1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 325 uint32_t delay) 326 { 327 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 328 delay); 329 } 330 331 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 332 { 333 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 334 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 335 delay); 336 } 337 338 /* load up dqs config settings */ 339 static void scc_mgr_load_dqs(uint32_t dqs) 340 { 341 writel(dqs, &sdr_scc_mgr->dqs_ena); 342 } 343 344 /* load up dqs io config settings */ 345 static void scc_mgr_load_dqs_io(void) 346 { 347 writel(0, &sdr_scc_mgr->dqs_io_ena); 348 } 349 350 /* load up dq config settings */ 351 static void scc_mgr_load_dq(uint32_t dq_in_group) 352 { 353 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 354 } 355 356 /* load up dm config settings */ 357 static void scc_mgr_load_dm(uint32_t dm) 358 { 359 writel(dm, &sdr_scc_mgr->dm_ena); 360 } 361 362 /** 363 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 364 * @off: Base offset in SCC Manager space 365 * @grp: Read/Write group 366 * @val: Value to be set 367 * @update: If non-zero, trigger SCC Manager update for all ranks 368 * 369 * This function sets the SCC Manager (Scan Chain Control Manager) register 370 * and optionally triggers the SCC update for all ranks. 371 */ 372 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 373 const int update) 374 { 375 u32 r; 376 377 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 378 r += NUM_RANKS_PER_SHADOW_REG) { 379 scc_mgr_set(off, grp, val); 380 381 if (update || (r == 0)) { 382 writel(grp, &sdr_scc_mgr->dqs_ena); 383 writel(0, &sdr_scc_mgr->update); 384 } 385 } 386 } 387 388 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 389 { 390 /* 391 * USER although the h/w doesn't support different phases per 392 * shadow register, for simplicity our scc manager modeling 393 * keeps different phase settings per shadow reg, and it's 394 * important for us to keep them in sync to match h/w. 395 * for efficiency, the scan chain update should occur only 396 * once to sr0. 397 */ 398 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 399 read_group, phase, 0); 400 } 401 402 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 403 uint32_t phase) 404 { 405 /* 406 * USER although the h/w doesn't support different phases per 407 * shadow register, for simplicity our scc manager modeling 408 * keeps different phase settings per shadow reg, and it's 409 * important for us to keep them in sync to match h/w. 410 * for efficiency, the scan chain update should occur only 411 * once to sr0. 412 */ 413 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 414 write_group, phase, 0); 415 } 416 417 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 418 uint32_t delay) 419 { 420 /* 421 * In shadow register mode, the T11 settings are stored in 422 * registers in the core, which are updated by the DQS_ENA 423 * signals. Not issuing the SCC_MGR_UPD command allows us to 424 * save lots of rank switching overhead, by calling 425 * select_shadow_regs_for_update with update_scan_chains 426 * set to 0. 427 */ 428 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 429 read_group, delay, 1); 430 writel(0, &sdr_scc_mgr->update); 431 } 432 433 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 434 { 435 uint32_t read_group; 436 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 437 438 /* 439 * Load the setting in the SCC manager 440 * Although OCT affects only write data, the OCT delay is controlled 441 * by the DQS logic block which is instantiated once per read group. 442 * For protocols where a write group consists of multiple read groups, 443 * the setting must be set multiple times. 444 */ 445 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 446 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 447 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 448 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 449 writel(delay, addr + (read_group << 2)); 450 } 451 452 static void scc_mgr_set_hhp_extras(void) 453 { 454 /* 455 * Load the fixed setting in the SCC manager 456 * bits: 0:0 = 1'b1 - dqs bypass 457 * bits: 1:1 = 1'b1 - dq bypass 458 * bits: 4:2 = 3'b001 - rfifo_mode 459 * bits: 6:5 = 2'b01 - rfifo clock_select 460 * bits: 7:7 = 1'b0 - separate gating from ungating setting 461 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 462 */ 463 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 464 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 465 466 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 467 } 468 469 /* 470 * USER Zero all DQS config 471 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 472 */ 473 static void scc_mgr_zero_all(void) 474 { 475 uint32_t i, r; 476 477 /* 478 * USER Zero all DQS config settings, across all groups and all 479 * shadow registers 480 */ 481 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 482 NUM_RANKS_PER_SHADOW_REG) { 483 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 484 /* 485 * The phases actually don't exist on a per-rank basis, 486 * but there's no harm updating them several times, so 487 * let's keep the code simple. 488 */ 489 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 490 scc_mgr_set_dqs_en_phase(i, 0); 491 scc_mgr_set_dqs_en_delay(i, 0); 492 } 493 494 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 495 scc_mgr_set_dqdqs_output_phase(i, 0); 496 /* av/cv don't have out2 */ 497 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 498 } 499 } 500 501 /* multicast to all DQS group enables */ 502 writel(0xff, &sdr_scc_mgr->dqs_ena); 503 writel(0, &sdr_scc_mgr->update); 504 } 505 506 /** 507 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 508 * @write_group: Write group 509 * 510 * Set bypass mode and trigger SCC update. 511 */ 512 static void scc_set_bypass_mode(const u32 write_group) 513 { 514 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 515 if (write_group == 0) { 516 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 517 __LINE__); 518 scc_mgr_set_hhp_extras(); 519 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 520 __func__, __LINE__); 521 } 522 523 /* Multicast to all DQ enables. */ 524 writel(0xff, &sdr_scc_mgr->dq_ena); 525 writel(0xff, &sdr_scc_mgr->dm_ena); 526 527 /* Update current DQS IO enable. */ 528 writel(0, &sdr_scc_mgr->dqs_io_ena); 529 530 /* Update the DQS logic. */ 531 writel(write_group, &sdr_scc_mgr->dqs_ena); 532 533 /* Hit update. */ 534 writel(0, &sdr_scc_mgr->update); 535 } 536 537 /** 538 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 539 * @write_group: Write group 540 * 541 * Load DQS settings for Write Group, do not trigger SCC update. 542 */ 543 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 544 { 545 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 546 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 547 const int base = write_group * ratio; 548 int i; 549 /* 550 * Load the setting in the SCC manager 551 * Although OCT affects only write data, the OCT delay is controlled 552 * by the DQS logic block which is instantiated once per read group. 553 * For protocols where a write group consists of multiple read groups, 554 * the setting must be set multiple times. 555 */ 556 for (i = 0; i < ratio; i++) 557 writel(base + i, &sdr_scc_mgr->dqs_ena); 558 } 559 560 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 561 int32_t out_only) 562 { 563 uint32_t i, r; 564 565 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 566 NUM_RANKS_PER_SHADOW_REG) { 567 /* Zero all DQ config settings */ 568 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 569 scc_mgr_set_dq_out1_delay(i, 0); 570 if (!out_only) 571 scc_mgr_set_dq_in_delay(i, 0); 572 } 573 574 /* multicast to all DQ enables */ 575 writel(0xff, &sdr_scc_mgr->dq_ena); 576 577 /* Zero all DM config settings */ 578 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 579 scc_mgr_set_dm_out1_delay(i, 0); 580 } 581 582 /* multicast to all DM enables */ 583 writel(0xff, &sdr_scc_mgr->dm_ena); 584 585 /* zero all DQS io settings */ 586 if (!out_only) 587 scc_mgr_set_dqs_io_in_delay(write_group, 0); 588 /* av/cv don't have out2 */ 589 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 590 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 591 scc_mgr_load_dqs_for_write_group(write_group); 592 593 /* multicast to all DQS IO enables (only 1) */ 594 writel(0, &sdr_scc_mgr->dqs_io_ena); 595 596 /* hit update to zero everything */ 597 writel(0, &sdr_scc_mgr->update); 598 } 599 } 600 601 /* 602 * apply and load a particular input delay for the DQ pins in a group 603 * group_bgn is the index of the first dq pin (in the write group) 604 */ 605 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 606 uint32_t group_bgn, uint32_t delay) 607 { 608 uint32_t i, p; 609 610 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 611 scc_mgr_set_dq_in_delay(p, delay); 612 scc_mgr_load_dq(p); 613 } 614 } 615 616 /* apply and load a particular output delay for the DQ pins in a group */ 617 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 618 uint32_t group_bgn, 619 uint32_t delay1) 620 { 621 uint32_t i, p; 622 623 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 624 scc_mgr_set_dq_out1_delay(i, delay1); 625 scc_mgr_load_dq(i); 626 } 627 } 628 629 /* apply and load a particular output delay for the DM pins in a group */ 630 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 631 uint32_t delay1) 632 { 633 uint32_t i; 634 635 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 636 scc_mgr_set_dm_out1_delay(i, delay1); 637 scc_mgr_load_dm(i); 638 } 639 } 640 641 642 /* apply and load delay on both DQS and OCT out1 */ 643 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 644 uint32_t delay) 645 { 646 scc_mgr_set_dqs_out1_delay(write_group, delay); 647 scc_mgr_load_dqs_io(); 648 649 scc_mgr_set_oct_out1_delay(write_group, delay); 650 scc_mgr_load_dqs_for_write_group(write_group); 651 } 652 653 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 654 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 655 uint32_t group_bgn, 656 uint32_t delay) 657 { 658 uint32_t i, p, new_delay; 659 660 /* dq shift */ 661 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 662 new_delay = READ_SCC_DQ_OUT2_DELAY; 663 new_delay += delay; 664 665 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 666 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 667 %u > %lu => %lu", __func__, __LINE__, 668 write_group, group_bgn, delay, i, p, new_delay, 669 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 670 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 671 new_delay = IO_IO_OUT2_DELAY_MAX; 672 } 673 674 scc_mgr_load_dq(i); 675 } 676 677 /* dm shift */ 678 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 679 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 680 new_delay += delay; 681 682 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 683 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 684 %u > %lu => %lu\n", __func__, __LINE__, 685 write_group, group_bgn, delay, i, new_delay, 686 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 687 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 688 new_delay = IO_IO_OUT2_DELAY_MAX; 689 } 690 691 scc_mgr_load_dm(i); 692 } 693 694 /* dqs shift */ 695 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 696 new_delay += delay; 697 698 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 699 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 700 " adding %u to OUT1\n", __func__, __LINE__, 701 write_group, group_bgn, delay, new_delay, 702 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 703 new_delay - IO_IO_OUT2_DELAY_MAX); 704 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 705 IO_IO_OUT2_DELAY_MAX); 706 new_delay = IO_IO_OUT2_DELAY_MAX; 707 } 708 709 scc_mgr_load_dqs_io(); 710 711 /* oct shift */ 712 new_delay = READ_SCC_OCT_OUT2_DELAY; 713 new_delay += delay; 714 715 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 716 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 717 " adding %u to OUT1\n", __func__, __LINE__, 718 write_group, group_bgn, delay, new_delay, 719 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 720 new_delay - IO_IO_OUT2_DELAY_MAX); 721 scc_mgr_set_oct_out1_delay(write_group, new_delay - 722 IO_IO_OUT2_DELAY_MAX); 723 new_delay = IO_IO_OUT2_DELAY_MAX; 724 } 725 726 scc_mgr_load_dqs_for_write_group(write_group); 727 } 728 729 /* 730 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 731 * and to all ranks 732 */ 733 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 734 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 735 { 736 uint32_t r; 737 738 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 739 r += NUM_RANKS_PER_SHADOW_REG) { 740 scc_mgr_apply_group_all_out_delay_add(write_group, 741 group_bgn, delay); 742 writel(0, &sdr_scc_mgr->update); 743 } 744 } 745 746 /* optimization used to recover some slots in ddr3 inst_rom */ 747 /* could be applied to other protocols if we wanted to */ 748 static void set_jump_as_return(void) 749 { 750 /* 751 * to save space, we replace return with jump to special shared 752 * RETURN instruction so we set the counter to large value so that 753 * we always jump 754 */ 755 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 756 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 757 } 758 759 /* 760 * should always use constants as argument to ensure all computations are 761 * performed at compile time 762 */ 763 static void delay_for_n_mem_clocks(const uint32_t clocks) 764 { 765 uint32_t afi_clocks; 766 uint8_t inner = 0; 767 uint8_t outer = 0; 768 uint16_t c_loop = 0; 769 770 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 