1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /* 1040 * performs a guaranteed read on the patterns we are going to use during a 1041 * read test to ensure memory works 1042 */ 1043 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1044 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1045 uint32_t all_ranks) 1046 { 1047 uint32_t r, vg; 1048 uint32_t correct_mask_vg; 1049 uint32_t tmp_bit_chk; 1050 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1051 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1052 uint32_t addr; 1053 uint32_t base_rw_mgr; 1054 1055 *bit_chk = param->read_correct_mask; 1056 correct_mask_vg = param->read_correct_mask_vg; 1057 1058 for (r = rank_bgn; r < rank_end; r++) { 1059 if (param->skip_ranks[r]) 1060 /* request to skip the rank */ 1061 continue; 1062 1063 /* set rank */ 1064 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1065 1066 /* Load up a constant bursts of read commands */ 1067 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1068 writel(RW_MGR_GUARANTEED_READ, 1069 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1070 1071 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1072 writel(RW_MGR_GUARANTEED_READ_CONT, 1073 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1074 1075 tmp_bit_chk = 0; 1076 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1077 /* reset the fifos to get pointers to known state */ 1078 1079 writel(0, &phy_mgr_cmd->fifo_reset); 1080 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1081 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1082 1083 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1084 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1085 1086 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1087 writel(RW_MGR_GUARANTEED_READ, addr + 1088 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1089 vg) << 2)); 1090 1091 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1092 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1093 1094 if (vg == 0) 1095 break; 1096 } 1097 *bit_chk &= tmp_bit_chk; 1098 } 1099 1100 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1101 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1102 1103 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1104 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1105 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1106 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1107 return *bit_chk == param->read_correct_mask; 1108 } 1109 1110 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1111 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1112 { 1113 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1114 num_tries, bit_chk, 1); 1115 } 1116 1117 /** 1118 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1119 * @rank_bgn: Rank number 1120 * @all_ranks: Test all ranks 1121 * 1122 * Load up the patterns we are going to use during a read test. 1123 */ 1124 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1125 const int all_ranks) 1126 { 1127 const u32 rank_end = all_ranks ? 1128 RW_MGR_MEM_NUMBER_OF_RANKS : 1129 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1130 u32 r; 1131 1132 debug("%s:%d\n", __func__, __LINE__); 1133 1134 for (r = rank_bgn; r < rank_end; r++) { 1135 if (param->skip_ranks[r]) 1136 /* request to skip the rank */ 1137 continue; 1138 1139 /* set rank */ 1140 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1141 1142 /* Load up a constant bursts */ 1143 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1144 1145 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1146 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1147 1148 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1149 1150 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1152 1153 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1154 1155 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1156 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1157 1158 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1159 1160 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1161 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1162 1163 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1164 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1165 } 1166 1167 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1168 } 1169 1170 /* 1171 * try a read and see if it returns correct data back. has dummy reads 1172 * inserted into the mix used to align dqs enable. has more thorough checks 1173 * than the regular read test. 1174 */ 1175 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1176 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1177 uint32_t all_groups, uint32_t all_ranks) 1178 { 1179 uint32_t r, vg; 1180 uint32_t correct_mask_vg; 1181 uint32_t tmp_bit_chk; 1182 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1183 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1184 uint32_t addr; 1185 uint32_t base_rw_mgr; 1186 1187 *bit_chk = param->read_correct_mask; 1188 correct_mask_vg = param->read_correct_mask_vg; 1189 1190 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1191 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1192 1193 for (r = rank_bgn; r < rank_end; r++) { 1194 if (param->skip_ranks[r]) 1195 /* request to skip the rank */ 1196 continue; 1197 1198 /* set rank */ 1199 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1200 1201 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1202 1203 writel(RW_MGR_READ_B2B_WAIT1, 1204 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1205 1206 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1207 writel(RW_MGR_READ_B2B_WAIT2, 1208 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1209 1210 if (quick_read_mode) 1211 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1212 /* need at least two (1+1) reads to capture failures */ 1213 else if (all_groups) 1214 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1215 else 1216 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1217 1218 writel(RW_MGR_READ_B2B, 1219 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1220 if (all_groups) 1221 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1222 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1223 &sdr_rw_load_mgr_regs->load_cntr3); 1224 else 1225 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1226 1227 writel(RW_MGR_READ_B2B, 1228 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1229 1230 tmp_bit_chk = 0; 1231 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1232 /* reset the fifos to get pointers to known state */ 1233 writel(0, &phy_mgr_cmd->fifo_reset); 1234 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1235 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1236 1237 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1238 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1239 1240 if (all_groups) 1241 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1242 else 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1244 1245 writel(RW_MGR_READ_B2B, addr + 1246 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1247 vg) << 2)); 1248 1249 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1250 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1251 1252 if (vg == 0) 1253 break; 1254 } 1255 *bit_chk &= tmp_bit_chk; 1256 } 1257 1258 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1259 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1260 1261 if (all_correct) { 1262 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1263 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1264 (%u == %u) => %lu", __func__, __LINE__, group, 1265 all_groups, *bit_chk, param->read_correct_mask, 1266 (long unsigned int)(*bit_chk == 1267 param->read_correct_mask)); 1268 return *bit_chk == param->read_correct_mask; 1269 } else { 1270 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1271 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1272 (%u != %lu) => %lu\n", __func__, __LINE__, 1273 group, all_groups, *bit_chk, (long unsigned int)0, 1274 (long unsigned int)(*bit_chk != 0x00)); 1275 return *bit_chk != 0x00; 1276 } 1277 } 1278 1279 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1280 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1281 uint32_t all_groups) 1282 { 1283 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1284 bit_chk, all_groups, 1); 1285 } 1286 1287 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1288 { 1289 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1290 (*v)++; 1291 } 1292 1293 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1294 { 1295 uint32_t i; 1296 1297 for (i = 0; i < VFIFO_SIZE-1; i++) 1298 rw_mgr_incr_vfifo(grp, v); 1299 } 1300 1301 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1302 { 1303 uint32_t v; 1304 uint32_t fail_cnt = 0; 1305 uint32_t test_status; 1306 1307 for (v = 0; v < VFIFO_SIZE; ) { 1308 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1309 __func__, __LINE__, v); 1310 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1311 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1312 if (!test_status) { 1313 fail_cnt++; 1314 1315 if (fail_cnt == 2) 1316 break; 1317 } 1318 1319 /* fiddle with FIFO */ 1320 rw_mgr_incr_vfifo(grp, &v); 1321 } 1322 1323 if (v >= VFIFO_SIZE) { 1324 /* no failing read found!! Something must have gone wrong */ 1325 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1326 __func__, __LINE__); 1327 return 0; 1328 } else { 1329 return v; 1330 } 1331 } 1332 1333 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1334 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1335 uint32_t *v, uint32_t *d, uint32_t *p, 1336 uint32_t *i, uint32_t *max_working_cnt) 1337 { 1338 uint32_t found_begin = 0; 1339 uint32_t tmp_delay = 0; 1340 uint32_t test_status; 1341 1342 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1343 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1344 *work_bgn = tmp_delay; 1345 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1346 1347 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1348 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1349 IO_DELAY_PER_OPA_TAP) { 1350 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1351 1352 test_status = 1353 rw_mgr_mem_calibrate_read_test_all_ranks 1354 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1355 1356 if (test_status) { 1357 *max_working_cnt = 1; 1358 found_begin = 1; 1359 break; 1360 } 1361 } 1362 1363 if (found_begin) 1364 break; 1365 1366 if (*p > IO_DQS_EN_PHASE_MAX) 1367 /* fiddle with FIFO */ 1368 rw_mgr_incr_vfifo(*grp, v); 1369 } 1370 1371 if (found_begin) 1372 break; 1373 } 1374 1375 if (*i >= VFIFO_SIZE) { 1376 /* cannot find working solution */ 1377 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1378 ptap/dtap\n", __func__, __LINE__); 1379 return 0; 1380 } else { 1381 return 1; 1382 } 1383 } 1384 1385 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1386 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1387 uint32_t *p, uint32_t *max_working_cnt) 1388 { 1389 uint32_t found_begin = 0; 1390 uint32_t tmp_delay; 1391 1392 /* Special case code for backing up a phase */ 1393 if (*p == 0) { 1394 *p = IO_DQS_EN_PHASE_MAX; 1395 rw_mgr_decr_vfifo(*grp, v); 1396 } else { 1397 (*p)--; 1398 } 1399 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1400 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1401 1402 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1403 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1404 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1405 1406 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1407 PASS_ONE_BIT, 1408 bit_chk, 0)) { 1409 found_begin = 1; 1410 *work_bgn = tmp_delay; 1411 break; 1412 } 1413 } 1414 1415 /* We have found a working dtap before the ptap found above */ 1416 if (found_begin == 1) 1417 (*max_working_cnt)++; 1418 1419 /* 1420 * Restore VFIFO to old state before we decremented it 1421 * (if needed). 