1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 /** 952 * rw_mgr_mem_initialize() - Initialize RW Manager 953 * 954 * Initialize RW Manager. 955 */ 956 static void rw_mgr_mem_initialize(void) 957 { 958 debug("%s:%d\n", __func__, __LINE__); 959 960 /* The reset / cke part of initialization is broadcasted to all ranks */ 961 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 962 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 963 964 /* 965 * Here's how you load register for a loop 966 * Counters are located @ 0x800 967 * Jump address are located @ 0xC00 968 * For both, registers 0 to 3 are selected using bits 3 and 2, like 969 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 970 * I know this ain't pretty, but Avalon bus throws away the 2 least 971 * significant bits 972 */ 973 974 /* Start with memory RESET activated */ 975 976 /* tINIT = 200us */ 977 978 /* 979 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 980 * If a and b are the number of iteration in 2 nested loops 981 * it takes the following number of cycles to complete the operation: 982 * number_of_cycles = ((2 + n) * a + 2) * b 983 * where n is the number of instruction in the inner loop 984 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 985 * b = 6A 986 */ 987 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 988 SEQ_TINIT_CNTR2_VAL, 989 RW_MGR_INIT_RESET_0_CKE_0); 990 991 /* Indicate that memory is stable. */ 992 writel(1, &phy_mgr_cfg->reset_mem_stbl); 993 994 /* 995 * transition the RESET to high 996 * Wait for 500us 997 */ 998 999 /* 1000 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1001 * If a and b are the number of iteration in 2 nested loops 1002 * it takes the following number of cycles to complete the operation 1003 * number_of_cycles = ((2 + n) * a + 2) * b 1004 * where n is the number of instruction in the inner loop 1005 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1006 * b = FF 1007 */ 1008 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1009 SEQ_TRESET_CNTR2_VAL, 1010 RW_MGR_INIT_RESET_1_CKE_0); 1011 1012 /* Bring up clock enable. */ 1013 1014 /* tXRP < 250 ck cycles */ 1015 delay_for_n_mem_clocks(250); 1016 1017 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1018 0); 1019 } 1020 1021 /* 1022 * At the end of calibration we have to program the user settings in, and 1023 * USER hand off the memory to the user. 1024 */ 1025 static void rw_mgr_mem_handoff(void) 1026 { 1027 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1028 /* 1029 * USER need to wait tMOD (12CK or 15ns) time before issuing 1030 * other commands, but we will have plenty of NIOS cycles before 1031 * actual handoff so its okay. 1032 */ 1033 } 1034 1035 /* 1036 * issue write test command. 1037 * two variants are provided. one that just tests a write pattern and 1038 * another that tests datamask functionality. 1039 */ 1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 1041 uint32_t test_dm) 1042 { 1043 uint32_t mcc_instruction; 1044 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 1045 ENABLE_SUPER_QUICK_CALIBRATION); 1046 uint32_t rw_wl_nop_cycles; 1047 uint32_t addr; 1048 1049 /* 1050 * Set counter and jump addresses for the right 1051 * number of NOP cycles. 1052 * The number of supported NOP cycles can range from -1 to infinity 1053 * Three different cases are handled: 1054 * 1055 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1056 * mechanism will be used to insert the right number of NOPs 1057 * 1058 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1059 * issuing the write command will jump straight to the 1060 * micro-instruction that turns on DQS (for DDRx), or outputs write 1061 * data (for RLD), skipping 1062 * the NOP micro-instruction all together 1063 * 1064 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1065 * turned on in the same micro-instruction that issues the write 1066 * command. Then we need 1067 * to directly jump to the micro-instruction that sends out the data 1068 * 1069 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1070 * (2 and 3). One jump-counter (0) is used to perform multiple 1071 * write-read operations. 1072 * one counter left to issue this command in "multiple-group" mode 1073 */ 1074 1075 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1076 1077 if (rw_wl_nop_cycles == -1) { 1078 /* 1079 * CNTR 2 - We want to execute the special write operation that 1080 * turns on DQS right away and then skip directly to the 1081 * instruction that sends out the data. We set the counter to a 1082 * large number so that the jump is always taken. 1083 */ 1084 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1085 1086 /* CNTR 3 - Not used */ 1087 if (test_dm) { 1088 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1089 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1091 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1092 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1093 } else { 1094 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1095 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1097 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1098 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1099 } 1100 } else if (rw_wl_nop_cycles == 0) { 1101 /* 1102 * CNTR 2 - We want to skip the NOP operation and go straight 1103 * to the DQS enable instruction. We set the counter to a large 1104 * number so that the jump is always taken. 1105 */ 1106 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1107 1108 /* CNTR 3 - Not used */ 1109 if (test_dm) { 1110 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1111 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1112 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1113 } else { 1114 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1115 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1116 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1117 } 1118 } else { 1119 /* 1120 * CNTR 2 - In this case we want to execute the next instruction 1121 * and NOT take the jump. So we set the counter to 0. The jump 1122 * address doesn't count. 1123 */ 1124 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1125 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1126 1127 /* 1128 * CNTR 3 - Set the nop counter to the number of cycles we 1129 * need to loop for, minus 1. 1130 */ 1131 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1132 if (test_dm) { 1133 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1134 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1135 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1136 } else { 1137 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1138 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1140 } 1141 } 1142 1143 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1144 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1145 1146 if (quick_write_mode) 1147 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1148 else 1149 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1150 1151 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1152 1153 /* 1154 * CNTR 1 - This is used to ensure enough time elapses 1155 * for read data to come back. 1156 */ 1157 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1158 1159 if (test_dm) { 1160 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1161 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1162 } else { 1163 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1165 } 1166 1167 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1168 writel(mcc_instruction, addr + (group << 2)); 1169 } 1170 1171 /* Test writes, can check for a single bit pass or multiple bit pass */ 1172 static int 1173 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1174 const u32 use_dm, const u32 all_correct, 1175 u32 *bit_chk, const u32 all_ranks) 1176 { 1177 const u32 rank_end = all_ranks ? 1178 RW_MGR_MEM_NUMBER_OF_RANKS : 1179 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1180 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1181 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1182 const u32 correct_mask_vg = param->write_correct_mask_vg; 1183 1184 u32 tmp_bit_chk, base_rw_mgr; 1185 int vg, r; 1186 1187 *bit_chk = param->write_correct_mask; 1188 1189 for (r = rank_bgn; r < rank_end; r++) { 1190 /* Request to skip the rank */ 1191 if (param->skip_ranks[r]) 1192 continue; 1193 1194 /* Set rank */ 1195 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1196 1197 tmp_bit_chk = 0; 1198 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1199 vg >= 0; vg--) { 1200 /* Reset the FIFOs to get pointers to known state. */ 1201 writel(0, &phy_mgr_cmd->fifo_reset); 1202 1203 rw_mgr_mem_calibrate_write_test_issue( 1204 write_group * 1205 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1206 use_dm); 1207 1208 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1209 tmp_bit_chk <<= shift_ratio; 1210 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1211 } 1212 1213 *bit_chk &= tmp_bit_chk; 1214 } 1215 1216 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1217 if (all_correct) { 1218 debug_cond(DLEVEL == 2, 1219 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1220 write_group, use_dm, *bit_chk, 1221 param->write_correct_mask, 1222 *bit_chk == param->write_correct_mask); 1223 return *bit_chk == param->write_correct_mask; 1224 } else { 1225 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1226 debug_cond(DLEVEL == 2, 1227 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1228 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1229 return *bit_chk != 0x00; 1230 } 1231 } 1232 1233 /** 1234 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1235 * @rank_bgn: Rank number 1236 * @group: Read/Write Group 1237 * @all_ranks: Test all ranks 1238 * 1239 * Performs a guaranteed read on the patterns we are going to use during a 1240 * read test to ensure memory works. 1241 */ 1242 static int 1243 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1244 const u32 all_ranks) 1245 { 1246 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1247 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1248 const u32 addr_offset = 1249 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1250 const u32 rank_end = all_ranks ? 