771 772 773 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 774 /* scale (rounding up) to get afi clocks */ 775 776 /* 777 * Note, we don't bother accounting for being off a little bit 778 * because of a few extra instructions in outer loops 779 * Note, the loops have a test at the end, and do the test before 780 * the decrement, and so always perform the loop 781 * 1 time more than the counter value 782 */ 783 if (afi_clocks == 0) { 784 ; 785 } else if (afi_clocks <= 0x100) { 786 inner = afi_clocks-1; 787 outer = 0; 788 c_loop = 0; 789 } else if (afi_clocks <= 0x10000) { 790 inner = 0xff; 791 outer = (afi_clocks-1) >> 8; 792 c_loop = 0; 793 } else { 794 inner = 0xff; 795 outer = 0xff; 796 c_loop = (afi_clocks-1) >> 16; 797 } 798 799 /* 800 * rom instructions are structured as follows: 801 * 802 * IDLE_LOOP2: jnz cntr0, TARGET_A 803 * IDLE_LOOP1: jnz cntr1, TARGET_B 804 * return 805 * 806 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 807 * TARGET_B is set to IDLE_LOOP2 as well 808 * 809 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 810 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 811 * 812 * a little confusing, but it helps save precious space in the inst_rom 813 * and sequencer rom and keeps the delays more accurate and reduces 814 * overhead 815 */ 816 if (afi_clocks <= 0x100) { 817 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 818 &sdr_rw_load_mgr_regs->load_cntr1); 819 820 writel(RW_MGR_IDLE_LOOP1, 821 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 822 823 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 824 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 825 } else { 826 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 827 &sdr_rw_load_mgr_regs->load_cntr0); 828 829 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 830 &sdr_rw_load_mgr_regs->load_cntr1); 831 832 writel(RW_MGR_IDLE_LOOP2, 833 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 834 835 writel(RW_MGR_IDLE_LOOP2, 836 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 837 838 /* hack to get around compiler not being smart enough */ 839 if (afi_clocks <= 0x10000) { 840 /* only need to run once */ 841 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 842 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 843 } else { 844 do { 845 writel(RW_MGR_IDLE_LOOP2, 846 SDR_PHYGRP_RWMGRGRP_ADDRESS | 847 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 848 } while (c_loop-- != 0); 849 } 850 } 851 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 852 } 853 854 static void rw_mgr_mem_initialize(void) 855 { 856 uint32_t r; 857 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 858 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 859 860 debug("%s:%d\n", __func__, __LINE__); 861 862 /* The reset / cke part of initialization is broadcasted to all ranks */ 863 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 865 866 /* 867 * Here's how you load register for a loop 868 * Counters are located @ 0x800 869 * Jump address are located @ 0xC00 870 * For both, registers 0 to 3 are selected using bits 3 and 2, like 871 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 872 * I know this ain't pretty, but Avalon bus throws away the 2 least 873 * significant bits 874 */ 875 876 /* start with memory RESET activated */ 877 878 /* tINIT = 200us */ 879 880 /* 881 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 882 * If a and b are the number of iteration in 2 nested loops 883 * it takes the following number of cycles to complete the operation: 884 * number_of_cycles = ((2 + n) * a + 2) * b 885 * where n is the number of instruction in the inner loop 886 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 887 * b = 6A 888 */ 889 890 /* Load counters */ 891 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 892 &sdr_rw_load_mgr_regs->load_cntr0); 893 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 894 &sdr_rw_load_mgr_regs->load_cntr1); 895 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 896 &sdr_rw_load_mgr_regs->load_cntr2); 897 898 /* Load jump address */ 899 writel(RW_MGR_INIT_RESET_0_CKE_0, 900 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 901 writel(RW_MGR_INIT_RESET_0_CKE_0, 902 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 903 writel(RW_MGR_INIT_RESET_0_CKE_0, 904 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 905 906 /* Execute count instruction */ 907 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 908 909 /* indicate that memory is stable */ 910 writel(1, &phy_mgr_cfg->reset_mem_stbl); 911 912 /* 913 * transition the RESET to high 914 * Wait for 500us 915 */ 916 917 /* 918 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 919 * If a and b are the number of iteration in 2 nested loops 920 * it takes the following number of cycles to complete the operation 921 * number_of_cycles = ((2 + n) * a + 2) * b 922 * where n is the number of instruction in the inner loop 923 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 924 * b = FF 925 */ 926 927 /* Load counters */ 928 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 929 &sdr_rw_load_mgr_regs->load_cntr0); 930 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 931 &sdr_rw_load_mgr_regs->load_cntr1); 932 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 933 &sdr_rw_load_mgr_regs->load_cntr2); 934 935 /* Load jump address */ 936 writel(RW_MGR_INIT_RESET_1_CKE_0, 937 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 938 writel(RW_MGR_INIT_RESET_1_CKE_0, 939 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 940 writel(RW_MGR_INIT_RESET_1_CKE_0, 941 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 942 943 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 944 945 /* bring up clock enable */ 946 947 /* tXRP < 250 ck cycles */ 948 delay_for_n_mem_clocks(250); 949 950 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 951 if (param->skip_ranks[r]) { 952 /* request to skip the rank */ 953 continue; 954 } 955 956 /* set rank */ 957 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 958 959 /* 960 * USER Use Mirror-ed commands for odd ranks if address 961 * mirrorring is on 962 */ 963 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 964 set_jump_as_return(); 965 writel(RW_MGR_MRS2_MIRR, grpaddr); 966 delay_for_n_mem_clocks(4); 967 set_jump_as_return(); 968 writel(RW_MGR_MRS3_MIRR, grpaddr); 969 delay_for_n_mem_clocks(4); 970 set_jump_as_return(); 971 writel(RW_MGR_MRS1_MIRR, grpaddr); 972 delay_for_n_mem_clocks(4); 973 set_jump_as_return(); 974 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 975 } else { 976 set_jump_as_return(); 977 writel(RW_MGR_MRS2, grpaddr); 978 delay_for_n_mem_clocks(4); 979 set_jump_as_return(); 980 writel(RW_MGR_MRS3, grpaddr); 981 delay_for_n_mem_clocks(4); 982 set_jump_as_return(); 983 writel(RW_MGR_MRS1, grpaddr); 984 set_jump_as_return(); 985 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 986 } 987 set_jump_as_return(); 988 writel(RW_MGR_ZQCL, grpaddr); 989 990 /* tZQinit = tDLLK = 512 ck cycles */ 991 delay_for_n_mem_clocks(512); 992 } 993 } 994 995 /* 996 * At the end of calibration we have to program the user settings in, and 997 * USER hand off the memory to the user. 998 */ 999 static void rw_mgr_mem_handoff(void) 1000 { 1001 uint32_t r; 1002 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1003 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1004 1005 debug("%s:%d\n", __func__, __LINE__); 1006 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1007 if (param->skip_ranks[r]) 1008 /* request to skip the rank */ 1009 continue; 1010 /* set rank */ 1011 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1012 1013 /* precharge all banks ... */ 1014 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1015 1016 /* load up MR settings specified by user */ 1017 1018 /* 1019 * Use Mirror-ed commands for odd ranks if address 1020 * mirrorring is on 1021 */ 1022 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1023 set_jump_as_return(); 1024 writel(RW_MGR_MRS2_MIRR, grpaddr); 1025 delay_for_n_mem_clocks(4); 1026 set_jump_as_return(); 1027 writel(RW_MGR_MRS3_MIRR, grpaddr); 1028 delay_for_n_mem_clocks(4); 1029 set_jump_as_return(); 1030 writel(RW_MGR_MRS1_MIRR, grpaddr); 1031 delay_for_n_mem_clocks(4); 1032 set_jump_as_return(); 1033 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1034 } else { 1035 set_jump_as_return(); 1036 writel(RW_MGR_MRS2, grpaddr); 1037 delay_for_n_mem_clocks(4); 1038 set_jump_as_return(); 1039 writel(RW_MGR_MRS3, grpaddr); 1040 delay_for_n_mem_clocks(4); 1041 set_jump_as_return(); 1042 writel(RW_MGR_MRS1, grpaddr); 1043 delay_for_n_mem_clocks(4); 1044 set_jump_as_return(); 1045 writel(RW_MGR_MRS0_USER, grpaddr); 1046 } 1047 /* 1048 * USER need to wait tMOD (12CK or 15ns) time before issuing 1049 * other commands, but we will have plenty of NIOS cycles before 1050 * actual handoff so its okay. 1051 */ 1052 } 1053 } 1054 1055 /* 1056 * performs a guaranteed read on the patterns we are going to use during a 1057 * read test to ensure memory works 1058 */ 1059 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1060 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1061 uint32_t all_ranks) 1062 { 1063 uint32_t r, vg; 1064 uint32_t correct_mask_vg; 1065 uint32_t tmp_bit_chk; 1066 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1067 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1068 uint32_t addr; 1069 uint32_t base_rw_mgr; 1070 1071 *bit_chk = param->read_correct_mask; 1072 correct_mask_vg = param->read_correct_mask_vg; 1073 1074 for (r = rank_bgn; r < rank_end; r++) { 1075 if (param->skip_ranks[r]) 1076 /* request to skip the rank */ 1077 continue; 1078 1079 /* set rank */ 1080 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1081 1082 /* Load up a constant bursts of read commands */ 1083 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1084 writel(RW_MGR_GUARANTEED_READ, 1085 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1086 1087 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1088 writel(RW_MGR_GUARANTEED_READ_CONT, 1089 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1090 1091 tmp_bit_chk = 0; 1092 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1093 /* reset the fifos to get pointers to known state */ 1094 1095 writel(0, &phy_mgr_cmd->fifo_reset); 1096 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1097 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1098 1099 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1100 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1101 1102 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1103 writel(RW_MGR_GUARANTEED_READ, addr + 1104 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1105 vg) << 2)); 1106 1107 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1108 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1109 1110 if (vg == 0) 1111 break; 1112 } 1113 *bit_chk &= tmp_bit_chk; 1114 } 1115 1116 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1117 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1118 1119 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1120 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1121 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1122 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1123 return *bit_chk == param->read_correct_mask; 1124 } 1125 1126 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1127 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1128 { 1129 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1130 num_tries, bit_chk, 1); 1131 } 1132 1133 /* load up the patterns we are going to use during a read test */ 1134 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1135 uint32_t all_ranks) 1136 { 1137 uint32_t r; 1138 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1139 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1140 1141 debug("%s:%d\n", __func__, __LINE__); 1142 for (r = rank_bgn; r < rank_end; r++) { 1143 if (param->skip_ranks[r]) 1144 /* request to skip the rank */ 1145 continue; 1146 1147 /* set rank */ 1148 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1149 1150 /* Load up a constant bursts */ 1151 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1152 1153 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1154 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1155 1156 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1157 1158 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1159 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1160 1161 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1162 1163 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1165 1166 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1167 1168 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1169 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1170 1171 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1172 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1173 } 1174 1175 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1176 } 1177 1178 /* 1179 * try a read and see if it returns correct data back. has dummy reads 1180 * inserted into the mix used to align dqs enable. has more thorough checks 1181 * than the regular read test. 1182 */ 1183 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1184 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1185 uint32_t all_groups, uint32_t all_ranks) 1186 { 1187 uint32_t r, vg; 1188 uint32_t correct_mask_vg; 1189 uint32_t tmp_bit_chk; 1190 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1191 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1192 uint32_t addr; 1193 uint32_t base_rw_mgr; 1194 1195 *bit_chk = param->read_correct_mask; 1196 