1422 */ 1423 (*p)++; 1424 if (*p > IO_DQS_EN_PHASE_MAX) { 1425 *p = 0; 1426 rw_mgr_incr_vfifo(*grp, v); 1427 } 1428 1429 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1430 } 1431 1432 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1433 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1434 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1435 uint32_t *work_end) 1436 { 1437 uint32_t found_end = 0; 1438 1439 (*p)++; 1440 *work_end += IO_DELAY_PER_OPA_TAP; 1441 if (*p > IO_DQS_EN_PHASE_MAX) { 1442 /* fiddle with FIFO */ 1443 *p = 0; 1444 rw_mgr_incr_vfifo(*grp, v); 1445 } 1446 1447 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1448 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1449 += IO_DELAY_PER_OPA_TAP) { 1450 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1451 1452 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1453 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1454 found_end = 1; 1455 break; 1456 } else { 1457 (*max_working_cnt)++; 1458 } 1459 } 1460 1461 if (found_end) 1462 break; 1463 1464 if (*p > IO_DQS_EN_PHASE_MAX) { 1465 /* fiddle with FIFO */ 1466 rw_mgr_incr_vfifo(*grp, v); 1467 *p = 0; 1468 } 1469 } 1470 1471 if (*i >= VFIFO_SIZE + 1) { 1472 /* cannot see edge of failing read */ 1473 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1474 failed\n", __func__, __LINE__); 1475 return 0; 1476 } else { 1477 return 1; 1478 } 1479 } 1480 1481 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1482 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1483 uint32_t *p, uint32_t *work_mid, 1484 uint32_t *work_end) 1485 { 1486 int i; 1487 int tmp_delay = 0; 1488 1489 *work_mid = (*work_bgn + *work_end) / 2; 1490 1491 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1492 *work_bgn, *work_end, *work_mid); 1493 /* Get the middle delay to be less than a VFIFO delay */ 1494 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1495 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1496 ; 1497 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1498 while (*work_mid > tmp_delay) 1499 *work_mid -= tmp_delay; 1500 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1501 1502 tmp_delay = 0; 1503 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1504 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1505 ; 1506 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1507 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1508 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1509 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1510 ; 1511 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1512 1513 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1514 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1515 1516 /* 1517 * push vfifo until we can successfully calibrate. We can do this 1518 * because the largest possible margin in 1 VFIFO cycle. 1519 */ 1520 for (i = 0; i < VFIFO_SIZE; i++) { 1521 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1522 *v); 1523 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1524 PASS_ONE_BIT, 1525 bit_chk, 0)) { 1526 break; 1527 } 1528 1529 /* fiddle with FIFO */ 1530 rw_mgr_incr_vfifo(*grp, v); 1531 } 1532 1533 if (i >= VFIFO_SIZE) { 1534 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1535 failed\n", __func__, __LINE__); 1536 return 0; 1537 } else { 1538 return 1; 1539 } 1540 } 1541 1542 /* find a good dqs enable to use */ 1543 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1544 { 1545 uint32_t v, d, p, i; 1546 uint32_t max_working_cnt; 1547 uint32_t bit_chk; 1548 uint32_t dtaps_per_ptap; 1549 uint32_t work_bgn, work_mid, work_end; 1550 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1551 1552 debug("%s:%d %u\n", __func__, __LINE__, grp); 1553 1554 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1555 1556 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1557 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1558 1559 /* ************************************************************** */ 1560 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1561 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1562 1563 /* ********************************************************* */ 1564 /* * Step 1 : First push vfifo until we get a failing read * */ 1565 v = find_vfifo_read(grp, &bit_chk); 1566 1567 max_working_cnt = 0; 1568 1569 /* ******************************************************** */ 1570 /* * step 2: find first working phase, increment in ptaps * */ 1571 work_bgn = 0; 1572 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1573 &p, &i, &max_working_cnt) == 0) 1574 return 0; 1575 1576 work_end = work_bgn; 1577 1578 /* 1579 * If d is 0 then the working window covers a phase tap and 1580 * we can follow the old procedure otherwise, we've found the beginning, 1581 * and we need to increment the dtaps until we find the end. 1582 */ 1583 if (d == 0) { 1584 /* ********************************************************* */ 1585 /* * step 3a: if we have room, back off by one and 1586 increment in dtaps * */ 1587 1588 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1589 &max_working_cnt); 1590 1591 /* ********************************************************* */ 1592 /* * step 4a: go forward from working phase to non working 1593 phase, increment in ptaps * */ 1594 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1595 &i, &max_working_cnt, &work_end) == 0) 1596 return 0; 1597 1598 /* ********************************************************* */ 1599 /* * step 5a: back off one from last, increment in dtaps * */ 1600 1601 /* Special case code for backing up a phase */ 1602 if (p == 0) { 1603 p = IO_DQS_EN_PHASE_MAX; 1604 rw_mgr_decr_vfifo(grp, &v); 1605 } else { 1606 p = p - 1; 1607 } 1608 1609 work_end -= IO_DELAY_PER_OPA_TAP; 1610 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1611 1612 /* * The actual increment of dtaps is done outside of 1613 the if/else loop to share code */ 1614 d = 0; 1615 1616 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1617 vfifo=%u ptap=%u\n", __func__, __LINE__, 1618 v, p); 1619 } else { 1620 /* ******************************************************* */ 1621 /* * step 3-5b: Find the right edge of the window using 1622 delay taps * */ 1623 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1624 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1625 v, p, d, work_bgn); 1626 1627 work_end = work_bgn; 1628 1629 /* * The actual increment of dtaps is done outside of the 1630 if/else loop to share code */ 1631 1632 /* Only here to counterbalance a subtract later on which is 1633 not needed if this branch of the algorithm is taken */ 1634 max_working_cnt++; 1635 } 1636 1637 /* The dtap increment to find the failing edge is done here */ 1638 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1639 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1640 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1641 end-2: dtap=%u\n", __func__, __LINE__, d); 1642 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1643 1644 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1645 PASS_ONE_BIT, 1646 &bit_chk, 0)) { 1647 break; 1648 } 1649 } 1650 1651 /* Go back to working dtap */ 1652 if (d != 0) 1653 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1654 1655 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1656 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1657 v, p, d-1, work_end); 1658 1659 if (work_end < work_bgn) { 1660 /* nil range */ 1661 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1662 failed\n", __func__, __LINE__); 1663 return 0; 1664 } 1665 1666 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1667 __func__, __LINE__, work_bgn, work_end); 1668 1669 /* *************************************************************** */ 1670 /* 1671 * * We need to calculate the number of dtaps that equal a ptap 1672 * * To do that we'll back up a ptap and re-find the edge of the 1673 * * window using dtaps 1674 */ 1675 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1677 for tracking\n", __func__, __LINE__); 1678 1679 /* Special case code for backing up a phase */ 1680 if (p == 0) { 1681 p = IO_DQS_EN_PHASE_MAX; 1682 rw_mgr_decr_vfifo(grp, &v); 1683 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1684 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1685 v, p); 1686 } else { 1687 p = p - 1; 1688 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1689 phase only: v=%u p=%u", __func__, __LINE__, 1690 v, p); 1691 } 1692 1693 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1694 1695 /* 1696 * Increase dtap until we first see a passing read (in case the 1697 * window is smaller than a ptap), 1698 * and then a failing read to mark the edge of the window again 1699 */ 1700 1701 /* Find a passing read */ 1702 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1703 __func__, __LINE__); 1704 found_passing_read = 0; 1705 found_failing_read = 0; 1706 initial_failing_dtap = d; 1707 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1708 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1709 read d=%u\n", __func__, __LINE__, d); 1710 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1711 1712 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1713 PASS_ONE_BIT, 1714 &bit_chk, 0)) { 1715 found_passing_read = 1; 1716 break; 1717 } 1718 } 1719 1720 if (found_passing_read) { 1721 /* Find a failing read */ 1722 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1723 read\n", __func__, __LINE__); 1724 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1725 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1726 testing read d=%u\n", __func__, __LINE__, d); 1727 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1728 1729 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1730 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1731 found_failing_read = 1; 1732 break; 1733 } 1734 } 1735 } else { 1736 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1737 calculate dtaps", __func__, __LINE__); 1738 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1739 } 1740 1741 /* 1742 * The dynamically calculated dtaps_per_ptap is only valid if we 1743 * found a passing/failing read. If we didn't, it means d hit the max 1744 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1745 * statically calculated value. 