xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision ba522c769e175c99087b4c5bc2c3134c6276f33e)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static int
1178 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1179 			       const u32 num_tries, const u32 all_correct,
1180 			       u32 *bit_chk,
1181 			       const u32 all_groups, const u32 all_ranks)
1182 {
1183 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1184 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1185 	const u32 quick_read_mode =
1186 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1187 		 ENABLE_SUPER_QUICK_CALIBRATION);
1188 	u32 correct_mask_vg = param->read_correct_mask_vg;
1189 	u32 tmp_bit_chk;
1190 	u32 base_rw_mgr;
1191 	u32 addr;
1192 
1193 	int r, vg, ret;
1194 
1195 	*bit_chk = param->read_correct_mask;
1196 
1197 	for (r = rank_bgn; r < rank_end; r++) {
1198 		if (param->skip_ranks[r])
1199 			/* request to skip the rank */
1200 			continue;
1201 
1202 		/* set rank */
1203 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1204 
1205 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1206 
1207 		writel(RW_MGR_READ_B2B_WAIT1,
1208 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1209 
1210 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1211 		writel(RW_MGR_READ_B2B_WAIT2,
1212 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1213 
1214 		if (quick_read_mode)
1215 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1216 			/* need at least two (1+1) reads to capture failures */
1217 		else if (all_groups)
1218 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1219 		else
1220 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1221 
1222 		writel(RW_MGR_READ_B2B,
1223 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1224 		if (all_groups)
1225 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1226 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1227 			       &sdr_rw_load_mgr_regs->load_cntr3);
1228 		else
1229 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1230 
1231 		writel(RW_MGR_READ_B2B,
1232 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1233 
1234 		tmp_bit_chk = 0;
1235 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1236 		     vg--) {
1237 			/* Reset the FIFOs to get pointers to known state. */
1238 			writel(0, &phy_mgr_cmd->fifo_reset);
1239 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1241 
1242 			if (all_groups) {
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1244 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1245 			} else {
1246 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1247 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1248 			}
1249 
1250 			writel(RW_MGR_READ_B2B, addr +
1251 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1252 			       vg) << 2));
1253 
1254 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1255 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1256 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1257 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1258 		}
1259 
1260 		*bit_chk &= tmp_bit_chk;
1261 	}
1262 
1263 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1264 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1265 
1266 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1267 
1268 	if (all_correct) {
1269 		ret = (*bit_chk == param->read_correct_mask);
1270 		debug_cond(DLEVEL == 2,
1271 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1272 			   __func__, __LINE__, group, all_groups, *bit_chk,
1273 			   param->read_correct_mask, ret);
1274 	} else	{
1275 		ret = (*bit_chk != 0x00);
1276 		debug_cond(DLEVEL == 2,
1277 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1278 			   __func__, __LINE__, group, all_groups, *bit_chk,
1279 			   0, ret);
1280 	}
1281 
1282 	return ret;
1283 }
1284 
1285 /**
1286  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1287  * @grp:		Read/Write group
1288  * @num_tries:		Number of retries of the test
1289  * @all_correct:	All bits must be correct in the mask
1290  * @all_groups:		Test all R/W groups
1291  *
1292  * Perform a READ test across all memory ranks.
1293  */
1294 static int
1295 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1296 					 const u32 all_correct,
1297 					 const u32 all_groups)
1298 {
1299 	u32 bit_chk;
1300 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1301 					      &bit_chk, all_groups, 1);
1302 }
1303 
1304 /**
1305  * rw_mgr_incr_vfifo() - Increase VFIFO value
1306  * @grp:	Read/Write group
1307  *
1308  * Increase VFIFO value.
1309  */
1310 static void rw_mgr_incr_vfifo(const u32 grp)
1311 {
1312 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1313 }
1314 
1315 /**
1316  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1317  * @grp:	Read/Write group
1318  *
1319  * Decrease VFIFO value.
1320  */
1321 static void rw_mgr_decr_vfifo(const u32 grp)
1322 {
1323 	u32 i;
1324 
1325 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1326 		rw_mgr_incr_vfifo(grp);
1327 }
1328 
1329 /**
1330  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1331  * @grp:	Read/Write group
1332  *
1333  * Push VFIFO until a failing read happens.
1334  */
1335 static int find_vfifo_failing_read(const u32 grp)
1336 {
1337 	u32 v, ret, fail_cnt = 0;
1338 
1339 	for (v = 0; v < VFIFO_SIZE; v++) {
1340 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1341 			   __func__, __LINE__, v);
1342 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1343 						PASS_ONE_BIT, 0);
1344 		if (!ret) {
1345 			fail_cnt++;
1346 
1347 			if (fail_cnt == 2)
1348 				return v;
1349 		}
1350 
1351 		/* Fiddle with FIFO. */
1352 		rw_mgr_incr_vfifo(grp);
1353 	}
1354 
1355 	/* No failing read found! Something must have gone wrong. */
1356 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1357 	return 0;
1358 }
1359 
1360 /**
1361  * sdr_find_phase_delay() - Find DQS enable phase or delay
1362  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1363  * @delay:	If 1, look for delay, if 0, look for phase
1364  * @grp:	Read/Write group
1365  * @work:	Working window position
1366  * @work_inc:	Working window increment
1367  * @pd:		DQS Phase/Delay Iterator
1368  *
1369  * Find working or non-working DQS enable phase setting.
1370  */
1371 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1372 				u32 *work, const u32 work_inc, u32 *pd)
1373 {
1374 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1375 	u32 ret;
1376 
1377 	for (; *pd <= max; (*pd)++) {
1378 		if (delay)
1379 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1380 		else
1381 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1382 
1383 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1384 					PASS_ONE_BIT, 0);
1385 		if (!working)
1386 			ret = !ret;
1387 
1388 		if (ret)
1389 			return 0;
1390 
1391 		if (work)
1392 			*work += work_inc;
1393 	}
1394 
1395 	return -EINVAL;
1396 }
1397 /**
1398  * sdr_find_phase() - Find DQS enable phase
1399  * @working:	If 1, look for working phase, if 0, look for non-working phase
1400  * @grp:	Read/Write group
1401  * @work:	Working window position
1402  * @i:		Iterator
1403  * @p:		DQS Phase Iterator
1404  *
1405  * Find working or non-working DQS enable phase setting.
1406  */
1407 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1408 			  u32 *i, u32 *p)
1409 {
1410 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1411 	int ret;
1412 
1413 	for (; *i < end; (*i)++) {
1414 		if (working)
1415 			*p = 0;
1416 
1417 		ret = sdr_find_phase_delay(working, 0, grp, work,
1418 					   IO_DELAY_PER_OPA_TAP, p);
1419 		if (!ret)
1420 			return 0;
1421 
1422 		if (*p > IO_DQS_EN_PHASE_MAX) {
1423 			/* Fiddle with FIFO. */
1424 			rw_mgr_incr_vfifo(grp);
1425 			if (!working)
1426 				*p = 0;
1427 		}
1428 	}
1429 
1430 	return -EINVAL;
1431 }
1432 
1433 /**
1434  * sdr_working_phase() - Find working DQS enable phase
1435  * @grp:	Read/Write group
1436  * @work_bgn:	Working window start position
1437  * @d:		dtaps output value
1438  * @p:		DQS Phase Iterator
1439  * @i:		Iterator
1440  *
1441  * Find working DQS enable phase setting.
1442  */
1443 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1444 			     u32 *p, u32 *i)
1445 {
1446 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1447 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1448 	int ret;
1449 
1450 	*work_bgn = 0;
1451 
1452 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1453 		*i = 0;
1454 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1455 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1456 		if (!ret)
1457 			return 0;
1458 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1459 	}
1460 
1461 	/* Cannot find working solution */
1462 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1463 		   __func__, __LINE__);
1464 	return -EINVAL;
1465 }
1466 
1467 /**
1468  * sdr_backup_phase() - Find DQS enable backup phase
1469  * @grp:	Read/Write group
1470  * @work_bgn:	Working window start position
1471  * @p:		DQS Phase Iterator
1472  *
1473  * Find DQS enable backup phase setting.
1474  */
1475 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1476 {
1477 	u32 tmp_delay, d;
1478 	int ret;
1479 
1480 	/* Special case code for backing up a phase */
1481 	if (*p == 0) {
1482 		*p = IO_DQS_EN_PHASE_MAX;
1483 		rw_mgr_decr_vfifo(grp);
1484 	} else {
1485 		(*p)--;
1486 	}
1487 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1488 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1489 
1490 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1491 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1492 
1493 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1494 					PASS_ONE_BIT, 0);
1495 		if (ret) {
1496 			*work_bgn = tmp_delay;
1497 			break;
1498 		}
1499 
1500 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1501 	}
1502 
1503 	/* Restore VFIFO to old state before we decremented it (if needed). */
1504 	(*p)++;
1505 	if (*p > IO_DQS_EN_PHASE_MAX) {
1506 		*p = 0;
1507 		rw_mgr_incr_vfifo(grp);
1508 	}
1509 
1510 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1511 }
1512 
1513 /**
1514  * sdr_nonworking_phase() - Find non-working DQS enable phase
1515  * @grp:	Read/Write group
1516  * @work_end:	Working window end position
1517  * @p:		DQS Phase Iterator
1518  * @i:		Iterator
1519  *
1520  * Find non-working DQS enable phase setting.
