /* 2941 * -mid_min/2 represents the amount that we need to move DQS. 2942 * If mid_min is odd and positive we'll need to add one to 2943 * make sure the rounding in further calculations is correct 2944 * (always bias to the right), so just add 1 for all positive values. 2945 */ 2946 if (mid_min > 0) 2947 mid_min++; 2948 mid_min = mid_min / 2; 2949 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2950 __LINE__, mid_min); 2951 2952 /* Determine the amount we can change DQS (which is -mid_min) */ 2953 orig_mid_min = mid_min; 2954 new_dqs = start_dqs; 2955 mid_min = 0; 2956 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2957 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2958 /* Initialize data for export structures */ 2959 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2960 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2961 2962 /* add delay to bring centre of all DQ windows to the same "level" */ 2963 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2964 /* Use values before divide by 2 to reduce round off error */ 2965 shift_dq = (left_edge[i] - right_edge[i] - 2966 (left_edge[min_index] - right_edge[min_index]))/2 + 2967 (orig_mid_min - mid_min); 2968 2969 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2970 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2971 2972 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2973 temp_dq_out1_delay = readl(addr + (i << 2)); 2974 if (shift_dq + (int32_t)temp_dq_out1_delay > 2975 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2976 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2977 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2978 shift_dq = -(int32_t)temp_dq_out1_delay; 2979 } 2980 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2981 i, shift_dq); 2982 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2983 scc_mgr_load_dq(i); 2984 2985 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2986 left_edge[i] - shift_dq + (-mid_min), 2987 right_edge[i] + shift_dq - (-mid_min)); 2988 /* To determine values for export structures */ 2989 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2990 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2991 2992 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2993 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2994 } 2995 2996 /* Move DQS */ 2997 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2998 writel(0, &sdr_scc_mgr->update); 2999 3000 /* Centre DM */ 3001 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3002 3003 /* 3004 * set the left and right edge of each bit to an illegal value, 3005 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3006 */ 3007 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3008 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3009 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3010 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3011 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3012 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3013 int32_t win_best = 0; 3014 3015 /* Search for the/part of the window with DM shift */ 3016 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3017 scc_mgr_apply_group_dm_out1_delay(d); 3018 writel(0, &sdr_scc_mgr->update); 3019 3020 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3021 PASS_ALL_BITS, &bit_chk, 3022 0)) { 3023 /* USE Set current end of the window */ 3024 end_curr = -d; 3025 /* 3026 * If a starting edge of our window has not been seen 3027 * this is our current start of the DM window. 3028 */ 3029 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3030 bgn_curr = -d; 3031 3032 /* 3033 * If current window is bigger than best seen. 3034 * Set best seen to be current window. 3035 */ 3036 if ((end_curr-bgn_curr+1) > win_best) { 3037 win_best = end_curr-bgn_curr+1; 3038 bgn_best = bgn_curr; 3039 end_best = end_curr; 3040 } 3041 } else { 3042 /* We just saw a failing test. Reset temp edge */ 3043 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3044 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3045 } 3046 } 3047 3048 3049 /* Reset DM delay chains to 0 */ 3050 scc_mgr_apply_group_dm_out1_delay(0); 3051 3052 /* 3053 * Check to see if the current window nudges up aganist 0 delay. 3054 * If so we need to continue the search by shifting DQS otherwise DQS 3055 * search begins as a new search. */ 3056 if (end_curr != 0) { 3057 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3058 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3059 } 3060 3061 /* Search for the/part of the window with DQS shifts */ 3062 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3063 /* 3064 * Note: This only shifts DQS, so are we limiting ourselve to 3065 * width of DQ unnecessarily. 