1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static int 1178 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1179 const u32 num_tries, const u32 all_correct, 1180 u32 *bit_chk, 1181 const u32 all_groups, const u32 all_ranks) 1182 { 1183 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1185 const u32 quick_read_mode = 1186 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1187 ENABLE_SUPER_QUICK_CALIBRATION); 1188 u32 correct_mask_vg = param->read_correct_mask_vg; 1189 u32 tmp_bit_chk; 1190 u32 base_rw_mgr; 1191 u32 addr; 1192 1193 int r, vg, ret; 1194 1195 *bit_chk = param->read_correct_mask; 1196 1197 for (r = rank_bgn; r < rank_end; r++) { 1198 if (param->skip_ranks[r]) 1199 /* request to skip the rank */ 1200 continue; 1201 1202 /* set rank */ 1203 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1204 1205 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1206 1207 writel(RW_MGR_READ_B2B_WAIT1, 1208 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1209 1210 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1211 writel(RW_MGR_READ_B2B_WAIT2, 1212 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1213 1214 if (quick_read_mode) 1215 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1216 /* need at least two (1+1) reads to capture failures */ 1217 else if (all_groups) 1218 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1219 else 1220 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1221 1222 writel(RW_MGR_READ_B2B, 1223 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1224 if (all_groups) 1225 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1226 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1227 &sdr_rw_load_mgr_regs->load_cntr3); 1228 else 1229 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1230 1231 writel(RW_MGR_READ_B2B, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1233 1234 tmp_bit_chk = 0; 1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1236 vg--) { 1237 /* Reset the FIFOs to get pointers to known state. */ 1238 writel(0, &phy_mgr_cmd->fifo_reset); 1239 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1240 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1241 1242 if (all_groups) { 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1244 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1245 } else { 1246 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1247 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1248 } 1249 1250 writel(RW_MGR_READ_B2B, addr + 1251 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1252 vg) << 2)); 1253 1254 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1255 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1256 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1257 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1258 } 1259 1260 *bit_chk &= tmp_bit_chk; 1261 } 1262 1263 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1264 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1265 1266 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1267 1268 if (all_correct) { 1269 ret = (*bit_chk == param->read_correct_mask); 1270 debug_cond(DLEVEL == 2, 1271 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1272 __func__, __LINE__, group, all_groups, *bit_chk, 1273 param->read_correct_mask, ret); 1274 } else { 1275 ret = (*bit_chk != 0x00); 1276 debug_cond(DLEVEL == 2, 1277 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1278 __func__, __LINE__, group, all_groups, *bit_chk, 1279 0, ret); 1280 } 1281 1282 return ret; 1283 } 1284 1285 /** 1286 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1287 * @grp: Read/Write group 1288 * @num_tries: Number of retries of the test 1289 * @all_correct: All bits must be correct in the mask 1290 * @all_groups: Test all R/W groups 1291 * 1292 * Perform a READ test across all memory ranks. 1293 */ 1294 static int 1295 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1296 const u32 all_correct, 1297 const u32 all_groups) 1298 { 1299 u32 bit_chk; 1300 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1301 &bit_chk, all_groups, 1); 1302 } 1303 1304 /** 1305 * rw_mgr_incr_vfifo() - Increase VFIFO value 1306 * @grp: Read/Write group 1307 * 1308 * Increase VFIFO value. 1309 */ 1310 static void rw_mgr_incr_vfifo(const u32 grp) 1311 { 1312 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1313 } 1314 1315 /** 1316 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1317 * @grp: Read/Write group 1318 * 1319 * Decrease VFIFO value. 1320 */ 1321 static void rw_mgr_decr_vfifo(const u32 grp) 1322 { 1323 u32 i; 1324 1325 for (i = 0; i < VFIFO_SIZE - 1; i++) 1326 rw_mgr_incr_vfifo(grp); 1327 } 1328 1329 /** 1330 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1331 * @grp: Read/Write group 1332 * 1333 * Push VFIFO until a failing read happens. 1334 */ 1335 static int find_vfifo_failing_read(const u32 grp) 1336 { 1337 u32 v, ret, fail_cnt = 0; 1338 1339 for (v = 0; v < VFIFO_SIZE; v++) { 1340 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1341 __func__, __LINE__, v); 1342 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1343 PASS_ONE_BIT, 0); 1344 if (!ret) { 1345 fail_cnt++; 1346 1347 if (fail_cnt == 2) 1348 return v; 1349 } 1350 1351 /* Fiddle with FIFO. */ 1352 rw_mgr_incr_vfifo(grp); 1353 } 1354 1355 /* No failing read found! Something must have gone wrong. */ 1356 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1357 return 0; 1358 } 1359 1360 /** 1361 * sdr_find_phase_delay() - Find DQS enable phase or delay 1362 * @working: If 1, look for working phase/delay, if 0, look for non-working 1363 * @delay: If 1, look for delay, if 0, look for phase 1364 * @grp: Read/Write group 1365 * @work: Working window position 1366 * @work_inc: Working window increment 1367 * @pd: DQS Phase/Delay Iterator 1368 * 1369 * Find working or non-working DQS enable phase setting. 1370 */ 1371 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1372 u32 *work, const u32 work_inc, u32 *pd) 1373 { 1374 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1375 u32 ret; 1376 1377 for (; *pd <= max; (*pd)++) { 1378 if (delay) 1379 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1380 else 1381 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1382 1383 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1384 PASS_ONE_BIT, 0); 1385 if (!working) 1386 ret = !ret; 1387 1388 if (ret) 1389 return 0; 1390 1391 if (work) 1392 *work += work_inc; 1393 } 1394 1395 return -EINVAL; 1396 } 1397 /** 1398 * sdr_find_phase() - Find DQS enable phase 1399 * @working: If 1, look for working phase, if 0, look for non-working phase 1400 * @grp: Read/Write group 1401 * @work: Working window position 1402 * @i: Iterator 1403 * @p: DQS Phase Iterator 1404 * 1405 * Find working or non-working DQS enable phase setting. 1406 */ 1407 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1408 u32 *i, u32 *p) 1409 { 1410 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1411 int ret; 1412 1413 for (; *i < end; (*i)++) { 1414 if (working) 1415 *p = 0; 1416 1417 ret = sdr_find_phase_delay(working, 0, grp, work, 1418 IO_DELAY_PER_OPA_TAP, p); 1419 if (!ret) 1420 return 0; 1421 1422 if (*p > IO_DQS_EN_PHASE_MAX) { 1423 /* Fiddle with FIFO. */ 1424 rw_mgr_incr_vfifo(grp); 1425 if (!working) 1426 *p = 0; 1427 } 1428 } 1429 1430 return -EINVAL; 1431 } 1432 1433 /** 1434 * sdr_working_phase() - Find working DQS enable phase 1435 * @grp: Read/Write group 1436 * @work_bgn: Working window start position 1437 * @d: dtaps output value 1438 * @p: DQS Phase Iterator 1439 * @i: Iterator 1440 * 1441 * Find working DQS enable phase setting. 1442 */ 1443 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1444 u32 *p, u32 *i) 1445 { 1446 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1447 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1448 int ret; 1449 1450 *work_bgn = 0; 1451 1452 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1453 *i = 0; 1454 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1455 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1456 if (!ret) 1457 return 0; 1458 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1459 } 1460 1461 /* Cannot find working solution */ 1462 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1463 __func__, __LINE__); 1464 return -EINVAL; 1465 } 1466 1467 /** 1468 * sdr_backup_phase() - Find DQS enable backup phase 1469 * @grp: Read/Write group 1470 * @work_bgn: Working window start position 1471 * @p: DQS Phase Iterator 1472 * 1473 * Find DQS enable backup phase setting. 1474 */ 1475 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1476 { 1477 u32 tmp_delay, d; 1478 int ret; 1479 1480 /* Special case code for backing up a phase */ 1481 if (*p == 0) { 1482 *p = IO_DQS_EN_PHASE_MAX; 1483 rw_mgr_decr_vfifo(grp); 1484 } else { 1485 (*p)--; 1486 } 1487 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1488 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1489 1490 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1491 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1492 1493 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1494 PASS_ONE_BIT, 0); 1495 if (ret) { 1496 *work_bgn = tmp_delay; 1497 break; 1498 } 1499 1500 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1501 } 1502 1503 /* Restore VFIFO to old state before we decremented it (if needed). */ 1504 (*p)++; 1505 if (*p > IO_DQS_EN_PHASE_MAX) { 1506 *p = 0; 1507 rw_mgr_incr_vfifo(grp); 1508 } 1509 1510 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1511 } 1512 1513 /** 1514 * sdr_nonworking_phase() - Find non-working DQS enable phase 1515 * @grp: Read/Write group 1516 * @work_end: Working window end position 1517 * @p: DQS Phase Iterator 1518 * @i: Iterator 1519 * 1520 * Find non-working DQS enable phase setting. 1521 */ 1522 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1523 { 1524 int ret; 1525 1526 (*p)++; 1527 *work_end += IO_DELAY_PER_OPA_TAP; 1528 if (*p > IO_DQS_EN_PHASE_MAX) { 1529 /* Fiddle with FIFO. */ 1530 *p = 0; 1531 rw_mgr_incr_vfifo(grp); 1532 } 1533 1534 ret = sdr_find_phase(0, grp, work_end, i, p); 1535 if (ret) { 1536 /* Cannot see edge of failing read. */ 1537 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1538 __func__, __LINE__); 1539 } 1540 1541 return ret; 1542 } 1543 1544 /** 1545 * sdr_find_window_center() - Find center of the working DQS window. 