xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision b6cb7f9edddf8f812b9d79fe1324b66348d05254)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /*
1040  * performs a guaranteed read on the patterns we are going to use during a
1041  * read test to ensure memory works
1042  */
1043 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1044 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1045 	uint32_t all_ranks)
1046 {
1047 	uint32_t r, vg;
1048 	uint32_t correct_mask_vg;
1049 	uint32_t tmp_bit_chk;
1050 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1051 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1052 	uint32_t addr;
1053 	uint32_t base_rw_mgr;
1054 
1055 	*bit_chk = param->read_correct_mask;
1056 	correct_mask_vg = param->read_correct_mask_vg;
1057 
1058 	for (r = rank_bgn; r < rank_end; r++) {
1059 		if (param->skip_ranks[r])
1060 			/* request to skip the rank */
1061 			continue;
1062 
1063 		/* set rank */
1064 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1065 
1066 		/* Load up a constant bursts of read commands */
1067 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1068 		writel(RW_MGR_GUARANTEED_READ,
1069 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1070 
1071 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1072 		writel(RW_MGR_GUARANTEED_READ_CONT,
1073 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1074 
1075 		tmp_bit_chk = 0;
1076 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1077 			/* reset the fifos to get pointers to known state */
1078 
1079 			writel(0, &phy_mgr_cmd->fifo_reset);
1080 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1081 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1082 
1083 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1084 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1085 
1086 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1087 			writel(RW_MGR_GUARANTEED_READ, addr +
1088 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1089 				vg) << 2));
1090 
1091 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1092 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1093 
1094 			if (vg == 0)
1095 				break;
1096 		}
1097 		*bit_chk &= tmp_bit_chk;
1098 	}
1099 
1100 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1101 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1102 
1103 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1104 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1105 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1106 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1107 	return *bit_chk == param->read_correct_mask;
1108 }
1109 
1110 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1111 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1112 {
1113 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1114 		num_tries, bit_chk, 1);
1115 }
1116 
1117 /**
1118  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1119  * @rank_bgn:	Rank number
1120  * @all_ranks:	Test all ranks
1121  *
1122  * Load up the patterns we are going to use during a read test.
1123  */
1124 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1125 						    const int all_ranks)
1126 {
1127 	const u32 rank_end = all_ranks ?
1128 			RW_MGR_MEM_NUMBER_OF_RANKS :
1129 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1130 	u32 r;
1131 
1132 	debug("%s:%d\n", __func__, __LINE__);
1133 
1134 	for (r = rank_bgn; r < rank_end; r++) {
1135 		if (param->skip_ranks[r])
1136 			/* request to skip the rank */
1137 			continue;
1138 
1139 		/* set rank */
1140 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1141 
1142 		/* Load up a constant bursts */
1143 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1144 
1145 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1146 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1147 
1148 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1149 
1150 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1151 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152 
1153 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1154 
1155 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1156 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1157 
1158 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1159 
1160 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1161 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1162 
1163 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1164 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1165 	}
1166 
1167 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1168 }
1169 
1170 /*
1171  * try a read and see if it returns correct data back. has dummy reads
1172  * inserted into the mix used to align dqs enable. has more thorough checks
1173  * than the regular read test.
1174  */
1175 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1176 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1177 	uint32_t all_groups, uint32_t all_ranks)
1178 {
1179 	uint32_t r, vg;
1180 	uint32_t correct_mask_vg;
1181 	uint32_t tmp_bit_chk;
1182 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1183 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1184 	uint32_t addr;
1185 	uint32_t base_rw_mgr;
1186 
1187 	*bit_chk = param->read_correct_mask;
1188 	correct_mask_vg = param->read_correct_mask_vg;
1189 
1190 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1191 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1192 
1193 	for (r = rank_bgn; r < rank_end; r++) {
1194 		if (param->skip_ranks[r])
1195 			/* request to skip the rank */
1196 			continue;
1197 
1198 		/* set rank */
1199 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1200 
1201 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1202 
1203 		writel(RW_MGR_READ_B2B_WAIT1,
1204 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1205 
1206 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1207 		writel(RW_MGR_READ_B2B_WAIT2,
1208 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1209 
1210 		if (quick_read_mode)
1211 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1212 			/* need at least two (1+1) reads to capture failures */
1213 		else if (all_groups)
1214 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1215 		else
1216 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1217 
1218 		writel(RW_MGR_READ_B2B,
1219 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1220 		if (all_groups)
1221 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1222 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1223 			       &sdr_rw_load_mgr_regs->load_cntr3);
1224 		else
1225 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1226 
1227 		writel(RW_MGR_READ_B2B,
1228 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1229 
1230 		tmp_bit_chk = 0;
1231 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1232 			/* reset the fifos to get pointers to known state */
1233 			writel(0, &phy_mgr_cmd->fifo_reset);
1234 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1235 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1236 
1237 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1238 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1239 
1240 			if (all_groups)
1241 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1242 			else
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1244 
1245 			writel(RW_MGR_READ_B2B, addr +
1246 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1247 			       vg) << 2));
1248 
1249 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1250 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1251 
1252 			if (vg == 0)
1253 				break;
1254 		}
1255 		*bit_chk &= tmp_bit_chk;
1256 	}
1257 
1258 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1259 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1260 
1261 	if (all_correct) {
1262 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1263 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1264 			   (%u == %u) => %lu", __func__, __LINE__, group,
1265 			   all_groups, *bit_chk, param->read_correct_mask,
1266 			   (long unsigned int)(*bit_chk ==
1267 			   param->read_correct_mask));
1268 		return *bit_chk == param->read_correct_mask;
1269 	} else	{
1270 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1271 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1272 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1273 			   group, all_groups, *bit_chk, (long unsigned int)0,
1274 			   (long unsigned int)(*bit_chk != 0x00));
1275 		return *bit_chk != 0x00;
1276 	}
1277 }
1278 
1279 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1280 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1281 	uint32_t all_groups)
1282 {
1283 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1284 					      bit_chk, all_groups, 1);
1285 }
1286 
1287 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1288 {
1289 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1290 	(*v)++;
1291 }
1292 
1293 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1294 {
1295 	uint32_t i;
1296 
1297 	for (i = 0; i < VFIFO_SIZE-1; i++)
1298 		rw_mgr_incr_vfifo(grp, v);
1299 }
1300 
1301 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1302 {
1303 	uint32_t  v;
1304 	uint32_t fail_cnt = 0;
1305 	uint32_t test_status;
1306 
1307 	for (v = 0; v < VFIFO_SIZE; ) {
1308 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1309 			   __func__, __LINE__, v);
1310 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1311 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1312 		if (!test_status) {
1313 			fail_cnt++;
1314 
1315 			if (fail_cnt == 2)
1316 				break;
1317 		}
1318 
1319 		/* fiddle with FIFO */
1320 		rw_mgr_incr_vfifo(grp, &v);
1321 	}
1322 
1323 	if (v >= VFIFO_SIZE) {
1324 		/* no failing read found!! Something must have gone wrong */
1325 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1326 			   __func__, __LINE__);
1327 		return 0;
1328 	} else {
1329 		return v;
1330 	}
1331 }
1332 
1333 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1334 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1335 			      uint32_t *v, uint32_t *d, uint32_t *p,
1336 			      uint32_t *i, uint32_t *max_working_cnt)
1337 {
1338 	uint32_t found_begin = 0;
1339 	uint32_t tmp_delay = 0;
1340 	uint32_t test_status;
1341 
1342 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1343 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1344 		*work_bgn = tmp_delay;
1345 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1346 
1347 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1348 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1349 				IO_DELAY_PER_OPA_TAP) {
1350 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1351 
1352 				test_status =
1353 				rw_mgr_mem_calibrate_read_test_all_ranks
1354 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1355 
1356 				if (test_status) {
1357 					*max_working_cnt = 1;
1358 					found_begin = 1;
1359 					break;
1360 				}
1361 			}
1362 
1363 			if (found_begin)
1364 				break;
1365 
1366 			if (*p > IO_DQS_EN_PHASE_MAX)
1367 				/* fiddle with FIFO */
1368 				rw_mgr_incr_vfifo(*grp, v);
1369 		}
1370 
1371 		if (found_begin)
1372 			break;
1373 	}
1374 
1375 	if (*i >= VFIFO_SIZE) {
1376 		/* cannot find working solution */
1377 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1378 			   ptap/dtap\n", __func__, __LINE__);
1379 		return 0;
1380 	} else {
1381 		return 1;
1382 	}
1383 }
1384 
1385 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1386 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1387 			     uint32_t *p, uint32_t *max_working_cnt)
1388 {
1389 	uint32_t found_begin = 0;
1390 	uint32_t tmp_delay;
1391 
1392 	/* Special case code for backing up a phase */
1393 	if (*p == 0) {
1394 		*p = IO_DQS_EN_PHASE_MAX;
1395 		rw_mgr_decr_vfifo(*grp, v);
1396 	} else {
1397 		(*p)--;
1398 	}
1399 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1400 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1401 
1402 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1403 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1404 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1405 
1406 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1407 							     PASS_ONE_BIT,
1408 							     bit_chk, 0)) {
1409 			found_begin = 1;
1410 			*work_bgn = tmp_delay;
1411 			break;
1412 		}
1413 	}
1414 
1415 	/* We have found a working dtap before the ptap found above */
1416 	if (found_begin == 1)
1417 		(*max_working_cnt)++;
1418 
1419 	/*
1420 	 * Restore VFIFO to old state before we decremented it
1421 	 * (if needed).