1251 RW_MGR_MEM_NUMBER_OF_RANKS : 1252 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1253 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1254 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1255 const u32 correct_mask_vg = param->read_correct_mask_vg; 1256 1257 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1258 int vg, r; 1259 int ret = 0; 1260 1261 bit_chk = param->read_correct_mask; 1262 1263 for (r = rank_bgn; r < rank_end; r++) { 1264 /* Request to skip the rank */ 1265 if (param->skip_ranks[r]) 1266 continue; 1267 1268 /* Set rank */ 1269 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1270 1271 /* Load up a constant bursts of read commands */ 1272 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1273 writel(RW_MGR_GUARANTEED_READ, 1274 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1275 1276 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1277 writel(RW_MGR_GUARANTEED_READ_CONT, 1278 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1279 1280 tmp_bit_chk = 0; 1281 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1282 vg >= 0; vg--) { 1283 /* Reset the FIFOs to get pointers to known state. */ 1284 writel(0, &phy_mgr_cmd->fifo_reset); 1285 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1286 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1287 writel(RW_MGR_GUARANTEED_READ, 1288 addr + addr_offset + (vg << 2)); 1289 1290 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1291 tmp_bit_chk <<= shift_ratio; 1292 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1293 } 1294 1295 bit_chk &= tmp_bit_chk; 1296 } 1297 1298 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1299 1300 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1301 1302 if (bit_chk != param->read_correct_mask) 1303 ret = -EIO; 1304 1305 debug_cond(DLEVEL == 1, 1306 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1307 __func__, __LINE__, group, bit_chk, 1308 param->read_correct_mask, ret); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1315 * @rank_bgn: Rank number 1316 * @all_ranks: Test all ranks 1317 * 1318 * Load up the patterns we are going to use during a read test. 1319 */ 1320 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1321 const int all_ranks) 1322 { 1323 const u32 rank_end = all_ranks ? 1324 RW_MGR_MEM_NUMBER_OF_RANKS : 1325 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1326 u32 r; 1327 1328 debug("%s:%d\n", __func__, __LINE__); 1329 1330 for (r = rank_bgn; r < rank_end; r++) { 1331 if (param->skip_ranks[r]) 1332 /* request to skip the rank */ 1333 continue; 1334 1335 /* set rank */ 1336 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1337 1338 /* Load up a constant bursts */ 1339 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1340 1341 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1342 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1343 1344 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1345 1346 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1347 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1348 1349 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1350 1351 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1352 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1353 1354 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1355 1356 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1357 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1358 1359 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1360 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1361 } 1362 1363 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1364 } 1365 1366 /** 1367 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1368 * @rank_bgn: Rank number 1369 * @group: Read/Write group 1370 * @num_tries: Number of retries of the test 1371 * @all_correct: All bits must be correct in the mask 1372 * @bit_chk: Resulting bit mask after the test 1373 * @all_groups: Test all R/W groups 1374 * @all_ranks: Test all ranks 1375 * 1376 * Try a read and see if it returns correct data back. Test has dummy reads 1377 * inserted into the mix used to align DQS enable. Test has more thorough 1378 * checks than the regular read test. 1379 */ 1380 static int 1381 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1382 const u32 num_tries, const u32 all_correct, 1383 u32 *bit_chk, 1384 const u32 all_groups, const u32 all_ranks) 1385 { 1386 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1387 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1388 const u32 quick_read_mode = 1389 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1390 ENABLE_SUPER_QUICK_CALIBRATION); 1391 u32 correct_mask_vg = param->read_correct_mask_vg; 1392 u32 tmp_bit_chk; 1393 u32 base_rw_mgr; 1394 u32 addr; 1395 1396 int r, vg, ret; 1397 1398 *bit_chk = param->read_correct_mask; 1399 1400 for (r = rank_bgn; r < rank_end; r++) { 1401 if (param->skip_ranks[r]) 1402 /* request to skip the rank */ 1403 continue; 1404 1405 /* set rank */ 1406 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1407 1408 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1409 1410 writel(RW_MGR_READ_B2B_WAIT1, 1411 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1412 1413 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1414 writel(RW_MGR_READ_B2B_WAIT2, 1415 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1416 1417 if (quick_read_mode) 1418 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1419 /* need at least two (1+1) reads to capture failures */ 1420 else if (all_groups) 1421 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1422 else 1423 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1424 1425 writel(RW_MGR_READ_B2B, 1426 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1427 if (all_groups) 1428 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1429 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1430 &sdr_rw_load_mgr_regs->load_cntr3); 1431 else 1432 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1433 1434 writel(RW_MGR_READ_B2B, 1435 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1436 1437 tmp_bit_chk = 0; 1438 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1439 vg--) { 1440 /* Reset the FIFOs to get pointers to known state. */ 1441 writel(0, &phy_mgr_cmd->fifo_reset); 1442 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1443 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1444 1445 if (all_groups) { 1446 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1447 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1448 } else { 1449 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1450 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1451 } 1452 1453 writel(RW_MGR_READ_B2B, addr + 1454 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1455 vg) << 2)); 1456 1457 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1458 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1459 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1460 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1461 } 1462 1463 *bit_chk &= tmp_bit_chk; 1464 } 1465 1466 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1467 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1468 1469 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1470 1471 if (all_correct) { 1472 ret = (*bit_chk == param->read_correct_mask); 1473 debug_cond(DLEVEL == 2, 1474 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1475 __func__, __LINE__, group, all_groups, *bit_chk, 1476 param->read_correct_mask, ret); 1477 } else { 1478 ret = (*bit_chk != 0x00); 1479 debug_cond(DLEVEL == 2, 1480 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1481 __func__, __LINE__, group, all_groups, *bit_chk, 1482 0, ret); 1483 } 1484 1485 return ret; 1486 } 1487 1488 /** 1489 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1490 * @grp: Read/Write group 1491 * @num_tries: Number of retries of the test 1492 * @all_correct: All bits must be correct in the mask 1493 * @all_groups: Test all R/W groups 1494 * 1495 * Perform a READ test across all memory ranks. 1496 */ 1497 static int 1498 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1499 const u32 all_correct, 1500 const u32 all_groups) 1501 { 1502 u32 bit_chk; 1503 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1504 &bit_chk, all_groups, 1); 1505 } 1506 1507 /** 1508 * rw_mgr_incr_vfifo() - Increase VFIFO value 1509 * @grp: Read/Write group 1510 * 1511 * Increase VFIFO value. 1512 */ 1513 static void rw_mgr_incr_vfifo(const u32 grp) 1514 { 1515 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1516 } 1517 1518 /** 1519 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1520 * @grp: Read/Write group 1521 * 1522 * Decrease VFIFO value. 1523 */ 1524 static void rw_mgr_decr_vfifo(const u32 grp) 1525 { 1526 u32 i; 1527 1528 for (i = 0; i < VFIFO_SIZE - 1; i++) 1529 rw_mgr_incr_vfifo(grp); 1530 } 1531 1532 /** 1533 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1534 * @grp: Read/Write group 1535 * 1536 * Push VFIFO until a failing read happens. 1537 */ 1538 static int find_vfifo_failing_read(const u32 grp) 1539 { 1540 u32 v, ret, fail_cnt = 0; 1541 1542 for (v = 0; v < VFIFO_SIZE; v++) { 1543 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1544 __func__, __LINE__, v); 1545 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1546 PASS_ONE_BIT, 0); 1547 if (!ret) { 1548 fail_cnt++; 1549 1550 if (fail_cnt == 2) 1551 return v; 1552 } 1553 1554 /* Fiddle with FIFO. */ 1555 rw_mgr_incr_vfifo(grp); 1556 } 1557 1558 /* No failing read found! Something must have gone wrong. */ 1559 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1560 return 0; 1561 } 1562 1563 /** 1564 * sdr_find_phase_delay() - Find DQS enable phase or delay 1565 * @working: If 1, look for working phase/delay, if 0, look for non-working 1566 * @delay: If 1, look for delay, if 0, look for phase 1567 * @grp: Read/Write group 1568 * @work: Working window position 1569 * @work_inc: Working window increment 1570 * @pd: DQS Phase/Delay Iterator 1571 * 1572 * Find working or non-working DQS enable phase setting. 1573 */ 1574 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1575 u32 *work, const u32 work_inc, u32 *pd) 1576 { 1577 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1578 u32 ret; 1579 1580 for (; *pd <= max; (*pd)++) { 1581 if (delay) 1582 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1583 else 1584 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1585 1586 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1587 PASS_ONE_BIT, 0); 1588 if (!working) 1589 ret = !ret; 1590 1591 if (ret) 1592 return 0; 1593 1594 if (work) 1595 *work += work_inc; 1596 } 1597 1598 return -EINVAL; 1599 } 1600 /** 1601 * sdr_find_phase() - Find DQS enable phase 1602 * @working: If 1, look for working phase, if 0, look for non-working phase 1603 * @grp: Read/Write group 1604 * @work: Working window position 1605 * @i: Iterator 1606 * @p: DQS Phase Iterator 1607 * 1608 * Find working or non-working DQS enable phase setting. 1609 */ 1610 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1611 u32 *i, u32 *p) 1612 { 1613 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1614 int ret; 1615 1616 for (; *i < end; (*i)++) { 1617 if (working) 1618 *p = 0; 1619 1620 ret = sdr_find_phase_delay(working, 0, grp, work, 1621 IO_DELAY_PER_OPA_TAP, p); 1622 if (!ret) 1623 return 0; 1624 1625 if (*p > IO_DQS_EN_PHASE_MAX) { 1626 /* Fiddle with FIFO. */ 1627 rw_mgr_incr_vfifo(grp); 1628 if (!working) 1629 *p = 0; 1630 } 1631 } 1632 1633 return -EINVAL; 1634 } 1635 1636 /** 1637 * sdr_working_phase() - Find working DQS enable phase 1638 * @grp: Read/Write group 1639 * @work_bgn: Working window start position 1640 * @d: dtaps output value 1641 * @p: DQS Phase Iterator 1642 * @i: Iterator 1643 * 1644 * Find working DQS enable phase setting. 