1746 */ 1747 if (found_passing_read && found_failing_read) 1748 dtaps_per_ptap = d - initial_failing_dtap; 1749 1750 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1751 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1752 - %u = %u", __func__, __LINE__, d, 1753 initial_failing_dtap, dtaps_per_ptap); 1754 1755 /* ******************************************** */ 1756 /* * step 6: Find the centre of the window * */ 1757 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1758 &work_mid, &work_end) == 0) 1759 return 0; 1760 1761 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1762 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1763 v, p-1, d); 1764 return 1; 1765 } 1766 1767 /* 1768 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1769 * dq_in_delay values 1770 */ 1771 static uint32_t 1772 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1773 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1774 { 1775 uint32_t found; 1776 uint32_t i; 1777 uint32_t p; 1778 uint32_t d; 1779 uint32_t r; 1780 1781 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1782 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1783 /* we start at zero, so have one less dq to devide among */ 1784 1785 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1786 test_bgn); 1787 1788 /* try different dq_in_delays since the dq path is shorter than dqs */ 1789 1790 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1791 r += NUM_RANKS_PER_SHADOW_REG) { 1792 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1793 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1794 vfifo_find_dqs_", __func__, __LINE__); 1795 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1796 write_group, read_group); 1797 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1798 scc_mgr_set_dq_in_delay(p, d); 1799 scc_mgr_load_dq(p); 1800 } 1801 writel(0, &sdr_scc_mgr->update); 1802 } 1803 1804 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1805 1806 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1807 en_phase_sweep_dq", __func__, __LINE__); 1808 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1809 chain to zero\n", write_group, read_group, found); 1810 1811 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1812 r += NUM_RANKS_PER_SHADOW_REG) { 1813 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1814 i++, p++) { 1815 scc_mgr_set_dq_in_delay(p, 0); 1816 scc_mgr_load_dq(p); 1817 } 1818 writel(0, &sdr_scc_mgr->update); 1819 } 1820 1821 return found; 1822 } 1823 1824 /* per-bit deskew DQ and center */ 1825 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1826 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1827 uint32_t use_read_test, uint32_t update_fom) 1828 { 1829 uint32_t i, p, d, min_index; 1830 /* 1831 * Store these as signed since there are comparisons with 1832 * signed numbers. 1833 */ 1834 uint32_t bit_chk; 1835 uint32_t sticky_bit_chk; 1836 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1837 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1838 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1839 int32_t mid; 1840 int32_t orig_mid_min, mid_min; 1841 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1842 final_dqs_en; 1843 int32_t dq_margin, dqs_margin; 1844 uint32_t stop; 1845 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1846 uint32_t addr; 1847 1848 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1849 1850 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1851 start_dqs = readl(addr + (read_group << 2)); 1852 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1853 start_dqs_en = readl(addr + ((read_group << 2) 1854 - IO_DQS_EN_DELAY_OFFSET)); 1855 1856 /* set the left and right edge of each bit to an illegal value */ 1857 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1858 sticky_bit_chk = 0; 1859 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1860 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1861 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1862 } 1863 1864 /* Search for the left edge of the window for each bit */ 1865 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1866 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1867 1868 writel(0, &sdr_scc_mgr->update); 1869 1870 /* 1871 * Stop searching when the read test doesn't pass AND when 1872 * we've seen a passing read on every bit. 1873 */ 1874 if (use_read_test) { 1875 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1876 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1877 &bit_chk, 0, 0); 1878 } else { 1879 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1880 0, PASS_ONE_BIT, 1881 &bit_chk, 0); 1882 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1883 (read_group - (write_group * 1884 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1885 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1886 stop = (bit_chk == 0); 1887 } 1888 sticky_bit_chk = sticky_bit_chk | bit_chk; 1889 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1890 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1891 && %u", __func__, __LINE__, d, 1892 sticky_bit_chk, 1893 param->read_correct_mask, stop); 1894 1895 if (stop == 1) { 1896 break; 1897 } else { 1898 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1899 if (bit_chk & 1) { 1900 /* Remember a passing test as the 1901 left_edge */ 1902 left_edge[i] = d; 1903 } else { 1904 /* If a left edge has not been seen yet, 1905 then a future passing test will mark 1906 this edge as the right edge */ 1907 if (left_edge[i] == 1908 IO_IO_IN_DELAY_MAX + 1) { 1909 right_edge[i] = -(d + 1); 1910 } 1911 } 1912 bit_chk = bit_chk >> 1; 1913 } 1914 } 1915 } 1916 1917 /* Reset DQ delay chains to 0 */ 1918 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1919 sticky_bit_chk = 0; 1920 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1921 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1922 %d right_edge[%u]: %d\n", __func__, __LINE__, 1923 i, left_edge[i], i, right_edge[i]); 1924 1925 /* 1926 * Check for cases where we haven't found the left edge, 1927 * which makes our assignment of the the right edge invalid. 1928 * Reset it to the illegal value. 1929 */ 1930 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1931 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1932 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1933 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1934 right_edge[%u]: %d\n", __func__, __LINE__, 1935 i, right_edge[i]); 1936 } 1937 1938 /* 1939 * Reset sticky bit (except for bits where we have seen 1940 * both the left and right edge). 1941 */ 1942 sticky_bit_chk = sticky_bit_chk << 1; 1943 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1944 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1945 sticky_bit_chk = sticky_bit_chk | 1; 1946 } 1947 1948 if (i == 0) 1949 break; 1950 } 1951 1952 /* Search for the right edge of the window for each bit */ 1953 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1954 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1955 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1956 uint32_t delay = d + start_dqs_en; 1957 if (delay > IO_DQS_EN_DELAY_MAX) 1958 delay = IO_DQS_EN_DELAY_MAX; 1959 scc_mgr_set_dqs_en_delay(read_group, delay); 1960 } 1961 scc_mgr_load_dqs(read_group); 1962 1963 writel(0, &sdr_scc_mgr->update); 1964 1965 /* 1966 * Stop searching when the read test doesn't pass AND when 1967 * we've seen a passing read on every bit. 1968 */ 1969 if (use_read_test) { 1970 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1971 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1972 &bit_chk, 0, 0); 1973 } else { 1974 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1975 0, PASS_ONE_BIT, 1976 &bit_chk, 0); 1977 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1978 (read_group - (write_group * 1979 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1980 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1981 stop = (bit_chk == 0); 1982 } 1983 sticky_bit_chk = sticky_bit_chk | bit_chk; 1984 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1985 1986 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1987 %u && %u", __func__, __LINE__, d, 1988 sticky_bit_chk, param->read_correct_mask, stop); 1989 1990 if (stop == 1) { 1991 break; 1992 } else { 1993 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1994 if (bit_chk & 1) { 1995 /* Remember a passing test as 1996 the right_edge */ 1997 right_edge[i] = d; 1998 } else { 1999 if (d != 0) { 2000 /* If a right edge has not been 2001 seen yet, then a future passing 2002 test will mark this edge as the 2003 left edge */ 2004 if (right_edge[i] == 2005 IO_IO_IN_DELAY_MAX + 1) { 2006 left_edge[i] = -(d + 1); 2007 } 2008 } else { 2009 /* d = 0 failed, but it passed 2010 when testing the left edge, 2011 so it must be marginal, 2012 set it to -1 */ 2013 if (right_edge[i] == 2014 IO_IO_IN_DELAY_MAX + 1 && 2015 left_edge[i] != 2016 IO_IO_IN_DELAY_MAX 2017 + 1) { 2018 right_edge[i] = -1; 2019 } 2020 /* If a right edge has not been 2021 seen yet, then a future passing 2022 test will mark this edge as the 2023 left edge */ 2024 else if (right_edge[i] == 2025 IO_IO_IN_DELAY_MAX + 2026 1) { 2027 left_edge[i] = -(d + 1); 2028 } 2029 } 2030 } 2031 2032 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2033 d=%u]: ", __func__, __LINE__, d); 2034 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2035 (int)(bit_chk & 1), i, left_edge[i]); 2036 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2037 right_edge[i]); 2038 bit_chk = bit_chk >> 1; 2039 } 2040 } 2041 } 2042 2043 /* Check that all bits have a window */ 2044 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2045 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2046 %d right_edge[%u]: %d", __func__, __LINE__, 2047 i, left_edge[i], i, right_edge[i]); 2048 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2049 == IO_IO_IN_DELAY_MAX + 1)) { 2050 /* 2051 * Restore delay chain settings before letting the loop 2052 * in rw_mgr_mem_calibrate_vfifo to retry different 2053 * dqs/ck relationships. 2054 */ 2055 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2056 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2057 scc_mgr_set_dqs_en_delay(read_group, 2058 start_dqs_en); 2059 } 2060 scc_mgr_load_dqs(read_group); 2061 writel(0, &sdr_scc_mgr->update); 2062 2063 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2064 find edge [%u]: %d %d", __func__, __LINE__, 2065 i, left_edge[i], right_edge[i]); 2066 if (use_read_test) { 2067 set_failing_group_stage(read_group * 2068 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2069 CAL_STAGE_VFIFO, 2070 CAL_SUBSTAGE_VFIFO_CENTER); 2071 } else { 2072 set_failing_group_stage(read_group * 2073 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2074 CAL_STAGE_VFIFO_AFTER_WRITES, 2075 CAL_SUBSTAGE_VFIFO_CENTER); 2076 } 2077 return 0; 2078 } 2079 } 2080 2081 /* Find middle of window for each DQ bit */ 2082 mid_min = left_edge[0] - right_edge[0]; 2083 min_index = 0; 2084 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2085 mid = left_edge[i] - right_edge[i]; 2086 if (mid < mid_min) { 2087 mid_min = mid; 2088 min_index = i; 2089 } 2090 } 2091 2092 /* 2093 * -mid_min/2 represents the amount that we need to move DQS. 2094 * If mid_min is odd and positive we'll need to add one to 2095 * make sure the rounding in further calculations is correct 2096 * (always bias to the right), so just add 1 for all positive values. 