xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision c984278a66f0b785835e058fc4e3e9731c5fa94f)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763 	uint32_t afi_clocks;
764 	uint8_t inner = 0;
765 	uint8_t outer = 0;
766 	uint16_t c_loop = 0;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 
771 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772 	/* scale (rounding up) to get afi clocks */
773 
774 	/*
775 	 * Note, we don't bother accounting for being off a little bit
776 	 * because of a few extra instructions in outer loops
777 	 * Note, the loops have a test at the end, and do the test before
778 	 * the decrement, and so always perform the loop
779 	 * 1 time more than the counter value
780 	 */
781 	if (afi_clocks == 0) {
782 		;
783 	} else if (afi_clocks <= 0x100) {
784 		inner = afi_clocks-1;
785 		outer = 0;
786 		c_loop = 0;
787 	} else if (afi_clocks <= 0x10000) {
788 		inner = 0xff;
789 		outer = (afi_clocks-1) >> 8;
790 		c_loop = 0;
791 	} else {
792 		inner = 0xff;
793 		outer = 0xff;
794 		c_loop = (afi_clocks-1) >> 16;
795 	}
796 
797 	/*
798 	 * rom instructions are structured as follows:
799 	 *
800 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
801 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
802 	 *                return
803 	 *
804 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805 	 * TARGET_B is set to IDLE_LOOP2 as well
806 	 *
807 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809 	 *
810 	 * a little confusing, but it helps save precious space in the inst_rom
811 	 * and sequencer rom and keeps the delays more accurate and reduces
812 	 * overhead
813 	 */
814 	if (afi_clocks <= 0x100) {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr1);
817 
818 		writel(RW_MGR_IDLE_LOOP1,
819 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
820 
821 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823 	} else {
824 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825 			&sdr_rw_load_mgr_regs->load_cntr0);
826 
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828 			&sdr_rw_load_mgr_regs->load_cntr1);
829 
830 		writel(RW_MGR_IDLE_LOOP2,
831 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
835 
836 		/* hack to get around compiler not being smart enough */
837 		if (afi_clocks <= 0x10000) {
838 			/* only need to run once */
839 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841 		} else {
842 			do {
843 				writel(RW_MGR_IDLE_LOOP2,
844 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
845 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846 			} while (c_loop-- != 0);
847 		}
848 	}
849 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851 
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:	Counter 0 value
855  * @cntr1:	Counter 1 value
856  * @cntr2:	Counter 2 value
857  * @jump:	Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865 
866 	/* Load counters */
867 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868 	       &sdr_rw_load_mgr_regs->load_cntr0);
869 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870 	       &sdr_rw_load_mgr_regs->load_cntr1);
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872 	       &sdr_rw_load_mgr_regs->load_cntr2);
873 
874 	/* Load jump address */
875 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878 
879 	/* Execute count instruction */
880 	writel(jump, grpaddr);
881 }
882 
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:	Final instruction 1
886  * @fin2:	Final instruction 2
887  * @precharge:	If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892 				 const int precharge)
893 {
894 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896 	u32 r;
897 
898 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899 		if (param->skip_ranks[r]) {
900 			/* request to skip the rank */
901 			continue;
902 		}
903 
904 		/* set rank */
905 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906 
907 		/* precharge all banks ... */
908 		if (precharge)
909 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910 
911 		/*
912 		 * USER Use Mirror-ed commands for odd ranks if address
913 		 * mirrorring is on
914 		 */
915 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS2_MIRR, grpaddr);
918 			delay_for_n_mem_clocks(4);
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS3_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS1_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(fin1, grpaddr);
927 		} else {
928 			set_jump_as_return();
929 			writel(RW_MGR_MRS2, grpaddr);
930 			delay_for_n_mem_clocks(4);
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS3, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS1, grpaddr);
936 			set_jump_as_return();
937 			writel(fin2, grpaddr);
938 		}
939 
940 		if (precharge)
941 			continue;
942 
943 		set_jump_as_return();
944 		writel(RW_MGR_ZQCL, grpaddr);
945 
946 		/* tZQinit = tDLLK = 512 ck cycles */
947 		delay_for_n_mem_clocks(512);
948 	}
949 }
950 
951 /**
952  * rw_mgr_mem_initialize() - Initialize RW Manager
953  *
954  * Initialize RW Manager.
955  */
956 static void rw_mgr_mem_initialize(void)
957 {
958 	debug("%s:%d\n", __func__, __LINE__);
959 
960 	/* The reset / cke part of initialization is broadcasted to all ranks */
961 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
962 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
963 
964 	/*
965 	 * Here's how you load register for a loop
966 	 * Counters are located @ 0x800
967 	 * Jump address are located @ 0xC00
968 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
969 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
970 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
971 	 * significant bits
972 	 */
973 
974 	/* Start with memory RESET activated */
975 
976 	/* tINIT = 200us */
977 
978 	/*
979 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
980 	 * If a and b are the number of iteration in 2 nested loops
981 	 * it takes the following number of cycles to complete the operation:
982 	 * number_of_cycles = ((2 + n) * a + 2) * b
983 	 * where n is the number of instruction in the inner loop
984 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
985 	 * b = 6A
986 	 */
987 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
988 				  SEQ_TINIT_CNTR2_VAL,
989 				  RW_MGR_INIT_RESET_0_CKE_0);
990 
991 	/* Indicate that memory is stable. */
992 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
993 
994 	/*
995 	 * transition the RESET to high
996 	 * Wait for 500us
997 	 */
998 
999 	/*
1000 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1001 	 * If a and b are the number of iteration in 2 nested loops
1002 	 * it takes the following number of cycles to complete the operation
1003 	 * number_of_cycles = ((2 + n) * a + 2) * b
1004 	 * where n is the number of instruction in the inner loop
1005 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1006 	 * b = FF
1007 	 */
1008 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1009 				  SEQ_TRESET_CNTR2_VAL,
1010 				  RW_MGR_INIT_RESET_1_CKE_0);
1011 
1012 	/* Bring up clock enable. */
1013 
1014 	/* tXRP < 250 ck cycles */
1015 	delay_for_n_mem_clocks(250);
1016 
1017 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1018 			     0);
1019 }
1020 
1021 /*
1022  * At the end of calibration we have to program the user settings in, and
1023  * USER  hand off the memory to the user.
1024  */
1025 static void rw_mgr_mem_handoff(void)
1026 {
1027 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1028 	/*
1029 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1030 	 * other commands, but we will have plenty of NIOS cycles before
1031 	 * actual handoff so its okay.
1032 	 */
1033 }
1034 
1035 
1036 /**
1037  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1038  * @group:	Write Group
1039  * @use_dm:	Use DM
1040  *
1041  * Issue write test command. Two variants are provided, one that just tests
1042  * a write pattern and another that tests datamask functionality.
1043  */
1044 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1045 						  u32 test_dm)
1046 {
1047 	const u32 quick_write_mode =
1048 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1049 		ENABLE_SUPER_QUICK_CALIBRATION;
1050 	u32 mcc_instruction;
1051 	u32 rw_wl_nop_cycles;
1052 
1053 	/*
1054 	 * Set counter and jump addresses for the right
1055 	 * number of NOP cycles.
1056 	 * The number of supported NOP cycles can range from -1 to infinity
1057 	 * Three different cases are handled:
1058 	 *
1059 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1060 	 *    mechanism will be used to insert the right number of NOPs
1061 	 *
1062 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1063 	 *    issuing the write command will jump straight to the
1064 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1065 	 *    data (for RLD), skipping
1066 	 *    the NOP micro-instruction all together
1067 	 *
1068 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1069 	 *    turned on in the same micro-instruction that issues the write
1070 	 *    command. Then we need
1071 	 *    to directly jump to the micro-instruction that sends out the data
1072 	 *
1073 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1074 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1075 	 *       write-read operations.
1076 	 *       one counter left to issue this command in "multiple-group" mode
1077 	 */
1078 
1079 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1080 
1081 	if (rw_wl_nop_cycles == -1) {
1082 		/*
1083 		 * CNTR 2 - We want to execute the special write operation that
1084 		 * turns on DQS right away and then skip directly to the
1085 		 * instruction that sends out the data. We set the counter to a
1086 		 * large number so that the jump is always taken.
1087 		 */
1088 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1089 
1090 		/* CNTR 3 - Not used */
1091 		if (test_dm) {
1092 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1093 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1094 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1095 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1096 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1097 		} else {
1098 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1099 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1100 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1101 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1102 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1103 		}
1104 	} else if (rw_wl_nop_cycles == 0) {
1105 		/*
1106 		 * CNTR 2 - We want to skip the NOP operation and go straight
1107 		 * to the DQS enable instruction. We set the counter to a large
1108 		 * number so that the jump is always taken.
1109 		 */
1110 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1111 
1112 		/* CNTR 3 - Not used */
1113 		if (test_dm) {
1114 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1115 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1116 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1117 		} else {
1118 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1119 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1120 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1121 		}
1122 	} else {
1123 		/*
1124 		 * CNTR 2 - In this case we want to execute the next instruction
1125 		 * and NOT take the jump. So we set the counter to 0. The jump
1126 		 * address doesn't count.
1127 		 */
1128 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1129 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1130 
1131 		/*
1132 		 * CNTR 3 - Set the nop counter to the number of cycles we
1133 		 * need to loop for, minus 1.
1134 		 */
1135 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1136 		if (test_dm) {
1137 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1138 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1139 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1140 		} else {
1141 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1142 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1143 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1144 		}
1145 	}
1146 
1147 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1148 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1149 
1150 	if (quick_write_mode)
1151 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1152 	else
1153 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1154 
1155 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1156 
1157 	/*
1158 	 * CNTR 1 - This is used to ensure enough time elapses
1159 	 * for read data to come back.
1160 	 */
1161 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1162 
1163 	if (test_dm) {
1164 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1165 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1166 	} else {
1167 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1168 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1169 	}
1170 
1171 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1172 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1173 				(group << 2));
1174 }
1175 
1176 /**
1177  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1178  * @rank_bgn:		Rank number
1179  * @write_group:	Write Group
1180  * @use_dm:		Use DM
1181  * @all_correct:	All bits must be correct in the mask
1182  * @bit_chk:		Resulting bit mask after the test
1183  * @all_ranks:		Test all ranks
1184  *
1185  * Test writes, can check for a single bit pass or multiple bit pass.
1186  */
1187 static int
1188 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1189 				const u32 use_dm, const u32 all_correct,
1190 				u32 *bit_chk, const u32 all_ranks)
1191 {
1192 	const u32 rank_end = all_ranks ?