correct_mask_vg = param->read_correct_mask_vg; 1197 1198 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1199 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1200 1201 for (r = rank_bgn; r < rank_end; r++) { 1202 if (param->skip_ranks[r]) 1203 /* request to skip the rank */ 1204 continue; 1205 1206 /* set rank */ 1207 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1208 1209 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1210 1211 writel(RW_MGR_READ_B2B_WAIT1, 1212 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1213 1214 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1215 writel(RW_MGR_READ_B2B_WAIT2, 1216 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1217 1218 if (quick_read_mode) 1219 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1220 /* need at least two (1+1) reads to capture failures */ 1221 else if (all_groups) 1222 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1223 else 1224 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1225 1226 writel(RW_MGR_READ_B2B, 1227 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1228 if (all_groups) 1229 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1230 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1231 &sdr_rw_load_mgr_regs->load_cntr3); 1232 else 1233 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1234 1235 writel(RW_MGR_READ_B2B, 1236 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1237 1238 tmp_bit_chk = 0; 1239 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1240 /* reset the fifos to get pointers to known state */ 1241 writel(0, &phy_mgr_cmd->fifo_reset); 1242 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1243 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1244 1245 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1246 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1247 1248 if (all_groups) 1249 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1250 else 1251 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1252 1253 writel(RW_MGR_READ_B2B, addr + 1254 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1255 vg) << 2)); 1256 1257 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1258 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1259 1260 if (vg == 0) 1261 break; 1262 } 1263 *bit_chk &= tmp_bit_chk; 1264 } 1265 1266 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1267 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1268 1269 if (all_correct) { 1270 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1271 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1272 (%u == %u) => %lu", __func__, __LINE__, group, 1273 all_groups, *bit_chk, param->read_correct_mask, 1274 (long unsigned int)(*bit_chk == 1275 param->read_correct_mask)); 1276 return *bit_chk == param->read_correct_mask; 1277 } else { 1278 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1279 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1280 (%u != %lu) => %lu\n", __func__, __LINE__, 1281 group, all_groups, *bit_chk, (long unsigned int)0, 1282 (long unsigned int)(*bit_chk != 0x00)); 1283 return *bit_chk != 0x00; 1284 } 1285 } 1286 1287 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1288 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1289 uint32_t all_groups) 1290 { 1291 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1292 bit_chk, all_groups, 1); 1293 } 1294 1295 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1298 (*v)++; 1299 } 1300 1301 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1302 { 1303 uint32_t i; 1304 1305 for (i = 0; i < VFIFO_SIZE-1; i++) 1306 rw_mgr_incr_vfifo(grp, v); 1307 } 1308 1309 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1310 { 1311 uint32_t v; 1312 uint32_t fail_cnt = 0; 1313 uint32_t test_status; 1314 1315 for (v = 0; v < VFIFO_SIZE; ) { 1316 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1317 __func__, __LINE__, v); 1318 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1319 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1320 if (!test_status) { 1321 fail_cnt++; 1322 1323 if (fail_cnt == 2) 1324 break; 1325 } 1326 1327 /* fiddle with FIFO */ 1328 rw_mgr_incr_vfifo(grp, &v); 1329 } 1330 1331 if (v >= VFIFO_SIZE) { 1332 /* no failing read found!! Something must have gone wrong */ 1333 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1334 __func__, __LINE__); 1335 return 0; 1336 } else { 1337 return v; 1338 } 1339 } 1340 1341 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1342 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1343 uint32_t *v, uint32_t *d, uint32_t *p, 1344 uint32_t *i, uint32_t *max_working_cnt) 1345 { 1346 uint32_t found_begin = 0; 1347 uint32_t tmp_delay = 0; 1348 uint32_t test_status; 1349 1350 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1351 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1352 *work_bgn = tmp_delay; 1353 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1354 1355 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1356 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1357 IO_DELAY_PER_OPA_TAP) { 1358 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1359 1360 test_status = 1361 rw_mgr_mem_calibrate_read_test_all_ranks 1362 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1363 1364 if (test_status) { 1365 *max_working_cnt = 1; 1366 found_begin = 1; 1367 break; 1368 } 1369 } 1370 1371 if (found_begin) 1372 break; 1373 1374 if (*p > IO_DQS_EN_PHASE_MAX) 1375 /* fiddle with FIFO */ 1376 rw_mgr_incr_vfifo(*grp, v); 1377 } 1378 1379 if (found_begin) 1380 break; 1381 } 1382 1383 if (*i >= VFIFO_SIZE) { 1384 /* cannot find working solution */ 1385 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1386 ptap/dtap\n", __func__, __LINE__); 1387 return 0; 1388 } else { 1389 return 1; 1390 } 1391 } 1392 1393 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1394 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1395 uint32_t *p, uint32_t *max_working_cnt) 1396 { 1397 uint32_t found_begin = 0; 1398 uint32_t tmp_delay; 1399 1400 /* Special case code for backing up a phase */ 1401 if (*p == 0) { 1402 *p = IO_DQS_EN_PHASE_MAX; 1403 rw_mgr_decr_vfifo(*grp, v); 1404 } else { 1405 (*p)--; 1406 } 1407 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1408 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1409 1410 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1411 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1412 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1413 1414 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1415 PASS_ONE_BIT, 1416 bit_chk, 0)) { 1417 found_begin = 1; 1418 *work_bgn = tmp_delay; 1419 break; 1420 } 1421 } 1422 1423 /* We have found a working dtap before the ptap found above */ 1424 if (found_begin == 1) 1425 (*max_working_cnt)++; 1426 1427 /* 1428 * Restore VFIFO to old state before we decremented it 1429 * (if needed). 1430 */ 1431 (*p)++; 1432 if (*p > IO_DQS_EN_PHASE_MAX) { 1433 *p = 0; 1434 rw_mgr_incr_vfifo(*grp, v); 1435 } 1436 1437 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1438 } 1439 1440 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1441 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1442 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1443 uint32_t *work_end) 1444 { 1445 uint32_t found_end = 0; 1446 1447 (*p)++; 1448 *work_end += IO_DELAY_PER_OPA_TAP; 1449 if (*p > IO_DQS_EN_PHASE_MAX) { 1450 /* fiddle with FIFO */ 1451 *p = 0; 1452 rw_mgr_incr_vfifo(*grp, v); 1453 } 1454 1455 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1456 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1457 += IO_DELAY_PER_OPA_TAP) { 1458 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1459 1460 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1461 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1462 found_end = 1; 1463 break; 1464 } else { 1465 (*max_working_cnt)++; 1466 } 1467 } 1468 1469 if (found_end) 1470 break; 1471 1472 if (*p > IO_DQS_EN_PHASE_MAX) { 1473 /* fiddle with FIFO */ 1474 rw_mgr_incr_vfifo(*grp, v); 1475 *p = 0; 1476 } 1477 } 1478 1479 if (*i >= VFIFO_SIZE + 1) { 1480 /* cannot see edge of failing read */ 1481 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1482 failed\n", __func__, __LINE__); 1483 return 0; 1484 } else { 1485 return 1; 1486 } 1487 } 1488 1489 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1490 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1491 uint32_t *p, uint32_t *work_mid, 1492 uint32_t *work_end) 1493 { 1494 int i; 1495 int tmp_delay = 0; 1496 1497 *work_mid = (*work_bgn + *work_end) / 2; 1498 1499 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1500 *work_bgn, *work_end, *work_mid); 1501 /* Get the middle delay to be less than a VFIFO delay */ 1502 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1503 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1504 ; 1505 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1506 while (*work_mid > tmp_delay) 1507 *work_mid -= tmp_delay; 1508 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1509 1510 tmp_delay = 0; 1511 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1512 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1513 ; 1514 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1515 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1516 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1517 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1518 ; 1519 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1520 1521 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1522 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1523 1524 /* 1525 * push vfifo until we can successfully calibrate. We can do this 1526 * because the largest possible margin in 1 VFIFO cycle. 1527 */ 1528 for (i = 0; i < VFIFO_SIZE; i++) { 1529 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1530 *v); 1531 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1532 PASS_ONE_BIT, 1533 bit_chk, 0)) { 1534 break; 1535 } 1536 1537 /* fiddle with FIFO */ 1538 rw_mgr_incr_vfifo(*grp, v); 1539 } 1540 1541 if (i >= VFIFO_SIZE) { 1542 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1543 failed\n", __func__, __LINE__); 1544 return 0; 1545 } else { 1546 return 1; 1547 } 1548 } 1549 1550 /* find a good dqs enable to use */ 1551 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1552 { 1553 uint32_t v, d, p, i; 1554 uint32_t max_working_cnt; 1555 uint32_t bit_chk; 1556 uint32_t dtaps_per_ptap; 1557 uint32_t work_bgn, work_mid, work_end; 1558 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1559 1560 debug("%s:%d %u\n", __func__, __LINE__, grp); 1561 1562 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1563 1564 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1565 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1566 1567 /* ************************************************************** */ 1568 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1569 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1570 1571 /* ********************************************************* */ 1572 /* * Step 1 : First push vfifo until we get a failing read * */ 1573 v = find_vfifo_read(grp, &bit_chk); 1574 1575 max_working_cnt = 0; 1576 1577 /* ******************************************************** */ 1578 /* * step 2: find first working phase, increment in ptaps * */ 1579 work_bgn = 0; 1580 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1581 &p, &i, &max_working_cnt) == 0) 1582 return 0; 1583 1584 work_end = work_bgn; 1585 1586 /* 1587 * If d is 0 then the working window covers a phase tap and 1588 * we can follow the old procedure otherwise, we've found the beginning, 1589 * and we need to increment the dtaps until we find the end. 1590 */ 1591 if (d == 0) { 1592 /* ********************************************************* */ 1593 /* * step 3a: if we have room, back off by one and 1594 increment in dtaps * */ 1595 1596 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1597 &max_working_cnt); 1598 1599 /* ********************************************************* */ 1600 /* * step 4a: go forward from working phase to non working 1601 phase, increment in ptaps * */ 1602 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1603 &i, &max_working_cnt, &work_end) == 0) 1604 return 0; 1605 1606 /* ********************************************************* */ 1607 /* * step 5a: back off one from last, increment in dtaps * */ 1608 1609 /* Special case code for backing up a phase */ 1610 if (p == 0) { 1611 p = IO_DQS_EN_PHASE_MAX; 1612 rw_mgr_decr_vfifo(grp, &v); 1613 } else { 1614 p = p - 1; 1615 } 1616 1617 work_end -= IO_DELAY_PER_OPA_TAP; 1618 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1619 1620 /* * The actual increment of dtaps is done outside of 1621 the if/else loop to share code */ 1622 d = 0; 1623 1624 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1625 vfifo=%u ptap=%u\n", __func__, __LINE__, 1626 v, p); 1627 } else { 1628 /* ******************************************************* */ 1629 /* * step 3-5b: Find the right edge of the window using 1630 delay taps * */ 1631 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1632 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1633 v, p, d, work_bgn); 1634 1635 work_end = work_bgn; 1636 1637 /* * The actual increment of dtaps is done outside of the 1638 if/else loop to share code */ 1639 1640 /* Only here to counterbalance a subtract later on which is 1641 not needed if this branch of the algorithm is taken */ 1642 max_working_cnt++; 1643 } 1644 1645 /* The dtap increment to find the failing edge is done here */ 1646 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1647 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1648 