1521  */
1522 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1523 {
1524 	int ret;
1525 
1526 	(*p)++;
1527 	*work_end += IO_DELAY_PER_OPA_TAP;
1528 	if (*p > IO_DQS_EN_PHASE_MAX) {
1529 		/* Fiddle with FIFO. */
1530 		*p = 0;
1531 		rw_mgr_incr_vfifo(grp);
1532 	}
1533 
1534 	ret = sdr_find_phase(0, grp, work_end, i, p);
1535 	if (ret) {
1536 		/* Cannot see edge of failing read. */
1537 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1538 			   __func__, __LINE__);
1539 	}
1540 
1541 	return ret;
1542 }
1543 
1544 /**
1545  * sdr_find_window_center() - Find center of the working DQS window.
1546  * @grp:	Read/Write group
1547  * @work_bgn:	First working settings
1548  * @work_end:	Last working settings
1549  *
1550  * Find center of the working DQS enable window.
1551  */
1552 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1553 				  const u32 work_end)
1554 {
1555 	u32 work_mid;
1556 	int tmp_delay = 0;
1557 	int i, p, d;
1558 
1559 	work_mid = (work_bgn + work_end) / 2;
1560 
1561 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1562 		   work_bgn, work_end, work_mid);
1563 	/* Get the middle delay to be less than a VFIFO delay */
1564 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1565 
1566 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1567 	work_mid %= tmp_delay;
1568 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1569 
1570 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1571 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1572 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1573 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1574 
1575 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1576 
1577 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1578 	if (d > IO_DQS_EN_DELAY_MAX)
1579 		d = IO_DQS_EN_DELAY_MAX;
1580 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1581 
1582 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1583 
1584 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1585 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1586 
1587 	/*
1588 	 * push vfifo until we can successfully calibrate. We can do this
1589 	 * because the largest possible margin in 1 VFIFO cycle.
1590 	 */
1591 	for (i = 0; i < VFIFO_SIZE; i++) {
1592 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1593 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1594 							     PASS_ONE_BIT,
1595 							     0)) {
1596 			debug_cond(DLEVEL == 2,
1597 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1598 				   __func__, __LINE__, p, d);
1599 			return 0;
1600 		}
1601 
1602 		/* Fiddle with FIFO. */
1603 		rw_mgr_incr_vfifo(grp);
1604 	}
1605 
1606 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1607 		   __func__, __LINE__);
1608 	return -EINVAL;
1609 }
1610 
1611 /**
1612  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1613  * @grp:	Read/Write Group
1614  *
1615  * Find a good DQS enable to use.
1616  */
1617 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1618 {
1619 	u32 d, p, i;
1620 	u32 dtaps_per_ptap;
1621 	u32 work_bgn, work_end;
1622 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1623 	int ret;
1624 
1625 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1626 
1627 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1628 
1629 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1630 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1631 
1632 	/* Step 0: Determine number of delay taps for each phase tap. */
1633 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1634 
1635 	/* Step 1: First push vfifo until we get a failing read. */
1636 	find_vfifo_failing_read(grp);
1637 
1638 	/* Step 2: Find first working phase, increment in ptaps. */
1639 	work_bgn = 0;
1640 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1641 	if (ret)
1642 		return ret;
1643 
1644 	work_end = work_bgn;
1645 
1646 	/*
1647 	 * If d is 0 then the working window covers a phase tap and we can
1648 	 * follow the old procedure. Otherwise, we've found the beginning
1649 	 * and we need to increment the dtaps until we find the end.
1650 	 */
1651 	if (d == 0) {
1652 		/*
1653 		 * Step 3a: If we have room, back off by one and
1654 		 *          increment in dtaps.
1655 		 */
1656 		sdr_backup_phase(grp, &work_bgn, &p);
1657 
1658 		/*
1659 		 * Step 4a: go forward from working phase to non working
1660 		 * phase, increment in ptaps.
1661 		 */
1662 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1663 		if (ret)
1664 			return ret;
1665 
1666 		/* Step 5a: Back off one from last, increment in dtaps. */
1667 
1668 		/* Special case code for backing up a phase */
1669 		if (p == 0) {
1670 			p = IO_DQS_EN_PHASE_MAX;
1671 			rw_mgr_decr_vfifo(grp);
1672 		} else {
1673 			p = p - 1;
1674 		}
1675 
1676 		work_end -= IO_DELAY_PER_OPA_TAP;
1677 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1678 
1679 		d = 0;
1680 
1681 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1682 			   __func__, __LINE__, p);
1683 	}
1684 
1685 	/* The dtap increment to find the failing edge is done here. */
1686 	sdr_find_phase_delay(0, 1, grp, &work_end,
1687 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1688 
1689 	/* Go back to working dtap */
1690 	if (d != 0)
1691 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1692 
1693 	debug_cond(DLEVEL == 2,
1694 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1695 		   __func__, __LINE__, p, d - 1, work_end);
1696 
1697 	if (work_end < work_bgn) {
1698 		/* nil range */
1699 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1700 			   __func__, __LINE__);
1701 		return -EINVAL;
1702 	}
1703 
1704 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1705 		   __func__, __LINE__, work_bgn, work_end);
1706 
1707 	/*
1708 	 * We need to calculate the number of dtaps that equal a ptap.
1709 	 * To do that we'll back up a ptap and re-find the edge of the
1710 	 * window using dtaps
1711 	 */
1712 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1713 		   __func__, __LINE__);
1714 
1715 	/* Special case code for backing up a phase */
1716 	if (p == 0) {
1717 		p = IO_DQS_EN_PHASE_MAX;
1718 		rw_mgr_decr_vfifo(grp);
1719 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1720 			   __func__, __LINE__, p);
1721 	} else {
1722 		p = p - 1;
1723 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1724 			   __func__, __LINE__, p);
1725 	}
1726 
1727 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1728 
1729 	/*
1730 	 * Increase dtap until we first see a passing read (in case the
1731 	 * window is smaller than a ptap), and then a failing read to
1732 	 * mark the edge of the window again.
1733 	 */
1734 
1735 	/* Find a passing read. */
1736 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1737 		   __func__, __LINE__);
1738 
1739 	initial_failing_dtap = d;
1740 
1741 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1742 	if (found_passing_read) {
1743 		/* Find a failing read. */
1744 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1745 			   __func__, __LINE__);
1746 		d++;
1747 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1748 							   &d);
1749 	} else {
1750 		debug_cond(DLEVEL == 1,
1751 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1752 			   __func__, __LINE__);
1753 	}
1754 
1755 	/*
1756 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1757 	 * found a passing/failing read. If we didn't, it means d hit the max
1758 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1759 	 * statically calculated value.
1760 	 */
1761 	if (found_passing_read && found_failing_read)
1762 		dtaps_per_ptap = d - initial_failing_dtap;
1763 
1764 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1765 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1766 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1767 
1768 	/* Step 6: Find the centre of the window. */
1769 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1770 
1771 	return ret;
1772 }
1773 
1774 /* per-bit deskew DQ and center */
1775 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1776 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1777 	uint32_t use_read_test, uint32_t update_fom)
1778 {
1779 	uint32_t i, p, d, min_index;
1780 	/*
1781 	 * Store these as signed since there are comparisons with
1782 	 * signed numbers.
1783 	 */
1784 	uint32_t bit_chk;
1785 	uint32_t sticky_bit_chk;
1786 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1787 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1788 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1789 	int32_t mid;
1790 	int32_t orig_mid_min, mid_min;
1791 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1792 		final_dqs_en;
1793 	int32_t dq_margin, dqs_margin;
1794 	uint32_t stop;
1795 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1796 	uint32_t addr;
1797 
1798 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1799 
1800 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1801 	start_dqs = readl(addr + (read_group << 2));
1802 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1803 		start_dqs_en = readl(addr + ((read_group << 2)
1804 				     - IO_DQS_EN_DELAY_OFFSET));
1805 
1806 	/* set the left and right edge of each bit to an illegal value */
1807 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1808 	sticky_bit_chk = 0;
1809 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1810 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1811 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1812 	}
1813 
1814 	/* Search for the left edge of the window for each bit */
1815 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1816 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1817 
1818 		writel(0, &sdr_scc_mgr->update);
1819 
1820 		/*
1821 		 * Stop searching when the read test doesn't pass AND when
1822 		 * we've seen a passing read on every bit.
1823 		 */
1824 		if (use_read_test) {
1825 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1826 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1827 				&bit_chk, 0, 0);
1828 		} else {
1829 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1830 							0, PASS_ONE_BIT,
1831 							&bit_chk, 0);
1832 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1833 				(read_group - (write_group *
1834 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1835 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1836 			stop = (bit_chk == 0);
1837 		}
1838 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1839 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1840 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1841 			   && %u", __func__, __LINE__, d,
1842 			   sticky_bit_chk,
1843 			param->read_correct_mask, stop);
1844 
1845 		if (stop == 1) {
1846 			break;
1847 		} else {
1848 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1849 				if (bit_chk & 1) {
1850 					/* Remember a passing test as the
1851 					left_edge */
1852 					left_edge[i] = d;
1853 				} else {
1854 					/* If a left edge has not been seen yet,
1855 					then a future passing test will mark
1856 					this edge as the right edge */
1857 					if (left_edge[i] ==
1858 						IO_IO_IN_DELAY_MAX + 1) {
1859 						right_edge[i] = -(d + 1);
1860 					}
1861 				}
1862 				bit_chk = bit_chk >> 1;
1863 			}
1864 		}
1865 	}
1866 
1867 	/* Reset DQ delay chains to 0 */
1868 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1869 	sticky_bit_chk = 0;
1870 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1871 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1872 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1873 			   i, left_edge[i], i, right_edge[i]);
1874 
1875 		/*
1876 		 * Check for cases where we haven't found the left edge,
1877 		 * which makes our assignment of the the right edge invalid.