1193 				RW_MGR_MEM_NUMBER_OF_RANKS :
1194 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1195 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1196 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1197 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1198 
1199 	u32 tmp_bit_chk, base_rw_mgr;
1200 	int vg, r;
1201 
1202 	*bit_chk = param->write_correct_mask;
1203 
1204 	for (r = rank_bgn; r < rank_end; r++) {
1205 		/* Request to skip the rank */
1206 		if (param->skip_ranks[r])
1207 			continue;
1208 
1209 		/* Set rank */
1210 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1211 
1212 		tmp_bit_chk = 0;
1213 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1214 		     vg >= 0; vg--) {
1215 			/* Reset the FIFOs to get pointers to known state. */
1216 			writel(0, &phy_mgr_cmd->fifo_reset);
1217 
1218 			rw_mgr_mem_calibrate_write_test_issue(
1219 				write_group *
1220 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1221 				use_dm);
1222 
1223 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1224 			tmp_bit_chk <<= shift_ratio;
1225 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1226 		}
1227 
1228 		*bit_chk &= tmp_bit_chk;
1229 	}
1230 
1231 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1232 	if (all_correct) {
1233 		debug_cond(DLEVEL == 2,
1234 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1235 			   write_group, use_dm, *bit_chk,
1236 			   param->write_correct_mask,
1237 			   *bit_chk == param->write_correct_mask);
1238 		return *bit_chk == param->write_correct_mask;
1239 	} else {
1240 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1241 		debug_cond(DLEVEL == 2,
1242 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1243 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1244 		return *bit_chk != 0x00;
1245 	}
1246 }
1247 
1248 /**
1249  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1250  * @rank_bgn:	Rank number
1251  * @group:	Read/Write Group
1252  * @all_ranks:	Test all ranks
1253  *
1254  * Performs a guaranteed read on the patterns we are going to use during a
1255  * read test to ensure memory works.
1256  */
1257 static int
1258 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1259 					const u32 all_ranks)
1260 {
1261 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1262 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1263 	const u32 addr_offset =
1264 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1265 	const u32 rank_end = all_ranks ?
1266 				RW_MGR_MEM_NUMBER_OF_RANKS :
1267 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1268 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1269 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1270 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1271 
1272 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1273 	int vg, r;
1274 	int ret = 0;
1275 
1276 	bit_chk = param->read_correct_mask;
1277 
1278 	for (r = rank_bgn; r < rank_end; r++) {
1279 		/* Request to skip the rank */
1280 		if (param->skip_ranks[r])
1281 			continue;
1282 
1283 		/* Set rank */
1284 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1285 
1286 		/* Load up a constant bursts of read commands */
1287 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1288 		writel(RW_MGR_GUARANTEED_READ,
1289 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1290 
1291 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1292 		writel(RW_MGR_GUARANTEED_READ_CONT,
1293 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1294 
1295 		tmp_bit_chk = 0;
1296 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1297 		     vg >= 0; vg--) {
1298 			/* Reset the FIFOs to get pointers to known state. */
1299 			writel(0, &phy_mgr_cmd->fifo_reset);
1300 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1301 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1302 			writel(RW_MGR_GUARANTEED_READ,
1303 			       addr + addr_offset + (vg << 2));
1304 
1305 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1306 			tmp_bit_chk <<= shift_ratio;
1307 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1308 		}
1309 
1310 		bit_chk &= tmp_bit_chk;
1311 	}
1312 
1313 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1314 
1315 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1316 
1317 	if (bit_chk != param->read_correct_mask)
1318 		ret = -EIO;
1319 
1320 	debug_cond(DLEVEL == 1,
1321 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1322 		   __func__, __LINE__, group, bit_chk,
1323 		   param->read_correct_mask, ret);
1324 
1325 	return ret;
1326 }
1327 
1328 /**
1329  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1330  * @rank_bgn:	Rank number
1331  * @all_ranks:	Test all ranks
1332  *
1333  * Load up the patterns we are going to use during a read test.
1334  */
1335 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1336 						    const int all_ranks)
1337 {
1338 	const u32 rank_end = all_ranks ?
1339 			RW_MGR_MEM_NUMBER_OF_RANKS :
1340 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1341 	u32 r;
1342 
1343 	debug("%s:%d\n", __func__, __LINE__);
1344 
1345 	for (r = rank_bgn; r < rank_end; r++) {
1346 		if (param->skip_ranks[r])
1347 			/* request to skip the rank */
1348 			continue;
1349 
1350 		/* set rank */
1351 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1352 
1353 		/* Load up a constant bursts */
1354 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1355 
1356 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1357 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1358 
1359 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1360 
1361 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1362 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1363 
1364 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1365 
1366 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1367 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1368 
1369 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1370 
1371 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1372 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1373 
1374 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1375 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1376 	}
1377 
1378 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1379 }
1380 
1381 /**
1382  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1383  * @rank_bgn:		Rank number
1384  * @group:		Read/Write group
1385  * @num_tries:		Number of retries of the test
1386  * @all_correct:	All bits must be correct in the mask
1387  * @bit_chk:		Resulting bit mask after the test
1388  * @all_groups:		Test all R/W groups
1389  * @all_ranks:		Test all ranks
1390  *
1391  * Try a read and see if it returns correct data back. Test has dummy reads
1392  * inserted into the mix used to align DQS enable. Test has more thorough
1393  * checks than the regular read test.
1394  */
1395 static int
1396 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1397 			       const u32 num_tries, const u32 all_correct,
1398 			       u32 *bit_chk,
1399 			       const u32 all_groups, const u32 all_ranks)
1400 {
1401 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1402 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1403 	const u32 quick_read_mode =
1404 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1405 		 ENABLE_SUPER_QUICK_CALIBRATION);
1406 	u32 correct_mask_vg = param->read_correct_mask_vg;
1407 	u32 tmp_bit_chk;
1408 	u32 base_rw_mgr;
1409 	u32 addr;
1410 
1411 	int r, vg, ret;
1412 
1413 	*bit_chk = param->read_correct_mask;
1414 
1415 	for (r = rank_bgn; r < rank_end; r++) {
1416 		if (param->skip_ranks[r])
1417 			/* request to skip the rank */
1418 			continue;
1419 
1420 		/* set rank */
1421 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1422 
1423 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1424 
1425 		writel(RW_MGR_READ_B2B_WAIT1,
1426 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1427 
1428 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1429 		writel(RW_MGR_READ_B2B_WAIT2,
1430 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1431 
1432 		if (quick_read_mode)
1433 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1434 			/* need at least two (1+1) reads to capture failures */
1435 		else if (all_groups)
1436 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1437 		else
1438 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1439 
1440 		writel(RW_MGR_READ_B2B,
1441 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1442 		if (all_groups)
1443 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1444 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1445 			       &sdr_rw_load_mgr_regs->load_cntr3);
1446 		else
1447 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1448 
1449 		writel(RW_MGR_READ_B2B,
1450 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1451 
1452 		tmp_bit_chk = 0;
1453 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1454 		     vg--) {
1455 			/* Reset the FIFOs to get pointers to known state. */
1456 			writel(0, &phy_mgr_cmd->fifo_reset);
1457 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1458 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1459 
1460 			if (all_groups) {
1461 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1462 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1463 			} else {
1464 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1465 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1466 			}
1467 
1468 			writel(RW_MGR_READ_B2B, addr +
1469 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1470 			       vg) << 2));
1471 
1472 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1473 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1474 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1475 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1476 		}
1477 
1478 		*bit_chk &= tmp_bit_chk;
1479 	}
1480 
1481 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1482 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1483 
1484 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1485 
1486 	if (all_correct) {
1487 		ret = (*bit_chk == param->read_correct_mask);
1488 		debug_cond(DLEVEL == 2,
1489 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1490 			   __func__, __LINE__, group, all_groups, *bit_chk,
1491 			   param->read_correct_mask, ret);
1492 	} else	{
1493 		ret = (*bit_chk != 0x00);
1494 		debug_cond(DLEVEL == 2,
1495 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1496 			   __func__, __LINE__, group, all_groups, *bit_chk,
1497 			   0, ret);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 /**
1504  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1505  * @grp:		Read/Write group
1506  * @num_tries:		Number of retries of the test
1507  * @all_correct:	All bits must be correct in the mask
1508  * @all_groups:		Test all R/W groups
1509  *
1510  * Perform a READ test across all memory ranks.
1511  */
1512 static int
1513 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1514 					 const u32 all_correct,
1515 					 const u32 all_groups)
1516 {
1517 	u32 bit_chk;
1518 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1519 					      &bit_chk, all_groups, 1);
1520 }
1521 
1522 /**
1523  * rw_mgr_incr_vfifo() - Increase VFIFO value
1524  * @grp:	Read/Write group
1525  *
1526  * Increase VFIFO value.
1527  */
1528 static void rw_mgr_incr_vfifo(const u32 grp)
1529 {
1530 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1531 }
1532 
1533 /**
1534  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1535  * @grp:	Read/Write group
1536  *
1537  * Decrease VFIFO value.
1538  */
1539 static void rw_mgr_decr_vfifo(const u32 grp)
1540 {
1541 	u32 i;
1542 
1543 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1544 		rw_mgr_incr_vfifo(grp);
1545 }
1546 
1547 /**
1548  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1549  * @grp:	Read/Write group
1550  *
1551  * Push VFIFO until a failing read happens.
1552  */
1553 static int find_vfifo_failing_read(const u32 grp)
1554 {
1555 	u32 v, ret, fail_cnt = 0;
1556 
1557 	for (v = 0; v < VFIFO_SIZE; v++) {
1558 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1559 			   __func__, __LINE__, v);
1560 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1561 						PASS_ONE_BIT, 0);
1562 		if (!ret) {
1563 			fail_cnt++;
1564 
1565 			if (fail_cnt == 2)
1566 				return v;
1567 		}
1568 
1569 		/* Fiddle with FIFO. */
1570 		rw_mgr_incr_vfifo(grp);
1571 	}
1572 
1573 	/* No failing read found! Something must have gone wrong. */
1574 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1575 	return 0;
1576 }
1577 
1578 /**
1579  * sdr_find_phase_delay() - Find DQS enable phase or delay
1580  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1581  * @delay:	If 1, look for delay, if 0, look for phase
1582  * @grp:	Read/Write group
1583  * @work:	Working window position
1584  * @work_inc:	Working window increment
1585  * @pd:		DQS Phase/Delay Iterator
1586  *
1587  * Find working or non-working DQS enable phase setting.
