1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 /** 117 * phy_mgr_initialize() - Initialize PHY Manager 118 * 119 * Initialize PHY Manager. 120 */ 121 static void phy_mgr_initialize(void) 122 { 123 u32 ratio; 124 125 debug("%s:%d\n", __func__, __LINE__); 126 /* Calibration has control over path to memory */ 127 /* 128 * In Hard PHY this is a 2-bit control: 129 * 0: AFI Mux Select 130 * 1: DDIO Mux Select 131 */ 132 writel(0x3, &phy_mgr_cfg->mux_sel); 133 134 /* USER memory clock is not stable we begin initialization */ 135 writel(0, &phy_mgr_cfg->reset_mem_stbl); 136 137 /* USER calibration status all set to zero */ 138 writel(0, &phy_mgr_cfg->cal_status); 139 140 writel(0, &phy_mgr_cfg->cal_debug_info); 141 142 /* Init params only if we do NOT skip calibration. */ 143 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 144 return; 145 146 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 147 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 148 param->read_correct_mask_vg = (1 << ratio) - 1; 149 param->write_correct_mask_vg = (1 << ratio) - 1; 150 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 151 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 152 ratio = RW_MGR_MEM_DATA_WIDTH / 153 RW_MGR_MEM_DATA_MASK_WIDTH; 154 param->dm_correct_mask = (1 << ratio) - 1; 155 } 156 157 /** 158 * set_rank_and_odt_mask() - Set Rank and ODT mask 159 * @rank: Rank mask 160 * @odt_mode: ODT mode, OFF or READ_WRITE 161 * 162 * Set Rank and ODT mask (On-Die Termination). 163 */ 164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 165 { 166 u32 odt_mask_0 = 0; 167 u32 odt_mask_1 = 0; 168 u32 cs_and_odt_mask; 169 170 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 171 odt_mask_0 = 0x0; 172 odt_mask_1 = 0x0; 173 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 174 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 175 case 1: /* 1 Rank */ 176 /* Read: ODT = 0 ; Write: ODT = 1 */ 177 odt_mask_0 = 0x0; 178 odt_mask_1 = 0x1; 179 break; 180 case 2: /* 2 Ranks */ 181 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 182 /* 183 * - Dual-Slot , Single-Rank (1 CS per DIMM) 184 * OR 185 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 186 * 187 * Since MEM_NUMBER_OF_RANKS is 2, they 188 * are both single rank with 2 CS each 189 * (special for RDIMM). 190 * 191 * Read: Turn on ODT on the opposite rank 192 * Write: Turn on ODT on all ranks 193 */ 194 odt_mask_0 = 0x3 & ~(1 << rank); 195 odt_mask_1 = 0x3; 196 } else { 197 /* 198 * - Single-Slot , Dual-Rank (2 CS per DIMM) 199 * 200 * Read: Turn on ODT off on all ranks 201 * Write: Turn on ODT on active rank 202 */ 203 odt_mask_0 = 0x0; 204 odt_mask_1 = 0x3 & (1 << rank); 205 } 206 break; 207 case 4: /* 4 Ranks */ 208 /* Read: 209 * ----------+-----------------------+ 210 * | ODT | 211 * Read From +-----------------------+ 212 * Rank | 3 | 2 | 1 | 0 | 213 * ----------+-----+-----+-----+-----+ 214 * 0 | 0 | 1 | 0 | 0 | 215 * 1 | 1 | 0 | 0 | 0 | 216 * 2 | 0 | 0 | 0 | 1 | 217 * 3 | 0 | 0 | 1 | 0 | 218 * ----------+-----+-----+-----+-----+ 219 * 220 * Write: 221 * ----------+-----------------------+ 222 * | ODT | 223 * Write To +-----------------------+ 224 * Rank | 3 | 2 | 1 | 0 | 225 * ----------+-----+-----+-----+-----+ 226 * 0 | 0 | 1 | 0 | 1 | 227 * 1 | 1 | 0 | 1 | 0 | 228 * 2 | 0 | 1 | 0 | 1 | 229 * 3 | 1 | 0 | 1 | 0 | 230 * ----------+-----+-----+-----+-----+ 231 */ 232 switch (rank) { 233 case 0: 234 odt_mask_0 = 0x4; 235 odt_mask_1 = 0x5; 236 break; 237 case 1: 238 odt_mask_0 = 0x8; 239 odt_mask_1 = 0xA; 240 break; 241 case 2: 242 odt_mask_0 = 0x1; 243 odt_mask_1 = 0x5; 244 break; 245 case 3: 246 odt_mask_0 = 0x2; 247 odt_mask_1 = 0xA; 248 break; 249 } 250 break; 251 } 252 } 253 254 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 255 ((0xFF & odt_mask_0) << 8) | 256 ((0xFF & odt_mask_1) << 16); 257 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 258 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 259 } 260 261 /** 262 * scc_mgr_set() - Set SCC Manager register 263 * @off: Base offset in SCC Manager space 264 * @grp: Read/Write group 265 * @val: Value to be set 266 * 267 * This function sets the SCC Manager (Scan Chain Control Manager) register. 268 */ 269 static void scc_mgr_set(u32 off, u32 grp, u32 val) 270 { 271 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 272 } 273 274 /** 275 * scc_mgr_initialize() - Initialize SCC Manager registers 276 * 277 * Initialize SCC Manager registers. 278 */ 279 static void scc_mgr_initialize(void) 280 { 281 /* 282 * Clear register file for HPS. 16 (2^4) is the size of the 283 * full register file in the scc mgr: 284 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 285 * MEM_IF_READ_DQS_WIDTH - 1); 286 */ 287 int i; 288 289 for (i = 0; i < 16; i++) { 290 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 291 __func__, __LINE__, i); 292 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 293 } 294 } 295 296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 297 { 298 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 299 } 300 301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 302 { 303 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 304 } 305 306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 307 { 308 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 309 } 310 311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 312 { 313 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 314 } 315 316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 319 delay); 320 } 321 322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 323 { 324 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 325 } 326 327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 330 } 331 332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 333 { 334 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 335 delay); 336 } 337 338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 339 { 340 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 341 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 342 delay); 343 } 344 345 /* load up dqs config settings */ 346 static void scc_mgr_load_dqs(uint32_t dqs) 347 { 348 writel(dqs, &sdr_scc_mgr->dqs_ena); 349 } 350 351 /* load up dqs io config settings */ 352 static void scc_mgr_load_dqs_io(void) 353 { 354 writel(0, &sdr_scc_mgr->dqs_io_ena); 355 } 356 357 /* load up dq config settings */ 358 static void scc_mgr_load_dq(uint32_t dq_in_group) 359 { 360 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 361 } 362 363 /* load up dm config settings */ 364 static void scc_mgr_load_dm(uint32_t dm) 365 { 366 writel(dm, &sdr_scc_mgr->dm_ena); 367 } 368 369 /** 370 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 371 * @off: Base offset in SCC Manager space 372 * @grp: Read/Write group 373 * @val: Value to be set 374 * @update: If non-zero, trigger SCC Manager update for all ranks 375 * 376 * This function sets the SCC Manager (Scan Chain Control Manager) register 377 * and optionally triggers the SCC update for all ranks. 378 */ 379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 380 const int update) 381 { 382 u32 r; 383 384 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 385 r += NUM_RANKS_PER_SHADOW_REG) { 386 scc_mgr_set(off, grp, val); 387 388 if (update || (r == 0)) { 389 writel(grp, &sdr_scc_mgr->dqs_ena); 390 writel(0, &sdr_scc_mgr->update); 391 } 392 } 393 } 394 395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 396 { 397 /* 398 * USER although the h/w doesn't support different phases per 399 * shadow register, for simplicity our scc manager modeling 400 * keeps different phase settings per shadow reg, and it's 401 * important for us to keep them in sync to match h/w. 402 * for efficiency, the scan chain update should occur only 403 * once to sr0. 404 */ 405 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 406 read_group, phase, 0); 407 } 408 409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 410 uint32_t phase) 411 { 412 /* 413 * USER although the h/w doesn't support different phases per 414 * shadow register, for simplicity our scc manager modeling 415 * keeps different phase settings per shadow reg, and it's 416 * important for us to keep them in sync to match h/w. 417 * for efficiency, the scan chain update should occur only 418 * once to sr0. 419 */ 420 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 421 write_group, phase, 0); 422 } 423 424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 425 uint32_t delay) 426 { 427 /* 428 * In shadow register mode, the T11 settings are stored in 429 * registers in the core, which are updated by the DQS_ENA 430 * signals. Not issuing the SCC_MGR_UPD command allows us to 431 * save lots of rank switching overhead, by calling 432 * select_shadow_regs_for_update with update_scan_chains 433 * set to 0. 434 */ 435 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 436 read_group, delay, 1); 437 writel(0, &sdr_scc_mgr->update); 438 } 439 440 /** 441 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 442 * @write_group: Write group 443 * @delay: Delay value 444 * 445 * This function sets the OCT output delay in SCC manager. 446 */ 447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 448 { 449 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 450 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 451 const int base = write_group * ratio; 452 int i; 453 /* 454 * Load the setting in the SCC manager 455 * Although OCT affects only write data, the OCT delay is controlled 456 * by the DQS logic block which is instantiated once per read group. 457 * For protocols where a write group consists of multiple read groups, 458 * the setting must be set multiple times. 459 */ 460 for (i = 0; i < ratio; i++) 461 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 462 } 463 464 /** 465 * scc_mgr_set_hhp_extras() - Set HHP extras. 466 * 467 * Load the fixed setting in the SCC manager HHP extras. 468 */ 469 static void scc_mgr_set_hhp_extras(void) 470 { 471 /* 472 * Load the fixed setting in the SCC manager 473 * bits: 0:0 = 1'b1 - DQS bypass 474 * bits: 1:1 = 1'b1 - DQ bypass 475 * bits: 4:2 = 3'b001 - rfifo_mode 476 * bits: 6:5 = 2'b01 - rfifo clock_select 477 * bits: 7:7 = 1'b0 - separate gating from ungating setting 478 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 479 */ 480 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 481 (1 << 2) | (1 << 1) | (1 << 0); 482 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 483 SCC_MGR_HHP_GLOBALS_OFFSET | 484 SCC_MGR_HHP_EXTRAS_OFFSET; 485 486 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 487 __func__, __LINE__); 488 writel(value, addr); 489 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 490 __func__, __LINE__); 491 } 492 493 /** 494 * scc_mgr_zero_all() - Zero all DQS config 495 * 496 * Zero all DQS config. 497 */ 498 static void scc_mgr_zero_all(void) 499 { 500 int i, r; 501 502 /* 503 * USER Zero all DQS config settings, across all groups and all 504 * shadow registers 505 */ 506 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 507 r += NUM_RANKS_PER_SHADOW_REG) { 508 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 509 /* 510 * The phases actually don't exist on a per-rank basis, 511 * but there's no harm updating them several times, so 512 * let's keep the code simple. 513 */ 514 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 515 scc_mgr_set_dqs_en_phase(i, 0); 516 scc_mgr_set_dqs_en_delay(i, 0); 517 } 518 519 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 520 scc_mgr_set_dqdqs_output_phase(i, 0); 521 /* Arria V/Cyclone V don't have out2. */ 522 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 523 } 524 } 525 526 /* Multicast to all DQS group enables. */ 527 writel(0xff, &sdr_scc_mgr->dqs_ena); 528 writel(0, &sdr_scc_mgr->update); 529 } 530 531 /** 532 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 533 * @write_group: Write group 534 * 535 * Set bypass mode and trigger SCC update. 536 */ 537 static void scc_set_bypass_mode(const u32 write_group) 538 { 539 /* Multicast to all DQ enables. */ 540 writel(0xff, &sdr_scc_mgr->dq_ena); 541 writel(0xff, &sdr_scc_mgr->dm_ena); 542 543 /* Update current DQS IO enable. */ 544 writel(0, &sdr_scc_mgr->dqs_io_ena); 545 546 /* Update the DQS logic. */ 547 writel(write_group, &sdr_scc_mgr->dqs_ena); 548 549 /* Hit update. */ 550 writel(0, &sdr_scc_mgr->update); 551 } 552 553 /** 554 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 555 * @write_group: Write group 556 * 557 * Load DQS settings for Write Group, do not trigger SCC update. 558 */ 559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 560 { 561 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 562 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 563 const int base = write_group * ratio; 564 int i; 565 /* 566 * Load the setting in the SCC manager 567 * Although OCT affects only write data, the OCT delay is controlled 568 * by the DQS logic block which is instantiated once per read group. 569 * For protocols where a write group consists of multiple read groups, 570 * the setting must be set multiple times. 571 */ 572 for (i = 0; i < ratio; i++) 573 writel(base + i, &sdr_scc_mgr->dqs_ena); 574 } 575 576 /** 577 * scc_mgr_zero_group() - Zero all configs for a group 578 * 579 * Zero DQ, DM, DQS and OCT configs for a group. 