1878 		 * Reset it to the illegal value.
1879 		 */
1880 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1881 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1882 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1883 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1884 				   right_edge[%u]: %d\n", __func__, __LINE__,
1885 				   i, right_edge[i]);
1886 		}
1887 
1888 		/*
1889 		 * Reset sticky bit (except for bits where we have seen
1890 		 * both the left and right edge).
1891 		 */
1892 		sticky_bit_chk = sticky_bit_chk << 1;
1893 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1894 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1895 			sticky_bit_chk = sticky_bit_chk | 1;
1896 		}
1897 
1898 		if (i == 0)
1899 			break;
1900 	}
1901 
1902 	/* Search for the right edge of the window for each bit */
1903 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1904 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1905 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1906 			uint32_t delay = d + start_dqs_en;
1907 			if (delay > IO_DQS_EN_DELAY_MAX)
1908 				delay = IO_DQS_EN_DELAY_MAX;
1909 			scc_mgr_set_dqs_en_delay(read_group, delay);
1910 		}
1911 		scc_mgr_load_dqs(read_group);
1912 
1913 		writel(0, &sdr_scc_mgr->update);
1914 
1915 		/*
1916 		 * Stop searching when the read test doesn't pass AND when
1917 		 * we've seen a passing read on every bit.
1918 		 */
1919 		if (use_read_test) {
1920 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1921 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1922 				&bit_chk, 0, 0);
1923 		} else {
1924 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1925 							0, PASS_ONE_BIT,
1926 							&bit_chk, 0);
1927 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1928 				(read_group - (write_group *
1929 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1930 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1931 			stop = (bit_chk == 0);
1932 		}
1933 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1934 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1935 
1936 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1937 			   %u && %u", __func__, __LINE__, d,
1938 			   sticky_bit_chk, param->read_correct_mask, stop);
1939 
1940 		if (stop == 1) {
1941 			break;
1942 		} else {
1943 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1944 				if (bit_chk & 1) {
1945 					/* Remember a passing test as
1946 					the right_edge */
1947 					right_edge[i] = d;
1948 				} else {
1949 					if (d != 0) {
1950 						/* If a right edge has not been
1951 						seen yet, then a future passing
1952 						test will mark this edge as the
1953 						left edge */
1954 						if (right_edge[i] ==
1955 						IO_IO_IN_DELAY_MAX + 1) {
1956 							left_edge[i] = -(d + 1);
1957 						}
1958 					} else {
1959 						/* d = 0 failed, but it passed
1960 						when testing the left edge,
1961 						so it must be marginal,
1962 						set it to -1 */
1963 						if (right_edge[i] ==
1964 							IO_IO_IN_DELAY_MAX + 1 &&
1965 							left_edge[i] !=
1966 							IO_IO_IN_DELAY_MAX
1967 							+ 1) {
1968 							right_edge[i] = -1;
1969 						}
1970 						/* If a right edge has not been
1971 						seen yet, then a future passing
1972 						test will mark this edge as the
1973 						left edge */
1974 						else if (right_edge[i] ==
1975 							IO_IO_IN_DELAY_MAX +
1976 							1) {
1977 							left_edge[i] = -(d + 1);
1978 						}
1979 					}
1980 				}
1981 
1982 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1983 					   d=%u]: ", __func__, __LINE__, d);
1984 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1985 					   (int)(bit_chk & 1), i, left_edge[i]);
1986 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1987 					   right_edge[i]);
1988 				bit_chk = bit_chk >> 1;
1989 			}
1990 		}
1991 	}
1992 
1993 	/* Check that all bits have a window */
1994 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1995 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1996 			   %d right_edge[%u]: %d", __func__, __LINE__,
1997 			   i, left_edge[i], i, right_edge[i]);
1998 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1999 			== IO_IO_IN_DELAY_MAX + 1)) {
2000 			/*
2001 			 * Restore delay chain settings before letting the loop
2002 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2003 			 * dqs/ck relationships.
2004 			 */
2005 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2006 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2007 				scc_mgr_set_dqs_en_delay(read_group,
2008 							 start_dqs_en);
2009 			}
2010 			scc_mgr_load_dqs(read_group);
2011 			writel(0, &sdr_scc_mgr->update);
2012 
2013 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2014 				   find edge [%u]: %d %d", __func__, __LINE__,
2015 				   i, left_edge[i], right_edge[i]);
2016 			if (use_read_test) {
2017 				set_failing_group_stage(read_group *
2018 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2019 					CAL_STAGE_VFIFO,
2020 					CAL_SUBSTAGE_VFIFO_CENTER);
2021 			} else {
2022 				set_failing_group_stage(read_group *
2023 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2024 					CAL_STAGE_VFIFO_AFTER_WRITES,
2025 					CAL_SUBSTAGE_VFIFO_CENTER);
2026 			}
2027 			return 0;
2028 		}
2029 	}
2030 
2031 	/* Find middle of window for each DQ bit */
2032 	mid_min = left_edge[0] - right_edge[0];
2033 	min_index = 0;
2034 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2035 		mid = left_edge[i] - right_edge[i];
2036 		if (mid < mid_min) {
2037 			mid_min = mid;
2038 			min_index = i;
2039 		}
2040 	}
2041 
2042 	/*
2043 	 * -mid_min/2 represents the amount that we need to move DQS.
2044 	 * If mid_min is odd and positive we'll need to add one to
2045 	 * make sure the rounding in further calculations is correct
2046 	 * (always bias to the right), so just add 1 for all positive values.
2047 	 */
2048 	if (mid_min > 0)
2049 		mid_min++;
2050 
2051 	mid_min = mid_min / 2;
2052 
2053 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2054 		   __func__, __LINE__, mid_min, min_index);
2055 
2056 	/* Determine the amount we can change DQS (which is -mid_min) */
2057 	orig_mid_min = mid_min;
2058 	new_dqs = start_dqs - mid_min;
2059 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2060 		new_dqs = IO_DQS_IN_DELAY_MAX;
2061 	else if (new_dqs < 0)
2062 		new_dqs = 0;
2063 
2064 	mid_min = start_dqs - new_dqs;
2065 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2066 		   mid_min, new_dqs);
2067 
2068 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2069 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2070 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2071 		else if (start_dqs_en - mid_min < 0)
2072 			mid_min += start_dqs_en - mid_min;
2073 	}
2074 	new_dqs = start_dqs - mid_min;
2075 
2076 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2077 		   new_dqs=%d mid_min=%d\n", start_dqs,
2078 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2079 		   new_dqs, mid_min);
2080 
2081 	/* Initialize data for export structures */
2082 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2083 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2084 
2085 	/* add delay to bring centre of all DQ windows to the same "level" */
2086 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2087 		/* Use values before divide by 2 to reduce round off error */
2088 		shift_dq = (left_edge[i] - right_edge[i] -
2089 			(left_edge[min_index] - right_edge[min_index]))/2  +
2090 			(orig_mid_min - mid_min);
2091 
2092 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2093 			   shift_dq[%u]=%d\n", i, shift_dq);
2094 
2095 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2096 		temp_dq_in_delay1 = readl(addr + (p << 2));
2097 		temp_dq_in_delay2 = readl(addr + (i << 2));
2098 
2099 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2100 			(int32_t)IO_IO_IN_DELAY_MAX) {
2101 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2102 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2103 			shift_dq = -(int32_t)temp_dq_in_delay1;
2104 		}
2105 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2106 			   shift_dq[%u]=%d\n", i, shift_dq);
2107 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2108 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2109 		scc_mgr_load_dq(p);
2110 
2111 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2112 			   left_edge[i] - shift_dq + (-mid_min),
2113 			   right_edge[i] + shift_dq - (-mid_min));
2114 		/* To determine values for export structures */
2115 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2116 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2117 
2118 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2119 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2120 	}
2121 
2122 	final_dqs = new_dqs;
2123 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2124 		final_dqs_en = start_dqs_en - mid_min;
2125 
2126 	/* Move DQS-en */
2127 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2128 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2129 		scc_mgr_load_dqs(read_group);
2130 	}
2131 
2132 	/* Move DQS */
2133 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2134 	scc_mgr_load_dqs(read_group);
2135 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2136 		   dqs_margin=%d", __func__, __LINE__,
2137 		   dq_margin, dqs_margin);
2138 
2139 	/*
2140 	 * Do not remove this line as it makes sure all of our decisions
2141 	 * have been applied. Apply the update bit.
2142 	 */
2143 	writel(0, &sdr_scc_mgr->update);
2144 
2145 	return (dq_margin >= 0) && (dqs_margin >= 0);
2146 }
2147 
2148 /**
2149  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2150  * @rw_group:	Read/Write Group
2151  * @phase:	DQ/DQS phase
2152  *
2153  * Because initially no communication ca be reliably performed with the memory
2154  * device, the sequencer uses a guaranteed write mechanism to write data into
2155  * the memory device.