1546 * @grp: Read/Write group 1547 * @work_bgn: First working settings 1548 * @work_end: Last working settings 1549 * 1550 * Find center of the working DQS enable window. 1551 */ 1552 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1553 const u32 work_end) 1554 { 1555 u32 work_mid; 1556 int tmp_delay = 0; 1557 int i, p, d; 1558 1559 work_mid = (work_bgn + work_end) / 2; 1560 1561 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1562 work_bgn, work_end, work_mid); 1563 /* Get the middle delay to be less than a VFIFO delay */ 1564 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1565 1566 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1567 work_mid %= tmp_delay; 1568 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1569 1570 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1571 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1572 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1573 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1574 1575 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1576 1577 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1578 if (d > IO_DQS_EN_DELAY_MAX) 1579 d = IO_DQS_EN_DELAY_MAX; 1580 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1581 1582 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1583 1584 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1585 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1586 1587 /* 1588 * push vfifo until we can successfully calibrate. We can do this 1589 * because the largest possible margin in 1 VFIFO cycle. 1590 */ 1591 for (i = 0; i < VFIFO_SIZE; i++) { 1592 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1593 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1594 PASS_ONE_BIT, 1595 0)) { 1596 debug_cond(DLEVEL == 2, 1597 "%s:%d center: found: ptap=%u dtap=%u\n", 1598 __func__, __LINE__, p, d); 1599 return 0; 1600 } 1601 1602 /* Fiddle with FIFO. */ 1603 rw_mgr_incr_vfifo(grp); 1604 } 1605 1606 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1607 __func__, __LINE__); 1608 return -EINVAL; 1609 } 1610 1611 /** 1612 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1613 * @grp: Read/Write Group 1614 * 1615 * Find a good DQS enable to use. 1616 */ 1617 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1618 { 1619 u32 d, p, i; 1620 u32 dtaps_per_ptap; 1621 u32 work_bgn, work_end; 1622 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1623 int ret; 1624 1625 debug("%s:%d %u\n", __func__, __LINE__, grp); 1626 1627 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1628 1629 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1630 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1631 1632 /* Step 0: Determine number of delay taps for each phase tap. */ 1633 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1634 1635 /* Step 1: First push vfifo until we get a failing read. */ 1636 find_vfifo_failing_read(grp); 1637 1638 /* Step 2: Find first working phase, increment in ptaps. */ 1639 work_bgn = 0; 1640 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1641 if (ret) 1642 return ret; 1643 1644 work_end = work_bgn; 1645 1646 /* 1647 * If d is 0 then the working window covers a phase tap and we can 1648 * follow the old procedure. Otherwise, we've found the beginning 1649 * and we need to increment the dtaps until we find the end. 1650 */ 1651 if (d == 0) { 1652 /* 1653 * Step 3a: If we have room, back off by one and 1654 * increment in dtaps. 1655 */ 1656 sdr_backup_phase(grp, &work_bgn, &p); 1657 1658 /* 1659 * Step 4a: go forward from working phase to non working 1660 * phase, increment in ptaps. 1661 */ 1662 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1663 if (ret) 1664 return ret; 1665 1666 /* Step 5a: Back off one from last, increment in dtaps. */ 1667 1668 /* Special case code for backing up a phase */ 1669 if (p == 0) { 1670 p = IO_DQS_EN_PHASE_MAX; 1671 rw_mgr_decr_vfifo(grp); 1672 } else { 1673 p = p - 1; 1674 } 1675 1676 work_end -= IO_DELAY_PER_OPA_TAP; 1677 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1678 1679 d = 0; 1680 1681 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1682 __func__, __LINE__, p); 1683 } 1684 1685 /* The dtap increment to find the failing edge is done here. */ 1686 sdr_find_phase_delay(0, 1, grp, &work_end, 1687 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1688 1689 /* Go back to working dtap */ 1690 if (d != 0) 1691 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1692 1693 debug_cond(DLEVEL == 2, 1694 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1695 __func__, __LINE__, p, d - 1, work_end); 1696 1697 if (work_end < work_bgn) { 1698 /* nil range */ 1699 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1700 __func__, __LINE__); 1701 return -EINVAL; 1702 } 1703 1704 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1705 __func__, __LINE__, work_bgn, work_end); 1706 1707 /* 1708 * We need to calculate the number of dtaps that equal a ptap. 1709 * To do that we'll back up a ptap and re-find the edge of the 1710 * window using dtaps 1711 */ 1712 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1713 __func__, __LINE__); 1714 1715 /* Special case code for backing up a phase */ 1716 if (p == 0) { 1717 p = IO_DQS_EN_PHASE_MAX; 1718 rw_mgr_decr_vfifo(grp); 1719 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1720 __func__, __LINE__, p); 1721 } else { 1722 p = p - 1; 1723 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1724 __func__, __LINE__, p); 1725 } 1726 1727 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1728 1729 /* 1730 * Increase dtap until we first see a passing read (in case the 1731 * window is smaller than a ptap), and then a failing read to 1732 * mark the edge of the window again. 1733 */ 1734 1735 /* Find a passing read. */ 1736 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1737 __func__, __LINE__); 1738 1739 initial_failing_dtap = d; 1740 1741 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1742 if (found_passing_read) { 1743 /* Find a failing read. */ 1744 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1745 __func__, __LINE__); 1746 d++; 1747 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1748 &d); 1749 } else { 1750 debug_cond(DLEVEL == 1, 1751 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1752 __func__, __LINE__); 1753 } 1754 1755 /* 1756 * The dynamically calculated dtaps_per_ptap is only valid if we 1757 * found a passing/failing read. If we didn't, it means d hit the max 1758 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1759 * statically calculated value. 1760 */ 1761 if (found_passing_read && found_failing_read) 1762 dtaps_per_ptap = d - initial_failing_dtap; 1763 1764 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1765 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1766 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1767 1768 /* Step 6: Find the centre of the window. */ 1769 ret = sdr_find_window_center(grp, work_bgn, work_end); 1770 1771 return ret; 1772 } 1773 1774 /* per-bit deskew DQ and center */ 1775 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1776 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1777 uint32_t use_read_test, uint32_t update_fom) 1778 { 1779 uint32_t i, p, d, min_index; 1780 /* 1781 * Store these as signed since there are comparisons with 1782 * signed numbers. 1783 */ 1784 uint32_t bit_chk; 1785 uint32_t sticky_bit_chk; 1786 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1787 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1788 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1789 int32_t mid; 1790 int32_t orig_mid_min, mid_min; 1791 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1792 final_dqs_en; 1793 int32_t dq_margin, dqs_margin; 1794 uint32_t stop; 1795 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1796 uint32_t addr; 1797 1798 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1799 1800 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1801 start_dqs = readl(addr + (read_group << 2)); 1802 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1803 start_dqs_en = readl(addr + ((read_group << 2) 1804 - IO_DQS_EN_DELAY_OFFSET)); 1805 1806 /* set the left and right edge of each bit to an illegal value */ 1807 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1808 sticky_bit_chk = 0; 1809 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1810 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1811 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1812 } 1813 1814 /* Search for the left edge of the window for each bit */ 1815 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1816 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1817 1818 writel(0, &sdr_scc_mgr->update); 1819 1820 /* 1821 * Stop searching when the read test doesn't pass AND when 1822 * we've seen a passing read on every bit. 1823 */ 1824 if (use_read_test) { 1825 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1826 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1827 &bit_chk, 0, 0); 1828 } else { 1829 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1830 0, PASS_ONE_BIT, 1831 &bit_chk, 0); 1832 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1833 (read_group - (write_group * 1834 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1835 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1836 stop = (bit_chk == 0); 1837 } 1838 sticky_bit_chk = sticky_bit_chk | bit_chk; 1839 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1840 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1841 && %u", __func__, __LINE__, d, 1842 sticky_bit_chk, 1843 param->read_correct_mask, stop); 1844 1845 if (stop == 1) { 1846 break; 1847 } else { 1848 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1849 if (bit_chk & 1) { 1850 /* Remember a passing test as the 1851 left_edge */ 1852 left_edge[i] = d; 1853 } else { 1854 /* If a left edge has not been seen yet, 1855 then a future passing test will mark 1856 this edge as the right edge */ 1857 if (left_edge[i] == 1858 IO_IO_IN_DELAY_MAX + 1) { 1859 right_edge[i] = -(d + 1); 1860 } 1861 } 1862 bit_chk = bit_chk >> 1; 1863 } 1864 } 1865 } 1866 1867 /* Reset DQ delay chains to 0 */ 1868 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1869 sticky_bit_chk = 0; 1870 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1871 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1872 %d right_edge[%u]: %d\n", __func__, __LINE__, 1873 i, left_edge[i], i, right_edge[i]); 1874 1875 /* 1876 * Check for cases where we haven't found the left edge, 1877 * which makes our assignment of the the right edge invalid. 