580 */ 581 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 582 { 583 int i, r; 584 585 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 586 r += NUM_RANKS_PER_SHADOW_REG) { 587 /* Zero all DQ config settings. */ 588 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 589 scc_mgr_set_dq_out1_delay(i, 0); 590 if (!out_only) 591 scc_mgr_set_dq_in_delay(i, 0); 592 } 593 594 /* Multicast to all DQ enables. */ 595 writel(0xff, &sdr_scc_mgr->dq_ena); 596 597 /* Zero all DM config settings. */ 598 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 599 scc_mgr_set_dm_out1_delay(i, 0); 600 601 /* Multicast to all DM enables. */ 602 writel(0xff, &sdr_scc_mgr->dm_ena); 603 604 /* Zero all DQS IO settings. */ 605 if (!out_only) 606 scc_mgr_set_dqs_io_in_delay(0); 607 608 /* Arria V/Cyclone V don't have out2. */ 609 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 610 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 611 scc_mgr_load_dqs_for_write_group(write_group); 612 613 /* Multicast to all DQS IO enables (only 1 in total). */ 614 writel(0, &sdr_scc_mgr->dqs_io_ena); 615 616 /* Hit update to zero everything. */ 617 writel(0, &sdr_scc_mgr->update); 618 } 619 } 620 621 /* 622 * apply and load a particular input delay for the DQ pins in a group 623 * group_bgn is the index of the first dq pin (in the write group) 624 */ 625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 626 { 627 uint32_t i, p; 628 629 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 630 scc_mgr_set_dq_in_delay(p, delay); 631 scc_mgr_load_dq(p); 632 } 633 } 634 635 /** 636 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 637 * @delay: Delay value 638 * 639 * Apply and load a particular output delay for the DQ pins in a group. 640 */ 641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 642 { 643 int i; 644 645 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 646 scc_mgr_set_dq_out1_delay(i, delay); 647 scc_mgr_load_dq(i); 648 } 649 } 650 651 /* apply and load a particular output delay for the DM pins in a group */ 652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 653 { 654 uint32_t i; 655 656 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 657 scc_mgr_set_dm_out1_delay(i, delay1); 658 scc_mgr_load_dm(i); 659 } 660 } 661 662 663 /* apply and load delay on both DQS and OCT out1 */ 664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 665 uint32_t delay) 666 { 667 scc_mgr_set_dqs_out1_delay(delay); 668 scc_mgr_load_dqs_io(); 669 670 scc_mgr_set_oct_out1_delay(write_group, delay); 671 scc_mgr_load_dqs_for_write_group(write_group); 672 } 673 674 /** 675 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 676 * @write_group: Write group 677 * @delay: Delay value 678 * 679 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 680 */ 681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 682 const u32 delay) 683 { 684 u32 i, new_delay; 685 686 /* DQ shift */ 687 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 688 scc_mgr_load_dq(i); 689 690 /* DM shift */ 691 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 692 scc_mgr_load_dm(i); 693 694 /* DQS shift */ 695 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 696 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 697 debug_cond(DLEVEL == 1, 698 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 699 __func__, __LINE__, write_group, delay, new_delay, 700 IO_IO_OUT2_DELAY_MAX, 701 new_delay - IO_IO_OUT2_DELAY_MAX); 702 new_delay -= IO_IO_OUT2_DELAY_MAX; 703 scc_mgr_set_dqs_out1_delay(new_delay); 704 } 705 706 scc_mgr_load_dqs_io(); 707 708 /* OCT shift */ 709 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 710 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 711 debug_cond(DLEVEL == 1, 712 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 713 __func__, __LINE__, write_group, delay, 714 new_delay, IO_IO_OUT2_DELAY_MAX, 715 new_delay - IO_IO_OUT2_DELAY_MAX); 716 new_delay -= IO_IO_OUT2_DELAY_MAX; 717 scc_mgr_set_oct_out1_delay(write_group, new_delay); 718 } 719 720 scc_mgr_load_dqs_for_write_group(write_group); 721 } 722 723 /** 724 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 725 * @write_group: Write group 726 * @delay: Delay value 727 * 728 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 729 */ 730 static void 731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 732 const u32 delay) 733 { 734 int r; 735 736 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 737 r += NUM_RANKS_PER_SHADOW_REG) { 738 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 739 writel(0, &sdr_scc_mgr->update); 740 } 741 } 742 743 /** 744 * set_jump_as_return() - Return instruction optimization 745 * 746 * Optimization used to recover some slots in ddr3 inst_rom could be 747 * applied to other protocols if we wanted to 748 */ 749 static void set_jump_as_return(void) 750 { 751 /* 752 * To save space, we replace return with jump to special shared 753 * RETURN instruction so we set the counter to large value so that 754 * we always jump. 755 */ 756 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 757 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 758 } 759 760 /* 761 * should always use constants as argument to ensure all computations are 762 * performed at compile time 763 */ 764 static void delay_for_n_mem_clocks(const uint32_t clocks) 765 { 766 uint32_t afi_clocks; 767 uint8_t inner = 0; 768 uint8_t outer = 0; 769 uint16_t c_loop = 0; 770 771 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 772 773 774 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 775 /* scale (rounding up) to get afi clocks */ 776 777 /* 778 * Note, we don't bother accounting for being off a little bit 779 * because of a few extra instructions in outer loops 780 * Note, the loops have a test at the end, and do the test before 781 * the decrement, and so always perform the loop 782 * 1 time more than the counter value 783 */ 784 if (afi_clocks == 0) { 785 ; 786 } else if (afi_clocks <= 0x100) { 787 inner = afi_clocks-1; 788 outer = 0; 789 c_loop = 0; 790 } else if (afi_clocks <= 0x10000) { 791 inner = 0xff; 792 outer = (afi_clocks-1) >> 8; 793 c_loop = 0; 794 } else { 795 inner = 0xff; 796 outer = 0xff; 797 c_loop = (afi_clocks-1) >> 16; 798 } 799 800 /* 801 * rom instructions are structured as follows: 802 * 803 * IDLE_LOOP2: jnz cntr0, TARGET_A 804 * IDLE_LOOP1: jnz cntr1, TARGET_B 805 * return 806 * 807 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 808 * TARGET_B is set to IDLE_LOOP2 as well 809 * 810 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 811 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 812 * 813 * a little confusing, but it helps save precious space in the inst_rom 814 * and sequencer rom and keeps the delays more accurate and reduces 815 * overhead 816 */ 817 if (afi_clocks <= 0x100) { 818 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 819 &sdr_rw_load_mgr_regs->load_cntr1); 820 821 writel(RW_MGR_IDLE_LOOP1, 822 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 823 824 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 825 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 826 } else { 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 828 &sdr_rw_load_mgr_regs->load_cntr0); 829 830 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 831 &sdr_rw_load_mgr_regs->load_cntr1); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 835 836 writel(RW_MGR_IDLE_LOOP2, 837 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 838 839 /* hack to get around compiler not being smart enough */ 840 if (afi_clocks <= 0x10000) { 841 /* only need to run once */ 842 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 843 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 844 } else { 845 do { 846 writel(RW_MGR_IDLE_LOOP2, 847 SDR_PHYGRP_RWMGRGRP_ADDRESS | 848 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 849 } while (c_loop-- != 0); 850 } 851 } 852 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 853 } 854 855 /** 856 * rw_mgr_mem_init_load_regs() - Load instruction registers 857 * @cntr0: Counter 0 value 858 * @cntr1: Counter 1 value 859 * @cntr2: Counter 2 value 860 * @jump: Jump instruction value 861 * 862 * Load instruction registers. 863 */ 864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 865 { 866 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 867 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 868 869 /* Load counters */ 870 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 871 &sdr_rw_load_mgr_regs->load_cntr0); 872 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 873 &sdr_rw_load_mgr_regs->load_cntr1); 874 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 875 &sdr_rw_load_mgr_regs->load_cntr2); 876 877 /* Load jump address */ 878 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 881 882 /* Execute count instruction */ 883 writel(jump, grpaddr); 884 } 885 886 /** 887 * rw_mgr_mem_load_user() - Load user calibration values 888 * @fin1: Final instruction 1 889 * @fin2: Final instruction 2 890 * @precharge: If 1, precharge the banks at the end 891 * 892 * Load user calibration values and optionally precharge the banks. 893 */ 894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 895 const int precharge) 896 { 897 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 898 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 899 u32 r; 900 901 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 902 if (param->skip_ranks[r]) { 903 /* request to skip the rank */ 904 continue; 905 } 906 907 /* set rank */ 908 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 909 910 /* precharge all banks ... */ 911 if (precharge) 912 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 913 914 /* 915 * USER Use Mirror-ed commands for odd ranks if address 916 * mirrorring is on 917 */ 918 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 919 set_jump_as_return(); 920 writel(RW_MGR_MRS2_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS3_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(RW_MGR_MRS1_MIRR, grpaddr); 927 delay_for_n_mem_clocks(4); 928 set_jump_as_return(); 929 writel(fin1, grpaddr); 930 } else { 931 set_jump_as_return(); 932 writel(RW_MGR_MRS2, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS3, grpaddr); 936 delay_for_n_mem_clocks(4); 937 set_jump_as_return(); 938 writel(RW_MGR_MRS1, grpaddr); 939 set_jump_as_return(); 940 writel(fin2, grpaddr); 941 } 942 943 if (precharge) 944 continue; 945 946 set_jump_as_return(); 947 writel(RW_MGR_ZQCL, grpaddr); 948 949 /* tZQinit = tDLLK = 512 ck cycles */ 950 delay_for_n_mem_clocks(512); 951 } 952 } 953 954 /** 955 * rw_mgr_mem_initialize() - Initialize RW Manager 956 * 957 * Initialize RW Manager. 958 */ 959 static void rw_mgr_mem_initialize(void) 960 { 961 debug("%s:%d\n", __func__, __LINE__); 962 963 /* The reset / cke part of initialization is broadcasted to all ranks */ 964 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 965 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 966 967 /* 968 * Here's how you load register for a loop 969 * Counters are located @ 0x800 970 * Jump address are located @ 0xC00 971 * For both, registers 0 to 3 are selected using bits 3 and 2, like 972 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 973 * I know this ain't pretty, but Avalon bus throws away the 2 least 974 * significant bits 975 */ 976 977 /* Start with memory RESET activated */ 978 979 /* tINIT = 200us */ 980 981 /* 982 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 983 * If a and b are the number of iteration in 2 nested loops 984 * it takes the following number of cycles to complete the operation: 985 * number_of_cycles = ((2 + n) * a + 2) * b 986 * where n is the number of instruction in the inner loop 987 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 988 * b = 6A 989 */ 990 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 991 SEQ_TINIT_CNTR2_VAL, 992 RW_MGR_INIT_RESET_0_CKE_0); 993 994 /* Indicate that memory is stable. */ 995 writel(1, &phy_mgr_cfg->reset_mem_stbl); 996 997 /* 998 * transition the RESET to high 999 * Wait for 500us 1000 */ 1001 1002 /* 1003 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1004 * If a and b are the number of iteration in 2 nested loops 1005 * it takes the following number of cycles to complete the operation 1006 * number_of_cycles = ((2 + n) * a + 2) * b 1007 * where n is the number of instruction in the inner loop 1008 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1009 * b = FF 1010 */ 1011 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1012 SEQ_TRESET_CNTR2_VAL, 1013 RW_MGR_INIT_RESET_1_CKE_0); 1014 1015 /* Bring up clock enable. */ 1016 1017 /* tXRP < 250 ck cycles */ 1018 delay_for_n_mem_clocks(250); 1019 1020 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1021 0); 1022 } 1023 1024 /* 1025 * At the end of calibration we have to program the user settings in, and 1026 * USER hand off the memory to the user. 1027 */ 1028 static void rw_mgr_mem_handoff(void) 1029 { 1030 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1031 /* 1032 * USER need to wait tMOD (12CK or 15ns) time before issuing 1033 * other commands, but we will have plenty of NIOS cycles before 1034 * actual handoff so its okay. 1035 */ 1036 } 1037 1038 /* 1039 * performs a guaranteed read on the patterns we are going to use during a 1040 * read test to ensure memory works 1041 */ 1042 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1043 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1044 uint32_t all_ranks) 1045 { 1046 uint32_t r, vg; 1047 uint32_t correct_mask_vg; 1048 uint32_t tmp_bit_chk; 1049 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1050 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1051 uint32_t addr; 1052 uint32_t base_rw_mgr; 1053 1054 *bit_chk = param->read_correct_mask; 1055 correct_mask_vg = param->read_correct_mask_vg; 1056 1057 for (r = rank_bgn; r < rank_end; r++) { 1058 if (param->skip_ranks[r]) 1059 /* request to skip the rank */ 1060 continue; 1061 1062 /* set rank */ 1063 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1064 1065 /* Load up a constant bursts of read commands */ 1066 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1067 writel(RW_MGR_GUARANTEED_READ, 1068 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1069 1070 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1071 writel(RW_MGR_GUARANTEED_READ_CONT, 1072 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1073 1074 tmp_bit_chk = 0; 1075 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1076 /* reset the fifos to get pointers to known state */ 1077 1078 writel(0, &phy_mgr_cmd->fifo_reset); 1079 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1080 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1081 1082 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1083 