1422 	 */
1423 	(*p)++;
1424 	if (*p > IO_DQS_EN_PHASE_MAX) {
1425 		*p = 0;
1426 		rw_mgr_incr_vfifo(*grp, v);
1427 	}
1428 
1429 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1430 }
1431 
1432 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1433 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1434 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1435 			     uint32_t *work_end)
1436 {
1437 	uint32_t found_end = 0;
1438 
1439 	(*p)++;
1440 	*work_end += IO_DELAY_PER_OPA_TAP;
1441 	if (*p > IO_DQS_EN_PHASE_MAX) {
1442 		/* fiddle with FIFO */
1443 		*p = 0;
1444 		rw_mgr_incr_vfifo(*grp, v);
1445 	}
1446 
1447 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1448 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1449 			+= IO_DELAY_PER_OPA_TAP) {
1450 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1451 
1452 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1453 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1454 				found_end = 1;
1455 				break;
1456 			} else {
1457 				(*max_working_cnt)++;
1458 			}
1459 		}
1460 
1461 		if (found_end)
1462 			break;
1463 
1464 		if (*p > IO_DQS_EN_PHASE_MAX) {
1465 			/* fiddle with FIFO */
1466 			rw_mgr_incr_vfifo(*grp, v);
1467 			*p = 0;
1468 		}
1469 	}
1470 
1471 	if (*i >= VFIFO_SIZE + 1) {
1472 		/* cannot see edge of failing read */
1473 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1474 			   failed\n", __func__, __LINE__);
1475 		return 0;
1476 	} else {
1477 		return 1;
1478 	}
1479 }
1480 
1481 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1482 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1483 				  uint32_t *p, uint32_t *work_mid,
1484 				  uint32_t *work_end)
1485 {
1486 	int i;
1487 	int tmp_delay = 0;
1488 
1489 	*work_mid = (*work_bgn + *work_end) / 2;
1490 
1491 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1492 		   *work_bgn, *work_end, *work_mid);
1493 	/* Get the middle delay to be less than a VFIFO delay */
1494 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1495 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1496 		;
1497 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1498 	while (*work_mid > tmp_delay)
1499 		*work_mid -= tmp_delay;
1500 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1501 
1502 	tmp_delay = 0;
1503 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1504 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1505 		;
1506 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1507 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1508 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1509 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1510 		;
1511 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1512 
1513 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1514 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1515 
1516 	/*
1517 	 * push vfifo until we can successfully calibrate. We can do this
1518 	 * because the largest possible margin in 1 VFIFO cycle.
1519 	 */
1520 	for (i = 0; i < VFIFO_SIZE; i++) {
1521 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1522 			   *v);
1523 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1524 							     PASS_ONE_BIT,
1525 							     bit_chk, 0)) {
1526 			break;
1527 		}
1528 
1529 		/* fiddle with FIFO */
1530 		rw_mgr_incr_vfifo(*grp, v);
1531 	}
1532 
1533 	if (i >= VFIFO_SIZE) {
1534 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1535 			   failed\n", __func__, __LINE__);
1536 		return 0;
1537 	} else {
1538 		return 1;
1539 	}
1540 }
1541 
1542 /* find a good dqs enable to use */
1543 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1544 {
1545 	uint32_t v, d, p, i;
1546 	uint32_t max_working_cnt;
1547 	uint32_t bit_chk;
1548 	uint32_t dtaps_per_ptap;
1549 	uint32_t work_bgn, work_mid, work_end;
1550 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1551 
1552 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1553 
1554 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1555 
1556 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1557 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1558 
1559 	/* ************************************************************** */
1560 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1561 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1562 
1563 	/* ********************************************************* */
1564 	/* * Step 1 : First push vfifo until we get a failing read * */
1565 	v = find_vfifo_read(grp, &bit_chk);
1566 
1567 	max_working_cnt = 0;
1568 
1569 	/* ******************************************************** */
1570 	/* * step 2: find first working phase, increment in ptaps * */
1571 	work_bgn = 0;
1572 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1573 				&p, &i, &max_working_cnt) == 0)
1574 		return 0;
1575 
1576 	work_end = work_bgn;
1577 
1578 	/*
1579 	 * If d is 0 then the working window covers a phase tap and
1580 	 * we can follow the old procedure otherwise, we've found the beginning,
1581 	 * and we need to increment the dtaps until we find the end.
1582 	 */
1583 	if (d == 0) {
1584 		/* ********************************************************* */
1585 		/* * step 3a: if we have room, back off by one and
1586 		increment in dtaps * */
1587 
1588 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1589 				 &max_working_cnt);
1590 
1591 		/* ********************************************************* */
1592 		/* * step 4a: go forward from working phase to non working
1593 		phase, increment in ptaps * */
1594 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1595 					 &i, &max_working_cnt, &work_end) == 0)
1596 			return 0;
1597 
1598 		/* ********************************************************* */
1599 		/* * step 5a:  back off one from last, increment in dtaps  * */
1600 
1601 		/* Special case code for backing up a phase */
1602 		if (p == 0) {
1603 			p = IO_DQS_EN_PHASE_MAX;
1604 			rw_mgr_decr_vfifo(grp, &v);
1605 		} else {
1606 			p = p - 1;
1607 		}
1608 
1609 		work_end -= IO_DELAY_PER_OPA_TAP;
1610 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1611 
1612 		/* * The actual increment of dtaps is done outside of
1613 		the if/else loop to share code */
1614 		d = 0;
1615 
1616 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1617 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1618 			   v, p);
1619 	} else {
1620 		/* ******************************************************* */
1621 		/* * step 3-5b:  Find the right edge of the window using
1622 		delay taps   * */
1623 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1624 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1625 			   v, p, d, work_bgn);
1626 
1627 		work_end = work_bgn;
1628 
1629 		/* * The actual increment of dtaps is done outside of the
1630 		if/else loop to share code */
1631 
1632 		/* Only here to counterbalance a subtract later on which is
1633 		not needed if this branch of the algorithm is taken */
1634 		max_working_cnt++;
1635 	}
1636 
1637 	/* The dtap increment to find the failing edge is done here */
1638 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1639 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1640 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1641 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1642 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1643 
1644 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1645 								      PASS_ONE_BIT,
1646 								      &bit_chk, 0)) {
1647 				break;
1648 			}
1649 	}
1650 
1651 	/* Go back to working dtap */
1652 	if (d != 0)
1653 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1654 
1655 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1656 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1657 		   v, p, d-1, work_end);
1658 
1659 	if (work_end < work_bgn) {
1660 		/* nil range */
1661 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1662 			   failed\n", __func__, __LINE__);
1663 		return 0;
1664 	}
1665 
1666 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1667 		   __func__, __LINE__, work_bgn, work_end);
1668 
1669 	/* *************************************************************** */
1670 	/*
1671 	 * * We need to calculate the number of dtaps that equal a ptap
1672 	 * * To do that we'll back up a ptap and re-find the edge of the
1673 	 * * window using dtaps
1674 	 */
1675 
1676 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1677 		   for tracking\n", __func__, __LINE__);
1678 
1679 	/* Special case code for backing up a phase */
1680 	if (p == 0) {
1681 		p = IO_DQS_EN_PHASE_MAX;
1682 		rw_mgr_decr_vfifo(grp, &v);
1683 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1684 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1685 			   v, p);
1686 	} else {
1687 		p = p - 1;
1688 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1689 			   phase only: v=%u p=%u", __func__, __LINE__,
1690 			   v, p);
1691 	}
1692 
1693 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1694 
1695 	/*
1696 	 * Increase dtap until we first see a passing read (in case the
1697 	 * window is smaller than a ptap),
1698 	 * and then a failing read to mark the edge of the window again
1699 	 */
1700 
1701 	/* Find a passing read */
1702 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1703 		   __func__, __LINE__);
1704 	found_passing_read = 0;
1705 	found_failing_read = 0;
1706 	initial_failing_dtap = d;
1707 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1708 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1709 			   read d=%u\n", __func__, __LINE__, d);
1710 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1711 
1712 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1713 							     PASS_ONE_BIT,
1714 							     &bit_chk, 0)) {
1715 			found_passing_read = 1;
1716 			break;
1717 		}
1718 	}
1719 
1720 	if (found_passing_read) {
1721 		/* Find a failing read */
1722 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1723 			   read\n", __func__, __LINE__);
1724 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1725 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1726 				   testing read d=%u\n", __func__, __LINE__, d);
1727 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1728 
1729 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1730 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1731 				found_failing_read = 1;
1732 				break;
1733 			}
1734 		}
1735 	} else {
1736 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1737 			   calculate dtaps", __func__, __LINE__);
1738 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1739 	}
1740 
1741 	/*
1742 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1743 	 * found a passing/failing read. If we didn't, it means d hit the max
1744 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1745 	 * statically calculated value.
1746 	 */
1747 	if (found_passing_read && found_failing_read)
1748 		dtaps_per_ptap = d - initial_failing_dtap;
1749 
1750 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1751 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1752 		   - %u = %u",  __func__, __LINE__, d,
1753 		   initial_failing_dtap, dtaps_per_ptap);
1754 
1755 	/* ******************************************** */
1756 	/* * step 6:  Find the centre of the window   * */
1757 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1758 				   &work_mid, &work_end) == 0)
1759 		return 0;
1760 
1761 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1762 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1763 		   v, p-1, d);
1764 	return 1;
1765 }
1766 
1767 /*
1768  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1769  * dq_in_delay values
1770  */
1771 static uint32_t
1772 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1773 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1774 {
1775 	uint32_t found;
1776 	uint32_t i;
1777 	uint32_t p;
1778 	uint32_t d;
1779 	uint32_t r;
1780 
1781 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1782 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1783 		/* we start at zero, so have one less dq to devide among */
1784 
1785 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1786 	      test_bgn);
1787 
1788 	/* try different dq_in_delays since the dq path is shorter than dqs */
1789 
1790 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1791 	     r += NUM_RANKS_PER_SHADOW_REG) {
1792 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1793 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1794 				   vfifo_find_dqs_", __func__, __LINE__);
1795 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1796 			       write_group, read_group);
1797 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1798 			scc_mgr_set_dq_in_delay(p, d);
1799 			scc_mgr_load_dq(p);
1800 		}
1801 		writel(0, &sdr_scc_mgr->update);
1802 	}
1803 
1804 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1805 
1806 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1807 		   en_phase_sweep_dq", __func__, __LINE__);
1808 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1809 		   chain to zero\n", write_group, read_group, found);
1810 
1811 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1812 	     r += NUM_RANKS_PER_SHADOW_REG) {
1813 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1814 			i++, p++) {
1815 			scc_mgr_set_dq_in_delay(p, 0);
1816 			scc_mgr_load_dq(p);
1817 		}
1818 		writel(0, &sdr_scc_mgr->update);
1819 	}
1820 
1821 	return found;
1822 }
1823 
1824 /* per-bit deskew DQ and center */
1825 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1826 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1827 	uint32_t use_read_test, uint32_t update_fom)
1828 {
1829 	uint32_t i, p, d, min_index;
1830 	/*
1831 	 * Store these as signed since there are comparisons with
1832 	 * signed numbers.