2156  */
2157 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2158 						 const u32 phase)
2159 {
2160 	int ret;
2161 
2162 	/* Set a particular DQ/DQS phase. */
2163 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2164 
2165 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2166 		   __func__, __LINE__, rw_group, phase);
2167 
2168 	/*
2169 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2170 	 * Load up the patterns used by read calibration using the
2171 	 * current DQDQS phase.
2172 	 */
2173 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2174 
2175 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2176 		return 0;
2177 
2178 	/*
2179 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2180 	 * Back-to-Back reads of the patterns used for calibration.
2181 	 */
2182 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2183 	if (ret)
2184 		debug_cond(DLEVEL == 1,
2185 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2186 			   __func__, __LINE__, rw_group, phase);
2187 	return ret;
2188 }
2189 
2190 /**
2191  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2192  * @rw_group:	Read/Write Group
2193  * @test_bgn:	Rank at which the test begins
2194  *
2195  * DQS enable calibration ensures reliable capture of the DQ signal without
2196  * glitches on the DQS line.
2197  */
2198 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2199 						       const u32 test_bgn)
2200 {
2201 	/*
2202 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2203 	 * DQS and DQS Eanble Signal Relationships.
2204 	 */
2205 
2206 	/* We start at zero, so have one less dq to devide among */
2207 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2208 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2209 	int ret;
2210 	u32 i, p, d, r;
2211 
2212 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2213 
2214 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2215 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2216 	     r += NUM_RANKS_PER_SHADOW_REG) {
2217 		for (i = 0, p = test_bgn, d = 0;
2218 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2219 		     i++, p++, d += delay_step) {
2220 			debug_cond(DLEVEL == 1,
2221 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2222 				   __func__, __LINE__, rw_group, r, i, p, d);
2223 
2224 			scc_mgr_set_dq_in_delay(p, d);
2225 			scc_mgr_load_dq(p);
2226 		}
2227 
2228 		writel(0, &sdr_scc_mgr->update);
2229 	}
2230 
2231 	/*
2232 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2233 	 * dq_in_delay values
2234 	 */
2235 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2236 
2237 	debug_cond(DLEVEL == 1,
2238 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2239 		   __func__, __LINE__, rw_group, !ret);
2240 
2241 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2242 	     r += NUM_RANKS_PER_SHADOW_REG) {
2243 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2244 		writel(0, &sdr_scc_mgr->update);
2245 	}
2246 
2247 	return ret;
2248 }
2249 
2250 /**
2251  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2252  * @rw_group:		Read/Write Group
2253  * @test_bgn:		Rank at which the test begins
2254  * @use_read_test:	Perform a read test
2255  * @update_fom:		Update FOM
2256  *
2257  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2258  * within a group.
2259  */
2260 static int
2261 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2262 				      const int use_read_test,
2263 				      const int update_fom)
2264 
2265 {
2266 	int ret, grp_calibrated;
2267 	u32 rank_bgn, sr;
2268 
2269 	/*
2270 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2271 	 * Read per-bit deskew can be done on a per shadow register basis.
2272 	 */
2273 	grp_calibrated = 1;
2274 	for (rank_bgn = 0, sr = 0;
2275 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2276 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2277 		/* Check if this set of ranks should be skipped entirely. */
2278 		if (param->skip_shadow_regs[sr])
2279 			continue;
2280 
2281 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2282 							rw_group, test_bgn,
2283 							use_read_test,
2284 							update_fom);
2285 		if (ret)
2286 			continue;
2287 
2288 		grp_calibrated = 0;
2289 	}
2290 
2291 	if (!grp_calibrated)
2292 		return -EIO;
2293 
2294 	return 0;
2295 }
2296 
2297 /**
2298  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2299  * @rw_group:		Read/Write Group
2300  * @test_bgn:		Rank at which the test begins
2301  *
2302  * Stage 1: Calibrate the read valid prediction FIFO.
2303  *
2304  * This function implements UniPHY calibration Stage 1, as explained in
2305  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2306  *
2307  * - read valid prediction will consist of finding:
2308  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2309  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2310  *  - we also do a per-bit deskew on the DQ lines.
2311  */
2312 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2313 {
2314 	uint32_t p, d;
2315 	uint32_t dtaps_per_ptap;
2316 	uint32_t failed_substage;
2317 
2318 	int ret;
2319 
2320 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2321 
2322 	/* Update info for sims */
2323 	reg_file_set_group(rw_group);
2324 	reg_file_set_stage(CAL_STAGE_VFIFO);
2325 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2326 
2327 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2328 
2329 	/* USER Determine number of delay taps for each phase tap. */
2330 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2331 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2332 
2333 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2334 		/*
2335 		 * In RLDRAMX we may be messing the delay of pins in
2336 		 * the same write rw_group but outside of the current read
2337 		 * the rw_group, but that's ok because we haven't calibrated
2338 		 * output side yet.
2339 		 */
2340 		if (d > 0) {
2341 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2342 								rw_group, d);
2343 		}
2344 
2345 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2346 			/* 1) Guaranteed Write */
2347 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2348 			if (ret)
2349 				break;
2350 
2351 			/* 2) DQS Enable Calibration */
2352 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2353 									  test_bgn);
2354 			if (ret) {
2355 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2356 				continue;
2357 			}
2358 
2359 			/* 3) Centering DQ/DQS */
2360 			/*
2361 			 * If doing read after write calibration, do not update
2362 			 * FOM now. Do it then.
2363 			 */
2364 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2365 								test_bgn, 1, 0);
2366 			if (ret) {
2367 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2368 				continue;
2369 			}
2370 
2371 			/* All done. */
2372 			goto cal_done_ok;
2373 		}
2374 	}
2375 
2376 	/* Calibration Stage 1 failed. */
2377 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2378 	return 0;
2379 
2380 	/* Calibration Stage 1 completed OK. */
2381 cal_done_ok:
2382 	/*
2383 	 * Reset the delay chains back to zero if they have moved > 1
2384 	 * (check for > 1 because loop will increase d even when pass in
2385 	 * first case).
2386 	 */
2387 	if (d > 2)
2388 		scc_mgr_zero_group(rw_group, 1);
2389 
2390 	return 1;
2391 }
2392 
2393 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2394 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2395 					       uint32_t test_bgn)
2396 {
2397 	uint32_t rank_bgn, sr;
2398 	uint32_t grp_calibrated;
2399 	uint32_t write_group;
2400 
2401 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2402 
2403 	/* update info for sims */
2404 
2405 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2406 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2407 
2408 	write_group = read_group;
2409 
2410 	/* update info for sims */
2411 	reg_file_set_group(read_group);
2412 
2413 	grp_calibrated = 1;
2414 	/* Read per-bit deskew can be done on a per shadow register basis */
2415 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2416 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2417 		/* Determine if this set of ranks should be skipped entirely */
2418 		if (!param->skip_shadow_regs[sr]) {
2419 		/* This is the last calibration round, update FOM here */
2420 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2421 								write_group,
2422 								read_group,
2423 								test_bgn, 0,
2424 								1)) {
2425 				grp_calibrated = 0;
2426 			}
2427 		}
2428 	}
2429 
2430 
2431 	if (grp_calibrated == 0) {
2432 		set_failing_group_stage(write_group,
2433 					CAL_STAGE_VFIFO_AFTER_WRITES,
2434 					CAL_SUBSTAGE_VFIFO_CENTER);
2435 		return 0;
2436 	}
2437 
2438 	return 1;
2439 }
2440 
2441 /* Calibrate LFIFO to find smallest read latency */
2442 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2443 {
2444 	uint32_t found_one;
2445 
2446 	debug("%s:%d\n", __func__, __LINE__);
2447 
2448 	/* update info for sims */
2449 	reg_file_set_stage(CAL_STAGE_LFIFO);
2450 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2451 
2452 	/* Load up the patterns used by read calibration for all ranks */
2453 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2454 	found_one = 0;
2455 
2456 	do {
2457 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2458 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2459 			   __func__, __LINE__, gbl->curr_read_lat);
2460 
2461 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2462 							      NUM_READ_TESTS,
2463 							      PASS_ALL_BITS,
2464 							      1)) {
2465 			break;
2466 		}
2467 
2468 		found_one = 1;
2469 		/* reduce read latency and see if things are working */
2470 		/* correctly */
2471 		gbl->curr_read_lat--;
2472 	} while (gbl->curr_read_lat > 0);
2473 
2474 	/* reset the fifos to get pointers to known state */
2475 
2476 	writel(0, &phy_mgr_cmd->fifo_reset);
2477 
2478 	if (found_one) {
2479 		/* add a fudge factor to the read latency that was determined */
2480 		gbl->curr_read_lat += 2;
2481 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2482 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2483 			   read_lat=%u\n", __func__, __LINE__,
2484 			   gbl->curr_read_lat);
2485 		return 1;
2486 	} else {
2487 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2488 					CAL_SUBSTAGE_READ_LATENCY);
2489 
2490 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2491 			   read_lat=%u\n", __func__, __LINE__,
2492 			   gbl->curr_read_lat);
2493 		return 0;
2494 	}
2495 }
2496 
2497 /*
2498  * issue write test command.
2499  * two variants are provided. one that just tests a write pattern and
2500  * another that tests datamask functionality.
2501  */
2502 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2503 						  uint32_t test_dm)
2504 {
2505 	uint32_t mcc_instruction;
2506 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2507 		ENABLE_SUPER_QUICK_CALIBRATION);
2508 	uint32_t rw_wl_nop_cycles;
2509 	uint32_t addr;
2510 
2511 	/*
2512 	 * Set counter and jump addresses for the right
2513 	 * number of NOP cycles.