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1649 end-2: dtap=%u\n", __func__, __LINE__, d); 1650 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1651 1652 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1653 PASS_ONE_BIT, 1654 &bit_chk, 0)) { 1655 break; 1656 } 1657 } 1658 1659 /* Go back to working dtap */ 1660 if (d != 0) 1661 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1662 1663 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1664 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1665 v, p, d-1, work_end); 1666 1667 if (work_end < work_bgn) { 1668 /* nil range */ 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1670 failed\n", __func__, __LINE__); 1671 return 0; 1672 } 1673 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1675 __func__, __LINE__, work_bgn, work_end); 1676 1677 /* *************************************************************** */ 1678 /* 1679 * * We need to calculate the number of dtaps that equal a ptap 1680 * * To do that we'll back up a ptap and re-find the edge of the 1681 * * window using dtaps 1682 */ 1683 1684 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1685 for tracking\n", __func__, __LINE__); 1686 1687 /* Special case code for backing up a phase */ 1688 if (p == 0) { 1689 p = IO_DQS_EN_PHASE_MAX; 1690 rw_mgr_decr_vfifo(grp, &v); 1691 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1692 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1693 v, p); 1694 } else { 1695 p = p - 1; 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1697 phase only: v=%u p=%u", __func__, __LINE__, 1698 v, p); 1699 } 1700 1701 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1702 1703 /* 1704 * Increase dtap until we first see a passing read (in case the 1705 * window is smaller than a ptap), 1706 * and then a failing read to mark the edge of the window again 1707 */ 1708 1709 /* Find a passing read */ 1710 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1711 __func__, __LINE__); 1712 found_passing_read = 0; 1713 found_failing_read = 0; 1714 initial_failing_dtap = d; 1715 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1716 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1717 read d=%u\n", __func__, __LINE__, d); 1718 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1719 1720 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1721 PASS_ONE_BIT, 1722 &bit_chk, 0)) { 1723 found_passing_read = 1; 1724 break; 1725 } 1726 } 1727 1728 if (found_passing_read) { 1729 /* Find a failing read */ 1730 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1731 read\n", __func__, __LINE__); 1732 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1733 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1734 testing read d=%u\n", __func__, __LINE__, d); 1735 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1736 1737 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1738 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1739 found_failing_read = 1; 1740 break; 1741 } 1742 } 1743 } else { 1744 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1745 calculate dtaps", __func__, __LINE__); 1746 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1747 } 1748 1749 /* 1750 * The dynamically calculated dtaps_per_ptap is only valid if we 1751 * found a passing/failing read. If we didn't, it means d hit the max 1752 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1753 * statically calculated value. 1754 */ 1755 if (found_passing_read && found_failing_read) 1756 dtaps_per_ptap = d - initial_failing_dtap; 1757 1758 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1759 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1760 - %u = %u", __func__, __LINE__, d, 1761 initial_failing_dtap, dtaps_per_ptap); 1762 1763 /* ******************************************** */ 1764 /* * step 6: Find the centre of the window * */ 1765 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1766 &work_mid, &work_end) == 0) 1767 return 0; 1768 1769 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1770 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1771 v, p-1, d); 1772 return 1; 1773 } 1774 1775 /* 1776 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1777 * dq_in_delay values 1778 */ 1779 static uint32_t 1780 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1781 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1782 { 1783 uint32_t found; 1784 uint32_t i; 1785 uint32_t p; 1786 uint32_t d; 1787 uint32_t r; 1788 1789 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1790 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1791 /* we start at zero, so have one less dq to devide among */ 1792 1793 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1794 test_bgn); 1795 1796 /* try different dq_in_delays since the dq path is shorter than dqs */ 1797 1798 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1799 r += NUM_RANKS_PER_SHADOW_REG) { 1800 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1801 i++, p++, d += delay_step) { 1802 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1803 vfifo_find_dqs_", __func__, __LINE__); 1804 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1805 write_group, read_group); 1806 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1807 scc_mgr_set_dq_in_delay(p, d); 1808 scc_mgr_load_dq(p); 1809 } 1810 writel(0, &sdr_scc_mgr->update); 1811 } 1812 1813 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1814 1815 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1816 en_phase_sweep_dq", __func__, __LINE__); 1817 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1818 chain to zero\n", write_group, read_group, found); 1819 1820 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1821 r += NUM_RANKS_PER_SHADOW_REG) { 1822 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1823 i++, p++) { 1824 scc_mgr_set_dq_in_delay(p, 0); 1825 scc_mgr_load_dq(p); 1826 } 1827 writel(0, &sdr_scc_mgr->update); 1828 } 1829 1830 return found; 1831 } 1832 1833 /* per-bit deskew DQ and center */ 1834 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1835 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1836 uint32_t use_read_test, uint32_t update_fom) 1837 { 1838 uint32_t i, p, d, min_index; 1839 /* 1840 * Store these as signed since there are comparisons with 1841 * signed numbers. 1842 */ 1843 uint32_t bit_chk; 1844 uint32_t sticky_bit_chk; 1845 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1846 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1847 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1848 int32_t mid; 1849 int32_t orig_mid_min, mid_min; 1850 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1851 final_dqs_en; 1852 int32_t dq_margin, dqs_margin; 1853 uint32_t stop; 1854 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1855 uint32_t addr; 1856 1857 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1858 1859 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1860 start_dqs = readl(addr + (read_group << 2)); 1861 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1862 start_dqs_en = readl(addr + ((read_group << 2) 1863 - IO_DQS_EN_DELAY_OFFSET)); 1864 1865 /* set the left and right edge of each bit to an illegal value */ 1866 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1867 sticky_bit_chk = 0; 1868 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1869 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1870 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1871 } 1872 1873 /* Search for the left edge of the window for each bit */ 1874 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1875 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1876 1877 writel(0, &sdr_scc_mgr->update); 1878 1879 /* 1880 * Stop searching when the read test doesn't pass AND when 1881 * we've seen a passing read on every bit. 1882 */ 1883 if (use_read_test) { 1884 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1885 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1886 &bit_chk, 0, 0); 1887 } else { 1888 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1889 0, PASS_ONE_BIT, 1890 &bit_chk, 0); 1891 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1892 (read_group - (write_group * 1893 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1894 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1895 stop = (bit_chk == 0); 1896 } 1897 sticky_bit_chk = sticky_bit_chk | bit_chk; 1898 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1899 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1900 && %u", __func__, __LINE__, d, 1901 sticky_bit_chk, 1902 param->read_correct_mask, stop); 1903 1904 if (stop == 1) { 1905 break; 1906 } else { 1907 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1908 if (bit_chk & 1) { 1909 /* Remember a passing test as the 1910 left_edge */ 1911 left_edge[i] = d; 1912 } else { 1913 /* If a left edge has not been seen yet, 1914 then a future passing test will mark 1915 this edge as the right edge */ 1916 if (left_edge[i] == 1917 IO_IO_IN_DELAY_MAX + 1) { 1918 right_edge[i] = -(d + 1); 1919 } 1920 } 1921 bit_chk = bit_chk >> 1; 1922 } 1923 } 1924 } 1925 1926 /* Reset DQ delay chains to 0 */ 1927 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1928 sticky_bit_chk = 0; 1929 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1930 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1931 %d right_edge[%u]: %d\n", __func__, __LINE__, 1932 i, left_edge[i], i, right_edge[i]); 1933 1934 /* 1935 * Check for cases where we haven't found the left edge, 1936 * which makes our assignment of the the right edge invalid. 1937 * Reset it to the illegal value. 1938 */ 1939 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1940 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1941 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1942 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1943 right_edge[%u]: %d\n", __func__, __LINE__, 1944 i, right_edge[i]); 1945 } 1946 1947 /* 1948 * Reset sticky bit (except for bits where we have seen 1949 * both the left and right edge). 1950 */ 1951 sticky_bit_chk = sticky_bit_chk << 1; 1952 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1953 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1954 sticky_bit_chk = sticky_bit_chk | 1; 1955 } 1956 1957 if (i == 0) 1958 break; 1959 } 1960 1961 /* Search for the right edge of the window for each bit */ 1962 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1963 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1964 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1965 uint32_t delay = d + start_dqs_en; 1966 if (delay > IO_DQS_EN_DELAY_MAX) 1967 delay = IO_DQS_EN_DELAY_MAX; 1968 scc_mgr_set_dqs_en_delay(read_group, delay); 1969 } 1970 scc_mgr_load_dqs(read_group); 1971 1972 writel(0, &sdr_scc_mgr->update); 1973 1974 /* 1975 * Stop searching when the read test doesn't pass AND when 1976 * we've seen a passing read on every bit. 1977 */ 1978 if (use_read_test) { 1979 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1980 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1981 &bit_chk, 0, 0); 1982 } else { 1983 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1984 0, PASS_ONE_BIT, 1985 &bit_chk, 0); 1986 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1987 (read_group - (write_group * 1988 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1989 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1990 stop = (bit_chk == 0); 1991 } 1992 sticky_bit_chk = sticky_bit_chk | bit_chk; 1993 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1994 1995 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1996 %u && %u", __func__, __LINE__, d, 1997 sticky_bit_chk, param->read_correct_mask, stop); 1998 1999 if (stop == 1) { 2000 break; 2001 } else { 2002 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2003 if (bit_chk & 1) { 2004 /* Remember a passing test as 2005 the right_edge */ 2006 right_edge[i] = d; 2007 } else { 2008 if (d != 0) { 2009 /* If a right edge has not been 2010 seen yet, then a future passing 2011 test will mark this edge as the 2012 left edge */ 2013 if (right_edge[i] == 2014 IO_IO_IN_DELAY_MAX + 1) { 2015 left_edge[i] = -(d + 1); 2016 } 2017 } else { 2018 /* d = 0 failed, but it passed 2019 when testing the left edge, 2020 so it must be marginal, 2021 set it to -1 */ 2022 if (right_edge[i] == 2023 IO_IO_IN_DELAY_MAX + 1 && 2024 left_edge[i] != 2025 IO_IO_IN_DELAY_MAX 2026 + 1) { 2027 right_edge[i] = -1; 2028 } 2029 /* If a right edge has not been 2030 seen yet, then a future passing 2031 test will mark this edge as the 2032 left edge */ 2033 else if (right_edge[i] == 2034 IO_IO_IN_DELAY_MAX + 2035 1) { 2036 left_edge[i] = -(d + 1); 2037 } 2038 } 2039 } 2040 2041 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2042 d=%u]: ", __func__, __LINE__, d); 2043 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2044 (int)(bit_chk & 1), i, left_edge[i]); 2045 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2046 right_edge[i]); 2047 bit_chk = bit_chk >> 1; 2048 } 2049 } 2050 } 2051 2052 /* Check that all bits have a window */ 2053 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2054 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2055 %d right_edge[%u]: %d", __func__, __LINE__, 2056 i, left_edge[i], i, right_edge[i]); 2057 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2058 == IO_IO_IN_DELAY_MAX + 1)) { 2059 /* 2060 * Restore delay chain settings before letting the loop 2061 * in rw_mgr_mem_calibrate_vfifo to retry different 2062 * dqs/ck relationships. 