1833 	 */
1834 	uint32_t bit_chk;
1835 	uint32_t sticky_bit_chk;
1836 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1837 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1838 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1839 	int32_t mid;
1840 	int32_t orig_mid_min, mid_min;
1841 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1842 		final_dqs_en;
1843 	int32_t dq_margin, dqs_margin;
1844 	uint32_t stop;
1845 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1846 	uint32_t addr;
1847 
1848 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1849 
1850 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1851 	start_dqs = readl(addr + (read_group << 2));
1852 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1853 		start_dqs_en = readl(addr + ((read_group << 2)
1854 				     - IO_DQS_EN_DELAY_OFFSET));
1855 
1856 	/* set the left and right edge of each bit to an illegal value */
1857 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1858 	sticky_bit_chk = 0;
1859 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1860 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1861 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1862 	}
1863 
1864 	/* Search for the left edge of the window for each bit */
1865 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1866 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1867 
1868 		writel(0, &sdr_scc_mgr->update);
1869 
1870 		/*
1871 		 * Stop searching when the read test doesn't pass AND when
1872 		 * we've seen a passing read on every bit.
1873 		 */
1874 		if (use_read_test) {
1875 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1876 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1877 				&bit_chk, 0, 0);
1878 		} else {
1879 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1880 							0, PASS_ONE_BIT,
1881 							&bit_chk, 0);
1882 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1883 				(read_group - (write_group *
1884 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1885 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1886 			stop = (bit_chk == 0);
1887 		}
1888 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1889 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1890 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1891 			   && %u", __func__, __LINE__, d,
1892 			   sticky_bit_chk,
1893 			param->read_correct_mask, stop);
1894 
1895 		if (stop == 1) {
1896 			break;
1897 		} else {
1898 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1899 				if (bit_chk & 1) {
1900 					/* Remember a passing test as the
1901 					left_edge */
1902 					left_edge[i] = d;
1903 				} else {
1904 					/* If a left edge has not been seen yet,
1905 					then a future passing test will mark
1906 					this edge as the right edge */
1907 					if (left_edge[i] ==
1908 						IO_IO_IN_DELAY_MAX + 1) {
1909 						right_edge[i] = -(d + 1);
1910 					}
1911 				}
1912 				bit_chk = bit_chk >> 1;
1913 			}
1914 		}
1915 	}
1916 
1917 	/* Reset DQ delay chains to 0 */
1918 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1919 	sticky_bit_chk = 0;
1920 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1921 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1922 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1923 			   i, left_edge[i], i, right_edge[i]);
1924 
1925 		/*
1926 		 * Check for cases where we haven't found the left edge,
1927 		 * which makes our assignment of the the right edge invalid.
1928 		 * Reset it to the illegal value.
1929 		 */
1930 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1931 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1932 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1933 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1934 				   right_edge[%u]: %d\n", __func__, __LINE__,
1935 				   i, right_edge[i]);
1936 		}
1937 
1938 		/*
1939 		 * Reset sticky bit (except for bits where we have seen
1940 		 * both the left and right edge).
1941 		 */
1942 		sticky_bit_chk = sticky_bit_chk << 1;
1943 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1944 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1945 			sticky_bit_chk = sticky_bit_chk | 1;
1946 		}
1947 
1948 		if (i == 0)
1949 			break;
1950 	}
1951 
1952 	/* Search for the right edge of the window for each bit */
1953 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1954 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1955 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1956 			uint32_t delay = d + start_dqs_en;
1957 			if (delay > IO_DQS_EN_DELAY_MAX)
1958 				delay = IO_DQS_EN_DELAY_MAX;
1959 			scc_mgr_set_dqs_en_delay(read_group, delay);
1960 		}
1961 		scc_mgr_load_dqs(read_group);
1962 
1963 		writel(0, &sdr_scc_mgr->update);
1964 
1965 		/*
1966 		 * Stop searching when the read test doesn't pass AND when
1967 		 * we've seen a passing read on every bit.
1968 		 */
1969 		if (use_read_test) {
1970 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1971 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1972 				&bit_chk, 0, 0);
1973 		} else {
1974 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1975 							0, PASS_ONE_BIT,
1976 							&bit_chk, 0);
1977 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1978 				(read_group - (write_group *
1979 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1980 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1981 			stop = (bit_chk == 0);
1982 		}
1983 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1984 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1985 
1986 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1987 			   %u && %u", __func__, __LINE__, d,
1988 			   sticky_bit_chk, param->read_correct_mask, stop);
1989 
1990 		if (stop == 1) {
1991 			break;
1992 		} else {
1993 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1994 				if (bit_chk & 1) {
1995 					/* Remember a passing test as
1996 					the right_edge */
1997 					right_edge[i] = d;
1998 				} else {
1999 					if (d != 0) {
2000 						/* If a right edge has not been
2001 						seen yet, then a future passing
2002 						test will mark this edge as the
2003 						left edge */
2004 						if (right_edge[i] ==
2005 						IO_IO_IN_DELAY_MAX + 1) {
2006 							left_edge[i] = -(d + 1);
2007 						}
2008 					} else {
2009 						/* d = 0 failed, but it passed
2010 						when testing the left edge,
2011 						so it must be marginal,
2012 						set it to -1 */
2013 						if (right_edge[i] ==
2014 							IO_IO_IN_DELAY_MAX + 1 &&
2015 							left_edge[i] !=
2016 							IO_IO_IN_DELAY_MAX
2017 							+ 1) {
2018 							right_edge[i] = -1;
2019 						}
2020 						/* If a right edge has not been
2021 						seen yet, then a future passing
2022 						test will mark this edge as the
2023 						left edge */
2024 						else if (right_edge[i] ==
2025 							IO_IO_IN_DELAY_MAX +
2026 							1) {
2027 							left_edge[i] = -(d + 1);
2028 						}
2029 					}
2030 				}
2031 
2032 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2033 					   d=%u]: ", __func__, __LINE__, d);
2034 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2035 					   (int)(bit_chk & 1), i, left_edge[i]);
2036 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2037 					   right_edge[i]);
2038 				bit_chk = bit_chk >> 1;
2039 			}
2040 		}
2041 	}
2042 
2043 	/* Check that all bits have a window */
2044 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2045 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2046 			   %d right_edge[%u]: %d", __func__, __LINE__,
2047 			   i, left_edge[i], i, right_edge[i]);
2048 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2049 			== IO_IO_IN_DELAY_MAX + 1)) {
2050 			/*
2051 			 * Restore delay chain settings before letting the loop
2052 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2053 			 * dqs/ck relationships.
2054 			 */
2055 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2056 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2057 				scc_mgr_set_dqs_en_delay(read_group,
2058 							 start_dqs_en);
2059 			}
2060 			scc_mgr_load_dqs(read_group);
2061 			writel(0, &sdr_scc_mgr->update);
2062 
2063 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2064 				   find edge [%u]: %d %d", __func__, __LINE__,
2065 				   i, left_edge[i], right_edge[i]);
2066 			if (use_read_test) {
2067 				set_failing_group_stage(read_group *
2068 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2069 					CAL_STAGE_VFIFO,
2070 					CAL_SUBSTAGE_VFIFO_CENTER);
2071 			} else {
2072 				set_failing_group_stage(read_group *
2073 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2074 					CAL_STAGE_VFIFO_AFTER_WRITES,
2075 					CAL_SUBSTAGE_VFIFO_CENTER);
2076 			}
2077 			return 0;
2078 		}
2079 	}
2080 
2081 	/* Find middle of window for each DQ bit */
2082 	mid_min = left_edge[0] - right_edge[0];
2083 	min_index = 0;
2084 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2085 		mid = left_edge[i] - right_edge[i];
2086 		if (mid < mid_min) {
2087 			mid_min = mid;
2088 			min_index = i;
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * -mid_min/2 represents the amount that we need to move DQS.
2094 	 * If mid_min is odd and positive we'll need to add one to
2095 	 * make sure the rounding in further calculations is correct
2096 	 * (always bias to the right), so just add 1 for all positive values.
