xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision b2dfd100bc43863f467f552a7bb26932810f2f5e)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123 	u32 ratio;
124 
125 	debug("%s:%d\n", __func__, __LINE__);
126 	/* Calibration has control over path to memory */
127 	/*
128 	 * In Hard PHY this is a 2-bit control:
129 	 * 0: AFI Mux Select
130 	 * 1: DDIO Mux Select
131 	 */
132 	writel(0x3, &phy_mgr_cfg->mux_sel);
133 
134 	/* USER memory clock is not stable we begin initialization  */
135 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
136 
137 	/* USER calibration status all set to zero */
138 	writel(0, &phy_mgr_cfg->cal_status);
139 
140 	writel(0, &phy_mgr_cfg->cal_debug_info);
141 
142 	/* Init params only if we do NOT skip calibration. */
143 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144 		return;
145 
146 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148 	param->read_correct_mask_vg = (1 << ratio) - 1;
149 	param->write_correct_mask_vg = (1 << ratio) - 1;
150 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152 	ratio = RW_MGR_MEM_DATA_WIDTH /
153 		RW_MGR_MEM_DATA_MASK_WIDTH;
154 	param->dm_correct_mask = (1 << ratio) - 1;
155 }
156 
157 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
158 {
159 	u32 odt_mask_0 = 0;
160 	u32 odt_mask_1 = 0;
161 	u32 cs_and_odt_mask;
162 
163 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
164 		odt_mask_0 = 0x0;
165 		odt_mask_1 = 0x0;
166 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
167 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
168 			/*
169 			 * 1 Rank
170 			 * Read: ODT = 0
171 			 * Write: ODT = 1
172 			 */
173 			odt_mask_0 = 0x0;
174 			odt_mask_1 = 0x1;
175 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
176 			/* 2 Ranks */
177 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
178 				/* - Dual-Slot , Single-Rank
179 				 * (1 chip-select per DIMM)
180 				 * OR
181 				 * - RDIMM, 4 total CS (2 CS per DIMM)
182 				 * means 2 DIMM
183 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
184 				 * both single rank
185 				 * with 2 CS each (special for RDIMM)
186 				 * Read: Turn on ODT on the opposite rank
187 				 * Write: Turn on ODT on all ranks
188 				 */
189 				odt_mask_0 = 0x3 & ~(1 << rank);
190 				odt_mask_1 = 0x3;
191 			} else {
192 				/*
193 				 * USER - Single-Slot , Dual-rank DIMMs
194 				 * (2 chip-selects per DIMM)
195 				 * USER Read: Turn on ODT off on all ranks
196 				 * USER Write: Turn on ODT on active rank
197 				 */
198 				odt_mask_0 = 0x0;
199 				odt_mask_1 = 0x3 & (1 << rank);
200 			}
201 		} else {
202 			/* 4 Ranks
203 			 * Read:
204 			 * ----------+-----------------------+
205 			 *           |                       |
206 			 *           |         ODT           |
207 			 * Read From +-----------------------+
208 			 *   Rank    |  3  |  2  |  1  |  0  |
209 			 * ----------+-----+-----+-----+-----+
210 			 *     0     |  0  |  1  |  0  |  0  |
211 			 *     1     |  1  |  0  |  0  |  0  |
212 			 *     2     |  0  |  0  |  0  |  1  |
213 			 *     3     |  0  |  0  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *
216 			 * Write:
217 			 * ----------+-----------------------+
218 			 *           |                       |
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 		}
248 	}
249 
250 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
251 			  ((0xFF & odt_mask_0) << 8) |
252 			  ((0xFF & odt_mask_1) << 16);
253 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
254 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
255 }
256 
257 /**
258  * scc_mgr_set() - Set SCC Manager register
259  * @off:	Base offset in SCC Manager space
260  * @grp:	Read/Write group
261  * @val:	Value to be set
262  *
263  * This function sets the SCC Manager (Scan Chain Control Manager) register.
264  */
265 static void scc_mgr_set(u32 off, u32 grp, u32 val)
266 {
267 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
268 }
269 
270 /**
271  * scc_mgr_initialize() - Initialize SCC Manager registers
272  *
273  * Initialize SCC Manager registers.
274  */
275 static void scc_mgr_initialize(void)
276 {
277 	/*
278 	 * Clear register file for HPS. 16 (2^4) is the size of the
279 	 * full register file in the scc mgr:
280 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
281 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
282 	 */
283 	int i;
284 
285 	for (i = 0; i < 16; i++) {
286 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
287 			   __func__, __LINE__, i);
288 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
289 	}
290 }
291 
292 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
293 {
294 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
295 }
296 
297 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
298 {
299 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
300 }
301 
302 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
305 }
306 
307 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
310 }
311 
312 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
315 		    delay);
316 }
317 
318 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
319 {
320 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
321 }
322 
323 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
331 		    delay);
332 }
333 
334 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
335 {
336 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
337 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
338 		    delay);
339 }
340 
341 /* load up dqs config settings */
342 static void scc_mgr_load_dqs(uint32_t dqs)
343 {
344 	writel(dqs, &sdr_scc_mgr->dqs_ena);
345 }
346 
347 /* load up dqs io config settings */
348 static void scc_mgr_load_dqs_io(void)
349 {
350 	writel(0, &sdr_scc_mgr->dqs_io_ena);
351 }
352 
353 /* load up dq config settings */
354 static void scc_mgr_load_dq(uint32_t dq_in_group)
355 {
356 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
357 }
358 
359 /* load up dm config settings */
360 static void scc_mgr_load_dm(uint32_t dm)
361 {
362 	writel(dm, &sdr_scc_mgr->dm_ena);
363 }
364 
365 /**
366  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
367  * @off:	Base offset in SCC Manager space
368  * @grp:	Read/Write group
369  * @val:	Value to be set
370  * @update:	If non-zero, trigger SCC Manager update for all ranks
371  *
372  * This function sets the SCC Manager (Scan Chain Control Manager) register
373  * and optionally triggers the SCC update for all ranks.