1645 */ 1646 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1647 u32 *p, u32 *i) 1648 { 1649 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1650 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1651 int ret; 1652 1653 *work_bgn = 0; 1654 1655 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1656 *i = 0; 1657 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1658 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1659 if (!ret) 1660 return 0; 1661 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1662 } 1663 1664 /* Cannot find working solution */ 1665 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1666 __func__, __LINE__); 1667 return -EINVAL; 1668 } 1669 1670 /** 1671 * sdr_backup_phase() - Find DQS enable backup phase 1672 * @grp: Read/Write group 1673 * @work_bgn: Working window start position 1674 * @p: DQS Phase Iterator 1675 * 1676 * Find DQS enable backup phase setting. 1677 */ 1678 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1679 { 1680 u32 tmp_delay, d; 1681 int ret; 1682 1683 /* Special case code for backing up a phase */ 1684 if (*p == 0) { 1685 *p = IO_DQS_EN_PHASE_MAX; 1686 rw_mgr_decr_vfifo(grp); 1687 } else { 1688 (*p)--; 1689 } 1690 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1691 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1692 1693 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1694 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1695 1696 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1697 PASS_ONE_BIT, 0); 1698 if (ret) { 1699 *work_bgn = tmp_delay; 1700 break; 1701 } 1702 1703 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1704 } 1705 1706 /* Restore VFIFO to old state before we decremented it (if needed). */ 1707 (*p)++; 1708 if (*p > IO_DQS_EN_PHASE_MAX) { 1709 *p = 0; 1710 rw_mgr_incr_vfifo(grp); 1711 } 1712 1713 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1714 } 1715 1716 /** 1717 * sdr_nonworking_phase() - Find non-working DQS enable phase 1718 * @grp: Read/Write group 1719 * @work_end: Working window end position 1720 * @p: DQS Phase Iterator 1721 * @i: Iterator 1722 * 1723 * Find non-working DQS enable phase setting. 1724 */ 1725 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1726 { 1727 int ret; 1728 1729 (*p)++; 1730 *work_end += IO_DELAY_PER_OPA_TAP; 1731 if (*p > IO_DQS_EN_PHASE_MAX) { 1732 /* Fiddle with FIFO. */ 1733 *p = 0; 1734 rw_mgr_incr_vfifo(grp); 1735 } 1736 1737 ret = sdr_find_phase(0, grp, work_end, i, p); 1738 if (ret) { 1739 /* Cannot see edge of failing read. */ 1740 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1741 __func__, __LINE__); 1742 } 1743 1744 return ret; 1745 } 1746 1747 /** 1748 * sdr_find_window_center() - Find center of the working DQS window. 1749 * @grp: Read/Write group 1750 * @work_bgn: First working settings 1751 * @work_end: Last working settings 1752 * 1753 * Find center of the working DQS enable window. 1754 */ 1755 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1756 const u32 work_end) 1757 { 1758 u32 work_mid; 1759 int tmp_delay = 0; 1760 int i, p, d; 1761 1762 work_mid = (work_bgn + work_end) / 2; 1763 1764 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1765 work_bgn, work_end, work_mid); 1766 /* Get the middle delay to be less than a VFIFO delay */ 1767 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1768 1769 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1770 work_mid %= tmp_delay; 1771 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1772 1773 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1774 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1775 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1776 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1777 1778 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1779 1780 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1781 if (d > IO_DQS_EN_DELAY_MAX) 1782 d = IO_DQS_EN_DELAY_MAX; 1783 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1784 1785 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1786 1787 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1788 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1789 1790 /* 1791 * push vfifo until we can successfully calibrate. We can do this 1792 * because the largest possible margin in 1 VFIFO cycle. 1793 */ 1794 for (i = 0; i < VFIFO_SIZE; i++) { 1795 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1796 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1797 PASS_ONE_BIT, 1798 0)) { 1799 debug_cond(DLEVEL == 2, 1800 "%s:%d center: found: ptap=%u dtap=%u\n", 1801 __func__, __LINE__, p, d); 1802 return 0; 1803 } 1804 1805 /* Fiddle with FIFO. */ 1806 rw_mgr_incr_vfifo(grp); 1807 } 1808 1809 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1810 __func__, __LINE__); 1811 return -EINVAL; 1812 } 1813 1814 /** 1815 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1816 * @grp: Read/Write Group 1817 * 1818 * Find a good DQS enable to use. 1819 */ 1820 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1821 { 1822 u32 d, p, i; 1823 u32 dtaps_per_ptap; 1824 u32 work_bgn, work_end; 1825 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1826 int ret; 1827 1828 debug("%s:%d %u\n", __func__, __LINE__, grp); 1829 1830 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1831 1832 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1833 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1834 1835 /* Step 0: Determine number of delay taps for each phase tap. */ 1836 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1837 1838 /* Step 1: First push vfifo until we get a failing read. */ 1839 find_vfifo_failing_read(grp); 1840 1841 /* Step 2: Find first working phase, increment in ptaps. */ 1842 work_bgn = 0; 1843 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1844 if (ret) 1845 return ret; 1846 1847 work_end = work_bgn; 1848 1849 /* 1850 * If d is 0 then the working window covers a phase tap and we can 1851 * follow the old procedure. Otherwise, we've found the beginning 1852 * and we need to increment the dtaps until we find the end. 1853 */ 1854 if (d == 0) { 1855 /* 1856 * Step 3a: If we have room, back off by one and 1857 * increment in dtaps. 1858 */ 1859 sdr_backup_phase(grp, &work_bgn, &p); 1860 1861 /* 1862 * Step 4a: go forward from working phase to non working 1863 * phase, increment in ptaps. 1864 */ 1865 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1866 if (ret) 1867 return ret; 1868 1869 /* Step 5a: Back off one from last, increment in dtaps. */ 1870 1871 /* Special case code for backing up a phase */ 1872 if (p == 0) { 1873 p = IO_DQS_EN_PHASE_MAX; 1874 rw_mgr_decr_vfifo(grp); 1875 } else { 1876 p = p - 1; 1877 } 1878 1879 work_end -= IO_DELAY_PER_OPA_TAP; 1880 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1881 1882 d = 0; 1883 1884 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1885 __func__, __LINE__, p); 1886 } 1887 1888 /* The dtap increment to find the failing edge is done here. */ 1889 sdr_find_phase_delay(0, 1, grp, &work_end, 1890 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1891 1892 /* Go back to working dtap */ 1893 if (d != 0) 1894 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1895 1896 debug_cond(DLEVEL == 2, 1897 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1898 __func__, __LINE__, p, d - 1, work_end); 1899 1900 if (work_end < work_bgn) { 1901 /* nil range */ 1902 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1903 __func__, __LINE__); 1904 return -EINVAL; 1905 } 1906 1907 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1908 __func__, __LINE__, work_bgn, work_end); 1909 1910 /* 1911 * We need to calculate the number of dtaps that equal a ptap. 1912 * To do that we'll back up a ptap and re-find the edge of the 1913 * window using dtaps 1914 */ 1915 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1916 __func__, __LINE__); 1917 1918 /* Special case code for backing up a phase */ 1919 if (p == 0) { 1920 p = IO_DQS_EN_PHASE_MAX; 1921 rw_mgr_decr_vfifo(grp); 1922 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1923 __func__, __LINE__, p); 1924 } else { 1925 p = p - 1; 1926 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1927 __func__, __LINE__, p); 1928 } 1929 1930 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1931 1932 /* 1933 * Increase dtap until we first see a passing read (in case the 1934 * window is smaller than a ptap), and then a failing read to 1935 * mark the edge of the window again. 1936 */ 1937 1938 /* Find a passing read. */ 1939 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1940 __func__, __LINE__); 1941 1942 initial_failing_dtap = d; 1943 1944 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1945 if (found_passing_read) { 1946 /* Find a failing read. */ 1947 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1948 __func__, __LINE__); 1949 d++; 1950 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1951 &d); 1952 } else { 1953 debug_cond(DLEVEL == 1, 1954 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1955 __func__, __LINE__); 1956 } 1957 1958 /* 1959 * The dynamically calculated dtaps_per_ptap is only valid if we 1960 * found a passing/failing read. If we didn't, it means d hit the max 1961 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1962 * statically calculated value. 1963 */ 1964 if (found_passing_read && found_failing_read) 1965 dtaps_per_ptap = d - initial_failing_dtap; 1966 1967 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1968 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1969 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1970 1971 /* Step 6: Find the centre of the window. */ 1972 ret = sdr_find_window_center(grp, work_bgn, work_end); 1973 1974 return ret; 1975 } 1976 1977 /** 1978 * search_stop_check() - Check if the detected edge is valid 1979 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1980 * @d: DQS delay 1981 * @rank_bgn: Rank number 1982 * @write_group: Write Group 1983 * @read_group: Read Group 1984 * @bit_chk: Resulting bit mask after the test 1985 * @sticky_bit_chk: Resulting sticky bit mask after the test 1986 * @use_read_test: Perform read test 1987 * 1988 * Test if the found edge is valid. 