2063 */ 2064 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2065 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2066 scc_mgr_set_dqs_en_delay(read_group, 2067 start_dqs_en); 2068 } 2069 scc_mgr_load_dqs(read_group); 2070 writel(0, &sdr_scc_mgr->update); 2071 2072 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2073 find edge [%u]: %d %d", __func__, __LINE__, 2074 i, left_edge[i], right_edge[i]); 2075 if (use_read_test) { 2076 set_failing_group_stage(read_group * 2077 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2078 CAL_STAGE_VFIFO, 2079 CAL_SUBSTAGE_VFIFO_CENTER); 2080 } else { 2081 set_failing_group_stage(read_group * 2082 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2083 CAL_STAGE_VFIFO_AFTER_WRITES, 2084 CAL_SUBSTAGE_VFIFO_CENTER); 2085 } 2086 return 0; 2087 } 2088 } 2089 2090 /* Find middle of window for each DQ bit */ 2091 mid_min = left_edge[0] - right_edge[0]; 2092 min_index = 0; 2093 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2094 mid = left_edge[i] - right_edge[i]; 2095 if (mid < mid_min) { 2096 mid_min = mid; 2097 min_index = i; 2098 } 2099 } 2100 2101 /* 2102 * -mid_min/2 represents the amount that we need to move DQS. 2103 * If mid_min is odd and positive we'll need to add one to 2104 * make sure the rounding in further calculations is correct 2105 * (always bias to the right), so just add 1 for all positive values. 2106 */ 2107 if (mid_min > 0) 2108 mid_min++; 2109 2110 mid_min = mid_min / 2; 2111 2112 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2113 __func__, __LINE__, mid_min, min_index); 2114 2115 /* Determine the amount we can change DQS (which is -mid_min) */ 2116 orig_mid_min = mid_min; 2117 new_dqs = start_dqs - mid_min; 2118 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2119 new_dqs = IO_DQS_IN_DELAY_MAX; 2120 else if (new_dqs < 0) 2121 new_dqs = 0; 2122 2123 mid_min = start_dqs - new_dqs; 2124 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2125 mid_min, new_dqs); 2126 2127 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2128 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2129 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2130 else if (start_dqs_en - mid_min < 0) 2131 mid_min += start_dqs_en - mid_min; 2132 } 2133 new_dqs = start_dqs - mid_min; 2134 2135 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2136 new_dqs=%d mid_min=%d\n", start_dqs, 2137 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2138 new_dqs, mid_min); 2139 2140 /* Initialize data for export structures */ 2141 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2142 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2143 2144 /* add delay to bring centre of all DQ windows to the same "level" */ 2145 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2146 /* Use values before divide by 2 to reduce round off error */ 2147 shift_dq = (left_edge[i] - right_edge[i] - 2148 (left_edge[min_index] - right_edge[min_index]))/2 + 2149 (orig_mid_min - mid_min); 2150 2151 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2152 shift_dq[%u]=%d\n", i, shift_dq); 2153 2154 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2155 temp_dq_in_delay1 = readl(addr + (p << 2)); 2156 temp_dq_in_delay2 = readl(addr + (i << 2)); 2157 2158 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2159 (int32_t)IO_IO_IN_DELAY_MAX) { 2160 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2161 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2162 shift_dq = -(int32_t)temp_dq_in_delay1; 2163 } 2164 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2165 shift_dq[%u]=%d\n", i, shift_dq); 2166 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2167 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2168 scc_mgr_load_dq(p); 2169 2170 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2171 left_edge[i] - shift_dq + (-mid_min), 2172 right_edge[i] + shift_dq - (-mid_min)); 2173 /* To determine values for export structures */ 2174 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2175 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2176 2177 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2178 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2179 } 2180 2181 final_dqs = new_dqs; 2182 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2183 final_dqs_en = start_dqs_en - mid_min; 2184 2185 /* Move DQS-en */ 2186 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2187 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2188 scc_mgr_load_dqs(read_group); 2189 } 2190 2191 /* Move DQS */ 2192 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2193 scc_mgr_load_dqs(read_group); 2194 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2195 dqs_margin=%d", __func__, __LINE__, 2196 dq_margin, dqs_margin); 2197 2198 /* 2199 * Do not remove this line as it makes sure all of our decisions 2200 * have been applied. Apply the update bit. 2201 */ 2202 writel(0, &sdr_scc_mgr->update); 2203 2204 return (dq_margin >= 0) && (dqs_margin >= 0); 2205 } 2206 2207 /* 2208 * calibrate the read valid prediction FIFO. 2209 * 2210 * - read valid prediction will consist of finding a good DQS enable phase, 2211 * DQS enable delay, DQS input phase, and DQS input delay. 2212 * - we also do a per-bit deskew on the DQ lines. 2213 */ 2214 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2215 uint32_t test_bgn) 2216 { 2217 uint32_t p, d, rank_bgn, sr; 2218 uint32_t dtaps_per_ptap; 2219 uint32_t tmp_delay; 2220 uint32_t bit_chk; 2221 uint32_t grp_calibrated; 2222 uint32_t write_group, write_test_bgn; 2223 uint32_t failed_substage; 2224 2225 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2226 2227 /* update info for sims */ 2228 reg_file_set_stage(CAL_STAGE_VFIFO); 2229 2230 write_group = read_group; 2231 write_test_bgn = test_bgn; 2232 2233 /* USER Determine number of delay taps for each phase tap */ 2234 dtaps_per_ptap = 0; 2235 tmp_delay = 0; 2236 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2237 dtaps_per_ptap++; 2238 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2239 } 2240 dtaps_per_ptap--; 2241 tmp_delay = 0; 2242 2243 /* update info for sims */ 2244 reg_file_set_group(read_group); 2245 2246 grp_calibrated = 0; 2247 2248 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2249 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2250 2251 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2252 /* 2253 * In RLDRAMX we may be messing the delay of pins in 2254 * the same write group but outside of the current read 2255 * the group, but that's ok because we haven't 2256 * calibrated output side yet. 2257 */ 2258 if (d > 0) { 2259 scc_mgr_apply_group_all_out_delay_add_all_ranks 2260 (write_group, write_test_bgn, d); 2261 } 2262 2263 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2264 p++) { 2265 /* set a particular dqdqs phase */ 2266 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2267 2268 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2269 p=%u d=%u\n", __func__, __LINE__, 2270 read_group, p, d); 2271 2272 /* 2273 * Load up the patterns used by read calibration 2274 * using current DQDQS phase. 2275 */ 2276 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2277 if (!(gbl->phy_debug_mode_flags & 2278 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2279 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2280 (read_group, 1, &bit_chk)) { 2281 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2282 __func__, __LINE__); 2283 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2284 read_group, p, d); 2285 break; 2286 } 2287 } 2288 2289 /* case:56390 */ 2290 grp_calibrated = 1; 2291 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2292 (write_group, read_group, test_bgn)) { 2293 /* 2294 * USER Read per-bit deskew can be done on a 2295 * per shadow register basis. 2296 */ 2297 for (rank_bgn = 0, sr = 0; 2298 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2299 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2300 ++sr) { 2301 /* 2302 * Determine if this set of ranks 2303 * should be skipped entirely. 2304 */ 2305 if (!param->skip_shadow_regs[sr]) { 2306 /* 2307 * If doing read after write 2308 * calibration, do not update 2309 * FOM, now - do it then. 2310 */ 2311 if (!rw_mgr_mem_calibrate_vfifo_center 2312 (rank_bgn, write_group, 2313 read_group, test_bgn, 1, 0)) { 2314 grp_calibrated = 0; 2315 failed_substage = 2316 CAL_SUBSTAGE_VFIFO_CENTER; 2317 } 2318 } 2319 } 2320 } else { 2321 grp_calibrated = 0; 2322 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2323 } 2324 } 2325 } 2326 2327 if (grp_calibrated == 0) { 2328 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2329 failed_substage); 2330 return 0; 2331 } 2332 2333 /* 2334 * Reset the delay chains back to zero if they have moved > 1 2335 * (check for > 1 because loop will increase d even when pass in 2336 * first case). 2337 */ 2338 if (d > 2) 2339 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2340 2341 return 1; 2342 } 2343 2344 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2345 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2346 uint32_t test_bgn) 2347 { 2348 uint32_t rank_bgn, sr; 2349 uint32_t grp_calibrated; 2350 uint32_t write_group; 2351 2352 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2353 2354 /* update info for sims */ 2355 2356 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2357 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2358 2359 write_group = read_group; 2360 2361 /* update info for sims */ 2362 reg_file_set_group(read_group); 2363 2364 grp_calibrated = 1; 2365 /* Read per-bit deskew can be done on a per shadow register basis */ 2366 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2367 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2368 /* Determine if this set of ranks should be skipped entirely */ 2369 if (!param->skip_shadow_regs[sr]) { 2370 /* This is the last calibration round, update FOM here */ 2371 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2372 write_group, 2373 read_group, 2374 test_bgn, 0, 2375 1)) { 2376 grp_calibrated = 0; 2377 } 2378 } 2379 } 2380 2381 2382 if (grp_calibrated == 0) { 2383 set_failing_group_stage(write_group, 2384 CAL_STAGE_VFIFO_AFTER_WRITES, 2385 CAL_SUBSTAGE_VFIFO_CENTER); 2386 return 0; 2387 } 2388 2389 return 1; 2390 } 2391 2392 /* Calibrate LFIFO to find smallest read latency */ 2393 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2394 { 2395 uint32_t found_one; 2396 uint32_t bit_chk; 2397 2398 debug("%s:%d\n", __func__, __LINE__); 2399 2400 /* update info for sims */ 2401 reg_file_set_stage(CAL_STAGE_LFIFO); 2402 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2403 2404 /* Load up the patterns used by read calibration for all ranks */ 2405 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2406 found_one = 0; 2407 2408 do { 2409 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2410 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2411 __func__, __LINE__, gbl->curr_read_lat); 2412 2413 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2414 NUM_READ_TESTS, 2415 PASS_ALL_BITS, 2416 &bit_chk, 1)) { 2417 break; 2418 } 2419 2420 found_one = 1; 2421 /* reduce read latency and see if things are working */ 2422 /* correctly */ 2423 gbl->curr_read_lat--; 2424 } while (gbl->curr_read_lat > 0); 2425 2426 /* reset the fifos to get pointers to known state */ 2427 2428 writel(0, &phy_mgr_cmd->fifo_reset); 2429 2430 if (found_one) { 2431 /* add a fudge factor to the read latency that was determined */ 2432 gbl->curr_read_lat += 2; 2433 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2434 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2435 read_lat=%u\n", __func__, __LINE__, 2436 gbl->curr_read_lat); 2437 return 1; 2438 } else { 2439 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2440 CAL_SUBSTAGE_READ_LATENCY); 2441 2442 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2443 read_lat=%u\n", __func__, __LINE__, 2444 gbl->curr_read_lat); 2445 return 0; 2446 } 2447 } 2448 2449 /* 2450 * issue write test command. 2451 * two variants are provided. one that just tests a write pattern and 2452 * another that tests datamask functionality. 2453 */ 2454 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2455 uint32_t test_dm) 2456 { 2457 uint32_t mcc_instruction; 2458 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2459 ENABLE_SUPER_QUICK_CALIBRATION); 2460 uint32_t rw_wl_nop_cycles; 2461 uint32_t addr; 2462 2463 /* 2464 * Set counter and jump addresses for the right 2465 * number of NOP cycles. 2466 * The number of supported NOP cycles can range from -1 to infinity 2467 * Three different cases are handled: 2468 * 2469 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2470 * mechanism will be used to insert the right number of NOPs 2471 * 2472 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2473 * issuing the write command will jump straight to the 2474 * micro-instruction that turns on DQS (for DDRx), or outputs write 2475 * data (for RLD), skipping 2476 * the NOP micro-instruction all together 2477 * 2478 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2479 * turned on in the same micro-instruction that issues the write 2480 * command. Then we need 2481 * to directly jump to the micro-instruction that sends out the data 2482 * 2483 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2484 * (2 and 3). One jump-counter (0) is used to perform multiple 2485 * write-read operations. 2486 * one counter left to issue this command in "multiple-group" mode 2487 */ 2488 2489 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2490 2491 if (rw_wl_nop_cycles == -1) { 2492 /* 2493 * CNTR 2 - We want to execute the special write operation that 2494 * turns on DQS right away and then skip directly to the 2495 * instruction that sends out the data. We set the counter to a 2496 * large number so that the jump is always taken. 