2097 	 */
2098 	if (mid_min > 0)
2099 		mid_min++;
2100 
2101 	mid_min = mid_min / 2;
2102 
2103 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2104 		   __func__, __LINE__, mid_min, min_index);
2105 
2106 	/* Determine the amount we can change DQS (which is -mid_min) */
2107 	orig_mid_min = mid_min;
2108 	new_dqs = start_dqs - mid_min;
2109 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2110 		new_dqs = IO_DQS_IN_DELAY_MAX;
2111 	else if (new_dqs < 0)
2112 		new_dqs = 0;
2113 
2114 	mid_min = start_dqs - new_dqs;
2115 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2116 		   mid_min, new_dqs);
2117 
2118 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2119 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2120 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2121 		else if (start_dqs_en - mid_min < 0)
2122 			mid_min += start_dqs_en - mid_min;
2123 	}
2124 	new_dqs = start_dqs - mid_min;
2125 
2126 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2127 		   new_dqs=%d mid_min=%d\n", start_dqs,
2128 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2129 		   new_dqs, mid_min);
2130 
2131 	/* Initialize data for export structures */
2132 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2133 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2134 
2135 	/* add delay to bring centre of all DQ windows to the same "level" */
2136 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2137 		/* Use values before divide by 2 to reduce round off error */
2138 		shift_dq = (left_edge[i] - right_edge[i] -
2139 			(left_edge[min_index] - right_edge[min_index]))/2  +
2140 			(orig_mid_min - mid_min);
2141 
2142 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2143 			   shift_dq[%u]=%d\n", i, shift_dq);
2144 
2145 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2146 		temp_dq_in_delay1 = readl(addr + (p << 2));
2147 		temp_dq_in_delay2 = readl(addr + (i << 2));
2148 
2149 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2150 			(int32_t)IO_IO_IN_DELAY_MAX) {
2151 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2152 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2153 			shift_dq = -(int32_t)temp_dq_in_delay1;
2154 		}
2155 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2156 			   shift_dq[%u]=%d\n", i, shift_dq);
2157 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2158 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2159 		scc_mgr_load_dq(p);
2160 
2161 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2162 			   left_edge[i] - shift_dq + (-mid_min),
2163 			   right_edge[i] + shift_dq - (-mid_min));
2164 		/* To determine values for export structures */
2165 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2166 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2167 
2168 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2169 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2170 	}
2171 
2172 	final_dqs = new_dqs;
2173 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2174 		final_dqs_en = start_dqs_en - mid_min;
2175 
2176 	/* Move DQS-en */
2177 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2178 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2179 		scc_mgr_load_dqs(read_group);
2180 	}
2181 
2182 	/* Move DQS */
2183 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2184 	scc_mgr_load_dqs(read_group);
2185 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2186 		   dqs_margin=%d", __func__, __LINE__,
2187 		   dq_margin, dqs_margin);
2188 
2189 	/*
2190 	 * Do not remove this line as it makes sure all of our decisions
2191 	 * have been applied. Apply the update bit.
2192 	 */
2193 	writel(0, &sdr_scc_mgr->update);
2194 
2195 	return (dq_margin >= 0) && (dqs_margin >= 0);
2196 }
2197 
2198 /**
2199  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2200  * @rw_group:	Read/Write Group
2201  * @phase:	DQ/DQS phase
2202  *
2203  * Because initially no communication ca be reliably performed with the memory
2204  * device, the sequencer uses a guaranteed write mechanism to write data into
2205  * the memory device.
2206  */
2207 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2208 						 const u32 phase)
2209 {
2210 	u32 bit_chk;
2211 	int ret;
2212 
2213 	/* Set a particular DQ/DQS phase. */
2214 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2215 
2216 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2217 		   __func__, __LINE__, rw_group, phase);
2218 
2219 	/*
2220 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2221 	 * Load up the patterns used by read calibration using the
2222 	 * current DQDQS phase.
2223 	 */
2224 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2225 
2226 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2227 		return 0;
2228 
2229 	/*
2230 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2231 	 * Back-to-Back reads of the patterns used for calibration.
2232 	 */
2233 	ret = rw_mgr_mem_calibrate_read_test_patterns_all_ranks(rw_group, 1,
2234 								&bit_chk);
2235 	if (!ret) {	/* FIXME: 0 means failure in this old code :-( */
2236 		debug_cond(DLEVEL == 1,
2237 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2238 			   __func__, __LINE__, rw_group, phase);
2239 		return -EIO;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /**
2246  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2247  * @rw_group:	Read/Write Group
2248  * @test_bgn:	Rank at which the test begins
2249  *
2250  * DQS enable calibration ensures reliable capture of the DQ signal without
2251  * glitches on the DQS line.
2252  */
2253 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2254 						       const u32 test_bgn)
2255 {
2256 	int ret;
2257 
2258 	/*
2259 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2260 	 * DQS and DQS Eanble Signal Relationships.
2261 	 */
2262 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
2263 						rw_group, rw_group, test_bgn);
2264 	if (!ret)	/* FIXME: 0 means failure in this old code :-( */
2265 		return -EIO;
2266 
2267 	return 0;
2268 }
2269 
2270 /**
2271  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2272  * @rw_group:		Read/Write Group
2273  * @test_bgn:		Rank at which the test begins
2274  * @use_read_test:	Perform a read test
2275  * @update_fom:		Update FOM
2276  *
2277  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2278  * within a group.
2279  */
2280 static int
2281 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2282 				      const int use_read_test,
2283 				      const int update_fom)
2284 
2285 {
2286 	int ret, grp_calibrated;
2287 	u32 rank_bgn, sr;
2288 
2289 	/*
2290 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2291 	 * Read per-bit deskew can be done on a per shadow register basis.
2292 	 */
2293 	grp_calibrated = 1;
2294 	for (rank_bgn = 0, sr = 0;
2295 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2296 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2297 		/* Check if this set of ranks should be skipped entirely. */
2298 		if (param->skip_shadow_regs[sr])
2299 			continue;
2300 
2301 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2302 							rw_group, test_bgn,
2303 							use_read_test,
2304 							update_fom);
2305 		if (ret)
2306 			continue;
2307 
2308 		grp_calibrated = 0;
2309 	}
2310 
2311 	if (!grp_calibrated)
2312 		return -EIO;
2313 
2314 	return 0;
2315 }
2316 
2317 /**
2318  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2319  * @rw_group:		Read/Write Group
2320  * @test_bgn:		Rank at which the test begins
2321  *
2322  * Stage 1: Calibrate the read valid prediction FIFO.
2323  *
2324  * This function implements UniPHY calibration Stage 1, as explained in
2325  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2326  *
2327  * - read valid prediction will consist of finding:
2328  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2329  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2330  *  - we also do a per-bit deskew on the DQ lines.
2331  */
2332 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2333 {
2334 	uint32_t p, d;
2335 	uint32_t dtaps_per_ptap;
2336 	uint32_t failed_substage;
2337 
2338 	int ret;
2339 
2340 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2341 
2342 	/* Update info for sims */
2343 	reg_file_set_group(rw_group);
2344 	reg_file_set_stage(CAL_STAGE_VFIFO);
2345 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2346 
2347 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2348 
2349 	/* USER Determine number of delay taps for each phase tap. */
2350 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2351 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2352 
2353 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2354 		/*
2355 		 * In RLDRAMX we may be messing the delay of pins in
2356 		 * the same write rw_group but outside of the current read
2357 		 * the rw_group, but that's ok because we haven't calibrated
2358 		 * output side yet.
2359 		 */
2360 		if (d > 0) {
2361 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2362 								rw_group, d);
2363 		}
2364 
2365 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2366 			/* 1) Guaranteed Write */
2367 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2368 			if (ret)
2369 				break;
2370 
2371 			/* 2) DQS Enable Calibration */
2372 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2373 									  test_bgn);
2374 			if (ret) {
2375 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2376 				continue;
2377 			}
2378 
2379 			/* 3) Centering DQ/DQS */
2380 			/*
2381 			 * If doing read after write calibration, do not update
2382 			 * FOM now. Do it then.
2383 			 */
2384 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2385 								test_bgn, 1, 0);
2386 			if (ret) {
2387 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2388 				continue;
2389 			}
2390 
2391 			/* All done. */
2392 			goto cal_done_ok;
2393 		}
2394 	}
2395 
2396 	/* Calibration Stage 1 failed. */
2397 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2398 	return 0;
2399 
2400 	/* Calibration Stage 1 completed OK. */
2401 cal_done_ok:
2402 	/*
2403 	 * Reset the delay chains back to zero if they have moved > 1
2404 	 * (check for > 1 because loop will increase d even when pass in
2405 	 * first case).
2406 	 */
2407 	if (d > 2)
2408 		scc_mgr_zero_group(rw_group, 1);
2409 
2410 	return 1;
2411 }
2412 
2413 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2414 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2415 					       uint32_t test_bgn)
2416 {
2417 	uint32_t rank_bgn, sr;
2418 	uint32_t grp_calibrated;
2419 	uint32_t write_group;
2420 
2421 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2422 
2423 	/* update info for sims */
2424 
2425 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2426 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2427 
2428 	write_group = read_group;
2429 
2430 	/* update info for sims */
2431 	reg_file_set_group(read_group);
2432 
2433 	grp_calibrated = 1;
2434 	/* Read per-bit deskew can be done on a per shadow register basis */
2435 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2436 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2437 		/* Determine if this set of ranks should be skipped entirely */
2438 		if (!param->skip_shadow_regs[sr]) {
2439 		/* This is the last calibration round, update FOM here */
2440 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2441 								write_group,
2442 								read_group,
2443 								test_bgn, 0,
2444 								1)) {
2445 				grp_calibrated = 0;
2446 			}
2447 		}
2448 	}
2449 
2450 
2451 	if (grp_calibrated == 0) {
2452 		set_failing_group_stage(write_group,
2453 					CAL_STAGE_VFIFO_AFTER_WRITES,
2454 					CAL_SUBSTAGE_VFIFO_CENTER);
2455 		return 0;
2456 	}
2457 
2458 	return 1;
2459 }
2460 
2461 /* Calibrate LFIFO to find smallest read latency */
2462 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2463 {
2464 	uint32_t found_one;
2465 	uint32_t bit_chk;
2466 
2467 	debug("%s:%d\n", __func__, __LINE__);
2468 
2469 	/* update info for sims */
2470 	reg_file_set_stage(CAL_STAGE_LFIFO);
2471 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2472 
2473 	/* Load up the patterns used by read calibration for all ranks */
2474 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2475 	found_one = 0;
2476 
2477 	do {
2478 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2479 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2480 			   __func__, __LINE__, gbl->curr_read_lat);
2481 
2482 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2483 							      NUM_READ_TESTS,
2484 							      PASS_ALL_BITS,
2485 							      &bit_chk, 1)) {
2486 			break;
2487 		}
2488 
2489 		found_one = 1;
2490 		/* reduce read latency and see if things are working */
2491 		/* correctly */
2492 		gbl->curr_read_lat--;
2493 	} while (gbl->curr_read_lat > 0);
2494 
2495 	/* reset the fifos to get pointers to known state */
2496 
2497 	writel(0, &phy_mgr_cmd->fifo_reset);
2498 
2499 	if (found_one) {
2500 		/* add a fudge factor to the read latency that was determined */
2501 		gbl->curr_read_lat += 2;
2502 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2503 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2504 			   read_lat=%u\n", __func__, __LINE__,
2505 			   gbl->curr_read_lat);
2506 		return 1;
2507 	} else {
2508 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2509 					CAL_SUBSTAGE_READ_LATENCY);
2510 
2511 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2512 			   read_lat=%u\n", __func__, __LINE__,
2513 			   gbl->curr_read_lat);
2514 		return 0;
2515 	}
2516 }
2517 
2518 /*
2519  * issue write test command.