1989 */ 1990 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1991 const u32 write_group, const u32 read_group, 1992 u32 *bit_chk, u32 *sticky_bit_chk, 1993 const u32 use_read_test) 1994 { 1995 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 1996 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 1997 const u32 correct_mask = write ? param->write_correct_mask : 1998 param->read_correct_mask; 1999 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2000 RW_MGR_MEM_DQ_PER_READ_DQS; 2001 u32 ret; 2002 /* 2003 * Stop searching when the read test doesn't pass AND when 2004 * we've seen a passing read on every bit. 2005 */ 2006 if (write) { /* WRITE-ONLY */ 2007 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2008 0, PASS_ONE_BIT, 2009 bit_chk, 0); 2010 } else if (use_read_test) { /* READ-ONLY */ 2011 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2012 NUM_READ_PB_TESTS, 2013 PASS_ONE_BIT, bit_chk, 2014 0, 0); 2015 } else { /* READ-ONLY */ 2016 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2017 PASS_ONE_BIT, bit_chk, 0); 2018 *bit_chk = *bit_chk >> (per_dqs * 2019 (read_group - (write_group * ratio))); 2020 ret = (*bit_chk == 0); 2021 } 2022 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2023 ret = ret && (*sticky_bit_chk == correct_mask); 2024 debug_cond(DLEVEL == 2, 2025 "%s:%d center(left): dtap=%u => %u == %u && %u", 2026 __func__, __LINE__, d, 2027 *sticky_bit_chk, correct_mask, ret); 2028 return ret; 2029 } 2030 2031 /** 2032 * search_left_edge() - Find left edge of DQ/DQS working phase 2033 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2034 * @rank_bgn: Rank number 2035 * @write_group: Write Group 2036 * @read_group: Read Group 2037 * @test_bgn: Rank number to begin the test 2038 * @sticky_bit_chk: Resulting sticky bit mask after the test 2039 * @left_edge: Left edge of the DQ/DQS phase 2040 * @right_edge: Right edge of the DQ/DQS phase 2041 * @use_read_test: Perform read test 2042 * 2043 * Find left edge of DQ/DQS working phase. 2044 */ 2045 static void search_left_edge(const int write, const int rank_bgn, 2046 const u32 write_group, const u32 read_group, const u32 test_bgn, 2047 u32 *sticky_bit_chk, 2048 int *left_edge, int *right_edge, const u32 use_read_test) 2049 { 2050 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2051 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2052 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2053 RW_MGR_MEM_DQ_PER_READ_DQS; 2054 u32 stop, bit_chk; 2055 int i, d; 2056 2057 for (d = 0; d <= dqs_max; d++) { 2058 if (write) 2059 scc_mgr_apply_group_dq_out1_delay(d); 2060 else 2061 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2062 2063 writel(0, &sdr_scc_mgr->update); 2064 2065 stop = search_stop_check(write, d, rank_bgn, write_group, 2066 read_group, &bit_chk, sticky_bit_chk, 2067 use_read_test); 2068 if (stop == 1) 2069 break; 2070 2071 /* stop != 1 */ 2072 for (i = 0; i < per_dqs; i++) { 2073 if (bit_chk & 1) { 2074 /* 2075 * Remember a passing test as 2076 * the left_edge. 2077 */ 2078 left_edge[i] = d; 2079 } else { 2080 /* 2081 * If a left edge has not been seen 2082 * yet, then a future passing test 2083 * will mark this edge as the right 2084 * edge. 2085 */ 2086 if (left_edge[i] == delay_max + 1) 2087 right_edge[i] = -(d + 1); 2088 } 2089 bit_chk >>= 1; 2090 } 2091 } 2092 2093 /* Reset DQ delay chains to 0 */ 2094 if (write) 2095 scc_mgr_apply_group_dq_out1_delay(0); 2096 else 2097 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2098 2099 *sticky_bit_chk = 0; 2100 for (i = per_dqs - 1; i >= 0; i--) { 2101 debug_cond(DLEVEL == 2, 2102 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2103 __func__, __LINE__, i, left_edge[i], 2104 i, right_edge[i]); 2105 2106 /* 2107 * Check for cases where we haven't found the left edge, 2108 * which makes our assignment of the the right edge invalid. 2109 * Reset it to the illegal value. 2110 */ 2111 if ((left_edge[i] == delay_max + 1) && 2112 (right_edge[i] != delay_max + 1)) { 2113 right_edge[i] = delay_max + 1; 2114 debug_cond(DLEVEL == 2, 2115 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2116 __func__, __LINE__, i, right_edge[i]); 2117 } 2118 2119 /* 2120 * Reset sticky bit 2121 * READ: except for bits where we have seen both 2122 * the left and right edge. 2123 * WRITE: except for bits where we have seen the 2124 * left edge. 2125 */ 2126 *sticky_bit_chk <<= 1; 2127 if (write) { 2128 if (left_edge[i] != delay_max + 1) 2129 *sticky_bit_chk |= 1; 2130 } else { 2131 if ((left_edge[i] != delay_max + 1) && 2132 (right_edge[i] != delay_max + 1)) 2133 *sticky_bit_chk |= 1; 2134 } 2135 } 2136 2137 2138 } 2139 2140 /** 2141 * search_right_edge() - Find right edge of DQ/DQS working phase 2142 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2143 * @rank_bgn: Rank number 2144 * @write_group: Write Group 2145 * @read_group: Read Group 2146 * @start_dqs: DQS start phase 2147 * @start_dqs_en: DQS enable start phase 2148 * @sticky_bit_chk: Resulting sticky bit mask after the test 2149 * @left_edge: Left edge of the DQ/DQS phase 2150 * @right_edge: Right edge of the DQ/DQS phase 2151 * @use_read_test: Perform read test 2152 * 2153 * Find right edge of DQ/DQS working phase. 2154 */ 2155 static int search_right_edge(const int write, const int rank_bgn, 2156 const u32 write_group, const u32 read_group, 2157 const int start_dqs, const int start_dqs_en, 2158 u32 *sticky_bit_chk, 2159 int *left_edge, int *right_edge, const u32 use_read_test) 2160 { 2161 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2162 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2163 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2164 RW_MGR_MEM_DQ_PER_READ_DQS; 2165 u32 stop, bit_chk; 2166 int i, d; 2167 2168 for (d = 0; d <= dqs_max - start_dqs; d++) { 2169 if (write) { /* WRITE-ONLY */ 2170 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2171 d + start_dqs); 2172 } else { /* READ-ONLY */ 2173 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2174 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2175 uint32_t delay = d + start_dqs_en; 2176 if (delay > IO_DQS_EN_DELAY_MAX) 2177 delay = IO_DQS_EN_DELAY_MAX; 2178 scc_mgr_set_dqs_en_delay(read_group, delay); 2179 } 2180 scc_mgr_load_dqs(read_group); 2181 } 2182 2183 writel(0, &sdr_scc_mgr->update); 2184 2185 stop = search_stop_check(write, d, rank_bgn, write_group, 2186 read_group, &bit_chk, sticky_bit_chk, 2187 use_read_test); 2188 if (stop == 1) { 2189 if (write && (d == 0)) { /* WRITE-ONLY */ 2190 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2191 /* 2192 * d = 0 failed, but it passed when 2193 * testing the left edge, so it must be 2194 * marginal, set it to -1 2195 */ 2196 if (right_edge[i] == delay_max + 1 && 2197 left_edge[i] != delay_max + 1) 2198 right_edge[i] = -1; 2199 } 2200 } 2201 break; 2202 } 2203 2204 /* stop != 1 */ 2205 for (i = 0; i < per_dqs; i++) { 2206 if (bit_chk & 1) { 2207 /* 2208 * Remember a passing test as 2209 * the right_edge. 2210 */ 2211 right_edge[i] = d; 2212 } else { 2213 if (d != 0) { 2214 /* 2215 * If a right edge has not 2216 * been seen yet, then a future 2217 * passing test will mark this 2218 * edge as the left edge. 2219 */ 2220 if (right_edge[i] == delay_max + 1) 2221 left_edge[i] = -(d + 1); 2222 } else { 2223 /* 2224 * d = 0 failed, but it passed 2225 * when testing the left edge, 2226 * so it must be marginal, set 2227 * it to -1 2228 */ 2229 if (right_edge[i] == delay_max + 1 && 2230 left_edge[i] != delay_max + 1) 2231 right_edge[i] = -1; 2232 /* 2233 * If a right edge has not been 2234 * seen yet, then a future 2235 * passing test will mark this 2236 * edge as the left edge. 2237 */ 2238 else if (right_edge[i] == delay_max + 1) 2239 left_edge[i] = -(d + 1); 2240 } 2241 } 2242 2243 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2244 __func__, __LINE__, d); 2245 debug_cond(DLEVEL == 2, 2246 "bit_chk_test=%i left_edge[%u]: %d ", 2247 bit_chk & 1, i, left_edge[i]); 2248 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2249 right_edge[i]); 2250 bit_chk >>= 1; 2251 } 2252 } 2253 2254 /* Check that all bits have a window */ 2255 for (i = 0; i < per_dqs; i++) { 2256 debug_cond(DLEVEL == 2, 2257 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2258 __func__, __LINE__, i, left_edge[i], 2259 i, right_edge[i]); 2260 if ((left_edge[i] == dqs_max + 1) || 2261 (right_edge[i] == dqs_max + 1)) 2262 return i + 1; /* FIXME: If we fail, retval > 0 */ 2263 } 2264 2265 return 0; 2266 } 2267 2268 /** 2269 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2270 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2271 * @left_edge: Left edge of the DQ/DQS phase 2272 * @right_edge: Right edge of the DQ/DQS phase 2273 * @mid_min: Best DQ/DQS phase middle setting 2274 * 2275 * Find index and value of the middle of the DQ/DQS working phase. 2276 */ 2277 static int get_window_mid_index(const int write, int *left_edge, 2278 int *right_edge, int *mid_min) 2279 { 2280 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2281 RW_MGR_MEM_DQ_PER_READ_DQS; 2282 int i, mid, min_index; 2283 2284 /* Find middle of window for each DQ bit */ 2285 *mid_min = left_edge[0] - right_edge[0]; 2286 min_index = 0; 2287 for (i = 1; i < per_dqs; i++) { 2288 mid = left_edge[i] - right_edge[i]; 2289 if (mid < *mid_min) { 2290 *mid_min = mid; 2291 min_index = i; 2292 } 2293 } 2294 2295 /* 2296 * -mid_min/2 represents the amount that we need to move DQS. 2297 * If mid_min is odd and positive we'll need to add one to make 2298 * sure the rounding in further calculations is correct (always 2299 * bias to the right), so just add 1 for all positive values. 2300 */ 2301 if (*mid_min > 0) 2302 (*mid_min)++; 2303 *mid_min = *mid_min / 2; 2304 2305 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2306 __func__, __LINE__, *mid_min, min_index); 2307 return min_index; 2308 } 2309 2310 /** 2311 * center_dq_windows() - Center the DQ/DQS windows 2312 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2313 * @left_edge: Left edge of the DQ/DQS phase 2314 * @right_edge: Right edge of the DQ/DQS phase 2315 * @mid_min: Adjusted DQ/DQS phase middle setting 2316 * @orig_mid_min: Original DQ/DQS phase middle setting 2317 * @min_index: DQ/DQS phase middle setting index 2318 * @test_bgn: Rank number to begin the test 2319 * @dq_margin: Amount of shift for the DQ 2320 * @dqs_margin: Amount of shift for the DQS 2321 * 2322 * Align the DQ/DQS windows in each group. 2323 */ 2324 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2325 const int mid_min, const int orig_mid_min, 2326 const int min_index, const int test_bgn, 2327 int *dq_margin, int *dqs_margin) 2328 { 2329 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2330 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2331 RW_MGR_MEM_DQ_PER_READ_DQS; 2332 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2333 SCC_MGR_IO_IN_DELAY_OFFSET; 2334 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2335 2336 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2337 int shift_dq, i, p; 2338 2339 /* Initialize data for export structures */ 2340 *dqs_margin = delay_max + 1; 2341 *dq_margin = delay_max + 1; 2342 2343 /* add delay to bring centre of all DQ windows to the same "level" */ 2344 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2345 /* Use values before divide by 2 to reduce round off error */ 2346 shift_dq = (left_edge[i] - right_edge[i] - 2347 (left_edge[min_index] - right_edge[min_index]))/2 + 2348 (orig_mid_min - mid_min); 2349 2350 debug_cond(DLEVEL == 2, 2351 "vfifo_center: before: shift_dq[%u]=%d\n", 2352 i, shift_dq); 2353 2354 temp_dq_io_delay1 = readl(addr + (p << 2)); 2355 temp_dq_io_delay2 = readl(addr + (i << 2)); 2356 2357 if (shift_dq + temp_dq_io_delay1 > delay_max) 2358 shift_dq = delay_max - temp_dq_io_delay2; 2359 else if (shift_dq + temp_dq_io_delay1 < 0) 2360 shift_dq = -temp_dq_io_delay1; 2361 2362 debug_cond(DLEVEL == 2, 2363 "vfifo_center: after: shift_dq[%u]=%d\n", 2364 i, shift_dq); 2365 2366 if (write) 2367 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2368 else 2369 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2370 2371 scc_mgr_load_dq(p); 2372 2373 debug_cond(DLEVEL == 2, 2374 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2375 left_edge[i] - shift_dq + (-mid_min), 2376 right_edge[i] + shift_dq - (-mid_min)); 2377 2378 /* To determine values for export structures */ 2379 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2380 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2381 2382 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2383 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2384 } 2385 2386 } 2387 2388 /** 2389 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2390 * @rank_bgn: Rank number 2391 * @rw_group: Read/Write Group 2392 * @test_bgn: Rank at which the test begins 2393 * @use_read_test: Perform a read test 2394 * @update_fom: Update FOM 2395 * 2396 * Per-bit deskew DQ and centering. 