374  */
375 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
376 				  const int update)
377 {
378 	u32 r;
379 
380 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
381 	     r += NUM_RANKS_PER_SHADOW_REG) {
382 		scc_mgr_set(off, grp, val);
383 
384 		if (update || (r == 0)) {
385 			writel(grp, &sdr_scc_mgr->dqs_ena);
386 			writel(0, &sdr_scc_mgr->update);
387 		}
388 	}
389 }
390 
391 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
392 {
393 	/*
394 	 * USER although the h/w doesn't support different phases per
395 	 * shadow register, for simplicity our scc manager modeling
396 	 * keeps different phase settings per shadow reg, and it's
397 	 * important for us to keep them in sync to match h/w.
398 	 * for efficiency, the scan chain update should occur only
399 	 * once to sr0.
400 	 */
401 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
402 			      read_group, phase, 0);
403 }
404 
405 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
406 						     uint32_t phase)
407 {
408 	/*
409 	 * USER although the h/w doesn't support different phases per
410 	 * shadow register, for simplicity our scc manager modeling
411 	 * keeps different phase settings per shadow reg, and it's
412 	 * important for us to keep them in sync to match h/w.
413 	 * for efficiency, the scan chain update should occur only
414 	 * once to sr0.
415 	 */
416 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
417 			      write_group, phase, 0);
418 }
419 
420 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
421 					       uint32_t delay)
422 {
423 	/*
424 	 * In shadow register mode, the T11 settings are stored in
425 	 * registers in the core, which are updated by the DQS_ENA
426 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
427 	 * save lots of rank switching overhead, by calling
428 	 * select_shadow_regs_for_update with update_scan_chains
429 	 * set to 0.
430 	 */
431 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
432 			      read_group, delay, 1);
433 	writel(0, &sdr_scc_mgr->update);
434 }
435 
436 /**
437  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
438  * @write_group:	Write group
439  * @delay:		Delay value
440  *
441  * This function sets the OCT output delay in SCC manager.
442  */
443 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
444 {
445 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
446 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
447 	const int base = write_group * ratio;
448 	int i;
449 	/*
450 	 * Load the setting in the SCC manager
451 	 * Although OCT affects only write data, the OCT delay is controlled
452 	 * by the DQS logic block which is instantiated once per read group.
453 	 * For protocols where a write group consists of multiple read groups,
454 	 * the setting must be set multiple times.
455 	 */
456 	for (i = 0; i < ratio; i++)
457 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
458 }
459 
460 /**
461  * scc_mgr_set_hhp_extras() - Set HHP extras.
462  *
463  * Load the fixed setting in the SCC manager HHP extras.
464  */
465 static void scc_mgr_set_hhp_extras(void)
466 {
467 	/*
468 	 * Load the fixed setting in the SCC manager
469 	 * bits: 0:0 = 1'b1	- DQS bypass
470 	 * bits: 1:1 = 1'b1	- DQ bypass
471 	 * bits: 4:2 = 3'b001	- rfifo_mode
472 	 * bits: 6:5 = 2'b01	- rfifo clock_select
473 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
474 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
475 	 */
476 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
477 			  (1 << 2) | (1 << 1) | (1 << 0);
478 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
479 			 SCC_MGR_HHP_GLOBALS_OFFSET |
480 			 SCC_MGR_HHP_EXTRAS_OFFSET;
481 
482 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
483 		   __func__, __LINE__);
484 	writel(value, addr);
485 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
486 		   __func__, __LINE__);
487 }
488 
489 /**
490  * scc_mgr_zero_all() - Zero all DQS config
491  *
492  * Zero all DQS config.
493  */
494 static void scc_mgr_zero_all(void)
495 {
496 	int i, r;
497 
498 	/*
499 	 * USER Zero all DQS config settings, across all groups and all
500 	 * shadow registers
501 	 */
502 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
503 	     r += NUM_RANKS_PER_SHADOW_REG) {
504 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
505 			/*
506 			 * The phases actually don't exist on a per-rank basis,
507 			 * but there's no harm updating them several times, so
508 			 * let's keep the code simple.
509 			 */
510 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
511 			scc_mgr_set_dqs_en_phase(i, 0);
512 			scc_mgr_set_dqs_en_delay(i, 0);
513 		}
514 
515 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
516 			scc_mgr_set_dqdqs_output_phase(i, 0);
517 			/* Arria V/Cyclone V don't have out2. */
518 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
519 		}
520 	}
521 
522 	/* Multicast to all DQS group enables. */
523 	writel(0xff, &sdr_scc_mgr->dqs_ena);
524 	writel(0, &sdr_scc_mgr->update);
525 }
526 
527 /**
528  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
529  * @write_group:	Write group
530  *
531  * Set bypass mode and trigger SCC update.
532  */
533 static void scc_set_bypass_mode(const u32 write_group)
534 {
535 	/* Multicast to all DQ enables. */
536 	writel(0xff, &sdr_scc_mgr->dq_ena);
537 	writel(0xff, &sdr_scc_mgr->dm_ena);
538 
539 	/* Update current DQS IO enable. */
540 	writel(0, &sdr_scc_mgr->dqs_io_ena);
541 
542 	/* Update the DQS logic. */
543 	writel(write_group, &sdr_scc_mgr->dqs_ena);
544 
545 	/* Hit update. */
546 	writel(0, &sdr_scc_mgr->update);
547 }
548 
549 /**
550  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
551  * @write_group:	Write group
552  *
553  * Load DQS settings for Write Group, do not trigger SCC update.
554  */
555 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
556 {
557 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
558 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
559 	const int base = write_group * ratio;
560 	int i;
561 	/*
562 	 * Load the setting in the SCC manager
563 	 * Although OCT affects only write data, the OCT delay is controlled
564 	 * by the DQS logic block which is instantiated once per read group.
565 	 * For protocols where a write group consists of multiple read groups,
566 	 * the setting must be set multiple times.