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1084 1085 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1086 writel(RW_MGR_GUARANTEED_READ, addr + 1087 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1088 vg) << 2)); 1089 1090 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1091 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1092 1093 if (vg == 0) 1094 break; 1095 } 1096 *bit_chk &= tmp_bit_chk; 1097 } 1098 1099 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1100 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1101 1102 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1103 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1104 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1105 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1106 return *bit_chk == param->read_correct_mask; 1107 } 1108 1109 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1110 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1111 { 1112 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1113 num_tries, bit_chk, 1); 1114 } 1115 1116 /* load up the patterns we are going to use during a read test */ 1117 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1118 uint32_t all_ranks) 1119 { 1120 uint32_t r; 1121 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1122 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1123 1124 debug("%s:%d\n", __func__, __LINE__); 1125 for (r = rank_bgn; r < rank_end; r++) { 1126 if (param->skip_ranks[r]) 1127 /* request to skip the rank */ 1128 continue; 1129 1130 /* set rank */ 1131 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1132 1133 /* Load up a constant bursts */ 1134 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1135 1136 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1137 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1138 1139 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1140 1141 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1142 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1143 1144 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1145 1146 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1147 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1148 1149 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1150 1151 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1152 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1153 1154 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1155 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1156 } 1157 1158 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1159 } 1160 1161 /* 1162 * try a read and see if it returns correct data back. has dummy reads 1163 * inserted into the mix used to align dqs enable. has more thorough checks 1164 * than the regular read test. 1165 */ 1166 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1167 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1168 uint32_t all_groups, uint32_t all_ranks) 1169 { 1170 uint32_t r, vg; 1171 uint32_t correct_mask_vg; 1172 uint32_t tmp_bit_chk; 1173 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1174 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1175 uint32_t addr; 1176 uint32_t base_rw_mgr; 1177 1178 *bit_chk = param->read_correct_mask; 1179 correct_mask_vg = param->read_correct_mask_vg; 1180 1181 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1182 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1183 1184 for (r = rank_bgn; r < rank_end; r++) { 1185 if (param->skip_ranks[r]) 1186 /* request to skip the rank */ 1187 continue; 1188 1189 /* set rank */ 1190 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1191 1192 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1193 1194 writel(RW_MGR_READ_B2B_WAIT1, 1195 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1196 1197 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1198 writel(RW_MGR_READ_B2B_WAIT2, 1199 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1200 1201 if (quick_read_mode) 1202 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1203 /* need at least two (1+1) reads to capture failures */ 1204 else if (all_groups) 1205 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1206 else 1207 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1208 1209 writel(RW_MGR_READ_B2B, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1211 if (all_groups) 1212 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1213 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1214 &sdr_rw_load_mgr_regs->load_cntr3); 1215 else 1216 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1217 1218 writel(RW_MGR_READ_B2B, 1219 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1220 1221 tmp_bit_chk = 0; 1222 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1223 /* reset the fifos to get pointers to known state */ 1224 writel(0, &phy_mgr_cmd->fifo_reset); 1225 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1226 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1227 1228 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1229 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1230 1231 if (all_groups) 1232 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1233 else 1234 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1235 1236 writel(RW_MGR_READ_B2B, addr + 1237 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1238 vg) << 2)); 1239 1240 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1241 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1242 1243 if (vg == 0) 1244 break; 1245 } 1246 *bit_chk &= tmp_bit_chk; 1247 } 1248 1249 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1250 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1251 1252 if (all_correct) { 1253 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1254 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1255 (%u == %u) => %lu", __func__, __LINE__, group, 1256 all_groups, *bit_chk, param->read_correct_mask, 1257 (long unsigned int)(*bit_chk == 1258 param->read_correct_mask)); 1259 return *bit_chk == param->read_correct_mask; 1260 } else { 1261 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1262 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1263 (%u != %lu) => %lu\n", __func__, __LINE__, 1264 group, all_groups, *bit_chk, (long unsigned int)0, 1265 (long unsigned int)(*bit_chk != 0x00)); 1266 return *bit_chk != 0x00; 1267 } 1268 } 1269 1270 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1271 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1272 uint32_t all_groups) 1273 { 1274 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1275 bit_chk, all_groups, 1); 1276 } 1277 1278 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1279 { 1280 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1281 (*v)++; 1282 } 1283 1284 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1285 { 1286 uint32_t i; 1287 1288 for (i = 0; i < VFIFO_SIZE-1; i++) 1289 rw_mgr_incr_vfifo(grp, v); 1290 } 1291 1292 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1293 { 1294 uint32_t v; 1295 uint32_t fail_cnt = 0; 1296 uint32_t test_status; 1297 1298 for (v = 0; v < VFIFO_SIZE; ) { 1299 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1300 __func__, __LINE__, v); 1301 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1302 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1303 if (!test_status) { 1304 fail_cnt++; 1305 1306 if (fail_cnt == 2) 1307 break; 1308 } 1309 1310 /* fiddle with FIFO */ 1311 rw_mgr_incr_vfifo(grp, &v); 1312 } 1313 1314 if (v >= VFIFO_SIZE) { 1315 /* no failing read found!! Something must have gone wrong */ 1316 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1317 __func__, __LINE__); 1318 return 0; 1319 } else { 1320 return v; 1321 } 1322 } 1323 1324 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1325 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1326 uint32_t *v, uint32_t *d, uint32_t *p, 1327 uint32_t *i, uint32_t *max_working_cnt) 1328 { 1329 uint32_t found_begin = 0; 1330 uint32_t tmp_delay = 0; 1331 uint32_t test_status; 1332 1333 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1334 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1335 *work_bgn = tmp_delay; 1336 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1337 1338 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1339 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1340 IO_DELAY_PER_OPA_TAP) { 1341 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1342 1343 test_status = 1344 rw_mgr_mem_calibrate_read_test_all_ranks 1345 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1346 1347 if (test_status) { 1348 *max_working_cnt = 1; 1349 found_begin = 1; 1350 break; 1351 } 1352 } 1353 1354 if (found_begin) 1355 break; 1356 1357 if (*p > IO_DQS_EN_PHASE_MAX) 1358 /* fiddle with FIFO */ 1359 rw_mgr_incr_vfifo(*grp, v); 1360 } 1361 1362 if (found_begin) 1363 break; 1364 } 1365 1366 if (*i >= VFIFO_SIZE) { 1367 /* cannot find working solution */ 1368 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1369 ptap/dtap\n", __func__, __LINE__); 1370 return 0; 1371 } else { 1372 return 1; 1373 } 1374 } 1375 1376 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1377 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1378 uint32_t *p, uint32_t *max_working_cnt) 1379 { 1380 uint32_t found_begin = 0; 1381 uint32_t tmp_delay; 1382 1383 /* Special case code for backing up a phase */ 1384 if (*p == 0) { 1385 *p = IO_DQS_EN_PHASE_MAX; 1386 rw_mgr_decr_vfifo(*grp, v); 1387 } else { 1388 (*p)--; 1389 } 1390 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1391 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1392 1393 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1394 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1395 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1396 1397 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1398 PASS_ONE_BIT, 1399 bit_chk, 0)) { 1400 found_begin = 1; 1401 *work_bgn = tmp_delay; 1402 break; 1403 } 1404 } 1405 1406 /* We have found a working dtap before the ptap found above */ 1407 if (found_begin == 1) 1408 (*max_working_cnt)++; 1409 1410 /* 1411 * Restore VFIFO to old state before we decremented it 1412 * (if needed). 1413 */ 1414 (*p)++; 1415 if (*p > IO_DQS_EN_PHASE_MAX) { 1416 *p = 0; 1417 rw_mgr_incr_vfifo(*grp, v); 1418 } 1419 1420 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1421 } 1422 1423 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1424 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1425 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1426 uint32_t *work_end) 1427 { 1428 uint32_t found_end = 0; 1429 1430 (*p)++; 1431 *work_end += IO_DELAY_PER_OPA_TAP; 1432 if (*p > IO_DQS_EN_PHASE_MAX) { 1433 /* fiddle with FIFO */ 1434 *p = 0; 1435 rw_mgr_incr_vfifo(*grp, v); 1436 } 1437 1438 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1439 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1440 += IO_DELAY_PER_OPA_TAP) { 1441 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1442 1443 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1444 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1445 found_end = 1; 1446 break; 1447 } else { 1448 (*max_working_cnt)++; 1449 } 1450 } 1451 1452 if (found_end) 1453 break; 1454 1455 if (*p > IO_DQS_EN_PHASE_MAX) { 1456 /* fiddle with FIFO */ 1457 rw_mgr_incr_vfifo(*grp, v); 1458 *p = 0; 1459 } 1460 } 1461 1462 if (*i >= VFIFO_SIZE + 1) { 1463 /* cannot see edge of failing read */ 1464 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1465 failed\n", __func__, __LINE__); 1466 return 0; 1467 } else { 1468 return 1; 1469 } 1470 } 1471 1472 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1473 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1474 uint32_t *p, uint32_t *work_mid, 1475 uint32_t *work_end) 1476 { 1477 int i; 1478 int tmp_delay = 0; 1479 1480 *work_mid = (*work_bgn + *work_end) / 2; 1481 1482 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1483 *work_bgn, *work_end, *work_mid); 1484 /* Get the middle delay to be less than a VFIFO delay */ 1485 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1486 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1487 ; 1488 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1489 while (*work_mid > tmp_delay) 1490 *work_mid -= tmp_delay; 1491 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1492 1493 tmp_delay = 0; 1494 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1495 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1496 ; 1497 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1498 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1499 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1500 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1501 ; 1502 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1503 1504 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1505 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1506 1507 /* 1508 * push vfifo until we can successfully calibrate. We can do this 1509 * because the largest possible margin in 1 VFIFO cycle. 