1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 /** 117 * phy_mgr_initialize() - Initialize PHY Manager 118 * 119 * Initialize PHY Manager. 120 */ 121 static void phy_mgr_initialize(void) 122 { 123 u32 ratio; 124 125 debug("%s:%d\n", __func__, __LINE__); 126 /* Calibration has control over path to memory */ 127 /* 128 * In Hard PHY this is a 2-bit control: 129 * 0: AFI Mux Select 130 * 1: DDIO Mux Select 131 */ 132 writel(0x3, &phy_mgr_cfg->mux_sel); 133 134 /* USER memory clock is not stable we begin initialization */ 135 writel(0, &phy_mgr_cfg->reset_mem_stbl); 136 137 /* USER calibration status all set to zero */ 138 writel(0, &phy_mgr_cfg->cal_status); 139 140 writel(0, &phy_mgr_cfg->cal_debug_info); 141 142 /* Init params only if we do NOT skip calibration. */ 143 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 144 return; 145 146 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 147 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 148 param->read_correct_mask_vg = (1 << ratio) - 1; 149 param->write_correct_mask_vg = (1 << ratio) - 1; 150 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 151 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 152 ratio = RW_MGR_MEM_DATA_WIDTH / 153 RW_MGR_MEM_DATA_MASK_WIDTH; 154 param->dm_correct_mask = (1 << ratio) - 1; 155 } 156 157 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 158 { 159 u32 odt_mask_0 = 0; 160 u32 odt_mask_1 = 0; 161 u32 cs_and_odt_mask; 162 163 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 164 odt_mask_0 = 0x0; 165 odt_mask_1 = 0x0; 166 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 167 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 168 /* 169 * 1 Rank 170 * Read: ODT = 0 171 * Write: ODT = 1 172 */ 173 odt_mask_0 = 0x0; 174 odt_mask_1 = 0x1; 175 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 176 /* 2 Ranks */ 177 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 178 /* - Dual-Slot , Single-Rank 179 * (1 chip-select per DIMM) 180 * OR 181 * - RDIMM, 4 total CS (2 CS per DIMM) 182 * means 2 DIMM 183 * Since MEM_NUMBER_OF_RANKS is 2 they are 184 * both single rank 185 * with 2 CS each (special for RDIMM) 186 * Read: Turn on ODT on the opposite rank 187 * Write: Turn on ODT on all ranks 188 */ 189 odt_mask_0 = 0x3 & ~(1 << rank); 190 odt_mask_1 = 0x3; 191 } else { 192 /* 193 * USER - Single-Slot , Dual-rank DIMMs 194 * (2 chip-selects per DIMM) 195 * USER Read: Turn on ODT off on all ranks 196 * USER Write: Turn on ODT on active rank 197 */ 198 odt_mask_0 = 0x0; 199 odt_mask_1 = 0x3 & (1 << rank); 200 } 201 } else { 202 /* 4 Ranks 203 * Read: 204 * ----------+-----------------------+ 205 * | | 206 * | ODT | 207 * Read From +-----------------------+ 208 * Rank | 3 | 2 | 1 | 0 | 209 * ----------+-----+-----+-----+-----+ 210 * 0 | 0 | 1 | 0 | 0 | 211 * 1 | 1 | 0 | 0 | 0 | 212 * 2 | 0 | 0 | 0 | 1 | 213 * 3 | 0 | 0 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 216 * Write: 217 * ----------+-----------------------+ 218 * | | 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 } 248 } 249 250 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 251 ((0xFF & odt_mask_0) << 8) | 252 ((0xFF & odt_mask_1) << 16); 253 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 254 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 255 } 256 257 /** 258 * scc_mgr_set() - Set SCC Manager register 259 * @off: Base offset in SCC Manager space 260 * @grp: Read/Write group 261 * @val: Value to be set 262 * 263 * This function sets the SCC Manager (Scan Chain Control Manager) register. 264 */ 265 static void scc_mgr_set(u32 off, u32 grp, u32 val) 266 { 267 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 268 } 269 270 /** 271 * scc_mgr_initialize() - Initialize SCC Manager registers 272 * 273 * Initialize SCC Manager registers. 274 */ 275 static void scc_mgr_initialize(void) 276 { 277 /* 278 * Clear register file for HPS. 16 (2^4) is the size of the 279 * full register file in the scc mgr: 280 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 281 * MEM_IF_READ_DQS_WIDTH - 1); 282 */ 283 int i; 284 285 for (i = 0; i < 16; i++) { 286 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 287 __func__, __LINE__, i); 288 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 289 } 290 } 291 292 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 293 { 294 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 295 } 296 297 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 298 { 299 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 300 } 301 302 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 303 { 304 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 305 } 306 307 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 310 } 311 312 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 315 delay); 316 } 317 318 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 319 { 320 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 321 } 322 323 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 331 delay); 332 } 333 334 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 335 { 336 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 337 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 338 delay); 339 } 340 341 /* load up dqs config settings */ 342 static void scc_mgr_load_dqs(uint32_t dqs) 343 { 344 writel(dqs, &sdr_scc_mgr->dqs_ena); 345 } 346 347 /* load up dqs io config settings */ 348 static void scc_mgr_load_dqs_io(void) 349 { 350 writel(0, &sdr_scc_mgr->dqs_io_ena); 351 } 352 353 /* load up dq config settings */ 354 static void scc_mgr_load_dq(uint32_t dq_in_group) 355 { 356 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 357 } 358 359 /* load up dm config settings */ 360 static void scc_mgr_load_dm(uint32_t dm) 361 { 362 writel(dm, &sdr_scc_mgr->dm_ena); 363 } 364 365 /** 366 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 367 * @off: Base offset in SCC Manager space 368 * @grp: Read/Write group 369 * @val: Value to be set 370 * @update: If non-zero, trigger SCC Manager update for all ranks 371 * 372 * This function sets the SCC Manager (Scan Chain Control Manager) register 373 * and optionally triggers the SCC update for all ranks. 374 */ 375 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 376 const int update) 377 { 378 u32 r; 379 380 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 381 r += NUM_RANKS_PER_SHADOW_REG) { 382 scc_mgr_set(off, grp, val); 383 384 if (update || (r == 0)) { 385 writel(grp, &sdr_scc_mgr->dqs_ena); 386 writel(0, &sdr_scc_mgr->update); 387 } 388 } 389 } 390 391 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 392 { 393 /* 394 * USER although the h/w doesn't support different phases per 395 * shadow register, for simplicity our scc manager modeling 396 * keeps different phase settings per shadow reg, and it's 397 * important for us to keep them in sync to match h/w. 398 * for efficiency, the scan chain update should occur only 399 * once to sr0. 400 */ 401 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 402 read_group, phase, 0); 403 } 404 405 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 406 uint32_t phase) 407 { 408 /* 409 * USER although the h/w doesn't support different phases per 410 * shadow register, for simplicity our scc manager modeling 411 * keeps different phase settings per shadow reg, and it's 412 * important for us to keep them in sync to match h/w. 413 * for efficiency, the scan chain update should occur only 414 * once to sr0. 415 */ 416 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 417 write_group, phase, 0); 418 } 419 420 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 421 uint32_t delay) 422 { 423 /* 424 * In shadow register mode, the T11 settings are stored in 425 * registers in the core, which are updated by the DQS_ENA 426 * signals. Not issuing the SCC_MGR_UPD command allows us to 427 * save lots of rank switching overhead, by calling 428 * select_shadow_regs_for_update with update_scan_chains 429 * set to 0. 430 */ 431 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 432 read_group, delay, 1); 433 writel(0, &sdr_scc_mgr->update); 434 } 435 436 /** 437 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 438 * @write_group: Write group 439 * @delay: Delay value 440 * 441 * This function sets the OCT output delay in SCC manager. 442 */ 443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 444 { 445 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 446 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 447 const int base = write_group * ratio; 448 int i; 449 /* 450 * Load the setting in the SCC manager 451 * Although OCT affects only write data, the OCT delay is controlled 452 * by the DQS logic block which is instantiated once per read group. 453 * For protocols where a write group consists of multiple read groups, 454 * the setting must be set multiple times. 455 */ 456 for (i = 0; i < ratio; i++) 457 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 458 } 459 460 /** 461 * scc_mgr_set_hhp_extras() - Set HHP extras. 462 * 463 * Load the fixed setting in the SCC manager HHP extras. 464 */ 465 static void scc_mgr_set_hhp_extras(void) 466 { 467 /* 468 * Load the fixed setting in the SCC manager 469 * bits: 0:0 = 1'b1 - DQS bypass 470 * bits: 1:1 = 1'b1 - DQ bypass 471 * bits: 4:2 = 3'b001 - rfifo_mode 472 * bits: 6:5 = 2'b01 - rfifo clock_select 473 * bits: 7:7 = 1'b0 - separate gating from ungating setting 474 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 475 */ 476 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 477 (1 << 2) | (1 << 1) | (1 << 0); 478 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 479 SCC_MGR_HHP_GLOBALS_OFFSET | 480 SCC_MGR_HHP_EXTRAS_OFFSET; 481 482 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 483 __func__, __LINE__); 484 writel(value, addr); 485 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 486 __func__, __LINE__); 487 } 488 489 /** 490 * scc_mgr_zero_all() - Zero all DQS config 491 * 492 * Zero all DQS config. 493 */ 494 static void scc_mgr_zero_all(void) 495 { 496 int i, r; 497 498 /* 499 * USER Zero all DQS config settings, across all groups and all 500 * shadow registers 501 */ 502 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 503 r += NUM_RANKS_PER_SHADOW_REG) { 504 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 505 /* 506 * The phases actually don't exist on a per-rank basis, 507 * but there's no harm updating them several times, so 508 * let's keep the code simple. 509 */ 510 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 511 scc_mgr_set_dqs_en_phase(i, 0); 512 scc_mgr_set_dqs_en_delay(i, 0); 513 } 514 515 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 516 scc_mgr_set_dqdqs_output_phase(i, 0); 517 /* Arria V/Cyclone V don't have out2. */ 518 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 519 } 520 } 521 522 /* Multicast to all DQS group enables. */ 523 writel(0xff, &sdr_scc_mgr->dqs_ena); 524 writel(0, &sdr_scc_mgr->update); 525 } 526 527 /** 528 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 529 * @write_group: Write group 530 * 531 * Set bypass mode and trigger SCC update. 532 */ 533 static void scc_set_bypass_mode(const u32 write_group) 534 { 535 /* Multicast to all DQ enables. */ 536 writel(0xff, &sdr_scc_mgr->dq_ena); 537 writel(0xff, &sdr_scc_mgr->dm_ena); 538 539 /* Update current DQS IO enable. */ 540 writel(0, &sdr_scc_mgr->dqs_io_ena); 541 542 /* Update the DQS logic. */ 543 writel(write_group, &sdr_scc_mgr->dqs_ena); 544 545 /* Hit update. */ 546 writel(0, &sdr_scc_mgr->update); 547 } 548 549 /** 550 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 551 * @write_group: Write group 552 * 553 * Load DQS settings for Write Group, do not trigger SCC update. 554 */ 555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 556 { 557 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 558 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 559 const int base = write_group * ratio; 560 int i; 561 /* 562 * Load the setting in the SCC manager 563 * Although OCT affects only write data, the OCT delay is controlled 564 * by the DQS logic block which is instantiated once per read group. 565 * For protocols where a write group consists of multiple read groups, 566 * the setting must be set multiple times. 567 */ 568 for (i = 0; i < ratio; i++) 569 writel(base + i, &sdr_scc_mgr->dqs_ena); 570 } 571 572 /** 573 * scc_mgr_zero_group() - Zero all configs for a group 574 * 575 * Zero DQ, DM, DQS and OCT configs for a group. 576 */ 577 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 578 { 579 int i, r; 580 581 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 582 r += NUM_RANKS_PER_SHADOW_REG) { 583 /* Zero all DQ config settings. */ 584 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 585 scc_mgr_set_dq_out1_delay(i, 0); 586 if (!out_only) 587 scc_mgr_set_dq_in_delay(i, 0); 588 } 589 590 /* Multicast to all DQ enables. */ 591 writel(0xff, &sdr_scc_mgr->dq_ena); 592 593 /* Zero all DM config settings. */ 594 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 595 scc_mgr_set_dm_out1_delay(i, 0); 596 597 /* Multicast to all DM enables. */ 598 writel(0xff, &sdr_scc_mgr->dm_ena); 599 600 /* Zero all DQS IO settings. */ 601 if (!out_only) 602 scc_mgr_set_dqs_io_in_delay(0); 603 604 /* Arria V/Cyclone V don't have out2. */ 605 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 606 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 607 scc_mgr_load_dqs_for_write_group(write_group); 608 609 /* Multicast to all DQS IO enables (only 1 in total). */ 610 writel(0, &sdr_scc_mgr->dqs_io_ena); 611 612 /* Hit update to zero everything. */ 613 writel(0, &sdr_scc_mgr->update); 614 } 615 } 616 617 /* 618 * apply and load a particular input delay for the DQ pins in a group 619 * group_bgn is the index of the first dq pin (in the write group) 620 */ 621 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 622 { 623 uint32_t i, p; 624 625 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 626 scc_mgr_set_dq_in_delay(p, delay); 627 scc_mgr_load_dq(p); 628 } 629 } 630 631 /** 632 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 633 * @delay: Delay value 634 * 635 * Apply and load a particular output delay for the DQ pins in a group. 