2520  * two variants are provided. one that just tests a write pattern and
2521  * another that tests datamask functionality.
2522  */
2523 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2524 						  uint32_t test_dm)
2525 {
2526 	uint32_t mcc_instruction;
2527 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2528 		ENABLE_SUPER_QUICK_CALIBRATION);
2529 	uint32_t rw_wl_nop_cycles;
2530 	uint32_t addr;
2531 
2532 	/*
2533 	 * Set counter and jump addresses for the right
2534 	 * number of NOP cycles.
2535 	 * The number of supported NOP cycles can range from -1 to infinity
2536 	 * Three different cases are handled:
2537 	 *
2538 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2539 	 *    mechanism will be used to insert the right number of NOPs
2540 	 *
2541 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2542 	 *    issuing the write command will jump straight to the
2543 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2544 	 *    data (for RLD), skipping
2545 	 *    the NOP micro-instruction all together
2546 	 *
2547 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2548 	 *    turned on in the same micro-instruction that issues the write
2549 	 *    command. Then we need
2550 	 *    to directly jump to the micro-instruction that sends out the data
2551 	 *
2552 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2553 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2554 	 *       write-read operations.
2555 	 *       one counter left to issue this command in "multiple-group" mode
2556 	 */
2557 
2558 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2559 
2560 	if (rw_wl_nop_cycles == -1) {
2561 		/*
2562 		 * CNTR 2 - We want to execute the special write operation that
2563 		 * turns on DQS right away and then skip directly to the
2564 		 * instruction that sends out the data. We set the counter to a
2565 		 * large number so that the jump is always taken.
2566 		 */
2567 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2568 
2569 		/* CNTR 3 - Not used */
2570 		if (test_dm) {
2571 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2572 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2573 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2574 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2575 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2576 		} else {
2577 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2578 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2579 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2580 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2581 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2582 		}
2583 	} else if (rw_wl_nop_cycles == 0) {
2584 		/*
2585 		 * CNTR 2 - We want to skip the NOP operation and go straight
2586 		 * to the DQS enable instruction. We set the counter to a large
2587 		 * number so that the jump is always taken.
2588 		 */
2589 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2590 
2591 		/* CNTR 3 - Not used */
2592 		if (test_dm) {
2593 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2594 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2595 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2596 		} else {
2597 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2598 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2599 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2600 		}
2601 	} else {
2602 		/*
2603 		 * CNTR 2 - In this case we want to execute the next instruction
2604 		 * and NOT take the jump. So we set the counter to 0. The jump
2605 		 * address doesn't count.
2606 		 */
2607 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2608 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2609 
2610 		/*
2611 		 * CNTR 3 - Set the nop counter to the number of cycles we
2612 		 * need to loop for, minus 1.
2613 		 */
2614 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2615 		if (test_dm) {
2616 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2617 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2618 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2619 		} else {
2620 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2621 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2622 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2623 		}
2624 	}
2625 
2626 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2627 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2628 
2629 	if (quick_write_mode)
2630 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2631 	else
2632 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2633 
2634 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2635 
2636 	/*
2637 	 * CNTR 1 - This is used to ensure enough time elapses
2638 	 * for read data to come back.
2639 	 */
2640 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2641 
2642 	if (test_dm) {
2643 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2644 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2645 	} else {
2646 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2647 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2648 	}
2649 
2650 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2651 	writel(mcc_instruction, addr + (group << 2));
2652 }
2653 
2654 /* Test writes, can check for a single bit pass or multiple bit pass */
2655 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2656 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2657 	uint32_t *bit_chk, uint32_t all_ranks)
2658 {
2659 	uint32_t r;
2660 	uint32_t correct_mask_vg;
2661 	uint32_t tmp_bit_chk;
2662 	uint32_t vg;
2663 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2664 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2665 	uint32_t addr_rw_mgr;
2666 	uint32_t base_rw_mgr;
2667 
2668 	*bit_chk = param->write_correct_mask;
2669 	correct_mask_vg = param->write_correct_mask_vg;
2670 
2671 	for (r = rank_bgn; r < rank_end; r++) {
2672 		if (param->skip_ranks[r]) {
2673 			/* request to skip the rank */
2674 			continue;
2675 		}
2676 
2677 		/* set rank */
2678 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2679 
2680 		tmp_bit_chk = 0;
2681 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2682 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2683 			/* reset the fifos to get pointers to known state */
2684 			writel(0, &phy_mgr_cmd->fifo_reset);
2685 
2686 			tmp_bit_chk = tmp_bit_chk <<
2687 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2688 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2689 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2690 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2691 				use_dm);
2692 
2693 			base_rw_mgr = readl(addr_rw_mgr);
2694 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2695 			if (vg == 0)
2696 				break;
2697 		}
2698 		*bit_chk &= tmp_bit_chk;
2699 	}
2700 
2701 	if (all_correct) {
2702 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2703 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2704 			   %u => %lu", write_group, use_dm,
2705 			   *bit_chk, param->write_correct_mask,
2706 			   (long unsigned int)(*bit_chk ==
2707 			   param->write_correct_mask));
2708 		return *bit_chk == param->write_correct_mask;
2709 	} else {
2710 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2711 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2712 		       write_group, use_dm, *bit_chk);
2713 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2714 			(long unsigned int)(*bit_chk != 0));
2715 		return *bit_chk != 0x00;
2716 	}
2717 }
2718 
2719 /*
2720  * center all windows. do per-bit-deskew to possibly increase size of
2721  * certain windows.
2722  */
2723 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2724 	uint32_t write_group, uint32_t test_bgn)
2725 {
2726 	uint32_t i, p, min_index;
2727 	int32_t d;
2728 	/*
2729 	 * Store these as signed since there are comparisons with
2730 	 * signed numbers.
2731 	 */
2732 	uint32_t bit_chk;
2733 	uint32_t sticky_bit_chk;
2734 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2735 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2736 	int32_t mid;
2737 	int32_t mid_min, orig_mid_min;
2738 	int32_t new_dqs, start_dqs, shift_dq;
2739 	int32_t dq_margin, dqs_margin, dm_margin;
2740 	uint32_t stop;
2741 	uint32_t temp_dq_out1_delay;
2742 	uint32_t addr;
2743 
2744 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2745 
2746 	dm_margin = 0;
2747 
2748 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2749 	start_dqs = readl(addr +
2750 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2751 
2752 	/* per-bit deskew */
2753 
2754 	/*
2755 	 * set the left and right edge of each bit to an illegal value
2756 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2757 	 */
2758 	sticky_bit_chk = 0;
2759 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2760 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2761 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2762 	}
2763 
2764 	/* Search for the left edge of the window for each bit */
2765 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2766 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2767 
2768 		writel(0, &sdr_scc_mgr->update);
2769 
2770 		/*
2771 		 * Stop searching when the read test doesn't pass AND when
2772 		 * we've seen a passing read on every bit.
2773 		 */
2774 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2775 			0, PASS_ONE_BIT, &bit_chk, 0);
2776 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2777 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2778 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2779 			   == %u && %u [bit_chk= %u ]\n",
2780 			d, sticky_bit_chk, param->write_correct_mask,
2781 			stop, bit_chk);
2782 
2783 		if (stop == 1) {
2784 			break;
2785 		} else {
2786 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2787 				if (bit_chk & 1) {
2788 					/*
2789 					 * Remember a passing test as the
2790 					 * left_edge.
2791 					 */
2792 					left_edge[i] = d;
2793 				} else {
2794 					/*
2795 					 * If a left edge has not been seen
2796 					 * yet, then a future passing test will
2797 					 * mark this edge as the right edge.
2798 					 */
2799 					if (left_edge[i] ==
2800 						IO_IO_OUT1_DELAY_MAX + 1) {
2801 						right_edge[i] = -(d + 1);
2802 					}
2803 				}
2804 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2805 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2806 					   (int)(bit_chk & 1), i, left_edge[i]);
2807 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2808 				       right_edge[i]);
2809 				bit_chk = bit_chk >> 1;
2810 			}
2811 		}
2812 	}
2813 
2814 	/* Reset DQ delay chains to 0 */
2815 	scc_mgr_apply_group_dq_out1_delay(0);
2816 	sticky_bit_chk = 0;
2817 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2818 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2819 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2820 			   i, left_edge[i], i, right_edge[i]);
2821 
2822 		/*
2823 		 * Check for cases where we haven't found the left edge,
2824 		 * which makes our assignment of the the right edge invalid.
2825 		 * Reset it to the illegal value.