1588  */
1589 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1590 				u32 *work, const u32 work_inc, u32 *pd)
1591 {
1592 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1593 	u32 ret;
1594 
1595 	for (; *pd <= max; (*pd)++) {
1596 		if (delay)
1597 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1598 		else
1599 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1600 
1601 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1602 					PASS_ONE_BIT, 0);
1603 		if (!working)
1604 			ret = !ret;
1605 
1606 		if (ret)
1607 			return 0;
1608 
1609 		if (work)
1610 			*work += work_inc;
1611 	}
1612 
1613 	return -EINVAL;
1614 }
1615 /**
1616  * sdr_find_phase() - Find DQS enable phase
1617  * @working:	If 1, look for working phase, if 0, look for non-working phase
1618  * @grp:	Read/Write group
1619  * @work:	Working window position
1620  * @i:		Iterator
1621  * @p:		DQS Phase Iterator
1622  *
1623  * Find working or non-working DQS enable phase setting.
1624  */
1625 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1626 			  u32 *i, u32 *p)
1627 {
1628 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1629 	int ret;
1630 
1631 	for (; *i < end; (*i)++) {
1632 		if (working)
1633 			*p = 0;
1634 
1635 		ret = sdr_find_phase_delay(working, 0, grp, work,
1636 					   IO_DELAY_PER_OPA_TAP, p);
1637 		if (!ret)
1638 			return 0;
1639 
1640 		if (*p > IO_DQS_EN_PHASE_MAX) {
1641 			/* Fiddle with FIFO. */
1642 			rw_mgr_incr_vfifo(grp);
1643 			if (!working)
1644 				*p = 0;
1645 		}
1646 	}
1647 
1648 	return -EINVAL;
1649 }
1650 
1651 /**
1652  * sdr_working_phase() - Find working DQS enable phase
1653  * @grp:	Read/Write group
1654  * @work_bgn:	Working window start position
1655  * @d:		dtaps output value
1656  * @p:		DQS Phase Iterator
1657  * @i:		Iterator
1658  *
1659  * Find working DQS enable phase setting.
1660  */
1661 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1662 			     u32 *p, u32 *i)
1663 {
1664 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1665 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1666 	int ret;
1667 
1668 	*work_bgn = 0;
1669 
1670 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1671 		*i = 0;
1672 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1673 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1674 		if (!ret)
1675 			return 0;
1676 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1677 	}
1678 
1679 	/* Cannot find working solution */
1680 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1681 		   __func__, __LINE__);
1682 	return -EINVAL;
1683 }
1684 
1685 /**
1686  * sdr_backup_phase() - Find DQS enable backup phase
1687  * @grp:	Read/Write group
1688  * @work_bgn:	Working window start position
1689  * @p:		DQS Phase Iterator
1690  *
1691  * Find DQS enable backup phase setting.
1692  */
1693 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1694 {
1695 	u32 tmp_delay, d;
1696 	int ret;
1697 
1698 	/* Special case code for backing up a phase */
1699 	if (*p == 0) {
1700 		*p = IO_DQS_EN_PHASE_MAX;
1701 		rw_mgr_decr_vfifo(grp);
1702 	} else {
1703 		(*p)--;
1704 	}
1705 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1706 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1707 
1708 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1709 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1710 
1711 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1712 					PASS_ONE_BIT, 0);
1713 		if (ret) {
1714 			*work_bgn = tmp_delay;
1715 			break;
1716 		}
1717 
1718 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1719 	}
1720 
1721 	/* Restore VFIFO to old state before we decremented it (if needed). */
1722 	(*p)++;
1723 	if (*p > IO_DQS_EN_PHASE_MAX) {
1724 		*p = 0;
1725 		rw_mgr_incr_vfifo(grp);
1726 	}
1727 
1728 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1729 }
1730 
1731 /**
1732  * sdr_nonworking_phase() - Find non-working DQS enable phase
1733  * @grp:	Read/Write group
1734  * @work_end:	Working window end position
1735  * @p:		DQS Phase Iterator
1736  * @i:		Iterator
1737  *
1738  * Find non-working DQS enable phase setting.
1739  */
1740 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1741 {
1742 	int ret;
1743 
1744 	(*p)++;
1745 	*work_end += IO_DELAY_PER_OPA_TAP;
1746 	if (*p > IO_DQS_EN_PHASE_MAX) {
1747 		/* Fiddle with FIFO. */
1748 		*p = 0;
1749 		rw_mgr_incr_vfifo(grp);
1750 	}
1751 
1752 	ret = sdr_find_phase(0, grp, work_end, i, p);
1753 	if (ret) {
1754 		/* Cannot see edge of failing read. */
1755 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1756 			   __func__, __LINE__);
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 /**
1763  * sdr_find_window_center() - Find center of the working DQS window.
1764  * @grp:	Read/Write group
1765  * @work_bgn:	First working settings
1766  * @work_end:	Last working settings
1767  *
1768  * Find center of the working DQS enable window.
1769  */
1770 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1771 				  const u32 work_end)
1772 {
1773 	u32 work_mid;
1774 	int tmp_delay = 0;
1775 	int i, p, d;
1776 
1777 	work_mid = (work_bgn + work_end) / 2;
1778 
1779 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1780 		   work_bgn, work_end, work_mid);
1781 	/* Get the middle delay to be less than a VFIFO delay */
1782 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1783 
1784 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1785 	work_mid %= tmp_delay;
1786 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1787 
1788 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1789 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1790 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1791 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1792 
1793 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1794 
1795 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1796 	if (d > IO_DQS_EN_DELAY_MAX)
1797 		d = IO_DQS_EN_DELAY_MAX;
1798 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1799 
1800 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1801 
1802 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1803 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1804 
1805 	/*
1806 	 * push vfifo until we can successfully calibrate. We can do this
1807 	 * because the largest possible margin in 1 VFIFO cycle.
1808 	 */
1809 	for (i = 0; i < VFIFO_SIZE; i++) {
1810 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1811 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1812 							     PASS_ONE_BIT,
1813 							     0)) {
1814 			debug_cond(DLEVEL == 2,
1815 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1816 				   __func__, __LINE__, p, d);
1817 			return 0;
1818 		}
1819 
1820 		/* Fiddle with FIFO. */
1821 		rw_mgr_incr_vfifo(grp);
1822 	}
1823 
1824 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1825 		   __func__, __LINE__);
1826 	return -EINVAL;
1827 }
1828 
1829 /**
1830  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1831  * @grp:	Read/Write Group
1832  *
1833  * Find a good DQS enable to use.
1834  */
1835 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1836 {
1837 	u32 d, p, i;
1838 	u32 dtaps_per_ptap;
1839 	u32 work_bgn, work_end;
1840 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1841 	int ret;
1842 
1843 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1844 
1845 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1846 
1847 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1848 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1849 
1850 	/* Step 0: Determine number of delay taps for each phase tap. */
1851 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1852 
1853 	/* Step 1: First push vfifo until we get a failing read. */
1854 	find_vfifo_failing_read(grp);
1855 
1856 	/* Step 2: Find first working phase, increment in ptaps. */
1857 	work_bgn = 0;
1858 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1859 	if (ret)
1860 		return ret;
1861 
1862 	work_end = work_bgn;
1863 
1864 	/*
1865 	 * If d is 0 then the working window covers a phase tap and we can
1866 	 * follow the old procedure. Otherwise, we've found the beginning
1867 	 * and we need to increment the dtaps until we find the end.
1868 	 */
1869 	if (d == 0) {
1870 		/*
1871 		 * Step 3a: If we have room, back off by one and
1872 		 *          increment in dtaps.
1873 		 */
1874 		sdr_backup_phase(grp, &work_bgn, &p);
1875 
1876 		/*
1877 		 * Step 4a: go forward from working phase to non working
1878 		 * phase, increment in ptaps.
1879 		 */
1880 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1881 		if (ret)
1882 			return ret;
1883 
1884 		/* Step 5a: Back off one from last, increment in dtaps. */
1885 
1886 		/* Special case code for backing up a phase */
1887 		if (p == 0) {
1888 			p = IO_DQS_EN_PHASE_MAX;
1889 			rw_mgr_decr_vfifo(grp);
1890 		} else {
1891 			p = p - 1;
1892 		}
1893 
1894 		work_end -= IO_DELAY_PER_OPA_TAP;
1895 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1896 
1897 		d = 0;
1898 
1899 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1900 			   __func__, __LINE__, p);
1901 	}
1902 
1903 	/* The dtap increment to find the failing edge is done here. */
1904 	sdr_find_phase_delay(0, 1, grp, &work_end,
1905 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1906 
1907 	/* Go back to working dtap */
1908 	if (d != 0)
1909 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1910 
1911 	debug_cond(DLEVEL == 2,
1912 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1913 		   __func__, __LINE__, p, d - 1, work_end);
1914 
1915 	if (work_end < work_bgn) {
1916 		/* nil range */
1917 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1918 			   __func__, __LINE__);
1919 		return -EINVAL;
1920 	}
1921 
1922 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1923 		   __func__, __LINE__, work_bgn, work_end);
1924 
1925 	/*
1926 	 * We need to calculate the number of dtaps that equal a ptap.
1927 	 * To do that we'll back up a ptap and re-find the edge of the
1928 	 * window using dtaps
1929 	 */
1930 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1931 		   __func__, __LINE__);
1932 
1933 	/* Special case code for backing up a phase */
1934 	if (p == 0) {
1935 		p = IO_DQS_EN_PHASE_MAX;
1936 		rw_mgr_decr_vfifo(grp);
1937 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1938 			   __func__, __LINE__, p);
1939 	} else {
1940 		p = p - 1;
1941 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1942 			   __func__, __LINE__, p);
1943 	}
1944 
1945 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1946 
1947 	/*
1948 	 * Increase dtap until we first see a passing read (in case the
1949 	 * window is smaller than a ptap), and then a failing read to
1950 	 * mark the edge of the window again.
1951 	 */
1952 
1953 	/* Find a passing read. */
1954 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1955 		   __func__, __LINE__);
1956 
1957 	initial_failing_dtap = d;
1958 
1959 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1960 	if (found_passing_read) {
1961 		/* Find a failing read. */
1962 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1963 			   __func__, __LINE__);
1964 		d++;
1965 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1966 							   &d);
1967 	} else {
1968 		debug_cond(DLEVEL == 1,
1969 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1970 			   __func__, __LINE__);
1971 	}
1972 
1973 	/*
1974 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1975 	 * found a passing/failing read. If we didn't, it means d hit the max
1976 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1977 	 * statically calculated value.
1978 	 */
1979 	if (found_passing_read && found_failing_read)
1980 		dtaps_per_ptap = d - initial_failing_dtap;
1981 
1982 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1983 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1984 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1985 
1986 	/* Step 6: Find the centre of the window. */
1987 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1988 
1989 	return ret;
1990 }
1991 
1992 /**
1993  * search_stop_check() - Check if the detected edge is valid
1994  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1995  * @d:			DQS delay
1996  * @rank_bgn:		Rank number
1997  * @write_group:	Write Group
1998  * @read_group:		Read Group
1999  * @bit_chk:		Resulting bit mask after the test
2000  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2001  * @use_read_test:	Perform read test
2002  *
2003  * Test if the found edge is valid.