636 */ 637 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 638 { 639 int i; 640 641 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 642 scc_mgr_set_dq_out1_delay(i, delay); 643 scc_mgr_load_dq(i); 644 } 645 } 646 647 /* apply and load a particular output delay for the DM pins in a group */ 648 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 649 { 650 uint32_t i; 651 652 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 653 scc_mgr_set_dm_out1_delay(i, delay1); 654 scc_mgr_load_dm(i); 655 } 656 } 657 658 659 /* apply and load delay on both DQS and OCT out1 */ 660 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 661 uint32_t delay) 662 { 663 scc_mgr_set_dqs_out1_delay(delay); 664 scc_mgr_load_dqs_io(); 665 666 scc_mgr_set_oct_out1_delay(write_group, delay); 667 scc_mgr_load_dqs_for_write_group(write_group); 668 } 669 670 /** 671 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 672 * @write_group: Write group 673 * @delay: Delay value 674 * 675 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 676 */ 677 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 678 const u32 delay) 679 { 680 u32 i, new_delay; 681 682 /* DQ shift */ 683 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 684 scc_mgr_load_dq(i); 685 686 /* DM shift */ 687 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 688 scc_mgr_load_dm(i); 689 690 /* DQS shift */ 691 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 692 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 693 debug_cond(DLEVEL == 1, 694 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 695 __func__, __LINE__, write_group, delay, new_delay, 696 IO_IO_OUT2_DELAY_MAX, 697 new_delay - IO_IO_OUT2_DELAY_MAX); 698 new_delay -= IO_IO_OUT2_DELAY_MAX; 699 scc_mgr_set_dqs_out1_delay(new_delay); 700 } 701 702 scc_mgr_load_dqs_io(); 703 704 /* OCT shift */ 705 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 706 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 707 debug_cond(DLEVEL == 1, 708 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 709 __func__, __LINE__, write_group, delay, 710 new_delay, IO_IO_OUT2_DELAY_MAX, 711 new_delay - IO_IO_OUT2_DELAY_MAX); 712 new_delay -= IO_IO_OUT2_DELAY_MAX; 713 scc_mgr_set_oct_out1_delay(write_group, new_delay); 714 } 715 716 scc_mgr_load_dqs_for_write_group(write_group); 717 } 718 719 /** 720 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 721 * @write_group: Write group 722 * @delay: Delay value 723 * 724 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 725 */ 726 static void 727 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 728 const u32 delay) 729 { 730 int r; 731 732 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 733 r += NUM_RANKS_PER_SHADOW_REG) { 734 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 735 writel(0, &sdr_scc_mgr->update); 736 } 737 } 738 739 /** 740 * set_jump_as_return() - Return instruction optimization 741 * 742 * Optimization used to recover some slots in ddr3 inst_rom could be 743 * applied to other protocols if we wanted to 744 */ 745 static void set_jump_as_return(void) 746 { 747 /* 748 * To save space, we replace return with jump to special shared 749 * RETURN instruction so we set the counter to large value so that 750 * we always jump. 751 */ 752 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 753 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 754 } 755 756 /* 757 * should always use constants as argument to ensure all computations are 758 * performed at compile time 759 */ 760 static void delay_for_n_mem_clocks(const uint32_t clocks) 761 { 762 uint32_t afi_clocks; 763 uint8_t inner = 0; 764 uint8_t outer = 0; 765 uint16_t c_loop = 0; 766 767 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 768 769 770 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 771 /* scale (rounding up) to get afi clocks */ 772 773 /* 774 * Note, we don't bother accounting for being off a little bit 775 * because of a few extra instructions in outer loops 776 * Note, the loops have a test at the end, and do the test before 777 * the decrement, and so always perform the loop 778 * 1 time more than the counter value 779 */ 780 if (afi_clocks == 0) { 781 ; 782 } else if (afi_clocks <= 0x100) { 783 inner = afi_clocks-1; 784 outer = 0; 785 c_loop = 0; 786 } else if (afi_clocks <= 0x10000) { 787 inner = 0xff; 788 outer = (afi_clocks-1) >> 8; 789 c_loop = 0; 790 } else { 791 inner = 0xff; 792 outer = 0xff; 793 c_loop = (afi_clocks-1) >> 16; 794 } 795 796 /* 797 * rom instructions are structured as follows: 798 * 799 * IDLE_LOOP2: jnz cntr0, TARGET_A 800 * IDLE_LOOP1: jnz cntr1, TARGET_B 801 * return 802 * 803 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 804 * TARGET_B is set to IDLE_LOOP2 as well 805 * 806 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 807 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 808 * 809 * a little confusing, but it helps save precious space in the inst_rom 810 * and sequencer rom and keeps the delays more accurate and reduces 811 * overhead 812 */ 813 if (afi_clocks <= 0x100) { 814 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 815 &sdr_rw_load_mgr_regs->load_cntr1); 816 817 writel(RW_MGR_IDLE_LOOP1, 818 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 819 820 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 821 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 822 } else { 823 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 824 &sdr_rw_load_mgr_regs->load_cntr0); 825 826 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 827 &sdr_rw_load_mgr_regs->load_cntr1); 828 829 writel(RW_MGR_IDLE_LOOP2, 830 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 831 832 writel(RW_MGR_IDLE_LOOP2, 833 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 834 835 /* hack to get around compiler not being smart enough */ 836 if (afi_clocks <= 0x10000) { 837 /* only need to run once */ 838 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 839 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 840 } else { 841 do { 842 writel(RW_MGR_IDLE_LOOP2, 843 SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } while (c_loop-- != 0); 846 } 847 } 848 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 849 } 850 851 /** 852 * rw_mgr_mem_init_load_regs() - Load instruction registers 853 * @cntr0: Counter 0 value 854 * @cntr1: Counter 1 value 855 * @cntr2: Counter 2 value 856 * @jump: Jump instruction value 857 * 858 * Load instruction registers. 859 */ 860 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 861 { 862 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 863 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 864 865 /* Load counters */ 866 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 867 &sdr_rw_load_mgr_regs->load_cntr0); 868 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 869 &sdr_rw_load_mgr_regs->load_cntr1); 870 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 871 &sdr_rw_load_mgr_regs->load_cntr2); 872 873 /* Load jump address */ 874 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 877 878 /* Execute count instruction */ 879 writel(jump, grpaddr); 880 } 881 882 /** 883 * rw_mgr_mem_load_user() - Load user calibration values 884 * @fin1: Final instruction 1 885 * @fin2: Final instruction 2 886 * @precharge: If 1, precharge the banks at the end 887 * 888 * Load user calibration values and optionally precharge the banks. 889 */ 890 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 891 const int precharge) 892 { 893 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 894 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 895 u32 r; 896 897 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 898 if (param->skip_ranks[r]) { 899 /* request to skip the rank */ 900 continue; 901 } 902 903 /* set rank */ 904 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 905 906 /* precharge all banks ... */ 907 if (precharge) 908 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 909 910 /* 911 * USER Use Mirror-ed commands for odd ranks if address 912 * mirrorring is on 913 */ 914 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 915 set_jump_as_return(); 916 writel(RW_MGR_MRS2_MIRR, grpaddr); 917 delay_for_n_mem_clocks(4); 918 set_jump_as_return(); 919 writel(RW_MGR_MRS3_MIRR, grpaddr); 920 delay_for_n_mem_clocks(4); 921 set_jump_as_return(); 922 writel(RW_MGR_MRS1_MIRR, grpaddr); 923 delay_for_n_mem_clocks(4); 924 set_jump_as_return(); 925 writel(fin1, grpaddr); 926 } else { 927 set_jump_as_return(); 928 writel(RW_MGR_MRS2, grpaddr); 929 delay_for_n_mem_clocks(4); 930 set_jump_as_return(); 931 writel(RW_MGR_MRS3, grpaddr); 932 delay_for_n_mem_clocks(4); 933 set_jump_as_return(); 934 writel(RW_MGR_MRS1, grpaddr); 935 set_jump_as_return(); 936 writel(fin2, grpaddr); 937 } 938 939 if (precharge) 940 continue; 941 942 set_jump_as_return(); 943 writel(RW_MGR_ZQCL, grpaddr); 944 945 /* tZQinit = tDLLK = 512 ck cycles */ 946 delay_for_n_mem_clocks(512); 947 } 948 } 949 950 static void rw_mgr_mem_initialize(void) 951 { 952 debug("%s:%d\n", __func__, __LINE__); 953 954 /* The reset / cke part of initialization is broadcasted to all ranks */ 955 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 956 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 957 958 /* 959 * Here's how you load register for a loop 960 * Counters are located @ 0x800 961 * Jump address are located @ 0xC00 962 * For both, registers 0 to 3 are selected using bits 3 and 2, like 963 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 964 * I know this ain't pretty, but Avalon bus throws away the 2 least 965 * significant bits 966 */ 967 968 /* start with memory RESET activated */ 969 970 /* tINIT = 200us */ 971 972 /* 973 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 974 * If a and b are the number of iteration in 2 nested loops 975 * it takes the following number of cycles to complete the operation: 976 * number_of_cycles = ((2 + n) * a + 2) * b 977 * where n is the number of instruction in the inner loop 978 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 979 * b = 6A 980 */ 981 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 982 SEQ_TINIT_CNTR2_VAL, 983 RW_MGR_INIT_RESET_0_CKE_0); 984 985 /* indicate that memory is stable */ 986 writel(1, &phy_mgr_cfg->reset_mem_stbl); 987 988 /* 989 * transition the RESET to high 990 * Wait for 500us 991 */ 992 993 /* 994 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 995 * If a and b are the number of iteration in 2 nested loops 996 * it takes the following number of cycles to complete the operation 997 * number_of_cycles = ((2 + n) * a + 2) * b 998 * where n is the number of instruction in the inner loop 999 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1000 * b = FF 1001 */ 1002 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1003 SEQ_TRESET_CNTR2_VAL, 1004 RW_MGR_INIT_RESET_1_CKE_0); 1005 1006 /* bring up clock enable */ 1007 1008 /* tXRP < 250 ck cycles */ 1009 delay_for_n_mem_clocks(250); 1010 1011 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1012 0); 1013 } 1014 1015 /* 1016 * At the end of calibration we have to program the user settings in, and 1017 * USER hand off the memory to the user. 1018 */ 1019 static void rw_mgr_mem_handoff(void) 1020 { 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1022 /* 1023 * USER need to wait tMOD (12CK or 15ns) time before issuing 1024 * other commands, but we will have plenty of NIOS cycles before 1025 * actual handoff so its okay. 1026 */ 1027 } 1028 1029 /* 1030 * performs a guaranteed read on the patterns we are going to use during a 1031 * read test to ensure memory works 1032 */ 1033 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1034 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1035 uint32_t all_ranks) 1036 { 1037 uint32_t r, vg; 1038 uint32_t correct_mask_vg; 1039 uint32_t tmp_bit_chk; 1040 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1041 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1042 uint32_t addr; 1043 uint32_t base_rw_mgr; 1044 1045 *bit_chk = param->read_correct_mask; 1046 correct_mask_vg = param->read_correct_mask_vg; 1047 1048 for (r = rank_bgn; r < rank_end; r++) { 1049 if (param->skip_ranks[r]) 1050 /* request to skip the rank */ 1051 continue; 1052 1053 /* set rank */ 1054 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1055 1056 /* Load up a constant bursts of read commands */ 1057 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1058 writel(RW_MGR_GUARANTEED_READ, 1059 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1060 1061 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1062 writel(RW_MGR_GUARANTEED_READ_CONT, 1063 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1064 1065 tmp_bit_chk = 0; 1066 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1067 /* reset the fifos to get pointers to known state */ 1068 1069 writel(0, &phy_mgr_cmd->fifo_reset); 1070 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1071 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1072 1073 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1074 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1075 1076 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1077 writel(RW_MGR_GUARANTEED_READ, addr + 1078 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1079 vg) << 2)); 1080 1081 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1082 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1083 1084 if (vg == 0) 1085 break; 1086 } 1087 *bit_chk &= tmp_bit_chk; 1088 } 1089 1090 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1091 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1092 