1510 */ 1511 for (i = 0; i < VFIFO_SIZE; i++) { 1512 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1513 *v); 1514 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1515 PASS_ONE_BIT, 1516 bit_chk, 0)) { 1517 break; 1518 } 1519 1520 /* fiddle with FIFO */ 1521 rw_mgr_incr_vfifo(*grp, v); 1522 } 1523 1524 if (i >= VFIFO_SIZE) { 1525 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1526 failed\n", __func__, __LINE__); 1527 return 0; 1528 } else { 1529 return 1; 1530 } 1531 } 1532 1533 /* find a good dqs enable to use */ 1534 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1535 { 1536 uint32_t v, d, p, i; 1537 uint32_t max_working_cnt; 1538 uint32_t bit_chk; 1539 uint32_t dtaps_per_ptap; 1540 uint32_t work_bgn, work_mid, work_end; 1541 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1542 1543 debug("%s:%d %u\n", __func__, __LINE__, grp); 1544 1545 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1546 1547 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1548 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1549 1550 /* ************************************************************** */ 1551 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1552 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1553 1554 /* ********************************************************* */ 1555 /* * Step 1 : First push vfifo until we get a failing read * */ 1556 v = find_vfifo_read(grp, &bit_chk); 1557 1558 max_working_cnt = 0; 1559 1560 /* ******************************************************** */ 1561 /* * step 2: find first working phase, increment in ptaps * */ 1562 work_bgn = 0; 1563 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1564 &p, &i, &max_working_cnt) == 0) 1565 return 0; 1566 1567 work_end = work_bgn; 1568 1569 /* 1570 * If d is 0 then the working window covers a phase tap and 1571 * we can follow the old procedure otherwise, we've found the beginning, 1572 * and we need to increment the dtaps until we find the end. 1573 */ 1574 if (d == 0) { 1575 /* ********************************************************* */ 1576 /* * step 3a: if we have room, back off by one and 1577 increment in dtaps * */ 1578 1579 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1580 &max_working_cnt); 1581 1582 /* ********************************************************* */ 1583 /* * step 4a: go forward from working phase to non working 1584 phase, increment in ptaps * */ 1585 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1586 &i, &max_working_cnt, &work_end) == 0) 1587 return 0; 1588 1589 /* ********************************************************* */ 1590 /* * step 5a: back off one from last, increment in dtaps * */ 1591 1592 /* Special case code for backing up a phase */ 1593 if (p == 0) { 1594 p = IO_DQS_EN_PHASE_MAX; 1595 rw_mgr_decr_vfifo(grp, &v); 1596 } else { 1597 p = p - 1; 1598 } 1599 1600 work_end -= IO_DELAY_PER_OPA_TAP; 1601 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1602 1603 /* * The actual increment of dtaps is done outside of 1604 the if/else loop to share code */ 1605 d = 0; 1606 1607 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1608 vfifo=%u ptap=%u\n", __func__, __LINE__, 1609 v, p); 1610 } else { 1611 /* ******************************************************* */ 1612 /* * step 3-5b: Find the right edge of the window using 1613 delay taps * */ 1614 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1615 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1616 v, p, d, work_bgn); 1617 1618 work_end = work_bgn; 1619 1620 /* * The actual increment of dtaps is done outside of the 1621 if/else loop to share code */ 1622 1623 /* Only here to counterbalance a subtract later on which is 1624 not needed if this branch of the algorithm is taken */ 1625 max_working_cnt++; 1626 } 1627 1628 /* The dtap increment to find the failing edge is done here */ 1629 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1630 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1631 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1632 end-2: dtap=%u\n", __func__, __LINE__, d); 1633 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1634 1635 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1636 PASS_ONE_BIT, 1637 &bit_chk, 0)) { 1638 break; 1639 } 1640 } 1641 1642 /* Go back to working dtap */ 1643 if (d != 0) 1644 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1645 1646 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1647 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1648 v, p, d-1, work_end); 1649 1650 if (work_end < work_bgn) { 1651 /* nil range */ 1652 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1653 failed\n", __func__, __LINE__); 1654 return 0; 1655 } 1656 1657 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1658 __func__, __LINE__, work_bgn, work_end); 1659 1660 /* *************************************************************** */ 1661 /* 1662 * * We need to calculate the number of dtaps that equal a ptap 1663 * * To do that we'll back up a ptap and re-find the edge of the 1664 * * window using dtaps 1665 */ 1666 1667 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1668 for tracking\n", __func__, __LINE__); 1669 1670 /* Special case code for backing up a phase */ 1671 if (p == 0) { 1672 p = IO_DQS_EN_PHASE_MAX; 1673 rw_mgr_decr_vfifo(grp, &v); 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1675 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1676 v, p); 1677 } else { 1678 p = p - 1; 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1680 phase only: v=%u p=%u", __func__, __LINE__, 1681 v, p); 1682 } 1683 1684 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1685 1686 /* 1687 * Increase dtap until we first see a passing read (in case the 1688 * window is smaller than a ptap), 1689 * and then a failing read to mark the edge of the window again 1690 */ 1691 1692 /* Find a passing read */ 1693 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1694 __func__, __LINE__); 1695 found_passing_read = 0; 1696 found_failing_read = 0; 1697 initial_failing_dtap = d; 1698 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1699 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1700 read d=%u\n", __func__, __LINE__, d); 1701 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1702 1703 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1704 PASS_ONE_BIT, 1705 &bit_chk, 0)) { 1706 found_passing_read = 1; 1707 break; 1708 } 1709 } 1710 1711 if (found_passing_read) { 1712 /* Find a failing read */ 1713 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1714 read\n", __func__, __LINE__); 1715 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1716 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1717 testing read d=%u\n", __func__, __LINE__, d); 1718 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1719 1720 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1721 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1722 found_failing_read = 1; 1723 break; 1724 } 1725 } 1726 } else { 1727 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1728 calculate dtaps", __func__, __LINE__); 1729 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1730 } 1731 1732 /* 1733 * The dynamically calculated dtaps_per_ptap is only valid if we 1734 * found a passing/failing read. If we didn't, it means d hit the max 1735 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1736 * statically calculated value. 1737 */ 1738 if (found_passing_read && found_failing_read) 1739 dtaps_per_ptap = d - initial_failing_dtap; 1740 1741 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1742 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1743 - %u = %u", __func__, __LINE__, d, 1744 initial_failing_dtap, dtaps_per_ptap); 1745 1746 /* ******************************************** */ 1747 /* * step 6: Find the centre of the window * */ 1748 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1749 &work_mid, &work_end) == 0) 1750 return 0; 1751 1752 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1753 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1754 v, p-1, d); 1755 return 1; 1756 } 1757 1758 /* 1759 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1760 * dq_in_delay values 1761 */ 1762 static uint32_t 1763 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1764 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1765 { 1766 uint32_t found; 1767 uint32_t i; 1768 uint32_t p; 1769 uint32_t d; 1770 uint32_t r; 1771 1772 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1773 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1774 /* we start at zero, so have one less dq to devide among */ 1775 1776 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1777 test_bgn); 1778 1779 /* try different dq_in_delays since the dq path is shorter than dqs */ 1780 1781 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1782 r += NUM_RANKS_PER_SHADOW_REG) { 1783 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1784 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1785 vfifo_find_dqs_", __func__, __LINE__); 1786 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1787 write_group, read_group); 1788 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1789 scc_mgr_set_dq_in_delay(p, d); 1790 scc_mgr_load_dq(p); 1791 } 1792 writel(0, &sdr_scc_mgr->update); 1793 } 1794 1795 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1796 1797 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1798 en_phase_sweep_dq", __func__, __LINE__); 1799 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1800 chain to zero\n", write_group, read_group, found); 1801 1802 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1803 r += NUM_RANKS_PER_SHADOW_REG) { 1804 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1805 i++, p++) { 1806 scc_mgr_set_dq_in_delay(p, 0); 1807 scc_mgr_load_dq(p); 1808 } 1809 writel(0, &sdr_scc_mgr->update); 1810 } 1811 1812 return found; 1813 } 1814 1815 /* per-bit deskew DQ and center */ 1816 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1817 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1818 uint32_t use_read_test, uint32_t update_fom) 1819 { 1820 uint32_t i, p, d, min_index; 1821 /* 1822 * Store these as signed since there are comparisons with 1823 * signed numbers. 1824 */ 1825 uint32_t bit_chk; 1826 uint32_t sticky_bit_chk; 1827 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1828 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1829 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1830 int32_t mid; 1831 int32_t orig_mid_min, mid_min; 1832 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1833 final_dqs_en; 1834 int32_t dq_margin, dqs_margin; 1835 uint32_t stop; 1836 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1837 uint32_t addr; 1838 1839 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1840 1841 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1842 start_dqs = readl(addr + (read_group << 2)); 1843 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1844 start_dqs_en = readl(addr + ((read_group << 2) 1845 - IO_DQS_EN_DELAY_OFFSET)); 1846 1847 /* set the left and right edge of each bit to an illegal value */ 1848 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1849 sticky_bit_chk = 0; 1850 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1851 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1852 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1853 } 1854 1855 /* Search for the left edge of the window for each bit */ 1856 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1857 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1858 1859 writel(0, &sdr_scc_mgr->update); 1860 1861 /* 1862 * Stop searching when the read test doesn't pass AND when 1863 * we've seen a passing read on every bit. 1864 */ 1865 if (use_read_test) { 1866 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1867 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1868 &bit_chk, 0, 0); 1869 } else { 1870 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1871 0, PASS_ONE_BIT, 1872 &bit_chk, 0); 1873 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1874 (read_group - (write_group * 1875 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1876 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1877 stop = (bit_chk == 0); 1878 } 1879 sticky_bit_chk = sticky_bit_chk | bit_chk; 1880 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1881 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1882 && %u", __func__, __LINE__, d, 1883 sticky_bit_chk, 1884 param->read_correct_mask, stop); 1885 1886 if (stop == 1) { 1887 break; 1888 } else { 1889 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1890 if (bit_chk & 1) { 1891 /* Remember a passing test as the 1892 left_edge */ 1893 left_edge[i] = d; 1894 } else { 1895 /* If a left edge has not been seen yet, 1896 then a future passing test will mark 1897 this edge as the right edge */ 1898 if (left_edge[i] == 1899 IO_IO_IN_DELAY_MAX + 1) { 1900 right_edge[i] = -(d + 1); 1901 } 1902 } 1903 bit_chk = bit_chk >> 1; 1904 } 1905 } 1906 } 1907 1908 /* Reset DQ delay chains to 0 */ 1909 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1910 sticky_bit_chk = 0; 1911 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1912 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1913 %d right_edge[%u]: %d\n", __func__, __LINE__, 1914 i, left_edge[i], i, right_edge[i]); 1915 1916 /* 1917 * Check for cases where we haven't found the left edge, 1918 * which makes our assignment of the the right edge invalid. 1919 * Reset it to the illegal value. 1920 */ 1921 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1922 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1923 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1924 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1925 right_edge[%u]: %d\n", __func__, __LINE__, 1926 i, right_edge[i]); 1927 } 1928 1929 /* 1930 * Reset sticky bit (except for bits where we have seen 1931 * both the left and right edge). 