1878 * Reset it to the illegal value. 1879 */ 1880 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1881 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1882 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1883 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1884 right_edge[%u]: %d\n", __func__, __LINE__, 1885 i, right_edge[i]); 1886 } 1887 1888 /* 1889 * Reset sticky bit (except for bits where we have seen 1890 * both the left and right edge). 1891 */ 1892 sticky_bit_chk = sticky_bit_chk << 1; 1893 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1894 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1895 sticky_bit_chk = sticky_bit_chk | 1; 1896 } 1897 1898 if (i == 0) 1899 break; 1900 } 1901 1902 /* Search for the right edge of the window for each bit */ 1903 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1904 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1905 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1906 uint32_t delay = d + start_dqs_en; 1907 if (delay > IO_DQS_EN_DELAY_MAX) 1908 delay = IO_DQS_EN_DELAY_MAX; 1909 scc_mgr_set_dqs_en_delay(read_group, delay); 1910 } 1911 scc_mgr_load_dqs(read_group); 1912 1913 writel(0, &sdr_scc_mgr->update); 1914 1915 /* 1916 * Stop searching when the read test doesn't pass AND when 1917 * we've seen a passing read on every bit. 1918 */ 1919 if (use_read_test) { 1920 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1921 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1922 &bit_chk, 0, 0); 1923 } else { 1924 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1925 0, PASS_ONE_BIT, 1926 &bit_chk, 0); 1927 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1928 (read_group - (write_group * 1929 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1930 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1931 stop = (bit_chk == 0); 1932 } 1933 sticky_bit_chk = sticky_bit_chk | bit_chk; 1934 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1935 1936 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1937 %u && %u", __func__, __LINE__, d, 1938 sticky_bit_chk, param->read_correct_mask, stop); 1939 1940 if (stop == 1) { 1941 break; 1942 } else { 1943 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1944 if (bit_chk & 1) { 1945 /* Remember a passing test as 1946 the right_edge */ 1947 right_edge[i] = d; 1948 } else { 1949 if (d != 0) { 1950 /* If a right edge has not been 1951 seen yet, then a future passing 1952 test will mark this edge as the 1953 left edge */ 1954 if (right_edge[i] == 1955 IO_IO_IN_DELAY_MAX + 1) { 1956 left_edge[i] = -(d + 1); 1957 } 1958 } else { 1959 /* d = 0 failed, but it passed 1960 when testing the left edge, 1961 so it must be marginal, 1962 set it to -1 */ 1963 if (right_edge[i] == 1964 IO_IO_IN_DELAY_MAX + 1 && 1965 left_edge[i] != 1966 IO_IO_IN_DELAY_MAX 1967 + 1) { 1968 right_edge[i] = -1; 1969 } 1970 /* If a right edge has not been 1971 seen yet, then a future passing 1972 test will mark this edge as the 1973 left edge */ 1974 else if (right_edge[i] == 1975 IO_IO_IN_DELAY_MAX + 1976 1) { 1977 left_edge[i] = -(d + 1); 1978 } 1979 } 1980 } 1981 1982 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1983 d=%u]: ", __func__, __LINE__, d); 1984 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1985 (int)(bit_chk & 1), i, left_edge[i]); 1986 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1987 right_edge[i]); 1988 bit_chk = bit_chk >> 1; 1989 } 1990 } 1991 } 1992 1993 /* Check that all bits have a window */ 1994 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1995 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1996 %d right_edge[%u]: %d", __func__, __LINE__, 1997 i, left_edge[i], i, right_edge[i]); 1998 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1999 == IO_IO_IN_DELAY_MAX + 1)) { 2000 /* 2001 * Restore delay chain settings before letting the loop 2002 * in rw_mgr_mem_calibrate_vfifo to retry different 2003 * dqs/ck relationships. 2004 */ 2005 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2006 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2007 scc_mgr_set_dqs_en_delay(read_group, 2008 start_dqs_en); 2009 } 2010 scc_mgr_load_dqs(read_group); 2011 writel(0, &sdr_scc_mgr->update); 2012 2013 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2014 find edge [%u]: %d %d", __func__, __LINE__, 2015 i, left_edge[i], right_edge[i]); 2016 if (use_read_test) { 2017 set_failing_group_stage(read_group * 2018 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2019 CAL_STAGE_VFIFO, 2020 CAL_SUBSTAGE_VFIFO_CENTER); 2021 } else { 2022 set_failing_group_stage(read_group * 2023 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2024 CAL_STAGE_VFIFO_AFTER_WRITES, 2025 CAL_SUBSTAGE_VFIFO_CENTER); 2026 } 2027 return 0; 2028 } 2029 } 2030 2031 /* Find middle of window for each DQ bit */ 2032 mid_min = left_edge[0] - right_edge[0]; 2033 min_index = 0; 2034 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2035 mid = left_edge[i] - right_edge[i]; 2036 if (mid < mid_min) { 2037 mid_min = mid; 2038 min_index = i; 2039 } 2040 } 2041 2042 /* 2043 * -mid_min/2 represents the amount that we need to move DQS. 2044 * If mid_min is odd and positive we'll need to add one to 2045 * make sure the rounding in further calculations is correct 2046 * (always bias to the right), so just add 1 for all positive values. 2047 */ 2048 if (mid_min > 0) 2049 mid_min++; 2050 2051 mid_min = mid_min / 2; 2052 2053 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2054 __func__, __LINE__, mid_min, min_index); 2055 2056 /* Determine the amount we can change DQS (which is -mid_min) */ 2057 orig_mid_min = mid_min; 2058 new_dqs = start_dqs - mid_min; 2059 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2060 new_dqs = IO_DQS_IN_DELAY_MAX; 2061 else if (new_dqs < 0) 2062 new_dqs = 0; 2063 2064 mid_min = start_dqs - new_dqs; 2065 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2066 mid_min, new_dqs); 2067 2068 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2069 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2070 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2071 else if (start_dqs_en - mid_min < 0) 2072 mid_min += start_dqs_en - mid_min; 2073 } 2074 new_dqs = start_dqs - mid_min; 2075 2076 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2077 new_dqs=%d mid_min=%d\n", start_dqs, 2078 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2079 new_dqs, mid_min); 2080 2081 /* Initialize data for export structures */ 2082 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2083 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2084 2085 /* add delay to bring centre of all DQ windows to the same "level" */ 2086 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2087 /* Use values before divide by 2 to reduce round off error */ 2088 shift_dq = (left_edge[i] - right_edge[i] - 2089 (left_edge[min_index] - right_edge[min_index]))/2 + 2090 (orig_mid_min - mid_min); 2091 2092 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2093 shift_dq[%u]=%d\n", i, shift_dq); 2094 2095 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2096 temp_dq_in_delay1 = readl(addr + (p << 2)); 2097 temp_dq_in_delay2 = readl(addr + (i << 2)); 2098 2099 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2100 (int32_t)IO_IO_IN_DELAY_MAX) { 2101 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2102 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2103 shift_dq = -(int32_t)temp_dq_in_delay1; 2104 } 2105 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2106 shift_dq[%u]=%d\n", i, shift_dq); 2107 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2108 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2109 scc_mgr_load_dq(p); 2110 2111 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2112 left_edge[i] - shift_dq + (-mid_min), 2113 right_edge[i] + shift_dq - (-mid_min)); 2114 /* To determine values for export structures */ 2115 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2116 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2117 2118 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2119 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2120 } 2121 2122 final_dqs = new_dqs; 2123 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2124 final_dqs_en = start_dqs_en - mid_min; 2125 2126 /* Move DQS-en */ 2127 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2128 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2129 scc_mgr_load_dqs(read_group); 2130 } 2131 2132 /* Move DQS */ 2133 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2134 scc_mgr_load_dqs(read_group); 2135 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2136 dqs_margin=%d", __func__, __LINE__, 2137 dq_margin, dqs_margin); 2138 2139 /* 2140 * Do not remove this line as it makes sure all of our decisions 2141 * have been applied. Apply the update bit. 2142 */ 2143 writel(0, &sdr_scc_mgr->update); 2144 2145 return (dq_margin >= 0) && (dqs_margin >= 0); 2146 } 2147 2148 /** 2149 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2150 * @rw_group: Read/Write Group 2151 * @phase: DQ/DQS phase 2152 * 2153 * Because initially no communication ca be reliably performed with the memory 2154 * device, the sequencer uses a guaranteed write mechanism to write data into 2155 * the memory device. 2156 */ 2157 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2158 const u32 phase) 2159 { 2160 int ret; 2161 2162 /* Set a particular DQ/DQS phase. */ 2163 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2164 2165 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2166 __func__, __LINE__, rw_group, phase); 2167 2168 /* 2169 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2170 * Load up the patterns used by read calibration using the 2171 * current DQDQS phase. 