3066 */ 3067 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3068 d + new_dqs); 3069 3070 writel(0, &sdr_scc_mgr->update); 3071 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3072 PASS_ALL_BITS, &bit_chk, 3073 0)) { 3074 /* USE Set current end of the window */ 3075 end_curr = d; 3076 /* 3077 * If a beginning edge of our window has not been seen 3078 * this is our current begin of the DM window. 3079 */ 3080 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3081 bgn_curr = d; 3082 3083 /* 3084 * If current window is bigger than best seen. Set best 3085 * seen to be current window. 3086 */ 3087 if ((end_curr-bgn_curr+1) > win_best) { 3088 win_best = end_curr-bgn_curr+1; 3089 bgn_best = bgn_curr; 3090 end_best = end_curr; 3091 } 3092 } else { 3093 /* We just saw a failing test. Reset temp edge */ 3094 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3095 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3096 3097 /* Early exit optimization: if ther remaining delay 3098 chain space is less than already seen largest window 3099 we can exit */ 3100 if ((win_best-1) > 3101 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3102 break; 3103 } 3104 } 3105 } 3106 3107 /* assign left and right edge for cal and reporting; */ 3108 left_edge[0] = -1*bgn_best; 3109 right_edge[0] = end_best; 3110 3111 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3112 __LINE__, left_edge[0], right_edge[0]); 3113 3114 /* Move DQS (back to orig) */ 3115 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3116 3117 /* Move DM */ 3118 3119 /* Find middle of window for the DM bit */ 3120 mid = (left_edge[0] - right_edge[0]) / 2; 3121 3122 /* only move right, since we are not moving DQS/DQ */ 3123 if (mid < 0) 3124 mid = 0; 3125 3126 /* dm_marign should fail if we never find a window */ 3127 if (win_best == 0) 3128 dm_margin = -1; 3129 else 3130 dm_margin = left_edge[0] - mid; 3131 3132 scc_mgr_apply_group_dm_out1_delay(mid); 3133 writel(0, &sdr_scc_mgr->update); 3134 3135 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3136 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3137 right_edge[0], mid, dm_margin); 3138 /* Export values */ 3139 gbl->fom_out += dq_margin + dqs_margin; 3140 3141 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3142 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3143 dq_margin, dqs_margin, dm_margin); 3144 3145 /* 3146 * Do not remove this line as it makes sure all of our 3147 * decisions have been applied. 3148 */ 3149 writel(0, &sdr_scc_mgr->update); 3150 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3151 } 3152 3153 /* calibrate the write operations */ 3154 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3155 uint32_t test_bgn) 3156 { 3157 /* update info for sims */ 3158 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3159 3160 reg_file_set_stage(CAL_STAGE_WRITES); 3161 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3162 3163 reg_file_set_group(g); 3164 3165 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3166 set_failing_group_stage(g, CAL_STAGE_WRITES, 3167 CAL_SUBSTAGE_WRITES_CENTER); 3168 return 0; 3169 } 3170 3171 return 1; 3172 } 3173 3174 /** 3175 * mem_precharge_and_activate() - Precharge all banks and activate 3176 * 3177 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3178 */ 3179 static void mem_precharge_and_activate(void) 3180 { 3181 int r; 3182 3183 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3184 /* Test if the rank should be skipped. */ 3185 if (param->skip_ranks[r]) 3186 continue; 3187 3188 /* Set rank. */ 3189 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3190 3191 /* Precharge all banks. */ 3192 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3193 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3194 3195 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3196 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3197 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3198 3199 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3200 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3201 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3202 3203 /* Activate rows. */ 3204 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3205 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3206 } 3207 } 3208 3209 /** 3210 * mem_init_latency() - Configure memory RLAT and WLAT settings 3211 * 3212 * Configure memory RLAT and WLAT parameters. 