567 	 */
568 	for (i = 0; i < ratio; i++)
569 		writel(base + i, &sdr_scc_mgr->dqs_ena);
570 }
571 
572 /**
573  * scc_mgr_zero_group() - Zero all configs for a group
574  *
575  * Zero DQ, DM, DQS and OCT configs for a group.
576  */
577 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
578 {
579 	int i, r;
580 
581 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
582 	     r += NUM_RANKS_PER_SHADOW_REG) {
583 		/* Zero all DQ config settings. */
584 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
585 			scc_mgr_set_dq_out1_delay(i, 0);
586 			if (!out_only)
587 				scc_mgr_set_dq_in_delay(i, 0);
588 		}
589 
590 		/* Multicast to all DQ enables. */
591 		writel(0xff, &sdr_scc_mgr->dq_ena);
592 
593 		/* Zero all DM config settings. */
594 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
595 			scc_mgr_set_dm_out1_delay(i, 0);
596 
597 		/* Multicast to all DM enables. */
598 		writel(0xff, &sdr_scc_mgr->dm_ena);
599 
600 		/* Zero all DQS IO settings. */
601 		if (!out_only)
602 			scc_mgr_set_dqs_io_in_delay(0);
603 
604 		/* Arria V/Cyclone V don't have out2. */
605 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
606 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
607 		scc_mgr_load_dqs_for_write_group(write_group);
608 
609 		/* Multicast to all DQS IO enables (only 1 in total). */
610 		writel(0, &sdr_scc_mgr->dqs_io_ena);
611 
612 		/* Hit update to zero everything. */
613 		writel(0, &sdr_scc_mgr->update);
614 	}
615 }
616 
617 /*
618  * apply and load a particular input delay for the DQ pins in a group
619  * group_bgn is the index of the first dq pin (in the write group)
620  */
621 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
622 {
623 	uint32_t i, p;
624 
625 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
626 		scc_mgr_set_dq_in_delay(p, delay);
627 		scc_mgr_load_dq(p);
628 	}
629 }
630 
631 /**
632  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
633  * @delay:		Delay value
634  *
635  * Apply and load a particular output delay for the DQ pins in a group.
636  */
637 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
638 {
639 	int i;
640 
641 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
642 		scc_mgr_set_dq_out1_delay(i, delay);
643 		scc_mgr_load_dq(i);
644 	}
645 }
646 
647 /* apply and load a particular output delay for the DM pins in a group */
648 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
649 {
650 	uint32_t i;
651 
652 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
653 		scc_mgr_set_dm_out1_delay(i, delay1);
654 		scc_mgr_load_dm(i);
655 	}
656 }
657 
658 
659 /* apply and load delay on both DQS and OCT out1 */
660 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
661 						    uint32_t delay)
662 {
663 	scc_mgr_set_dqs_out1_delay(delay);
664 	scc_mgr_load_dqs_io();
665 
666 	scc_mgr_set_oct_out1_delay(write_group, delay);
667 	scc_mgr_load_dqs_for_write_group(write_group);
668 }
669 
670 /**
671  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
672  * @write_group:	Write group
673  * @delay:		Delay value
674  *
675  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
676  */
677 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
678 						  const u32 delay)
679 {
680 	u32 i, new_delay;
681 
682 	/* DQ shift */
683 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
684 		scc_mgr_load_dq(i);
685 
686 	/* DM shift */
687 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
688 		scc_mgr_load_dm(i);
689 
690 	/* DQS shift */
691 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
692 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
693 		debug_cond(DLEVEL == 1,
694 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
695 			   __func__, __LINE__, write_group, delay, new_delay,
696 			   IO_IO_OUT2_DELAY_MAX,
697 			   new_delay - IO_IO_OUT2_DELAY_MAX);
698 		new_delay -= IO_IO_OUT2_DELAY_MAX;
699 		scc_mgr_set_dqs_out1_delay(new_delay);
700 	}
701 
702 	scc_mgr_load_dqs_io();
703 
704 	/* OCT shift */
705 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
706 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
707 		debug_cond(DLEVEL == 1,
708 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
709 			   __func__, __LINE__, write_group, delay,
710 			   new_delay, IO_IO_OUT2_DELAY_MAX,
711 			   new_delay - IO_IO_OUT2_DELAY_MAX);
712 		new_delay -= IO_IO_OUT2_DELAY_MAX;
713 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
714 	}
715 
716 	scc_mgr_load_dqs_for_write_group(write_group);
717 }
718 
719 /**
720  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
721  * @write_group:	Write group
722  * @delay:		Delay value
723  *
724  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
725  */
726 static void
727 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
728 						const u32 delay)
729 {
730 	int r;
731 
732 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
733 	     r += NUM_RANKS_PER_SHADOW_REG) {
734 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
735 		writel(0, &sdr_scc_mgr->update);
736 	}
737 }
738 
739 /**
740  * set_jump_as_return() - Return instruction optimization
741  *
742  * Optimization used to recover some slots in ddr3 inst_rom could be
743  * applied to other protocols if we wanted to
744  */
745 static void set_jump_as_return(void)
746 {
747 	/*
748 	 * To save space, we replace return with jump to special shared
749 	 * RETURN instruction so we set the counter to large value so that
750 	 * we always jump.