2004  */
2005 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
2006 			     const u32 write_group, const u32 read_group,
2007 			     u32 *bit_chk, u32 *sticky_bit_chk,
2008 			     const u32 use_read_test)
2009 {
2010 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2011 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2012 	const u32 correct_mask = write ? param->write_correct_mask :
2013 					 param->read_correct_mask;
2014 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2015 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2016 	u32 ret;
2017 	/*
2018 	 * Stop searching when the read test doesn't pass AND when
2019 	 * we've seen a passing read on every bit.
2020 	 */
2021 	if (write) {			/* WRITE-ONLY */
2022 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2023 							 0, PASS_ONE_BIT,
2024 							 bit_chk, 0);
2025 	} else if (use_read_test) {	/* READ-ONLY */
2026 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2027 							NUM_READ_PB_TESTS,
2028 							PASS_ONE_BIT, bit_chk,
2029 							0, 0);
2030 	} else {			/* READ-ONLY */
2031 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2032 						PASS_ONE_BIT, bit_chk, 0);
2033 		*bit_chk = *bit_chk >> (per_dqs *
2034 			(read_group - (write_group * ratio)));
2035 		ret = (*bit_chk == 0);
2036 	}
2037 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2038 	ret = ret && (*sticky_bit_chk == correct_mask);
2039 	debug_cond(DLEVEL == 2,
2040 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2041 		   __func__, __LINE__, d,
2042 		   *sticky_bit_chk, correct_mask, ret);
2043 	return ret;
2044 }
2045 
2046 /**
2047  * search_left_edge() - Find left edge of DQ/DQS working phase
2048  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2049  * @rank_bgn:		Rank number
2050  * @write_group:	Write Group
2051  * @read_group:		Read Group
2052  * @test_bgn:		Rank number to begin the test
2053  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2054  * @left_edge:		Left edge of the DQ/DQS phase
2055  * @right_edge:		Right edge of the DQ/DQS phase
2056  * @use_read_test:	Perform read test
2057  *
2058  * Find left edge of DQ/DQS working phase.
2059  */
2060 static void search_left_edge(const int write, const int rank_bgn,
2061 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2062 	u32 *sticky_bit_chk,
2063 	int *left_edge, int *right_edge, const u32 use_read_test)
2064 {
2065 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2066 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2067 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2068 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2069 	u32 stop, bit_chk;
2070 	int i, d;
2071 
2072 	for (d = 0; d <= dqs_max; d++) {
2073 		if (write)
2074 			scc_mgr_apply_group_dq_out1_delay(d);
2075 		else
2076 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2077 
2078 		writel(0, &sdr_scc_mgr->update);
2079 
2080 		stop = search_stop_check(write, d, rank_bgn, write_group,
2081 					 read_group, &bit_chk, sticky_bit_chk,
2082 					 use_read_test);
2083 		if (stop == 1)
2084 			break;
2085 
2086 		/* stop != 1 */
2087 		for (i = 0; i < per_dqs; i++) {
2088 			if (bit_chk & 1) {
2089 				/*
2090 				 * Remember a passing test as
2091 				 * the left_edge.
2092 				 */
2093 				left_edge[i] = d;
2094 			} else {
2095 				/*
2096 				 * If a left edge has not been seen
2097 				 * yet, then a future passing test
2098 				 * will mark this edge as the right
2099 				 * edge.
2100 				 */
2101 				if (left_edge[i] == delay_max + 1)
2102 					right_edge[i] = -(d + 1);
2103 			}
2104 			bit_chk >>= 1;
2105 		}
2106 	}
2107 
2108 	/* Reset DQ delay chains to 0 */
2109 	if (write)
2110 		scc_mgr_apply_group_dq_out1_delay(0);
2111 	else
2112 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2113 
2114 	*sticky_bit_chk = 0;
2115 	for (i = per_dqs - 1; i >= 0; i--) {
2116 		debug_cond(DLEVEL == 2,
2117 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2118 			   __func__, __LINE__, i, left_edge[i],
2119 			   i, right_edge[i]);
2120 
2121 		/*
2122 		 * Check for cases where we haven't found the left edge,
2123 		 * which makes our assignment of the the right edge invalid.
2124 		 * Reset it to the illegal value.
2125 		 */
2126 		if ((left_edge[i] == delay_max + 1) &&
2127 		    (right_edge[i] != delay_max + 1)) {
2128 			right_edge[i] = delay_max + 1;
2129 			debug_cond(DLEVEL == 2,
2130 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2131 				   __func__, __LINE__, i, right_edge[i]);
2132 		}
2133 
2134 		/*
2135 		 * Reset sticky bit
2136 		 * READ: except for bits where we have seen both
2137 		 *       the left and right edge.
2138 		 * WRITE: except for bits where we have seen the
2139 		 *        left edge.
2140 		 */
2141 		*sticky_bit_chk <<= 1;
2142 		if (write) {
2143 			if (left_edge[i] != delay_max + 1)
2144 				*sticky_bit_chk |= 1;
2145 		} else {
2146 			if ((left_edge[i] != delay_max + 1) &&
2147 			    (right_edge[i] != delay_max + 1))
2148 				*sticky_bit_chk |= 1;
2149 		}
2150 	}
2151 
2152 
2153 }
2154 
2155 /**
2156  * search_right_edge() - Find right edge of DQ/DQS working phase
2157  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2158  * @rank_bgn:		Rank number
2159  * @write_group:	Write Group
2160  * @read_group:		Read Group
2161  * @start_dqs:		DQS start phase
2162  * @start_dqs_en:	DQS enable start phase
2163  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2164  * @left_edge:		Left edge of the DQ/DQS phase
2165  * @right_edge:		Right edge of the DQ/DQS phase
2166  * @use_read_test:	Perform read test
2167  *
2168  * Find right edge of DQ/DQS working phase.
2169  */
2170 static int search_right_edge(const int write, const int rank_bgn,
2171 	const u32 write_group, const u32 read_group,
2172 	const int start_dqs, const int start_dqs_en,
2173 	u32 *sticky_bit_chk,
2174 	int *left_edge, int *right_edge, const u32 use_read_test)
2175 {
2176 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2177 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2178 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2179 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2180 	u32 stop, bit_chk;
2181 	int i, d;
2182 
2183 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2184 		if (write) {	/* WRITE-ONLY */
2185 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2186 								d + start_dqs);
2187 		} else {	/* READ-ONLY */
2188 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2189 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2190 				uint32_t delay = d + start_dqs_en;
2191 				if (delay > IO_DQS_EN_DELAY_MAX)
2192 					delay = IO_DQS_EN_DELAY_MAX;
2193 				scc_mgr_set_dqs_en_delay(read_group, delay);
2194 			}
2195 			scc_mgr_load_dqs(read_group);
2196 		}
2197 
2198 		writel(0, &sdr_scc_mgr->update);
2199 
2200 		stop = search_stop_check(write, d, rank_bgn, write_group,
2201 					 read_group, &bit_chk, sticky_bit_chk,
2202 					 use_read_test);
2203 		if (stop == 1) {
2204 			if (write && (d == 0)) {	/* WRITE-ONLY */
2205 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2206 					/*
2207 					 * d = 0 failed, but it passed when
2208 					 * testing the left edge, so it must be
2209 					 * marginal, set it to -1
2210 					 */
2211 					if (right_edge[i] == delay_max + 1 &&
2212 					    left_edge[i] != delay_max + 1)
2213 						right_edge[i] = -1;
2214 				}
2215 			}
2216 			break;
2217 		}
2218 
2219 		/* stop != 1 */
2220 		for (i = 0; i < per_dqs; i++) {
2221 			if (bit_chk & 1) {
2222 				/*
2223 				 * Remember a passing test as
2224 				 * the right_edge.
2225 				 */
2226 				right_edge[i] = d;
2227 			} else {
2228 				if (d != 0) {
2229 					/*
2230 					 * If a right edge has not
2231 					 * been seen yet, then a future
2232 					 * passing test will mark this
2233 					 * edge as the left edge.
2234 					 */
2235 					if (right_edge[i] == delay_max + 1)
2236 						left_edge[i] = -(d + 1);
2237 				} else {
2238 					/*
2239 					 * d = 0 failed, but it passed
2240 					 * when testing the left edge,
2241 					 * so it must be marginal, set
2242 					 * it to -1
2243 					 */
2244 					if (right_edge[i] == delay_max + 1 &&
2245 					    left_edge[i] != delay_max + 1)
2246 						right_edge[i] = -1;
2247 					/*
2248 					 * If a right edge has not been
2249 					 * seen yet, then a future
2250 					 * passing test will mark this
2251 					 * edge as the left edge.
2252 					 */
2253 					else if (right_edge[i] == delay_max + 1)
2254 						left_edge[i] = -(d + 1);
2255 				}
2256 			}
2257 
2258 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2259 				   __func__, __LINE__, d);
2260 			debug_cond(DLEVEL == 2,
2261 				   "bit_chk_test=%i left_edge[%u]: %d ",
2262 				   bit_chk & 1, i, left_edge[i]);
2263 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2264 				   right_edge[i]);
2265 			bit_chk >>= 1;
2266 		}
2267 	}
2268 
2269 	/* Check that all bits have a window */
2270 	for (i = 0; i < per_dqs; i++) {
2271 		debug_cond(DLEVEL == 2,
2272 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2273 			   __func__, __LINE__, i, left_edge[i],
2274 			   i, right_edge[i]);
2275 		if ((left_edge[i] == dqs_max + 1) ||
2276 		    (right_edge[i] == dqs_max + 1))
2277 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2278 	}
2279 
2280 	return 0;
2281 }
2282 
2283 /**
2284  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2285  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2286  * @left_edge:		Left edge of the DQ/DQS phase
2287  * @right_edge:		Right edge of the DQ/DQS phase
2288  * @mid_min:		Best DQ/DQS phase middle setting
2289  *
2290  * Find index and value of the middle of the DQ/DQS working phase.
2291  */
2292 static int get_window_mid_index(const int write, int *left_edge,
2293 				int *right_edge, int *mid_min)
2294 {
2295 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2296 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2297 	int i, mid, min_index;
2298 
2299 	/* Find middle of window for each DQ bit */
2300 	*mid_min = left_edge[0] - right_edge[0];
2301 	min_index = 0;
2302 	for (i = 1; i < per_dqs; i++) {
2303 		mid = left_edge[i] - right_edge[i];
2304 		if (mid < *mid_min) {
2305 			*mid_min = mid;
2306 			min_index = i;
2307 		}
2308 	}
2309 
2310 	/*
2311 	 * -mid_min/2 represents the amount that we need to move DQS.