3213 */ 3214 static void mem_init_latency(void) 3215 { 3216 /* 3217 * For AV/CV, LFIFO is hardened and always runs at full rate 3218 * so max latency in AFI clocks, used here, is correspondingly 3219 * smaller. 3220 */ 3221 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3222 u32 rlat, wlat; 3223 3224 debug("%s:%d\n", __func__, __LINE__); 3225 3226 /* 3227 * Read in write latency. 3228 * WL for Hard PHY does not include additive latency. 3229 */ 3230 wlat = readl(&data_mgr->t_wl_add); 3231 wlat += readl(&data_mgr->mem_t_add); 3232 3233 gbl->rw_wl_nop_cycles = wlat - 1; 3234 3235 /* Read in readl latency. */ 3236 rlat = readl(&data_mgr->t_rl_add); 3237 3238 /* Set a pretty high read latency initially. */ 3239 gbl->curr_read_lat = rlat + 16; 3240 if (gbl->curr_read_lat > max_latency) 3241 gbl->curr_read_lat = max_latency; 3242 3243 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3244 3245 /* Advertise write latency. */ 3246 writel(wlat, &phy_mgr_cfg->afi_wlat); 3247 } 3248 3249 /** 3250 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3251 * 3252 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3253 */ 3254 static void mem_skip_calibrate(void) 3255 { 3256 uint32_t vfifo_offset; 3257 uint32_t i, j, r; 3258 3259 debug("%s:%d\n", __func__, __LINE__); 3260 /* Need to update every shadow register set used by the interface */ 3261 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3262 r += NUM_RANKS_PER_SHADOW_REG) { 3263 /* 3264 * Set output phase alignment settings appropriate for 3265 * skip calibration. 3266 */ 3267 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3268 scc_mgr_set_dqs_en_phase(i, 0); 3269 #if IO_DLL_CHAIN_LENGTH == 6 3270 scc_mgr_set_dqdqs_output_phase(i, 6); 3271 #else 3272 scc_mgr_set_dqdqs_output_phase(i, 7); 3273 #endif 3274 /* 3275 * Case:33398 3276 * 3277 * Write data arrives to the I/O two cycles before write 3278 * latency is reached (720 deg). 3279 * -> due to bit-slip in a/c bus 3280 * -> to allow board skew where dqs is longer than ck 3281 * -> how often can this happen!? 3282 * -> can claim back some ptaps for high freq 3283 * support if we can relax this, but i digress... 3284 * 3285 * The write_clk leads mem_ck by 90 deg 3286 * The minimum ptap of the OPA is 180 deg 3287 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3288 * The write_clk is always delayed by 2 ptaps 3289 * 3290 * Hence, to make DQS aligned to CK, we need to delay 3291 * DQS by: 3292 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3293 * 3294 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3295 * gives us the number of ptaps, which simplies to: 3296 * 3297 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3298 */ 3299 scc_mgr_set_dqdqs_output_phase(i, 3300 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3301 } 3302 writel(0xff, &sdr_scc_mgr->dqs_ena); 3303 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3304 3305 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3306 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3307 SCC_MGR_GROUP_COUNTER_OFFSET); 3308 } 3309 writel(0xff, &sdr_scc_mgr->dq_ena); 3310 writel(0xff, &sdr_scc_mgr->dm_ena); 3311 writel(0, &sdr_scc_mgr->update); 3312 } 3313 3314 /* Compensate for simulation model behaviour */ 3315 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3316 scc_mgr_set_dqs_bus_in_delay(i, 10); 3317 scc_mgr_load_dqs(i); 3318 } 3319 writel(0, &sdr_scc_mgr->update); 3320 3321 /* 3322 * ArriaV has hard FIFOs that can only be initialized by incrementing 3323 * in sequencer. 3324 */ 3325 vfifo_offset = CALIB_VFIFO_OFFSET; 3326 for (j = 0; j < vfifo_offset; j++) 3327 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3328 writel(0, &phy_mgr_cmd->fifo_reset); 3329 3330 /* 3331 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3332 * setting from generation-time constant. 3333 */ 3334 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3335 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3336 } 3337 3338 /** 3339 * mem_calibrate() - Memory calibration entry point. 3340 * 3341 * Perform memory calibration. 