1093 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1094 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1095 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1096 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1097 return *bit_chk == param->read_correct_mask; 1098 } 1099 1100 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1101 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1102 { 1103 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1104 num_tries, bit_chk, 1); 1105 } 1106 1107 /* load up the patterns we are going to use during a read test */ 1108 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1109 uint32_t all_ranks) 1110 { 1111 uint32_t r; 1112 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1113 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1114 1115 debug("%s:%d\n", __func__, __LINE__); 1116 for (r = rank_bgn; r < rank_end; r++) { 1117 if (param->skip_ranks[r]) 1118 /* request to skip the rank */ 1119 continue; 1120 1121 /* set rank */ 1122 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1123 1124 /* Load up a constant bursts */ 1125 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1126 1127 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1128 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1129 1130 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1131 1132 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1133 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1134 1135 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1136 1137 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1138 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1139 1140 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1141 1142 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1143 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1144 1145 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1146 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1147 } 1148 1149 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1150 } 1151 1152 /* 1153 * try a read and see if it returns correct data back. has dummy reads 1154 * inserted into the mix used to align dqs enable. has more thorough checks 1155 * than the regular read test. 1156 */ 1157 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1158 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1159 uint32_t all_groups, uint32_t all_ranks) 1160 { 1161 uint32_t r, vg; 1162 uint32_t correct_mask_vg; 1163 uint32_t tmp_bit_chk; 1164 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1165 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1166 uint32_t addr; 1167 uint32_t base_rw_mgr; 1168 1169 *bit_chk = param->read_correct_mask; 1170 correct_mask_vg = param->read_correct_mask_vg; 1171 1172 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1173 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1174 1175 for (r = rank_bgn; r < rank_end; r++) { 1176 if (param->skip_ranks[r]) 1177 /* request to skip the rank */ 1178 continue; 1179 1180 /* set rank */ 1181 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1182 1183 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1184 1185 writel(RW_MGR_READ_B2B_WAIT1, 1186 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1187 1188 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1189 writel(RW_MGR_READ_B2B_WAIT2, 1190 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1191 1192 if (quick_read_mode) 1193 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1194 /* need at least two (1+1) reads to capture failures */ 1195 else if (all_groups) 1196 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1197 else 1198 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1199 1200 writel(RW_MGR_READ_B2B, 1201 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1202 if (all_groups) 1203 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1204 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1205 &sdr_rw_load_mgr_regs->load_cntr3); 1206 else 1207 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1208 1209 writel(RW_MGR_READ_B2B, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1211 1212 tmp_bit_chk = 0; 1213 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1214 /* reset the fifos to get pointers to known state */ 1215 writel(0, &phy_mgr_cmd->fifo_reset); 1216 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1217 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1218 1219 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1220 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1221 1222 if (all_groups) 1223 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1224 else 1225 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1226 1227 writel(RW_MGR_READ_B2B, addr + 1228 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1229 vg) << 2)); 1230 1231 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1232 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1233 1234 if (vg == 0) 1235 break; 1236 } 1237 *bit_chk &= tmp_bit_chk; 1238 } 1239 1240 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1241 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1242 1243 if (all_correct) { 1244 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1245 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1246 (%u == %u) => %lu", __func__, __LINE__, group, 1247 all_groups, *bit_chk, param->read_correct_mask, 1248 (long unsigned int)(*bit_chk == 1249 param->read_correct_mask)); 1250 return *bit_chk == param->read_correct_mask; 1251 } else { 1252 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1253 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1254 (%u != %lu) => %lu\n", __func__, __LINE__, 1255 group, all_groups, *bit_chk, (long unsigned int)0, 1256 (long unsigned int)(*bit_chk != 0x00)); 1257 return *bit_chk != 0x00; 1258 } 1259 } 1260 1261 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1262 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1263 uint32_t all_groups) 1264 { 1265 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1266 bit_chk, all_groups, 1); 1267 } 1268 1269 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1270 { 1271 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1272 (*v)++; 1273 } 1274 1275 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1276 { 1277 uint32_t i; 1278 1279 for (i = 0; i < VFIFO_SIZE-1; i++) 1280 rw_mgr_incr_vfifo(grp, v); 1281 } 1282 1283 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1284 { 1285 uint32_t v; 1286 uint32_t fail_cnt = 0; 1287 uint32_t test_status; 1288 1289 for (v = 0; v < VFIFO_SIZE; ) { 1290 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1291 __func__, __LINE__, v); 1292 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1293 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1294 if (!test_status) { 1295 fail_cnt++; 1296 1297 if (fail_cnt == 2) 1298 break; 1299 } 1300 1301 /* fiddle with FIFO */ 1302 rw_mgr_incr_vfifo(grp, &v); 1303 } 1304 1305 if (v >= VFIFO_SIZE) { 1306 /* no failing read found!! Something must have gone wrong */ 1307 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1308 __func__, __LINE__); 1309 return 0; 1310 } else { 1311 return v; 1312 } 1313 } 1314 1315 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1316 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1317 uint32_t *v, uint32_t *d, uint32_t *p, 1318 uint32_t *i, uint32_t *max_working_cnt) 1319 { 1320 uint32_t found_begin = 0; 1321 uint32_t tmp_delay = 0; 1322 uint32_t test_status; 1323 1324 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1325 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1326 *work_bgn = tmp_delay; 1327 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1328 1329 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1330 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1331 IO_DELAY_PER_OPA_TAP) { 1332 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1333 1334 test_status = 1335 rw_mgr_mem_calibrate_read_test_all_ranks 1336 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1337 1338 if (test_status) { 1339 *max_working_cnt = 1; 1340 found_begin = 1; 1341 break; 1342 } 1343 } 1344 1345 if (found_begin) 1346 break; 1347 1348 if (*p > IO_DQS_EN_PHASE_MAX) 1349 /* fiddle with FIFO */ 1350 rw_mgr_incr_vfifo(*grp, v); 1351 } 1352 1353 if (found_begin) 1354 break; 1355 } 1356 1357 if (*i >= VFIFO_SIZE) { 1358 /* cannot find working solution */ 1359 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1360 ptap/dtap\n", __func__, __LINE__); 1361 return 0; 1362 } else { 1363 return 1; 1364 } 1365 } 1366 1367 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1368 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1369 uint32_t *p, uint32_t *max_working_cnt) 1370 { 1371 uint32_t found_begin = 0; 1372 uint32_t tmp_delay; 1373 1374 /* Special case code for backing up a phase */ 1375 if (*p == 0) { 1376 *p = IO_DQS_EN_PHASE_MAX; 1377 rw_mgr_decr_vfifo(*grp, v); 1378 } else { 1379 (*p)--; 1380 } 1381 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1382 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1383 1384 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1385 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1386 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1387 1388 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1389 PASS_ONE_BIT, 1390 bit_chk, 0)) { 1391 found_begin = 1; 1392 *work_bgn = tmp_delay; 1393 break; 1394 } 1395 } 1396 1397 /* We have found a working dtap before the ptap found above */ 1398 if (found_begin == 1) 1399 (*max_working_cnt)++; 1400 1401 /* 1402 * Restore VFIFO to old state before we decremented it 1403 * (if needed). 1404 */ 1405 (*p)++; 1406 if (*p > IO_DQS_EN_PHASE_MAX) { 1407 *p = 0; 1408 rw_mgr_incr_vfifo(*grp, v); 1409 } 1410 1411 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1412 } 1413 1414 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1415 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1416 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1417 uint32_t *work_end) 1418 { 1419 uint32_t found_end = 0; 1420 1421 (*p)++; 1422 *work_end += IO_DELAY_PER_OPA_TAP; 1423 if (*p > IO_DQS_EN_PHASE_MAX) { 1424 /* fiddle with FIFO */ 1425 *p = 0; 1426 rw_mgr_incr_vfifo(*grp, v); 1427 } 1428 1429 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1430 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1431 += IO_DELAY_PER_OPA_TAP) { 1432 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1433 1434 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1435 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1436 found_end = 1; 1437 break; 1438 } else { 1439 (*max_working_cnt)++; 1440 } 1441 } 1442 1443 if (found_end) 1444 break; 1445 1446 if (*p > IO_DQS_EN_PHASE_MAX) { 1447 /* fiddle with FIFO */ 1448 rw_mgr_incr_vfifo(*grp, v); 1449 *p = 0; 1450 } 1451 } 1452 1453 if (*i >= VFIFO_SIZE + 1) { 1454 /* cannot see edge of failing read */ 1455 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1456 failed\n", __func__, __LINE__); 1457 return 0; 1458 } else { 1459 return 1; 1460 } 1461 } 1462 1463 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1464 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1465 uint32_t *p, uint32_t *work_mid, 1466 uint32_t *work_end) 1467 { 1468 int i; 1469 int tmp_delay = 0; 1470 1471 *work_mid = (*work_bgn + *work_end) / 2; 1472 1473 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1474 *work_bgn, *work_end, *work_mid); 1475 /* Get the middle delay to be less than a VFIFO delay */ 1476 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1477 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1478 ; 1479 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1480 while (*work_mid > tmp_delay) 1481 *work_mid -= tmp_delay; 1482 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1483 1484 tmp_delay = 0; 1485 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1486 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1487 ; 1488 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1489 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1490 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1491 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1492 ; 1493 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1494 1495 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1496 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1497 1498 /* 1499 * push vfifo until we can successfully calibrate. We can do this 1500 * because the largest possible margin in 1 VFIFO cycle. 