2312 	 * If mid_min is odd and positive we'll need to add one to make
2313 	 * sure the rounding in further calculations is correct (always
2314 	 * bias to the right), so just add 1 for all positive values.
2315 	 */
2316 	if (*mid_min > 0)
2317 		(*mid_min)++;
2318 	*mid_min = *mid_min / 2;
2319 
2320 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2321 		   __func__, __LINE__, *mid_min, min_index);
2322 	return min_index;
2323 }
2324 
2325 /**
2326  * center_dq_windows() - Center the DQ/DQS windows
2327  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2328  * @left_edge:		Left edge of the DQ/DQS phase
2329  * @right_edge:		Right edge of the DQ/DQS phase
2330  * @mid_min:		Adjusted DQ/DQS phase middle setting
2331  * @orig_mid_min:	Original DQ/DQS phase middle setting
2332  * @min_index:		DQ/DQS phase middle setting index
2333  * @test_bgn:		Rank number to begin the test
2334  * @dq_margin:		Amount of shift for the DQ
2335  * @dqs_margin:		Amount of shift for the DQS
2336  *
2337  * Align the DQ/DQS windows in each group.
2338  */
2339 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2340 			      const int mid_min, const int orig_mid_min,
2341 			      const int min_index, const int test_bgn,
2342 			      int *dq_margin, int *dqs_margin)
2343 {
2344 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2345 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2346 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2347 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2348 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2349 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2350 
2351 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2352 	int shift_dq, i, p;
2353 
2354 	/* Initialize data for export structures */
2355 	*dqs_margin = delay_max + 1;
2356 	*dq_margin  = delay_max + 1;
2357 
2358 	/* add delay to bring centre of all DQ windows to the same "level" */
2359 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2360 		/* Use values before divide by 2 to reduce round off error */
2361 		shift_dq = (left_edge[i] - right_edge[i] -
2362 			(left_edge[min_index] - right_edge[min_index]))/2  +
2363 			(orig_mid_min - mid_min);
2364 
2365 		debug_cond(DLEVEL == 2,
2366 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2367 			   i, shift_dq);
2368 
2369 		temp_dq_io_delay1 = readl(addr + (p << 2));
2370 		temp_dq_io_delay2 = readl(addr + (i << 2));
2371 
2372 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2373 			shift_dq = delay_max - temp_dq_io_delay2;
2374 		else if (shift_dq + temp_dq_io_delay1 < 0)
2375 			shift_dq = -temp_dq_io_delay1;
2376 
2377 		debug_cond(DLEVEL == 2,
2378 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2379 			   i, shift_dq);
2380 
2381 		if (write)
2382 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2383 		else
2384 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2385 
2386 		scc_mgr_load_dq(p);
2387 
2388 		debug_cond(DLEVEL == 2,
2389 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2390 			   left_edge[i] - shift_dq + (-mid_min),
2391 			   right_edge[i] + shift_dq - (-mid_min));
2392 
2393 		/* To determine values for export structures */
2394 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2395 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2396 
2397 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2398 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2399 	}
2400 
2401 }
2402 
2403 /**
2404  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2405  * @rank_bgn:		Rank number
2406  * @rw_group:		Read/Write Group
2407  * @test_bgn:		Rank at which the test begins
2408  * @use_read_test:	Perform a read test
2409  * @update_fom:		Update FOM
2410  *
2411  * Per-bit deskew DQ and centering.
2412  */
2413 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2414 			const u32 rw_group, const u32 test_bgn,
2415 			const int use_read_test, const int update_fom)
2416 {
2417 	const u32 addr =
2418 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2419 		(rw_group << 2);
2420 	/*
2421 	 * Store these as signed since there are comparisons with
2422 	 * signed numbers.
2423 	 */
2424 	uint32_t sticky_bit_chk;
2425 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2426 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2427 	int32_t orig_mid_min, mid_min;
2428 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2429 	int32_t dq_margin, dqs_margin;
2430 	int i, min_index;
2431 	int ret;
2432 
2433 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2434 
2435 	start_dqs = readl(addr);
2436 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2437 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2438 
2439 	/* set the left and right edge of each bit to an illegal value */
2440 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2441 	sticky_bit_chk = 0;
2442 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2443 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2444 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2445 	}
2446 
2447 	/* Search for the left edge of the window for each bit */
2448 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2449 			 &sticky_bit_chk,
2450 			 left_edge, right_edge, use_read_test);
2451 
2452 
2453 	/* Search for the right edge of the window for each bit */
2454 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2455 				start_dqs, start_dqs_en,
2456 				&sticky_bit_chk,
2457 				left_edge, right_edge, use_read_test);
2458 	if (ret) {
2459 		/*
2460 		 * Restore delay chain settings before letting the loop
2461 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2462 		 * dqs/ck relationships.
2463 		 */
2464 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2465 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2466 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2467 
2468 		scc_mgr_load_dqs(rw_group);
2469 		writel(0, &sdr_scc_mgr->update);
2470 
2471 		debug_cond(DLEVEL == 1,
2472 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2473 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2474 		if (use_read_test) {
2475 			set_failing_group_stage(rw_group *
2476 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2477 				CAL_STAGE_VFIFO,
2478 				CAL_SUBSTAGE_VFIFO_CENTER);
2479 		} else {
2480 			set_failing_group_stage(rw_group *
2481 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2482 				CAL_STAGE_VFIFO_AFTER_WRITES,
2483 				CAL_SUBSTAGE_VFIFO_CENTER);
2484 		}
2485 		return -EIO;
2486 	}
2487 
2488 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2489 
2490 	/* Determine the amount we can change DQS (which is -mid_min) */
2491 	orig_mid_min = mid_min;
2492 	new_dqs = start_dqs - mid_min;
2493 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2494 		new_dqs = IO_DQS_IN_DELAY_MAX;
2495 	else if (new_dqs < 0)
2496 		new_dqs = 0;
2497 
2498 	mid_min = start_dqs - new_dqs;
2499 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2500 		   mid_min, new_dqs);
2501 
2502 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2503 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2504 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2505 		else if (start_dqs_en - mid_min < 0)
2506 			mid_min += start_dqs_en - mid_min;
2507 	}
2508 	new_dqs = start_dqs - mid_min;
2509 
2510 	debug_cond(DLEVEL == 1,
2511 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2512 		   start_dqs,
2513 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2514 		   new_dqs, mid_min);
2515 
2516 	/* Add delay to bring centre of all DQ windows to the same "level". */
2517 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2518 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2519 
2520 	/* Move DQS-en */
2521 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2522 		final_dqs_en = start_dqs_en - mid_min;
2523 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2524 		scc_mgr_load_dqs(rw_group);
2525 	}
2526 
2527 	/* Move DQS */
2528 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2529 	scc_mgr_load_dqs(rw_group);
2530 	debug_cond(DLEVEL == 2,
2531 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2532 		   __func__, __LINE__, dq_margin, dqs_margin);
2533 
2534 	/*
2535 	 * Do not remove this line as it makes sure all of our decisions
2536 	 * have been applied. Apply the update bit.
2537 	 */
2538 	writel(0, &sdr_scc_mgr->update);
2539 
2540 	if ((dq_margin < 0) || (dqs_margin < 0))
2541 		return -EINVAL;
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2548  * @rw_group:	Read/Write Group
2549  * @phase:	DQ/DQS phase
2550  *
2551  * Because initially no communication ca be reliably performed with the memory
2552  * device, the sequencer uses a guaranteed write mechanism to write data into
2553  * the memory device.
2554  */
2555 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2556 						 const u32 phase)
2557 {
2558 	int ret;
2559 
2560 	/* Set a particular DQ/DQS phase. */
2561 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2562 
2563 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2564 		   __func__, __LINE__, rw_group, phase);
2565 
2566 	/*
2567 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2568 	 * Load up the patterns used by read calibration using the
2569 	 * current DQDQS phase.
2570 	 */
2571 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2572 
2573 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2574 		return 0;
2575 
2576 	/*
2577 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2578 	 * Back-to-Back reads of the patterns used for calibration.
2579 	 */
2580 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2581 	if (ret)
2582 		debug_cond(DLEVEL == 1,
2583 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2584 			   __func__, __LINE__, rw_group, phase);
2585 	return ret;
2586 }
2587 
2588 /**
2589  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2590  * @rw_group:	Read/Write Group
2591  * @test_bgn:	Rank at which the test begins
2592  *
2593  * DQS enable calibration ensures reliable capture of the DQ signal without
2594  * glitches on the DQS line.
2595  */
2596 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2597 						       const u32 test_bgn)
2598 {
2599 	/*
2600 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2601 	 * DQS and DQS Eanble Signal Relationships.
2602 	 */
2603 
2604 	/* We start at zero, so have one less dq to devide among */
2605 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2606 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2607 	int ret;
2608 	u32 i, p, d, r;
2609 
2610 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2611 
2612 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2613 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2614 	     r += NUM_RANKS_PER_SHADOW_REG) {
2615 		for (i = 0, p = test_bgn, d = 0;
2616 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2617 		     i++, p++, d += delay_step) {
2618 			debug_cond(DLEVEL == 1,
2619 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2620 				   __func__, __LINE__, rw_group, r, i, p, d);
2621 
2622 			scc_mgr_set_dq_in_delay(p, d);
2623 			scc_mgr_load_dq(p);
2624 		}
2625 
2626 		writel(0, &sdr_scc_mgr->update);
2627 	}
2628 
2629 	/*
2630 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2631 	 * dq_in_delay values
2632 	 */
2633 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2634 
2635 	debug_cond(DLEVEL == 1,
2636 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2637 		   __func__, __LINE__, rw_group, !ret);
2638 
2639 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2640 	     r += NUM_RANKS_PER_SHADOW_REG) {
2641 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2642 		writel(0, &sdr_scc_mgr->update);
2643 	}
2644 
2645 	return ret;
2646 }
2647 
2648 /**
2649  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2650  * @rw_group:		Read/Write Group
2651  * @test_bgn:		Rank at which the test begins
2652  * @use_read_test:	Perform a read test
2653  * @update_fom:		Update FOM
2654  *
2655  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2656  * within a group.
2657  */
2658 static int
2659 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2660 				      const int use_read_test,
2661 				      const int update_fom)
2662 
2663 {
2664 	int ret, grp_calibrated;
2665 	u32 rank_bgn, sr;
2666 
2667 	/*
2668 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2669 	 * Read per-bit deskew can be done on a per shadow register basis.