751 	 */
752 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
753 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
754 }
755 
756 /*
757  * should always use constants as argument to ensure all computations are
758  * performed at compile time
759  */
760 static void delay_for_n_mem_clocks(const uint32_t clocks)
761 {
762 	uint32_t afi_clocks;
763 	uint8_t inner = 0;
764 	uint8_t outer = 0;
765 	uint16_t c_loop = 0;
766 
767 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
768 
769 
770 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
771 	/* scale (rounding up) to get afi clocks */
772 
773 	/*
774 	 * Note, we don't bother accounting for being off a little bit
775 	 * because of a few extra instructions in outer loops
776 	 * Note, the loops have a test at the end, and do the test before
777 	 * the decrement, and so always perform the loop
778 	 * 1 time more than the counter value
779 	 */
780 	if (afi_clocks == 0) {
781 		;
782 	} else if (afi_clocks <= 0x100) {
783 		inner = afi_clocks-1;
784 		outer = 0;
785 		c_loop = 0;
786 	} else if (afi_clocks <= 0x10000) {
787 		inner = 0xff;
788 		outer = (afi_clocks-1) >> 8;
789 		c_loop = 0;
790 	} else {
791 		inner = 0xff;
792 		outer = 0xff;
793 		c_loop = (afi_clocks-1) >> 16;
794 	}
795 
796 	/*
797 	 * rom instructions are structured as follows:
798 	 *
799 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
800 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
801 	 *                return
802 	 *
803 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
804 	 * TARGET_B is set to IDLE_LOOP2 as well
805 	 *
806 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
807 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
808 	 *
809 	 * a little confusing, but it helps save precious space in the inst_rom
810 	 * and sequencer rom and keeps the delays more accurate and reduces
811 	 * overhead
812 	 */
813 	if (afi_clocks <= 0x100) {
814 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
815 			&sdr_rw_load_mgr_regs->load_cntr1);
816 
817 		writel(RW_MGR_IDLE_LOOP1,
818 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
819 
820 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
821 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
822 	} else {
823 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
824 			&sdr_rw_load_mgr_regs->load_cntr0);
825 
826 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
827 			&sdr_rw_load_mgr_regs->load_cntr1);
828 
829 		writel(RW_MGR_IDLE_LOOP2,
830 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
831 
832 		writel(RW_MGR_IDLE_LOOP2,
833 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
834 
835 		/* hack to get around compiler not being smart enough */
836 		if (afi_clocks <= 0x10000) {
837 			/* only need to run once */
838 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
839 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
840 		} else {
841 			do {
842 				writel(RW_MGR_IDLE_LOOP2,
843 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 			} while (c_loop-- != 0);
846 		}
847 	}
848 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
849 }
850 
851 /**
852  * rw_mgr_mem_init_load_regs() - Load instruction registers
853  * @cntr0:	Counter 0 value
854  * @cntr1:	Counter 1 value
855  * @cntr2:	Counter 2 value
856  * @jump:	Jump instruction value
857  *
858  * Load instruction registers.
859  */
860 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
861 {
862 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
863 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
864 
865 	/* Load counters */
866 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
867 	       &sdr_rw_load_mgr_regs->load_cntr0);
868 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
869 	       &sdr_rw_load_mgr_regs->load_cntr1);
870 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
871 	       &sdr_rw_load_mgr_regs->load_cntr2);
872 
873 	/* Load jump address */
874 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
875 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
876 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
877 
878 	/* Execute count instruction */
879 	writel(jump, grpaddr);
880 }
881 
882 /**
883  * rw_mgr_mem_load_user() - Load user calibration values
884  * @fin1:	Final instruction 1
885  * @fin2:	Final instruction 2
886  * @precharge:	If 1, precharge the banks at the end
887  *
888  * Load user calibration values and optionally precharge the banks.
889  */
890 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
891 				 const int precharge)
892 {
893 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
894 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
895 	u32 r;
896 
897 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
898 		if (param->skip_ranks[r]) {
899 			/* request to skip the rank */
900 			continue;
901 		}
902 
903 		/* set rank */
904 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
905 
906 		/* precharge all banks ... */
907 		if (precharge)
908 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
909 
910 		/*
911 		 * USER Use Mirror-ed commands for odd ranks if address
912 		 * mirrorring is on
913 		 */
914 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
915 			set_jump_as_return();
916 			writel(RW_MGR_MRS2_MIRR, grpaddr);
917 			delay_for_n_mem_clocks(4);
918 			set_jump_as_return();
919 			writel(RW_MGR_MRS3_MIRR, grpaddr);
920 			delay_for_n_mem_clocks(4);
921 			set_jump_as_return();
922 			writel(RW_MGR_MRS1_MIRR, grpaddr);
923 			delay_for_n_mem_clocks(4);
924 			set_jump_as_return();
925 			writel(fin1, grpaddr);
926 		} else {
927 			set_jump_as_return();
928 			writel(RW_MGR_MRS2, grpaddr);
929 			delay_for_n_mem_clocks(4);
930 			set_jump_as_return();
931 			writel(RW_MGR_MRS3, grpaddr);
932 			delay_for_n_mem_clocks(4);
933 			set_jump_as_return();
934 			writel(RW_MGR_MRS1, grpaddr);
935 			set_jump_as_return();
936 			writel(fin2, grpaddr);
937 		}
938 
939 		if (precharge)
940 			continue;
941 
942 		set_jump_as_return();
943 		writel(RW_MGR_ZQCL, grpaddr);
944 
945 		/* tZQinit = tDLLK = 512 ck cycles */
946 		delay_for_n_mem_clocks(512);
947 	}
948 }
949 
950 static void rw_mgr_mem_initialize(void)
951 {
952 	debug("%s:%d\n", __func__, __LINE__);
953 
954 	/* The reset / cke part of initialization is broadcasted to all ranks */
955 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
956 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
957 
958 	/*
959 	 * Here's how you load register for a loop
960 	 * Counters are located @ 0x800
961 	 * Jump address are located @ 0xC00
962 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
963 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
964 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
965 	 * significant bits
966 	 */
967 
968 	/* start with memory RESET activated */
969 
970 	/* tINIT = 200us */
971 
972 	/*
973 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
974 	 * If a and b are the number of iteration in 2 nested loops
975 	 * it takes the following number of cycles to complete the operation:
976 	 * number_of_cycles = ((2 + n) * a + 2) * b
977 	 * where n is the number of instruction in the inner loop
978 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
979 	 * b = 6A
980 	 */
981 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
982 				  SEQ_TINIT_CNTR2_VAL,
983 				  RW_MGR_INIT_RESET_0_CKE_0);
984 
985 	/* indicate that memory is stable */
986 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
987 
988 	/*
989 	 * transition the RESET to high
990 	 * Wait for 500us
991 	 */
992 
993 	/*
994 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
995 	 * If a and b are the number of iteration in 2 nested loops
996 	 * it takes the following number of cycles to complete the operation
997 	 * number_of_cycles = ((2 + n) * a + 2) * b
998 	 * where n is the number of instruction in the inner loop
999 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1000 	 * b = FF
1001 	 */
1002 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1003 				  SEQ_TRESET_CNTR2_VAL,
1004 				  RW_MGR_INIT_RESET_1_CKE_0);
1005 
1006 	/* bring up clock enable */
1007 
1008 	/* tXRP < 250 ck cycles */
1009 	delay_for_n_mem_clocks(250);
1010 
1011 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1012 			     0);
1013 }
1014 
1015 /*
1016  * At the end of calibration we have to program the user settings in, and
1017  * USER  hand off the memory to the user.