1932 */ 1933 sticky_bit_chk = sticky_bit_chk << 1; 1934 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1935 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1936 sticky_bit_chk = sticky_bit_chk | 1; 1937 } 1938 1939 if (i == 0) 1940 break; 1941 } 1942 1943 /* Search for the right edge of the window for each bit */ 1944 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1945 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1946 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1947 uint32_t delay = d + start_dqs_en; 1948 if (delay > IO_DQS_EN_DELAY_MAX) 1949 delay = IO_DQS_EN_DELAY_MAX; 1950 scc_mgr_set_dqs_en_delay(read_group, delay); 1951 } 1952 scc_mgr_load_dqs(read_group); 1953 1954 writel(0, &sdr_scc_mgr->update); 1955 1956 /* 1957 * Stop searching when the read test doesn't pass AND when 1958 * we've seen a passing read on every bit. 1959 */ 1960 if (use_read_test) { 1961 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1962 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1963 &bit_chk, 0, 0); 1964 } else { 1965 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1966 0, PASS_ONE_BIT, 1967 &bit_chk, 0); 1968 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1969 (read_group - (write_group * 1970 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1971 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1972 stop = (bit_chk == 0); 1973 } 1974 sticky_bit_chk = sticky_bit_chk | bit_chk; 1975 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1976 1977 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1978 %u && %u", __func__, __LINE__, d, 1979 sticky_bit_chk, param->read_correct_mask, stop); 1980 1981 if (stop == 1) { 1982 break; 1983 } else { 1984 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1985 if (bit_chk & 1) { 1986 /* Remember a passing test as 1987 the right_edge */ 1988 right_edge[i] = d; 1989 } else { 1990 if (d != 0) { 1991 /* If a right edge has not been 1992 seen yet, then a future passing 1993 test will mark this edge as the 1994 left edge */ 1995 if (right_edge[i] == 1996 IO_IO_IN_DELAY_MAX + 1) { 1997 left_edge[i] = -(d + 1); 1998 } 1999 } else { 2000 /* d = 0 failed, but it passed 2001 when testing the left edge, 2002 so it must be marginal, 2003 set it to -1 */ 2004 if (right_edge[i] == 2005 IO_IO_IN_DELAY_MAX + 1 && 2006 left_edge[i] != 2007 IO_IO_IN_DELAY_MAX 2008 + 1) { 2009 right_edge[i] = -1; 2010 } 2011 /* If a right edge has not been 2012 seen yet, then a future passing 2013 test will mark this edge as the 2014 left edge */ 2015 else if (right_edge[i] == 2016 IO_IO_IN_DELAY_MAX + 2017 1) { 2018 left_edge[i] = -(d + 1); 2019 } 2020 } 2021 } 2022 2023 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2024 d=%u]: ", __func__, __LINE__, d); 2025 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2026 (int)(bit_chk & 1), i, left_edge[i]); 2027 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2028 right_edge[i]); 2029 bit_chk = bit_chk >> 1; 2030 } 2031 } 2032 } 2033 2034 /* Check that all bits have a window */ 2035 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2036 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2037 %d right_edge[%u]: %d", __func__, __LINE__, 2038 i, left_edge[i], i, right_edge[i]); 2039 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2040 == IO_IO_IN_DELAY_MAX + 1)) { 2041 /* 2042 * Restore delay chain settings before letting the loop 2043 * in rw_mgr_mem_calibrate_vfifo to retry different 2044 * dqs/ck relationships. 2045 */ 2046 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2047 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2048 scc_mgr_set_dqs_en_delay(read_group, 2049 start_dqs_en); 2050 } 2051 scc_mgr_load_dqs(read_group); 2052 writel(0, &sdr_scc_mgr->update); 2053 2054 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2055 find edge [%u]: %d %d", __func__, __LINE__, 2056 i, left_edge[i], right_edge[i]); 2057 if (use_read_test) { 2058 set_failing_group_stage(read_group * 2059 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2060 CAL_STAGE_VFIFO, 2061 CAL_SUBSTAGE_VFIFO_CENTER); 2062 } else { 2063 set_failing_group_stage(read_group * 2064 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2065 CAL_STAGE_VFIFO_AFTER_WRITES, 2066 CAL_SUBSTAGE_VFIFO_CENTER); 2067 } 2068 return 0; 2069 } 2070 } 2071 2072 /* Find middle of window for each DQ bit */ 2073 mid_min = left_edge[0] - right_edge[0]; 2074 min_index = 0; 2075 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2076 mid = left_edge[i] - right_edge[i]; 2077 if (mid < mid_min) { 2078 mid_min = mid; 2079 min_index = i; 2080 } 2081 } 2082 2083 /* 2084 * -mid_min/2 represents the amount that we need to move DQS. 2085 * If mid_min is odd and positive we'll need to add one to 2086 * make sure the rounding in further calculations is correct 2087 * (always bias to the right), so just add 1 for all positive values. 2088 */ 2089 if (mid_min > 0) 2090 mid_min++; 2091 2092 mid_min = mid_min / 2; 2093 2094 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2095 __func__, __LINE__, mid_min, min_index); 2096 2097 /* Determine the amount we can change DQS (which is -mid_min) */ 2098 orig_mid_min = mid_min; 2099 new_dqs = start_dqs - mid_min; 2100 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2101 new_dqs = IO_DQS_IN_DELAY_MAX; 2102 else if (new_dqs < 0) 2103 new_dqs = 0; 2104 2105 mid_min = start_dqs - new_dqs; 2106 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2107 mid_min, new_dqs); 2108 2109 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2110 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2111 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2112 else if (start_dqs_en - mid_min < 0) 2113 mid_min += start_dqs_en - mid_min; 2114 } 2115 new_dqs = start_dqs - mid_min; 2116 2117 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2118 new_dqs=%d mid_min=%d\n", start_dqs, 2119 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2120 new_dqs, mid_min); 2121 2122 /* Initialize data for export structures */ 2123 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2124 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2125 2126 /* add delay to bring centre of all DQ windows to the same "level" */ 2127 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2128 /* Use values before divide by 2 to reduce round off error */ 2129 shift_dq = (left_edge[i] - right_edge[i] - 2130 (left_edge[min_index] - right_edge[min_index]))/2 + 2131 (orig_mid_min - mid_min); 2132 2133 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2134 shift_dq[%u]=%d\n", i, shift_dq); 2135 2136 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2137 temp_dq_in_delay1 = readl(addr + (p << 2)); 2138 temp_dq_in_delay2 = readl(addr + (i << 2)); 2139 2140 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2141 (int32_t)IO_IO_IN_DELAY_MAX) { 2142 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2143 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2144 shift_dq = -(int32_t)temp_dq_in_delay1; 2145 } 2146 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2147 shift_dq[%u]=%d\n", i, shift_dq); 2148 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2149 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2150 scc_mgr_load_dq(p); 2151 2152 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2153 left_edge[i] - shift_dq + (-mid_min), 2154 right_edge[i] + shift_dq - (-mid_min)); 2155 /* To determine values for export structures */ 2156 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2157 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2158 2159 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2160 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2161 } 2162 2163 final_dqs = new_dqs; 2164 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2165 final_dqs_en = start_dqs_en - mid_min; 2166 2167 /* Move DQS-en */ 2168 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2169 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2170 scc_mgr_load_dqs(read_group); 2171 } 2172 2173 /* Move DQS */ 2174 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2175 scc_mgr_load_dqs(read_group); 2176 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2177 dqs_margin=%d", __func__, __LINE__, 2178 dq_margin, dqs_margin); 2179 2180 /* 2181 * Do not remove this line as it makes sure all of our decisions 2182 * have been applied. Apply the update bit. 2183 */ 2184 writel(0, &sdr_scc_mgr->update); 2185 2186 return (dq_margin >= 0) && (dqs_margin >= 0); 2187 } 2188 2189 /** 2190 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2191 * @rw_group: Read/Write Group 2192 * @test_bgn: Rank at which the test begins 2193 * 2194 * Stage 1: Calibrate the read valid prediction FIFO. 2195 * 2196 * This function implements UniPHY calibration Stage 1, as explained in 2197 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2198 * 2199 * - read valid prediction will consist of finding: 2200 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2201 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2202 * - we also do a per-bit deskew on the DQ lines. 2203 */ 2204 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2205 uint32_t test_bgn) 2206 { 2207 uint32_t p, d, rank_bgn, sr; 2208 uint32_t dtaps_per_ptap; 2209 uint32_t bit_chk; 2210 uint32_t grp_calibrated; 2211 uint32_t write_group, write_test_bgn; 2212 uint32_t failed_substage; 2213 2214 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2215 2216 /* update info for sims */ 2217 reg_file_set_stage(CAL_STAGE_VFIFO); 2218 2219 write_group = read_group; 2220 write_test_bgn = test_bgn; 2221 2222 /* USER Determine number of delay taps for each phase tap */ 2223 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2224 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2225 2226 /* update info for sims */ 2227 reg_file_set_group(read_group); 2228 2229 grp_calibrated = 0; 2230 2231 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2232 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2233 2234 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2235 /* 2236 * In RLDRAMX we may be messing the delay of pins in 2237 * the same write group but outside of the current read 2238 * the group, but that's ok because we haven't 2239 * calibrated output side yet. 2240 */ 2241 if (d > 0) { 2242 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2243 write_group, d); 2244 } 2245 2246 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2247 p++) { 2248 /* set a particular dqdqs phase */ 2249 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2250 2251 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2252 p=%u d=%u\n", __func__, __LINE__, 2253 read_group, p, d); 2254 2255 /* 2256 * Load up the patterns used by read calibration 2257 * using current DQDQS phase. 2258 */ 2259 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2260 if (!(gbl->phy_debug_mode_flags & 2261 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2262 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2263 (read_group, 1, &bit_chk)) { 2264 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2265 __func__, __LINE__); 2266 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2267 read_group, p, d); 2268 break; 2269 } 2270 } 2271 2272 /* case:56390 */ 2273 grp_calibrated = 1; 2274 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2275 (write_group, read_group, test_bgn)) { 2276 /* 2277 * USER Read per-bit deskew can be done on a 2278 * per shadow register basis. 2279 */ 2280 for (rank_bgn = 0, sr = 0; 2281 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2282 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2283 ++sr) { 2284 /* 2285 * Determine if this set of ranks 2286 * should be skipped entirely. 2287 */ 2288 if (!param->skip_shadow_regs[sr]) { 2289 /* 2290 * If doing read after write 2291 * calibration, do not update 2292 * FOM, now - do it then. 2293 */ 2294 if (!rw_mgr_mem_calibrate_vfifo_center 2295 (rank_bgn, write_group, 2296 read_group, test_bgn, 1, 0)) { 2297 grp_calibrated = 0; 2298 failed_substage = 2299 CAL_SUBSTAGE_VFIFO_CENTER; 2300 } 2301 } 2302 } 2303 } else { 2304 grp_calibrated = 0; 2305 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2306 } 2307 } 2308 } 2309 2310 if (grp_calibrated == 0) { 2311 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2312 failed_substage); 2313 return 0; 2314 } 2315 2316 /* 2317 * Reset the delay chains back to zero if they have moved > 1 2318 * (check for > 1 because loop will increase d even when pass in 2319 * first case). 2320 */ 2321 if (d > 2) 2322 scc_mgr_zero_group(write_group, 1); 2323 2324 return 1; 2325 } 2326 2327 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2328 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2329 uint32_t test_bgn) 2330 { 2331 uint32_t rank_bgn, sr; 2332 uint32_t grp_calibrated; 2333 uint32_t write_group; 2334 2335 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2336 2337 /* update info for sims */ 2338 2339 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2340 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2341 2342 write_group = read_group; 2343 2344 /* update info for sims */ 2345 reg_file_set_group(read_group); 2346 2347 grp_calibrated = 1; 2348 /* Read per-bit deskew can be done on a per shadow register basis */ 2349 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2350 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2351 /* Determine if this set of ranks should be skipped entirely */ 2352 if (!param->skip_shadow_regs[sr]) { 2353 /* This is the last calibration round, update FOM here */ 2354 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2355 write_group, 2356 read_group, 2357 test_bgn, 0, 2358 1)) { 2359 grp_calibrated = 0; 2360 } 2361 } 2362 } 2363 2364 2365 if (grp_calibrated == 0) { 2366 set_failing_group_stage(write_group, 2367 CAL_STAGE_VFIFO_AFTER_WRITES, 2368 CAL_SUBSTAGE_VFIFO_CENTER); 2369 return 0; 2370 } 2371 2372 return 1; 2373 } 2374 2375 /* Calibrate LFIFO to find smallest read latency */ 2376 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2377 { 2378 uint32_t found_one; 2379 uint32_t bit_chk; 2380 2381 debug("%s:%d\n", __func__, __LINE__); 2382 2383 /* update info for sims */ 2384 reg_file_set_stage(CAL_STAGE_LFIFO); 2385 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2386 2387 /* Load up the patterns used by read calibration for all ranks */ 2388 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2389 found_one = 0; 2390 2391 do { 2392 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2393 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2394 __func__, __LINE__, gbl->curr_read_lat); 2395 2396 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2397 NUM_READ_TESTS, 2398 PASS_ALL_BITS, 2399 &bit_chk, 1)) { 2400 break; 2401 } 2402 2403 found_one = 1; 2404 /* reduce read latency and see if things are working */ 2405 /* correctly */ 2406 gbl->curr_read_lat--; 2407 } while (gbl->curr_read_lat > 0); 2408 2409 /* reset the fifos to get pointers to known state */ 2410 2411 writel(0, &phy_mgr_cmd->fifo_reset); 2412 2413 if (found_one) { 2414 /* add a fudge factor to the read latency that was determined */ 2415 gbl->curr_read_lat += 2; 2416 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2417 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2418 read_lat=%u\n", __func__, __LINE__, 2419 gbl->curr_read_lat); 2420 return 1; 2421 } else { 2422 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2423 CAL_SUBSTAGE_READ_LATENCY); 2424 2425 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2426 read_lat=%u\n", __func__, __LINE__, 2427 gbl->curr_read_lat); 2428 return 0; 2429 } 2430 } 2431 2432 /* 2433 * issue write test command. 