2172 */ 2173 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2174 2175 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2176 return 0; 2177 2178 /* 2179 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2180 * Back-to-Back reads of the patterns used for calibration. 2181 */ 2182 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2183 if (ret) 2184 debug_cond(DLEVEL == 1, 2185 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2186 __func__, __LINE__, rw_group, phase); 2187 return ret; 2188 } 2189 2190 /** 2191 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2192 * @rw_group: Read/Write Group 2193 * @test_bgn: Rank at which the test begins 2194 * 2195 * DQS enable calibration ensures reliable capture of the DQ signal without 2196 * glitches on the DQS line. 2197 */ 2198 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2199 const u32 test_bgn) 2200 { 2201 /* 2202 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2203 * DQS and DQS Eanble Signal Relationships. 2204 */ 2205 2206 /* We start at zero, so have one less dq to devide among */ 2207 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2208 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2209 int ret; 2210 u32 i, p, d, r; 2211 2212 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2213 2214 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2215 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2216 r += NUM_RANKS_PER_SHADOW_REG) { 2217 for (i = 0, p = test_bgn, d = 0; 2218 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2219 i++, p++, d += delay_step) { 2220 debug_cond(DLEVEL == 1, 2221 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2222 __func__, __LINE__, rw_group, r, i, p, d); 2223 2224 scc_mgr_set_dq_in_delay(p, d); 2225 scc_mgr_load_dq(p); 2226 } 2227 2228 writel(0, &sdr_scc_mgr->update); 2229 } 2230 2231 /* 2232 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2233 * dq_in_delay values 2234 */ 2235 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2236 2237 debug_cond(DLEVEL == 1, 2238 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2239 __func__, __LINE__, rw_group, !ret); 2240 2241 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2242 r += NUM_RANKS_PER_SHADOW_REG) { 2243 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2244 writel(0, &sdr_scc_mgr->update); 2245 } 2246 2247 return ret; 2248 } 2249 2250 /** 2251 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2252 * @rw_group: Read/Write Group 2253 * @test_bgn: Rank at which the test begins 2254 * @use_read_test: Perform a read test 2255 * @update_fom: Update FOM 2256 * 2257 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2258 * within a group. 2259 */ 2260 static int 2261 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2262 const int use_read_test, 2263 const int update_fom) 2264 2265 { 2266 int ret, grp_calibrated; 2267 u32 rank_bgn, sr; 2268 2269 /* 2270 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2271 * Read per-bit deskew can be done on a per shadow register basis. 2272 */ 2273 grp_calibrated = 1; 2274 for (rank_bgn = 0, sr = 0; 2275 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2276 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2277 /* Check if this set of ranks should be skipped entirely. */ 2278 if (param->skip_shadow_regs[sr]) 2279 continue; 2280 2281 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2282 rw_group, test_bgn, 2283 use_read_test, 2284 update_fom); 2285 if (ret) 2286 continue; 2287 2288 grp_calibrated = 0; 2289 } 2290 2291 if (!grp_calibrated) 2292 return -EIO; 2293 2294 return 0; 2295 } 2296 2297 /** 2298 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2299 * @rw_group: Read/Write Group 2300 * @test_bgn: Rank at which the test begins 2301 * 2302 * Stage 1: Calibrate the read valid prediction FIFO. 2303 * 2304 * This function implements UniPHY calibration Stage 1, as explained in 2305 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2306 * 2307 * - read valid prediction will consist of finding: 2308 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2309 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2310 * - we also do a per-bit deskew on the DQ lines. 2311 */ 2312 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2313 { 2314 uint32_t p, d; 2315 uint32_t dtaps_per_ptap; 2316 uint32_t failed_substage; 2317 2318 int ret; 2319 2320 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2321 2322 /* Update info for sims */ 2323 reg_file_set_group(rw_group); 2324 reg_file_set_stage(CAL_STAGE_VFIFO); 2325 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2326 2327 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2328 2329 /* USER Determine number of delay taps for each phase tap. */ 2330 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2331 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2332 2333 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2334 /* 2335 * In RLDRAMX we may be messing the delay of pins in 2336 * the same write rw_group but outside of the current read 2337 * the rw_group, but that's ok because we haven't calibrated 2338 * output side yet. 2339 */ 2340 if (d > 0) { 2341 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2342 rw_group, d); 2343 } 2344 2345 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2346 /* 1) Guaranteed Write */ 2347 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2348 if (ret) 2349 break; 2350 2351 /* 2) DQS Enable Calibration */ 2352 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2353 test_bgn); 2354 if (ret) { 2355 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2356 continue; 2357 } 2358 2359 /* 3) Centering DQ/DQS */ 2360 /* 2361 * If doing read after write calibration, do not update 2362 * FOM now. Do it then. 2363 */ 2364 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2365 test_bgn, 1, 0); 2366 if (ret) { 2367 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2368 continue; 2369 } 2370 2371 /* All done. */ 2372 goto cal_done_ok; 2373 } 2374 } 2375 2376 /* Calibration Stage 1 failed. */ 2377 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2378 return 0; 2379 2380 /* Calibration Stage 1 completed OK. */ 2381 cal_done_ok: 2382 /* 2383 * Reset the delay chains back to zero if they have moved > 1 2384 * (check for > 1 because loop will increase d even when pass in 2385 * first case). 2386 */ 2387 if (d > 2) 2388 scc_mgr_zero_group(rw_group, 1); 2389 2390 return 1; 2391 } 2392 2393 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2394 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2395 uint32_t test_bgn) 2396 { 2397 uint32_t rank_bgn, sr; 2398 uint32_t grp_calibrated; 2399 uint32_t write_group; 2400 2401 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2402 2403 /* update info for sims */ 2404 2405 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2406 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2407 2408 write_group = read_group; 2409 2410 /* update info for sims */ 2411 reg_file_set_group(read_group); 2412 2413 grp_calibrated = 1; 2414 /* Read per-bit deskew can be done on a per shadow register basis */ 2415 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2416 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2417 /* Determine if this set of ranks should be skipped entirely */ 2418 if (!param->skip_shadow_regs[sr]) { 2419 /* This is the last calibration round, update FOM here */ 2420 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2421 write_group, 2422 read_group, 2423 test_bgn, 0, 2424 1)) { 2425 grp_calibrated = 0; 2426 } 2427 } 2428 } 2429 2430 2431 if (grp_calibrated == 0) { 2432 set_failing_group_stage(write_group, 2433 CAL_STAGE_VFIFO_AFTER_WRITES, 2434 CAL_SUBSTAGE_VFIFO_CENTER); 2435 return 0; 2436 } 2437 2438 return 1; 2439 } 2440 2441 /* Calibrate LFIFO to find smallest read latency */ 2442 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2443 { 2444 uint32_t found_one; 2445 2446 debug("%s:%d\n", __func__, __LINE__); 2447 2448 /* update info for sims */ 2449 reg_file_set_stage(CAL_STAGE_LFIFO); 2450 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2451 2452 /* Load up the patterns used by read calibration for all ranks */ 2453 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2454 found_one = 0; 2455 2456 do { 2457 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2458 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2459 __func__, __LINE__, gbl->curr_read_lat); 2460 2461 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2462 NUM_READ_TESTS, 2463 PASS_ALL_BITS, 2464 1)) { 2465 break; 2466 } 2467 2468 found_one = 1; 2469 /* reduce read latency and see if things are working */ 2470 /* correctly */ 2471 gbl->curr_read_lat--; 2472 } while (gbl->curr_read_lat > 0); 2473 2474 /* reset the fifos to get pointers to known state */ 2475 2476 writel(0, &phy_mgr_cmd->fifo_reset); 2477 2478 if (found_one) { 2479 /* add a fudge factor to the read latency that was determined */ 2480 gbl->curr_read_lat += 2; 2481 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2482 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2483 read_lat=%u\n", __func__, __LINE__, 2484 gbl->curr_read_lat); 2485 return 1; 2486 } else { 2487 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2488 CAL_SUBSTAGE_READ_LATENCY); 2489 2490 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2491 read_lat=%u\n", __func__, __LINE__, 2492 gbl->curr_read_lat); 2493 return 0; 2494 } 2495 } 2496 2497 /* 2498 * issue write test command. 2499 * two variants are provided. one that just tests a write pattern and 2500 * another that tests datamask functionality. 2501 */ 2502 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2503 uint32_t test_dm) 2504 { 2505 uint32_t mcc_instruction; 2506 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2507 ENABLE_SUPER_QUICK_CALIBRATION); 2508 uint32_t rw_wl_nop_cycles; 2509 uint32_t addr; 2510 2511 /* 2512 * Set counter and jump addresses for the right 2513 * number of NOP cycles. 