1018  */
1019 static void rw_mgr_mem_handoff(void)
1020 {
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1022 	/*
1023 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1024 	 * other commands, but we will have plenty of NIOS cycles before
1025 	 * actual handoff so its okay.
1026 	 */
1027 }
1028 
1029 /*
1030  * performs a guaranteed read on the patterns we are going to use during a
1031  * read test to ensure memory works
1032  */
1033 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1034 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1035 	uint32_t all_ranks)
1036 {
1037 	uint32_t r, vg;
1038 	uint32_t correct_mask_vg;
1039 	uint32_t tmp_bit_chk;
1040 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1041 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1042 	uint32_t addr;
1043 	uint32_t base_rw_mgr;
1044 
1045 	*bit_chk = param->read_correct_mask;
1046 	correct_mask_vg = param->read_correct_mask_vg;
1047 
1048 	for (r = rank_bgn; r < rank_end; r++) {
1049 		if (param->skip_ranks[r])
1050 			/* request to skip the rank */
1051 			continue;
1052 
1053 		/* set rank */
1054 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1055 
1056 		/* Load up a constant bursts of read commands */
1057 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1058 		writel(RW_MGR_GUARANTEED_READ,
1059 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1060 
1061 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1062 		writel(RW_MGR_GUARANTEED_READ_CONT,
1063 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1064 
1065 		tmp_bit_chk = 0;
1066 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1067 			/* reset the fifos to get pointers to known state */
1068 
1069 			writel(0, &phy_mgr_cmd->fifo_reset);
1070 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1071 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1072 
1073 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1074 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1075 
1076 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1077 			writel(RW_MGR_GUARANTEED_READ, addr +
1078 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1079 				vg) << 2));
1080 
1081 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1082 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1083 
1084 			if (vg == 0)
1085 				break;
1086 		}
1087 		*bit_chk &= tmp_bit_chk;
1088 	}
1089 
1090 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1091 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1092 
1093 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1094 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1095 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1096 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1097 	return *bit_chk == param->read_correct_mask;
1098 }
1099 
1100 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1101 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1102 {
1103 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1104 		num_tries, bit_chk, 1);
1105 }
1106 
1107 /* load up the patterns we are going to use during a read test */
1108 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1109 	uint32_t all_ranks)
1110 {
1111 	uint32_t r;
1112 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1113 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1114 
1115 	debug("%s:%d\n", __func__, __LINE__);
1116 	for (r = rank_bgn; r < rank_end; r++) {
1117 		if (param->skip_ranks[r])
1118 			/* request to skip the rank */
1119 			continue;
1120 
1121 		/* set rank */
1122 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1123 
1124 		/* Load up a constant bursts */
1125 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1126 
1127 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1128 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1129 
1130 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1131 
1132 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1133 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1134 
1135 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1136 
1137 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1138 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1139 
1140 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1141 
1142 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1143 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1144 
1145 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1146 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1147 	}
1148 
1149 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1150 }
1151 
1152 /*
1153  * try a read and see if it returns correct data back. has dummy reads
1154  * inserted into the mix used to align dqs enable. has more thorough checks
1155  * than the regular read test.
1156  */
1157 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1158 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1159 	uint32_t all_groups, uint32_t all_ranks)
1160 {
1161 	uint32_t r, vg;
1162 	uint32_t correct_mask_vg;
1163 	uint32_t tmp_bit_chk;
1164 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1165 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1166 	uint32_t addr;
1167 	uint32_t base_rw_mgr;
1168 
1169 	*bit_chk = param->read_correct_mask;
1170 	correct_mask_vg = param->read_correct_mask_vg;
1171 
1172 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1173 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1174 
1175 	for (r = rank_bgn; r < rank_end; r++) {
1176 		if (param->skip_ranks[r])
1177 			/* request to skip the rank */
1178 			continue;
1179 
1180 		/* set rank */
1181 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1182 
1183 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1184 
1185 		writel(RW_MGR_READ_B2B_WAIT1,
1186 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1187 
1188 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1189 		writel(RW_MGR_READ_B2B_WAIT2,
1190 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1191 
1192 		if (quick_read_mode)
1193 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1194 			/* need at least two (1+1) reads to capture failures */
1195 		else if (all_groups)
1196 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1197 		else
1198 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1199 
1200 		writel(RW_MGR_READ_B2B,
1201 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1202 		if (all_groups)
1203 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1204 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1205 			       &sdr_rw_load_mgr_regs->load_cntr3);
1206 		else
1207 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1208 
1209 		writel(RW_MGR_READ_B2B,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1211 
1212 		tmp_bit_chk = 0;
1213 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1214 			/* reset the fifos to get pointers to known state */
1215 			writel(0, &phy_mgr_cmd->fifo_reset);
1216 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1217 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1218 
1219 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1220 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1221 
1222 			if (all_groups)
1223 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1224 			else
1225 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1226 
1227 			writel(RW_MGR_READ_B2B, addr +
1228 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1229 			       vg) << 2));
1230 
1231 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1232 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1233 
1234 			if (vg == 0)
1235 				break;
1236 		}
1237 		*bit_chk &= tmp_bit_chk;
1238 	}
1239 
1240 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1242 
1243 	if (all_correct) {