2434 * two variants are provided. one that just tests a write pattern and 2435 * another that tests datamask functionality. 2436 */ 2437 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2438 uint32_t test_dm) 2439 { 2440 uint32_t mcc_instruction; 2441 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2442 ENABLE_SUPER_QUICK_CALIBRATION); 2443 uint32_t rw_wl_nop_cycles; 2444 uint32_t addr; 2445 2446 /* 2447 * Set counter and jump addresses for the right 2448 * number of NOP cycles. 2449 * The number of supported NOP cycles can range from -1 to infinity 2450 * Three different cases are handled: 2451 * 2452 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2453 * mechanism will be used to insert the right number of NOPs 2454 * 2455 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2456 * issuing the write command will jump straight to the 2457 * micro-instruction that turns on DQS (for DDRx), or outputs write 2458 * data (for RLD), skipping 2459 * the NOP micro-instruction all together 2460 * 2461 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2462 * turned on in the same micro-instruction that issues the write 2463 * command. Then we need 2464 * to directly jump to the micro-instruction that sends out the data 2465 * 2466 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2467 * (2 and 3). One jump-counter (0) is used to perform multiple 2468 * write-read operations. 2469 * one counter left to issue this command in "multiple-group" mode 2470 */ 2471 2472 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2473 2474 if (rw_wl_nop_cycles == -1) { 2475 /* 2476 * CNTR 2 - We want to execute the special write operation that 2477 * turns on DQS right away and then skip directly to the 2478 * instruction that sends out the data. We set the counter to a 2479 * large number so that the jump is always taken. 2480 */ 2481 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2482 2483 /* CNTR 3 - Not used */ 2484 if (test_dm) { 2485 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2486 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2487 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2488 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2489 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2490 } else { 2491 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2492 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2493 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2494 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2495 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2496 } 2497 } else if (rw_wl_nop_cycles == 0) { 2498 /* 2499 * CNTR 2 - We want to skip the NOP operation and go straight 2500 * to the DQS enable instruction. We set the counter to a large 2501 * number so that the jump is always taken. 2502 */ 2503 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2504 2505 /* CNTR 3 - Not used */ 2506 if (test_dm) { 2507 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2508 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2509 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2510 } else { 2511 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2512 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2513 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2514 } 2515 } else { 2516 /* 2517 * CNTR 2 - In this case we want to execute the next instruction 2518 * and NOT take the jump. So we set the counter to 0. The jump 2519 * address doesn't count. 2520 */ 2521 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2522 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2523 2524 /* 2525 * CNTR 3 - Set the nop counter to the number of cycles we 2526 * need to loop for, minus 1. 2527 */ 2528 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2529 if (test_dm) { 2530 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2531 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2532 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2533 } else { 2534 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2535 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2536 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2537 } 2538 } 2539 2540 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2541 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2542 2543 if (quick_write_mode) 2544 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2545 else 2546 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2547 2548 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2549 2550 /* 2551 * CNTR 1 - This is used to ensure enough time elapses 2552 * for read data to come back. 2553 */ 2554 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2555 2556 if (test_dm) { 2557 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2558 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2559 } else { 2560 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2562 } 2563 2564 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2565 writel(mcc_instruction, addr + (group << 2)); 2566 } 2567 2568 /* Test writes, can check for a single bit pass or multiple bit pass */ 2569 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2570 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2571 uint32_t *bit_chk, uint32_t all_ranks) 2572 { 2573 uint32_t r; 2574 uint32_t correct_mask_vg; 2575 uint32_t tmp_bit_chk; 2576 uint32_t vg; 2577 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2578 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2579 uint32_t addr_rw_mgr; 2580 uint32_t base_rw_mgr; 2581 2582 *bit_chk = param->write_correct_mask; 2583 correct_mask_vg = param->write_correct_mask_vg; 2584 2585 for (r = rank_bgn; r < rank_end; r++) { 2586 if (param->skip_ranks[r]) { 2587 /* request to skip the rank */ 2588 continue; 2589 } 2590 2591 /* set rank */ 2592 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2593 2594 tmp_bit_chk = 0; 2595 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2596 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2597 /* reset the fifos to get pointers to known state */ 2598 writel(0, &phy_mgr_cmd->fifo_reset); 2599 2600 tmp_bit_chk = tmp_bit_chk << 2601 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2602 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2603 rw_mgr_mem_calibrate_write_test_issue(write_group * 2604 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2605 use_dm); 2606 2607 base_rw_mgr = readl(addr_rw_mgr); 2608 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2609 if (vg == 0) 2610 break; 2611 } 2612 *bit_chk &= tmp_bit_chk; 2613 } 2614 2615 if (all_correct) { 2616 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2617 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2618 %u => %lu", write_group, use_dm, 2619 *bit_chk, param->write_correct_mask, 2620 (long unsigned int)(*bit_chk == 2621 param->write_correct_mask)); 2622 return *bit_chk == param->write_correct_mask; 2623 } else { 2624 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2625 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2626 write_group, use_dm, *bit_chk); 2627 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2628 (long unsigned int)(*bit_chk != 0)); 2629 return *bit_chk != 0x00; 2630 } 2631 } 2632 2633 /* 2634 * center all windows. do per-bit-deskew to possibly increase size of 2635 * certain windows. 2636 */ 2637 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2638 uint32_t write_group, uint32_t test_bgn) 2639 { 2640 uint32_t i, p, min_index; 2641 int32_t d; 2642 /* 2643 * Store these as signed since there are comparisons with 2644 * signed numbers. 2645 */ 2646 uint32_t bit_chk; 2647 uint32_t sticky_bit_chk; 2648 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2649 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2650 int32_t mid; 2651 int32_t mid_min, orig_mid_min; 2652 int32_t new_dqs, start_dqs, shift_dq; 2653 int32_t dq_margin, dqs_margin, dm_margin; 2654 uint32_t stop; 2655 uint32_t temp_dq_out1_delay; 2656 uint32_t addr; 2657 2658 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2659 2660 dm_margin = 0; 2661 2662 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2663 start_dqs = readl(addr + 2664 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2665 2666 /* per-bit deskew */ 2667 2668 /* 2669 * set the left and right edge of each bit to an illegal value 2670 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2671 */ 2672 sticky_bit_chk = 0; 2673 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2674 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2675 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2676 } 2677 2678 /* Search for the left edge of the window for each bit */ 2679 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2680 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2681 2682 writel(0, &sdr_scc_mgr->update); 2683 2684 /* 2685 * Stop searching when the read test doesn't pass AND when 2686 * we've seen a passing read on every bit. 2687 */ 2688 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2689 0, PASS_ONE_BIT, &bit_chk, 0); 2690 sticky_bit_chk = sticky_bit_chk | bit_chk; 2691 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2692 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2693 == %u && %u [bit_chk= %u ]\n", 2694 d, sticky_bit_chk, param->write_correct_mask, 2695 stop, bit_chk); 2696 2697 if (stop == 1) { 2698 break; 2699 } else { 2700 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2701 if (bit_chk & 1) { 2702 /* 2703 * Remember a passing test as the 2704 * left_edge. 2705 */ 2706 left_edge[i] = d; 2707 } else { 2708 /* 2709 * If a left edge has not been seen 2710 * yet, then a future passing test will 2711 * mark this edge as the right edge. 2712 */ 2713 if (left_edge[i] == 2714 IO_IO_OUT1_DELAY_MAX + 1) { 2715 right_edge[i] = -(d + 1); 2716 } 2717 } 2718 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2719 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2720 (int)(bit_chk & 1), i, left_edge[i]); 2721 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2722 right_edge[i]); 2723 bit_chk = bit_chk >> 1; 2724 } 2725 } 2726 } 2727 2728 /* Reset DQ delay chains to 0 */ 2729 scc_mgr_apply_group_dq_out1_delay(0); 2730 sticky_bit_chk = 0; 2731 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2732 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2733 %d right_edge[%u]: %d\n", __func__, __LINE__, 2734 i, left_edge[i], i, right_edge[i]); 2735 2736 /* 2737 * Check for cases where we haven't found the left edge, 2738 * which makes our assignment of the the right edge invalid. 2739 * Reset it to the illegal value. 2740 */ 2741 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2742 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2743 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2744 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2745 right_edge[%u]: %d\n", __func__, __LINE__, 2746 i, right_edge[i]); 2747 } 2748 2749 /* 2750 * Reset sticky bit (except for bits where we have 2751 * seen the left edge). 2752 */ 2753 sticky_bit_chk = sticky_bit_chk << 1; 2754 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2755 sticky_bit_chk = sticky_bit_chk | 1; 2756 2757 if (i == 0) 2758 break; 2759 } 2760 2761 /* Search for the right edge of the window for each bit */ 2762 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2763 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2764 d + start_dqs); 2765 2766 writel(0, &sdr_scc_mgr->update); 2767 2768 /* 2769 * Stop searching when the read test doesn't pass AND when 2770 * we've seen a passing read on every bit. 2771 */ 2772 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2773 0, PASS_ONE_BIT, &bit_chk, 0); 2774 2775 sticky_bit_chk = sticky_bit_chk | bit_chk; 2776 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2777 2778 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2779 %u && %u\n", d, sticky_bit_chk, 2780 param->write_correct_mask, stop); 2781 2782 if (stop == 1) { 2783 if (d == 0) { 2784 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2785 i++) { 2786 /* d = 0 failed, but it passed when 2787 testing the left edge, so it must be 2788 marginal, set it to -1 */ 2789 if (right_edge[i] == 2790 IO_IO_OUT1_DELAY_MAX + 1 && 2791 left_edge[i] != 2792 IO_IO_OUT1_DELAY_MAX + 1) { 2793 right_edge[i] = -1; 2794 } 2795 } 2796 } 2797 break; 2798 } else { 2799 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2800 if (bit_chk & 1) { 2801 /* 2802 * Remember a passing test as 2803 * the right_edge. 2804 */ 2805 right_edge[i] = d; 2806 } else { 2807 if (d != 0) { 2808 /* 2809 * If a right edge has not 2810 * been seen yet, then a future 2811 * passing test will mark this 2812 * edge as the left edge. 2813 */ 2814 if (right_edge[i] == 2815 IO_IO_OUT1_DELAY_MAX + 1) 2816 left_edge[i] = -(d + 1); 2817 } else { 2818 /* 2819 * d = 0 failed, but it passed 2820 * when testing the left edge, 2821 * so it must be marginal, set 2822 * it to -1. 