2514 * The number of supported NOP cycles can range from -1 to infinity 2515 * Three different cases are handled: 2516 * 2517 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2518 * mechanism will be used to insert the right number of NOPs 2519 * 2520 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2521 * issuing the write command will jump straight to the 2522 * micro-instruction that turns on DQS (for DDRx), or outputs write 2523 * data (for RLD), skipping 2524 * the NOP micro-instruction all together 2525 * 2526 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2527 * turned on in the same micro-instruction that issues the write 2528 * command. Then we need 2529 * to directly jump to the micro-instruction that sends out the data 2530 * 2531 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2532 * (2 and 3). One jump-counter (0) is used to perform multiple 2533 * write-read operations. 2534 * one counter left to issue this command in "multiple-group" mode 2535 */ 2536 2537 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2538 2539 if (rw_wl_nop_cycles == -1) { 2540 /* 2541 * CNTR 2 - We want to execute the special write operation that 2542 * turns on DQS right away and then skip directly to the 2543 * instruction that sends out the data. We set the counter to a 2544 * large number so that the jump is always taken. 2545 */ 2546 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2547 2548 /* CNTR 3 - Not used */ 2549 if (test_dm) { 2550 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2551 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2552 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2553 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2554 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2555 } else { 2556 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2557 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2558 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2559 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2561 } 2562 } else if (rw_wl_nop_cycles == 0) { 2563 /* 2564 * CNTR 2 - We want to skip the NOP operation and go straight 2565 * to the DQS enable instruction. We set the counter to a large 2566 * number so that the jump is always taken. 2567 */ 2568 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2569 2570 /* CNTR 3 - Not used */ 2571 if (test_dm) { 2572 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2573 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2574 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2575 } else { 2576 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2577 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2578 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2579 } 2580 } else { 2581 /* 2582 * CNTR 2 - In this case we want to execute the next instruction 2583 * and NOT take the jump. So we set the counter to 0. The jump 2584 * address doesn't count. 2585 */ 2586 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2587 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2588 2589 /* 2590 * CNTR 3 - Set the nop counter to the number of cycles we 2591 * need to loop for, minus 1. 2592 */ 2593 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2594 if (test_dm) { 2595 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2596 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2597 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2598 } else { 2599 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2600 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2601 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2602 } 2603 } 2604 2605 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2606 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2607 2608 if (quick_write_mode) 2609 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2610 else 2611 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2612 2613 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2614 2615 /* 2616 * CNTR 1 - This is used to ensure enough time elapses 2617 * for read data to come back. 2618 */ 2619 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2620 2621 if (test_dm) { 2622 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2623 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2624 } else { 2625 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2626 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2627 } 2628 2629 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2630 writel(mcc_instruction, addr + (group << 2)); 2631 } 2632 2633 /* Test writes, can check for a single bit pass or multiple bit pass */ 2634 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2635 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2636 uint32_t *bit_chk, uint32_t all_ranks) 2637 { 2638 uint32_t r; 2639 uint32_t correct_mask_vg; 2640 uint32_t tmp_bit_chk; 2641 uint32_t vg; 2642 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2643 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2644 uint32_t addr_rw_mgr; 2645 uint32_t base_rw_mgr; 2646 2647 *bit_chk = param->write_correct_mask; 2648 correct_mask_vg = param->write_correct_mask_vg; 2649 2650 for (r = rank_bgn; r < rank_end; r++) { 2651 if (param->skip_ranks[r]) { 2652 /* request to skip the rank */ 2653 continue; 2654 } 2655 2656 /* set rank */ 2657 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2658 2659 tmp_bit_chk = 0; 2660 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2661 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2662 /* reset the fifos to get pointers to known state */ 2663 writel(0, &phy_mgr_cmd->fifo_reset); 2664 2665 tmp_bit_chk = tmp_bit_chk << 2666 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2667 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2668 rw_mgr_mem_calibrate_write_test_issue(write_group * 2669 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2670 use_dm); 2671 2672 base_rw_mgr = readl(addr_rw_mgr); 2673 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2674 if (vg == 0) 2675 break; 2676 } 2677 *bit_chk &= tmp_bit_chk; 2678 } 2679 2680 if (all_correct) { 2681 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2682 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2683 %u => %lu", write_group, use_dm, 2684 *bit_chk, param->write_correct_mask, 2685 (long unsigned int)(*bit_chk == 2686 param->write_correct_mask)); 2687 return *bit_chk == param->write_correct_mask; 2688 } else { 2689 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2690 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2691 write_group, use_dm, *bit_chk); 2692 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2693 (long unsigned int)(*bit_chk != 0)); 2694 return *bit_chk != 0x00; 2695 } 2696 } 2697 2698 /* 2699 * center all windows. do per-bit-deskew to possibly increase size of 2700 * certain windows. 2701 */ 2702 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2703 uint32_t write_group, uint32_t test_bgn) 2704 { 2705 uint32_t i, p, min_index; 2706 int32_t d; 2707 /* 2708 * Store these as signed since there are comparisons with 2709 * signed numbers. 2710 */ 2711 uint32_t bit_chk; 2712 uint32_t sticky_bit_chk; 2713 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2714 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2715 int32_t mid; 2716 int32_t mid_min, orig_mid_min; 2717 int32_t new_dqs, start_dqs, shift_dq; 2718 int32_t dq_margin, dqs_margin, dm_margin; 2719 uint32_t stop; 2720 uint32_t temp_dq_out1_delay; 2721 uint32_t addr; 2722 2723 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2724 2725 dm_margin = 0; 2726 2727 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2728 start_dqs = readl(addr + 2729 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2730 2731 /* per-bit deskew */ 2732 2733 /* 2734 * set the left and right edge of each bit to an illegal value 2735 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2736 */ 2737 sticky_bit_chk = 0; 2738 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2739 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2740 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2741 } 2742 2743 /* Search for the left edge of the window for each bit */ 2744 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2745 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2746 2747 writel(0, &sdr_scc_mgr->update); 2748 2749 /* 2750 * Stop searching when the read test doesn't pass AND when 2751 * we've seen a passing read on every bit. 2752 */ 2753 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2754 0, PASS_ONE_BIT, &bit_chk, 0); 2755 sticky_bit_chk = sticky_bit_chk | bit_chk; 2756 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2757 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2758 == %u && %u [bit_chk= %u ]\n", 2759 d, sticky_bit_chk, param->write_correct_mask, 2760 stop, bit_chk); 2761 2762 if (stop == 1) { 2763 break; 2764 } else { 2765 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2766 if (bit_chk & 1) { 2767 /* 2768 * Remember a passing test as the 2769 * left_edge. 2770 */ 2771 left_edge[i] = d; 2772 } else { 2773 /* 2774 * If a left edge has not been seen 2775 * yet, then a future passing test will 2776 * mark this edge as the right edge. 2777 */ 2778 if (left_edge[i] == 2779 IO_IO_OUT1_DELAY_MAX + 1) { 2780 right_edge[i] = -(d + 1); 2781 } 2782 } 2783 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2784 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2785 (int)(bit_chk & 1), i, left_edge[i]); 2786 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2787 right_edge[i]); 2788 bit_chk = bit_chk >> 1; 2789 } 2790 } 2791 } 2792 2793 /* Reset DQ delay chains to 0 */ 2794 scc_mgr_apply_group_dq_out1_delay(0); 2795 sticky_bit_chk = 0; 2796 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2797 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2798 %d right_edge[%u]: %d\n", __func__, __LINE__, 2799 i, left_edge[i], i, right_edge[i]); 2800 2801 /* 2802 * Check for cases where we haven't found the left edge, 2803 * which makes our assignment of the the right edge invalid. 2804 * Reset it to the illegal value. 2805 */ 2806 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2807 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2808 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2809 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2810 right_edge[%u]: %d\n", __func__, __LINE__, 2811 i, right_edge[i]); 2812 } 2813 2814 /* 2815 * Reset sticky bit (except for bits where we have 2816 * seen the left edge). 