1244 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1245 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1246 			   (%u == %u) => %lu", __func__, __LINE__, group,
1247 			   all_groups, *bit_chk, param->read_correct_mask,
1248 			   (long unsigned int)(*bit_chk ==
1249 			   param->read_correct_mask));
1250 		return *bit_chk == param->read_correct_mask;
1251 	} else	{
1252 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1253 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1254 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1255 			   group, all_groups, *bit_chk, (long unsigned int)0,
1256 			   (long unsigned int)(*bit_chk != 0x00));
1257 		return *bit_chk != 0x00;
1258 	}
1259 }
1260 
1261 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1262 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1263 	uint32_t all_groups)
1264 {
1265 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1266 					      bit_chk, all_groups, 1);
1267 }
1268 
1269 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1270 {
1271 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1272 	(*v)++;
1273 }
1274 
1275 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1276 {
1277 	uint32_t i;
1278 
1279 	for (i = 0; i < VFIFO_SIZE-1; i++)
1280 		rw_mgr_incr_vfifo(grp, v);
1281 }
1282 
1283 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1284 {
1285 	uint32_t  v;
1286 	uint32_t fail_cnt = 0;
1287 	uint32_t test_status;
1288 
1289 	for (v = 0; v < VFIFO_SIZE; ) {
1290 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1291 			   __func__, __LINE__, v);
1292 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1293 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1294 		if (!test_status) {
1295 			fail_cnt++;
1296 
1297 			if (fail_cnt == 2)
1298 				break;
1299 		}
1300 
1301 		/* fiddle with FIFO */
1302 		rw_mgr_incr_vfifo(grp, &v);
1303 	}
1304 
1305 	if (v >= VFIFO_SIZE) {
1306 		/* no failing read found!! Something must have gone wrong */
1307 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1308 			   __func__, __LINE__);
1309 		return 0;
1310 	} else {
1311 		return v;
1312 	}
1313 }
1314 
1315 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1316 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1317 			      uint32_t *v, uint32_t *d, uint32_t *p,
1318 			      uint32_t *i, uint32_t *max_working_cnt)
1319 {
1320 	uint32_t found_begin = 0;
1321 	uint32_t tmp_delay = 0;
1322 	uint32_t test_status;
1323 
1324 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1325 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1326 		*work_bgn = tmp_delay;
1327 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1328 
1329 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1330 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1331 				IO_DELAY_PER_OPA_TAP) {
1332 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1333 
1334 				test_status =
1335 				rw_mgr_mem_calibrate_read_test_all_ranks
1336 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1337 
1338 				if (test_status) {
1339 					*max_working_cnt = 1;
1340 					found_begin = 1;
1341 					break;
1342 				}
1343 			}
1344 
1345 			if (found_begin)
1346 				break;
1347 
1348 			if (*p > IO_DQS_EN_PHASE_MAX)
1349 				/* fiddle with FIFO */
1350 				rw_mgr_incr_vfifo(*grp, v);
1351 		}
1352 
1353 		if (found_begin)
1354 			break;
1355 	}
1356 
1357 	if (*i >= VFIFO_SIZE) {
1358 		/* cannot find working solution */
1359 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1360 			   ptap/dtap\n", __func__, __LINE__);
1361 		return 0;
1362 	} else {
1363 		return 1;
1364 	}
1365 }
1366 
1367 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1368 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1369 			     uint32_t *p, uint32_t *max_working_cnt)
1370 {
1371 	uint32_t found_begin = 0;
1372 	uint32_t tmp_delay;
1373 
1374 	/* Special case code for backing up a phase */
1375 	if (*p == 0) {
1376 		*p = IO_DQS_EN_PHASE_MAX;
1377 		rw_mgr_decr_vfifo(*grp, v);
1378 	} else {
1379 		(*p)--;
1380 	}
1381 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1382 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1383 
1384 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1385 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1386 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1387 
1388 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1389 							     PASS_ONE_BIT,
1390 							     bit_chk, 0)) {
1391 			found_begin = 1;
1392 			*work_bgn = tmp_delay;
1393 			break;
1394 		}
1395 	}
1396 
1397 	/* We have found a working dtap before the ptap found above */
1398 	if (found_begin == 1)
1399 		(*max_working_cnt)++;
1400 
1401 	/*
1402 	 * Restore VFIFO to old state before we decremented it
1403 	 * (if needed).
1404 	 */
1405 	(*p)++;
1406 	if (*p > IO_DQS_EN_PHASE_MAX) {
1407 		*p = 0;
1408 		rw_mgr_incr_vfifo(*grp, v);
1409 	}
1410 
1411 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1412 }
1413 
1414 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1415 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1416 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1417 			     uint32_t *work_end)
1418 {
1419 	uint32_t found_end = 0;
1420 
1421 	(*p)++;
1422 	*work_end += IO_DELAY_PER_OPA_TAP;
1423 	if (*p > IO_DQS_EN_PHASE_MAX) {
1424 		/* fiddle with FIFO */
1425 		*p = 0;
1426 		rw_mgr_incr_vfifo(*grp, v);
1427 	}
1428 
1429 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1430 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1431 			+= IO_DELAY_PER_OPA_TAP) {
1432 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1433 
1434 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1435 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1436 				found_end = 1;
1437 				break;
1438 			} else {
1439 				(*max_working_cnt)++;
1440 			}
1441 		}
1442 
1443 		if (found_end)
1444 			break;
1445 
1446 		if (*p > IO_DQS_EN_PHASE_MAX) {
1447 			/* fiddle with FIFO */
1448 			rw_mgr_incr_vfifo(*grp, v);
1449 			*p = 0;
1450 		}
1451 	}
1452 
1453 	if (*i >= VFIFO_SIZE + 1) {
1454 		/* cannot see edge of failing read */
1455 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1456 			   failed\n", __func__, __LINE__);
1457 		return 0;
1458 	} else {
1459 		return 1;
1460 	}
1461 }
1462 
1463 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1464 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1465 				  uint32_t *p, uint32_t *work_mid,
1466 				  uint32_t *work_end)
1467 {
1468 	int i;
1469 	int tmp_delay = 0;
1470 
1471 	*work_mid = (*work_bgn + *work_end) / 2;
1472 
1473 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1474 		   *work_bgn, *work_end, *work_mid);
1475 	/* Get the middle delay to be less than a VFIFO delay */
1476 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1477 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1478 		;
1479 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1480 	while (*work_mid > tmp_delay)
1481 		*work_mid -= tmp_delay;
1482 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1483 
1484 	tmp_delay = 0;
1485 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1486 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1487 		;
1488 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1489 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1490 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1491 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1492 		;
1493 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1494 
1495 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1496 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1497 
1498 	/*
1499 	 * push vfifo until we can successfully calibrate. We can do this
1500 	 * because the largest possible margin in 1 VFIFO cycle.