1501 */ 1502 for (i = 0; i < VFIFO_SIZE; i++) { 1503 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1504 *v); 1505 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1506 PASS_ONE_BIT, 1507 bit_chk, 0)) { 1508 break; 1509 } 1510 1511 /* fiddle with FIFO */ 1512 rw_mgr_incr_vfifo(*grp, v); 1513 } 1514 1515 if (i >= VFIFO_SIZE) { 1516 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1517 failed\n", __func__, __LINE__); 1518 return 0; 1519 } else { 1520 return 1; 1521 } 1522 } 1523 1524 /* find a good dqs enable to use */ 1525 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1526 { 1527 uint32_t v, d, p, i; 1528 uint32_t max_working_cnt; 1529 uint32_t bit_chk; 1530 uint32_t dtaps_per_ptap; 1531 uint32_t work_bgn, work_mid, work_end; 1532 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1533 1534 debug("%s:%d %u\n", __func__, __LINE__, grp); 1535 1536 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1537 1538 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1539 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1540 1541 /* ************************************************************** */ 1542 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1543 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1544 1545 /* ********************************************************* */ 1546 /* * Step 1 : First push vfifo until we get a failing read * */ 1547 v = find_vfifo_read(grp, &bit_chk); 1548 1549 max_working_cnt = 0; 1550 1551 /* ******************************************************** */ 1552 /* * step 2: find first working phase, increment in ptaps * */ 1553 work_bgn = 0; 1554 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1555 &p, &i, &max_working_cnt) == 0) 1556 return 0; 1557 1558 work_end = work_bgn; 1559 1560 /* 1561 * If d is 0 then the working window covers a phase tap and 1562 * we can follow the old procedure otherwise, we've found the beginning, 1563 * and we need to increment the dtaps until we find the end. 1564 */ 1565 if (d == 0) { 1566 /* ********************************************************* */ 1567 /* * step 3a: if we have room, back off by one and 1568 increment in dtaps * */ 1569 1570 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1571 &max_working_cnt); 1572 1573 /* ********************************************************* */ 1574 /* * step 4a: go forward from working phase to non working 1575 phase, increment in ptaps * */ 1576 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1577 &i, &max_working_cnt, &work_end) == 0) 1578 return 0; 1579 1580 /* ********************************************************* */ 1581 /* * step 5a: back off one from last, increment in dtaps * */ 1582 1583 /* Special case code for backing up a phase */ 1584 if (p == 0) { 1585 p = IO_DQS_EN_PHASE_MAX; 1586 rw_mgr_decr_vfifo(grp, &v); 1587 } else { 1588 p = p - 1; 1589 } 1590 1591 work_end -= IO_DELAY_PER_OPA_TAP; 1592 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1593 1594 /* * The actual increment of dtaps is done outside of 1595 the if/else loop to share code */ 1596 d = 0; 1597 1598 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1599 vfifo=%u ptap=%u\n", __func__, __LINE__, 1600 v, p); 1601 } else { 1602 /* ******************************************************* */ 1603 /* * step 3-5b: Find the right edge of the window using 1604 delay taps * */ 1605 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1606 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1607 v, p, d, work_bgn); 1608 1609 work_end = work_bgn; 1610 1611 /* * The actual increment of dtaps is done outside of the 1612 if/else loop to share code */ 1613 1614 /* Only here to counterbalance a subtract later on which is 1615 not needed if this branch of the algorithm is taken */ 1616 max_working_cnt++; 1617 } 1618 1619 /* The dtap increment to find the failing edge is done here */ 1620 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1621 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1622 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1623 end-2: dtap=%u\n", __func__, __LINE__, d); 1624 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1625 1626 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1627 PASS_ONE_BIT, 1628 &bit_chk, 0)) { 1629 break; 1630 } 1631 } 1632 1633 /* Go back to working dtap */ 1634 if (d != 0) 1635 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1636 1637 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1638 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1639 v, p, d-1, work_end); 1640 1641 if (work_end < work_bgn) { 1642 /* nil range */ 1643 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1644 failed\n", __func__, __LINE__); 1645 return 0; 1646 } 1647 1648 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1649 __func__, __LINE__, work_bgn, work_end); 1650 1651 /* *************************************************************** */ 1652 /* 1653 * * We need to calculate the number of dtaps that equal a ptap 1654 * * To do that we'll back up a ptap and re-find the edge of the 1655 * * window using dtaps 1656 */ 1657 1658 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1659 for tracking\n", __func__, __LINE__); 1660 1661 /* Special case code for backing up a phase */ 1662 if (p == 0) { 1663 p = IO_DQS_EN_PHASE_MAX; 1664 rw_mgr_decr_vfifo(grp, &v); 1665 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1666 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1667 v, p); 1668 } else { 1669 p = p - 1; 1670 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1671 phase only: v=%u p=%u", __func__, __LINE__, 1672 v, p); 1673 } 1674 1675 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1676 1677 /* 1678 * Increase dtap until we first see a passing read (in case the 1679 * window is smaller than a ptap), 1680 * and then a failing read to mark the edge of the window again 1681 */ 1682 1683 /* Find a passing read */ 1684 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1685 __func__, __LINE__); 1686 found_passing_read = 0; 1687 found_failing_read = 0; 1688 initial_failing_dtap = d; 1689 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1691 read d=%u\n", __func__, __LINE__, d); 1692 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1693 1694 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1695 PASS_ONE_BIT, 1696 &bit_chk, 0)) { 1697 found_passing_read = 1; 1698 break; 1699 } 1700 } 1701 1702 if (found_passing_read) { 1703 /* Find a failing read */ 1704 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1705 read\n", __func__, __LINE__); 1706 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1708 testing read d=%u\n", __func__, __LINE__, d); 1709 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1710 1711 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1712 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1713 found_failing_read = 1; 1714 break; 1715 } 1716 } 1717 } else { 1718 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1719 calculate dtaps", __func__, __LINE__); 1720 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1721 } 1722 1723 /* 1724 * The dynamically calculated dtaps_per_ptap is only valid if we 1725 * found a passing/failing read. If we didn't, it means d hit the max 1726 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1727 * statically calculated value. 1728 */ 1729 if (found_passing_read && found_failing_read) 1730 dtaps_per_ptap = d - initial_failing_dtap; 1731 1732 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1733 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1734 - %u = %u", __func__, __LINE__, d, 1735 initial_failing_dtap, dtaps_per_ptap); 1736 1737 /* ******************************************** */ 1738 /* * step 6: Find the centre of the window * */ 1739 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1740 &work_mid, &work_end) == 0) 1741 return 0; 1742 1743 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1744 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1745 v, p-1, d); 1746 return 1; 1747 } 1748 1749 /* 1750 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1751 * dq_in_delay values 1752 */ 1753 static uint32_t 1754 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1755 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1756 { 1757 uint32_t found; 1758 uint32_t i; 1759 uint32_t p; 1760 uint32_t d; 1761 uint32_t r; 1762 1763 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1764 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1765 /* we start at zero, so have one less dq to devide among */ 1766 1767 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1768 test_bgn); 1769 1770 /* try different dq_in_delays since the dq path is shorter than dqs */ 1771 1772 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1773 r += NUM_RANKS_PER_SHADOW_REG) { 1774 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1775 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1776 vfifo_find_dqs_", __func__, __LINE__); 1777 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1778 write_group, read_group); 1779 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1780 scc_mgr_set_dq_in_delay(p, d); 1781 scc_mgr_load_dq(p); 1782 } 1783 writel(0, &sdr_scc_mgr->update); 1784 } 1785 1786 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1787 1788 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1789 en_phase_sweep_dq", __func__, __LINE__); 1790 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1791 chain to zero\n", write_group, read_group, found); 1792 1793 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1794 r += NUM_RANKS_PER_SHADOW_REG) { 1795 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1796 i++, p++) { 1797 scc_mgr_set_dq_in_delay(p, 0); 1798 scc_mgr_load_dq(p); 1799 } 1800 writel(0, &sdr_scc_mgr->update); 1801 } 1802 1803 return found; 1804 } 1805 1806 /* per-bit deskew DQ and center */ 1807 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1808 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1809 uint32_t use_read_test, uint32_t update_fom) 1810 { 1811 uint32_t i, p, d, min_index; 1812 /* 1813 * Store these as signed since there are comparisons with 1814 * signed numbers. 1815 */ 1816 uint32_t bit_chk; 1817 uint32_t sticky_bit_chk; 1818 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1819 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1820 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1821 int32_t mid; 1822 int32_t orig_mid_min, mid_min; 1823 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1824 final_dqs_en; 1825 int32_t dq_margin, dqs_margin; 1826 uint32_t stop; 1827 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1828 uint32_t addr; 1829 1830 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1831 1832 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1833 start_dqs = readl(addr + (read_group << 2)); 1834 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1835 start_dqs_en = readl(addr + ((read_group << 2) 1836 - IO_DQS_EN_DELAY_OFFSET)); 1837 1838 /* set the left and right edge of each bit to an illegal value */ 1839 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1840 sticky_bit_chk = 0; 1841 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1842 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1843 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1844 } 1845 1846 /* Search for the left edge of the window for each bit */ 1847 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1848 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1849 1850 writel(0, &sdr_scc_mgr->update); 1851 1852 /* 1853 * Stop searching when the read test doesn't pass AND when 1854 * we've seen a passing read on every bit. 1855 */ 1856 if (use_read_test) { 1857 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1858 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1859 &bit_chk, 0, 0); 1860 } else { 1861 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1862 0, PASS_ONE_BIT, 1863 &bit_chk, 0); 1864 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1865 (read_group - (write_group * 1866 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1867 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1868 stop = (bit_chk == 0); 1869 } 1870 sticky_bit_chk = sticky_bit_chk | bit_chk; 1871 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1872 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1873 && %u", __func__, __LINE__, d, 1874 sticky_bit_chk, 1875 param->read_correct_mask, stop); 1876 1877 if (stop == 1) { 1878 break; 1879 } else { 1880 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1881 if (bit_chk & 1) { 1882 /* Remember a passing test as the 1883 left_edge */ 1884 left_edge[i] = d; 1885 } else { 1886 /* If a left edge has not been seen yet, 1887 then a future passing test will mark 1888 this edge as the right edge */ 1889 if (left_edge[i] == 1890 IO_IO_IN_DELAY_MAX + 1) { 1891 right_edge[i] = -(d + 1); 1892 } 1893 } 1894 bit_chk = bit_chk >> 1; 1895 } 1896 } 1897 } 1898 1899 /* Reset DQ delay chains to 0 */ 1900 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1901 sticky_bit_chk = 0; 1902 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1903 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1904 %d right_edge[%u]: %d\n", __func__, __LINE__, 1905 i, left_edge[i], i, right_edge[i]); 1906 1907 /* 1908 * Check for cases where we haven't found the left edge, 1909 * which makes our assignment of the the right edge invalid. 1910 * Reset it to the illegal value. 1911 */ 1912 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1913 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1914 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1915 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1916 right_edge[%u]: %d\n", __func__, __LINE__, 1917 i, right_edge[i]); 1918 } 1919 1920 /* 1921 * Reset sticky bit (except for bits where we have seen 1922 * both the left and right edge). 