2817 */ 2818 sticky_bit_chk = sticky_bit_chk << 1; 2819 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2820 sticky_bit_chk = sticky_bit_chk | 1; 2821 2822 if (i == 0) 2823 break; 2824 } 2825 2826 /* Search for the right edge of the window for each bit */ 2827 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2828 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2829 d + start_dqs); 2830 2831 writel(0, &sdr_scc_mgr->update); 2832 2833 /* 2834 * Stop searching when the read test doesn't pass AND when 2835 * we've seen a passing read on every bit. 2836 */ 2837 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2838 0, PASS_ONE_BIT, &bit_chk, 0); 2839 2840 sticky_bit_chk = sticky_bit_chk | bit_chk; 2841 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2842 2843 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2844 %u && %u\n", d, sticky_bit_chk, 2845 param->write_correct_mask, stop); 2846 2847 if (stop == 1) { 2848 if (d == 0) { 2849 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2850 i++) { 2851 /* d = 0 failed, but it passed when 2852 testing the left edge, so it must be 2853 marginal, set it to -1 */ 2854 if (right_edge[i] == 2855 IO_IO_OUT1_DELAY_MAX + 1 && 2856 left_edge[i] != 2857 IO_IO_OUT1_DELAY_MAX + 1) { 2858 right_edge[i] = -1; 2859 } 2860 } 2861 } 2862 break; 2863 } else { 2864 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2865 if (bit_chk & 1) { 2866 /* 2867 * Remember a passing test as 2868 * the right_edge. 2869 */ 2870 right_edge[i] = d; 2871 } else { 2872 if (d != 0) { 2873 /* 2874 * If a right edge has not 2875 * been seen yet, then a future 2876 * passing test will mark this 2877 * edge as the left edge. 2878 */ 2879 if (right_edge[i] == 2880 IO_IO_OUT1_DELAY_MAX + 1) 2881 left_edge[i] = -(d + 1); 2882 } else { 2883 /* 2884 * d = 0 failed, but it passed 2885 * when testing the left edge, 2886 * so it must be marginal, set 2887 * it to -1. 2888 */ 2889 if (right_edge[i] == 2890 IO_IO_OUT1_DELAY_MAX + 1 && 2891 left_edge[i] != 2892 IO_IO_OUT1_DELAY_MAX + 1) 2893 right_edge[i] = -1; 2894 /* 2895 * If a right edge has not been 2896 * seen yet, then a future 2897 * passing test will mark this 2898 * edge as the left edge. 2899 */ 2900 else if (right_edge[i] == 2901 IO_IO_OUT1_DELAY_MAX + 2902 1) 2903 left_edge[i] = -(d + 1); 2904 } 2905 } 2906 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2907 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2908 (int)(bit_chk & 1), i, left_edge[i]); 2909 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2910 right_edge[i]); 2911 bit_chk = bit_chk >> 1; 2912 } 2913 } 2914 } 2915 2916 /* Check that all bits have a window */ 2917 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2918 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2919 %d right_edge[%u]: %d", __func__, __LINE__, 2920 i, left_edge[i], i, right_edge[i]); 2921 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2922 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2923 set_failing_group_stage(test_bgn + i, 2924 CAL_STAGE_WRITES, 2925 CAL_SUBSTAGE_WRITES_CENTER); 2926 return 0; 2927 } 2928 } 2929 2930 /* Find middle of window for each DQ bit */ 2931 mid_min = left_edge[0] - right_edge[0]; 2932 min_index = 0; 2933 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2934 mid = left_edge[i] - right_edge[i]; 2935 if (mid < mid_min) { 2936 mid_min = mid; 2937 min_index = i; 2938 } 2939 } 2940 2941 /* 2942 * -mid_min/2 represents the amount that we need to move DQS. 2943 * If mid_min is odd and positive we'll need to add one to 2944 * make sure the rounding in further calculations is correct 2945 * (always bias to the right), so just add 1 for all positive values. 2946 */ 2947 if (mid_min > 0) 2948 mid_min++; 2949 mid_min = mid_min / 2; 2950 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2951 __LINE__, mid_min); 2952 2953 /* Determine the amount we can change DQS (which is -mid_min) */ 2954 orig_mid_min = mid_min; 2955 new_dqs = start_dqs; 2956 mid_min = 0; 2957 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2958 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2959 /* Initialize data for export structures */ 2960 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2961 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2962 2963 /* add delay to bring centre of all DQ windows to the same "level" */ 2964 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2965 /* Use values before divide by 2 to reduce round off error */ 2966 shift_dq = (left_edge[i] - right_edge[i] - 2967 (left_edge[min_index] - right_edge[min_index]))/2 + 2968 (orig_mid_min - mid_min); 2969 2970 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2971 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2972 2973 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2974 temp_dq_out1_delay = readl(addr + (i << 2)); 2975 if (shift_dq + (int32_t)temp_dq_out1_delay > 2976 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2977 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2978 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2979 shift_dq = -(int32_t)temp_dq_out1_delay; 2980 } 2981 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2982 i, shift_dq); 2983 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2984 scc_mgr_load_dq(i); 2985 2986 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2987 left_edge[i] - shift_dq + (-mid_min), 2988 right_edge[i] + shift_dq - (-mid_min)); 2989 /* To determine values for export structures */ 2990 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2991 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2992 2993 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2994 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2995 } 2996 2997 /* Move DQS */ 2998 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2999 writel(0, &sdr_scc_mgr->update); 3000 3001 /* Centre DM */ 3002 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3003 3004 /* 3005 * set the left and right edge of each bit to an illegal value, 3006 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3007 */ 3008 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3009 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3010 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3011 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3012 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3013 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3014 int32_t win_best = 0; 3015 3016 /* Search for the/part of the window with DM shift */ 3017 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3018 scc_mgr_apply_group_dm_out1_delay(d); 3019 writel(0, &sdr_scc_mgr->update); 3020 3021 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3022 PASS_ALL_BITS, &bit_chk, 3023 0)) { 3024 /* USE Set current end of the window */ 3025 end_curr = -d; 3026 /* 3027 * If a starting edge of our window has not been seen 3028 * this is our current start of the DM window. 3029 */ 3030 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3031 bgn_curr = -d; 3032 3033 /* 3034 * If current window is bigger than best seen. 3035 * Set best seen to be current window. 3036 */ 3037 if ((end_curr-bgn_curr+1) > win_best) { 3038 win_best = end_curr-bgn_curr+1; 3039 bgn_best = bgn_curr; 3040 end_best = end_curr; 3041 } 3042 } else { 3043 /* We just saw a failing test. Reset temp edge */ 3044 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3045 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3046 } 3047 } 3048 3049 3050 /* Reset DM delay chains to 0 */ 3051 scc_mgr_apply_group_dm_out1_delay(0); 3052 3053 /* 3054 * Check to see if the current window nudges up aganist 0 delay. 3055 * If so we need to continue the search by shifting DQS otherwise DQS 3056 * search begins as a new search. */ 3057 if (end_curr != 0) { 3058 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3059 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3060 } 3061 3062 /* Search for the/part of the window with DQS shifts */ 3063 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3064 /* 3065 * Note: This only shifts DQS, so are we limiting ourselve to 3066 * width of DQ unnecessarily. 3067 */ 3068 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3069 d + new_dqs); 3070 3071 writel(0, &sdr_scc_mgr->update); 3072 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3073 PASS_ALL_BITS, &bit_chk, 3074 0)) { 3075 /* USE Set current end of the window */ 3076 end_curr = d; 3077 /* 3078 * If a beginning edge of our window has not been seen 3079 * this is our current begin of the DM window. 3080 */ 3081 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3082 bgn_curr = d; 3083 3084 /* 3085 * If current window is bigger than best seen. Set best 3086 * seen to be current window. 3087 */ 3088 if ((end_curr-bgn_curr+1) > win_best) { 3089 win_best = end_curr-bgn_curr+1; 3090 bgn_best = bgn_curr; 3091 end_best = end_curr; 3092 } 3093 } else { 3094 /* We just saw a failing test. Reset temp edge */ 3095 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3096 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3097 3098 /* Early exit optimization: if ther remaining delay 3099 chain space is less than already seen largest window 3100 we can exit */ 3101 if ((win_best-1) > 3102 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3103 break; 3104 } 3105 } 3106 } 3107 3108 /* assign left and right edge for cal and reporting; */ 3109 left_edge[0] = -1*bgn_best; 3110 right_edge[0] = end_best; 3111 3112 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3113 __LINE__, left_edge[0], right_edge[0]); 3114 3115 /* Move DQS (back to orig) */ 3116 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3117 3118 /* Move DM */ 3119 3120 /* Find middle of window for the DM bit */ 3121 mid = (left_edge[0] - right_edge[0]) / 2; 3122 3123 /* only move right, since we are not moving DQS/DQ */ 3124 if (mid < 0) 3125 mid = 0; 3126 3127 /* dm_marign should fail if we never find a window */ 3128 if (win_best == 0) 3129 dm_margin = -1; 3130 else 3131 dm_margin = left_edge[0] - mid; 3132 3133 scc_mgr_apply_group_dm_out1_delay(mid); 3134 writel(0, &sdr_scc_mgr->update); 3135 3136 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3137 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3138 right_edge[0], mid, dm_margin); 3139 /* Export values */ 3140 gbl->fom_out += dq_margin + dqs_margin; 3141 3142 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3143 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3144 dq_margin, dqs_margin, dm_margin); 3145 3146 /* 3147 * Do not remove this line as it makes sure all of our 3148 * decisions have been applied. 