2097 */ 2098 if (mid_min > 0) 2099 mid_min++; 2100 2101 mid_min = mid_min / 2; 2102 2103 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2104 __func__, __LINE__, mid_min, min_index); 2105 2106 /* Determine the amount we can change DQS (which is -mid_min) */ 2107 orig_mid_min = mid_min; 2108 new_dqs = start_dqs - mid_min; 2109 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2110 new_dqs = IO_DQS_IN_DELAY_MAX; 2111 else if (new_dqs < 0) 2112 new_dqs = 0; 2113 2114 mid_min = start_dqs - new_dqs; 2115 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2116 mid_min, new_dqs); 2117 2118 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2119 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2120 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2121 else if (start_dqs_en - mid_min < 0) 2122 mid_min += start_dqs_en - mid_min; 2123 } 2124 new_dqs = start_dqs - mid_min; 2125 2126 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2127 new_dqs=%d mid_min=%d\n", start_dqs, 2128 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2129 new_dqs, mid_min); 2130 2131 /* Initialize data for export structures */ 2132 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2133 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2134 2135 /* add delay to bring centre of all DQ windows to the same "level" */ 2136 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2137 /* Use values before divide by 2 to reduce round off error */ 2138 shift_dq = (left_edge[i] - right_edge[i] - 2139 (left_edge[min_index] - right_edge[min_index]))/2 + 2140 (orig_mid_min - mid_min); 2141 2142 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2143 shift_dq[%u]=%d\n", i, shift_dq); 2144 2145 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2146 temp_dq_in_delay1 = readl(addr + (p << 2)); 2147 temp_dq_in_delay2 = readl(addr + (i << 2)); 2148 2149 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2150 (int32_t)IO_IO_IN_DELAY_MAX) { 2151 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2152 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2153 shift_dq = -(int32_t)temp_dq_in_delay1; 2154 } 2155 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2156 shift_dq[%u]=%d\n", i, shift_dq); 2157 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2158 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2159 scc_mgr_load_dq(p); 2160 2161 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2162 left_edge[i] - shift_dq + (-mid_min), 2163 right_edge[i] + shift_dq - (-mid_min)); 2164 /* To determine values for export structures */ 2165 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2166 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2167 2168 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2169 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2170 } 2171 2172 final_dqs = new_dqs; 2173 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2174 final_dqs_en = start_dqs_en - mid_min; 2175 2176 /* Move DQS-en */ 2177 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2178 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2179 scc_mgr_load_dqs(read_group); 2180 } 2181 2182 /* Move DQS */ 2183 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2184 scc_mgr_load_dqs(read_group); 2185 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2186 dqs_margin=%d", __func__, __LINE__, 2187 dq_margin, dqs_margin); 2188 2189 /* 2190 * Do not remove this line as it makes sure all of our decisions 2191 * have been applied. Apply the update bit. 2192 */ 2193 writel(0, &sdr_scc_mgr->update); 2194 2195 return (dq_margin >= 0) && (dqs_margin >= 0); 2196 } 2197 2198 /** 2199 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2200 * @rw_group: Read/Write Group 2201 * @phase: DQ/DQS phase 2202 * 2203 * Because initially no communication ca be reliably performed with the memory 2204 * device, the sequencer uses a guaranteed write mechanism to write data into 2205 * the memory device. 2206 */ 2207 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2208 const u32 phase) 2209 { 2210 u32 bit_chk; 2211 int ret; 2212 2213 /* Set a particular DQ/DQS phase. */ 2214 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2215 2216 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2217 __func__, __LINE__, rw_group, phase); 2218 2219 /* 2220 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2221 * Load up the patterns used by read calibration using the 2222 * current DQDQS phase. 2223 */ 2224 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2225 2226 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2227 return 0; 2228 2229 /* 2230 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2231 * Back-to-Back reads of the patterns used for calibration. 2232 */ 2233 ret = rw_mgr_mem_calibrate_read_test_patterns_all_ranks(rw_group, 1, 2234 &bit_chk); 2235 if (!ret) { /* FIXME: 0 means failure in this old code :-( */ 2236 debug_cond(DLEVEL == 1, 2237 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2238 __func__, __LINE__, rw_group, phase); 2239 return -EIO; 2240 } 2241 2242 return 0; 2243 } 2244 2245 /** 2246 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2247 * @rw_group: Read/Write Group 2248 * @test_bgn: Rank at which the test begins 2249 * 2250 * DQS enable calibration ensures reliable capture of the DQ signal without 2251 * glitches on the DQS line. 2252 */ 2253 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2254 const u32 test_bgn) 2255 { 2256 int ret; 2257 2258 /* 2259 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2260 * DQS and DQS Eanble Signal Relationships. 2261 */ 2262 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay( 2263 rw_group, rw_group, test_bgn); 2264 if (!ret) /* FIXME: 0 means failure in this old code :-( */ 2265 return -EIO; 2266 2267 return 0; 2268 } 2269 2270 /** 2271 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2272 * @rw_group: Read/Write Group 2273 * @test_bgn: Rank at which the test begins 2274 * @use_read_test: Perform a read test 2275 * @update_fom: Update FOM 2276 * 2277 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2278 * within a group. 2279 */ 2280 static int 2281 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2282 const int use_read_test, 2283 const int update_fom) 2284 2285 { 2286 int ret, grp_calibrated; 2287 u32 rank_bgn, sr; 2288 2289 /* 2290 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2291 * Read per-bit deskew can be done on a per shadow register basis. 2292 */ 2293 grp_calibrated = 1; 2294 for (rank_bgn = 0, sr = 0; 2295 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2296 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2297 /* Check if this set of ranks should be skipped entirely. */ 2298 if (param->skip_shadow_regs[sr]) 2299 continue; 2300 2301 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2302 rw_group, test_bgn, 2303 use_read_test, 2304 update_fom); 2305 if (ret) 2306 continue; 2307 2308 grp_calibrated = 0; 2309 } 2310 2311 if (!grp_calibrated) 2312 return -EIO; 2313 2314 return 0; 2315 } 2316 2317 /** 2318 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2319 * @rw_group: Read/Write Group 2320 * @test_bgn: Rank at which the test begins 2321 * 2322 * Stage 1: Calibrate the read valid prediction FIFO. 2323 * 2324 * This function implements UniPHY calibration Stage 1, as explained in 2325 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2326 * 2327 * - read valid prediction will consist of finding: 2328 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2329 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2330 * - we also do a per-bit deskew on the DQ lines. 2331 */ 2332 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2333 { 2334 uint32_t p, d; 2335 uint32_t dtaps_per_ptap; 2336 uint32_t failed_substage; 2337 2338 int ret; 2339 2340 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2341 2342 /* Update info for sims */ 2343 reg_file_set_group(rw_group); 2344 reg_file_set_stage(CAL_STAGE_VFIFO); 2345 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2346 2347 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2348 2349 /* USER Determine number of delay taps for each phase tap. */ 2350 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2351 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2352 2353 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2354 /* 2355 * In RLDRAMX we may be messing the delay of pins in 2356 * the same write rw_group but outside of the current read 2357 * the rw_group, but that's ok because we haven't calibrated 2358 * output side yet. 2359 */ 2360 if (d > 0) { 2361 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2362 rw_group, d); 2363 } 2364 2365 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2366 /* 1) Guaranteed Write */ 2367 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2368 if (ret) 2369 break; 2370 2371 /* 2) DQS Enable Calibration */ 2372 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2373 test_bgn); 2374 if (ret) { 2375 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2376 continue; 2377 } 2378 2379 /* 3) Centering DQ/DQS */ 2380 /* 2381 * If doing read after write calibration, do not update 2382 * FOM now. Do it then. 2383 */ 2384 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2385 test_bgn, 1, 0); 2386 if (ret) { 2387 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2388 continue; 2389 } 2390 2391 /* All done. */ 2392 goto cal_done_ok; 2393 } 2394 } 2395 2396 /* Calibration Stage 1 failed. */ 2397 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2398 return 0; 2399 2400 /* Calibration Stage 1 completed OK. */ 2401 cal_done_ok: 2402 /* 2403 * Reset the delay chains back to zero if they have moved > 1 2404 * (check for > 1 because loop will increase d even when pass in 2405 * first case). 