2670 	 */
2671 	grp_calibrated = 1;
2672 	for (rank_bgn = 0, sr = 0;
2673 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2674 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2675 		/* Check if this set of ranks should be skipped entirely. */
2676 		if (param->skip_shadow_regs[sr])
2677 			continue;
2678 
2679 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2680 							test_bgn,
2681 							use_read_test,
2682 							update_fom);
2683 		if (!ret)
2684 			continue;
2685 
2686 		grp_calibrated = 0;
2687 	}
2688 
2689 	if (!grp_calibrated)
2690 		return -EIO;
2691 
2692 	return 0;
2693 }
2694 
2695 /**
2696  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2697  * @rw_group:		Read/Write Group
2698  * @test_bgn:		Rank at which the test begins
2699  *
2700  * Stage 1: Calibrate the read valid prediction FIFO.
2701  *
2702  * This function implements UniPHY calibration Stage 1, as explained in
2703  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2704  *
2705  * - read valid prediction will consist of finding:
2706  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2707  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2708  *  - we also do a per-bit deskew on the DQ lines.
2709  */
2710 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2711 {
2712 	uint32_t p, d;
2713 	uint32_t dtaps_per_ptap;
2714 	uint32_t failed_substage;
2715 
2716 	int ret;
2717 
2718 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2719 
2720 	/* Update info for sims */
2721 	reg_file_set_group(rw_group);
2722 	reg_file_set_stage(CAL_STAGE_VFIFO);
2723 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2724 
2725 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2726 
2727 	/* USER Determine number of delay taps for each phase tap. */
2728 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2729 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2730 
2731 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2732 		/*
2733 		 * In RLDRAMX we may be messing the delay of pins in
2734 		 * the same write rw_group but outside of the current read
2735 		 * the rw_group, but that's ok because we haven't calibrated
2736 		 * output side yet.
2737 		 */
2738 		if (d > 0) {
2739 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2740 								rw_group, d);
2741 		}
2742 
2743 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2744 			/* 1) Guaranteed Write */
2745 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2746 			if (ret)
2747 				break;
2748 
2749 			/* 2) DQS Enable Calibration */
2750 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2751 									  test_bgn);
2752 			if (ret) {
2753 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2754 				continue;
2755 			}
2756 
2757 			/* 3) Centering DQ/DQS */
2758 			/*
2759 			 * If doing read after write calibration, do not update
2760 			 * FOM now. Do it then.
2761 			 */
2762 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2763 								test_bgn, 1, 0);
2764 			if (ret) {
2765 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2766 				continue;
2767 			}
2768 
2769 			/* All done. */
2770 			goto cal_done_ok;
2771 		}
2772 	}
2773 
2774 	/* Calibration Stage 1 failed. */
2775 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2776 	return 0;
2777 
2778 	/* Calibration Stage 1 completed OK. */
2779 cal_done_ok:
2780 	/*
2781 	 * Reset the delay chains back to zero if they have moved > 1
2782 	 * (check for > 1 because loop will increase d even when pass in
2783 	 * first case).
2784 	 */
2785 	if (d > 2)
2786 		scc_mgr_zero_group(rw_group, 1);
2787 
2788 	return 1;
2789 }
2790 
2791 /**
2792  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2793  * @rw_group:		Read/Write Group
2794  * @test_bgn:		Rank at which the test begins
2795  *
2796  * Stage 3: DQ/DQS Centering.
2797  *
2798  * This function implements UniPHY calibration Stage 3, as explained in
2799  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800  */
2801 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2802 					  const u32 test_bgn)
2803 {
2804 	int ret;
2805 
2806 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2807 
2808 	/* Update info for sims. */
2809 	reg_file_set_group(rw_group);
2810 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2811 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2812 
2813 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2814 	if (ret)
2815 		set_failing_group_stage(rw_group,
2816 					CAL_STAGE_VFIFO_AFTER_WRITES,
2817 					CAL_SUBSTAGE_VFIFO_CENTER);
2818 	return ret;
2819 }
2820 
2821 /**
2822  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2823  *
2824  * Stage 4: Minimize latency.
2825  *
2826  * This function implements UniPHY calibration Stage 4, as explained in
2827  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2828  * Calibrate LFIFO to find smallest read latency.
2829  */
2830 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2831 {
2832 	int found_one = 0;
2833 
2834 	debug("%s:%d\n", __func__, __LINE__);
2835 
2836 	/* Update info for sims. */
2837 	reg_file_set_stage(CAL_STAGE_LFIFO);
2838 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2839 
2840 	/* Load up the patterns used by read calibration for all ranks */
2841 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2842 
2843 	do {
2844 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2845 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2846 			   __func__, __LINE__, gbl->curr_read_lat);
2847 
2848 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2849 							      PASS_ALL_BITS, 1))
2850 			break;
2851 
2852 		found_one = 1;
2853 		/*
2854 		 * Reduce read latency and see if things are
2855 		 * working correctly.
2856 		 */
2857 		gbl->curr_read_lat--;
2858 	} while (gbl->curr_read_lat > 0);
2859 
2860 	/* Reset the fifos to get pointers to known state. */
2861 	writel(0, &phy_mgr_cmd->fifo_reset);
2862 
2863 	if (found_one) {
2864 		/* Add a fudge factor to the read latency that was determined */
2865 		gbl->curr_read_lat += 2;
2866 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2867 		debug_cond(DLEVEL == 2,
2868 			   "%s:%d lfifo: success: using read_lat=%u\n",
2869 			   __func__, __LINE__, gbl->curr_read_lat);
2870 	} else {
2871 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2872 					CAL_SUBSTAGE_READ_LATENCY);
2873 
2874 		debug_cond(DLEVEL == 2,
2875 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2876 			   __func__, __LINE__, gbl->curr_read_lat);
2877 	}
2878 
2879 	return found_one;
2880 }
2881 
2882 /**
2883  * search_window() - Search for the/part of the window with DM/DQS shift
2884  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2885  * @rank_bgn:		Rank number
2886  * @write_group:	Write Group
2887  * @bgn_curr:		Current window begin
2888  * @end_curr:		Current window end
2889  * @bgn_best:		Current best window begin
2890  * @end_best:		Current best window end
2891  * @win_best:		Size of the best window
2892  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2893  *
2894  * Search for the/part of the window with DM/DQS shift.
2895  */
2896 static void search_window(const int search_dm,
2897 			  const u32 rank_bgn, const u32 write_group,
2898 			  int *bgn_curr, int *end_curr, int *bgn_best,
2899 			  int *end_best, int *win_best, int new_dqs)
2900 {
2901 	u32 bit_chk;
2902 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2903 	int d, di;
2904 
2905 	/* Search for the/part of the window with DM/DQS shift. */
2906 	for (di = max; di >= 0; di -= DELTA_D) {
2907 		if (search_dm) {
2908 			d = di;
2909 			scc_mgr_apply_group_dm_out1_delay(d);
2910 		} else {
2911 			/* For DQS, we go from 0...max */
2912 			d = max - di;
2913 			/*
2914 			 * Note: This only shifts DQS, so are we limiting ourselve to
2915 			 * width of DQ unnecessarily.
2916 			 */
2917 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2918 								d + new_dqs);
2919 		}
2920 
2921 		writel(0, &sdr_scc_mgr->update);
2922 
2923 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2924 						    PASS_ALL_BITS, &bit_chk,
2925 						    0)) {
2926 			/* Set current end of the window. */
2927 			*end_curr = search_dm ? -d : d;
2928 
2929 			/*
2930 			 * If a starting edge of our window has not been seen
2931 			 * this is our current start of the DM window.
2932 			 */
2933 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2934 				*bgn_curr = search_dm ? -d : d;
2935 
2936 			/*
2937 			 * If current window is bigger than best seen.
2938 			 * Set best seen to be current window.
2939 			 */
2940 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2941 				*win_best = *end_curr - *bgn_curr + 1;
2942 				*bgn_best = *bgn_curr;
2943 				*end_best = *end_curr;
2944 			}
2945 		} else {
2946 			/* We just saw a failing test. Reset temp edge. */
2947 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2948 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949 
2950 			/* Early exit is only applicable to DQS. */
2951 			if (search_dm)
2952 				continue;
2953 
2954 			/*
2955 			 * Early exit optimization: if the remaining delay
2956 			 * chain space is less than already seen largest
2957 			 * window we can exit.
2958 			 */
2959 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2960 				break;
2961 		}
2962 	}
2963 }
2964 
2965 /*
2966  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2967  * @rank_bgn:		Rank number
2968  * @write_group:	Write group
2969  * @test_bgn:		Rank at which the test begins
2970  *
2971  * Center all windows. Do per-bit-deskew to possibly increase size of
2972  * certain windows.
2973  */
2974 static int
2975 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2976 				   const u32 test_bgn)
2977 {
2978 	int i;
2979 	u32 sticky_bit_chk;
2980 	u32 min_index;
2981 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2982 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2983 	int mid;
2984 	int mid_min, orig_mid_min;
2985 	int new_dqs, start_dqs;
2986 	int dq_margin, dqs_margin, dm_margin;
2987 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2988 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2989 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2990 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2991 	int win_best = 0;
2992 
2993 	int ret;
2994 
2995 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2996 
2997 	dm_margin = 0;
2998 
2999 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3000 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3001 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3002 
3003 	/* Per-bit deskew. */
3004 
3005 	/*
3006 	 * Set the left and right edge of each bit to an illegal value.
3007 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3008 	 */
3009 	sticky_bit_chk = 0;
3010 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3011 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3012 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3013 	}
3014 
3015 	/* Search for the left edge of the window for each bit. */
3016 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3017 			 &sticky_bit_chk,
3018 			 left_edge, right_edge, 0);
3019 
3020 	/* Search for the right edge of the window for each bit. */
3021 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3022 				start_dqs, 0,
3023 				&sticky_bit_chk,
3024 				left_edge, right_edge, 0);
3025 	if (ret) {
3026 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3027 					CAL_SUBSTAGE_WRITES_CENTER);
3028 		return -EINVAL;
3029 	}
3030 
3031 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3032 
3033 	/* Determine the amount we can change DQS (which is -mid_min). */
3034 	orig_mid_min = mid_min;
3035 	new_dqs = start_dqs;
3036 	mid_min = 0;
3037 	debug_cond(DLEVEL == 1,
3038 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3039 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3040 
3041 	/* Add delay to bring centre of all DQ windows to the same "level". */
3042 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3043 			  min_index, 0, &dq_margin, &dqs_margin);
3044 
3045 	/* Move DQS */
3046 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3047 	writel(0, &sdr_scc_mgr->update);
3048 
3049 	/* Centre DM */
3050 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3051 
3052 	/*
3053 	 * Set the left and right edge of each bit to an illegal value.
3054 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3055 	 */
3056 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3057 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3058 
3059 	/* Search for the/part of the window with DM shift. */
3060 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3061 		      &bgn_best, &end_best, &win_best, 0);
3062 
3063 	/* Reset DM delay chains to 0. */
3064 	scc_mgr_apply_group_dm_out1_delay(0);
3065 
3066 	/*
3067 	 * Check to see if the current window nudges up aganist 0 delay.