2823 */ 2824 if (right_edge[i] == 2825 IO_IO_OUT1_DELAY_MAX + 1 && 2826 left_edge[i] != 2827 IO_IO_OUT1_DELAY_MAX + 1) 2828 right_edge[i] = -1; 2829 /* 2830 * If a right edge has not been 2831 * seen yet, then a future 2832 * passing test will mark this 2833 * edge as the left edge. 2834 */ 2835 else if (right_edge[i] == 2836 IO_IO_OUT1_DELAY_MAX + 2837 1) 2838 left_edge[i] = -(d + 1); 2839 } 2840 } 2841 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2842 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2843 (int)(bit_chk & 1), i, left_edge[i]); 2844 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2845 right_edge[i]); 2846 bit_chk = bit_chk >> 1; 2847 } 2848 } 2849 } 2850 2851 /* Check that all bits have a window */ 2852 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2853 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2854 %d right_edge[%u]: %d", __func__, __LINE__, 2855 i, left_edge[i], i, right_edge[i]); 2856 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2857 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2858 set_failing_group_stage(test_bgn + i, 2859 CAL_STAGE_WRITES, 2860 CAL_SUBSTAGE_WRITES_CENTER); 2861 return 0; 2862 } 2863 } 2864 2865 /* Find middle of window for each DQ bit */ 2866 mid_min = left_edge[0] - right_edge[0]; 2867 min_index = 0; 2868 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2869 mid = left_edge[i] - right_edge[i]; 2870 if (mid < mid_min) { 2871 mid_min = mid; 2872 min_index = i; 2873 } 2874 } 2875 2876 /* 2877 * -mid_min/2 represents the amount that we need to move DQS. 2878 * If mid_min is odd and positive we'll need to add one to 2879 * make sure the rounding in further calculations is correct 2880 * (always bias to the right), so just add 1 for all positive values. 2881 */ 2882 if (mid_min > 0) 2883 mid_min++; 2884 mid_min = mid_min / 2; 2885 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2886 __LINE__, mid_min); 2887 2888 /* Determine the amount we can change DQS (which is -mid_min) */ 2889 orig_mid_min = mid_min; 2890 new_dqs = start_dqs; 2891 mid_min = 0; 2892 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2893 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2894 /* Initialize data for export structures */ 2895 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2896 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2897 2898 /* add delay to bring centre of all DQ windows to the same "level" */ 2899 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2900 /* Use values before divide by 2 to reduce round off error */ 2901 shift_dq = (left_edge[i] - right_edge[i] - 2902 (left_edge[min_index] - right_edge[min_index]))/2 + 2903 (orig_mid_min - mid_min); 2904 2905 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2906 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2907 2908 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2909 temp_dq_out1_delay = readl(addr + (i << 2)); 2910 if (shift_dq + (int32_t)temp_dq_out1_delay > 2911 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2912 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2913 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2914 shift_dq = -(int32_t)temp_dq_out1_delay; 2915 } 2916 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2917 i, shift_dq); 2918 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2919 scc_mgr_load_dq(i); 2920 2921 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2922 left_edge[i] - shift_dq + (-mid_min), 2923 right_edge[i] + shift_dq - (-mid_min)); 2924 /* To determine values for export structures */ 2925 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2926 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2927 2928 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2929 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2930 } 2931 2932 /* Move DQS */ 2933 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2934 writel(0, &sdr_scc_mgr->update); 2935 2936 /* Centre DM */ 2937 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2938 2939 /* 2940 * set the left and right edge of each bit to an illegal value, 2941 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2942 */ 2943 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2944 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2945 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2946 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2947 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2948 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2949 int32_t win_best = 0; 2950 2951 /* Search for the/part of the window with DM shift */ 2952 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2953 scc_mgr_apply_group_dm_out1_delay(d); 2954 writel(0, &sdr_scc_mgr->update); 2955 2956 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2957 PASS_ALL_BITS, &bit_chk, 2958 0)) { 2959 /* USE Set current end of the window */ 2960 end_curr = -d; 2961 /* 2962 * If a starting edge of our window has not been seen 2963 * this is our current start of the DM window. 2964 */ 2965 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2966 bgn_curr = -d; 2967 2968 /* 2969 * If current window is bigger than best seen. 2970 * Set best seen to be current window. 2971 */ 2972 if ((end_curr-bgn_curr+1) > win_best) { 2973 win_best = end_curr-bgn_curr+1; 2974 bgn_best = bgn_curr; 2975 end_best = end_curr; 2976 } 2977 } else { 2978 /* We just saw a failing test. Reset temp edge */ 2979 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2980 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2981 } 2982 } 2983 2984 2985 /* Reset DM delay chains to 0 */ 2986 scc_mgr_apply_group_dm_out1_delay(0); 2987 2988 /* 2989 * Check to see if the current window nudges up aganist 0 delay. 2990 * If so we need to continue the search by shifting DQS otherwise DQS 2991 * search begins as a new search. */ 2992 if (end_curr != 0) { 2993 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2994 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2995 } 2996 2997 /* Search for the/part of the window with DQS shifts */ 2998 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 2999 /* 3000 * Note: This only shifts DQS, so are we limiting ourselve to 3001 * width of DQ unnecessarily. 3002 */ 3003 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3004 d + new_dqs); 3005 3006 writel(0, &sdr_scc_mgr->update); 3007 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3008 PASS_ALL_BITS, &bit_chk, 3009 0)) { 3010 /* USE Set current end of the window */ 3011 end_curr = d; 3012 /* 3013 * If a beginning edge of our window has not been seen 3014 * this is our current begin of the DM window. 3015 */ 3016 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3017 bgn_curr = d; 3018 3019 /* 3020 * If current window is bigger than best seen. Set best 3021 * seen to be current window. 3022 */ 3023 if ((end_curr-bgn_curr+1) > win_best) { 3024 win_best = end_curr-bgn_curr+1; 3025 bgn_best = bgn_curr; 3026 end_best = end_curr; 3027 } 3028 } else { 3029 /* We just saw a failing test. Reset temp edge */ 3030 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3031 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 3033 /* Early exit optimization: if ther remaining delay 3034 chain space is less than already seen largest window 3035 we can exit */ 3036 if ((win_best-1) > 3037 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3038 break; 3039 } 3040 } 3041 } 3042 3043 /* assign left and right edge for cal and reporting; */ 3044 left_edge[0] = -1*bgn_best; 3045 right_edge[0] = end_best; 3046 3047 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3048 __LINE__, left_edge[0], right_edge[0]); 3049 3050 /* Move DQS (back to orig) */ 3051 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3052 3053 /* Move DM */ 3054 3055 /* Find middle of window for the DM bit */ 3056 mid = (left_edge[0] - right_edge[0]) / 2; 3057 3058 /* only move right, since we are not moving DQS/DQ */ 3059 if (mid < 0) 3060 mid = 0; 3061 3062 /* dm_marign should fail if we never find a window */ 3063 if (win_best == 0) 3064 dm_margin = -1; 3065 else 3066 dm_margin = left_edge[0] - mid; 3067 3068 scc_mgr_apply_group_dm_out1_delay(mid); 3069 writel(0, &sdr_scc_mgr->update); 3070 3071 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3072 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3073 right_edge[0], mid, dm_margin); 3074 /* Export values */ 3075 gbl->fom_out += dq_margin + dqs_margin; 3076 3077 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3078 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3079 dq_margin, dqs_margin, dm_margin); 3080 3081 /* 3082 * Do not remove this line as it makes sure all of our 3083 * decisions have been applied. 3084 */ 3085 writel(0, &sdr_scc_mgr->update); 3086 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3087 } 3088 3089 /* calibrate the write operations */ 3090 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3091 uint32_t test_bgn) 3092 { 3093 /* update info for sims */ 3094 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3095 3096 reg_file_set_stage(CAL_STAGE_WRITES); 3097 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3098 3099 reg_file_set_group(g); 3100 3101 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3102 set_failing_group_stage(g, CAL_STAGE_WRITES, 3103 CAL_SUBSTAGE_WRITES_CENTER); 3104 return 0; 3105 } 3106 3107 return 1; 3108 } 3109 3110 /** 3111 * mem_precharge_and_activate() - Precharge all banks and activate 3112 * 3113 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3114 */ 3115 static void mem_precharge_and_activate(void) 3116 { 3117 int r; 3118 3119 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3120 /* Test if the rank should be skipped. */ 3121 if (param->skip_ranks[r]) 3122 continue; 3123 3124 /* Set rank. */ 3125 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3126 3127 /* Precharge all banks. */ 3128 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3129 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3130 3131 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3132 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3133 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3134 3135 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3136 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3137 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3138 3139 /* Activate rows. */ 3140 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3141 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3142 } 3143 } 3144 3145 /** 3146 * mem_init_latency() - Configure memory RLAT and WLAT settings 3147 * 3148 * Configure memory RLAT and WLAT parameters. 3149 */ 3150 static void mem_init_latency(void) 3151 { 3152 /* 3153 * For AV/CV, LFIFO is hardened and always runs at full rate 3154 * so max latency in AFI clocks, used here, is correspondingly 3155 * smaller. 3156 */ 3157 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3158 u32 rlat, wlat; 3159 3160 debug("%s:%d\n", __func__, __LINE__); 3161 3162 /* 3163 * Read in write latency. 3164 * WL for Hard PHY does not include additive latency. 3165 */ 3166 wlat = readl(&data_mgr->t_wl_add); 3167 wlat += readl(&data_mgr->mem_t_add); 3168 3169 gbl->rw_wl_nop_cycles = wlat - 1; 3170 3171 /* Read in readl latency. */ 3172 rlat = readl(&data_mgr->t_rl_add); 3173 3174 /* Set a pretty high read latency initially. */ 3175 gbl->curr_read_lat = rlat + 16; 3176 if (gbl->curr_read_lat > max_latency) 3177 gbl->curr_read_lat = max_latency; 3178 3179 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3180 3181 /* Advertise write latency. */ 3182 writel(wlat, &phy_mgr_cfg->afi_wlat); 3183 } 3184 3185 /** 3186 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3187 * 3188 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3189 */ 3190 static void mem_skip_calibrate(void) 3191 { 3192 uint32_t vfifo_offset; 3193 uint32_t i, j, r; 3194 3195 debug("%s:%d\n", __func__, __LINE__); 3196 /* Need to update every shadow register set used by the interface */ 3197 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3198 r += NUM_RANKS_PER_SHADOW_REG) { 3199 /* 3200 * Set output phase alignment settings appropriate for 3201 * skip calibration. 3202 */ 3203 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3204 scc_mgr_set_dqs_en_phase(i, 0); 3205 #if IO_DLL_CHAIN_LENGTH == 6 3206 scc_mgr_set_dqdqs_output_phase(i, 6); 3207 #else 3208 scc_mgr_set_dqdqs_output_phase(i, 7); 3209 #endif 3210 /* 3211 * Case:33398 3212 * 3213 * Write data arrives to the I/O two cycles before write 3214 * latency is reached (720 deg). 3215 * -> due to bit-slip in a/c bus 3216 * -> to allow board skew where dqs is longer than ck 3217 * -> how often can this happen!? 3218 * -> can claim back some ptaps for high freq 3219 * support if we can relax this, but i digress... 3220 * 3221 * The write_clk leads mem_ck by 90 deg 3222 * The minimum ptap of the OPA is 180 deg 3223 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3224 * The write_clk is always delayed by 2 ptaps 3225 * 3226 * Hence, to make DQS aligned to CK, we need to delay 3227 * DQS by: 3228 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3229 * 3230 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3231 * gives us the number of ptaps, which simplies to: 3232 * 3233 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3234 */ 3235 scc_mgr_set_dqdqs_output_phase(i, 3236 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3237 } 3238 writel(0xff, &sdr_scc_mgr->dqs_ena); 3239 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3240 3241 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3242 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3243 SCC_MGR_GROUP_COUNTER_OFFSET); 3244 } 3245 writel(0xff, &sdr_scc_mgr->dq_ena); 3246 writel(0xff, &sdr_scc_mgr->dm_ena); 3247 writel(0, &sdr_scc_mgr->update); 3248 } 3249 3250 /* Compensate for simulation model behaviour */ 3251 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3252 scc_mgr_set_dqs_bus_in_delay(i, 10); 3253 scc_mgr_load_dqs(i); 3254 } 3255 writel(0, &sdr_scc_mgr->update); 3256 3257 /* 3258 * ArriaV has hard FIFOs that can only be initialized by incrementing 3259 * in sequencer. 3260 */ 3261 vfifo_offset = CALIB_VFIFO_OFFSET; 3262 for (j = 0; j < vfifo_offset; j++) 3263 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3264 writel(0, &phy_mgr_cmd->fifo_reset); 3265 3266 /* 3267 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3268 * setting from generation-time constant. 3269 */ 3270 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3271 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3272 } 3273 3274 /** 3275 * mem_calibrate() - Memory calibration entry point. 3276 * 3277 * Perform memory calibration. 