3149 */ 3150 writel(0, &sdr_scc_mgr->update); 3151 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3152 } 3153 3154 /* calibrate the write operations */ 3155 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3156 uint32_t test_bgn) 3157 { 3158 /* update info for sims */ 3159 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3160 3161 reg_file_set_stage(CAL_STAGE_WRITES); 3162 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3163 3164 reg_file_set_group(g); 3165 3166 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3167 set_failing_group_stage(g, CAL_STAGE_WRITES, 3168 CAL_SUBSTAGE_WRITES_CENTER); 3169 return 0; 3170 } 3171 3172 return 1; 3173 } 3174 3175 /** 3176 * mem_precharge_and_activate() - Precharge all banks and activate 3177 * 3178 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3179 */ 3180 static void mem_precharge_and_activate(void) 3181 { 3182 int r; 3183 3184 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3185 /* Test if the rank should be skipped. */ 3186 if (param->skip_ranks[r]) 3187 continue; 3188 3189 /* Set rank. */ 3190 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3191 3192 /* Precharge all banks. */ 3193 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3194 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3195 3196 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3197 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3198 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3199 3200 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3201 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3202 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3203 3204 /* Activate rows. */ 3205 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3206 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3207 } 3208 } 3209 3210 /** 3211 * mem_init_latency() - Configure memory RLAT and WLAT settings 3212 * 3213 * Configure memory RLAT and WLAT parameters. 3214 */ 3215 static void mem_init_latency(void) 3216 { 3217 /* 3218 * For AV/CV, LFIFO is hardened and always runs at full rate 3219 * so max latency in AFI clocks, used here, is correspondingly 3220 * smaller. 3221 */ 3222 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3223 u32 rlat, wlat; 3224 3225 debug("%s:%d\n", __func__, __LINE__); 3226 3227 /* 3228 * Read in write latency. 3229 * WL for Hard PHY does not include additive latency. 3230 */ 3231 wlat = readl(&data_mgr->t_wl_add); 3232 wlat += readl(&data_mgr->mem_t_add); 3233 3234 gbl->rw_wl_nop_cycles = wlat - 1; 3235 3236 /* Read in readl latency. */ 3237 rlat = readl(&data_mgr->t_rl_add); 3238 3239 /* Set a pretty high read latency initially. */ 3240 gbl->curr_read_lat = rlat + 16; 3241 if (gbl->curr_read_lat > max_latency) 3242 gbl->curr_read_lat = max_latency; 3243 3244 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3245 3246 /* Advertise write latency. */ 3247 writel(wlat, &phy_mgr_cfg->afi_wlat); 3248 } 3249 3250 /** 3251 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3252 * 3253 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3254 */ 3255 static void mem_skip_calibrate(void) 3256 { 3257 uint32_t vfifo_offset; 3258 uint32_t i, j, r; 3259 3260 debug("%s:%d\n", __func__, __LINE__); 3261 /* Need to update every shadow register set used by the interface */ 3262 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3263 r += NUM_RANKS_PER_SHADOW_REG) { 3264 /* 3265 * Set output phase alignment settings appropriate for 3266 * skip calibration. 3267 */ 3268 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3269 scc_mgr_set_dqs_en_phase(i, 0); 3270 #if IO_DLL_CHAIN_LENGTH == 6 3271 scc_mgr_set_dqdqs_output_phase(i, 6); 3272 #else 3273 scc_mgr_set_dqdqs_output_phase(i, 7); 3274 #endif 3275 /* 3276 * Case:33398 3277 * 3278 * Write data arrives to the I/O two cycles before write 3279 * latency is reached (720 deg). 3280 * -> due to bit-slip in a/c bus 3281 * -> to allow board skew where dqs is longer than ck 3282 * -> how often can this happen!? 3283 * -> can claim back some ptaps for high freq 3284 * support if we can relax this, but i digress... 3285 * 3286 * The write_clk leads mem_ck by 90 deg 3287 * The minimum ptap of the OPA is 180 deg 3288 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3289 * The write_clk is always delayed by 2 ptaps 3290 * 3291 * Hence, to make DQS aligned to CK, we need to delay 3292 * DQS by: 3293 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3294 * 3295 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3296 * gives us the number of ptaps, which simplies to: 3297 * 3298 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3299 */ 3300 scc_mgr_set_dqdqs_output_phase(i, 3301 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3302 } 3303 writel(0xff, &sdr_scc_mgr->dqs_ena); 3304 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3305 3306 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3307 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3308 SCC_MGR_GROUP_COUNTER_OFFSET); 3309 } 3310 writel(0xff, &sdr_scc_mgr->dq_ena); 3311 writel(0xff, &sdr_scc_mgr->dm_ena); 3312 writel(0, &sdr_scc_mgr->update); 3313 } 3314 3315 /* Compensate for simulation model behaviour */ 3316 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3317 scc_mgr_set_dqs_bus_in_delay(i, 10); 3318 scc_mgr_load_dqs(i); 3319 } 3320 writel(0, &sdr_scc_mgr->update); 3321 3322 /* 3323 * ArriaV has hard FIFOs that can only be initialized by incrementing 3324 * in sequencer. 3325 */ 3326 vfifo_offset = CALIB_VFIFO_OFFSET; 3327 for (j = 0; j < vfifo_offset; j++) 3328 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3329 writel(0, &phy_mgr_cmd->fifo_reset); 3330 3331 /* 3332 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3333 * setting from generation-time constant. 3334 */ 3335 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3336 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3337 } 3338 3339 /** 3340 * mem_calibrate() - Memory calibration entry point. 3341 * 3342 * Perform memory calibration. 3343 */ 3344 static uint32_t mem_calibrate(void) 3345 { 3346 uint32_t i; 3347 uint32_t rank_bgn, sr; 3348 uint32_t write_group, write_test_bgn; 3349 uint32_t read_group, read_test_bgn; 3350 uint32_t run_groups, current_run; 3351 uint32_t failing_groups = 0; 3352 uint32_t group_failed = 0; 3353 3354 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3355 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3356 3357 debug("%s:%d\n", __func__, __LINE__); 3358 3359 /* Initialize the data settings */ 3360 gbl->error_substage = CAL_SUBSTAGE_NIL; 3361 gbl->error_stage = CAL_STAGE_NIL; 3362 gbl->error_group = 0xff; 3363 gbl->fom_in = 0; 3364 gbl->fom_out = 0; 3365 3366 /* Initialize WLAT and RLAT. */ 3367 mem_init_latency(); 3368 3369 /* Initialize bit slips. */ 3370 mem_precharge_and_activate(); 3371 3372 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3373 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3374 SCC_MGR_GROUP_COUNTER_OFFSET); 3375 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3376 if (i == 0) 3377 scc_mgr_set_hhp_extras(); 3378 3379 scc_set_bypass_mode(i); 3380 } 3381 3382 /* Calibration is skipped. */ 3383 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3384 /* 3385 * Set VFIFO and LFIFO to instant-on settings in skip 3386 * calibration mode. 3387 */ 3388 mem_skip_calibrate(); 3389 3390 /* 3391 * Do not remove this line as it makes sure all of our 3392 * decisions have been applied. 3393 */ 3394 writel(0, &sdr_scc_mgr->update); 3395 return 1; 3396 } 3397 3398 /* Calibration is not skipped. */ 3399 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3400 /* 3401 * Zero all delay chain/phase settings for all 3402 * groups and all shadow register sets. 3403 */ 3404 scc_mgr_zero_all(); 3405 3406 run_groups = ~param->skip_groups; 3407 3408 for (write_group = 0, write_test_bgn = 0; write_group 3409 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3410 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3411 3412 /* Initialize the group failure */ 3413 group_failed = 0; 3414 3415 current_run = run_groups & ((1 << 3416 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3417 run_groups = run_groups >> 3418 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3419 3420 if (current_run == 0) 3421 continue; 3422 3423 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3424 SCC_MGR_GROUP_COUNTER_OFFSET); 3425 scc_mgr_zero_group(write_group, 0); 3426 3427 for (read_group = write_group * rwdqs_ratio, 3428 read_test_bgn = 0; 3429 read_group < (write_group + 1) * rwdqs_ratio; 3430 read_group++, 3431 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3432 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3433 continue; 3434 3435 /* Calibrate the VFIFO */ 3436 if (rw_mgr_mem_calibrate_vfifo(read_group, 3437 read_test_bgn)) 3438 continue; 3439 3440 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3441 return 0; 3442 3443 /* The group failed, we're done. */ 3444 goto grp_failed; 3445 } 3446 3447 /* Calibrate the output side */ 3448 for (rank_bgn = 0, sr = 0; 3449 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3450 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3451 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3452 continue; 3453 3454 /* Not needed in quick mode! */ 3455 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3456 continue; 3457 3458 /* 3459 * Determine if this set of ranks 3460 * should be skipped entirely. 