3068 	 * If so we need to continue the search by shifting DQS otherwise DQS
3069 	 * search begins as a new search.
3070 	 */
3071 	if (end_curr != 0) {
3072 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3073 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3074 	}
3075 
3076 	/* Search for the/part of the window with DQS shifts. */
3077 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3078 		      &bgn_best, &end_best, &win_best, new_dqs);
3079 
3080 	/* Assign left and right edge for cal and reporting. */
3081 	left_edge[0] = -1 * bgn_best;
3082 	right_edge[0] = end_best;
3083 
3084 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3085 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3086 
3087 	/* Move DQS (back to orig). */
3088 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3089 
3090 	/* Move DM */
3091 
3092 	/* Find middle of window for the DM bit. */
3093 	mid = (left_edge[0] - right_edge[0]) / 2;
3094 
3095 	/* Only move right, since we are not moving DQS/DQ. */
3096 	if (mid < 0)
3097 		mid = 0;
3098 
3099 	/* dm_marign should fail if we never find a window. */
3100 	if (win_best == 0)
3101 		dm_margin = -1;
3102 	else
3103 		dm_margin = left_edge[0] - mid;
3104 
3105 	scc_mgr_apply_group_dm_out1_delay(mid);
3106 	writel(0, &sdr_scc_mgr->update);
3107 
3108 	debug_cond(DLEVEL == 2,
3109 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3110 		   __func__, __LINE__, left_edge[0], right_edge[0],
3111 		   mid, dm_margin);
3112 	/* Export values. */
3113 	gbl->fom_out += dq_margin + dqs_margin;
3114 
3115 	debug_cond(DLEVEL == 2,
3116 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3117 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3118 
3119 	/*
3120 	 * Do not remove this line as it makes sure all of our
3121 	 * decisions have been applied.
3122 	 */
3123 	writel(0, &sdr_scc_mgr->update);
3124 
3125 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3126 		return -EINVAL;
3127 
3128 	return 0;
3129 }
3130 
3131 /**
3132  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3133  * @rank_bgn:		Rank number
3134  * @group:		Read/Write Group
3135  * @test_bgn:		Rank at which the test begins
3136  *
3137  * Stage 2: Write Calibration Part One.
3138  *
3139  * This function implements UniPHY calibration Stage 2, as explained in
3140  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3141  */
3142 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3143 				       const u32 test_bgn)
3144 {
3145 	int ret;
3146 
3147 	/* Update info for sims */
3148 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3149 
3150 	reg_file_set_group(group);
3151 	reg_file_set_stage(CAL_STAGE_WRITES);
3152 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3153 
3154 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3155 	if (ret)
3156 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3157 					CAL_SUBSTAGE_WRITES_CENTER);
3158 
3159 	return ret;
3160 }
3161 
3162 /**
3163  * mem_precharge_and_activate() - Precharge all banks and activate
3164  *
3165  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3166  */
3167 static void mem_precharge_and_activate(void)
3168 {
3169 	int r;
3170 
3171 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3172 		/* Test if the rank should be skipped. */
3173 		if (param->skip_ranks[r])
3174 			continue;
3175 
3176 		/* Set rank. */
3177 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3178 
3179 		/* Precharge all banks. */
3180 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3181 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3182 
3183 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3184 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3185 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3186 
3187 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3188 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3189 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3190 
3191 		/* Activate rows. */
3192 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3193 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3194 	}
3195 }
3196 
3197 /**
3198  * mem_init_latency() - Configure memory RLAT and WLAT settings
3199  *
3200  * Configure memory RLAT and WLAT parameters.
3201  */
3202 static void mem_init_latency(void)
3203 {
3204 	/*
3205 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3206 	 * so max latency in AFI clocks, used here, is correspondingly
3207 	 * smaller.
3208 	 */
3209 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3210 	u32 rlat, wlat;
3211 
3212 	debug("%s:%d\n", __func__, __LINE__);
3213 
3214 	/*
3215 	 * Read in write latency.
3216 	 * WL for Hard PHY does not include additive latency.
3217 	 */
3218 	wlat = readl(&data_mgr->t_wl_add);
3219 	wlat += readl(&data_mgr->mem_t_add);
3220 
3221 	gbl->rw_wl_nop_cycles = wlat - 1;
3222 
3223 	/* Read in readl latency. */
3224 	rlat = readl(&data_mgr->t_rl_add);
3225 
3226 	/* Set a pretty high read latency initially. */
3227 	gbl->curr_read_lat = rlat + 16;
3228 	if (gbl->curr_read_lat > max_latency)
3229 		gbl->curr_read_lat = max_latency;
3230 
3231 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3232 
3233 	/* Advertise write latency. */
3234 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3235 }
3236 
3237 /**
3238  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3239  *
3240  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3241  */
3242 static void mem_skip_calibrate(void)
3243 {
3244 	uint32_t vfifo_offset;
3245 	uint32_t i, j, r;
3246 
3247 	debug("%s:%d\n", __func__, __LINE__);
3248 	/* Need to update every shadow register set used by the interface */
3249 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3250 	     r += NUM_RANKS_PER_SHADOW_REG) {
3251 		/*
3252 		 * Set output phase alignment settings appropriate for
3253 		 * skip calibration.
3254 		 */
3255 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3256 			scc_mgr_set_dqs_en_phase(i, 0);
3257 #if IO_DLL_CHAIN_LENGTH == 6
3258 			scc_mgr_set_dqdqs_output_phase(i, 6);
3259 #else
3260 			scc_mgr_set_dqdqs_output_phase(i, 7);
3261 #endif
3262 			/*
3263 			 * Case:33398
3264 			 *
3265 			 * Write data arrives to the I/O two cycles before write
3266 			 * latency is reached (720 deg).
3267 			 *   -> due to bit-slip in a/c bus
3268 			 *   -> to allow board skew where dqs is longer than ck
3269 			 *      -> how often can this happen!?
3270 			 *      -> can claim back some ptaps for high freq
3271 			 *       support if we can relax this, but i digress...
3272 			 *
3273 			 * The write_clk leads mem_ck by 90 deg
3274 			 * The minimum ptap of the OPA is 180 deg
3275 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3276 			 * The write_clk is always delayed by 2 ptaps
3277 			 *
3278 			 * Hence, to make DQS aligned to CK, we need to delay
3279 			 * DQS by:
3280 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3281 			 *
3282 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3283 			 * gives us the number of ptaps, which simplies to:
3284 			 *
3285 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3286 			 */
3287 			scc_mgr_set_dqdqs_output_phase(i,
3288 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3289 		}
3290 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3291 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3292 
3293 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3294 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3295 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3296 		}
3297 		writel(0xff, &sdr_scc_mgr->dq_ena);
3298 		writel(0xff, &sdr_scc_mgr->dm_ena);
3299 		writel(0, &sdr_scc_mgr->update);
3300 	}
3301 
3302 	/* Compensate for simulation model behaviour */
3303 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3304 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3305 		scc_mgr_load_dqs(i);
3306 	}
3307 	writel(0, &sdr_scc_mgr->update);
3308 
3309 	/*
3310 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3311 	 * in sequencer.
3312 	 */
3313 	vfifo_offset = CALIB_VFIFO_OFFSET;
3314 	for (j = 0; j < vfifo_offset; j++)
3315 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3316 	writel(0, &phy_mgr_cmd->fifo_reset);
3317 
3318 	/*
3319 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3320 	 * setting from generation-time constant.
3321 	 */
3322 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3323 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3324 }
3325 
3326 /**
3327  * mem_calibrate() - Memory calibration entry point.
3328  *
3329  * Perform memory calibration.
3330  */
3331 static uint32_t mem_calibrate(void)
3332 {
3333 	uint32_t i;
3334 	uint32_t rank_bgn, sr;
3335 	uint32_t write_group, write_test_bgn;
3336 	uint32_t read_group, read_test_bgn;
3337 	uint32_t run_groups, current_run;
3338 	uint32_t failing_groups = 0;
3339 	uint32_t group_failed = 0;
3340 
3341 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3342 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3343 
3344 	debug("%s:%d\n", __func__, __LINE__);
3345 
3346 	/* Initialize the data settings */
3347 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3348 	gbl->error_stage = CAL_STAGE_NIL;
3349 	gbl->error_group = 0xff;
3350 	gbl->fom_in = 0;
3351 	gbl->fom_out = 0;
3352 
3353 	/* Initialize WLAT and RLAT. */
3354 	mem_init_latency();
3355 
3356 	/* Initialize bit slips. */
3357 	mem_precharge_and_activate();
3358 
3359 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3360 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3361 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3362 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3363 		if (i == 0)
3364 			scc_mgr_set_hhp_extras();
3365 
3366 		scc_set_bypass_mode(i);
3367 	}
3368 
3369 	/* Calibration is skipped. */
3370 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3371 		/*
3372 		 * Set VFIFO and LFIFO to instant-on settings in skip
3373 		 * calibration mode.
3374 		 */
3375 		mem_skip_calibrate();
3376 
3377 		/*
3378 		 * Do not remove this line as it makes sure all of our
3379 		 * decisions have been applied.
3380 		 */
3381 		writel(0, &sdr_scc_mgr->update);
3382 		return 1;
3383 	}
3384 
3385 	/* Calibration is not skipped. */
3386 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3387 		/*
3388 		 * Zero all delay chain/phase settings for all
3389 		 * groups and all shadow register sets.
3390 		 */
3391 		scc_mgr_zero_all();
3392 
3393 		run_groups = ~param->skip_groups;
3394 
3395 		for (write_group = 0, write_test_bgn = 0; write_group
3396 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3397 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3398 
3399 			/* Initialize the group failure */
3400 			group_failed = 0;
3401 
3402 			current_run = run_groups & ((1 <<
3403 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3404 			run_groups = run_groups >>
3405 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3406 
3407 			if (current_run == 0)
3408 				continue;
3409 
3410 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3411 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3412 			scc_mgr_zero_group(write_group, 0);
3413 
3414 			for (read_group = write_group * rwdqs_ratio,
3415 			     read_test_bgn = 0;
3416 			     read_group < (write_group + 1) * rwdqs_ratio;
3417 			     read_group++,
3418 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3419 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3420 					continue;
3421 
3422 				/* Calibrate the VFIFO */
3423 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3424 							       read_test_bgn))
3425 					continue;
3426 
3427 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3428 					return 0;
3429 
3430 				/* The group failed, we're done. */
3431 				goto grp_failed;
3432 			}
3433 
3434 			/* Calibrate the output side */
3435 			for (rank_bgn = 0, sr = 0;
3436 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3437 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3438 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3439 					continue;
3440 
3441 				/* Not needed in quick mode! */
3442 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3443 					continue;
3444 
3445 				/*
3446 				 * Determine if this set of ranks
3447 				 * should be skipped entirely.