1501 	 */
1502 	for (i = 0; i < VFIFO_SIZE; i++) {
1503 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1504 			   *v);
1505 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1506 							     PASS_ONE_BIT,
1507 							     bit_chk, 0)) {
1508 			break;
1509 		}
1510 
1511 		/* fiddle with FIFO */
1512 		rw_mgr_incr_vfifo(*grp, v);
1513 	}
1514 
1515 	if (i >= VFIFO_SIZE) {
1516 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1517 			   failed\n", __func__, __LINE__);
1518 		return 0;
1519 	} else {
1520 		return 1;
1521 	}
1522 }
1523 
1524 /* find a good dqs enable to use */
1525 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1526 {
1527 	uint32_t v, d, p, i;
1528 	uint32_t max_working_cnt;
1529 	uint32_t bit_chk;
1530 	uint32_t dtaps_per_ptap;
1531 	uint32_t work_bgn, work_mid, work_end;
1532 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1533 
1534 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1535 
1536 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1537 
1538 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1539 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1540 
1541 	/* ************************************************************** */
1542 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1543 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1544 
1545 	/* ********************************************************* */
1546 	/* * Step 1 : First push vfifo until we get a failing read * */
1547 	v = find_vfifo_read(grp, &bit_chk);
1548 
1549 	max_working_cnt = 0;
1550 
1551 	/* ******************************************************** */
1552 	/* * step 2: find first working phase, increment in ptaps * */
1553 	work_bgn = 0;
1554 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1555 				&p, &i, &max_working_cnt) == 0)
1556 		return 0;
1557 
1558 	work_end = work_bgn;
1559 
1560 	/*
1561 	 * If d is 0 then the working window covers a phase tap and
1562 	 * we can follow the old procedure otherwise, we've found the beginning,
1563 	 * and we need to increment the dtaps until we find the end.
1564 	 */
1565 	if (d == 0) {
1566 		/* ********************************************************* */
1567 		/* * step 3a: if we have room, back off by one and
1568 		increment in dtaps * */
1569 
1570 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1571 				 &max_working_cnt);
1572 
1573 		/* ********************************************************* */
1574 		/* * step 4a: go forward from working phase to non working
1575 		phase, increment in ptaps * */
1576 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1577 					 &i, &max_working_cnt, &work_end) == 0)
1578 			return 0;
1579 
1580 		/* ********************************************************* */
1581 		/* * step 5a:  back off one from last, increment in dtaps  * */
1582 
1583 		/* Special case code for backing up a phase */
1584 		if (p == 0) {
1585 			p = IO_DQS_EN_PHASE_MAX;
1586 			rw_mgr_decr_vfifo(grp, &v);
1587 		} else {
1588 			p = p - 1;
1589 		}
1590 
1591 		work_end -= IO_DELAY_PER_OPA_TAP;
1592 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1593 
1594 		/* * The actual increment of dtaps is done outside of
1595 		the if/else loop to share code */
1596 		d = 0;
1597 
1598 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1599 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1600 			   v, p);
1601 	} else {
1602 		/* ******************************************************* */
1603 		/* * step 3-5b:  Find the right edge of the window using
1604 		delay taps   * */
1605 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1606 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1607 			   v, p, d, work_bgn);
1608 
1609 		work_end = work_bgn;
1610 
1611 		/* * The actual increment of dtaps is done outside of the
1612 		if/else loop to share code */
1613 
1614 		/* Only here to counterbalance a subtract later on which is
1615 		not needed if this branch of the algorithm is taken */
1616 		max_working_cnt++;
1617 	}
1618 
1619 	/* The dtap increment to find the failing edge is done here */
1620 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1621 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1622 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1623 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1624 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1625 
1626 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1627 								      PASS_ONE_BIT,
1628 								      &bit_chk, 0)) {
1629 				break;
1630 			}
1631 	}
1632 
1633 	/* Go back to working dtap */
1634 	if (d != 0)
1635 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1636 
1637 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1638 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1639 		   v, p, d-1, work_end);
1640 
1641 	if (work_end < work_bgn) {
1642 		/* nil range */
1643 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1644 			   failed\n", __func__, __LINE__);
1645 		return 0;
1646 	}
1647 
1648 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1649 		   __func__, __LINE__, work_bgn, work_end);
1650 
1651 	/* *************************************************************** */
1652 	/*
1653 	 * * We need to calculate the number of dtaps that equal a ptap
1654 	 * * To do that we'll back up a ptap and re-find the edge of the
1655 	 * * window using dtaps
1656 	 */
1657 
1658 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1659 		   for tracking\n", __func__, __LINE__);
1660 
1661 	/* Special case code for backing up a phase */
1662 	if (p == 0) {
1663 		p = IO_DQS_EN_PHASE_MAX;
1664 		rw_mgr_decr_vfifo(grp, &v);
1665 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1666 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1667 			   v, p);
1668 	} else {
1669 		p = p - 1;
1670 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1671 			   phase only: v=%u p=%u", __func__, __LINE__,
1672 			   v, p);
1673 	}
1674 
1675 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1676 
1677 	/*
1678 	 * Increase dtap until we first see a passing read (in case the
1679 	 * window is smaller than a ptap),
1680 	 * and then a failing read to mark the edge of the window again
1681 	 */
1682 
1683 	/* Find a passing read */
1684 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1685 		   __func__, __LINE__);
1686 	found_passing_read = 0;
1687 	found_failing_read = 0;
1688 	initial_failing_dtap = d;
1689 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1690 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1691 			   read d=%u\n", __func__, __LINE__, d);
1692 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1693 
1694 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1695 							     PASS_ONE_BIT,
1696 							     &bit_chk, 0)) {
1697 			found_passing_read = 1;
1698 			break;
1699 		}
1700 	}
1701 
1702 	if (found_passing_read) {
1703 		/* Find a failing read */
1704 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1705 			   read\n", __func__, __LINE__);
1706 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1707 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1708 				   testing read d=%u\n", __func__, __LINE__, d);
1709 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1710 
1711 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1712 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1713 				found_failing_read = 1;
1714 				break;
1715 			}
1716 		}
1717 	} else {
1718 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1719 			   calculate dtaps", __func__, __LINE__);
1720 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1721 	}
1722 
1723 	/*
1724 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1725 	 * found a passing/failing read. If we didn't, it means d hit the max
1726 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1727 	 * statically calculated value.