2497 */ 2498 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2499 2500 /* CNTR 3 - Not used */ 2501 if (test_dm) { 2502 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2503 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2504 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2505 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2506 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2507 } else { 2508 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2509 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2510 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2511 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2512 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2513 } 2514 } else if (rw_wl_nop_cycles == 0) { 2515 /* 2516 * CNTR 2 - We want to skip the NOP operation and go straight 2517 * to the DQS enable instruction. We set the counter to a large 2518 * number so that the jump is always taken. 2519 */ 2520 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2521 2522 /* CNTR 3 - Not used */ 2523 if (test_dm) { 2524 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2525 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2526 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2527 } else { 2528 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2529 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2530 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2531 } 2532 } else { 2533 /* 2534 * CNTR 2 - In this case we want to execute the next instruction 2535 * and NOT take the jump. So we set the counter to 0. The jump 2536 * address doesn't count. 2537 */ 2538 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2539 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2540 2541 /* 2542 * CNTR 3 - Set the nop counter to the number of cycles we 2543 * need to loop for, minus 1. 2544 */ 2545 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2546 if (test_dm) { 2547 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2548 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2549 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2550 } else { 2551 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2552 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2553 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2554 } 2555 } 2556 2557 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2558 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2559 2560 if (quick_write_mode) 2561 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2562 else 2563 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2564 2565 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2566 2567 /* 2568 * CNTR 1 - This is used to ensure enough time elapses 2569 * for read data to come back. 2570 */ 2571 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2572 2573 if (test_dm) { 2574 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2575 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2576 } else { 2577 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2578 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2579 } 2580 2581 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2582 writel(mcc_instruction, addr + (group << 2)); 2583 } 2584 2585 /* Test writes, can check for a single bit pass or multiple bit pass */ 2586 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2587 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2588 uint32_t *bit_chk, uint32_t all_ranks) 2589 { 2590 uint32_t r; 2591 uint32_t correct_mask_vg; 2592 uint32_t tmp_bit_chk; 2593 uint32_t vg; 2594 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2595 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2596 uint32_t addr_rw_mgr; 2597 uint32_t base_rw_mgr; 2598 2599 *bit_chk = param->write_correct_mask; 2600 correct_mask_vg = param->write_correct_mask_vg; 2601 2602 for (r = rank_bgn; r < rank_end; r++) { 2603 if (param->skip_ranks[r]) { 2604 /* request to skip the rank */ 2605 continue; 2606 } 2607 2608 /* set rank */ 2609 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2610 2611 tmp_bit_chk = 0; 2612 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2613 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2614 /* reset the fifos to get pointers to known state */ 2615 writel(0, &phy_mgr_cmd->fifo_reset); 2616 2617 tmp_bit_chk = tmp_bit_chk << 2618 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2619 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2620 rw_mgr_mem_calibrate_write_test_issue(write_group * 2621 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2622 use_dm); 2623 2624 base_rw_mgr = readl(addr_rw_mgr); 2625 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2626 if (vg == 0) 2627 break; 2628 } 2629 *bit_chk &= tmp_bit_chk; 2630 } 2631 2632 if (all_correct) { 2633 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2634 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2635 %u => %lu", write_group, use_dm, 2636 *bit_chk, param->write_correct_mask, 2637 (long unsigned int)(*bit_chk == 2638 param->write_correct_mask)); 2639 return *bit_chk == param->write_correct_mask; 2640 } else { 2641 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2642 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2643 write_group, use_dm, *bit_chk); 2644 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2645 (long unsigned int)(*bit_chk != 0)); 2646 return *bit_chk != 0x00; 2647 } 2648 } 2649 2650 /* 2651 * center all windows. do per-bit-deskew to possibly increase size of 2652 * certain windows. 2653 */ 2654 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2655 uint32_t write_group, uint32_t test_bgn) 2656 { 2657 uint32_t i, p, min_index; 2658 int32_t d; 2659 /* 2660 * Store these as signed since there are comparisons with 2661 * signed numbers. 2662 */ 2663 uint32_t bit_chk; 2664 uint32_t sticky_bit_chk; 2665 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2666 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2667 int32_t mid; 2668 int32_t mid_min, orig_mid_min; 2669 int32_t new_dqs, start_dqs, shift_dq; 2670 int32_t dq_margin, dqs_margin, dm_margin; 2671 uint32_t stop; 2672 uint32_t temp_dq_out1_delay; 2673 uint32_t addr; 2674 2675 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2676 2677 dm_margin = 0; 2678 2679 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2680 start_dqs = readl(addr + 2681 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2682 2683 /* per-bit deskew */ 2684 2685 /* 2686 * set the left and right edge of each bit to an illegal value 2687 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2688 */ 2689 sticky_bit_chk = 0; 2690 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2691 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2692 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2693 } 2694 2695 /* Search for the left edge of the window for each bit */ 2696 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2697 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2698 2699 writel(0, &sdr_scc_mgr->update); 2700 2701 /* 2702 * Stop searching when the read test doesn't pass AND when 2703 * we've seen a passing read on every bit. 2704 */ 2705 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2706 0, PASS_ONE_BIT, &bit_chk, 0); 2707 sticky_bit_chk = sticky_bit_chk | bit_chk; 2708 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2709 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2710 == %u && %u [bit_chk= %u ]\n", 2711 d, sticky_bit_chk, param->write_correct_mask, 2712 stop, bit_chk); 2713 2714 if (stop == 1) { 2715 break; 2716 } else { 2717 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2718 if (bit_chk & 1) { 2719 /* 2720 * Remember a passing test as the 2721 * left_edge. 2722 */ 2723 left_edge[i] = d; 2724 } else { 2725 /* 2726 * If a left edge has not been seen 2727 * yet, then a future passing test will 2728 * mark this edge as the right edge. 2729 */ 2730 if (left_edge[i] == 2731 IO_IO_OUT1_DELAY_MAX + 1) { 2732 right_edge[i] = -(d + 1); 2733 } 2734 } 2735 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2736 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2737 (int)(bit_chk & 1), i, left_edge[i]); 2738 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2739 right_edge[i]); 2740 bit_chk = bit_chk >> 1; 2741 } 2742 } 2743 } 2744 2745 /* Reset DQ delay chains to 0 */ 2746 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2747 sticky_bit_chk = 0; 2748 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2749 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2750 %d right_edge[%u]: %d\n", __func__, __LINE__, 2751 i, left_edge[i], i, right_edge[i]); 2752 2753 /* 2754 * Check for cases where we haven't found the left edge, 2755 * which makes our assignment of the the right edge invalid. 2756 * Reset it to the illegal value. 2757 */ 2758 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2759 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2760 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2761 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2762 right_edge[%u]: %d\n", __func__, __LINE__, 2763 i, right_edge[i]); 2764 } 2765 2766 /* 2767 * Reset sticky bit (except for bits where we have 2768 * seen the left edge). 2769 */ 2770 sticky_bit_chk = sticky_bit_chk << 1; 2771 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2772 sticky_bit_chk = sticky_bit_chk | 1; 2773 2774 if (i == 0) 2775 break; 2776 } 2777 2778 /* Search for the right edge of the window for each bit */ 2779 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2780 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2781 d + start_dqs); 2782 2783 writel(0, &sdr_scc_mgr->update); 2784 2785 /* 2786 * Stop searching when the read test doesn't pass AND when 2787 * we've seen a passing read on every bit. 2788 */ 2789 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2790 0, PASS_ONE_BIT, &bit_chk, 0); 2791 2792 sticky_bit_chk = sticky_bit_chk | bit_chk; 2793 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2794 2795 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2796 %u && %u\n", d, sticky_bit_chk, 2797 param->write_correct_mask, stop); 2798 2799 if (stop == 1) { 2800 if (d == 0) { 2801 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2802 i++) { 2803 /* d = 0 failed, but it passed when 2804 testing the left edge, so it must be 2805 marginal, set it to -1 */ 2806 if (right_edge[i] == 2807 IO_IO_OUT1_DELAY_MAX + 1 && 2808 left_edge[i] != 2809 IO_IO_OUT1_DELAY_MAX + 1) { 2810 right_edge[i] = -1; 2811 } 2812 } 2813 } 2814 break; 2815 } else { 2816 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2817 if (bit_chk & 1) { 2818 /* 2819 * Remember a passing test as 2820 * the right_edge. 2821 */ 2822 right_edge[i] = d; 2823 } else { 2824 if (d != 0) { 2825 /* 2826 * If a right edge has not 2827 * been seen yet, then a future 2828 * passing test will mark this 2829 * edge as the left edge. 2830 */ 2831 if (right_edge[i] == 2832 IO_IO_OUT1_DELAY_MAX + 1) 2833 left_edge[i] = -(d + 1); 2834 } else { 2835 /* 2836 * d = 0 failed, but it passed 2837 * when testing the left edge, 2838 * so it must be marginal, set 2839 * it to -1. 2840 */ 2841 if (right_edge[i] == 2842 IO_IO_OUT1_DELAY_MAX + 1 && 2843 left_edge[i] != 2844 IO_IO_OUT1_DELAY_MAX + 1) 2845 right_edge[i] = -1; 2846 /* 2847 * If a right edge has not been 2848 * seen yet, then a future 2849 * passing test will mark this 2850 * edge as the left edge. 2851 */ 2852 else if (right_edge[i] == 2853 IO_IO_OUT1_DELAY_MAX + 2854 1) 2855 left_edge[i] = -(d + 1); 2856 } 2857 } 2858 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2859 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2860 (int)(bit_chk & 1), i, left_edge[i]); 2861 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2862 right_edge[i]); 2863 bit_chk = bit_chk >> 1; 2864 } 2865 } 2866 } 2867 2868 /* Check that all bits have a window */ 2869 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2870 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2871 %d right_edge[%u]: %d", __func__, __LINE__, 2872 i, left_edge[i], i, right_edge[i]); 2873 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2874 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2875 set_failing_group_stage(test_bgn + i, 2876 CAL_STAGE_WRITES, 2877 CAL_SUBSTAGE_WRITES_CENTER); 2878 return 0; 2879 } 2880 } 2881 2882 /* Find middle of window for each DQ bit */ 2883 mid_min = left_edge[0] - right_edge[0]; 2884 min_index = 0; 2885 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2886 mid = left_edge[i] - right_edge[i]; 2887 if (mid < mid_min) { 2888 mid_min = mid; 2889 min_index = i; 2890 } 2891 } 2892 2893 /* 2894 * -mid_min/2 represents the amount that we need to move DQS. 2895 * If mid_min is odd and positive we'll need to add one to 2896 * make sure the rounding in further calculations is correct 2897 * (always bias to the right), so just add 1 for all positive values. 