1923 */ 1924 sticky_bit_chk = sticky_bit_chk << 1; 1925 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1926 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1927 sticky_bit_chk = sticky_bit_chk | 1; 1928 } 1929 1930 if (i == 0) 1931 break; 1932 } 1933 1934 /* Search for the right edge of the window for each bit */ 1935 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1936 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1937 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1938 uint32_t delay = d + start_dqs_en; 1939 if (delay > IO_DQS_EN_DELAY_MAX) 1940 delay = IO_DQS_EN_DELAY_MAX; 1941 scc_mgr_set_dqs_en_delay(read_group, delay); 1942 } 1943 scc_mgr_load_dqs(read_group); 1944 1945 writel(0, &sdr_scc_mgr->update); 1946 1947 /* 1948 * Stop searching when the read test doesn't pass AND when 1949 * we've seen a passing read on every bit. 1950 */ 1951 if (use_read_test) { 1952 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1953 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1954 &bit_chk, 0, 0); 1955 } else { 1956 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1957 0, PASS_ONE_BIT, 1958 &bit_chk, 0); 1959 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1960 (read_group - (write_group * 1961 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1962 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1963 stop = (bit_chk == 0); 1964 } 1965 sticky_bit_chk = sticky_bit_chk | bit_chk; 1966 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1967 1968 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1969 %u && %u", __func__, __LINE__, d, 1970 sticky_bit_chk, param->read_correct_mask, stop); 1971 1972 if (stop == 1) { 1973 break; 1974 } else { 1975 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1976 if (bit_chk & 1) { 1977 /* Remember a passing test as 1978 the right_edge */ 1979 right_edge[i] = d; 1980 } else { 1981 if (d != 0) { 1982 /* If a right edge has not been 1983 seen yet, then a future passing 1984 test will mark this edge as the 1985 left edge */ 1986 if (right_edge[i] == 1987 IO_IO_IN_DELAY_MAX + 1) { 1988 left_edge[i] = -(d + 1); 1989 } 1990 } else { 1991 /* d = 0 failed, but it passed 1992 when testing the left edge, 1993 so it must be marginal, 1994 set it to -1 */ 1995 if (right_edge[i] == 1996 IO_IO_IN_DELAY_MAX + 1 && 1997 left_edge[i] != 1998 IO_IO_IN_DELAY_MAX 1999 + 1) { 2000 right_edge[i] = -1; 2001 } 2002 /* If a right edge has not been 2003 seen yet, then a future passing 2004 test will mark this edge as the 2005 left edge */ 2006 else if (right_edge[i] == 2007 IO_IO_IN_DELAY_MAX + 2008 1) { 2009 left_edge[i] = -(d + 1); 2010 } 2011 } 2012 } 2013 2014 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2015 d=%u]: ", __func__, __LINE__, d); 2016 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2017 (int)(bit_chk & 1), i, left_edge[i]); 2018 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2019 right_edge[i]); 2020 bit_chk = bit_chk >> 1; 2021 } 2022 } 2023 } 2024 2025 /* Check that all bits have a window */ 2026 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2027 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2028 %d right_edge[%u]: %d", __func__, __LINE__, 2029 i, left_edge[i], i, right_edge[i]); 2030 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2031 == IO_IO_IN_DELAY_MAX + 1)) { 2032 /* 2033 * Restore delay chain settings before letting the loop 2034 * in rw_mgr_mem_calibrate_vfifo to retry different 2035 * dqs/ck relationships. 2036 */ 2037 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2038 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2039 scc_mgr_set_dqs_en_delay(read_group, 2040 start_dqs_en); 2041 } 2042 scc_mgr_load_dqs(read_group); 2043 writel(0, &sdr_scc_mgr->update); 2044 2045 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2046 find edge [%u]: %d %d", __func__, __LINE__, 2047 i, left_edge[i], right_edge[i]); 2048 if (use_read_test) { 2049 set_failing_group_stage(read_group * 2050 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2051 CAL_STAGE_VFIFO, 2052 CAL_SUBSTAGE_VFIFO_CENTER); 2053 } else { 2054 set_failing_group_stage(read_group * 2055 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2056 CAL_STAGE_VFIFO_AFTER_WRITES, 2057 CAL_SUBSTAGE_VFIFO_CENTER); 2058 } 2059 return 0; 2060 } 2061 } 2062 2063 /* Find middle of window for each DQ bit */ 2064 mid_min = left_edge[0] - right_edge[0]; 2065 min_index = 0; 2066 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2067 mid = left_edge[i] - right_edge[i]; 2068 if (mid < mid_min) { 2069 mid_min = mid; 2070 min_index = i; 2071 } 2072 } 2073 2074 /* 2075 * -mid_min/2 represents the amount that we need to move DQS. 2076 * If mid_min is odd and positive we'll need to add one to 2077 * make sure the rounding in further calculations is correct 2078 * (always bias to the right), so just add 1 for all positive values. 2079 */ 2080 if (mid_min > 0) 2081 mid_min++; 2082 2083 mid_min = mid_min / 2; 2084 2085 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2086 __func__, __LINE__, mid_min, min_index); 2087 2088 /* Determine the amount we can change DQS (which is -mid_min) */ 2089 orig_mid_min = mid_min; 2090 new_dqs = start_dqs - mid_min; 2091 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2092 new_dqs = IO_DQS_IN_DELAY_MAX; 2093 else if (new_dqs < 0) 2094 new_dqs = 0; 2095 2096 mid_min = start_dqs - new_dqs; 2097 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2098 mid_min, new_dqs); 2099 2100 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2101 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2102 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2103 else if (start_dqs_en - mid_min < 0) 2104 mid_min += start_dqs_en - mid_min; 2105 } 2106 new_dqs = start_dqs - mid_min; 2107 2108 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2109 new_dqs=%d mid_min=%d\n", start_dqs, 2110 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2111 new_dqs, mid_min); 2112 2113 /* Initialize data for export structures */ 2114 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2115 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2116 2117 /* add delay to bring centre of all DQ windows to the same "level" */ 2118 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2119 /* Use values before divide by 2 to reduce round off error */ 2120 shift_dq = (left_edge[i] - right_edge[i] - 2121 (left_edge[min_index] - right_edge[min_index]))/2 + 2122 (orig_mid_min - mid_min); 2123 2124 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2125 shift_dq[%u]=%d\n", i, shift_dq); 2126 2127 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2128 temp_dq_in_delay1 = readl(addr + (p << 2)); 2129 temp_dq_in_delay2 = readl(addr + (i << 2)); 2130 2131 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2132 (int32_t)IO_IO_IN_DELAY_MAX) { 2133 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2134 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2135 shift_dq = -(int32_t)temp_dq_in_delay1; 2136 } 2137 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2138 shift_dq[%u]=%d\n", i, shift_dq); 2139 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2140 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2141 scc_mgr_load_dq(p); 2142 2143 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2144 left_edge[i] - shift_dq + (-mid_min), 2145 right_edge[i] + shift_dq - (-mid_min)); 2146 /* To determine values for export structures */ 2147 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2148 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2149 2150 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2151 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2152 } 2153 2154 final_dqs = new_dqs; 2155 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2156 final_dqs_en = start_dqs_en - mid_min; 2157 2158 /* Move DQS-en */ 2159 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2160 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2161 scc_mgr_load_dqs(read_group); 2162 } 2163 2164 /* Move DQS */ 2165 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2166 scc_mgr_load_dqs(read_group); 2167 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2168 dqs_margin=%d", __func__, __LINE__, 2169 dq_margin, dqs_margin); 2170 2171 /* 2172 * Do not remove this line as it makes sure all of our decisions 2173 * have been applied. Apply the update bit. 2174 */ 2175 writel(0, &sdr_scc_mgr->update); 2176 2177 return (dq_margin >= 0) && (dqs_margin >= 0); 2178 } 2179 2180 /* 2181 * calibrate the read valid prediction FIFO. 2182 * 2183 * - read valid prediction will consist of finding a good DQS enable phase, 2184 * DQS enable delay, DQS input phase, and DQS input delay. 2185 * - we also do a per-bit deskew on the DQ lines. 2186 */ 2187 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2188 uint32_t test_bgn) 2189 { 2190 uint32_t p, d, rank_bgn, sr; 2191 uint32_t dtaps_per_ptap; 2192 uint32_t bit_chk; 2193 uint32_t grp_calibrated; 2194 uint32_t write_group, write_test_bgn; 2195 uint32_t failed_substage; 2196 2197 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2198 2199 /* update info for sims */ 2200 reg_file_set_stage(CAL_STAGE_VFIFO); 2201 2202 write_group = read_group; 2203 write_test_bgn = test_bgn; 2204 2205 /* USER Determine number of delay taps for each phase tap */ 2206 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2207 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2208 2209 /* update info for sims */ 2210 reg_file_set_group(read_group); 2211 2212 grp_calibrated = 0; 2213 2214 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2215 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2216 2217 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2218 /* 2219 * In RLDRAMX we may be messing the delay of pins in 2220 * the same write group but outside of the current read 2221 * the group, but that's ok because we haven't 2222 * calibrated output side yet. 2223 */ 2224 if (d > 0) { 2225 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2226 write_group, d); 2227 } 2228 2229 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2230 p++) { 2231 /* set a particular dqdqs phase */ 2232 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2233 2234 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2235 p=%u d=%u\n", __func__, __LINE__, 2236 read_group, p, d); 2237 2238 /* 2239 * Load up the patterns used by read calibration 2240 * using current DQDQS phase. 2241 */ 2242 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2243 if (!(gbl->phy_debug_mode_flags & 2244 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2245 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2246 (read_group, 1, &bit_chk)) { 2247 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2248 __func__, __LINE__); 2249 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2250 read_group, p, d); 2251 break; 2252 } 2253 } 2254 2255 /* case:56390 */ 2256 grp_calibrated = 1; 2257 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2258 (write_group, read_group, test_bgn)) { 2259 /* 2260 * USER Read per-bit deskew can be done on a 2261 * per shadow register basis. 2262 */ 2263 for (rank_bgn = 0, sr = 0; 2264 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2265 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2266 ++sr) { 2267 /* 2268 * Determine if this set of ranks 2269 * should be skipped entirely. 2270 */ 2271 if (!param->skip_shadow_regs[sr]) { 2272 /* 2273 * If doing read after write 2274 * calibration, do not update 2275 * FOM, now - do it then. 2276 */ 2277 if (!rw_mgr_mem_calibrate_vfifo_center 2278 (rank_bgn, write_group, 2279 read_group, test_bgn, 1, 0)) { 2280 grp_calibrated = 0; 2281 failed_substage = 2282 CAL_SUBSTAGE_VFIFO_CENTER; 2283 } 2284 } 2285 } 2286 } else { 2287 grp_calibrated = 0; 2288 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2289 } 2290 } 2291 } 2292 2293 if (grp_calibrated == 0) { 2294 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2295 failed_substage); 2296 return 0; 2297 } 2298 2299 /* 2300 * Reset the delay chains back to zero if they have moved > 1 2301 * (check for > 1 because loop will increase d even when pass in 2302 * first case). 2303 */ 2304 if (d > 2) 2305 scc_mgr_zero_group(write_group, 1); 2306 2307 return 1; 2308 } 2309 2310 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2311 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2312 uint32_t test_bgn) 2313 { 2314 uint32_t rank_bgn, sr; 2315 uint32_t grp_calibrated; 2316 uint32_t write_group; 2317 2318 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2319 2320 /* update info for sims */ 2321 2322 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2323 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2324 2325 write_group = read_group; 2326 2327 /* update info for sims */ 2328 reg_file_set_group(read_group); 2329 2330 grp_calibrated = 1; 2331 /* Read per-bit deskew can be done on a per shadow register basis */ 2332 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2333 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2334 /* Determine if this set of ranks should be skipped entirely */ 2335 if (!param->skip_shadow_regs[sr]) { 2336 /* This is the last calibration round, update FOM here */ 2337 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2338 write_group, 2339 read_group, 2340 test_bgn, 0, 2341 1)) { 2342 grp_calibrated = 0; 2343 } 2344 } 2345 } 2346 2347 2348 if (grp_calibrated == 0) { 2349 set_failing_group_stage(write_group, 2350 CAL_STAGE_VFIFO_AFTER_WRITES, 2351 CAL_SUBSTAGE_VFIFO_CENTER); 2352 return 0; 2353 } 2354 2355 return 1; 2356 } 2357 2358 /* Calibrate LFIFO to find smallest read latency */ 2359 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2360 { 2361 uint32_t found_one; 2362 uint32_t bit_chk; 2363 2364 debug("%s:%d\n", __func__, __LINE__); 2365 2366 /* update info for sims */ 2367 reg_file_set_stage(CAL_STAGE_LFIFO); 2368 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2369 2370 /* Load up the patterns used by read calibration for all ranks */ 2371 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2372 found_one = 0; 2373 2374 do { 2375 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2376 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2377 __func__, __LINE__, gbl->curr_read_lat); 2378 2379 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2380 NUM_READ_TESTS, 2381 PASS_ALL_BITS, 2382 &bit_chk, 1)) { 2383 break; 2384 } 2385 2386 found_one = 1; 2387 /* reduce read latency and see if things are working */ 2388 /* correctly */ 2389 gbl->curr_read_lat--; 2390 } while (gbl->curr_read_lat > 0); 2391 2392 /* reset the fifos to get pointers to known state */ 2393 2394 writel(0, &phy_mgr_cmd->fifo_reset); 2395 2396 if (found_one) { 2397 /* add a fudge factor to the read latency that was determined */ 2398 gbl->curr_read_lat += 2; 2399 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2400 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2401 read_lat=%u\n", __func__, __LINE__, 2402 gbl->curr_read_lat); 2403 return 1; 2404 } else { 2405 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2406 CAL_SUBSTAGE_READ_LATENCY); 2407 2408 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2409 read_lat=%u\n", __func__, __LINE__, 2410 gbl->curr_read_lat); 2411 return 0; 2412 } 2413 } 2414 2415 /* 2416 * issue write test command. 2417 * two variants are provided. one that just tests a write pattern and 2418 * another that tests datamask functionality. 