2397 */ 2398 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2399 const u32 rw_group, const u32 test_bgn, 2400 const int use_read_test, const int update_fom) 2401 { 2402 const u32 addr = 2403 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2404 (rw_group << 2); 2405 /* 2406 * Store these as signed since there are comparisons with 2407 * signed numbers. 2408 */ 2409 uint32_t sticky_bit_chk; 2410 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2411 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2412 int32_t orig_mid_min, mid_min; 2413 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2414 int32_t dq_margin, dqs_margin; 2415 int i, min_index; 2416 int ret; 2417 2418 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2419 2420 start_dqs = readl(addr); 2421 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2422 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2423 2424 /* set the left and right edge of each bit to an illegal value */ 2425 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2426 sticky_bit_chk = 0; 2427 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2428 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2429 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2430 } 2431 2432 /* Search for the left edge of the window for each bit */ 2433 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2434 &sticky_bit_chk, 2435 left_edge, right_edge, use_read_test); 2436 2437 2438 /* Search for the right edge of the window for each bit */ 2439 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2440 start_dqs, start_dqs_en, 2441 &sticky_bit_chk, 2442 left_edge, right_edge, use_read_test); 2443 if (ret) { 2444 /* 2445 * Restore delay chain settings before letting the loop 2446 * in rw_mgr_mem_calibrate_vfifo to retry different 2447 * dqs/ck relationships. 2448 */ 2449 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2450 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2451 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2452 2453 scc_mgr_load_dqs(rw_group); 2454 writel(0, &sdr_scc_mgr->update); 2455 2456 debug_cond(DLEVEL == 1, 2457 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2458 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2459 if (use_read_test) { 2460 set_failing_group_stage(rw_group * 2461 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2462 CAL_STAGE_VFIFO, 2463 CAL_SUBSTAGE_VFIFO_CENTER); 2464 } else { 2465 set_failing_group_stage(rw_group * 2466 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2467 CAL_STAGE_VFIFO_AFTER_WRITES, 2468 CAL_SUBSTAGE_VFIFO_CENTER); 2469 } 2470 return -EIO; 2471 } 2472 2473 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2474 2475 /* Determine the amount we can change DQS (which is -mid_min) */ 2476 orig_mid_min = mid_min; 2477 new_dqs = start_dqs - mid_min; 2478 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2479 new_dqs = IO_DQS_IN_DELAY_MAX; 2480 else if (new_dqs < 0) 2481 new_dqs = 0; 2482 2483 mid_min = start_dqs - new_dqs; 2484 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2485 mid_min, new_dqs); 2486 2487 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2488 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2489 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2490 else if (start_dqs_en - mid_min < 0) 2491 mid_min += start_dqs_en - mid_min; 2492 } 2493 new_dqs = start_dqs - mid_min; 2494 2495 debug_cond(DLEVEL == 1, 2496 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2497 start_dqs, 2498 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2499 new_dqs, mid_min); 2500 2501 /* Add delay to bring centre of all DQ windows to the same "level". */ 2502 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2503 min_index, test_bgn, &dq_margin, &dqs_margin); 2504 2505 /* Move DQS-en */ 2506 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2507 final_dqs_en = start_dqs_en - mid_min; 2508 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2509 scc_mgr_load_dqs(rw_group); 2510 } 2511 2512 /* Move DQS */ 2513 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2514 scc_mgr_load_dqs(rw_group); 2515 debug_cond(DLEVEL == 2, 2516 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2517 __func__, __LINE__, dq_margin, dqs_margin); 2518 2519 /* 2520 * Do not remove this line as it makes sure all of our decisions 2521 * have been applied. Apply the update bit. 2522 */ 2523 writel(0, &sdr_scc_mgr->update); 2524 2525 if ((dq_margin < 0) || (dqs_margin < 0)) 2526 return -EINVAL; 2527 2528 return 0; 2529 } 2530 2531 /** 2532 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2533 * @rw_group: Read/Write Group 2534 * @phase: DQ/DQS phase 2535 * 2536 * Because initially no communication ca be reliably performed with the memory 2537 * device, the sequencer uses a guaranteed write mechanism to write data into 2538 * the memory device. 2539 */ 2540 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2541 const u32 phase) 2542 { 2543 int ret; 2544 2545 /* Set a particular DQ/DQS phase. */ 2546 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2547 2548 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2549 __func__, __LINE__, rw_group, phase); 2550 2551 /* 2552 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2553 * Load up the patterns used by read calibration using the 2554 * current DQDQS phase. 2555 */ 2556 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2557 2558 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2559 return 0; 2560 2561 /* 2562 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2563 * Back-to-Back reads of the patterns used for calibration. 2564 */ 2565 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2566 if (ret) 2567 debug_cond(DLEVEL == 1, 2568 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2569 __func__, __LINE__, rw_group, phase); 2570 return ret; 2571 } 2572 2573 /** 2574 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2575 * @rw_group: Read/Write Group 2576 * @test_bgn: Rank at which the test begins 2577 * 2578 * DQS enable calibration ensures reliable capture of the DQ signal without 2579 * glitches on the DQS line. 2580 */ 2581 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2582 const u32 test_bgn) 2583 { 2584 /* 2585 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2586 * DQS and DQS Eanble Signal Relationships. 2587 */ 2588 2589 /* We start at zero, so have one less dq to devide among */ 2590 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2591 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2592 int ret; 2593 u32 i, p, d, r; 2594 2595 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2596 2597 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2598 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2599 r += NUM_RANKS_PER_SHADOW_REG) { 2600 for (i = 0, p = test_bgn, d = 0; 2601 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2602 i++, p++, d += delay_step) { 2603 debug_cond(DLEVEL == 1, 2604 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2605 __func__, __LINE__, rw_group, r, i, p, d); 2606 2607 scc_mgr_set_dq_in_delay(p, d); 2608 scc_mgr_load_dq(p); 2609 } 2610 2611 writel(0, &sdr_scc_mgr->update); 2612 } 2613 2614 /* 2615 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2616 * dq_in_delay values 2617 */ 2618 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2619 2620 debug_cond(DLEVEL == 1, 2621 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2622 __func__, __LINE__, rw_group, !ret); 2623 2624 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2625 r += NUM_RANKS_PER_SHADOW_REG) { 2626 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2627 writel(0, &sdr_scc_mgr->update); 2628 } 2629 2630 return ret; 2631 } 2632 2633 /** 2634 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2635 * @rw_group: Read/Write Group 2636 * @test_bgn: Rank at which the test begins 2637 * @use_read_test: Perform a read test 2638 * @update_fom: Update FOM 2639 * 2640 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2641 * within a group. 2642 */ 2643 static int 2644 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2645 const int use_read_test, 2646 const int update_fom) 2647 2648 { 2649 int ret, grp_calibrated; 2650 u32 rank_bgn, sr; 2651 2652 /* 2653 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2654 * Read per-bit deskew can be done on a per shadow register basis. 2655 */ 2656 grp_calibrated = 1; 2657 for (rank_bgn = 0, sr = 0; 2658 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2659 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2660 /* Check if this set of ranks should be skipped entirely. */ 2661 if (param->skip_shadow_regs[sr]) 2662 continue; 2663 2664 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2665 test_bgn, 2666 use_read_test, 2667 update_fom); 2668 if (!ret) 2669 continue; 2670 2671 grp_calibrated = 0; 2672 } 2673 2674 if (!grp_calibrated) 2675 return -EIO; 2676 2677 return 0; 2678 } 2679 2680 /** 2681 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2682 * @rw_group: Read/Write Group 2683 * @test_bgn: Rank at which the test begins 2684 * 2685 * Stage 1: Calibrate the read valid prediction FIFO. 2686 * 2687 * This function implements UniPHY calibration Stage 1, as explained in 2688 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2689 * 2690 * - read valid prediction will consist of finding: 2691 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2692 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2693 * - we also do a per-bit deskew on the DQ lines. 