2826 		 */
2827 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2828 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2829 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2830 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2831 				   right_edge[%u]: %d\n", __func__, __LINE__,
2832 				   i, right_edge[i]);
2833 		}
2834 
2835 		/*
2836 		 * Reset sticky bit (except for bits where we have
2837 		 * seen the left edge).
2838 		 */
2839 		sticky_bit_chk = sticky_bit_chk << 1;
2840 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2841 			sticky_bit_chk = sticky_bit_chk | 1;
2842 
2843 		if (i == 0)
2844 			break;
2845 	}
2846 
2847 	/* Search for the right edge of the window for each bit */
2848 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2849 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2850 							d + start_dqs);
2851 
2852 		writel(0, &sdr_scc_mgr->update);
2853 
2854 		/*
2855 		 * Stop searching when the read test doesn't pass AND when
2856 		 * we've seen a passing read on every bit.
2857 		 */
2858 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2859 			0, PASS_ONE_BIT, &bit_chk, 0);
2860 
2861 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2862 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2863 
2864 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2865 			   %u && %u\n", d, sticky_bit_chk,
2866 			   param->write_correct_mask, stop);
2867 
2868 		if (stop == 1) {
2869 			if (d == 0) {
2870 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2871 					i++) {
2872 					/* d = 0 failed, but it passed when
2873 					testing the left edge, so it must be
2874 					marginal, set it to -1 */
2875 					if (right_edge[i] ==
2876 						IO_IO_OUT1_DELAY_MAX + 1 &&
2877 						left_edge[i] !=
2878 						IO_IO_OUT1_DELAY_MAX + 1) {
2879 						right_edge[i] = -1;
2880 					}
2881 				}
2882 			}
2883 			break;
2884 		} else {
2885 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2886 				if (bit_chk & 1) {
2887 					/*
2888 					 * Remember a passing test as
2889 					 * the right_edge.
2890 					 */
2891 					right_edge[i] = d;
2892 				} else {
2893 					if (d != 0) {
2894 						/*
2895 						 * If a right edge has not
2896 						 * been seen yet, then a future
2897 						 * passing test will mark this
2898 						 * edge as the left edge.
2899 						 */
2900 						if (right_edge[i] ==
2901 						    IO_IO_OUT1_DELAY_MAX + 1)
2902 							left_edge[i] = -(d + 1);
2903 					} else {
2904 						/*
2905 						 * d = 0 failed, but it passed
2906 						 * when testing the left edge,
2907 						 * so it must be marginal, set
2908 						 * it to -1.
2909 						 */
2910 						if (right_edge[i] ==
2911 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2912 						    left_edge[i] !=
2913 						    IO_IO_OUT1_DELAY_MAX + 1)
2914 							right_edge[i] = -1;
2915 						/*
2916 						 * If a right edge has not been
2917 						 * seen yet, then a future
2918 						 * passing test will mark this
2919 						 * edge as the left edge.
2920 						 */
2921 						else if (right_edge[i] ==
2922 							IO_IO_OUT1_DELAY_MAX +
2923 							1)
2924 							left_edge[i] = -(d + 1);
2925 					}
2926 				}
2927 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2928 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2929 					   (int)(bit_chk & 1), i, left_edge[i]);
2930 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2931 					   right_edge[i]);
2932 				bit_chk = bit_chk >> 1;
2933 			}
2934 		}
2935 	}
2936 
2937 	/* Check that all bits have a window */
2938 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2939 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2940 			   %d right_edge[%u]: %d", __func__, __LINE__,
2941 			   i, left_edge[i], i, right_edge[i]);
2942 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2943 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2944 			set_failing_group_stage(test_bgn + i,
2945 						CAL_STAGE_WRITES,
2946 						CAL_SUBSTAGE_WRITES_CENTER);
2947 			return 0;
2948 		}
2949 	}
2950 
2951 	/* Find middle of window for each DQ bit */
2952 	mid_min = left_edge[0] - right_edge[0];
2953 	min_index = 0;
2954 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2955 		mid = left_edge[i] - right_edge[i];
2956 		if (mid < mid_min) {
2957 			mid_min = mid;
2958 			min_index = i;
2959 		}
2960 	}
2961 
2962 	/*
2963 	 * -mid_min/2 represents the amount that we need to move DQS.
2964 	 * If mid_min is odd and positive we'll need to add one to
2965 	 * make sure the rounding in further calculations is correct
2966 	 * (always bias to the right), so just add 1 for all positive values.
2967 	 */
2968 	if (mid_min > 0)
2969 		mid_min++;
2970 	mid_min = mid_min / 2;
2971 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2972 		   __LINE__, mid_min);
2973 
2974 	/* Determine the amount we can change DQS (which is -mid_min) */
2975 	orig_mid_min = mid_min;
2976 	new_dqs = start_dqs;
2977 	mid_min = 0;
2978 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2979 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2980 	/* Initialize data for export structures */
2981 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2982 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2983 
2984 	/* add delay to bring centre of all DQ windows to the same "level" */
2985 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2986 		/* Use values before divide by 2 to reduce round off error */
2987 		shift_dq = (left_edge[i] - right_edge[i] -
2988 			(left_edge[min_index] - right_edge[min_index]))/2  +
2989 		(orig_mid_min - mid_min);
2990 
2991 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2992 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2993 
2994 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2995 		temp_dq_out1_delay = readl(addr + (i << 2));
2996 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2997 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2998 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2999 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
3000 			shift_dq = -(int32_t)temp_dq_out1_delay;
3001 		}
3002 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3003 			   i, shift_dq);
3004 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3005 		scc_mgr_load_dq(i);
3006 
3007 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3008 			   left_edge[i] - shift_dq + (-mid_min),
3009 			   right_edge[i] + shift_dq - (-mid_min));
3010 		/* To determine values for export structures */
3011 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3012 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3013 
3014 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3015 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3016 	}
3017 
3018 	/* Move DQS */
3019 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3020 	writel(0, &sdr_scc_mgr->update);
3021 
3022 	/* Centre DM */
3023 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3024 
3025 	/*
3026 	 * set the left and right edge of each bit to an illegal value,
3027 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3028 	 */
3029 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3030 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3031 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3033 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3034 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3035 	int32_t win_best = 0;
3036 
3037 	/* Search for the/part of the window with DM shift */
3038 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3039 		scc_mgr_apply_group_dm_out1_delay(d);
3040 		writel(0, &sdr_scc_mgr->update);
3041 
3042 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3043 						    PASS_ALL_BITS, &bit_chk,
3044 						    0)) {
3045 			/* USE Set current end of the window */
3046 			end_curr = -d;
3047 			/*
3048 			 * If a starting edge of our window has not been seen
3049 			 * this is our current start of the DM window.
3050 			 */
3051 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3052 				bgn_curr = -d;
3053 
3054 			/*
3055 			 * If current window is bigger than best seen.
3056 			 * Set best seen to be current window.
3057 			 */
3058 			if ((end_curr-bgn_curr+1) > win_best) {
3059 				win_best = end_curr-bgn_curr+1;
3060 				bgn_best = bgn_curr;
3061 				end_best = end_curr;
3062 			}
3063 		} else {
3064 			/* We just saw a failing test. Reset temp edge */
3065 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3066 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3067 			}
3068 		}
3069 
3070 
3071 	/* Reset DM delay chains to 0 */
3072 	scc_mgr_apply_group_dm_out1_delay(0);
3073 
3074 	/*
3075 	 * Check to see if the current window nudges up aganist 0 delay.
3076 	 * If so we need to continue the search by shifting DQS otherwise DQS
3077 	 * search begins as a new search. */
3078 	if (end_curr != 0) {
3079 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3080 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3081 	}
3082 
3083 	/* Search for the/part of the window with DQS shifts */
3084 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3085 		/*
3086 		 * Note: This only shifts DQS, so are we limiting ourselve to
3087 		 * width of DQ unnecessarily.
3088 		 */
3089 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3090 							d + new_dqs);
3091 
3092 		writel(0, &sdr_scc_mgr->update);
3093 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3094 						    PASS_ALL_BITS, &bit_chk,
3095 						    0)) {
3096 			/* USE Set current end of the window */
3097 			end_curr = d;
3098 			/*
3099 			 * If a beginning edge of our window has not been seen
3100 			 * this is our current begin of the DM window.
3101 			 */
3102 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3103 				bgn_curr = d;
3104 
3105 			/*
3106 			 * If current window is bigger than best seen. Set best
3107 			 * seen to be current window.
3108 			 */
3109 			if ((end_curr-bgn_curr+1) > win_best) {
3110 				win_best = end_curr-bgn_curr+1;
3111 				bgn_best = bgn_curr;
3112 				end_best = end_curr;
3113 			}
3114 		} else {
3115 			/* We just saw a failing test. Reset temp edge */
3116 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3117 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3118 
3119 			/* Early exit optimization: if ther remaining delay
3120 			chain space is less than already seen largest window
3121 			we can exit */
3122 			if ((win_best-1) >
3123 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3124 					break;
3125 				}
3126 			}
3127 		}
3128 
3129 	/* assign left and right edge for cal and reporting; */
3130 	left_edge[0] = -1*bgn_best;
3131 	right_edge[0] = end_best;
3132 
3133 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3134 		   __LINE__, left_edge[0], right_edge[0]);
3135 
3136 	/* Move DQS (back to orig) */
3137 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3138 
3139 	/* Move DM */
3140 
3141 	/* Find middle of window for the DM bit */
3142 	mid = (left_edge[0] - right_edge[0]) / 2;
3143 
3144 	/* only move right, since we are not moving DQS/DQ */
3145 	if (mid < 0)
3146 		mid = 0;
3147 
3148 	/* dm_marign should fail if we never find a window */
3149 	if (win_best == 0)
3150 		dm_margin = -1;
3151 	else
3152 		dm_margin = left_edge[0] - mid;
3153 
3154 	scc_mgr_apply_group_dm_out1_delay(mid);
3155 	writel(0, &sdr_scc_mgr->update);
3156 
3157 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3158 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3159 		   right_edge[0], mid, dm_margin);
3160 	/* Export values */
3161 	gbl->fom_out += dq_margin + dqs_margin;
3162 
3163 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3164 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3165 		   dq_margin, dqs_margin, dm_margin);
3166 
3167 	/*
3168 	 * Do not remove this line as it makes sure all of our
3169 	 * decisions have been applied.