2419 */ 2420 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2421 uint32_t test_dm) 2422 { 2423 uint32_t mcc_instruction; 2424 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2425 ENABLE_SUPER_QUICK_CALIBRATION); 2426 uint32_t rw_wl_nop_cycles; 2427 uint32_t addr; 2428 2429 /* 2430 * Set counter and jump addresses for the right 2431 * number of NOP cycles. 2432 * The number of supported NOP cycles can range from -1 to infinity 2433 * Three different cases are handled: 2434 * 2435 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2436 * mechanism will be used to insert the right number of NOPs 2437 * 2438 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2439 * issuing the write command will jump straight to the 2440 * micro-instruction that turns on DQS (for DDRx), or outputs write 2441 * data (for RLD), skipping 2442 * the NOP micro-instruction all together 2443 * 2444 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2445 * turned on in the same micro-instruction that issues the write 2446 * command. Then we need 2447 * to directly jump to the micro-instruction that sends out the data 2448 * 2449 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2450 * (2 and 3). One jump-counter (0) is used to perform multiple 2451 * write-read operations. 2452 * one counter left to issue this command in "multiple-group" mode 2453 */ 2454 2455 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2456 2457 if (rw_wl_nop_cycles == -1) { 2458 /* 2459 * CNTR 2 - We want to execute the special write operation that 2460 * turns on DQS right away and then skip directly to the 2461 * instruction that sends out the data. We set the counter to a 2462 * large number so that the jump is always taken. 2463 */ 2464 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2465 2466 /* CNTR 3 - Not used */ 2467 if (test_dm) { 2468 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2469 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2470 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2471 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2472 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2473 } else { 2474 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2475 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2476 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2477 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2478 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2479 } 2480 } else if (rw_wl_nop_cycles == 0) { 2481 /* 2482 * CNTR 2 - We want to skip the NOP operation and go straight 2483 * to the DQS enable instruction. We set the counter to a large 2484 * number so that the jump is always taken. 2485 */ 2486 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2487 2488 /* CNTR 3 - Not used */ 2489 if (test_dm) { 2490 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2491 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2492 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2493 } else { 2494 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2495 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2496 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2497 } 2498 } else { 2499 /* 2500 * CNTR 2 - In this case we want to execute the next instruction 2501 * and NOT take the jump. So we set the counter to 0. The jump 2502 * address doesn't count. 2503 */ 2504 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2505 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2506 2507 /* 2508 * CNTR 3 - Set the nop counter to the number of cycles we 2509 * need to loop for, minus 1. 2510 */ 2511 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2512 if (test_dm) { 2513 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2514 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2515 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2516 } else { 2517 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2518 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2519 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2520 } 2521 } 2522 2523 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2524 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2525 2526 if (quick_write_mode) 2527 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2528 else 2529 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2530 2531 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2532 2533 /* 2534 * CNTR 1 - This is used to ensure enough time elapses 2535 * for read data to come back. 2536 */ 2537 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2538 2539 if (test_dm) { 2540 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2542 } else { 2543 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2544 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2545 } 2546 2547 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2548 writel(mcc_instruction, addr + (group << 2)); 2549 } 2550 2551 /* Test writes, can check for a single bit pass or multiple bit pass */ 2552 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2553 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2554 uint32_t *bit_chk, uint32_t all_ranks) 2555 { 2556 uint32_t r; 2557 uint32_t correct_mask_vg; 2558 uint32_t tmp_bit_chk; 2559 uint32_t vg; 2560 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2561 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2562 uint32_t addr_rw_mgr; 2563 uint32_t base_rw_mgr; 2564 2565 *bit_chk = param->write_correct_mask; 2566 correct_mask_vg = param->write_correct_mask_vg; 2567 2568 for (r = rank_bgn; r < rank_end; r++) { 2569 if (param->skip_ranks[r]) { 2570 /* request to skip the rank */ 2571 continue; 2572 } 2573 2574 /* set rank */ 2575 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2576 2577 tmp_bit_chk = 0; 2578 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2579 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2580 /* reset the fifos to get pointers to known state */ 2581 writel(0, &phy_mgr_cmd->fifo_reset); 2582 2583 tmp_bit_chk = tmp_bit_chk << 2584 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2585 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2586 rw_mgr_mem_calibrate_write_test_issue(write_group * 2587 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2588 use_dm); 2589 2590 base_rw_mgr = readl(addr_rw_mgr); 2591 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2592 if (vg == 0) 2593 break; 2594 } 2595 *bit_chk &= tmp_bit_chk; 2596 } 2597 2598 if (all_correct) { 2599 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2600 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2601 %u => %lu", write_group, use_dm, 2602 *bit_chk, param->write_correct_mask, 2603 (long unsigned int)(*bit_chk == 2604 param->write_correct_mask)); 2605 return *bit_chk == param->write_correct_mask; 2606 } else { 2607 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2608 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2609 write_group, use_dm, *bit_chk); 2610 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2611 (long unsigned int)(*bit_chk != 0)); 2612 return *bit_chk != 0x00; 2613 } 2614 } 2615 2616 /* 2617 * center all windows. do per-bit-deskew to possibly increase size of 2618 * certain windows. 2619 */ 2620 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2621 uint32_t write_group, uint32_t test_bgn) 2622 { 2623 uint32_t i, p, min_index; 2624 int32_t d; 2625 /* 2626 * Store these as signed since there are comparisons with 2627 * signed numbers. 2628 */ 2629 uint32_t bit_chk; 2630 uint32_t sticky_bit_chk; 2631 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2632 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2633 int32_t mid; 2634 int32_t mid_min, orig_mid_min; 2635 int32_t new_dqs, start_dqs, shift_dq; 2636 int32_t dq_margin, dqs_margin, dm_margin; 2637 uint32_t stop; 2638 uint32_t temp_dq_out1_delay; 2639 uint32_t addr; 2640 2641 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2642 2643 dm_margin = 0; 2644 2645 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2646 start_dqs = readl(addr + 2647 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2648 2649 /* per-bit deskew */ 2650 2651 /* 2652 * set the left and right edge of each bit to an illegal value 2653 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2654 */ 2655 sticky_bit_chk = 0; 2656 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2657 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2658 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2659 } 2660 2661 /* Search for the left edge of the window for each bit */ 2662 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2663 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2664 2665 writel(0, &sdr_scc_mgr->update); 2666 2667 /* 2668 * Stop searching when the read test doesn't pass AND when 2669 * we've seen a passing read on every bit. 2670 */ 2671 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2672 0, PASS_ONE_BIT, &bit_chk, 0); 2673 sticky_bit_chk = sticky_bit_chk | bit_chk; 2674 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2675 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2676 == %u && %u [bit_chk= %u ]\n", 2677 d, sticky_bit_chk, param->write_correct_mask, 2678 stop, bit_chk); 2679 2680 if (stop == 1) { 2681 break; 2682 } else { 2683 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2684 if (bit_chk & 1) { 2685 /* 2686 * Remember a passing test as the 2687 * left_edge. 2688 */ 2689 left_edge[i] = d; 2690 } else { 2691 /* 2692 * If a left edge has not been seen 2693 * yet, then a future passing test will 2694 * mark this edge as the right edge. 2695 */ 2696 if (left_edge[i] == 2697 IO_IO_OUT1_DELAY_MAX + 1) { 2698 right_edge[i] = -(d + 1); 2699 } 2700 } 2701 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2702 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2703 (int)(bit_chk & 1), i, left_edge[i]); 2704 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2705 right_edge[i]); 2706 bit_chk = bit_chk >> 1; 2707 } 2708 } 2709 } 2710 2711 /* Reset DQ delay chains to 0 */ 2712 scc_mgr_apply_group_dq_out1_delay(0); 2713 sticky_bit_chk = 0; 2714 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2715 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2716 %d right_edge[%u]: %d\n", __func__, __LINE__, 2717 i, left_edge[i], i, right_edge[i]); 2718 2719 /* 2720 * Check for cases where we haven't found the left edge, 2721 * which makes our assignment of the the right edge invalid. 2722 * Reset it to the illegal value. 2723 */ 2724 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2725 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2726 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2727 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2728 right_edge[%u]: %d\n", __func__, __LINE__, 2729 i, right_edge[i]); 2730 } 2731 2732 /* 2733 * Reset sticky bit (except for bits where we have 2734 * seen the left edge). 2735 */ 2736 sticky_bit_chk = sticky_bit_chk << 1; 2737 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2738 sticky_bit_chk = sticky_bit_chk | 1; 2739 2740 if (i == 0) 2741 break; 2742 } 2743 2744 /* Search for the right edge of the window for each bit */ 2745 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2746 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2747 d + start_dqs); 2748 2749 writel(0, &sdr_scc_mgr->update); 2750 2751 /* 2752 * Stop searching when the read test doesn't pass AND when 2753 * we've seen a passing read on every bit. 2754 */ 2755 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2756 0, PASS_ONE_BIT, &bit_chk, 0); 2757 2758 sticky_bit_chk = sticky_bit_chk | bit_chk; 2759 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2760 2761 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2762 %u && %u\n", d, sticky_bit_chk, 2763 param->write_correct_mask, stop); 2764 2765 if (stop == 1) { 2766 if (d == 0) { 2767 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2768 i++) { 2769 /* d = 0 failed, but it passed when 2770 testing the left edge, so it must be 2771 marginal, set it to -1 */ 2772 if (right_edge[i] == 2773 IO_IO_OUT1_DELAY_MAX + 1 && 2774 left_edge[i] != 2775 IO_IO_OUT1_DELAY_MAX + 1) { 2776 right_edge[i] = -1; 2777 } 2778 } 2779 } 2780 break; 2781 } else { 2782 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2783 if (bit_chk & 1) { 2784 /* 2785 * Remember a passing test as 2786 * the right_edge. 2787 */ 2788 right_edge[i] = d; 2789 } else { 2790 if (d != 0) { 2791 /* 2792 * If a right edge has not 2793 * been seen yet, then a future 2794 * passing test will mark this 2795 * edge as the left edge. 2796 */ 2797 if (right_edge[i] == 2798 IO_IO_OUT1_DELAY_MAX + 1) 2799 left_edge[i] = -(d + 1); 2800 } else { 2801 /* 2802 * d = 0 failed, but it passed 2803 * when testing the left edge, 2804 * so it must be marginal, set 2805 * it to -1. 2806 */ 2807 if (right_edge[i] == 2808 IO_IO_OUT1_DELAY_MAX + 1 && 2809 left_edge[i] != 2810 IO_IO_OUT1_DELAY_MAX + 1) 2811 right_edge[i] = -1; 2812 /* 2813 * If a right edge has not been 2814 * seen yet, then a future 2815 * passing test will mark this 2816 * edge as the left edge. 2817 */ 2818 else if (right_edge[i] == 2819 IO_IO_OUT1_DELAY_MAX + 2820 1) 2821 left_edge[i] = -(d + 1); 2822 } 2823 } 2824 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2825 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2826 (int)(bit_chk & 1), i, left_edge[i]); 2827 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2828 right_edge[i]); 2829 bit_chk = bit_chk >> 1; 2830 } 2831 } 2832 } 2833 2834 /* Check that all bits have a window */ 2835 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2836 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2837 %d right_edge[%u]: %d", __func__, __LINE__, 2838 i, left_edge[i], i, right_edge[i]); 2839 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2840 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2841 set_failing_group_stage(test_bgn + i, 2842 CAL_STAGE_WRITES, 2843 CAL_SUBSTAGE_WRITES_CENTER); 2844 return 0; 2845 } 2846 } 2847 2848 /* Find middle of window for each DQ bit */ 2849 mid_min = left_edge[0] - right_edge[0]; 2850 min_index = 0; 2851 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2852 mid = left_edge[i] - right_edge[i]; 2853 if (mid < mid_min) { 2854 mid_min = mid; 2855 min_index = i; 2856 } 2857 } 2858 2859 /* 2860 * -mid_min/2 represents the amount that we need to move DQS. 2861 * If mid_min is odd and positive we'll need to add one to 2862 * make sure the rounding in further calculations is correct 2863 * (always bias to the right), so just add 1 for all positive values. 