3461 */ 3462 if (param->skip_shadow_regs[sr]) 3463 continue; 3464 3465 /* Calibrate WRITEs */ 3466 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3467 write_group, write_test_bgn)) 3468 continue; 3469 3470 group_failed = 1; 3471 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3472 return 0; 3473 } 3474 3475 /* Some group failed, we're done. */ 3476 if (group_failed) 3477 goto grp_failed; 3478 3479 for (read_group = write_group * rwdqs_ratio, 3480 read_test_bgn = 0; 3481 read_group < (write_group + 1) * rwdqs_ratio; 3482 read_group++, 3483 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3484 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3485 continue; 3486 3487 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3488 read_test_bgn)) 3489 continue; 3490 3491 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3492 return 0; 3493 3494 /* The group failed, we're done. */ 3495 goto grp_failed; 3496 } 3497 3498 /* No group failed, continue as usual. */ 3499 continue; 3500 3501 grp_failed: /* A group failed, increment the counter. */ 3502 failing_groups++; 3503 } 3504 3505 /* 3506 * USER If there are any failing groups then report 3507 * the failure. 3508 */ 3509 if (failing_groups != 0) 3510 return 0; 3511 3512 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3513 continue; 3514 3515 /* 3516 * If we're skipping groups as part of debug, 3517 * don't calibrate LFIFO. 3518 */ 3519 if (param->skip_groups != 0) 3520 continue; 3521 3522 /* Calibrate the LFIFO */ 3523 if (!rw_mgr_mem_calibrate_lfifo()) 3524 return 0; 3525 } 3526 3527 /* 3528 * Do not remove this line as it makes sure all of our decisions 3529 * have been applied. 3530 */ 3531 writel(0, &sdr_scc_mgr->update); 3532 return 1; 3533 } 3534 3535 /** 3536 * run_mem_calibrate() - Perform memory calibration 3537 * 3538 * This function triggers the entire memory calibration procedure. 3539 */ 3540 static int run_mem_calibrate(void) 3541 { 3542 int pass; 3543 3544 debug("%s:%d\n", __func__, __LINE__); 3545 3546 /* Reset pass/fail status shown on afi_cal_success/fail */ 3547 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3548 3549 /* Stop tracking manager. */ 3550 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3551 3552 phy_mgr_initialize(); 3553 rw_mgr_mem_initialize(); 3554 3555 /* Perform the actual memory calibration. */ 3556 pass = mem_calibrate(); 3557 3558 mem_precharge_and_activate(); 3559 writel(0, &phy_mgr_cmd->fifo_reset); 3560 3561 /* Handoff. */ 3562 rw_mgr_mem_handoff(); 3563 /* 3564 * In Hard PHY this is a 2-bit control: 3565 * 0: AFI Mux Select 3566 * 1: DDIO Mux Select 3567 */ 3568 writel(0x2, &phy_mgr_cfg->mux_sel); 3569 3570 /* Start tracking manager. */ 3571 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3572 3573 return pass; 3574 } 3575 3576 /** 3577 * debug_mem_calibrate() - Report result of memory calibration 3578 * @pass: Value indicating whether calibration passed or failed 3579 * 3580 * This function reports the results of the memory calibration 3581 * and writes debug information into the register file. 3582 */ 3583 static void debug_mem_calibrate(int pass) 3584 { 3585 uint32_t debug_info; 3586 3587 if (pass) { 3588 printf("%s: CALIBRATION PASSED\n", __FILE__); 3589 3590 gbl->fom_in /= 2; 3591 gbl->fom_out /= 2; 3592 3593 if (gbl->fom_in > 0xff) 3594 gbl->fom_in = 0xff; 3595 3596 if (gbl->fom_out > 0xff) 3597 gbl->fom_out = 0xff; 3598 3599 /* Update the FOM in the register file */ 3600 debug_info = gbl->fom_in; 3601 debug_info |= gbl->fom_out << 8; 3602 writel(debug_info, &sdr_reg_file->fom); 3603 3604 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3605 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3606 } else { 3607 printf("%s: CALIBRATION FAILED\n", __FILE__); 3608 3609 debug_info = gbl->error_stage; 3610 debug_info |= gbl->error_substage << 8; 3611 debug_info |= gbl->error_group << 16; 3612 3613 writel(debug_info, &sdr_reg_file->failing_stage); 3614 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3615 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3616 3617 /* Update the failing group/stage in the register file */ 3618 debug_info = gbl->error_stage; 3619 debug_info |= gbl->error_substage << 8; 3620 debug_info |= gbl->error_group << 16; 3621 writel(debug_info, &sdr_reg_file->failing_stage); 3622 } 3623 3624 printf("%s: Calibration complete\n", __FILE__); 3625 } 3626 3627 /** 3628 * hc_initialize_rom_data() - Initialize ROM data 3629 * 3630 * Initialize ROM data. 3631 */ 3632 static void hc_initialize_rom_data(void) 3633 { 3634 u32 i, addr; 3635 3636 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3637 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3638 writel(inst_rom_init[i], addr + (i << 2)); 3639 3640 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3641 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3642 writel(ac_rom_init[i], addr + (i << 2)); 3643 } 3644 3645 /** 3646 * initialize_reg_file() - Initialize SDR register file 3647 * 3648 * Initialize SDR register file. 3649 */ 3650 static void initialize_reg_file(void) 3651 { 3652 /* Initialize the register file with the correct data */ 3653 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3654 writel(0, &sdr_reg_file->debug_data_addr); 3655 writel(0, &sdr_reg_file->cur_stage); 3656 writel(0, &sdr_reg_file->fom); 3657 writel(0, &sdr_reg_file->failing_stage); 3658 writel(0, &sdr_reg_file->debug1); 3659 writel(0, &sdr_reg_file->debug2); 3660 } 3661 3662 /** 3663 * initialize_hps_phy() - Initialize HPS PHY 3664 * 3665 * Initialize HPS PHY. 3666 */ 3667 static void initialize_hps_phy(void) 3668 { 3669 uint32_t reg; 3670 /* 3671 * Tracking also gets configured here because it's in the 3672 * same register. 3673 */ 3674 uint32_t trk_sample_count = 7500; 3675 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3676 /* 3677 * Format is number of outer loops in the 16 MSB, sample 3678 * count in 16 LSB. 3679 */ 3680 3681 reg = 0; 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3688 /* 3689 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3690 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3691 */ 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3694 trk_sample_count); 3695 writel(reg, &sdr_ctrl->phy_ctrl0); 3696 3697 reg = 0; 3698 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3699 trk_sample_count >> 3700 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3702 trk_long_idle_sample_count); 3703 writel(reg, &sdr_ctrl->phy_ctrl1); 3704 3705 reg = 0; 3706 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3707 trk_long_idle_sample_count >> 3708 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3709 writel(reg, &sdr_ctrl->phy_ctrl2); 3710 } 3711 3712 /** 3713 * initialize_tracking() - Initialize tracking 3714 * 3715 * Initialize the register file with usable initial data. 3716 */ 3717 static void initialize_tracking(void) 3718 { 3719 /* 3720 * Initialize the register file with the correct data. 3721 * Compute usable version of value in case we skip full 3722 * computation later. 3723 */ 3724 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3725 &sdr_reg_file->dtaps_per_ptap); 3726 3727 /* trk_sample_count */ 3728 writel(7500, &sdr_reg_file->trk_sample_count); 3729 3730 /* longidle outer loop [15:0] */ 3731 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3732 3733 /* 3734 * longidle sample count [31:24] 3735 * trfc, worst case of 933Mhz 4Gb [23:16] 3736 * trcd, worst case [15:8] 3737 * vfifo wait [7:0] 3738 */ 3739 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3740 &sdr_reg_file->delays); 3741 3742 /* mux delay */ 3743 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3744 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3745 &sdr_reg_file->trk_rw_mgr_addr); 3746 3747 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3748 &sdr_reg_file->trk_read_dqs_width); 3749 3750 /* trefi [7:0] */ 3751 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3752 &sdr_reg_file->trk_rfsh); 3753 } 3754 3755 int sdram_calibration_full(void) 3756 { 3757 struct param_type my_param; 3758 struct gbl_type my_gbl; 3759 uint32_t pass; 3760 3761 memset(&my_param, 0, sizeof(my_param)); 3762 memset(&my_gbl, 0, sizeof(my_gbl)); 3763 3764 param = &my_param; 3765 gbl = &my_gbl; 3766 3767 /* Set the calibration enabled by default */ 3768 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3769 /* 3770 * Only sweep all groups (regardless of fail state) by default 3771 * Set enabled read test by default. 3772 */ 3773 #if DISABLE_GUARANTEED_READ 3774 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3775 #endif 3776 /* Initialize the register file */ 3777 initialize_reg_file(); 3778 3779 /* Initialize any PHY CSR */ 3780 initialize_hps_phy(); 3781 3782 scc_mgr_initialize(); 3783 3784 initialize_tracking(); 3785 3786 printf("%s: Preparing to start memory calibration\n", __FILE__); 3787 3788 debug("%s:%d\n", __func__, __LINE__); 3789 debug_cond(DLEVEL == 1, 3790 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3791 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3792 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3793 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3794 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3795 debug_cond(DLEVEL == 1, 3796 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3797 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3798 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3799 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3800 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3801 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3802 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3803 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3804 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3805 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3806 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3807 IO_IO_OUT2_DELAY_MAX); 3808 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3809 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3810 3811 hc_initialize_rom_data(); 3812 3813 /* update info for sims */ 3814 reg_file_set_stage(CAL_STAGE_NIL); 3815 reg_file_set_group(0); 3816 3817 /* 3818 * Load global needed for those actions that require 3819 * some dynamic calibration support. 3820 */ 3821 dyn_calib_steps = STATIC_CALIB_STEPS; 3822 /* 3823 * Load global to allow dynamic selection of delay loop settings 3824 * based on calibration mode. 3825 */ 3826 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3827 skip_delay_mask = 0xff; 3828 else 3829 skip_delay_mask = 0x0; 3830 3831 pass = run_mem_calibrate(); 3832 debug_mem_calibrate(pass); 3833 return pass; 3834 } 3835