3342 */ 3343 static uint32_t mem_calibrate(void) 3344 { 3345 uint32_t i; 3346 uint32_t rank_bgn, sr; 3347 uint32_t write_group, write_test_bgn; 3348 uint32_t read_group, read_test_bgn; 3349 uint32_t run_groups, current_run; 3350 uint32_t failing_groups = 0; 3351 uint32_t group_failed = 0; 3352 3353 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3354 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3355 3356 debug("%s:%d\n", __func__, __LINE__); 3357 3358 /* Initialize the data settings */ 3359 gbl->error_substage = CAL_SUBSTAGE_NIL; 3360 gbl->error_stage = CAL_STAGE_NIL; 3361 gbl->error_group = 0xff; 3362 gbl->fom_in = 0; 3363 gbl->fom_out = 0; 3364 3365 /* Initialize WLAT and RLAT. */ 3366 mem_init_latency(); 3367 3368 /* Initialize bit slips. */ 3369 mem_precharge_and_activate(); 3370 3371 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3372 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3373 SCC_MGR_GROUP_COUNTER_OFFSET); 3374 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3375 if (i == 0) 3376 scc_mgr_set_hhp_extras(); 3377 3378 scc_set_bypass_mode(i); 3379 } 3380 3381 /* Calibration is skipped. */ 3382 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3383 /* 3384 * Set VFIFO and LFIFO to instant-on settings in skip 3385 * calibration mode. 3386 */ 3387 mem_skip_calibrate(); 3388 3389 /* 3390 * Do not remove this line as it makes sure all of our 3391 * decisions have been applied. 3392 */ 3393 writel(0, &sdr_scc_mgr->update); 3394 return 1; 3395 } 3396 3397 /* Calibration is not skipped. */ 3398 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3399 /* 3400 * Zero all delay chain/phase settings for all 3401 * groups and all shadow register sets. 3402 */ 3403 scc_mgr_zero_all(); 3404 3405 run_groups = ~param->skip_groups; 3406 3407 for (write_group = 0, write_test_bgn = 0; write_group 3408 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3409 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3410 3411 /* Initialize the group failure */ 3412 group_failed = 0; 3413 3414 current_run = run_groups & ((1 << 3415 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3416 run_groups = run_groups >> 3417 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3418 3419 if (current_run == 0) 3420 continue; 3421 3422 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3423 SCC_MGR_GROUP_COUNTER_OFFSET); 3424 scc_mgr_zero_group(write_group, 0); 3425 3426 for (read_group = write_group * rwdqs_ratio, 3427 read_test_bgn = 0; 3428 read_group < (write_group + 1) * rwdqs_ratio; 3429 read_group++, 3430 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3431 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3432 continue; 3433 3434 /* Calibrate the VFIFO */ 3435 if (rw_mgr_mem_calibrate_vfifo(read_group, 3436 read_test_bgn)) 3437 continue; 3438 3439 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3440 return 0; 3441 3442 /* The group failed, we're done. */ 3443 goto grp_failed; 3444 } 3445 3446 /* Calibrate the output side */ 3447 for (rank_bgn = 0, sr = 0; 3448 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3449 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3451 continue; 3452 3453 /* Not needed in quick mode! */ 3454 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3455 continue; 3456 3457 /* 3458 * Determine if this set of ranks 3459 * should be skipped entirely. 3460 */ 3461 if (param->skip_shadow_regs[sr]) 3462 continue; 3463 3464 /* Calibrate WRITEs */ 3465 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3466 write_group, write_test_bgn)) 3467 continue; 3468 3469 group_failed = 1; 3470 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3471 return 0; 3472 } 3473 3474 /* Some group failed, we're done. */ 3475 if (group_failed) 3476 goto grp_failed; 3477 3478 for (read_group = write_group * rwdqs_ratio, 3479 read_test_bgn = 0; 3480 read_group < (write_group + 1) * rwdqs_ratio; 3481 read_group++, 3482 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3483 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3484 continue; 3485 3486 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3487 read_test_bgn)) 3488 continue; 3489 3490 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3491 return 0; 3492 3493 /* The group failed, we're done. */ 3494 goto grp_failed; 3495 } 3496 3497 /* No group failed, continue as usual. */ 3498 continue; 3499 3500 grp_failed: /* A group failed, increment the counter. */ 3501 failing_groups++; 3502 } 3503 3504 /* 3505 * USER If there are any failing groups then report 3506 * the failure. 3507 */ 3508 if (failing_groups != 0) 3509 return 0; 3510 3511 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3512 continue; 3513 3514 /* 3515 * If we're skipping groups as part of debug, 3516 * don't calibrate LFIFO. 3517 */ 3518 if (param->skip_groups != 0) 3519 continue; 3520 3521 /* Calibrate the LFIFO */ 3522 if (!rw_mgr_mem_calibrate_lfifo()) 3523 return 0; 3524 } 3525 3526 /* 3527 * Do not remove this line as it makes sure all of our decisions 3528 * have been applied. 