2864 */ 2865 if (mid_min > 0) 2866 mid_min++; 2867 mid_min = mid_min / 2; 2868 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2869 __LINE__, mid_min); 2870 2871 /* Determine the amount we can change DQS (which is -mid_min) */ 2872 orig_mid_min = mid_min; 2873 new_dqs = start_dqs; 2874 mid_min = 0; 2875 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2876 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2877 /* Initialize data for export structures */ 2878 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2879 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2880 2881 /* add delay to bring centre of all DQ windows to the same "level" */ 2882 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2883 /* Use values before divide by 2 to reduce round off error */ 2884 shift_dq = (left_edge[i] - right_edge[i] - 2885 (left_edge[min_index] - right_edge[min_index]))/2 + 2886 (orig_mid_min - mid_min); 2887 2888 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2889 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2890 2891 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2892 temp_dq_out1_delay = readl(addr + (i << 2)); 2893 if (shift_dq + (int32_t)temp_dq_out1_delay > 2894 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2895 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2896 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2897 shift_dq = -(int32_t)temp_dq_out1_delay; 2898 } 2899 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2900 i, shift_dq); 2901 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2902 scc_mgr_load_dq(i); 2903 2904 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2905 left_edge[i] - shift_dq + (-mid_min), 2906 right_edge[i] + shift_dq - (-mid_min)); 2907 /* To determine values for export structures */ 2908 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2909 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2910 2911 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2912 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2913 } 2914 2915 /* Move DQS */ 2916 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2917 writel(0, &sdr_scc_mgr->update); 2918 2919 /* Centre DM */ 2920 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2921 2922 /* 2923 * set the left and right edge of each bit to an illegal value, 2924 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2925 */ 2926 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2927 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2928 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2929 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2930 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2931 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2932 int32_t win_best = 0; 2933 2934 /* Search for the/part of the window with DM shift */ 2935 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2936 scc_mgr_apply_group_dm_out1_delay(d); 2937 writel(0, &sdr_scc_mgr->update); 2938 2939 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2940 PASS_ALL_BITS, &bit_chk, 2941 0)) { 2942 /* USE Set current end of the window */ 2943 end_curr = -d; 2944 /* 2945 * If a starting edge of our window has not been seen 2946 * this is our current start of the DM window. 2947 */ 2948 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2949 bgn_curr = -d; 2950 2951 /* 2952 * If current window is bigger than best seen. 2953 * Set best seen to be current window. 2954 */ 2955 if ((end_curr-bgn_curr+1) > win_best) { 2956 win_best = end_curr-bgn_curr+1; 2957 bgn_best = bgn_curr; 2958 end_best = end_curr; 2959 } 2960 } else { 2961 /* We just saw a failing test. Reset temp edge */ 2962 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2963 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2964 } 2965 } 2966 2967 2968 /* Reset DM delay chains to 0 */ 2969 scc_mgr_apply_group_dm_out1_delay(0); 2970 2971 /* 2972 * Check to see if the current window nudges up aganist 0 delay. 2973 * If so we need to continue the search by shifting DQS otherwise DQS 2974 * search begins as a new search. */ 2975 if (end_curr != 0) { 2976 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2977 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2978 } 2979 2980 /* Search for the/part of the window with DQS shifts */ 2981 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 2982 /* 2983 * Note: This only shifts DQS, so are we limiting ourselve to 2984 * width of DQ unnecessarily. 2985 */ 2986 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2987 d + new_dqs); 2988 2989 writel(0, &sdr_scc_mgr->update); 2990 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2991 PASS_ALL_BITS, &bit_chk, 2992 0)) { 2993 /* USE Set current end of the window */ 2994 end_curr = d; 2995 /* 2996 * If a beginning edge of our window has not been seen 2997 * this is our current begin of the DM window. 2998 */ 2999 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3000 bgn_curr = d; 3001 3002 /* 3003 * If current window is bigger than best seen. Set best 3004 * seen to be current window. 3005 */ 3006 if ((end_curr-bgn_curr+1) > win_best) { 3007 win_best = end_curr-bgn_curr+1; 3008 bgn_best = bgn_curr; 3009 end_best = end_curr; 3010 } 3011 } else { 3012 /* We just saw a failing test. Reset temp edge */ 3013 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3014 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 3016 /* Early exit optimization: if ther remaining delay 3017 chain space is less than already seen largest window 3018 we can exit */ 3019 if ((win_best-1) > 3020 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3021 break; 3022 } 3023 } 3024 } 3025 3026 /* assign left and right edge for cal and reporting; */ 3027 left_edge[0] = -1*bgn_best; 3028 right_edge[0] = end_best; 3029 3030 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3031 __LINE__, left_edge[0], right_edge[0]); 3032 3033 /* Move DQS (back to orig) */ 3034 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3035 3036 /* Move DM */ 3037 3038 /* Find middle of window for the DM bit */ 3039 mid = (left_edge[0] - right_edge[0]) / 2; 3040 3041 /* only move right, since we are not moving DQS/DQ */ 3042 if (mid < 0) 3043 mid = 0; 3044 3045 /* dm_marign should fail if we never find a window */ 3046 if (win_best == 0) 3047 dm_margin = -1; 3048 else 3049 dm_margin = left_edge[0] - mid; 3050 3051 scc_mgr_apply_group_dm_out1_delay(mid); 3052 writel(0, &sdr_scc_mgr->update); 3053 3054 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3055 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3056 right_edge[0], mid, dm_margin); 3057 /* Export values */ 3058 gbl->fom_out += dq_margin + dqs_margin; 3059 3060 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3061 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3062 dq_margin, dqs_margin, dm_margin); 3063 3064 /* 3065 * Do not remove this line as it makes sure all of our 3066 * decisions have been applied. 3067 */ 3068 writel(0, &sdr_scc_mgr->update); 3069 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3070 } 3071 3072 /* calibrate the write operations */ 3073 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3074 uint32_t test_bgn) 3075 { 3076 /* update info for sims */ 3077 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3078 3079 reg_file_set_stage(CAL_STAGE_WRITES); 3080 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3081 3082 reg_file_set_group(g); 3083 3084 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3085 set_failing_group_stage(g, CAL_STAGE_WRITES, 3086 CAL_SUBSTAGE_WRITES_CENTER); 3087 return 0; 3088 } 3089 3090 return 1; 3091 } 3092 3093 /** 3094 * mem_precharge_and_activate() - Precharge all banks and activate 3095 * 3096 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3097 */ 3098 static void mem_precharge_and_activate(void) 3099 { 3100 int r; 3101 3102 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3103 /* Test if the rank should be skipped. */ 3104 if (param->skip_ranks[r]) 3105 continue; 3106 3107 /* Set rank. */ 3108 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3109 3110 /* Precharge all banks. */ 3111 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3112 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3113 3114 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3115 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3116 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3117 3118 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3119 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3120 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3121 3122 /* Activate rows. */ 3123 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3124 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3125 } 3126 } 3127 3128 /** 3129 * mem_init_latency() - Configure memory RLAT and WLAT settings 3130 * 3131 * Configure memory RLAT and WLAT parameters. 3132 */ 3133 static void mem_init_latency(void) 3134 { 3135 /* 3136 * For AV/CV, LFIFO is hardened and always runs at full rate 3137 * so max latency in AFI clocks, used here, is correspondingly 3138 * smaller. 3139 */ 3140 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3141 u32 rlat, wlat; 3142 3143 debug("%s:%d\n", __func__, __LINE__); 3144 3145 /* 3146 * Read in write latency. 3147 * WL for Hard PHY does not include additive latency. 3148 */ 3149 wlat = readl(&data_mgr->t_wl_add); 3150 wlat += readl(&data_mgr->mem_t_add); 3151 3152 gbl->rw_wl_nop_cycles = wlat - 1; 3153 3154 /* Read in readl latency. */ 3155 rlat = readl(&data_mgr->t_rl_add); 3156 3157 /* Set a pretty high read latency initially. */ 3158 gbl->curr_read_lat = rlat + 16; 3159 if (gbl->curr_read_lat > max_latency) 3160 gbl->curr_read_lat = max_latency; 3161 3162 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3163 3164 /* Advertise write latency. */ 3165 writel(wlat, &phy_mgr_cfg->afi_wlat); 3166 } 3167 3168 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3169 static void mem_skip_calibrate(void) 3170 { 3171 uint32_t vfifo_offset; 3172 uint32_t i, j, r; 3173 3174 debug("%s:%d\n", __func__, __LINE__); 3175 /* Need to update every shadow register set used by the interface */ 3176 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3177 r += NUM_RANKS_PER_SHADOW_REG) { 3178 /* 3179 * Set output phase alignment settings appropriate for 3180 * skip calibration. 3181 */ 3182 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3183 scc_mgr_set_dqs_en_phase(i, 0); 3184 #if IO_DLL_CHAIN_LENGTH == 6 3185 scc_mgr_set_dqdqs_output_phase(i, 6); 3186 #else 3187 scc_mgr_set_dqdqs_output_phase(i, 7); 3188 #endif 3189 /* 3190 * Case:33398 3191 * 3192 * Write data arrives to the I/O two cycles before write 3193 * latency is reached (720 deg). 3194 * -> due to bit-slip in a/c bus 3195 * -> to allow board skew where dqs is longer than ck 3196 * -> how often can this happen!? 3197 * -> can claim back some ptaps for high freq 3198 * support if we can relax this, but i digress... 3199 * 3200 * The write_clk leads mem_ck by 90 deg 3201 * The minimum ptap of the OPA is 180 deg 3202 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3203 * The write_clk is always delayed by 2 ptaps 3204 * 3205 * Hence, to make DQS aligned to CK, we need to delay 3206 * DQS by: 3207 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3208 * 3209 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3210 * gives us the number of ptaps, which simplies to: 3211 * 3212 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3213 */ 3214 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3215 IO_DLL_CHAIN_LENGTH - 2)); 3216 } 3217 writel(0xff, &sdr_scc_mgr->dqs_ena); 3218 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3219 3220 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3221 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3222 SCC_MGR_GROUP_COUNTER_OFFSET); 3223 } 3224 writel(0xff, &sdr_scc_mgr->dq_ena); 3225 writel(0xff, &sdr_scc_mgr->dm_ena); 3226 writel(0, &sdr_scc_mgr->update); 3227 } 3228 3229 /* Compensate for simulation model behaviour */ 3230 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3231 scc_mgr_set_dqs_bus_in_delay(i, 10); 3232 scc_mgr_load_dqs(i); 3233 } 3234 writel(0, &sdr_scc_mgr->update); 3235 3236 /* 3237 * ArriaV has hard FIFOs that can only be initialized by incrementing 3238 * in sequencer. 3239 */ 3240 vfifo_offset = CALIB_VFIFO_OFFSET; 3241 for (j = 0; j < vfifo_offset; j++) { 3242 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3243 } 3244 writel(0, &phy_mgr_cmd->fifo_reset); 3245 3246 /* 3247 * For ACV with hard lfifo, we get the skip-cal setting from 3248 * generation-time constant. 