2514 	 * The number of supported NOP cycles can range from -1 to infinity
2515 	 * Three different cases are handled:
2516 	 *
2517 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2518 	 *    mechanism will be used to insert the right number of NOPs
2519 	 *
2520 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2521 	 *    issuing the write command will jump straight to the
2522 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2523 	 *    data (for RLD), skipping
2524 	 *    the NOP micro-instruction all together
2525 	 *
2526 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2527 	 *    turned on in the same micro-instruction that issues the write
2528 	 *    command. Then we need
2529 	 *    to directly jump to the micro-instruction that sends out the data
2530 	 *
2531 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2532 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2533 	 *       write-read operations.
2534 	 *       one counter left to issue this command in "multiple-group" mode
2535 	 */
2536 
2537 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2538 
2539 	if (rw_wl_nop_cycles == -1) {
2540 		/*
2541 		 * CNTR 2 - We want to execute the special write operation that
2542 		 * turns on DQS right away and then skip directly to the
2543 		 * instruction that sends out the data. We set the counter to a
2544 		 * large number so that the jump is always taken.
2545 		 */
2546 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2547 
2548 		/* CNTR 3 - Not used */
2549 		if (test_dm) {
2550 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2551 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2552 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2553 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2554 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2555 		} else {
2556 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2557 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2558 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2560 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561 		}
2562 	} else if (rw_wl_nop_cycles == 0) {
2563 		/*
2564 		 * CNTR 2 - We want to skip the NOP operation and go straight
2565 		 * to the DQS enable instruction. We set the counter to a large
2566 		 * number so that the jump is always taken.
2567 		 */
2568 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2569 
2570 		/* CNTR 3 - Not used */
2571 		if (test_dm) {
2572 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2573 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2574 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575 		} else {
2576 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2577 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2578 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579 		}
2580 	} else {
2581 		/*
2582 		 * CNTR 2 - In this case we want to execute the next instruction
2583 		 * and NOT take the jump. So we set the counter to 0. The jump
2584 		 * address doesn't count.
2585 		 */
2586 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2587 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588 
2589 		/*
2590 		 * CNTR 3 - Set the nop counter to the number of cycles we
2591 		 * need to loop for, minus 1.
2592 		 */
2593 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2594 		if (test_dm) {
2595 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2596 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2597 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2598 		} else {
2599 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2600 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2601 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602 		}
2603 	}
2604 
2605 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2606 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2607 
2608 	if (quick_write_mode)
2609 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2610 	else
2611 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2612 
2613 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2614 
2615 	/*
2616 	 * CNTR 1 - This is used to ensure enough time elapses
2617 	 * for read data to come back.
2618 	 */
2619 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2620 
2621 	if (test_dm) {
2622 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2623 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2624 	} else {
2625 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2626 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2627 	}
2628 
2629 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2630 	writel(mcc_instruction, addr + (group << 2));
2631 }
2632 
2633 /* Test writes, can check for a single bit pass or multiple bit pass */
2634 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2635 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2636 	uint32_t *bit_chk, uint32_t all_ranks)
2637 {
2638 	uint32_t r;
2639 	uint32_t correct_mask_vg;
2640 	uint32_t tmp_bit_chk;
2641 	uint32_t vg;
2642 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2643 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2644 	uint32_t addr_rw_mgr;
2645 	uint32_t base_rw_mgr;
2646 
2647 	*bit_chk = param->write_correct_mask;
2648 	correct_mask_vg = param->write_correct_mask_vg;
2649 
2650 	for (r = rank_bgn; r < rank_end; r++) {
2651 		if (param->skip_ranks[r]) {
2652 			/* request to skip the rank */
2653 			continue;
2654 		}
2655 
2656 		/* set rank */
2657 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2658 
2659 		tmp_bit_chk = 0;
2660 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2661 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2662 			/* reset the fifos to get pointers to known state */
2663 			writel(0, &phy_mgr_cmd->fifo_reset);
2664 
2665 			tmp_bit_chk = tmp_bit_chk <<
2666 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2667 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2668 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2669 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2670 				use_dm);
2671 
2672 			base_rw_mgr = readl(addr_rw_mgr);
2673 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2674 			if (vg == 0)
2675 				break;
2676 		}
2677 		*bit_chk &= tmp_bit_chk;
2678 	}
2679 
2680 	if (all_correct) {
2681 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2682 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2683 			   %u => %lu", write_group, use_dm,
2684 			   *bit_chk, param->write_correct_mask,
2685 			   (long unsigned int)(*bit_chk ==
2686 			   param->write_correct_mask));
2687 		return *bit_chk == param->write_correct_mask;
2688 	} else {
2689 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2690 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2691 		       write_group, use_dm, *bit_chk);
2692 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2693 			(long unsigned int)(*bit_chk != 0));
2694 		return *bit_chk != 0x00;
2695 	}
2696 }
2697 
2698 /*
2699  * center all windows. do per-bit-deskew to possibly increase size of
2700  * certain windows.
2701  */
2702 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2703 	uint32_t write_group, uint32_t test_bgn)
2704 {
2705 	uint32_t i, p, min_index;
2706 	int32_t d;
2707 	/*
2708 	 * Store these as signed since there are comparisons with
2709 	 * signed numbers.
2710 	 */
2711 	uint32_t bit_chk;
2712 	uint32_t sticky_bit_chk;
2713 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2714 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2715 	int32_t mid;
2716 	int32_t mid_min, orig_mid_min;
2717 	int32_t new_dqs, start_dqs, shift_dq;
2718 	int32_t dq_margin, dqs_margin, dm_margin;
2719 	uint32_t stop;
2720 	uint32_t temp_dq_out1_delay;
2721 	uint32_t addr;
2722 
2723 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2724 
2725 	dm_margin = 0;
2726 
2727 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2728 	start_dqs = readl(addr +
2729 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2730 
2731 	/* per-bit deskew */
2732 
2733 	/*
2734 	 * set the left and right edge of each bit to an illegal value
2735 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2736 	 */
2737 	sticky_bit_chk = 0;
2738 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2739 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2740 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2741 	}
2742 
2743 	/* Search for the left edge of the window for each bit */
2744 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2745 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2746 
2747 		writel(0, &sdr_scc_mgr->update);
2748 
2749 		/*
2750 		 * Stop searching when the read test doesn't pass AND when
2751 		 * we've seen a passing read on every bit.
2752 		 */
2753 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2754 			0, PASS_ONE_BIT, &bit_chk, 0);
2755 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2756 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2757 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2758 			   == %u && %u [bit_chk= %u ]\n",
2759 			d, sticky_bit_chk, param->write_correct_mask,
2760 			stop, bit_chk);
2761 
2762 		if (stop == 1) {
2763 			break;
2764 		} else {
2765 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2766 				if (bit_chk & 1) {
2767 					/*
2768 					 * Remember a passing test as the
2769 					 * left_edge.
2770 					 */
2771 					left_edge[i] = d;
2772 				} else {
2773 					/*
2774 					 * If a left edge has not been seen
2775 					 * yet, then a future passing test will
2776 					 * mark this edge as the right edge.
2777 					 */
2778 					if (left_edge[i] ==
2779 						IO_IO_OUT1_DELAY_MAX + 1) {
2780 						right_edge[i] = -(d + 1);
2781 					}
2782 				}
2783 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2784 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2785 					   (int)(bit_chk & 1), i, left_edge[i]);
2786 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2787 				       right_edge[i]);
2788 				bit_chk = bit_chk >> 1;
2789 			}
2790 		}
2791 	}
2792 
2793 	/* Reset DQ delay chains to 0 */
2794 	scc_mgr_apply_group_dq_out1_delay(0);
2795 	sticky_bit_chk = 0;
2796 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2797 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2798 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2799 			   i, left_edge[i], i, right_edge[i]);
2800 
2801 		/*
2802 		 * Check for cases where we haven't found the left edge,
2803 		 * which makes our assignment of the the right edge invalid.
2804 		 * Reset it to the illegal value.
2805 		 */
2806 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2807 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2808 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2809 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2810 				   right_edge[%u]: %d\n", __func__, __LINE__,
2811 				   i, right_edge[i]);
2812 		}
2813 
2814 		/*
2815 		 * Reset sticky bit (except for bits where we have
2816 		 * seen the left edge).
2817 		 */
2818 		sticky_bit_chk = sticky_bit_chk << 1;
2819 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2820 			sticky_bit_chk = sticky_bit_chk | 1;
2821 
2822 		if (i == 0)
2823 			break;
2824 	}
2825 
2826 	/* Search for the right edge of the window for each bit */
2827 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2828 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2829 							d + start_dqs);
2830 
2831 		writel(0, &sdr_scc_mgr->update);
2832 
2833 		/*
2834 		 * Stop searching when the read test doesn't pass AND when
2835 		 * we've seen a passing read on every bit.
2836 		 */
2837 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2838 			0, PASS_ONE_BIT, &bit_chk, 0);
2839 
2840 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2841 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2842 
2843 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2844 			   %u && %u\n", d, sticky_bit_chk,
2845 			   param->write_correct_mask, stop);
2846 
2847 		if (stop == 1) {
2848 			if (d == 0) {
2849 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2850 					i++) {
2851 					/* d = 0 failed, but it passed when
2852 					testing the left edge, so it must be
2853 					marginal, set it to -1 */
2854 					if (right_edge[i] ==
2855 						IO_IO_OUT1_DELAY_MAX + 1 &&
2856 						left_edge[i] !=
2857 						IO_IO_OUT1_DELAY_MAX + 1) {
2858 						right_edge[i] = -1;
2859 					}
2860 				}
2861 			}
2862 			break;
2863 		} else {
2864 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2865 				if (bit_chk & 1) {
2866 					/*
2867 					 * Remember a passing test as
2868 					 * the right_edge.