2406 */ 2407 if (d > 2) 2408 scc_mgr_zero_group(rw_group, 1); 2409 2410 return 1; 2411 } 2412 2413 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2414 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2415 uint32_t test_bgn) 2416 { 2417 uint32_t rank_bgn, sr; 2418 uint32_t grp_calibrated; 2419 uint32_t write_group; 2420 2421 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2422 2423 /* update info for sims */ 2424 2425 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2426 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2427 2428 write_group = read_group; 2429 2430 /* update info for sims */ 2431 reg_file_set_group(read_group); 2432 2433 grp_calibrated = 1; 2434 /* Read per-bit deskew can be done on a per shadow register basis */ 2435 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2436 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2437 /* Determine if this set of ranks should be skipped entirely */ 2438 if (!param->skip_shadow_regs[sr]) { 2439 /* This is the last calibration round, update FOM here */ 2440 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2441 write_group, 2442 read_group, 2443 test_bgn, 0, 2444 1)) { 2445 grp_calibrated = 0; 2446 } 2447 } 2448 } 2449 2450 2451 if (grp_calibrated == 0) { 2452 set_failing_group_stage(write_group, 2453 CAL_STAGE_VFIFO_AFTER_WRITES, 2454 CAL_SUBSTAGE_VFIFO_CENTER); 2455 return 0; 2456 } 2457 2458 return 1; 2459 } 2460 2461 /* Calibrate LFIFO to find smallest read latency */ 2462 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2463 { 2464 uint32_t found_one; 2465 uint32_t bit_chk; 2466 2467 debug("%s:%d\n", __func__, __LINE__); 2468 2469 /* update info for sims */ 2470 reg_file_set_stage(CAL_STAGE_LFIFO); 2471 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2472 2473 /* Load up the patterns used by read calibration for all ranks */ 2474 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2475 found_one = 0; 2476 2477 do { 2478 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2479 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2480 __func__, __LINE__, gbl->curr_read_lat); 2481 2482 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2483 NUM_READ_TESTS, 2484 PASS_ALL_BITS, 2485 &bit_chk, 1)) { 2486 break; 2487 } 2488 2489 found_one = 1; 2490 /* reduce read latency and see if things are working */ 2491 /* correctly */ 2492 gbl->curr_read_lat--; 2493 } while (gbl->curr_read_lat > 0); 2494 2495 /* reset the fifos to get pointers to known state */ 2496 2497 writel(0, &phy_mgr_cmd->fifo_reset); 2498 2499 if (found_one) { 2500 /* add a fudge factor to the read latency that was determined */ 2501 gbl->curr_read_lat += 2; 2502 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2503 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2504 read_lat=%u\n", __func__, __LINE__, 2505 gbl->curr_read_lat); 2506 return 1; 2507 } else { 2508 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2509 CAL_SUBSTAGE_READ_LATENCY); 2510 2511 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2512 read_lat=%u\n", __func__, __LINE__, 2513 gbl->curr_read_lat); 2514 return 0; 2515 } 2516 } 2517 2518 /* 2519 * issue write test command. 2520 * two variants are provided. one that just tests a write pattern and 2521 * another that tests datamask functionality. 2522 */ 2523 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2524 uint32_t test_dm) 2525 { 2526 uint32_t mcc_instruction; 2527 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2528 ENABLE_SUPER_QUICK_CALIBRATION); 2529 uint32_t rw_wl_nop_cycles; 2530 uint32_t addr; 2531 2532 /* 2533 * Set counter and jump addresses for the right 2534 * number of NOP cycles. 2535 * The number of supported NOP cycles can range from -1 to infinity 2536 * Three different cases are handled: 2537 * 2538 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2539 * mechanism will be used to insert the right number of NOPs 2540 * 2541 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2542 * issuing the write command will jump straight to the 2543 * micro-instruction that turns on DQS (for DDRx), or outputs write 2544 * data (for RLD), skipping 2545 * the NOP micro-instruction all together 2546 * 2547 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2548 * turned on in the same micro-instruction that issues the write 2549 * command. Then we need 2550 * to directly jump to the micro-instruction that sends out the data 2551 * 2552 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2553 * (2 and 3). One jump-counter (0) is used to perform multiple 2554 * write-read operations. 2555 * one counter left to issue this command in "multiple-group" mode 2556 */ 2557 2558 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2559 2560 if (rw_wl_nop_cycles == -1) { 2561 /* 2562 * CNTR 2 - We want to execute the special write operation that 2563 * turns on DQS right away and then skip directly to the 2564 * instruction that sends out the data. We set the counter to a 2565 * large number so that the jump is always taken. 2566 */ 2567 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2568 2569 /* CNTR 3 - Not used */ 2570 if (test_dm) { 2571 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2572 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2573 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2574 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2575 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2576 } else { 2577 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2578 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2579 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2580 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2581 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2582 } 2583 } else if (rw_wl_nop_cycles == 0) { 2584 /* 2585 * CNTR 2 - We want to skip the NOP operation and go straight 2586 * to the DQS enable instruction. We set the counter to a large 2587 * number so that the jump is always taken. 2588 */ 2589 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2590 2591 /* CNTR 3 - Not used */ 2592 if (test_dm) { 2593 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2594 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2595 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2596 } else { 2597 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2598 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2599 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2600 } 2601 } else { 2602 /* 2603 * CNTR 2 - In this case we want to execute the next instruction 2604 * and NOT take the jump. So we set the counter to 0. The jump 2605 * address doesn't count. 2606 */ 2607 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2608 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2609 2610 /* 2611 * CNTR 3 - Set the nop counter to the number of cycles we 2612 * need to loop for, minus 1. 2613 */ 2614 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2615 if (test_dm) { 2616 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2617 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2618 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2619 } else { 2620 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2621 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2622 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2623 } 2624 } 2625 2626 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2627 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2628 2629 if (quick_write_mode) 2630 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2631 else 2632 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2633 2634 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2635 2636 /* 2637 * CNTR 1 - This is used to ensure enough time elapses 2638 * for read data to come back. 2639 */ 2640 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2641 2642 if (test_dm) { 2643 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2644 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2645 } else { 2646 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2647 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2648 } 2649 2650 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2651 writel(mcc_instruction, addr + (group << 2)); 2652 } 2653 2654 /* Test writes, can check for a single bit pass or multiple bit pass */ 2655 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2656 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2657 uint32_t *bit_chk, uint32_t all_ranks) 2658 { 2659 uint32_t r; 2660 uint32_t correct_mask_vg; 2661 uint32_t tmp_bit_chk; 2662 uint32_t vg; 2663 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2664 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2665 uint32_t addr_rw_mgr; 2666 uint32_t base_rw_mgr; 2667 2668 *bit_chk = param->write_correct_mask; 2669 correct_mask_vg = param->write_correct_mask_vg; 2670 2671 for (r = rank_bgn; r < rank_end; r++) { 2672 if (param->skip_ranks[r]) { 2673 /* request to skip the rank */ 2674 continue; 2675 } 2676 2677 /* set rank */ 2678 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2679 2680 tmp_bit_chk = 0; 2681 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2682 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2683 /* reset the fifos to get pointers to known state */ 2684 writel(0, &phy_mgr_cmd->fifo_reset); 2685 2686 tmp_bit_chk = tmp_bit_chk << 2687 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2688 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2689 rw_mgr_mem_calibrate_write_test_issue(write_group * 2690 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2691 use_dm); 2692 2693 base_rw_mgr = readl(addr_rw_mgr); 2694 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2695 if (vg == 0) 2696 break; 2697 } 2698 *bit_chk &= tmp_bit_chk; 2699 } 2700 2701 if (all_correct) { 2702 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2703 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2704 %u => %lu", write_group, use_dm, 2705 *bit_chk, param->write_correct_mask, 2706 (long unsigned int)(*bit_chk == 2707 param->write_correct_mask)); 2708 return *bit_chk == param->write_correct_mask; 2709 } else { 2710 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2711 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2712 write_group, use_dm, *bit_chk); 2713 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2714 (long unsigned int)(*bit_chk != 0)); 2715 return *bit_chk != 0x00; 2716 } 2717 } 2718 2719 /* 2720 * center all windows. do per-bit-deskew to possibly increase size of 2721 * certain windows. 2722 */ 2723 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2724 uint32_t write_group, uint32_t test_bgn) 2725 { 2726 uint32_t i, p, min_index; 2727 int32_t d; 2728 /* 2729 * Store these as signed since there are comparisons with 2730 * signed numbers. 