3249 */ 3250 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3251 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3252 } 3253 3254 /* Memory calibration entry point */ 3255 static uint32_t mem_calibrate(void) 3256 { 3257 uint32_t i; 3258 uint32_t rank_bgn, sr; 3259 uint32_t write_group, write_test_bgn; 3260 uint32_t read_group, read_test_bgn; 3261 uint32_t run_groups, current_run; 3262 uint32_t failing_groups = 0; 3263 uint32_t group_failed = 0; 3264 uint32_t sr_failed = 0; 3265 3266 debug("%s:%d\n", __func__, __LINE__); 3267 3268 /* Initialize the data settings */ 3269 gbl->error_substage = CAL_SUBSTAGE_NIL; 3270 gbl->error_stage = CAL_STAGE_NIL; 3271 gbl->error_group = 0xff; 3272 gbl->fom_in = 0; 3273 gbl->fom_out = 0; 3274 3275 /* Initialize WLAT and RLAT. */ 3276 mem_init_latency(); 3277 3278 /* Initialize bit slips. */ 3279 mem_precharge_and_activate(); 3280 3281 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3282 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3283 SCC_MGR_GROUP_COUNTER_OFFSET); 3284 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3285 if (i == 0) 3286 scc_mgr_set_hhp_extras(); 3287 3288 scc_set_bypass_mode(i); 3289 } 3290 3291 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3292 /* 3293 * Set VFIFO and LFIFO to instant-on settings in skip 3294 * calibration mode. 3295 */ 3296 mem_skip_calibrate(); 3297 } else { 3298 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3299 /* 3300 * Zero all delay chain/phase settings for all 3301 * groups and all shadow register sets. 3302 */ 3303 scc_mgr_zero_all(); 3304 3305 run_groups = ~param->skip_groups; 3306 3307 for (write_group = 0, write_test_bgn = 0; write_group 3308 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3309 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3310 /* Initialized the group failure */ 3311 group_failed = 0; 3312 3313 current_run = run_groups & ((1 << 3314 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3315 run_groups = run_groups >> 3316 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3317 3318 if (current_run == 0) 3319 continue; 3320 3321 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3322 SCC_MGR_GROUP_COUNTER_OFFSET); 3323 scc_mgr_zero_group(write_group, 0); 3324 3325 for (read_group = write_group * 3326 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3327 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3328 read_test_bgn = 0; 3329 read_group < (write_group + 1) * 3330 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3331 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3332 group_failed == 0; 3333 read_group++, read_test_bgn += 3334 RW_MGR_MEM_DQ_PER_READ_DQS) { 3335 /* Calibrate the VFIFO */ 3336 if (!((STATIC_CALIB_STEPS) & 3337 CALIB_SKIP_VFIFO)) { 3338 if (!rw_mgr_mem_calibrate_vfifo 3339 (read_group, 3340 read_test_bgn)) { 3341 group_failed = 1; 3342 3343 if (!(gbl-> 3344 phy_debug_mode_flags & 3345 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3346 return 0; 3347 } 3348 } 3349 } 3350 } 3351 3352 /* Calibrate the output side */ 3353 if (group_failed == 0) { 3354 for (rank_bgn = 0, sr = 0; rank_bgn 3355 < RW_MGR_MEM_NUMBER_OF_RANKS; 3356 rank_bgn += 3357 NUM_RANKS_PER_SHADOW_REG, 3358 ++sr) { 3359 sr_failed = 0; 3360 if (!((STATIC_CALIB_STEPS) & 3361 CALIB_SKIP_WRITES)) { 3362 if ((STATIC_CALIB_STEPS) 3363 & CALIB_SKIP_DELAY_SWEEPS) { 3364 /* not needed in quick mode! */ 3365 } else { 3366 /* 3367 * Determine if this set of 3368 * ranks should be skipped 3369 * entirely. 3370 */ 3371 if (!param->skip_shadow_regs[sr]) { 3372 if (!rw_mgr_mem_calibrate_writes 3373 (rank_bgn, write_group, 3374 write_test_bgn)) { 3375 sr_failed = 1; 3376 if (!(gbl-> 3377 phy_debug_mode_flags & 3378 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3379 return 0; 3380 } 3381 } 3382 } 3383 } 3384 } 3385 if (sr_failed != 0) 3386 group_failed = 1; 3387 } 3388 } 3389 3390 if (group_failed == 0) { 3391 for (read_group = write_group * 3392 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3393 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3394 read_test_bgn = 0; 3395 read_group < (write_group + 1) 3396 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3397 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3398 group_failed == 0; 3399 read_group++, read_test_bgn += 3400 RW_MGR_MEM_DQ_PER_READ_DQS) { 3401 if (!((STATIC_CALIB_STEPS) & 3402 CALIB_SKIP_WRITES)) { 3403 if (!rw_mgr_mem_calibrate_vfifo_end 3404 (read_group, read_test_bgn)) { 3405 group_failed = 1; 3406 3407 if (!(gbl->phy_debug_mode_flags 3408 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3409 return 0; 3410 } 3411 } 3412 } 3413 } 3414 } 3415 3416 if (group_failed != 0) 3417 failing_groups++; 3418 } 3419 3420 /* 3421 * USER If there are any failing groups then report 3422 * the failure. 3423 */ 3424 if (failing_groups != 0) 3425 return 0; 3426 3427 /* Calibrate the LFIFO */ 3428 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3429 /* 3430 * If we're skipping groups as part of debug, 3431 * don't calibrate LFIFO. 3432 */ 3433 if (param->skip_groups == 0) { 3434 if (!rw_mgr_mem_calibrate_lfifo()) 3435 return 0; 3436 } 3437 } 3438 } 3439 } 3440 3441 /* 3442 * Do not remove this line as it makes sure all of our decisions 3443 * have been applied. 3444 */ 3445 writel(0, &sdr_scc_mgr->update); 3446 return 1; 3447 } 3448 3449 /** 3450 * run_mem_calibrate() - Perform memory calibration 3451 * 3452 * This function triggers the entire memory calibration procedure. 3453 */ 3454 static int run_mem_calibrate(void) 3455 { 3456 int pass; 3457 3458 debug("%s:%d\n", __func__, __LINE__); 3459 3460 /* Reset pass/fail status shown on afi_cal_success/fail */ 3461 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3462 3463 /* Stop tracking manager. */ 3464 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3465 3466 phy_mgr_initialize(); 3467 rw_mgr_mem_initialize(); 3468 3469 /* Perform the actual memory calibration. */ 3470 pass = mem_calibrate(); 3471 3472 mem_precharge_and_activate(); 3473 writel(0, &phy_mgr_cmd->fifo_reset); 3474 3475 /* Handoff. */ 3476 rw_mgr_mem_handoff(); 3477 /* 3478 * In Hard PHY this is a 2-bit control: 3479 * 0: AFI Mux Select 3480 * 1: DDIO Mux Select 3481 */ 3482 writel(0x2, &phy_mgr_cfg->mux_sel); 3483 3484 /* Start tracking manager. */ 3485 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3486 3487 return pass; 3488 } 3489 3490 /** 3491 * debug_mem_calibrate() - Report result of memory calibration 3492 * @pass: Value indicating whether calibration passed or failed 3493 * 3494 * This function reports the results of the memory calibration 3495 * and writes debug information into the register file. 3496 */ 3497 static void debug_mem_calibrate(int pass) 3498 { 3499 uint32_t debug_info; 3500 3501 if (pass) { 3502 printf("%s: CALIBRATION PASSED\n", __FILE__); 3503 3504 gbl->fom_in /= 2; 3505 gbl->fom_out /= 2; 3506 3507 if (gbl->fom_in > 0xff) 3508 gbl->fom_in = 0xff; 3509 3510 if (gbl->fom_out > 0xff) 3511 gbl->fom_out = 0xff; 3512 3513 /* Update the FOM in the register file */ 3514 debug_info = gbl->fom_in; 3515 debug_info |= gbl->fom_out << 8; 3516 writel(debug_info, &sdr_reg_file->fom); 3517 3518 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3519 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3520 } else { 3521 printf("%s: CALIBRATION FAILED\n", __FILE__); 3522 3523 debug_info = gbl->error_stage; 3524 debug_info |= gbl->error_substage << 8; 3525 debug_info |= gbl->error_group << 16; 3526 3527 writel(debug_info, &sdr_reg_file->failing_stage); 3528 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3529 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3530 3531 /* Update the failing group/stage in the register file */ 3532 debug_info = gbl->error_stage; 3533 debug_info |= gbl->error_substage << 8; 3534 debug_info |= gbl->error_group << 16; 3535 writel(debug_info, &sdr_reg_file->failing_stage); 3536 } 3537 3538 printf("%s: Calibration complete\n", __FILE__); 3539 } 3540 3541 /** 3542 * hc_initialize_rom_data() - Initialize ROM data 3543 * 3544 * Initialize ROM data. 3545 */ 3546 static void hc_initialize_rom_data(void) 3547 { 3548 u32 i, addr; 3549 3550 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3551 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3552 writel(inst_rom_init[i], addr + (i << 2)); 3553 3554 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3555 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3556 writel(ac_rom_init[i], addr + (i << 2)); 3557 } 3558 3559 /** 3560 * initialize_reg_file() - Initialize SDR register file 3561 * 3562 * Initialize SDR register file. 3563 */ 3564 static void initialize_reg_file(void) 3565 { 3566 /* Initialize the register file with the correct data */ 3567 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3568 writel(0, &sdr_reg_file->debug_data_addr); 3569 writel(0, &sdr_reg_file->cur_stage); 3570 writel(0, &sdr_reg_file->fom); 3571 writel(0, &sdr_reg_file->failing_stage); 3572 writel(0, &sdr_reg_file->debug1); 3573 writel(0, &sdr_reg_file->debug2); 3574 } 3575 3576 /** 3577 * initialize_hps_phy() - Initialize HPS PHY 3578 * 3579 * Initialize HPS PHY. 3580 */ 3581 static void initialize_hps_phy(void) 3582 { 3583 uint32_t reg; 3584 /* 3585 * Tracking also gets configured here because it's in the 3586 * same register. 3587 */ 3588 uint32_t trk_sample_count = 7500; 3589 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3590 /* 3591 * Format is number of outer loops in the 16 MSB, sample 3592 * count in 16 LSB. 3593 */ 3594 3595 reg = 0; 3596 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3597 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3598 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3599 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3600 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3601 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3602 /* 3603 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3604 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3605 */ 3606 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3607 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3608 trk_sample_count); 3609 writel(reg, &sdr_ctrl->phy_ctrl0); 3610 3611 reg = 0; 3612 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3613 trk_sample_count >> 3614 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3615 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3616 trk_long_idle_sample_count); 3617 writel(reg, &sdr_ctrl->phy_ctrl1); 3618 3619 reg = 0; 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3621 trk_long_idle_sample_count >> 3622 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3623 writel(reg, &sdr_ctrl->phy_ctrl2); 3624 } 3625 3626 /** 3627 * initialize_tracking() - Initialize tracking 3628 * 3629 * Initialize the register file with usable initial data. 3630 */ 3631 static void initialize_tracking(void) 3632 { 3633 /* 3634 * Initialize the register file with the correct data. 3635 * Compute usable version of value in case we skip full 3636 * computation later. 3637 */ 3638 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3639 &sdr_reg_file->dtaps_per_ptap); 3640 3641 /* trk_sample_count */ 3642 writel(7500, &sdr_reg_file->trk_sample_count); 3643 3644 /* longidle outer loop [15:0] */ 3645 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3646 3647 /* 3648 * longidle sample count [31:24] 3649 * trfc, worst case of 933Mhz 4Gb [23:16] 3650 * trcd, worst case [15:8] 3651 * vfifo wait [7:0] 3652 */ 3653 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3654 &sdr_reg_file->delays); 3655 3656 /* mux delay */ 3657 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3658 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3659 &sdr_reg_file->trk_rw_mgr_addr); 3660 3661 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3662 &sdr_reg_file->trk_read_dqs_width); 3663 3664 /* trefi [7:0] */ 3665 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3666 &sdr_reg_file->trk_rfsh); 3667 } 3668 3669 int sdram_calibration_full(void) 3670 { 3671 struct param_type my_param; 3672 struct gbl_type my_gbl; 3673 uint32_t pass; 3674 3675 memset(&my_param, 0, sizeof(my_param)); 3676 memset(&my_gbl, 0, sizeof(my_gbl)); 3677 3678 param = &my_param; 3679 gbl = &my_gbl; 3680 3681 /* Set the calibration enabled by default */ 3682 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3683 /* 3684 * Only sweep all groups (regardless of fail state) by default 3685 * Set enabled read test by default. 3686 */ 3687 #if DISABLE_GUARANTEED_READ 3688 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3689 #endif 3690 /* Initialize the register file */ 3691 initialize_reg_file(); 3692 3693 /* Initialize any PHY CSR */ 3694 initialize_hps_phy(); 3695 3696 scc_mgr_initialize(); 3697 3698 initialize_tracking(); 3699 3700 printf("%s: Preparing to start memory calibration\n", __FILE__); 3701 3702 debug("%s:%d\n", __func__, __LINE__); 3703 debug_cond(DLEVEL == 1, 3704 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3705 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3706 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3707 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3708 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3709 debug_cond(DLEVEL == 1, 3710 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3711 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3712 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3713 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3714 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3715 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3716 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3717 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3718 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3719 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3720 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3721 IO_IO_OUT2_DELAY_MAX); 3722 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3723 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3724 3725 hc_initialize_rom_data(); 3726 3727 /* update info for sims */ 3728 reg_file_set_stage(CAL_STAGE_NIL); 3729 reg_file_set_group(0); 3730 3731 /* 3732 * Load global needed for those actions that require 3733 * some dynamic calibration support. 3734 */ 3735 dyn_calib_steps = STATIC_CALIB_STEPS; 3736 /* 3737 * Load global to allow dynamic selection of delay loop settings 3738 * based on calibration mode. 3739 */ 3740 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3741 skip_delay_mask = 0xff; 3742 else 3743 skip_delay_mask = 0x0; 3744 3745 pass = run_mem_calibrate(); 3746 debug_mem_calibrate(pass); 3747 return pass; 3748 } 3749