2869 					 */
2870 					right_edge[i] = d;
2871 				} else {
2872 					if (d != 0) {
2873 						/*
2874 						 * If a right edge has not
2875 						 * been seen yet, then a future
2876 						 * passing test will mark this
2877 						 * edge as the left edge.
2878 						 */
2879 						if (right_edge[i] ==
2880 						    IO_IO_OUT1_DELAY_MAX + 1)
2881 							left_edge[i] = -(d + 1);
2882 					} else {
2883 						/*
2884 						 * d = 0 failed, but it passed
2885 						 * when testing the left edge,
2886 						 * so it must be marginal, set
2887 						 * it to -1.
2888 						 */
2889 						if (right_edge[i] ==
2890 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2891 						    left_edge[i] !=
2892 						    IO_IO_OUT1_DELAY_MAX + 1)
2893 							right_edge[i] = -1;
2894 						/*
2895 						 * If a right edge has not been
2896 						 * seen yet, then a future
2897 						 * passing test will mark this
2898 						 * edge as the left edge.
2899 						 */
2900 						else if (right_edge[i] ==
2901 							IO_IO_OUT1_DELAY_MAX +
2902 							1)
2903 							left_edge[i] = -(d + 1);
2904 					}
2905 				}
2906 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2907 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2908 					   (int)(bit_chk & 1), i, left_edge[i]);
2909 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2910 					   right_edge[i]);
2911 				bit_chk = bit_chk >> 1;
2912 			}
2913 		}
2914 	}
2915 
2916 	/* Check that all bits have a window */
2917 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2918 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2919 			   %d right_edge[%u]: %d", __func__, __LINE__,
2920 			   i, left_edge[i], i, right_edge[i]);
2921 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2922 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2923 			set_failing_group_stage(test_bgn + i,
2924 						CAL_STAGE_WRITES,
2925 						CAL_SUBSTAGE_WRITES_CENTER);
2926 			return 0;
2927 		}
2928 	}
2929 
2930 	/* Find middle of window for each DQ bit */
2931 	mid_min = left_edge[0] - right_edge[0];
2932 	min_index = 0;
2933 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2934 		mid = left_edge[i] - right_edge[i];
2935 		if (mid < mid_min) {
2936 			mid_min = mid;
2937 			min_index = i;
2938 		}
2939 	}
2940 
2941 	/*
2942 	 * -mid_min/2 represents the amount that we need to move DQS.
2943 	 * If mid_min is odd and positive we'll need to add one to
2944 	 * make sure the rounding in further calculations is correct
2945 	 * (always bias to the right), so just add 1 for all positive values.
2946 	 */
2947 	if (mid_min > 0)
2948 		mid_min++;
2949 	mid_min = mid_min / 2;
2950 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2951 		   __LINE__, mid_min);
2952 
2953 	/* Determine the amount we can change DQS (which is -mid_min) */
2954 	orig_mid_min = mid_min;
2955 	new_dqs = start_dqs;
2956 	mid_min = 0;
2957 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2958 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2959 	/* Initialize data for export structures */
2960 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2961 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2962 
2963 	/* add delay to bring centre of all DQ windows to the same "level" */
2964 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2965 		/* Use values before divide by 2 to reduce round off error */
2966 		shift_dq = (left_edge[i] - right_edge[i] -
2967 			(left_edge[min_index] - right_edge[min_index]))/2  +
2968 		(orig_mid_min - mid_min);
2969 
2970 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2971 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2972 
2973 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2974 		temp_dq_out1_delay = readl(addr + (i << 2));
2975 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2976 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2977 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2978 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2979 			shift_dq = -(int32_t)temp_dq_out1_delay;
2980 		}
2981 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2982 			   i, shift_dq);
2983 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2984 		scc_mgr_load_dq(i);
2985 
2986 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2987 			   left_edge[i] - shift_dq + (-mid_min),
2988 			   right_edge[i] + shift_dq - (-mid_min));
2989 		/* To determine values for export structures */
2990 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2991 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2992 
2993 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2994 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2995 	}
2996 
2997 	/* Move DQS */
2998 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2999 	writel(0, &sdr_scc_mgr->update);
3000 
3001 	/* Centre DM */
3002 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3003 
3004 	/*
3005 	 * set the left and right edge of each bit to an illegal value,
3006 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3007 	 */
3008 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3009 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3010 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3011 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3012 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3013 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3014 	int32_t win_best = 0;
3015 
3016 	/* Search for the/part of the window with DM shift */
3017 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3018 		scc_mgr_apply_group_dm_out1_delay(d);
3019 		writel(0, &sdr_scc_mgr->update);
3020 
3021 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3022 						    PASS_ALL_BITS, &bit_chk,
3023 						    0)) {
3024 			/* USE Set current end of the window */
3025 			end_curr = -d;
3026 			/*
3027 			 * If a starting edge of our window has not been seen
3028 			 * this is our current start of the DM window.
3029 			 */
3030 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3031 				bgn_curr = -d;
3032 
3033 			/*
3034 			 * If current window is bigger than best seen.
3035 			 * Set best seen to be current window.
3036 			 */
3037 			if ((end_curr-bgn_curr+1) > win_best) {
3038 				win_best = end_curr-bgn_curr+1;
3039 				bgn_best = bgn_curr;
3040 				end_best = end_curr;
3041 			}
3042 		} else {
3043 			/* We just saw a failing test. Reset temp edge */
3044 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3045 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046 			}
3047 		}
3048 
3049 
3050 	/* Reset DM delay chains to 0 */
3051 	scc_mgr_apply_group_dm_out1_delay(0);
3052 
3053 	/*
3054 	 * Check to see if the current window nudges up aganist 0 delay.
3055 	 * If so we need to continue the search by shifting DQS otherwise DQS
3056 	 * search begins as a new search. */
3057 	if (end_curr != 0) {
3058 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060 	}
3061 
3062 	/* Search for the/part of the window with DQS shifts */
3063 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3064 		/*
3065 		 * Note: This only shifts DQS, so are we limiting ourselve to
3066 		 * width of DQ unnecessarily.
3067 		 */
3068 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3069 							d + new_dqs);
3070 
3071 		writel(0, &sdr_scc_mgr->update);
3072 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3073 						    PASS_ALL_BITS, &bit_chk,
3074 						    0)) {
3075 			/* USE Set current end of the window */
3076 			end_curr = d;
3077 			/*
3078 			 * If a beginning edge of our window has not been seen
3079 			 * this is our current begin of the DM window.
3080 			 */
3081 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3082 				bgn_curr = d;
3083 
3084 			/*
3085 			 * If current window is bigger than best seen. Set best
3086 			 * seen to be current window.
3087 			 */
3088 			if ((end_curr-bgn_curr+1) > win_best) {
3089 				win_best = end_curr-bgn_curr+1;
3090 				bgn_best = bgn_curr;
3091 				end_best = end_curr;
3092 			}
3093 		} else {
3094 			/* We just saw a failing test. Reset temp edge */
3095 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3096 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3097 
3098 			/* Early exit optimization: if ther remaining delay
3099 			chain space is less than already seen largest window
3100 			we can exit */
3101 			if ((win_best-1) >
3102 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3103 					break;
3104 				}
3105 			}
3106 		}
3107 
3108 	/* assign left and right edge for cal and reporting; */
3109 	left_edge[0] = -1*bgn_best;
3110 	right_edge[0] = end_best;
3111 
3112 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3113 		   __LINE__, left_edge[0], right_edge[0]);
3114 
3115 	/* Move DQS (back to orig) */
3116 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3117 
3118 	/* Move DM */
3119 
3120 	/* Find middle of window for the DM bit */
3121 	mid = (left_edge[0] - right_edge[0]) / 2;
3122 
3123 	/* only move right, since we are not moving DQS/DQ */
3124 	if (mid < 0)
3125 		mid = 0;
3126 
3127 	/* dm_marign should fail if we never find a window */
3128 	if (win_best == 0)
3129 		dm_margin = -1;
3130 	else
3131 		dm_margin = left_edge[0] - mid;
3132 
3133 	scc_mgr_apply_group_dm_out1_delay(mid);
3134 	writel(0, &sdr_scc_mgr->update);
3135 
3136 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3137 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3138 		   right_edge[0], mid, dm_margin);
3139 	/* Export values */
3140 	gbl->fom_out += dq_margin + dqs_margin;
3141 
3142 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3143 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3144 		   dq_margin, dqs_margin, dm_margin);
3145 
3146 	/*
3147 	 * Do not remove this line as it makes sure all of our
3148 	 * decisions have been applied.