2694 */ 2695 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2696 { 2697 uint32_t p, d; 2698 uint32_t dtaps_per_ptap; 2699 uint32_t failed_substage; 2700 2701 int ret; 2702 2703 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2704 2705 /* Update info for sims */ 2706 reg_file_set_group(rw_group); 2707 reg_file_set_stage(CAL_STAGE_VFIFO); 2708 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2709 2710 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2711 2712 /* USER Determine number of delay taps for each phase tap. */ 2713 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2714 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2715 2716 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2717 /* 2718 * In RLDRAMX we may be messing the delay of pins in 2719 * the same write rw_group but outside of the current read 2720 * the rw_group, but that's ok because we haven't calibrated 2721 * output side yet. 2722 */ 2723 if (d > 0) { 2724 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2725 rw_group, d); 2726 } 2727 2728 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2729 /* 1) Guaranteed Write */ 2730 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2731 if (ret) 2732 break; 2733 2734 /* 2) DQS Enable Calibration */ 2735 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2736 test_bgn); 2737 if (ret) { 2738 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2739 continue; 2740 } 2741 2742 /* 3) Centering DQ/DQS */ 2743 /* 2744 * If doing read after write calibration, do not update 2745 * FOM now. Do it then. 2746 */ 2747 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2748 test_bgn, 1, 0); 2749 if (ret) { 2750 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2751 continue; 2752 } 2753 2754 /* All done. */ 2755 goto cal_done_ok; 2756 } 2757 } 2758 2759 /* Calibration Stage 1 failed. */ 2760 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2761 return 0; 2762 2763 /* Calibration Stage 1 completed OK. */ 2764 cal_done_ok: 2765 /* 2766 * Reset the delay chains back to zero if they have moved > 1 2767 * (check for > 1 because loop will increase d even when pass in 2768 * first case). 2769 */ 2770 if (d > 2) 2771 scc_mgr_zero_group(rw_group, 1); 2772 2773 return 1; 2774 } 2775 2776 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2777 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2778 uint32_t test_bgn) 2779 { 2780 uint32_t rank_bgn, sr; 2781 uint32_t grp_calibrated; 2782 uint32_t write_group; 2783 2784 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2785 2786 /* update info for sims */ 2787 2788 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2789 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2790 2791 write_group = read_group; 2792 2793 /* update info for sims */ 2794 reg_file_set_group(read_group); 2795 2796 grp_calibrated = 1; 2797 /* Read per-bit deskew can be done on a per shadow register basis */ 2798 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2799 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2800 /* Determine if this set of ranks should be skipped entirely */ 2801 if (!param->skip_shadow_regs[sr]) { 2802 /* This is the last calibration round, update FOM here */ 2803 if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2804 read_group, 2805 test_bgn, 0, 2806 1)) { 2807 grp_calibrated = 0; 2808 } 2809 } 2810 } 2811 2812 2813 if (grp_calibrated == 0) { 2814 set_failing_group_stage(write_group, 2815 CAL_STAGE_VFIFO_AFTER_WRITES, 2816 CAL_SUBSTAGE_VFIFO_CENTER); 2817 return 0; 2818 } 2819 2820 return 1; 2821 } 2822 2823 /* Calibrate LFIFO to find smallest read latency */ 2824 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2825 { 2826 uint32_t found_one; 2827 2828 debug("%s:%d\n", __func__, __LINE__); 2829 2830 /* update info for sims */ 2831 reg_file_set_stage(CAL_STAGE_LFIFO); 2832 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2833 2834 /* Load up the patterns used by read calibration for all ranks */ 2835 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2836 found_one = 0; 2837 2838 do { 2839 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2840 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2841 __func__, __LINE__, gbl->curr_read_lat); 2842 2843 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2844 NUM_READ_TESTS, 2845 PASS_ALL_BITS, 2846 1)) { 2847 break; 2848 } 2849 2850 found_one = 1; 2851 /* reduce read latency and see if things are working */ 2852 /* correctly */ 2853 gbl->curr_read_lat--; 2854 } while (gbl->curr_read_lat > 0); 2855 2856 /* reset the fifos to get pointers to known state */ 2857 2858 writel(0, &phy_mgr_cmd->fifo_reset); 2859 2860 if (found_one) { 2861 /* add a fudge factor to the read latency that was determined */ 2862 gbl->curr_read_lat += 2; 2863 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2864 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2865 read_lat=%u\n", __func__, __LINE__, 2866 gbl->curr_read_lat); 2867 return 1; 2868 } else { 2869 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2870 CAL_SUBSTAGE_READ_LATENCY); 2871 2872 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2873 read_lat=%u\n", __func__, __LINE__, 2874 gbl->curr_read_lat); 2875 return 0; 2876 } 2877 } 2878 2879 /** 2880 * search_window() - Search for the/part of the window with DM/DQS shift 2881 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2882 * @rank_bgn: Rank number 2883 * @write_group: Write Group 2884 * @bgn_curr: Current window begin 2885 * @end_curr: Current window end 2886 * @bgn_best: Current best window begin 2887 * @end_best: Current best window end 2888 * @win_best: Size of the best window 2889 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2890 * 2891 * Search for the/part of the window with DM/DQS shift. 2892 */ 2893 static void search_window(const int search_dm, 2894 const u32 rank_bgn, const u32 write_group, 2895 int *bgn_curr, int *end_curr, int *bgn_best, 2896 int *end_best, int *win_best, int new_dqs) 2897 { 2898 u32 bit_chk; 2899 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2900 int d, di; 2901 2902 /* Search for the/part of the window with DM/DQS shift. */ 2903 for (di = max; di >= 0; di -= DELTA_D) { 2904 if (search_dm) { 2905 d = di; 2906 scc_mgr_apply_group_dm_out1_delay(d); 2907 } else { 2908 /* For DQS, we go from 0...max */ 2909 d = max - di; 2910 /* 2911 * Note: This only shifts DQS, so are we limiting ourselve to 2912 * width of DQ unnecessarily. 2913 */ 2914 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2915 d + new_dqs); 2916 } 2917 2918 writel(0, &sdr_scc_mgr->update); 2919 2920 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2921 PASS_ALL_BITS, &bit_chk, 2922 0)) { 2923 /* Set current end of the window. */ 2924 *end_curr = search_dm ? -d : d; 2925 2926 /* 2927 * If a starting edge of our window has not been seen 2928 * this is our current start of the DM window. 2929 */ 2930 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2931 *bgn_curr = search_dm ? -d : d; 2932 2933 /* 2934 * If current window is bigger than best seen. 2935 * Set best seen to be current window. 2936 */ 2937 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2938 *win_best = *end_curr - *bgn_curr + 1; 2939 *bgn_best = *bgn_curr; 2940 *end_best = *end_curr; 2941 } 2942 } else { 2943 /* We just saw a failing test. Reset temp edge. */ 2944 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2945 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2946 2947 /* Early exit is only applicable to DQS. */ 2948 if (search_dm) 2949 continue; 2950 2951 /* 2952 * Early exit optimization: if the remaining delay 2953 * chain space is less than already seen largest 2954 * window we can exit. 2955 */ 2956 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2957 break; 2958 } 2959 } 2960 } 2961 2962 /* 2963 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2964 * @rank_bgn: Rank number 2965 * @write_group: Write group 2966 * @test_bgn: Rank at which the test begins 2967 * 2968 * Center all windows. Do per-bit-deskew to possibly increase size of 2969 * certain windows. 2970 */ 2971 static int 2972 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2973 const u32 test_bgn) 2974 { 2975 int i; 2976 u32 sticky_bit_chk; 2977 u32 min_index; 2978 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2979 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2980 int mid; 2981 int mid_min, orig_mid_min; 2982 int new_dqs, start_dqs; 2983 int dq_margin, dqs_margin, dm_margin; 2984 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2985 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2986 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2987 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2988 int win_best = 0; 2989 2990 int ret; 2991 2992 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2993 2994 dm_margin = 0; 2995 2996 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2997 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2998 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2999 3000 /* Per-bit deskew. */ 3001 3002 /* 3003 * Set the left and right edge of each bit to an illegal value. 3004 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3005 */ 3006 sticky_bit_chk = 0; 3007 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3008 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3009 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3010 } 3011 3012 /* Search for the left edge of the window for each bit. */ 3013 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3014 &sticky_bit_chk, 3015 left_edge, right_edge, 0); 3016 3017 /* Search for the right edge of the window for each bit. */ 3018 ret = search_right_edge(1, rank_bgn, write_group, 0, 3019 start_dqs, 0, 3020 &sticky_bit_chk, 3021 left_edge, right_edge, 0); 3022 if (ret) { 3023 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3024 CAL_SUBSTAGE_WRITES_CENTER); 3025 return -EINVAL; 3026 } 3027 3028 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3029 3030 /* Determine the amount we can change DQS (which is -mid_min). */ 3031 orig_mid_min = mid_min; 3032 new_dqs = start_dqs; 3033 mid_min = 0; 3034 debug_cond(DLEVEL == 1, 3035 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3036 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3037 3038 /* Add delay to bring centre of all DQ windows to the same "level". */ 3039 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3040 min_index, 0, &dq_margin, &dqs_margin); 3041 3042 /* Move DQS */ 3043 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3044 writel(0, &sdr_scc_mgr->update); 3045 3046 /* Centre DM */ 3047 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3048 3049 /* 3050 * Set the left and right edge of each bit to an illegal value. 3051 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3052 */ 3053 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3054 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3055 3056 /* Search for the/part of the window with DM shift. */ 3057 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3058 &bgn_best, &end_best, &win_best, 0); 3059 3060 /* Reset DM delay chains to 0. */ 3061 scc_mgr_apply_group_dm_out1_delay(0); 3062 3063 /* 3064 * Check to see if the current window nudges up aganist 0 delay. 3065 * If so we need to continue the search by shifting DQS otherwise DQS 3066 * search begins as a new search. 