3529 */ 3530 writel(0, &sdr_scc_mgr->update); 3531 return 1; 3532 } 3533 3534 /** 3535 * run_mem_calibrate() - Perform memory calibration 3536 * 3537 * This function triggers the entire memory calibration procedure. 3538 */ 3539 static int run_mem_calibrate(void) 3540 { 3541 int pass; 3542 3543 debug("%s:%d\n", __func__, __LINE__); 3544 3545 /* Reset pass/fail status shown on afi_cal_success/fail */ 3546 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3547 3548 /* Stop tracking manager. */ 3549 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3550 3551 phy_mgr_initialize(); 3552 rw_mgr_mem_initialize(); 3553 3554 /* Perform the actual memory calibration. */ 3555 pass = mem_calibrate(); 3556 3557 mem_precharge_and_activate(); 3558 writel(0, &phy_mgr_cmd->fifo_reset); 3559 3560 /* Handoff. */ 3561 rw_mgr_mem_handoff(); 3562 /* 3563 * In Hard PHY this is a 2-bit control: 3564 * 0: AFI Mux Select 3565 * 1: DDIO Mux Select 3566 */ 3567 writel(0x2, &phy_mgr_cfg->mux_sel); 3568 3569 /* Start tracking manager. */ 3570 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3571 3572 return pass; 3573 } 3574 3575 /** 3576 * debug_mem_calibrate() - Report result of memory calibration 3577 * @pass: Value indicating whether calibration passed or failed 3578 * 3579 * This function reports the results of the memory calibration 3580 * and writes debug information into the register file. 3581 */ 3582 static void debug_mem_calibrate(int pass) 3583 { 3584 uint32_t debug_info; 3585 3586 if (pass) { 3587 printf("%s: CALIBRATION PASSED\n", __FILE__); 3588 3589 gbl->fom_in /= 2; 3590 gbl->fom_out /= 2; 3591 3592 if (gbl->fom_in > 0xff) 3593 gbl->fom_in = 0xff; 3594 3595 if (gbl->fom_out > 0xff) 3596 gbl->fom_out = 0xff; 3597 3598 /* Update the FOM in the register file */ 3599 debug_info = gbl->fom_in; 3600 debug_info |= gbl->fom_out << 8; 3601 writel(debug_info, &sdr_reg_file->fom); 3602 3603 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3604 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3605 } else { 3606 printf("%s: CALIBRATION FAILED\n", __FILE__); 3607 3608 debug_info = gbl->error_stage; 3609 debug_info |= gbl->error_substage << 8; 3610 debug_info |= gbl->error_group << 16; 3611 3612 writel(debug_info, &sdr_reg_file->failing_stage); 3613 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3614 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3615 3616 /* Update the failing group/stage in the register file */ 3617 debug_info = gbl->error_stage; 3618 debug_info |= gbl->error_substage << 8; 3619 debug_info |= gbl->error_group << 16; 3620 writel(debug_info, &sdr_reg_file->failing_stage); 3621 } 3622 3623 printf("%s: Calibration complete\n", __FILE__); 3624 } 3625 3626 /** 3627 * hc_initialize_rom_data() - Initialize ROM data 3628 * 3629 * Initialize ROM data. 3630 */ 3631 static void hc_initialize_rom_data(void) 3632 { 3633 u32 i, addr; 3634 3635 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3636 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3637 writel(inst_rom_init[i], addr + (i << 2)); 3638 3639 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3640 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3641 writel(ac_rom_init[i], addr + (i << 2)); 3642 } 3643 3644 /** 3645 * initialize_reg_file() - Initialize SDR register file 3646 * 3647 * Initialize SDR register file. 3648 */ 3649 static void initialize_reg_file(void) 3650 { 3651 /* Initialize the register file with the correct data */ 3652 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3653 writel(0, &sdr_reg_file->debug_data_addr); 3654 writel(0, &sdr_reg_file->cur_stage); 3655 writel(0, &sdr_reg_file->fom); 3656 writel(0, &sdr_reg_file->failing_stage); 3657 writel(0, &sdr_reg_file->debug1); 3658 writel(0, &sdr_reg_file->debug2); 3659 } 3660 3661 /** 3662 * initialize_hps_phy() - Initialize HPS PHY 3663 * 3664 * Initialize HPS PHY. 3665 */ 3666 static void initialize_hps_phy(void) 3667 { 3668 uint32_t reg; 3669 /* 3670 * Tracking also gets configured here because it's in the 3671 * same register. 