2898 */ 2899 if (mid_min > 0) 2900 mid_min++; 2901 mid_min = mid_min / 2; 2902 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2903 __LINE__, mid_min); 2904 2905 /* Determine the amount we can change DQS (which is -mid_min) */ 2906 orig_mid_min = mid_min; 2907 new_dqs = start_dqs; 2908 mid_min = 0; 2909 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2910 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2911 /* Initialize data for export structures */ 2912 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2913 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2914 2915 /* add delay to bring centre of all DQ windows to the same "level" */ 2916 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2917 /* Use values before divide by 2 to reduce round off error */ 2918 shift_dq = (left_edge[i] - right_edge[i] - 2919 (left_edge[min_index] - right_edge[min_index]))/2 + 2920 (orig_mid_min - mid_min); 2921 2922 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2923 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2924 2925 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2926 temp_dq_out1_delay = readl(addr + (i << 2)); 2927 if (shift_dq + (int32_t)temp_dq_out1_delay > 2928 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2929 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2930 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2931 shift_dq = -(int32_t)temp_dq_out1_delay; 2932 } 2933 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2934 i, shift_dq); 2935 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2936 scc_mgr_load_dq(i); 2937 2938 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2939 left_edge[i] - shift_dq + (-mid_min), 2940 right_edge[i] + shift_dq - (-mid_min)); 2941 /* To determine values for export structures */ 2942 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2943 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2944 2945 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2946 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2947 } 2948 2949 /* Move DQS */ 2950 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2951 writel(0, &sdr_scc_mgr->update); 2952 2953 /* Centre DM */ 2954 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2955 2956 /* 2957 * set the left and right edge of each bit to an illegal value, 2958 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2959 */ 2960 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2961 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2962 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2963 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2964 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2965 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2966 int32_t win_best = 0; 2967 2968 /* Search for the/part of the window with DM shift */ 2969 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2970 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2971 writel(0, &sdr_scc_mgr->update); 2972 2973 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2974 PASS_ALL_BITS, &bit_chk, 2975 0)) { 2976 /* USE Set current end of the window */ 2977 end_curr = -d; 2978 /* 2979 * If a starting edge of our window has not been seen 2980 * this is our current start of the DM window. 2981 */ 2982 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2983 bgn_curr = -d; 2984 2985 /* 2986 * If current window is bigger than best seen. 2987 * Set best seen to be current window. 2988 */ 2989 if ((end_curr-bgn_curr+1) > win_best) { 2990 win_best = end_curr-bgn_curr+1; 2991 bgn_best = bgn_curr; 2992 end_best = end_curr; 2993 } 2994 } else { 2995 /* We just saw a failing test. Reset temp edge */ 2996 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2997 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2998 } 2999 } 3000 3001 3002 /* Reset DM delay chains to 0 */ 3003 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3004 3005 /* 3006 * Check to see if the current window nudges up aganist 0 delay. 3007 * If so we need to continue the search by shifting DQS otherwise DQS 3008 * search begins as a new search. */ 3009 if (end_curr != 0) { 3010 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3011 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3012 } 3013 3014 /* Search for the/part of the window with DQS shifts */ 3015 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3016 /* 3017 * Note: This only shifts DQS, so are we limiting ourselve to 3018 * width of DQ unnecessarily. 3019 */ 3020 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3021 d + new_dqs); 3022 3023 writel(0, &sdr_scc_mgr->update); 3024 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3025 PASS_ALL_BITS, &bit_chk, 3026 0)) { 3027 /* USE Set current end of the window */ 3028 end_curr = d; 3029 /* 3030 * If a beginning edge of our window has not been seen 3031 * this is our current begin of the DM window. 3032 */ 3033 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3034 bgn_curr = d; 3035 3036 /* 3037 * If current window is bigger than best seen. Set best 3038 * seen to be current window. 3039 */ 3040 if ((end_curr-bgn_curr+1) > win_best) { 3041 win_best = end_curr-bgn_curr+1; 3042 bgn_best = bgn_curr; 3043 end_best = end_curr; 3044 } 3045 } else { 3046 /* We just saw a failing test. Reset temp edge */ 3047 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3048 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3049 3050 /* Early exit optimization: if ther remaining delay 3051 chain space is less than already seen largest window 3052 we can exit */ 3053 if ((win_best-1) > 3054 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3055 break; 3056 } 3057 } 3058 } 3059 3060 /* assign left and right edge for cal and reporting; */ 3061 left_edge[0] = -1*bgn_best; 3062 right_edge[0] = end_best; 3063 3064 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3065 __LINE__, left_edge[0], right_edge[0]); 3066 3067 /* Move DQS (back to orig) */ 3068 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3069 3070 /* Move DM */ 3071 3072 /* Find middle of window for the DM bit */ 3073 mid = (left_edge[0] - right_edge[0]) / 2; 3074 3075 /* only move right, since we are not moving DQS/DQ */ 3076 if (mid < 0) 3077 mid = 0; 3078 3079 /* dm_marign should fail if we never find a window */ 3080 if (win_best == 0) 3081 dm_margin = -1; 3082 else 3083 dm_margin = left_edge[0] - mid; 3084 3085 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3086 writel(0, &sdr_scc_mgr->update); 3087 3088 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3089 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3090 right_edge[0], mid, dm_margin); 3091 /* Export values */ 3092 gbl->fom_out += dq_margin + dqs_margin; 3093 3094 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3095 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3096 dq_margin, dqs_margin, dm_margin); 3097 3098 /* 3099 * Do not remove this line as it makes sure all of our 3100 * decisions have been applied. 3101 */ 3102 writel(0, &sdr_scc_mgr->update); 3103 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3104 } 3105 3106 /* calibrate the write operations */ 3107 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3108 uint32_t test_bgn) 3109 { 3110 /* update info for sims */ 3111 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3112 3113 reg_file_set_stage(CAL_STAGE_WRITES); 3114 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3115 3116 reg_file_set_group(g); 3117 3118 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3119 set_failing_group_stage(g, CAL_STAGE_WRITES, 3120 CAL_SUBSTAGE_WRITES_CENTER); 3121 return 0; 3122 } 3123 3124 return 1; 3125 } 3126 3127 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3128 static void mem_precharge_and_activate(void) 3129 { 3130 uint32_t r; 3131 3132 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3133 if (param->skip_ranks[r]) { 3134 /* request to skip the rank */ 3135 continue; 3136 } 3137 3138 /* set rank */ 3139 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3140 3141 /* precharge all banks ... */ 3142 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3143 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3144 3145 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3146 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3147 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3148 3149 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3150 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3152 3153 /* activate rows */ 3154 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3155 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3156 } 3157 } 3158 3159 /* Configure various memory related parameters. */ 3160 static void mem_config(void) 3161 { 3162 uint32_t rlat, wlat; 3163 uint32_t rw_wl_nop_cycles; 3164 uint32_t max_latency; 3165 3166 debug("%s:%d\n", __func__, __LINE__); 3167 /* read in write and read latency */ 3168 wlat = readl(&data_mgr->t_wl_add); 3169 wlat += readl(&data_mgr->mem_t_add); 3170 3171 /* WL for hard phy does not include additive latency */ 3172 3173 /* 3174 * add addtional write latency to offset the address/command extra 3175 * clock cycle. We change the AC mux setting causing AC to be delayed 3176 * by one mem clock cycle. Only do this for DDR3 3177 */ 3178 wlat = wlat + 1; 3179 3180 rlat = readl(&data_mgr->t_rl_add); 3181 3182 rw_wl_nop_cycles = wlat - 2; 3183 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3184 3185 /* 3186 * For AV/CV, lfifo is hardened and always runs at full rate so 3187 * max latency in AFI clocks, used here, is correspondingly smaller. 3188 */ 3189 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3190 /* configure for a burst length of 8 */ 3191 3192 /* write latency */ 3193 /* Adjust Write Latency for Hard PHY */ 3194 wlat = wlat + 1; 3195 3196 /* set a pretty high read latency initially */ 3197 gbl->curr_read_lat = rlat + 16; 3198 3199 if (gbl->curr_read_lat > max_latency) 3200 gbl->curr_read_lat = max_latency; 3201 3202 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3203 3204 /* advertise write latency */ 3205 gbl->curr_write_lat = wlat; 3206 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3207 3208 /* initialize bit slips */ 3209 mem_precharge_and_activate(); 3210 } 3211 3212 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3213 static void mem_skip_calibrate(void) 3214 { 3215 uint32_t vfifo_offset; 3216 uint32_t i, j, r; 3217 3218 debug("%s:%d\n", __func__, __LINE__); 3219 /* Need to update every shadow register set used by the interface */ 3220 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3221 r += NUM_RANKS_PER_SHADOW_REG) { 3222 /* 3223 * Set output phase alignment settings appropriate for 3224 * skip calibration. 3225 */ 3226 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3227 scc_mgr_set_dqs_en_phase(i, 0); 3228 #if IO_DLL_CHAIN_LENGTH == 6 3229 scc_mgr_set_dqdqs_output_phase(i, 6); 3230 #else 3231 scc_mgr_set_dqdqs_output_phase(i, 7); 3232 #endif 3233 /* 3234 * Case:33398 3235 * 3236 * Write data arrives to the I/O two cycles before write 3237 * latency is reached (720 deg). 3238 * -> due to bit-slip in a/c bus 3239 * -> to allow board skew where dqs is longer than ck 3240 * -> how often can this happen!? 3241 * -> can claim back some ptaps for high freq 3242 * support if we can relax this, but i digress... 3243 * 3244 * The write_clk leads mem_ck by 90 deg 3245 * The minimum ptap of the OPA is 180 deg 3246 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3247 * The write_clk is always delayed by 2 ptaps 3248 * 3249 * Hence, to make DQS aligned to CK, we need to delay 3250 * DQS by: 3251 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3252 * 3253 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3254 * gives us the number of ptaps, which simplies to: 3255 * 3256 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3257 */ 3258 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3259 IO_DLL_CHAIN_LENGTH - 2)); 3260 } 3261 writel(0xff, &sdr_scc_mgr->dqs_ena); 3262 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3263 3264 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3265 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3266 SCC_MGR_GROUP_COUNTER_OFFSET); 3267 } 3268 writel(0xff, &sdr_scc_mgr->dq_ena); 3269 writel(0xff, &sdr_scc_mgr->dm_ena); 3270 writel(0, &sdr_scc_mgr->update); 3271 } 3272 3273 /* Compensate for simulation model behaviour */ 3274 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3275 scc_mgr_set_dqs_bus_in_delay(i, 10); 3276 scc_mgr_load_dqs(i); 3277 } 3278 writel(0, &sdr_scc_mgr->update); 3279 3280 /* 3281 * ArriaV has hard FIFOs that can only be initialized by incrementing 3282 * in sequencer. 3283 */ 3284 vfifo_offset = CALIB_VFIFO_OFFSET; 3285 for (j = 0; j < vfifo_offset; j++) { 3286 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3287 } 3288 writel(0, &phy_mgr_cmd->fifo_reset); 3289 3290 /* 3291 * For ACV with hard lfifo, we get the skip-cal setting from 3292 * generation-time constant. 3293 */ 3294 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3295 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3296 } 3297 3298 /* Memory calibration entry point */ 3299 static uint32_t mem_calibrate(void) 3300 { 3301 uint32_t i; 3302 uint32_t rank_bgn, sr; 3303 uint32_t write_group, write_test_bgn; 3304 uint32_t read_group, read_test_bgn; 3305 uint32_t run_groups, current_run; 3306 uint32_t failing_groups = 0; 3307 uint32_t group_failed = 0; 3308 uint32_t sr_failed = 0; 3309 3310 debug("%s:%d\n", __func__, __LINE__); 3311 /* Initialize the data settings */ 3312 3313 gbl->error_substage = CAL_SUBSTAGE_NIL; 3314 gbl->error_stage = CAL_STAGE_NIL; 3315 gbl->error_group = 0xff; 3316 gbl->fom_in = 0; 3317 gbl->fom_out = 0; 3318 3319 mem_config(); 3320 3321 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3322 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3323 SCC_MGR_GROUP_COUNTER_OFFSET); 3324 scc_set_bypass_mode(i); 3325 } 3326 3327 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3328 /* 3329 * Set VFIFO and LFIFO to instant-on settings in skip 3330 * calibration mode. 3331 */ 3332 mem_skip_calibrate(); 3333 } else { 3334 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3335 /* 3336 * Zero all delay chain/phase settings for all 3337 * groups and all shadow register sets. 3338 */ 3339 scc_mgr_zero_all(); 3340 3341 run_groups = ~param->skip_groups; 3342 3343 for (write_group = 0, write_test_bgn = 0; write_group 3344 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3345 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3346 /* Initialized the group failure */ 3347 group_failed = 0; 3348 3349 current_run = run_groups & ((1 << 3350 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3351 run_groups = run_groups >> 3352 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3353 3354 if (current_run == 0) 3355 continue; 3356 3357 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3358 SCC_MGR_GROUP_COUNTER_OFFSET); 3359 scc_mgr_zero_group(write_group, write_test_bgn, 3360 0); 3361 3362 for (read_group = write_group * 3363 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3364 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3365 read_test_bgn = 0; 3366 read_group < (write_group + 1) * 3367 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3368 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3369 group_failed == 0; 3370 read_group++, read_test_bgn += 3371 RW_MGR_MEM_DQ_PER_READ_DQS) { 3372 /* Calibrate the VFIFO */ 3373 if (!