2731 */ 2732 uint32_t bit_chk; 2733 uint32_t sticky_bit_chk; 2734 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2735 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2736 int32_t mid; 2737 int32_t mid_min, orig_mid_min; 2738 int32_t new_dqs, start_dqs, shift_dq; 2739 int32_t dq_margin, dqs_margin, dm_margin; 2740 uint32_t stop; 2741 uint32_t temp_dq_out1_delay; 2742 uint32_t addr; 2743 2744 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2745 2746 dm_margin = 0; 2747 2748 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2749 start_dqs = readl(addr + 2750 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2751 2752 /* per-bit deskew */ 2753 2754 /* 2755 * set the left and right edge of each bit to an illegal value 2756 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2757 */ 2758 sticky_bit_chk = 0; 2759 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2760 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2761 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2762 } 2763 2764 /* Search for the left edge of the window for each bit */ 2765 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2766 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2767 2768 writel(0, &sdr_scc_mgr->update); 2769 2770 /* 2771 * Stop searching when the read test doesn't pass AND when 2772 * we've seen a passing read on every bit. 2773 */ 2774 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2775 0, PASS_ONE_BIT, &bit_chk, 0); 2776 sticky_bit_chk = sticky_bit_chk | bit_chk; 2777 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2778 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2779 == %u && %u [bit_chk= %u ]\n", 2780 d, sticky_bit_chk, param->write_correct_mask, 2781 stop, bit_chk); 2782 2783 if (stop == 1) { 2784 break; 2785 } else { 2786 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2787 if (bit_chk & 1) { 2788 /* 2789 * Remember a passing test as the 2790 * left_edge. 2791 */ 2792 left_edge[i] = d; 2793 } else { 2794 /* 2795 * If a left edge has not been seen 2796 * yet, then a future passing test will 2797 * mark this edge as the right edge. 2798 */ 2799 if (left_edge[i] == 2800 IO_IO_OUT1_DELAY_MAX + 1) { 2801 right_edge[i] = -(d + 1); 2802 } 2803 } 2804 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2805 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2806 (int)(bit_chk & 1), i, left_edge[i]); 2807 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2808 right_edge[i]); 2809 bit_chk = bit_chk >> 1; 2810 } 2811 } 2812 } 2813 2814 /* Reset DQ delay chains to 0 */ 2815 scc_mgr_apply_group_dq_out1_delay(0); 2816 sticky_bit_chk = 0; 2817 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2818 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2819 %d right_edge[%u]: %d\n", __func__, __LINE__, 2820 i, left_edge[i], i, right_edge[i]); 2821 2822 /* 2823 * Check for cases where we haven't found the left edge, 2824 * which makes our assignment of the the right edge invalid. 2825 * Reset it to the illegal value. 2826 */ 2827 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2828 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2829 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2830 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2831 right_edge[%u]: %d\n", __func__, __LINE__, 2832 i, right_edge[i]); 2833 } 2834 2835 /* 2836 * Reset sticky bit (except for bits where we have 2837 * seen the left edge). 2838 */ 2839 sticky_bit_chk = sticky_bit_chk << 1; 2840 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2841 sticky_bit_chk = sticky_bit_chk | 1; 2842 2843 if (i == 0) 2844 break; 2845 } 2846 2847 /* Search for the right edge of the window for each bit */ 2848 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2849 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2850 d + start_dqs); 2851 2852 writel(0, &sdr_scc_mgr->update); 2853 2854 /* 2855 * Stop searching when the read test doesn't pass AND when 2856 * we've seen a passing read on every bit. 2857 */ 2858 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2859 0, PASS_ONE_BIT, &bit_chk, 0); 2860 2861 sticky_bit_chk = sticky_bit_chk | bit_chk; 2862 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2863 2864 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2865 %u && %u\n", d, sticky_bit_chk, 2866 param->write_correct_mask, stop); 2867 2868 if (stop == 1) { 2869 if (d == 0) { 2870 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2871 i++) { 2872 /* d = 0 failed, but it passed when 2873 testing the left edge, so it must be 2874 marginal, set it to -1 */ 2875 if (right_edge[i] == 2876 IO_IO_OUT1_DELAY_MAX + 1 && 2877 left_edge[i] != 2878 IO_IO_OUT1_DELAY_MAX + 1) { 2879 right_edge[i] = -1; 2880 } 2881 } 2882 } 2883 break; 2884 } else { 2885 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2886 if (bit_chk & 1) { 2887 /* 2888 * Remember a passing test as 2889 * the right_edge. 2890 */ 2891 right_edge[i] = d; 2892 } else { 2893 if (d != 0) { 2894 /* 2895 * If a right edge has not 2896 * been seen yet, then a future 2897 * passing test will mark this 2898 * edge as the left edge. 2899 */ 2900 if (right_edge[i] == 2901 IO_IO_OUT1_DELAY_MAX + 1) 2902 left_edge[i] = -(d + 1); 2903 } else { 2904 /* 2905 * d = 0 failed, but it passed 2906 * when testing the left edge, 2907 * so it must be marginal, set 2908 * it to -1. 2909 */ 2910 if (right_edge[i] == 2911 IO_IO_OUT1_DELAY_MAX + 1 && 2912 left_edge[i] != 2913 IO_IO_OUT1_DELAY_MAX + 1) 2914 right_edge[i] = -1; 2915 /* 2916 * If a right edge has not been 2917 * seen yet, then a future 2918 * passing test will mark this 2919 * edge as the left edge. 2920 */ 2921 else if (right_edge[i] == 2922 IO_IO_OUT1_DELAY_MAX + 2923 1) 2924 left_edge[i] = -(d + 1); 2925 } 2926 } 2927 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2928 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2929 (int)(bit_chk & 1), i, left_edge[i]); 2930 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2931 right_edge[i]); 2932 bit_chk = bit_chk >> 1; 2933 } 2934 } 2935 } 2936 2937 /* Check that all bits have a window */ 2938 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2939 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2940 %d right_edge[%u]: %d", __func__, __LINE__, 2941 i, left_edge[i], i, right_edge[i]); 2942 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2943 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2944 set_failing_group_stage(test_bgn + i, 2945 CAL_STAGE_WRITES, 2946 CAL_SUBSTAGE_WRITES_CENTER); 2947 return 0; 2948 } 2949 } 2950 2951 /* Find middle of window for each DQ bit */ 2952 mid_min = left_edge[0] - right_edge[0]; 2953 min_index = 0; 2954 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2955 mid = left_edge[i] - right_edge[i]; 2956 if (mid < mid_min) { 2957 mid_min = mid; 2958 min_index = i; 2959 } 2960 } 2961 2962 /* 2963 * -mid_min/2 represents the amount that we need to move DQS. 2964 * If mid_min is odd and positive we'll need to add one to 2965 * make sure the rounding in further calculations is correct 2966 * (always bias to the right), so just add 1 for all positive values. 2967 */ 2968 if (mid_min > 0) 2969 mid_min++; 2970 mid_min = mid_min / 2; 2971 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2972 __LINE__, mid_min); 2973 2974 /* Determine the amount we can change DQS (which is -mid_min) */ 2975 orig_mid_min = mid_min; 2976 new_dqs = start_dqs; 2977 mid_min = 0; 2978 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2979 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2980 /* Initialize data for export structures */ 2981 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2982 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2983 2984 /* add delay to bring centre of all DQ windows to the same "level" */ 2985 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2986 /* Use values before divide by 2 to reduce round off error */ 2987 shift_dq = (left_edge[i] - right_edge[i] - 2988 (left_edge[min_index] - right_edge[min_index]))/2 + 2989 (orig_mid_min - mid_min); 2990 2991 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2992 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2993 2994 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2995 temp_dq_out1_delay = readl(addr + (i << 2)); 2996 if (shift_dq + (int32_t)temp_dq_out1_delay > 2997 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2998 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2999 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 3000 shift_dq = -(int32_t)temp_dq_out1_delay; 3001 } 3002 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 3003 i, shift_dq); 3004 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 3005 scc_mgr_load_dq(i); 3006 3007 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 3008 left_edge[i] - shift_dq + (-mid_min), 3009 right_edge[i] + shift_dq - (-mid_min)); 3010 /* To determine values for export structures */ 3011 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3012 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3013 3014 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3015 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3016 } 3017 3018 /* Move DQS */ 3019 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3020 writel(0, &sdr_scc_mgr->update); 3021 3022 /* Centre DM */ 3023 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3024 3025 /* 3026 * set the left and right edge of each bit to an illegal value, 3027 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3028 */ 3029 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3030 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3031 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3033 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3034 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3035 int32_t win_best = 0; 3036 3037 /* Search for the/part of the window with DM shift */ 3038 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3039 scc_mgr_apply_group_dm_out1_delay(d); 3040 writel(0, &sdr_scc_mgr->update); 3041 3042 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3043 PASS_ALL_BITS, &bit_chk, 3044 0)) { 3045 /* USE Set current end of the window */ 3046 end_curr = -d; 3047 /* 3048 * If a starting edge of our window has not been seen 3049 * this is our current start of the DM window. 3050 */ 3051 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3052 bgn_curr = -d; 3053 3054 /* 3055 * If current window is bigger than best seen. 3056 * Set best seen to be current window. 3057 */ 3058 if ((end_curr-bgn_curr+1) > win_best) { 3059 win_best = end_curr-bgn_curr+1; 3060 bgn_best = bgn_curr; 3061 end_best = end_curr; 3062 } 3063 } else { 3064 /* We just saw a failing test. Reset temp edge */ 3065 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3066 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3067 } 3068 } 3069 3070 3071 /* Reset DM delay chains to 0 */ 3072 scc_mgr_apply_group_dm_out1_delay(0); 3073 3074 /* 3075 * Check to see if the current window nudges up aganist 0 delay. 3076 * If so we need to continue the search by shifting DQS otherwise DQS 3077 * search begins as a new search. */ 3078 if (end_curr != 0) { 3079 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3080 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3081 } 3082 3083 /* Search for the/part of the window with DQS shifts */ 3084 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3085 /* 3086 * Note: This only shifts DQS, so are we limiting ourselve to 3087 * width of DQ unnecessarily. 3088 */ 3089 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3090 d + new_dqs); 3091 3092 writel(0, &sdr_scc_mgr->update); 3093 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3094 PASS_ALL_BITS, &bit_chk, 3095 0)) { 3096 /* USE Set current end of the window */ 3097 end_curr = d; 3098 /* 3099 * If a beginning edge of our window has not been seen 3100 * this is our current begin of the DM window. 3101 */ 3102 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3103 bgn_curr = d; 3104 3105 /* 3106 * If current window is bigger than best seen. Set best 3107 * seen to be current window. 