3170 	 */
3171 	writel(0, &sdr_scc_mgr->update);
3172 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3173 }
3174 
3175 /* calibrate the write operations */
3176 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3177 	uint32_t test_bgn)
3178 {
3179 	/* update info for sims */
3180 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3181 
3182 	reg_file_set_stage(CAL_STAGE_WRITES);
3183 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3184 
3185 	reg_file_set_group(g);
3186 
3187 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3188 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3189 					CAL_SUBSTAGE_WRITES_CENTER);
3190 		return 0;
3191 	}
3192 
3193 	return 1;
3194 }
3195 
3196 /**
3197  * mem_precharge_and_activate() - Precharge all banks and activate
3198  *
3199  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3200  */
3201 static void mem_precharge_and_activate(void)
3202 {
3203 	int r;
3204 
3205 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3206 		/* Test if the rank should be skipped. */
3207 		if (param->skip_ranks[r])
3208 			continue;
3209 
3210 		/* Set rank. */
3211 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3212 
3213 		/* Precharge all banks. */
3214 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3215 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3216 
3217 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3218 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3219 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3220 
3221 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3222 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3223 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3224 
3225 		/* Activate rows. */
3226 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3227 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3228 	}
3229 }
3230 
3231 /**
3232  * mem_init_latency() - Configure memory RLAT and WLAT settings
3233  *
3234  * Configure memory RLAT and WLAT parameters.
3235  */
3236 static void mem_init_latency(void)
3237 {
3238 	/*
3239 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3240 	 * so max latency in AFI clocks, used here, is correspondingly
3241 	 * smaller.
3242 	 */
3243 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3244 	u32 rlat, wlat;
3245 
3246 	debug("%s:%d\n", __func__, __LINE__);
3247 
3248 	/*
3249 	 * Read in write latency.
3250 	 * WL for Hard PHY does not include additive latency.
3251 	 */
3252 	wlat = readl(&data_mgr->t_wl_add);
3253 	wlat += readl(&data_mgr->mem_t_add);
3254 
3255 	gbl->rw_wl_nop_cycles = wlat - 1;
3256 
3257 	/* Read in readl latency. */
3258 	rlat = readl(&data_mgr->t_rl_add);
3259 
3260 	/* Set a pretty high read latency initially. */
3261 	gbl->curr_read_lat = rlat + 16;
3262 	if (gbl->curr_read_lat > max_latency)
3263 		gbl->curr_read_lat = max_latency;
3264 
3265 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3266 
3267 	/* Advertise write latency. */
3268 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3269 }
3270 
3271 /**
3272  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3273  *
3274  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3275  */
3276 static void mem_skip_calibrate(void)
3277 {
3278 	uint32_t vfifo_offset;
3279 	uint32_t i, j, r;
3280 
3281 	debug("%s:%d\n", __func__, __LINE__);
3282 	/* Need to update every shadow register set used by the interface */
3283 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3284 	     r += NUM_RANKS_PER_SHADOW_REG) {
3285 		/*
3286 		 * Set output phase alignment settings appropriate for
3287 		 * skip calibration.
3288 		 */
3289 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3290 			scc_mgr_set_dqs_en_phase(i, 0);
3291 #if IO_DLL_CHAIN_LENGTH == 6
3292 			scc_mgr_set_dqdqs_output_phase(i, 6);
3293 #else
3294 			scc_mgr_set_dqdqs_output_phase(i, 7);
3295 #endif
3296 			/*
3297 			 * Case:33398
3298 			 *
3299 			 * Write data arrives to the I/O two cycles before write
3300 			 * latency is reached (720 deg).
3301 			 *   -> due to bit-slip in a/c bus
3302 			 *   -> to allow board skew where dqs is longer than ck
3303 			 *      -> how often can this happen!?
3304 			 *      -> can claim back some ptaps for high freq
3305 			 *       support if we can relax this, but i digress...
3306 			 *
3307 			 * The write_clk leads mem_ck by 90 deg
3308 			 * The minimum ptap of the OPA is 180 deg
3309 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3310 			 * The write_clk is always delayed by 2 ptaps
3311 			 *
3312 			 * Hence, to make DQS aligned to CK, we need to delay
3313 			 * DQS by:
3314 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3315 			 *
3316 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3317 			 * gives us the number of ptaps, which simplies to:
3318 			 *
3319 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3320 			 */
3321 			scc_mgr_set_dqdqs_output_phase(i,
3322 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3323 		}
3324 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3325 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3326 
3327 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3328 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3329 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3330 		}
3331 		writel(0xff, &sdr_scc_mgr->dq_ena);
3332 		writel(0xff, &sdr_scc_mgr->dm_ena);
3333 		writel(0, &sdr_scc_mgr->update);
3334 	}
3335 
3336 	/* Compensate for simulation model behaviour */
3337 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3338 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3339 		scc_mgr_load_dqs(i);
3340 	}
3341 	writel(0, &sdr_scc_mgr->update);
3342 
3343 	/*
3344 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3345 	 * in sequencer.
3346 	 */
3347 	vfifo_offset = CALIB_VFIFO_OFFSET;
3348 	for (j = 0; j < vfifo_offset; j++)
3349 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3350 	writel(0, &phy_mgr_cmd->fifo_reset);
3351 
3352 	/*
3353 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3354 	 * setting from generation-time constant.
3355 	 */
3356 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3357 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3358 }
3359 
3360 /**
3361  * mem_calibrate() - Memory calibration entry point.
3362  *
3363  * Perform memory calibration.
3364  */
3365 static uint32_t mem_calibrate(void)
3366 {
3367 	uint32_t i;
3368 	uint32_t rank_bgn, sr;
3369 	uint32_t write_group, write_test_bgn;
3370 	uint32_t read_group, read_test_bgn;
3371 	uint32_t run_groups, current_run;
3372 	uint32_t failing_groups = 0;
3373 	uint32_t group_failed = 0;
3374 
3375 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3376 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3377 
3378 	debug("%s:%d\n", __func__, __LINE__);
3379 
3380 	/* Initialize the data settings */
3381 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3382 	gbl->error_stage = CAL_STAGE_NIL;
3383 	gbl->error_group = 0xff;
3384 	gbl->fom_in = 0;
3385 	gbl->fom_out = 0;
3386 
3387 	/* Initialize WLAT and RLAT. */
3388 	mem_init_latency();
3389 
3390 	/* Initialize bit slips. */
3391 	mem_precharge_and_activate();
3392 
3393 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3394 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3395 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3396 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3397 		if (i == 0)
3398 			scc_mgr_set_hhp_extras();
3399 
3400 		scc_set_bypass_mode(i);
3401 	}
3402 
3403 	/* Calibration is skipped. */
3404 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3405 		/*
3406 		 * Set VFIFO and LFIFO to instant-on settings in skip
3407 		 * calibration mode.
3408 		 */
3409 		mem_skip_calibrate();
3410 
3411 		/*
3412 		 * Do not remove this line as it makes sure all of our
3413 		 * decisions have been applied.
3414 		 */
3415 		writel(0, &sdr_scc_mgr->update);
3416 		return 1;
3417 	}
3418 
3419 	/* Calibration is not skipped. */
3420 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3421 		/*
3422 		 * Zero all delay chain/phase settings for all
3423 		 * groups and all shadow register sets.
3424 		 */
3425 		scc_mgr_zero_all();
3426 
3427 		run_groups = ~param->skip_groups;
3428 
3429 		for (write_group = 0, write_test_bgn = 0; write_group
3430 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3431 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3432 
3433 			/* Initialize the group failure */
3434 			group_failed = 0;
3435 
3436 			current_run = run_groups & ((1 <<
3437 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3438 			run_groups = run_groups >>
3439 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3440 
3441 			if (current_run == 0)
3442 				continue;
3443 
3444 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3445 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3446 			scc_mgr_zero_group(write_group, 0);
3447 
3448 			for (read_group = write_group * rwdqs_ratio,
3449 			     read_test_bgn = 0;
3450 			     read_group < (write_group + 1) * rwdqs_ratio;
3451 			     read_group++,
3452 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3453 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3454 					continue;
3455 
3456 				/* Calibrate the VFIFO */
3457 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3458 							       read_test_bgn))
3459 					continue;
3460 
3461 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3462 					return 0;
3463 
3464 				/* The group failed, we're done. */
3465 				goto grp_failed;
3466 			}
3467 
3468 			/* Calibrate the output side */
3469 			for (rank_bgn = 0, sr = 0;
3470 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3471 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3472 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3473 					continue;
3474 
3475 				/* Not needed in quick mode! */
3476 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3477 					continue;
3478 
3479 				/*
3480 				 * Determine if this set of ranks
3481 				 * should be skipped entirely.
3482 				 */
3483 				if (param->skip_shadow_regs[sr])
3484 					continue;
3485 
3486 				/* Calibrate WRITEs */
3487 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3488 						write_group, write_test_bgn))
3489 					continue;
3490 
3491 				group_failed = 1;
3492 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3493 					return 0;
3494 			}
3495 
3496 			/* Some group failed, we're done. */
3497 			if (group_failed)
3498 				goto grp_failed;
3499 
3500 			for (read_group = write_group * rwdqs_ratio,
3501 			     read_test_bgn = 0;
3502 			     read_group < (write_group + 1) * rwdqs_ratio;
3503 			     read_group++,
3504 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3505 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3506 					continue;
3507 
3508 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3509 								read_test_bgn))
3510 					continue;
3511 
3512 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3513 					return 0;
3514 
3515 				/* The group failed, we're done. */
3516 				goto grp_failed;
3517 			}
3518 
3519 			/* No group failed, continue as usual. */
3520 			continue;
3521 
3522 grp_failed:		/* A group failed, increment the counter. */
3523 			failing_groups++;
3524 		}
3525 
3526 		/*
3527 		 * USER If there are any failing groups then report
3528 		 * the failure.