3672 */ 3673 uint32_t trk_sample_count = 7500; 3674 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3675 /* 3676 * Format is number of outer loops in the 16 MSB, sample 3677 * count in 16 LSB. 3678 */ 3679 3680 reg = 0; 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3687 /* 3688 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3689 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3690 */ 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3693 trk_sample_count); 3694 writel(reg, &sdr_ctrl->phy_ctrl0); 3695 3696 reg = 0; 3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3698 trk_sample_count >> 3699 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3701 trk_long_idle_sample_count); 3702 writel(reg, &sdr_ctrl->phy_ctrl1); 3703 3704 reg = 0; 3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3706 trk_long_idle_sample_count >> 3707 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3708 writel(reg, &sdr_ctrl->phy_ctrl2); 3709 } 3710 3711 /** 3712 * initialize_tracking() - Initialize tracking 3713 * 3714 * Initialize the register file with usable initial data. 3715 */ 3716 static void initialize_tracking(void) 3717 { 3718 /* 3719 * Initialize the register file with the correct data. 3720 * Compute usable version of value in case we skip full 3721 * computation later. 3722 */ 3723 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3724 &sdr_reg_file->dtaps_per_ptap); 3725 3726 /* trk_sample_count */ 3727 writel(7500, &sdr_reg_file->trk_sample_count); 3728 3729 /* longidle outer loop [15:0] */ 3730 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3731 3732 /* 3733 * longidle sample count [31:24] 3734 * trfc, worst case of 933Mhz 4Gb [23:16] 3735 * trcd, worst case [15:8] 3736 * vfifo wait [7:0] 3737 */ 3738 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3739 &sdr_reg_file->delays); 3740 3741 /* mux delay */ 3742 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3743 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3744 &sdr_reg_file->trk_rw_mgr_addr); 3745 3746 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3747 &sdr_reg_file->trk_read_dqs_width); 3748 3749 /* trefi [7:0] */ 3750 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3751 &sdr_reg_file->trk_rfsh); 3752 } 3753 3754 int sdram_calibration_full(void) 3755 { 3756 struct param_type my_param; 3757 struct gbl_type my_gbl; 3758 uint32_t pass; 3759 3760 memset(&my_param, 0, sizeof(my_param)); 3761 memset(&my_gbl, 0, sizeof(my_gbl)); 3762 3763 param = &my_param; 3764 gbl = &my_gbl; 3765 3766 /* Set the calibration enabled by default */ 3767 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3768 /* 3769 * Only sweep all groups (regardless of fail state) by default 3770 * Set enabled read test by default. 3771 */ 3772 #if DISABLE_GUARANTEED_READ 3773 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3774 #endif 3775 /* Initialize the register file */ 3776 initialize_reg_file(); 3777 3778 /* Initialize any PHY CSR */ 3779 initialize_hps_phy(); 3780 3781 scc_mgr_initialize(); 3782 3783 initialize_tracking(); 3784 3785 printf("%s: Preparing to start memory calibration\n", __FILE__); 3786 3787 debug("%s:%d\n", __func__, __LINE__); 3788 debug_cond(DLEVEL == 1, 3789 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3790 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3791 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3792 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3793 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3794 debug_cond(DLEVEL == 1, 3795 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3796 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3797 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3798 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3799 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3800 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3801 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3802 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3803 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3804 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3805 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3806 IO_IO_OUT2_DELAY_MAX); 3807 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3808 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3809 3810 hc_initialize_rom_data(); 3811 3812 /* update info for sims */ 3813 reg_file_set_stage(CAL_STAGE_NIL); 3814 reg_file_set_group(0); 3815 3816 /* 3817 * Load global needed for those actions that require 3818 * some dynamic calibration support. 3819 */ 3820 dyn_calib_steps = STATIC_CALIB_STEPS; 3821 /* 3822 * Load global to allow dynamic selection of delay loop settings 3823 * based on calibration mode. 3824 */ 3825 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3826 skip_delay_mask = 0xff; 3827 else 3828 skip_delay_mask = 0x0; 3829 3830 pass = run_mem_calibrate(); 3831 debug_mem_calibrate(pass); 3832 return pass; 3833 } 3834