3108 */ 3109 if ((end_curr-bgn_curr+1) > win_best) { 3110 win_best = end_curr-bgn_curr+1; 3111 bgn_best = bgn_curr; 3112 end_best = end_curr; 3113 } 3114 } else { 3115 /* We just saw a failing test. Reset temp edge */ 3116 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3117 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3118 3119 /* Early exit optimization: if ther remaining delay 3120 chain space is less than already seen largest window 3121 we can exit */ 3122 if ((win_best-1) > 3123 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3124 break; 3125 } 3126 } 3127 } 3128 3129 /* assign left and right edge for cal and reporting; */ 3130 left_edge[0] = -1*bgn_best; 3131 right_edge[0] = end_best; 3132 3133 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3134 __LINE__, left_edge[0], right_edge[0]); 3135 3136 /* Move DQS (back to orig) */ 3137 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3138 3139 /* Move DM */ 3140 3141 /* Find middle of window for the DM bit */ 3142 mid = (left_edge[0] - right_edge[0]) / 2; 3143 3144 /* only move right, since we are not moving DQS/DQ */ 3145 if (mid < 0) 3146 mid = 0; 3147 3148 /* dm_marign should fail if we never find a window */ 3149 if (win_best == 0) 3150 dm_margin = -1; 3151 else 3152 dm_margin = left_edge[0] - mid; 3153 3154 scc_mgr_apply_group_dm_out1_delay(mid); 3155 writel(0, &sdr_scc_mgr->update); 3156 3157 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3158 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3159 right_edge[0], mid, dm_margin); 3160 /* Export values */ 3161 gbl->fom_out += dq_margin + dqs_margin; 3162 3163 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3164 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3165 dq_margin, dqs_margin, dm_margin); 3166 3167 /* 3168 * Do not remove this line as it makes sure all of our 3169 * decisions have been applied. 3170 */ 3171 writel(0, &sdr_scc_mgr->update); 3172 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3173 } 3174 3175 /* calibrate the write operations */ 3176 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3177 uint32_t test_bgn) 3178 { 3179 /* update info for sims */ 3180 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3181 3182 reg_file_set_stage(CAL_STAGE_WRITES); 3183 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3184 3185 reg_file_set_group(g); 3186 3187 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3188 set_failing_group_stage(g, CAL_STAGE_WRITES, 3189 CAL_SUBSTAGE_WRITES_CENTER); 3190 return 0; 3191 } 3192 3193 return 1; 3194 } 3195 3196 /** 3197 * mem_precharge_and_activate() - Precharge all banks and activate 3198 * 3199 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3200 */ 3201 static void mem_precharge_and_activate(void) 3202 { 3203 int r; 3204 3205 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3206 /* Test if the rank should be skipped. */ 3207 if (param->skip_ranks[r]) 3208 continue; 3209 3210 /* Set rank. */ 3211 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3212 3213 /* Precharge all banks. */ 3214 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3215 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3216 3217 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3218 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3219 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3220 3221 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3222 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3223 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3224 3225 /* Activate rows. */ 3226 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3227 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3228 } 3229 } 3230 3231 /** 3232 * mem_init_latency() - Configure memory RLAT and WLAT settings 3233 * 3234 * Configure memory RLAT and WLAT parameters. 3235 */ 3236 static void mem_init_latency(void) 3237 { 3238 /* 3239 * For AV/CV, LFIFO is hardened and always runs at full rate 3240 * so max latency in AFI clocks, used here, is correspondingly 3241 * smaller. 3242 */ 3243 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3244 u32 rlat, wlat; 3245 3246 debug("%s:%d\n", __func__, __LINE__); 3247 3248 /* 3249 * Read in write latency. 3250 * WL for Hard PHY does not include additive latency. 3251 */ 3252 wlat = readl(&data_mgr->t_wl_add); 3253 wlat += readl(&data_mgr->mem_t_add); 3254 3255 gbl->rw_wl_nop_cycles = wlat - 1; 3256 3257 /* Read in readl latency. */ 3258 rlat = readl(&data_mgr->t_rl_add); 3259 3260 /* Set a pretty high read latency initially. */ 3261 gbl->curr_read_lat = rlat + 16; 3262 if (gbl->curr_read_lat > max_latency) 3263 gbl->curr_read_lat = max_latency; 3264 3265 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3266 3267 /* Advertise write latency. */ 3268 writel(wlat, &phy_mgr_cfg->afi_wlat); 3269 } 3270 3271 /** 3272 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3273 * 3274 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3275 */ 3276 static void mem_skip_calibrate(void) 3277 { 3278 uint32_t vfifo_offset; 3279 uint32_t i, j, r; 3280 3281 debug("%s:%d\n", __func__, __LINE__); 3282 /* Need to update every shadow register set used by the interface */ 3283 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3284 r += NUM_RANKS_PER_SHADOW_REG) { 3285 /* 3286 * Set output phase alignment settings appropriate for 3287 * skip calibration. 3288 */ 3289 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3290 scc_mgr_set_dqs_en_phase(i, 0); 3291 #if IO_DLL_CHAIN_LENGTH == 6 3292 scc_mgr_set_dqdqs_output_phase(i, 6); 3293 #else 3294 scc_mgr_set_dqdqs_output_phase(i, 7); 3295 #endif 3296 /* 3297 * Case:33398 3298 * 3299 * Write data arrives to the I/O two cycles before write 3300 * latency is reached (720 deg). 3301 * -> due to bit-slip in a/c bus 3302 * -> to allow board skew where dqs is longer than ck 3303 * -> how often can this happen!? 3304 * -> can claim back some ptaps for high freq 3305 * support if we can relax this, but i digress... 3306 * 3307 * The write_clk leads mem_ck by 90 deg 3308 * The minimum ptap of the OPA is 180 deg 3309 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3310 * The write_clk is always delayed by 2 ptaps 3311 * 3312 * Hence, to make DQS aligned to CK, we need to delay 3313 * DQS by: 3314 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3315 * 3316 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3317 * gives us the number of ptaps, which simplies to: 3318 * 3319 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3320 */ 3321 scc_mgr_set_dqdqs_output_phase(i, 3322 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3323 } 3324 writel(0xff, &sdr_scc_mgr->dqs_ena); 3325 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3326 3327 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3328 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3329 SCC_MGR_GROUP_COUNTER_OFFSET); 3330 } 3331 writel(0xff, &sdr_scc_mgr->dq_ena); 3332 writel(0xff, &sdr_scc_mgr->dm_ena); 3333 writel(0, &sdr_scc_mgr->update); 3334 } 3335 3336 /* Compensate for simulation model behaviour */ 3337 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3338 scc_mgr_set_dqs_bus_in_delay(i, 10); 3339 scc_mgr_load_dqs(i); 3340 } 3341 writel(0, &sdr_scc_mgr->update); 3342 3343 /* 3344 * ArriaV has hard FIFOs that can only be initialized by incrementing 3345 * in sequencer. 3346 */ 3347 vfifo_offset = CALIB_VFIFO_OFFSET; 3348 for (j = 0; j < vfifo_offset; j++) 3349 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3350 writel(0, &phy_mgr_cmd->fifo_reset); 3351 3352 /* 3353 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3354 * setting from generation-time constant. 3355 */ 3356 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3357 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3358 } 3359 3360 /** 3361 * mem_calibrate() - Memory calibration entry point. 3362 * 3363 * Perform memory calibration. 3364 */ 3365 static uint32_t mem_calibrate(void) 3366 { 3367 uint32_t i; 3368 uint32_t rank_bgn, sr; 3369 uint32_t write_group, write_test_bgn; 3370 uint32_t read_group, read_test_bgn; 3371 uint32_t run_groups, current_run; 3372 uint32_t failing_groups = 0; 3373 uint32_t group_failed = 0; 3374 3375 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3376 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3377 3378 debug("%s:%d\n", __func__, __LINE__); 3379 3380 /* Initialize the data settings */ 3381 gbl->error_substage = CAL_SUBSTAGE_NIL; 3382 gbl->error_stage = CAL_STAGE_NIL; 3383 gbl->error_group = 0xff; 3384 gbl->fom_in = 0; 3385 gbl->fom_out = 0; 3386 3387 /* Initialize WLAT and RLAT. */ 3388 mem_init_latency(); 3389 3390 /* Initialize bit slips. */ 3391 mem_precharge_and_activate(); 3392 3393 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3394 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3395 SCC_MGR_GROUP_COUNTER_OFFSET); 3396 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3397 if (i == 0) 3398 scc_mgr_set_hhp_extras(); 3399 3400 scc_set_bypass_mode(i); 3401 } 3402 3403 /* Calibration is skipped. */ 3404 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3405 /* 3406 * Set VFIFO and LFIFO to instant-on settings in skip 3407 * calibration mode. 3408 */ 3409 mem_skip_calibrate(); 3410 3411 /* 3412 * Do not remove this line as it makes sure all of our 3413 * decisions have been applied. 3414 */ 3415 writel(0, &sdr_scc_mgr->update); 3416 return 1; 3417 } 3418 3419 /* Calibration is not skipped. */ 3420 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3421 /* 3422 * Zero all delay chain/phase settings for all 3423 * groups and all shadow register sets. 3424 */ 3425 scc_mgr_zero_all(); 3426 3427 run_groups = ~param->skip_groups; 3428 3429 for (write_group = 0, write_test_bgn = 0; write_group 3430 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3431 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3432 3433 /* Initialize the group failure */ 3434 group_failed = 0; 3435 3436 current_run = run_groups & ((1 << 3437 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3438 run_groups = run_groups >> 3439 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3440 3441 if (current_run == 0) 3442 continue; 3443 3444 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3445 SCC_MGR_GROUP_COUNTER_OFFSET); 3446 scc_mgr_zero_group(write_group, 0); 3447 3448 for (read_group = write_group * rwdqs_ratio, 3449 read_test_bgn = 0; 3450 read_group < (write_group + 1) * rwdqs_ratio; 3451 read_group++, 3452 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3453 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3454 continue; 3455 3456 /* Calibrate the VFIFO */ 3457 if (rw_mgr_mem_calibrate_vfifo(read_group, 3458 read_test_bgn)) 3459 continue; 3460 3461 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3462 return 0; 3463 3464 /* The group failed, we're done. */ 3465 goto grp_failed; 3466 } 3467 3468 /* Calibrate the output side */ 3469 for (rank_bgn = 0, sr = 0; 3470 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3471 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3472 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3473 continue; 3474 3475 /* Not needed in quick mode! */ 3476 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3477 continue; 3478 3479 /* 3480 * Determine if this set of ranks 3481 * should be skipped entirely. 