((STATIC_CALIB_STEPS) & 3374 CALIB_SKIP_VFIFO)) { 3375 if (!rw_mgr_mem_calibrate_vfifo 3376 (read_group, 3377 read_test_bgn)) { 3378 group_failed = 1; 3379 3380 if (!(gbl-> 3381 phy_debug_mode_flags & 3382 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3383 return 0; 3384 } 3385 } 3386 } 3387 } 3388 3389 /* Calibrate the output side */ 3390 if (group_failed == 0) { 3391 for (rank_bgn = 0, sr = 0; rank_bgn 3392 < RW_MGR_MEM_NUMBER_OF_RANKS; 3393 rank_bgn += 3394 NUM_RANKS_PER_SHADOW_REG, 3395 ++sr) { 3396 sr_failed = 0; 3397 if (!((STATIC_CALIB_STEPS) & 3398 CALIB_SKIP_WRITES)) { 3399 if ((STATIC_CALIB_STEPS) 3400 & CALIB_SKIP_DELAY_SWEEPS) { 3401 /* not needed in quick mode! */ 3402 } else { 3403 /* 3404 * Determine if this set of 3405 * ranks should be skipped 3406 * entirely. 3407 */ 3408 if (!param->skip_shadow_regs[sr]) { 3409 if (!rw_mgr_mem_calibrate_writes 3410 (rank_bgn, write_group, 3411 write_test_bgn)) { 3412 sr_failed = 1; 3413 if (!(gbl-> 3414 phy_debug_mode_flags & 3415 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3416 return 0; 3417 } 3418 } 3419 } 3420 } 3421 } 3422 if (sr_failed != 0) 3423 group_failed = 1; 3424 } 3425 } 3426 3427 if (group_failed == 0) { 3428 for (read_group = write_group * 3429 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3430 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3431 read_test_bgn = 0; 3432 read_group < (write_group + 1) 3433 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3434 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3435 group_failed == 0; 3436 read_group++, read_test_bgn += 3437 RW_MGR_MEM_DQ_PER_READ_DQS) { 3438 if (!((STATIC_CALIB_STEPS) & 3439 CALIB_SKIP_WRITES)) { 3440 if (!rw_mgr_mem_calibrate_vfifo_end 3441 (read_group, read_test_bgn)) { 3442 group_failed = 1; 3443 3444 if (!(gbl->phy_debug_mode_flags 3445 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3446 return 0; 3447 } 3448 } 3449 } 3450 } 3451 } 3452 3453 if (group_failed != 0) 3454 failing_groups++; 3455 } 3456 3457 /* 3458 * USER If there are any failing groups then report 3459 * the failure. 3460 */ 3461 if (failing_groups != 0) 3462 return 0; 3463 3464 /* Calibrate the LFIFO */ 3465 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3466 /* 3467 * If we're skipping groups as part of debug, 3468 * don't calibrate LFIFO. 3469 */ 3470 if (param->skip_groups == 0) { 3471 if (!rw_mgr_mem_calibrate_lfifo()) 3472 return 0; 3473 } 3474 } 3475 } 3476 } 3477 3478 /* 3479 * Do not remove this line as it makes sure all of our decisions 3480 * have been applied. 3481 */ 3482 writel(0, &sdr_scc_mgr->update); 3483 return 1; 3484 } 3485 3486 static uint32_t run_mem_calibrate(void) 3487 { 3488 uint32_t pass; 3489 uint32_t debug_info; 3490 3491 debug("%s:%d\n", __func__, __LINE__); 3492 3493 /* Reset pass/fail status shown on afi_cal_success/fail */ 3494 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3495 3496 /* stop tracking manger */ 3497 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3498 3499 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3500 3501 initialize(); 3502 rw_mgr_mem_initialize(); 3503 3504 pass = mem_calibrate(); 3505 3506 mem_precharge_and_activate(); 3507 writel(0, &phy_mgr_cmd->fifo_reset); 3508 3509 /* 3510 * Handoff: 3511 * Don't return control of the PHY back to AFI when in debug mode. 3512 */ 3513 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3514 rw_mgr_mem_handoff(); 3515 /* 3516 * In Hard PHY this is a 2-bit control: 3517 * 0: AFI Mux Select 3518 * 1: DDIO Mux Select 3519 */ 3520 writel(0x2, &phy_mgr_cfg->mux_sel); 3521 } 3522 3523 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3524 3525 if (pass) { 3526 printf("%s: CALIBRATION PASSED\n", __FILE__); 3527 3528 gbl->fom_in /= 2; 3529 gbl->fom_out /= 2; 3530 3531 if (gbl->fom_in > 0xff) 3532 gbl->fom_in = 0xff; 3533 3534 if (gbl->fom_out > 0xff) 3535 gbl->fom_out = 0xff; 3536 3537 /* Update the FOM in the register file */ 3538 debug_info = gbl->fom_in; 3539 debug_info |= gbl->fom_out << 8; 3540 writel(debug_info, &sdr_reg_file->fom); 3541 3542 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3543 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3544 } else { 3545 printf("%s: CALIBRATION FAILED\n", __FILE__); 3546 3547 debug_info = gbl->error_stage; 3548 debug_info |= gbl->error_substage << 8; 3549 debug_info |= gbl->error_group << 16; 3550 3551 writel(debug_info, &sdr_reg_file->failing_stage); 3552 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3553 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3554 3555 /* Update the failing group/stage in the register file */ 3556 debug_info = gbl->error_stage; 3557 debug_info |= gbl->error_substage << 8; 3558 debug_info |= gbl->error_group << 16; 3559 writel(debug_info, &sdr_reg_file->failing_stage); 3560 } 3561 3562 return pass; 3563 } 3564 3565 /** 3566 * hc_initialize_rom_data() - Initialize ROM data 3567 * 3568 * Initialize ROM data. 3569 */ 3570 static void hc_initialize_rom_data(void) 3571 { 3572 u32 i, addr; 3573 3574 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3575 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3576 writel(inst_rom_init[i], addr + (i << 2)); 3577 3578 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3579 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3580 writel(ac_rom_init[i], addr + (i << 2)); 3581 } 3582 3583 /** 3584 * initialize_reg_file() - Initialize SDR register file 3585 * 3586 * Initialize SDR register file. 3587 */ 3588 static void initialize_reg_file(void) 3589 { 3590 /* Initialize the register file with the correct data */ 3591 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3592 writel(0, &sdr_reg_file->debug_data_addr); 3593 writel(0, &sdr_reg_file->cur_stage); 3594 writel(0, &sdr_reg_file->fom); 3595 writel(0, &sdr_reg_file->failing_stage); 3596 writel(0, &sdr_reg_file->debug1); 3597 writel(0, &sdr_reg_file->debug2); 3598 } 3599 3600 /** 3601 * initialize_hps_phy() - Initialize HPS PHY 3602 * 3603 * Initialize HPS PHY. 3604 */ 3605 static void initialize_hps_phy(void) 3606 { 3607 uint32_t reg; 3608 /* 3609 * Tracking also gets configured here because it's in the 3610 * same register. 3611 */ 3612 uint32_t trk_sample_count = 7500; 3613 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3614 /* 3615 * Format is number of outer loops in the 16 MSB, sample 3616 * count in 16 LSB. 3617 */ 3618 3619 reg = 0; 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3623 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3624 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3626 /* 3627 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3628 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3629 */ 3630 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3631 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3632 trk_sample_count); 3633 writel(reg, &sdr_ctrl->phy_ctrl0); 3634 3635 reg = 0; 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3637 trk_sample_count >> 3638 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3639 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3640 trk_long_idle_sample_count); 3641 writel(reg, &sdr_ctrl->phy_ctrl1); 3642 3643 reg = 0; 3644 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3645 trk_long_idle_sample_count >> 3646 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3647 writel(reg, &sdr_ctrl->phy_ctrl2); 3648 } 3649 3650 static void initialize_tracking(void) 3651 { 3652 uint32_t concatenated_longidle = 0x0; 3653 uint32_t concatenated_delays = 0x0; 3654 uint32_t concatenated_rw_addr = 0x0; 3655 uint32_t concatenated_refresh = 0x0; 3656 uint32_t trk_sample_count = 7500; 3657 uint32_t dtaps_per_ptap; 3658 uint32_t tmp_delay; 3659 3660 /* 3661 * compute usable version of value in case we skip full 3662 * computation later 3663 */ 3664 dtaps_per_ptap = 0; 3665 tmp_delay = 0; 3666 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3667 dtaps_per_ptap++; 3668 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3669 } 3670 dtaps_per_ptap--; 3671 3672 concatenated_longidle = concatenated_longidle ^ 10; 3673 /*longidle outer loop */ 3674 concatenated_longidle = concatenated_longidle << 16; 3675 concatenated_longidle = concatenated_longidle ^ 100; 3676 /*longidle sample count */ 3677 concatenated_delays = concatenated_delays ^ 243; 3678 /* trfc, worst case of 933Mhz 4Gb */ 3679 concatenated_delays = concatenated_delays << 8; 3680 concatenated_delays = concatenated_delays ^ 14; 3681 /* trcd, worst case */ 3682 concatenated_delays = concatenated_delays << 8; 3683 concatenated_delays = concatenated_delays ^ 10; 3684 /* vfifo wait */ 3685 concatenated_delays = concatenated_delays << 8; 3686 concatenated_delays = concatenated_delays ^ 4; 3687 /* mux delay */ 3688 3689 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3690 concatenated_rw_addr = concatenated_rw_addr << 8; 3691 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3692 concatenated_rw_addr = concatenated_rw_addr << 8; 3693 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3694 concatenated_rw_addr = concatenated_rw_addr << 8; 3695 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3696 3697 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3698 concatenated_refresh = concatenated_refresh << 24; 3699 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3700 3701 /* Initialize the register file with the correct data */ 3702 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3703 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3704 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3705 writel(concatenated_delays, &sdr_reg_file->delays); 3706 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3707 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3708 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3709 } 3710 3711 int sdram_calibration_full(void) 3712 { 3713 struct param_type my_param; 3714 struct gbl_type my_gbl; 3715 uint32_t pass; 3716 uint32_t i; 3717 3718 param = &my_param; 3719 gbl = &my_gbl; 3720 3721 /* Initialize the debug mode flags */ 3722 gbl->phy_debug_mode_flags = 0; 3723 /* Set the calibration enabled by default */ 3724 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3725 /* 3726 * Only sweep all groups (regardless of fail state) by default 3727 * Set enabled read test by default. 3728 */ 3729 #if DISABLE_GUARANTEED_READ 3730 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3731 #endif 3732 /* Initialize the register file */ 3733 initialize_reg_file(); 3734 3735 /* Initialize any PHY CSR */ 3736 initialize_hps_phy(); 3737 3738 scc_mgr_initialize(); 3739 3740 initialize_tracking(); 3741 3742 /* USER Enable all ranks, groups */ 3743 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3744 param->skip_ranks[i] = 0; 3745 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3746 param->skip_shadow_regs[i] = 0; 3747 param->skip_groups = 0; 3748 3749 printf("%s: Preparing to start memory calibration\n", __FILE__); 3750 3751 debug("%s:%d\n", __func__, __LINE__); 3752 debug_cond(DLEVEL == 1, 3753 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3754 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3755 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3756 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3757 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3758 debug_cond(DLEVEL == 1, 3759 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3760 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3761 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3762 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3763 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3764 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3765 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3766 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3767 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3768 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3769 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3770 IO_IO_OUT2_DELAY_MAX); 3771 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3772 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3773 3774 hc_initialize_rom_data(); 3775 3776 /* update info for sims */ 3777 reg_file_set_stage(CAL_STAGE_NIL); 3778 reg_file_set_group(0); 3779 3780 /* 3781 * Load global needed for those actions that require 3782 * some dynamic calibration support. 3783 */ 3784 dyn_calib_steps = STATIC_CALIB_STEPS; 3785 /* 3786 * Load global to allow dynamic selection of delay loop settings 3787 * based on calibration mode. 3788 */ 3789 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3790 skip_delay_mask = 0xff; 3791 else 3792 skip_delay_mask = 0x0; 3793 3794 pass = run_mem_calibrate(); 3795 3796 printf("%s: Calibration complete\n", __FILE__); 3797 return pass; 3798 } 3799