3149 	 */
3150 	writel(0, &sdr_scc_mgr->update);
3151 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3152 }
3153 
3154 /* calibrate the write operations */
3155 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3156 	uint32_t test_bgn)
3157 {
3158 	/* update info for sims */
3159 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3160 
3161 	reg_file_set_stage(CAL_STAGE_WRITES);
3162 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3163 
3164 	reg_file_set_group(g);
3165 
3166 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3167 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3168 					CAL_SUBSTAGE_WRITES_CENTER);
3169 		return 0;
3170 	}
3171 
3172 	return 1;
3173 }
3174 
3175 /**
3176  * mem_precharge_and_activate() - Precharge all banks and activate
3177  *
3178  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3179  */
3180 static void mem_precharge_and_activate(void)
3181 {
3182 	int r;
3183 
3184 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3185 		/* Test if the rank should be skipped. */
3186 		if (param->skip_ranks[r])
3187 			continue;
3188 
3189 		/* Set rank. */
3190 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3191 
3192 		/* Precharge all banks. */
3193 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3194 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3195 
3196 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3197 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3198 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3199 
3200 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3201 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3202 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3203 
3204 		/* Activate rows. */
3205 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3206 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3207 	}
3208 }
3209 
3210 /**
3211  * mem_init_latency() - Configure memory RLAT and WLAT settings
3212  *
3213  * Configure memory RLAT and WLAT parameters.
3214  */
3215 static void mem_init_latency(void)
3216 {
3217 	/*
3218 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3219 	 * so max latency in AFI clocks, used here, is correspondingly
3220 	 * smaller.
3221 	 */
3222 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3223 	u32 rlat, wlat;
3224 
3225 	debug("%s:%d\n", __func__, __LINE__);
3226 
3227 	/*
3228 	 * Read in write latency.
3229 	 * WL for Hard PHY does not include additive latency.
3230 	 */
3231 	wlat = readl(&data_mgr->t_wl_add);
3232 	wlat += readl(&data_mgr->mem_t_add);
3233 
3234 	gbl->rw_wl_nop_cycles = wlat - 1;
3235 
3236 	/* Read in readl latency. */
3237 	rlat = readl(&data_mgr->t_rl_add);
3238 
3239 	/* Set a pretty high read latency initially. */
3240 	gbl->curr_read_lat = rlat + 16;
3241 	if (gbl->curr_read_lat > max_latency)
3242 		gbl->curr_read_lat = max_latency;
3243 
3244 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3245 
3246 	/* Advertise write latency. */
3247 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3248 }
3249 
3250 /**
3251  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3252  *
3253  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3254  */
3255 static void mem_skip_calibrate(void)
3256 {
3257 	uint32_t vfifo_offset;
3258 	uint32_t i, j, r;
3259 
3260 	debug("%s:%d\n", __func__, __LINE__);
3261 	/* Need to update every shadow register set used by the interface */
3262 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3263 	     r += NUM_RANKS_PER_SHADOW_REG) {
3264 		/*
3265 		 * Set output phase alignment settings appropriate for
3266 		 * skip calibration.
3267 		 */
3268 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3269 			scc_mgr_set_dqs_en_phase(i, 0);
3270 #if IO_DLL_CHAIN_LENGTH == 6
3271 			scc_mgr_set_dqdqs_output_phase(i, 6);
3272 #else
3273 			scc_mgr_set_dqdqs_output_phase(i, 7);
3274 #endif
3275 			/*
3276 			 * Case:33398
3277 			 *
3278 			 * Write data arrives to the I/O two cycles before write
3279 			 * latency is reached (720 deg).
3280 			 *   -> due to bit-slip in a/c bus
3281 			 *   -> to allow board skew where dqs is longer than ck
3282 			 *      -> how often can this happen!?
3283 			 *      -> can claim back some ptaps for high freq
3284 			 *       support if we can relax this, but i digress...
3285 			 *
3286 			 * The write_clk leads mem_ck by 90 deg
3287 			 * The minimum ptap of the OPA is 180 deg
3288 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3289 			 * The write_clk is always delayed by 2 ptaps
3290 			 *
3291 			 * Hence, to make DQS aligned to CK, we need to delay
3292 			 * DQS by:
3293 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3294 			 *
3295 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3296 			 * gives us the number of ptaps, which simplies to:
3297 			 *
3298 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3299 			 */
3300 			scc_mgr_set_dqdqs_output_phase(i,
3301 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3302 		}
3303 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3304 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3305 
3306 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3307 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3308 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3309 		}
3310 		writel(0xff, &sdr_scc_mgr->dq_ena);
3311 		writel(0xff, &sdr_scc_mgr->dm_ena);
3312 		writel(0, &sdr_scc_mgr->update);
3313 	}
3314 
3315 	/* Compensate for simulation model behaviour */
3316 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3317 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3318 		scc_mgr_load_dqs(i);
3319 	}
3320 	writel(0, &sdr_scc_mgr->update);
3321 
3322 	/*
3323 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3324 	 * in sequencer.
3325 	 */
3326 	vfifo_offset = CALIB_VFIFO_OFFSET;
3327 	for (j = 0; j < vfifo_offset; j++)
3328 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3329 	writel(0, &phy_mgr_cmd->fifo_reset);
3330 
3331 	/*
3332 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3333 	 * setting from generation-time constant.
3334 	 */
3335 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3336 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3337 }
3338 
3339 /**
3340  * mem_calibrate() - Memory calibration entry point.
3341  *
3342  * Perform memory calibration.
3343  */
3344 static uint32_t mem_calibrate(void)
3345 {
3346 	uint32_t i;
3347 	uint32_t rank_bgn, sr;
3348 	uint32_t write_group, write_test_bgn;
3349 	uint32_t read_group, read_test_bgn;
3350 	uint32_t run_groups, current_run;
3351 	uint32_t failing_groups = 0;
3352 	uint32_t group_failed = 0;
3353 
3354 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3355 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3356 
3357 	debug("%s:%d\n", __func__, __LINE__);
3358 
3359 	/* Initialize the data settings */
3360 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3361 	gbl->error_stage = CAL_STAGE_NIL;
3362 	gbl->error_group = 0xff;
3363 	gbl->fom_in = 0;
3364 	gbl->fom_out = 0;
3365 
3366 	/* Initialize WLAT and RLAT. */
3367 	mem_init_latency();
3368 
3369 	/* Initialize bit slips. */
3370 	mem_precharge_and_activate();
3371 
3372 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3373 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3374 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3375 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3376 		if (i == 0)
3377 			scc_mgr_set_hhp_extras();
3378 
3379 		scc_set_bypass_mode(i);
3380 	}
3381 
3382 	/* Calibration is skipped. */
3383 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3384 		/*
3385 		 * Set VFIFO and LFIFO to instant-on settings in skip
3386 		 * calibration mode.
3387 		 */
3388 		mem_skip_calibrate();
3389 
3390 		/*
3391 		 * Do not remove this line as it makes sure all of our
3392 		 * decisions have been applied.
3393 		 */
3394 		writel(0, &sdr_scc_mgr->update);
3395 		return 1;
3396 	}
3397 
3398 	/* Calibration is not skipped. */
3399 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3400 		/*
3401 		 * Zero all delay chain/phase settings for all
3402 		 * groups and all shadow register sets.
3403 		 */
3404 		scc_mgr_zero_all();
3405 
3406 		run_groups = ~param->skip_groups;
3407 
3408 		for (write_group = 0, write_test_bgn = 0; write_group
3409 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3410 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3411 
3412 			/* Initialize the group failure */
3413 			group_failed = 0;
3414 
3415 			current_run = run_groups & ((1 <<
3416 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3417 			run_groups = run_groups >>
3418 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3419 
3420 			if (current_run == 0)
3421 				continue;
3422 
3423 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3424 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3425 			scc_mgr_zero_group(write_group, 0);
3426 
3427 			for (read_group = write_group * rwdqs_ratio,
3428 			     read_test_bgn = 0;
3429 			     read_group < (write_group + 1) * rwdqs_ratio;
3430 			     read_group++,
3431 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3432 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3433 					continue;
3434 
3435 				/* Calibrate the VFIFO */
3436 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3437 							       read_test_bgn))
3438 					continue;
3439 
3440 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3441 					return 0;
3442 
3443 				/* The group failed, we're done. */
3444 				goto grp_failed;
3445 			}
3446 
3447 			/* Calibrate the output side */
3448 			for (rank_bgn = 0, sr = 0;
3449 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3450 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3451 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3452 					continue;
3453 
3454 				/* Not needed in quick mode! */
3455 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3456 					continue;
3457 
3458 				/*
3459 				 * Determine if this set of ranks
3460 				 * should be skipped entirely.
3461 				 */
3462 				if (param->skip_shadow_regs[sr])
3463 					continue;
3464 
3465 				/* Calibrate WRITEs */
3466 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3467 						write_group, write_test_bgn))
3468 					continue;
3469 
3470 				group_failed = 1;
3471 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3472 					return 0;
3473 			}
3474 
3475 			/* Some group failed, we're done. */
3476 			if (group_failed)
3477 				goto grp_failed;
3478 
3479 			for (read_group = write_group * rwdqs_ratio,
3480 			     read_test_bgn = 0;
3481 			     read_group < (write_group + 1) * rwdqs_ratio;
3482 			     read_group++,
3483 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3484 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3485 					continue;
3486 
3487 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3488 								read_test_bgn))
3489 					continue;
3490 
3491 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3492 					return 0;
3493 
3494 				/* The group failed, we're done. */
3495 				goto grp_failed;
3496 			}
3497 
3498 			/* No group failed, continue as usual. */
3499 			continue;
3500 
3501 grp_failed:		/* A group failed, increment the counter. */
3502 			failing_groups++;
3503 		}
3504 
3505 		/*
3506 		 * USER If there are any failing groups then report
3507 		 * the failure.