3482 */ 3483 if (param->skip_shadow_regs[sr]) 3484 continue; 3485 3486 /* Calibrate WRITEs */ 3487 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3488 write_group, write_test_bgn)) 3489 continue; 3490 3491 group_failed = 1; 3492 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3493 return 0; 3494 } 3495 3496 /* Some group failed, we're done. */ 3497 if (group_failed) 3498 goto grp_failed; 3499 3500 for (read_group = write_group * rwdqs_ratio, 3501 read_test_bgn = 0; 3502 read_group < (write_group + 1) * rwdqs_ratio; 3503 read_group++, 3504 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3505 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3506 continue; 3507 3508 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3509 read_test_bgn)) 3510 continue; 3511 3512 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3513 return 0; 3514 3515 /* The group failed, we're done. */ 3516 goto grp_failed; 3517 } 3518 3519 /* No group failed, continue as usual. */ 3520 continue; 3521 3522 grp_failed: /* A group failed, increment the counter. */ 3523 failing_groups++; 3524 } 3525 3526 /* 3527 * USER If there are any failing groups then report 3528 * the failure. 3529 */ 3530 if (failing_groups != 0) 3531 return 0; 3532 3533 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3534 continue; 3535 3536 /* 3537 * If we're skipping groups as part of debug, 3538 * don't calibrate LFIFO. 3539 */ 3540 if (param->skip_groups != 0) 3541 continue; 3542 3543 /* Calibrate the LFIFO */ 3544 if (!rw_mgr_mem_calibrate_lfifo()) 3545 return 0; 3546 } 3547 3548 /* 3549 * Do not remove this line as it makes sure all of our decisions 3550 * have been applied. 3551 */ 3552 writel(0, &sdr_scc_mgr->update); 3553 return 1; 3554 } 3555 3556 /** 3557 * run_mem_calibrate() - Perform memory calibration 3558 * 3559 * This function triggers the entire memory calibration procedure. 3560 */ 3561 static int run_mem_calibrate(void) 3562 { 3563 int pass; 3564 3565 debug("%s:%d\n", __func__, __LINE__); 3566 3567 /* Reset pass/fail status shown on afi_cal_success/fail */ 3568 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3569 3570 /* Stop tracking manager. */ 3571 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3572 3573 phy_mgr_initialize(); 3574 rw_mgr_mem_initialize(); 3575 3576 /* Perform the actual memory calibration. */ 3577 pass = mem_calibrate(); 3578 3579 mem_precharge_and_activate(); 3580 writel(0, &phy_mgr_cmd->fifo_reset); 3581 3582 /* Handoff. */ 3583 rw_mgr_mem_handoff(); 3584 /* 3585 * In Hard PHY this is a 2-bit control: 3586 * 0: AFI Mux Select 3587 * 1: DDIO Mux Select 3588 */ 3589 writel(0x2, &phy_mgr_cfg->mux_sel); 3590 3591 /* Start tracking manager. */ 3592 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3593 3594 return pass; 3595 } 3596 3597 /** 3598 * debug_mem_calibrate() - Report result of memory calibration 3599 * @pass: Value indicating whether calibration passed or failed 3600 * 3601 * This function reports the results of the memory calibration 3602 * and writes debug information into the register file. 3603 */ 3604 static void debug_mem_calibrate(int pass) 3605 { 3606 uint32_t debug_info; 3607 3608 if (pass) { 3609 printf("%s: CALIBRATION PASSED\n", __FILE__); 3610 3611 gbl->fom_in /= 2; 3612 gbl->fom_out /= 2; 3613 3614 if (gbl->fom_in > 0xff) 3615 gbl->fom_in = 0xff; 3616 3617 if (gbl->fom_out > 0xff) 3618 gbl->fom_out = 0xff; 3619 3620 /* Update the FOM in the register file */ 3621 debug_info = gbl->fom_in; 3622 debug_info |= gbl->fom_out << 8; 3623 writel(debug_info, &sdr_reg_file->fom); 3624 3625 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3626 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3627 } else { 3628 printf("%s: CALIBRATION FAILED\n", __FILE__); 3629 3630 debug_info = gbl->error_stage; 3631 debug_info |= gbl->error_substage << 8; 3632 debug_info |= gbl->error_group << 16; 3633 3634 writel(debug_info, &sdr_reg_file->failing_stage); 3635 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3636 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3637 3638 /* Update the failing group/stage in the register file */ 3639 debug_info = gbl->error_stage; 3640 debug_info |= gbl->error_substage << 8; 3641 debug_info |= gbl->error_group << 16; 3642 writel(debug_info, &sdr_reg_file->failing_stage); 3643 } 3644 3645 printf("%s: Calibration complete\n", __FILE__); 3646 } 3647 3648 /** 3649 * hc_initialize_rom_data() - Initialize ROM data 3650 * 3651 * Initialize ROM data. 3652 */ 3653 static void hc_initialize_rom_data(void) 3654 { 3655 u32 i, addr; 3656 3657 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3658 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3659 writel(inst_rom_init[i], addr + (i << 2)); 3660 3661 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3662 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3663 writel(ac_rom_init[i], addr + (i << 2)); 3664 } 3665 3666 /** 3667 * initialize_reg_file() - Initialize SDR register file 3668 * 3669 * Initialize SDR register file. 3670 */ 3671 static void initialize_reg_file(void) 3672 { 3673 /* Initialize the register file with the correct data */ 3674 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3675 writel(0, &sdr_reg_file->debug_data_addr); 3676 writel(0, &sdr_reg_file->cur_stage); 3677 writel(0, &sdr_reg_file->fom); 3678 writel(0, &sdr_reg_file->failing_stage); 3679 writel(0, &sdr_reg_file->debug1); 3680 writel(0, &sdr_reg_file->debug2); 3681 } 3682 3683 /** 3684 * initialize_hps_phy() - Initialize HPS PHY 3685 * 3686 * Initialize HPS PHY. 3687 */ 3688 static void initialize_hps_phy(void) 3689 { 3690 uint32_t reg; 3691 /* 3692 * Tracking also gets configured here because it's in the 3693 * same register. 3694 */ 3695 uint32_t trk_sample_count = 7500; 3696 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3697 /* 3698 * Format is number of outer loops in the 16 MSB, sample 3699 * count in 16 LSB. 3700 */ 3701 3702 reg = 0; 3703 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3706 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3707 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3708 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3709 /* 3710 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3711 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3712 */ 3713 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3714 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3715 trk_sample_count); 3716 writel(reg, &sdr_ctrl->phy_ctrl0); 3717 3718 reg = 0; 3719 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3720 trk_sample_count >> 3721 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3722 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3723 trk_long_idle_sample_count); 3724 writel(reg, &sdr_ctrl->phy_ctrl1); 3725 3726 reg = 0; 3727 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3728 trk_long_idle_sample_count >> 3729 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3730 writel(reg, &sdr_ctrl->phy_ctrl2); 3731 } 3732 3733 /** 3734 * initialize_tracking() - Initialize tracking 3735 * 3736 * Initialize the register file with usable initial data. 3737 */ 3738 static void initialize_tracking(void) 3739 { 3740 /* 3741 * Initialize the register file with the correct data. 3742 * Compute usable version of value in case we skip full 3743 * computation later. 3744 */ 3745 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3746 &sdr_reg_file->dtaps_per_ptap); 3747 3748 /* trk_sample_count */ 3749 writel(7500, &sdr_reg_file->trk_sample_count); 3750 3751 /* longidle outer loop [15:0] */ 3752 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3753 3754 /* 3755 * longidle sample count [31:24] 3756 * trfc, worst case of 933Mhz 4Gb [23:16] 3757 * trcd, worst case [15:8] 3758 * vfifo wait [7:0] 3759 */ 3760 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3761 &sdr_reg_file->delays); 3762 3763 /* mux delay */ 3764 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3765 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3766 &sdr_reg_file->trk_rw_mgr_addr); 3767 3768 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3769 &sdr_reg_file->trk_read_dqs_width); 3770 3771 /* trefi [7:0] */ 3772 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3773 &sdr_reg_file->trk_rfsh); 3774 } 3775 3776 int sdram_calibration_full(void) 3777 { 3778 struct param_type my_param; 3779 struct gbl_type my_gbl; 3780 uint32_t pass; 3781 3782 memset(&my_param, 0, sizeof(my_param)); 3783 memset(&my_gbl, 0, sizeof(my_gbl)); 3784 3785 param = &my_param; 3786 gbl = &my_gbl; 3787 3788 /* Set the calibration enabled by default */ 3789 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3790 /* 3791 * Only sweep all groups (regardless of fail state) by default 3792 * Set enabled read test by default. 3793 */ 3794 #if DISABLE_GUARANTEED_READ 3795 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3796 #endif 3797 /* Initialize the register file */ 3798 initialize_reg_file(); 3799 3800 /* Initialize any PHY CSR */ 3801 initialize_hps_phy(); 3802 3803 scc_mgr_initialize(); 3804 3805 initialize_tracking(); 3806 3807 printf("%s: Preparing to start memory calibration\n", __FILE__); 3808 3809 debug("%s:%d\n", __func__, __LINE__); 3810 debug_cond(DLEVEL == 1, 3811 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3812 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3813 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3814 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3815 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3816 debug_cond(DLEVEL == 1, 3817 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3818 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3819 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3820 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3821 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3822 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3823 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3824 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3825 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3826 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3827 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3828 IO_IO_OUT2_DELAY_MAX); 3829 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3830 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3831 3832 hc_initialize_rom_data(); 3833 3834 /* update info for sims */ 3835 reg_file_set_stage(CAL_STAGE_NIL); 3836 reg_file_set_group(0); 3837 3838 /* 3839 * Load global needed for those actions that require 3840 * some dynamic calibration support. 3841 */ 3842 dyn_calib_steps = STATIC_CALIB_STEPS; 3843 /* 3844 * Load global to allow dynamic selection of delay loop settings 3845 * based on calibration mode. 3846 */ 3847 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3848 skip_delay_mask = 0xff; 3849 else 3850 skip_delay_mask = 0x0; 3851 3852 pass = run_mem_calibrate(); 3853 debug_mem_calibrate(pass); 3854 return pass; 3855 } 3856