3067 */ 3068 if (end_curr != 0) { 3069 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3070 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3071 } 3072 3073 /* Search for the/part of the window with DQS shifts. */ 3074 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3075 &bgn_best, &end_best, &win_best, new_dqs); 3076 3077 /* Assign left and right edge for cal and reporting. */ 3078 left_edge[0] = -1 * bgn_best; 3079 right_edge[0] = end_best; 3080 3081 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3082 __func__, __LINE__, left_edge[0], right_edge[0]); 3083 3084 /* Move DQS (back to orig). */ 3085 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3086 3087 /* Move DM */ 3088 3089 /* Find middle of window for the DM bit. */ 3090 mid = (left_edge[0] - right_edge[0]) / 2; 3091 3092 /* Only move right, since we are not moving DQS/DQ. */ 3093 if (mid < 0) 3094 mid = 0; 3095 3096 /* dm_marign should fail if we never find a window. */ 3097 if (win_best == 0) 3098 dm_margin = -1; 3099 else 3100 dm_margin = left_edge[0] - mid; 3101 3102 scc_mgr_apply_group_dm_out1_delay(mid); 3103 writel(0, &sdr_scc_mgr->update); 3104 3105 debug_cond(DLEVEL == 2, 3106 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3107 __func__, __LINE__, left_edge[0], right_edge[0], 3108 mid, dm_margin); 3109 /* Export values. */ 3110 gbl->fom_out += dq_margin + dqs_margin; 3111 3112 debug_cond(DLEVEL == 2, 3113 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3114 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3115 3116 /* 3117 * Do not remove this line as it makes sure all of our 3118 * decisions have been applied. 3119 */ 3120 writel(0, &sdr_scc_mgr->update); 3121 3122 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3123 return -EINVAL; 3124 3125 return 0; 3126 } 3127 3128 /** 3129 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3130 * @rank_bgn: Rank number 3131 * @group: Read/Write Group 3132 * @test_bgn: Rank at which the test begins 3133 * 3134 * Stage 2: Write Calibration Part One. 3135 * 3136 * This function implements UniPHY calibration Stage 2, as explained in 3137 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3138 */ 3139 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3140 const u32 test_bgn) 3141 { 3142 int ret; 3143 3144 /* Update info for sims */ 3145 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3146 3147 reg_file_set_group(group); 3148 reg_file_set_stage(CAL_STAGE_WRITES); 3149 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3150 3151 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3152 if (ret) 3153 set_failing_group_stage(group, CAL_STAGE_WRITES, 3154 CAL_SUBSTAGE_WRITES_CENTER); 3155 3156 return ret; 3157 } 3158 3159 /** 3160 * mem_precharge_and_activate() - Precharge all banks and activate 3161 * 3162 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3163 */ 3164 static void mem_precharge_and_activate(void) 3165 { 3166 int r; 3167 3168 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3169 /* Test if the rank should be skipped. */ 3170 if (param->skip_ranks[r]) 3171 continue; 3172 3173 /* Set rank. */ 3174 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3175 3176 /* Precharge all banks. */ 3177 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3178 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3179 3180 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3181 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3182 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3183 3184 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3185 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3186 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3187 3188 /* Activate rows. */ 3189 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3190 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3191 } 3192 } 3193 3194 /** 3195 * mem_init_latency() - Configure memory RLAT and WLAT settings 3196 * 3197 * Configure memory RLAT and WLAT parameters. 3198 */ 3199 static void mem_init_latency(void) 3200 { 3201 /* 3202 * For AV/CV, LFIFO is hardened and always runs at full rate 3203 * so max latency in AFI clocks, used here, is correspondingly 3204 * smaller. 3205 */ 3206 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3207 u32 rlat, wlat; 3208 3209 debug("%s:%d\n", __func__, __LINE__); 3210 3211 /* 3212 * Read in write latency. 3213 * WL for Hard PHY does not include additive latency. 3214 */ 3215 wlat = readl(&data_mgr->t_wl_add); 3216 wlat += readl(&data_mgr->mem_t_add); 3217 3218 gbl->rw_wl_nop_cycles = wlat - 1; 3219 3220 /* Read in readl latency. */ 3221 rlat = readl(&data_mgr->t_rl_add); 3222 3223 /* Set a pretty high read latency initially. */ 3224 gbl->curr_read_lat = rlat + 16; 3225 if (gbl->curr_read_lat > max_latency) 3226 gbl->curr_read_lat = max_latency; 3227 3228 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3229 3230 /* Advertise write latency. */ 3231 writel(wlat, &phy_mgr_cfg->afi_wlat); 3232 } 3233 3234 /** 3235 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3236 * 3237 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3238 */ 3239 static void mem_skip_calibrate(void) 3240 { 3241 uint32_t vfifo_offset; 3242 uint32_t i, j, r; 3243 3244 debug("%s:%d\n", __func__, __LINE__); 3245 /* Need to update every shadow register set used by the interface */ 3246 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3247 r += NUM_RANKS_PER_SHADOW_REG) { 3248 /* 3249 * Set output phase alignment settings appropriate for 3250 * skip calibration. 3251 */ 3252 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3253 scc_mgr_set_dqs_en_phase(i, 0); 3254 #if IO_DLL_CHAIN_LENGTH == 6 3255 scc_mgr_set_dqdqs_output_phase(i, 6); 3256 #else 3257 scc_mgr_set_dqdqs_output_phase(i, 7); 3258 #endif 3259 /* 3260 * Case:33398 3261 * 3262 * Write data arrives to the I/O two cycles before write 3263 * latency is reached (720 deg). 3264 * -> due to bit-slip in a/c bus 3265 * -> to allow board skew where dqs is longer than ck 3266 * -> how often can this happen!? 3267 * -> can claim back some ptaps for high freq 3268 * support if we can relax this, but i digress... 3269 * 3270 * The write_clk leads mem_ck by 90 deg 3271 * The minimum ptap of the OPA is 180 deg 3272 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3273 * The write_clk is always delayed by 2 ptaps 3274 * 3275 * Hence, to make DQS aligned to CK, we need to delay 3276 * DQS by: 3277 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3278 * 3279 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3280 * gives us the number of ptaps, which simplies to: 3281 * 3282 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3283 */ 3284 scc_mgr_set_dqdqs_output_phase(i, 3285 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3286 } 3287 writel(0xff, &sdr_scc_mgr->dqs_ena); 3288 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3289 3290 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3291 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3292 SCC_MGR_GROUP_COUNTER_OFFSET); 3293 } 3294 writel(0xff, &sdr_scc_mgr->dq_ena); 3295 writel(0xff, &sdr_scc_mgr->dm_ena); 3296 writel(0, &sdr_scc_mgr->update); 3297 } 3298 3299 /* Compensate for simulation model behaviour */ 3300 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3301 scc_mgr_set_dqs_bus_in_delay(i, 10); 3302 scc_mgr_load_dqs(i); 3303 } 3304 writel(0, &sdr_scc_mgr->update); 3305 3306 /* 3307 * ArriaV has hard FIFOs that can only be initialized by incrementing 3308 * in sequencer. 3309 */ 3310 vfifo_offset = CALIB_VFIFO_OFFSET; 3311 for (j = 0; j < vfifo_offset; j++) 3312 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3313 writel(0, &phy_mgr_cmd->fifo_reset); 3314 3315 /* 3316 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3317 * setting from generation-time constant. 3318 */ 3319 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3320 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3321 } 3322 3323 /** 3324 * mem_calibrate() - Memory calibration entry point. 3325 * 3326 * Perform memory calibration. 3327 */ 3328 static uint32_t mem_calibrate(void) 3329 { 3330 uint32_t i; 3331 uint32_t rank_bgn, sr; 3332 uint32_t write_group, write_test_bgn; 3333 uint32_t read_group, read_test_bgn; 3334 uint32_t run_groups, current_run; 3335 uint32_t failing_groups = 0; 3336 uint32_t group_failed = 0; 3337 3338 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3339 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3340 3341 debug("%s:%d\n", __func__, __LINE__); 3342 3343 /* Initialize the data settings */ 3344 gbl->error_substage = CAL_SUBSTAGE_NIL; 3345 gbl->error_stage = CAL_STAGE_NIL; 3346 gbl->error_group = 0xff; 3347 gbl->fom_in = 0; 3348 gbl->fom_out = 0; 3349 3350 /* Initialize WLAT and RLAT. */ 3351 mem_init_latency(); 3352 3353 /* Initialize bit slips. */ 3354 mem_precharge_and_activate(); 3355 3356 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3357 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3358 SCC_MGR_GROUP_COUNTER_OFFSET); 3359 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3360 if (i == 0) 3361 scc_mgr_set_hhp_extras(); 3362 3363 scc_set_bypass_mode(i); 3364 } 3365 3366 /* Calibration is skipped. */ 3367 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3368 /* 3369 * Set VFIFO and LFIFO to instant-on settings in skip 3370 * calibration mode. 3371 */ 3372 mem_skip_calibrate(); 3373 3374 /* 3375 * Do not remove this line as it makes sure all of our 3376 * decisions have been applied. 3377 */ 3378 writel(0, &sdr_scc_mgr->update); 3379 return 1; 3380 } 3381 3382 /* Calibration is not skipped. */ 3383 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3384 /* 3385 * Zero all delay chain/phase settings for all 3386 * groups and all shadow register sets. 3387 */ 3388 scc_mgr_zero_all(); 3389 3390 run_groups = ~param->skip_groups; 3391 3392 for (write_group = 0, write_test_bgn = 0; write_group 3393 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3394 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3395 3396 /* Initialize the group failure */ 3397 group_failed = 0; 3398 3399 current_run = run_groups & ((1 << 3400 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3401 run_groups = run_groups >> 3402 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3403 3404 if (current_run == 0) 3405 continue; 3406 3407 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3408 SCC_MGR_GROUP_COUNTER_OFFSET); 3409 scc_mgr_zero_group(write_group, 0); 3410 3411 for (read_group = write_group * rwdqs_ratio, 3412 read_test_bgn = 0; 3413 read_group < (write_group + 1) * rwdqs_ratio; 3414 read_group++, 3415 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3416 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3417 continue; 3418 3419 /* Calibrate the VFIFO */ 3420 if (rw_mgr_mem_calibrate_vfifo(read_group, 3421 read_test_bgn)) 3422 continue; 3423 3424 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3425 return 0; 3426 3427 /* The group failed, we're done. */ 3428 goto grp_failed; 3429 } 3430 3431 /* Calibrate the output side */ 3432 for (rank_bgn = 0, sr = 0; 3433 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3434 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3435 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3436 continue; 3437 3438 /* Not needed in quick mode! */ 3439 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3440 continue; 3441 3442 /* 3443 * Determine if this set of ranks 3444 * should be skipped entirely. 