3448 				 */
3449 				if (param->skip_shadow_regs[sr])
3450 					continue;
3451 
3452 				/* Calibrate WRITEs */
3453 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3454 						write_group, write_test_bgn))
3455 					continue;
3456 
3457 				group_failed = 1;
3458 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459 					return 0;
3460 			}
3461 
3462 			/* Some group failed, we're done. */
3463 			if (group_failed)
3464 				goto grp_failed;
3465 
3466 			for (read_group = write_group * rwdqs_ratio,
3467 			     read_test_bgn = 0;
3468 			     read_group < (write_group + 1) * rwdqs_ratio;
3469 			     read_group++,
3470 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3471 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3472 					continue;
3473 
3474 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3475 								read_test_bgn))
3476 					continue;
3477 
3478 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3479 					return 0;
3480 
3481 				/* The group failed, we're done. */
3482 				goto grp_failed;
3483 			}
3484 
3485 			/* No group failed, continue as usual. */
3486 			continue;
3487 
3488 grp_failed:		/* A group failed, increment the counter. */
3489 			failing_groups++;
3490 		}
3491 
3492 		/*
3493 		 * USER If there are any failing groups then report
3494 		 * the failure.
3495 		 */
3496 		if (failing_groups != 0)
3497 			return 0;
3498 
3499 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3500 			continue;
3501 
3502 		/*
3503 		 * If we're skipping groups as part of debug,
3504 		 * don't calibrate LFIFO.
3505 		 */
3506 		if (param->skip_groups != 0)
3507 			continue;
3508 
3509 		/* Calibrate the LFIFO */
3510 		if (!rw_mgr_mem_calibrate_lfifo())
3511 			return 0;
3512 	}
3513 
3514 	/*
3515 	 * Do not remove this line as it makes sure all of our decisions
3516 	 * have been applied.
3517 	 */
3518 	writel(0, &sdr_scc_mgr->update);
3519 	return 1;
3520 }
3521 
3522 /**
3523  * run_mem_calibrate() - Perform memory calibration
3524  *
3525  * This function triggers the entire memory calibration procedure.
3526  */
3527 static int run_mem_calibrate(void)
3528 {
3529 	int pass;
3530 
3531 	debug("%s:%d\n", __func__, __LINE__);
3532 
3533 	/* Reset pass/fail status shown on afi_cal_success/fail */
3534 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3535 
3536 	/* Stop tracking manager. */
3537 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3538 
3539 	phy_mgr_initialize();
3540 	rw_mgr_mem_initialize();
3541 
3542 	/* Perform the actual memory calibration. */
3543 	pass = mem_calibrate();
3544 
3545 	mem_precharge_and_activate();
3546 	writel(0, &phy_mgr_cmd->fifo_reset);
3547 
3548 	/* Handoff. */
3549 	rw_mgr_mem_handoff();
3550 	/*
3551 	 * In Hard PHY this is a 2-bit control:
3552 	 * 0: AFI Mux Select
3553 	 * 1: DDIO Mux Select
3554 	 */
3555 	writel(0x2, &phy_mgr_cfg->mux_sel);
3556 
3557 	/* Start tracking manager. */
3558 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3559 
3560 	return pass;
3561 }
3562 
3563 /**
3564  * debug_mem_calibrate() - Report result of memory calibration
3565  * @pass:	Value indicating whether calibration passed or failed
3566  *
3567  * This function reports the results of the memory calibration
3568  * and writes debug information into the register file.
3569  */
3570 static void debug_mem_calibrate(int pass)
3571 {
3572 	uint32_t debug_info;
3573 
3574 	if (pass) {
3575 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3576 
3577 		gbl->fom_in /= 2;
3578 		gbl->fom_out /= 2;
3579 
3580 		if (gbl->fom_in > 0xff)
3581 			gbl->fom_in = 0xff;
3582 
3583 		if (gbl->fom_out > 0xff)
3584 			gbl->fom_out = 0xff;
3585 
3586 		/* Update the FOM in the register file */
3587 		debug_info = gbl->fom_in;
3588 		debug_info |= gbl->fom_out << 8;
3589 		writel(debug_info, &sdr_reg_file->fom);
3590 
3591 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3593 	} else {
3594 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3595 
3596 		debug_info = gbl->error_stage;
3597 		debug_info |= gbl->error_substage << 8;
3598 		debug_info |= gbl->error_group << 16;
3599 
3600 		writel(debug_info, &sdr_reg_file->failing_stage);
3601 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3602 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3603 
3604 		/* Update the failing group/stage in the register file */
3605 		debug_info = gbl->error_stage;
3606 		debug_info |= gbl->error_substage << 8;
3607 		debug_info |= gbl->error_group << 16;
3608 		writel(debug_info, &sdr_reg_file->failing_stage);
3609 	}
3610 
3611 	printf("%s: Calibration complete\n", __FILE__);
3612 }
3613 
3614 /**
3615  * hc_initialize_rom_data() - Initialize ROM data
3616  *
3617  * Initialize ROM data.
3618  */
3619 static void hc_initialize_rom_data(void)
3620 {
3621 	u32 i, addr;
3622 
3623 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3624 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3625 		writel(inst_rom_init[i], addr + (i << 2));
3626 
3627 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3628 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3629 		writel(ac_rom_init[i], addr + (i << 2));
3630 }
3631 
3632 /**
3633  * initialize_reg_file() - Initialize SDR register file
3634  *
3635  * Initialize SDR register file.
3636  */
3637 static void initialize_reg_file(void)
3638 {
3639 	/* Initialize the register file with the correct data */
3640 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3641 	writel(0, &sdr_reg_file->debug_data_addr);
3642 	writel(0, &sdr_reg_file->cur_stage);
3643 	writel(0, &sdr_reg_file->fom);
3644 	writel(0, &sdr_reg_file->failing_stage);
3645 	writel(0, &sdr_reg_file->debug1);
3646 	writel(0, &sdr_reg_file->debug2);
3647 }
3648 
3649 /**
3650  * initialize_hps_phy() - Initialize HPS PHY
3651  *
3652  * Initialize HPS PHY.
3653  */
3654 static void initialize_hps_phy(void)
3655 {
3656 	uint32_t reg;
3657 	/*
3658 	 * Tracking also gets configured here because it's in the
3659 	 * same register.
3660 	 */
3661 	uint32_t trk_sample_count = 7500;
3662 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3663 	/*
3664 	 * Format is number of outer loops in the 16 MSB, sample
3665 	 * count in 16 LSB.
3666 	 */
3667 
3668 	reg = 0;
3669 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3671 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3672 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3675 	/*
3676 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3677 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3678 	 */
3679 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3681 		trk_sample_count);
3682 	writel(reg, &sdr_ctrl->phy_ctrl0);
3683 
3684 	reg = 0;
3685 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3686 		trk_sample_count >>
3687 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3689 		trk_long_idle_sample_count);
3690 	writel(reg, &sdr_ctrl->phy_ctrl1);
3691 
3692 	reg = 0;
3693 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3694 		trk_long_idle_sample_count >>
3695 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3696 	writel(reg, &sdr_ctrl->phy_ctrl2);
3697 }
3698 
3699 /**
3700  * initialize_tracking() - Initialize tracking
3701  *
3702  * Initialize the register file with usable initial data.
3703  */
3704 static void initialize_tracking(void)
3705 {
3706 	/*
3707 	 * Initialize the register file with the correct data.
3708 	 * Compute usable version of value in case we skip full
3709 	 * computation later.
3710 	 */
3711 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3712 	       &sdr_reg_file->dtaps_per_ptap);
3713 
3714 	/* trk_sample_count */
3715 	writel(7500, &sdr_reg_file->trk_sample_count);
3716 
3717 	/* longidle outer loop [15:0] */
3718 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3719 
3720 	/*
3721 	 * longidle sample count [31:24]
3722 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3723 	 * trcd, worst case [15:8]
3724 	 * vfifo wait [7:0]
3725 	 */
3726 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3727 	       &sdr_reg_file->delays);
3728 
3729 	/* mux delay */
3730 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3731 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3732 	       &sdr_reg_file->trk_rw_mgr_addr);
3733 
3734 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3735 	       &sdr_reg_file->trk_read_dqs_width);
3736 
3737 	/* trefi [7:0] */
3738 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3739 	       &sdr_reg_file->trk_rfsh);
3740 }
3741 
3742 int sdram_calibration_full(void)
3743 {
3744 	struct param_type my_param;
3745 	struct gbl_type my_gbl;
3746 	uint32_t pass;
3747 
3748 	memset(&my_param, 0, sizeof(my_param));
3749 	memset(&my_gbl, 0, sizeof(my_gbl));
3750 
3751 	param = &my_param;
3752 	gbl = &my_gbl;
3753 
3754 	/* Set the calibration enabled by default */
3755 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3756 	/*
3757 	 * Only sweep all groups (regardless of fail state) by default
3758 	 * Set enabled read test by default.
3759 	 */
3760 #if DISABLE_GUARANTEED_READ
3761 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3762 #endif
3763 	/* Initialize the register file */
3764 	initialize_reg_file();
3765 
3766 	/* Initialize any PHY CSR */
3767 	initialize_hps_phy();
3768 
3769 	scc_mgr_initialize();
3770 
3771 	initialize_tracking();
3772 
3773 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3774 
3775 	debug("%s:%d\n", __func__, __LINE__);
3776 	debug_cond(DLEVEL == 1,
3777 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3778 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3779 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3780 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3781 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3782 	debug_cond(DLEVEL == 1,
3783 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3784 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3785 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3786 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3787 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3788 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3789 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3790 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3791 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3792 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3793 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3794 		   IO_IO_OUT2_DELAY_MAX);
3795 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3796 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3797 
3798 	hc_initialize_rom_data();
3799 
3800 	/* update info for sims */
3801 	reg_file_set_stage(CAL_STAGE_NIL);
3802 	reg_file_set_group(0);
3803 
3804 	/*
3805 	 * Load global needed for those actions that require
3806 	 * some dynamic calibration support.
3807 	 */
3808 	dyn_calib_steps = STATIC_CALIB_STEPS;
3809 	/*
3810 	 * Load global to allow dynamic selection of delay loop settings
3811 	 * based on calibration mode.
3812 	 */
3813 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3814 		skip_delay_mask = 0xff;
3815 	else
3816 		skip_delay_mask = 0x0;
3817 
3818 	pass = run_mem_calibrate();
3819 	debug_mem_calibrate(pass);
3820 	return pass;
3821 }
3822