3278 */ 3279 static uint32_t mem_calibrate(void) 3280 { 3281 uint32_t i; 3282 uint32_t rank_bgn, sr; 3283 uint32_t write_group, write_test_bgn; 3284 uint32_t read_group, read_test_bgn; 3285 uint32_t run_groups, current_run; 3286 uint32_t failing_groups = 0; 3287 uint32_t group_failed = 0; 3288 3289 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3290 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3291 3292 debug("%s:%d\n", __func__, __LINE__); 3293 3294 /* Initialize the data settings */ 3295 gbl->error_substage = CAL_SUBSTAGE_NIL; 3296 gbl->error_stage = CAL_STAGE_NIL; 3297 gbl->error_group = 0xff; 3298 gbl->fom_in = 0; 3299 gbl->fom_out = 0; 3300 3301 /* Initialize WLAT and RLAT. */ 3302 mem_init_latency(); 3303 3304 /* Initialize bit slips. */ 3305 mem_precharge_and_activate(); 3306 3307 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3308 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3309 SCC_MGR_GROUP_COUNTER_OFFSET); 3310 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3311 if (i == 0) 3312 scc_mgr_set_hhp_extras(); 3313 3314 scc_set_bypass_mode(i); 3315 } 3316 3317 /* Calibration is skipped. */ 3318 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3319 /* 3320 * Set VFIFO and LFIFO to instant-on settings in skip 3321 * calibration mode. 3322 */ 3323 mem_skip_calibrate(); 3324 3325 /* 3326 * Do not remove this line as it makes sure all of our 3327 * decisions have been applied. 3328 */ 3329 writel(0, &sdr_scc_mgr->update); 3330 return 1; 3331 } 3332 3333 /* Calibration is not skipped. */ 3334 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3335 /* 3336 * Zero all delay chain/phase settings for all 3337 * groups and all shadow register sets. 3338 */ 3339 scc_mgr_zero_all(); 3340 3341 run_groups = ~param->skip_groups; 3342 3343 for (write_group = 0, write_test_bgn = 0; write_group 3344 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3345 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3346 3347 /* Initialize the group failure */ 3348 group_failed = 0; 3349 3350 current_run = run_groups & ((1 << 3351 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3352 run_groups = run_groups >> 3353 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3354 3355 if (current_run == 0) 3356 continue; 3357 3358 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3359 SCC_MGR_GROUP_COUNTER_OFFSET); 3360 scc_mgr_zero_group(write_group, 0); 3361 3362 for (read_group = write_group * rwdqs_ratio, 3363 read_test_bgn = 0; 3364 read_group < (write_group + 1) * rwdqs_ratio; 3365 read_group++, 3366 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3367 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3368 continue; 3369 3370 /* Calibrate the VFIFO */ 3371 if (rw_mgr_mem_calibrate_vfifo(read_group, 3372 read_test_bgn)) 3373 continue; 3374 3375 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3376 return 0; 3377 3378 /* The group failed, we're done. */ 3379 goto grp_failed; 3380 } 3381 3382 /* Calibrate the output side */ 3383 for (rank_bgn = 0, sr = 0; 3384 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3385 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3386 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3387 continue; 3388 3389 /* Not needed in quick mode! */ 3390 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3391 continue; 3392 3393 /* 3394 * Determine if this set of ranks 3395 * should be skipped entirely. 3396 */ 3397 if (param->skip_shadow_regs[sr]) 3398 continue; 3399 3400 /* Calibrate WRITEs */ 3401 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3402 write_group, write_test_bgn)) 3403 continue; 3404 3405 group_failed = 1; 3406 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3407 return 0; 3408 } 3409 3410 /* Some group failed, we're done. */ 3411 if (group_failed) 3412 goto grp_failed; 3413 3414 for (read_group = write_group * rwdqs_ratio, 3415 read_test_bgn = 0; 3416 read_group < (write_group + 1) * rwdqs_ratio; 3417 read_group++, 3418 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3419 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3420 continue; 3421 3422 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3423 read_test_bgn)) 3424 continue; 3425 3426 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3427 return 0; 3428 3429 /* The group failed, we're done. */ 3430 goto grp_failed; 3431 } 3432 3433 /* No group failed, continue as usual. */ 3434 continue; 3435 3436 grp_failed: /* A group failed, increment the counter. */ 3437 failing_groups++; 3438 } 3439 3440 /* 3441 * USER If there are any failing groups then report 3442 * the failure. 3443 */ 3444 if (failing_groups != 0) 3445 return 0; 3446 3447 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3448 continue; 3449 3450 /* 3451 * If we're skipping groups as part of debug, 3452 * don't calibrate LFIFO. 3453 */ 3454 if (param->skip_groups != 0) 3455 continue; 3456 3457 /* Calibrate the LFIFO */ 3458 if (!rw_mgr_mem_calibrate_lfifo()) 3459 return 0; 3460 } 3461 3462 /* 3463 * Do not remove this line as it makes sure all of our decisions 3464 * have been applied. 3465 */ 3466 writel(0, &sdr_scc_mgr->update); 3467 return 1; 3468 } 3469 3470 /** 3471 * run_mem_calibrate() - Perform memory calibration 3472 * 3473 * This function triggers the entire memory calibration procedure. 3474 */ 3475 static int run_mem_calibrate(void) 3476 { 3477 int pass; 3478 3479 debug("%s:%d\n", __func__, __LINE__); 3480 3481 /* Reset pass/fail status shown on afi_cal_success/fail */ 3482 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3483 3484 /* Stop tracking manager. */ 3485 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3486 3487 phy_mgr_initialize(); 3488 rw_mgr_mem_initialize(); 3489 3490 /* Perform the actual memory calibration. */ 3491 pass = mem_calibrate(); 3492 3493 mem_precharge_and_activate(); 3494 writel(0, &phy_mgr_cmd->fifo_reset); 3495 3496 /* Handoff. */ 3497 rw_mgr_mem_handoff(); 3498 /* 3499 * In Hard PHY this is a 2-bit control: 3500 * 0: AFI Mux Select 3501 * 1: DDIO Mux Select 3502 */ 3503 writel(0x2, &phy_mgr_cfg->mux_sel); 3504 3505 /* Start tracking manager. */ 3506 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3507 3508 return pass; 3509 } 3510 3511 /** 3512 * debug_mem_calibrate() - Report result of memory calibration 3513 * @pass: Value indicating whether calibration passed or failed 3514 * 3515 * This function reports the results of the memory calibration 3516 * and writes debug information into the register file. 3517 */ 3518 static void debug_mem_calibrate(int pass) 3519 { 3520 uint32_t debug_info; 3521 3522 if (pass) { 3523 printf("%s: CALIBRATION PASSED\n", __FILE__); 3524 3525 gbl->fom_in /= 2; 3526 gbl->fom_out /= 2; 3527 3528 if (gbl->fom_in > 0xff) 3529 gbl->fom_in = 0xff; 3530 3531 if (gbl->fom_out > 0xff) 3532 gbl->fom_out = 0xff; 3533 3534 /* Update the FOM in the register file */ 3535 debug_info = gbl->fom_in; 3536 debug_info |= gbl->fom_out << 8; 3537 writel(debug_info, &sdr_reg_file->fom); 3538 3539 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3540 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3541 } else { 3542 printf("%s: CALIBRATION FAILED\n", __FILE__); 3543 3544 debug_info = gbl->error_stage; 3545 debug_info |= gbl->error_substage << 8; 3546 debug_info |= gbl->error_group << 16; 3547 3548 writel(debug_info, &sdr_reg_file->failing_stage); 3549 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3550 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3551 3552 /* Update the failing group/stage in the register file */ 3553 debug_info = gbl->error_stage; 3554 debug_info |= gbl->error_substage << 8; 3555 debug_info |= gbl->error_group << 16; 3556 writel(debug_info, &sdr_reg_file->failing_stage); 3557 } 3558 3559 printf("%s: Calibration complete\n", __FILE__); 3560 } 3561 3562 /** 3563 * hc_initialize_rom_data() - Initialize ROM data 3564 * 3565 * Initialize ROM data. 3566 */ 3567 static void hc_initialize_rom_data(void) 3568 { 3569 u32 i, addr; 3570 3571 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3572 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3573 writel(inst_rom_init[i], addr + (i << 2)); 3574 3575 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3576 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3577 writel(ac_rom_init[i], addr + (i << 2)); 3578 } 3579 3580 /** 3581 * initialize_reg_file() - Initialize SDR register file 3582 * 3583 * Initialize SDR register file. 3584 */ 3585 static void initialize_reg_file(void) 3586 { 3587 /* Initialize the register file with the correct data */ 3588 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3589 writel(0, &sdr_reg_file->debug_data_addr); 3590 writel(0, &sdr_reg_file->cur_stage); 3591 writel(0, &sdr_reg_file->fom); 3592 writel(0, &sdr_reg_file->failing_stage); 3593 writel(0, &sdr_reg_file->debug1); 3594 writel(0, &sdr_reg_file->debug2); 3595 } 3596 3597 /** 3598 * initialize_hps_phy() - Initialize HPS PHY 3599 * 3600 * Initialize HPS PHY. 3601 */ 3602 static void initialize_hps_phy(void) 3603 { 3604 uint32_t reg; 3605 /* 3606 * Tracking also gets configured here because it's in the 3607 * same register. 3608 */ 3609 uint32_t trk_sample_count = 7500; 3610 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3611 /* 3612 * Format is number of outer loops in the 16 MSB, sample 3613 * count in 16 LSB. 3614 */ 3615 3616 reg = 0; 3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3621 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3622 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3623 /* 3624 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3625 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3626 */ 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3629 trk_sample_count); 3630 writel(reg, &sdr_ctrl->phy_ctrl0); 3631 3632 reg = 0; 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3634 trk_sample_count >> 3635 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3637 trk_long_idle_sample_count); 3638 writel(reg, &sdr_ctrl->phy_ctrl1); 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3642 trk_long_idle_sample_count >> 3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3644 writel(reg, &sdr_ctrl->phy_ctrl2); 3645 } 3646 3647 /** 3648 * initialize_tracking() - Initialize tracking 3649 * 3650 * Initialize the register file with usable initial data. 3651 */ 3652 static void initialize_tracking(void) 3653 { 3654 /* 3655 * Initialize the register file with the correct data. 3656 * Compute usable version of value in case we skip full 3657 * computation later. 3658 */ 3659 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3660 &sdr_reg_file->dtaps_per_ptap); 3661 3662 /* trk_sample_count */ 3663 writel(7500, &sdr_reg_file->trk_sample_count); 3664 3665 /* longidle outer loop [15:0] */ 3666 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3667 3668 /* 3669 * longidle sample count [31:24] 3670 * trfc, worst case of 933Mhz 4Gb [23:16] 3671 * trcd, worst case [15:8] 3672 * vfifo wait [7:0] 3673 */ 3674 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3675 &sdr_reg_file->delays); 3676 3677 /* mux delay */ 3678 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3679 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3680 &sdr_reg_file->trk_rw_mgr_addr); 3681 3682 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3683 &sdr_reg_file->trk_read_dqs_width); 3684 3685 /* trefi [7:0] */ 3686 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3687 &sdr_reg_file->trk_rfsh); 3688 } 3689 3690 int sdram_calibration_full(void) 3691 { 3692 struct param_type my_param; 3693 struct gbl_type my_gbl; 3694 uint32_t pass; 3695 3696 memset(&my_param, 0, sizeof(my_param)); 3697 memset(&my_gbl, 0, sizeof(my_gbl)); 3698 3699 param = &my_param; 3700 gbl = &my_gbl; 3701 3702 /* Set the calibration enabled by default */ 3703 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3704 /* 3705 * Only sweep all groups (regardless of fail state) by default 3706 * Set enabled read test by default. 3707 */ 3708 #if DISABLE_GUARANTEED_READ 3709 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3710 #endif 3711 /* Initialize the register file */ 3712 initialize_reg_file(); 3713 3714 /* Initialize any PHY CSR */ 3715 initialize_hps_phy(); 3716 3717 scc_mgr_initialize(); 3718 3719 initialize_tracking(); 3720 3721 printf("%s: Preparing to start memory calibration\n", __FILE__); 3722 3723 debug("%s:%d\n", __func__, __LINE__); 3724 debug_cond(DLEVEL == 1, 3725 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3726 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3727 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3728 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3729 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3730 debug_cond(DLEVEL == 1, 3731 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3732 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3733 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3734 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3735 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3736 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3737 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3738 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3739 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3740 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3741 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3742 IO_IO_OUT2_DELAY_MAX); 3743 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3744 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3745 3746 hc_initialize_rom_data(); 3747 3748 /* update info for sims */ 3749 reg_file_set_stage(CAL_STAGE_NIL); 3750 reg_file_set_group(0); 3751 3752 /* 3753 * Load global needed for those actions that require 3754 * some dynamic calibration support. 3755 */ 3756 dyn_calib_steps = STATIC_CALIB_STEPS; 3757 /* 3758 * Load global to allow dynamic selection of delay loop settings 3759 * based on calibration mode. 3760 */ 3761 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3762 skip_delay_mask = 0xff; 3763 else 3764 skip_delay_mask = 0x0; 3765 3766 pass = run_mem_calibrate(); 3767 debug_mem_calibrate(pass); 3768 return pass; 3769 } 3770