3445 */ 3446 if (param->skip_shadow_regs[sr]) 3447 continue; 3448 3449 /* Calibrate WRITEs */ 3450 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3451 write_group, write_test_bgn)) 3452 continue; 3453 3454 group_failed = 1; 3455 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3456 return 0; 3457 } 3458 3459 /* Some group failed, we're done. */ 3460 if (group_failed) 3461 goto grp_failed; 3462 3463 for (read_group = write_group * rwdqs_ratio, 3464 read_test_bgn = 0; 3465 read_group < (write_group + 1) * rwdqs_ratio; 3466 read_group++, 3467 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3468 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3469 continue; 3470 3471 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3472 read_test_bgn)) 3473 continue; 3474 3475 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3476 return 0; 3477 3478 /* The group failed, we're done. */ 3479 goto grp_failed; 3480 } 3481 3482 /* No group failed, continue as usual. */ 3483 continue; 3484 3485 grp_failed: /* A group failed, increment the counter. */ 3486 failing_groups++; 3487 } 3488 3489 /* 3490 * USER If there are any failing groups then report 3491 * the failure. 3492 */ 3493 if (failing_groups != 0) 3494 return 0; 3495 3496 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3497 continue; 3498 3499 /* 3500 * If we're skipping groups as part of debug, 3501 * don't calibrate LFIFO. 3502 */ 3503 if (param->skip_groups != 0) 3504 continue; 3505 3506 /* Calibrate the LFIFO */ 3507 if (!rw_mgr_mem_calibrate_lfifo()) 3508 return 0; 3509 } 3510 3511 /* 3512 * Do not remove this line as it makes sure all of our decisions 3513 * have been applied. 3514 */ 3515 writel(0, &sdr_scc_mgr->update); 3516 return 1; 3517 } 3518 3519 /** 3520 * run_mem_calibrate() - Perform memory calibration 3521 * 3522 * This function triggers the entire memory calibration procedure. 3523 */ 3524 static int run_mem_calibrate(void) 3525 { 3526 int pass; 3527 3528 debug("%s:%d\n", __func__, __LINE__); 3529 3530 /* Reset pass/fail status shown on afi_cal_success/fail */ 3531 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3532 3533 /* Stop tracking manager. */ 3534 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3535 3536 phy_mgr_initialize(); 3537 rw_mgr_mem_initialize(); 3538 3539 /* Perform the actual memory calibration. */ 3540 pass = mem_calibrate(); 3541 3542 mem_precharge_and_activate(); 3543 writel(0, &phy_mgr_cmd->fifo_reset); 3544 3545 /* Handoff. */ 3546 rw_mgr_mem_handoff(); 3547 /* 3548 * In Hard PHY this is a 2-bit control: 3549 * 0: AFI Mux Select 3550 * 1: DDIO Mux Select 3551 */ 3552 writel(0x2, &phy_mgr_cfg->mux_sel); 3553 3554 /* Start tracking manager. */ 3555 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3556 3557 return pass; 3558 } 3559 3560 /** 3561 * debug_mem_calibrate() - Report result of memory calibration 3562 * @pass: Value indicating whether calibration passed or failed 3563 * 3564 * This function reports the results of the memory calibration 3565 * and writes debug information into the register file. 3566 */ 3567 static void debug_mem_calibrate(int pass) 3568 { 3569 uint32_t debug_info; 3570 3571 if (pass) { 3572 printf("%s: CALIBRATION PASSED\n", __FILE__); 3573 3574 gbl->fom_in /= 2; 3575 gbl->fom_out /= 2; 3576 3577 if (gbl->fom_in > 0xff) 3578 gbl->fom_in = 0xff; 3579 3580 if (gbl->fom_out > 0xff) 3581 gbl->fom_out = 0xff; 3582 3583 /* Update the FOM in the register file */ 3584 debug_info = gbl->fom_in; 3585 debug_info |= gbl->fom_out << 8; 3586 writel(debug_info, &sdr_reg_file->fom); 3587 3588 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3589 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3590 } else { 3591 printf("%s: CALIBRATION FAILED\n", __FILE__); 3592 3593 debug_info = gbl->error_stage; 3594 debug_info |= gbl->error_substage << 8; 3595 debug_info |= gbl->error_group << 16; 3596 3597 writel(debug_info, &sdr_reg_file->failing_stage); 3598 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3599 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3600 3601 /* Update the failing group/stage in the register file */ 3602 debug_info = gbl->error_stage; 3603 debug_info |= gbl->error_substage << 8; 3604 debug_info |= gbl->error_group << 16; 3605 writel(debug_info, &sdr_reg_file->failing_stage); 3606 } 3607 3608 printf("%s: Calibration complete\n", __FILE__); 3609 } 3610 3611 /** 3612 * hc_initialize_rom_data() - Initialize ROM data 3613 * 3614 * Initialize ROM data. 3615 */ 3616 static void hc_initialize_rom_data(void) 3617 { 3618 u32 i, addr; 3619 3620 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3621 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3622 writel(inst_rom_init[i], addr + (i << 2)); 3623 3624 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3625 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3626 writel(ac_rom_init[i], addr + (i << 2)); 3627 } 3628 3629 /** 3630 * initialize_reg_file() - Initialize SDR register file 3631 * 3632 * Initialize SDR register file. 3633 */ 3634 static void initialize_reg_file(void) 3635 { 3636 /* Initialize the register file with the correct data */ 3637 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3638 writel(0, &sdr_reg_file->debug_data_addr); 3639 writel(0, &sdr_reg_file->cur_stage); 3640 writel(0, &sdr_reg_file->fom); 3641 writel(0, &sdr_reg_file->failing_stage); 3642 writel(0, &sdr_reg_file->debug1); 3643 writel(0, &sdr_reg_file->debug2); 3644 } 3645 3646 /** 3647 * initialize_hps_phy() - Initialize HPS PHY 3648 * 3649 * Initialize HPS PHY. 3650 */ 3651 static void initialize_hps_phy(void) 3652 { 3653 uint32_t reg; 3654 /* 3655 * Tracking also gets configured here because it's in the 3656 * same register. 3657 */ 3658 uint32_t trk_sample_count = 7500; 3659 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3660 /* 3661 * Format is number of outer loops in the 16 MSB, sample 3662 * count in 16 LSB. 3663 */ 3664 3665 reg = 0; 3666 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3667 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3672 /* 3673 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3674 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3675 */ 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3677 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3678 trk_sample_count); 3679 writel(reg, &sdr_ctrl->phy_ctrl0); 3680 3681 reg = 0; 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3683 trk_sample_count >> 3684 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3686 trk_long_idle_sample_count); 3687 writel(reg, &sdr_ctrl->phy_ctrl1); 3688 3689 reg = 0; 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3691 trk_long_idle_sample_count >> 3692 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3693 writel(reg, &sdr_ctrl->phy_ctrl2); 3694 } 3695 3696 /** 3697 * initialize_tracking() - Initialize tracking 3698 * 3699 * Initialize the register file with usable initial data. 3700 */ 3701 static void initialize_tracking(void) 3702 { 3703 /* 3704 * Initialize the register file with the correct data. 3705 * Compute usable version of value in case we skip full 3706 * computation later. 3707 */ 3708 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3709 &sdr_reg_file->dtaps_per_ptap); 3710 3711 /* trk_sample_count */ 3712 writel(7500, &sdr_reg_file->trk_sample_count); 3713 3714 /* longidle outer loop [15:0] */ 3715 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3716 3717 /* 3718 * longidle sample count [31:24] 3719 * trfc, worst case of 933Mhz 4Gb [23:16] 3720 * trcd, worst case [15:8] 3721 * vfifo wait [7:0] 3722 */ 3723 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3724 &sdr_reg_file->delays); 3725 3726 /* mux delay */ 3727 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3728 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3729 &sdr_reg_file->trk_rw_mgr_addr); 3730 3731 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3732 &sdr_reg_file->trk_read_dqs_width); 3733 3734 /* trefi [7:0] */ 3735 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3736 &sdr_reg_file->trk_rfsh); 3737 } 3738 3739 int sdram_calibration_full(void) 3740 { 3741 struct param_type my_param; 3742 struct gbl_type my_gbl; 3743 uint32_t pass; 3744 3745 memset(&my_param, 0, sizeof(my_param)); 3746 memset(&my_gbl, 0, sizeof(my_gbl)); 3747 3748 param = &my_param; 3749 gbl = &my_gbl; 3750 3751 /* Set the calibration enabled by default */ 3752 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3753 /* 3754 * Only sweep all groups (regardless of fail state) by default 3755 * Set enabled read test by default. 3756 */ 3757 #if DISABLE_GUARANTEED_READ 3758 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3759 #endif 3760 /* Initialize the register file */ 3761 initialize_reg_file(); 3762 3763 /* Initialize any PHY CSR */ 3764 initialize_hps_phy(); 3765 3766 scc_mgr_initialize(); 3767 3768 initialize_tracking(); 3769 3770 printf("%s: Preparing to start memory calibration\n", __FILE__); 3771 3772 debug("%s:%d\n", __func__, __LINE__); 3773 debug_cond(DLEVEL == 1, 3774 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3775 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3776 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3777 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3778 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3779 debug_cond(DLEVEL == 1, 3780 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3781 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3782 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3783 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3784 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3785 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3786 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3787 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3788 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3789 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3790 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3791 IO_IO_OUT2_DELAY_MAX); 3792 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3793 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3794 3795 hc_initialize_rom_data(); 3796 3797 /* update info for sims */ 3798 reg_file_set_stage(CAL_STAGE_NIL); 3799 reg_file_set_group(0); 3800 3801 /* 3802 * Load global needed for those actions that require 3803 * some dynamic calibration support. 3804 */ 3805 dyn_calib_steps = STATIC_CALIB_STEPS; 3806 /* 3807 * Load global to allow dynamic selection of delay loop settings 3808 * based on calibration mode. 3809 */ 3810 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3811 skip_delay_mask = 0xff; 3812 else 3813 skip_delay_mask = 0x0; 3814 3815 pass = run_mem_calibrate(); 3816 debug_mem_calibrate(pass); 3817 return pass; 3818 } 3819