3508 		 */
3509 		if (failing_groups != 0)
3510 			return 0;
3511 
3512 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3513 			continue;
3514 
3515 		/*
3516 		 * If we're skipping groups as part of debug,
3517 		 * don't calibrate LFIFO.
3518 		 */
3519 		if (param->skip_groups != 0)
3520 			continue;
3521 
3522 		/* Calibrate the LFIFO */
3523 		if (!rw_mgr_mem_calibrate_lfifo())
3524 			return 0;
3525 	}
3526 
3527 	/*
3528 	 * Do not remove this line as it makes sure all of our decisions
3529 	 * have been applied.
3530 	 */
3531 	writel(0, &sdr_scc_mgr->update);
3532 	return 1;
3533 }
3534 
3535 /**
3536  * run_mem_calibrate() - Perform memory calibration
3537  *
3538  * This function triggers the entire memory calibration procedure.
3539  */
3540 static int run_mem_calibrate(void)
3541 {
3542 	int pass;
3543 
3544 	debug("%s:%d\n", __func__, __LINE__);
3545 
3546 	/* Reset pass/fail status shown on afi_cal_success/fail */
3547 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3548 
3549 	/* Stop tracking manager. */
3550 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3551 
3552 	phy_mgr_initialize();
3553 	rw_mgr_mem_initialize();
3554 
3555 	/* Perform the actual memory calibration. */
3556 	pass = mem_calibrate();
3557 
3558 	mem_precharge_and_activate();
3559 	writel(0, &phy_mgr_cmd->fifo_reset);
3560 
3561 	/* Handoff. */
3562 	rw_mgr_mem_handoff();
3563 	/*
3564 	 * In Hard PHY this is a 2-bit control:
3565 	 * 0: AFI Mux Select
3566 	 * 1: DDIO Mux Select
3567 	 */
3568 	writel(0x2, &phy_mgr_cfg->mux_sel);
3569 
3570 	/* Start tracking manager. */
3571 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3572 
3573 	return pass;
3574 }
3575 
3576 /**
3577  * debug_mem_calibrate() - Report result of memory calibration
3578  * @pass:	Value indicating whether calibration passed or failed
3579  *
3580  * This function reports the results of the memory calibration
3581  * and writes debug information into the register file.
3582  */
3583 static void debug_mem_calibrate(int pass)
3584 {
3585 	uint32_t debug_info;
3586 
3587 	if (pass) {
3588 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3589 
3590 		gbl->fom_in /= 2;
3591 		gbl->fom_out /= 2;
3592 
3593 		if (gbl->fom_in > 0xff)
3594 			gbl->fom_in = 0xff;
3595 
3596 		if (gbl->fom_out > 0xff)
3597 			gbl->fom_out = 0xff;
3598 
3599 		/* Update the FOM in the register file */
3600 		debug_info = gbl->fom_in;
3601 		debug_info |= gbl->fom_out << 8;
3602 		writel(debug_info, &sdr_reg_file->fom);
3603 
3604 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3605 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3606 	} else {
3607 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3608 
3609 		debug_info = gbl->error_stage;
3610 		debug_info |= gbl->error_substage << 8;
3611 		debug_info |= gbl->error_group << 16;
3612 
3613 		writel(debug_info, &sdr_reg_file->failing_stage);
3614 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3615 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3616 
3617 		/* Update the failing group/stage in the register file */
3618 		debug_info = gbl->error_stage;
3619 		debug_info |= gbl->error_substage << 8;
3620 		debug_info |= gbl->error_group << 16;
3621 		writel(debug_info, &sdr_reg_file->failing_stage);
3622 	}
3623 
3624 	printf("%s: Calibration complete\n", __FILE__);
3625 }
3626 
3627 /**
3628  * hc_initialize_rom_data() - Initialize ROM data
3629  *
3630  * Initialize ROM data.
3631  */
3632 static void hc_initialize_rom_data(void)
3633 {
3634 	u32 i, addr;
3635 
3636 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3637 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3638 		writel(inst_rom_init[i], addr + (i << 2));
3639 
3640 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3641 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3642 		writel(ac_rom_init[i], addr + (i << 2));
3643 }
3644 
3645 /**
3646  * initialize_reg_file() - Initialize SDR register file
3647  *
3648  * Initialize SDR register file.
3649  */
3650 static void initialize_reg_file(void)
3651 {
3652 	/* Initialize the register file with the correct data */
3653 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3654 	writel(0, &sdr_reg_file->debug_data_addr);
3655 	writel(0, &sdr_reg_file->cur_stage);
3656 	writel(0, &sdr_reg_file->fom);
3657 	writel(0, &sdr_reg_file->failing_stage);
3658 	writel(0, &sdr_reg_file->debug1);
3659 	writel(0, &sdr_reg_file->debug2);
3660 }
3661 
3662 /**
3663  * initialize_hps_phy() - Initialize HPS PHY
3664  *
3665  * Initialize HPS PHY.
3666  */
3667 static void initialize_hps_phy(void)
3668 {
3669 	uint32_t reg;
3670 	/*
3671 	 * Tracking also gets configured here because it's in the
3672 	 * same register.
3673 	 */
3674 	uint32_t trk_sample_count = 7500;
3675 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3676 	/*
3677 	 * Format is number of outer loops in the 16 MSB, sample
3678 	 * count in 16 LSB.
3679 	 */
3680 
3681 	reg = 0;
3682 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3683 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3684 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3685 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3686 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3687 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3688 	/*
3689 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3690 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3691 	 */
3692 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3693 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3694 		trk_sample_count);
3695 	writel(reg, &sdr_ctrl->phy_ctrl0);
3696 
3697 	reg = 0;
3698 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3699 		trk_sample_count >>
3700 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3701 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3702 		trk_long_idle_sample_count);
3703 	writel(reg, &sdr_ctrl->phy_ctrl1);
3704 
3705 	reg = 0;
3706 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3707 		trk_long_idle_sample_count >>
3708 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3709 	writel(reg, &sdr_ctrl->phy_ctrl2);
3710 }
3711 
3712 /**
3713  * initialize_tracking() - Initialize tracking
3714  *
3715  * Initialize the register file with usable initial data.
3716  */
3717 static void initialize_tracking(void)
3718 {
3719 	/*
3720 	 * Initialize the register file with the correct data.
3721 	 * Compute usable version of value in case we skip full
3722 	 * computation later.
3723 	 */
3724 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3725 	       &sdr_reg_file->dtaps_per_ptap);
3726 
3727 	/* trk_sample_count */
3728 	writel(7500, &sdr_reg_file->trk_sample_count);
3729 
3730 	/* longidle outer loop [15:0] */
3731 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3732 
3733 	/*
3734 	 * longidle sample count [31:24]
3735 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3736 	 * trcd, worst case [15:8]
3737 	 * vfifo wait [7:0]
3738 	 */
3739 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3740 	       &sdr_reg_file->delays);
3741 
3742 	/* mux delay */
3743 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3744 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3745 	       &sdr_reg_file->trk_rw_mgr_addr);
3746 
3747 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3748 	       &sdr_reg_file->trk_read_dqs_width);
3749 
3750 	/* trefi [7:0] */
3751 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3752 	       &sdr_reg_file->trk_rfsh);
3753 }
3754 
3755 int sdram_calibration_full(void)
3756 {
3757 	struct param_type my_param;
3758 	struct gbl_type my_gbl;
3759 	uint32_t pass;
3760 
3761 	memset(&my_param, 0, sizeof(my_param));
3762 	memset(&my_gbl, 0, sizeof(my_gbl));
3763 
3764 	param = &my_param;
3765 	gbl = &my_gbl;
3766 
3767 	/* Set the calibration enabled by default */
3768 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3769 	/*
3770 	 * Only sweep all groups (regardless of fail state) by default
3771 	 * Set enabled read test by default.
3772 	 */
3773 #if DISABLE_GUARANTEED_READ
3774 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3775 #endif
3776 	/* Initialize the register file */
3777 	initialize_reg_file();
3778 
3779 	/* Initialize any PHY CSR */
3780 	initialize_hps_phy();
3781 
3782 	scc_mgr_initialize();
3783 
3784 	initialize_tracking();
3785 
3786 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3787 
3788 	debug("%s:%d\n", __func__, __LINE__);
3789 	debug_cond(DLEVEL == 1,
3790 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3791 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3792 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3793 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3794 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3795 	debug_cond(DLEVEL == 1,
3796 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3797 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3798 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3799 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3800 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3801 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3802 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3803 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3804 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3805 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3806 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3807 		   IO_IO_OUT2_DELAY_MAX);
3808 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3809 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3810 
3811 	hc_initialize_rom_data();
3812 
3813 	/* update info for sims */
3814 	reg_file_set_stage(CAL_STAGE_NIL);
3815 	reg_file_set_group(0);
3816 
3817 	/*
3818 	 * Load global needed for those actions that require
3819 	 * some dynamic calibration support.
3820 	 */
3821 	dyn_calib_steps = STATIC_CALIB_STEPS;
3822 	/*
3823 	 * Load global to allow dynamic selection of delay loop settings
3824 	 * based on calibration mode.
3825 	 */
3826 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3827 		skip_delay_mask = 0xff;
3828 	else
3829 		skip_delay_mask = 0x0;
3830 
3831 	pass = run_mem_calibrate();
3832 	debug_mem_calibrate(pass);
3833 	return pass;
3834 }
3835