3529 		 */
3530 		if (failing_groups != 0)
3531 			return 0;
3532 
3533 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3534 			continue;
3535 
3536 		/*
3537 		 * If we're skipping groups as part of debug,
3538 		 * don't calibrate LFIFO.
3539 		 */
3540 		if (param->skip_groups != 0)
3541 			continue;
3542 
3543 		/* Calibrate the LFIFO */
3544 		if (!rw_mgr_mem_calibrate_lfifo())
3545 			return 0;
3546 	}
3547 
3548 	/*
3549 	 * Do not remove this line as it makes sure all of our decisions
3550 	 * have been applied.
3551 	 */
3552 	writel(0, &sdr_scc_mgr->update);
3553 	return 1;
3554 }
3555 
3556 /**
3557  * run_mem_calibrate() - Perform memory calibration
3558  *
3559  * This function triggers the entire memory calibration procedure.
3560  */
3561 static int run_mem_calibrate(void)
3562 {
3563 	int pass;
3564 
3565 	debug("%s:%d\n", __func__, __LINE__);
3566 
3567 	/* Reset pass/fail status shown on afi_cal_success/fail */
3568 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3569 
3570 	/* Stop tracking manager. */
3571 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3572 
3573 	phy_mgr_initialize();
3574 	rw_mgr_mem_initialize();
3575 
3576 	/* Perform the actual memory calibration. */
3577 	pass = mem_calibrate();
3578 
3579 	mem_precharge_and_activate();
3580 	writel(0, &phy_mgr_cmd->fifo_reset);
3581 
3582 	/* Handoff. */
3583 	rw_mgr_mem_handoff();
3584 	/*
3585 	 * In Hard PHY this is a 2-bit control:
3586 	 * 0: AFI Mux Select
3587 	 * 1: DDIO Mux Select
3588 	 */
3589 	writel(0x2, &phy_mgr_cfg->mux_sel);
3590 
3591 	/* Start tracking manager. */
3592 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3593 
3594 	return pass;
3595 }
3596 
3597 /**
3598  * debug_mem_calibrate() - Report result of memory calibration
3599  * @pass:	Value indicating whether calibration passed or failed
3600  *
3601  * This function reports the results of the memory calibration
3602  * and writes debug information into the register file.
3603  */
3604 static void debug_mem_calibrate(int pass)
3605 {
3606 	uint32_t debug_info;
3607 
3608 	if (pass) {
3609 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3610 
3611 		gbl->fom_in /= 2;
3612 		gbl->fom_out /= 2;
3613 
3614 		if (gbl->fom_in > 0xff)
3615 			gbl->fom_in = 0xff;
3616 
3617 		if (gbl->fom_out > 0xff)
3618 			gbl->fom_out = 0xff;
3619 
3620 		/* Update the FOM in the register file */
3621 		debug_info = gbl->fom_in;
3622 		debug_info |= gbl->fom_out << 8;
3623 		writel(debug_info, &sdr_reg_file->fom);
3624 
3625 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3626 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3627 	} else {
3628 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3629 
3630 		debug_info = gbl->error_stage;
3631 		debug_info |= gbl->error_substage << 8;
3632 		debug_info |= gbl->error_group << 16;
3633 
3634 		writel(debug_info, &sdr_reg_file->failing_stage);
3635 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3636 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3637 
3638 		/* Update the failing group/stage in the register file */
3639 		debug_info = gbl->error_stage;
3640 		debug_info |= gbl->error_substage << 8;
3641 		debug_info |= gbl->error_group << 16;
3642 		writel(debug_info, &sdr_reg_file->failing_stage);
3643 	}
3644 
3645 	printf("%s: Calibration complete\n", __FILE__);
3646 }
3647 
3648 /**
3649  * hc_initialize_rom_data() - Initialize ROM data
3650  *
3651  * Initialize ROM data.
3652  */
3653 static void hc_initialize_rom_data(void)
3654 {
3655 	u32 i, addr;
3656 
3657 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3658 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3659 		writel(inst_rom_init[i], addr + (i << 2));
3660 
3661 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3662 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3663 		writel(ac_rom_init[i], addr + (i << 2));
3664 }
3665 
3666 /**
3667  * initialize_reg_file() - Initialize SDR register file
3668  *
3669  * Initialize SDR register file.
3670  */
3671 static void initialize_reg_file(void)
3672 {
3673 	/* Initialize the register file with the correct data */
3674 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3675 	writel(0, &sdr_reg_file->debug_data_addr);
3676 	writel(0, &sdr_reg_file->cur_stage);
3677 	writel(0, &sdr_reg_file->fom);
3678 	writel(0, &sdr_reg_file->failing_stage);
3679 	writel(0, &sdr_reg_file->debug1);
3680 	writel(0, &sdr_reg_file->debug2);
3681 }
3682 
3683 /**
3684  * initialize_hps_phy() - Initialize HPS PHY
3685  *
3686  * Initialize HPS PHY.
3687  */
3688 static void initialize_hps_phy(void)
3689 {
3690 	uint32_t reg;
3691 	/*
3692 	 * Tracking also gets configured here because it's in the
3693 	 * same register.
3694 	 */
3695 	uint32_t trk_sample_count = 7500;
3696 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3697 	/*
3698 	 * Format is number of outer loops in the 16 MSB, sample
3699 	 * count in 16 LSB.
3700 	 */
3701 
3702 	reg = 0;
3703 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3704 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3705 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3706 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3707 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3708 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3709 	/*
3710 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3711 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3712 	 */
3713 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3714 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3715 		trk_sample_count);
3716 	writel(reg, &sdr_ctrl->phy_ctrl0);
3717 
3718 	reg = 0;
3719 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3720 		trk_sample_count >>
3721 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3722 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3723 		trk_long_idle_sample_count);
3724 	writel(reg, &sdr_ctrl->phy_ctrl1);
3725 
3726 	reg = 0;
3727 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3728 		trk_long_idle_sample_count >>
3729 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3730 	writel(reg, &sdr_ctrl->phy_ctrl2);
3731 }
3732 
3733 /**
3734  * initialize_tracking() - Initialize tracking
3735  *
3736  * Initialize the register file with usable initial data.
3737  */
3738 static void initialize_tracking(void)
3739 {
3740 	/*
3741 	 * Initialize the register file with the correct data.
3742 	 * Compute usable version of value in case we skip full
3743 	 * computation later.
3744 	 */
3745 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3746 	       &sdr_reg_file->dtaps_per_ptap);
3747 
3748 	/* trk_sample_count */
3749 	writel(7500, &sdr_reg_file->trk_sample_count);
3750 
3751 	/* longidle outer loop [15:0] */
3752 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3753 
3754 	/*
3755 	 * longidle sample count [31:24]
3756 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3757 	 * trcd, worst case [15:8]
3758 	 * vfifo wait [7:0]
3759 	 */
3760 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3761 	       &sdr_reg_file->delays);
3762 
3763 	/* mux delay */
3764 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3765 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3766 	       &sdr_reg_file->trk_rw_mgr_addr);
3767 
3768 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3769 	       &sdr_reg_file->trk_read_dqs_width);
3770 
3771 	/* trefi [7:0] */
3772 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3773 	       &sdr_reg_file->trk_rfsh);
3774 }
3775 
3776 int sdram_calibration_full(void)
3777 {
3778 	struct param_type my_param;
3779 	struct gbl_type my_gbl;
3780 	uint32_t pass;
3781 
3782 	memset(&my_param, 0, sizeof(my_param));
3783 	memset(&my_gbl, 0, sizeof(my_gbl));
3784 
3785 	param = &my_param;
3786 	gbl = &my_gbl;
3787 
3788 	/* Set the calibration enabled by default */
3789 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3790 	/*
3791 	 * Only sweep all groups (regardless of fail state) by default
3792 	 * Set enabled read test by default.
3793 	 */
3794 #if DISABLE_GUARANTEED_READ
3795 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3796 #endif
3797 	/* Initialize the register file */
3798 	initialize_reg_file();
3799 
3800 	/* Initialize any PHY CSR */
3801 	initialize_hps_phy();
3802 
3803 	scc_mgr_initialize();
3804 
3805 	initialize_tracking();
3806 
3807 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3808 
3809 	debug("%s:%d\n", __func__, __LINE__);
3810 	debug_cond(DLEVEL == 1,
3811 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3812 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3813 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3814 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3815 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3816 	debug_cond(DLEVEL == 1,
3817 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3818 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3819 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3820 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3821 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3822 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3823 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3824 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3825 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3826 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3827 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3828 		   IO_IO_OUT2_DELAY_MAX);
3829 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3830 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3831 
3832 	hc_initialize_rom_data();
3833 
3834 	/* update info for sims */
3835 	reg_file_set_stage(CAL_STAGE_NIL);
3836 	reg_file_set_group(0);
3837 
3838 	/*
3839 	 * Load global needed for those actions that require
3840 	 * some dynamic calibration support.
3841 	 */
3842 	dyn_calib_steps = STATIC_CALIB_STEPS;
3843 	/*
3844 	 * Load global to allow dynamic selection of delay loop settings
3845 	 * based on calibration mode.
3846 	 */
3847 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3848 		skip_delay_mask = 0xff;
3849 	else
3850 		skip_delay_mask = 0x0;
3851 
3852 	pass = run_mem_calibrate();
3853 	debug_mem_calibrate(pass);
3854 	return pass;
3855 }
3856