1728 	 */
1729 	if (found_passing_read && found_failing_read)
1730 		dtaps_per_ptap = d - initial_failing_dtap;
1731 
1732 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1733 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1734 		   - %u = %u",  __func__, __LINE__, d,
1735 		   initial_failing_dtap, dtaps_per_ptap);
1736 
1737 	/* ******************************************** */
1738 	/* * step 6:  Find the centre of the window   * */
1739 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1740 				   &work_mid, &work_end) == 0)
1741 		return 0;
1742 
1743 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1744 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1745 		   v, p-1, d);
1746 	return 1;
1747 }
1748 
1749 /*
1750  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1751  * dq_in_delay values
1752  */
1753 static uint32_t
1754 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1755 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1756 {
1757 	uint32_t found;
1758 	uint32_t i;
1759 	uint32_t p;
1760 	uint32_t d;
1761 	uint32_t r;
1762 
1763 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1764 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1765 		/* we start at zero, so have one less dq to devide among */
1766 
1767 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1768 	      test_bgn);
1769 
1770 	/* try different dq_in_delays since the dq path is shorter than dqs */
1771 
1772 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1773 	     r += NUM_RANKS_PER_SHADOW_REG) {
1774 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1775 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1776 				   vfifo_find_dqs_", __func__, __LINE__);
1777 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1778 			       write_group, read_group);
1779 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1780 			scc_mgr_set_dq_in_delay(p, d);
1781 			scc_mgr_load_dq(p);
1782 		}
1783 		writel(0, &sdr_scc_mgr->update);
1784 	}
1785 
1786 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1787 
1788 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1789 		   en_phase_sweep_dq", __func__, __LINE__);
1790 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1791 		   chain to zero\n", write_group, read_group, found);
1792 
1793 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1794 	     r += NUM_RANKS_PER_SHADOW_REG) {
1795 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1796 			i++, p++) {
1797 			scc_mgr_set_dq_in_delay(p, 0);
1798 			scc_mgr_load_dq(p);
1799 		}
1800 		writel(0, &sdr_scc_mgr->update);
1801 	}
1802 
1803 	return found;
1804 }
1805 
1806 /* per-bit deskew DQ and center */
1807 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1808 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1809 	uint32_t use_read_test, uint32_t update_fom)
1810 {
1811 	uint32_t i, p, d, min_index;
1812 	/*
1813 	 * Store these as signed since there are comparisons with
1814 	 * signed numbers.
1815 	 */
1816 	uint32_t bit_chk;
1817 	uint32_t sticky_bit_chk;
1818 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1819 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1820 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1821 	int32_t mid;
1822 	int32_t orig_mid_min, mid_min;
1823 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1824 		final_dqs_en;
1825 	int32_t dq_margin, dqs_margin;
1826 	uint32_t stop;
1827 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1828 	uint32_t addr;
1829 
1830 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1831 
1832 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1833 	start_dqs = readl(addr + (read_group << 2));
1834 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1835 		start_dqs_en = readl(addr + ((read_group << 2)
1836 				     - IO_DQS_EN_DELAY_OFFSET));
1837 
1838 	/* set the left and right edge of each bit to an illegal value */
1839 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1840 	sticky_bit_chk = 0;
1841 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1842 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1843 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1844 	}
1845 
1846 	/* Search for the left edge of the window for each bit */
1847 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1848 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1849 
1850 		writel(0, &sdr_scc_mgr->update);
1851 
1852 		/*
1853 		 * Stop searching when the read test doesn't pass AND when
1854 		 * we've seen a passing read on every bit.
1855 		 */
1856 		if (use_read_test) {
1857 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1858 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1859 				&bit_chk, 0, 0);
1860 		} else {
1861 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1862 							0, PASS_ONE_BIT,
1863 							&bit_chk, 0);
1864 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1865 				(read_group - (write_group *
1866 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1867 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1868 			stop = (bit_chk == 0);
1869 		}
1870 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1871 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1872 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1873 			   && %u", __func__, __LINE__, d,
1874 			   sticky_bit_chk,
1875 			param->read_correct_mask, stop);
1876 
1877 		if (stop == 1) {
1878 			break;
1879 		} else {
1880 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1881 				if (bit_chk & 1) {
1882 					/* Remember a passing test as the
1883 					left_edge */
1884 					left_edge[i] = d;
1885 				} else {
1886 					/* If a left edge has not been seen yet,
1887 					then a future passing test will mark
1888 					this edge as the right edge */
1889 					if (left_edge[i] ==
1890 						IO_IO_IN_DELAY_MAX + 1) {
1891 						right_edge[i] = -(d + 1);
1892 					}
1893 				}
1894 				bit_chk = bit_chk >> 1;
1895 			}
1896 		}
1897 	}
1898 
1899 	/* Reset DQ delay chains to 0 */
1900 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1901 	sticky_bit_chk = 0;
1902 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1903 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1904 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1905 			   i, left_edge[i], i, right_edge[i]);
1906 
1907 		/*
1908 		 * Check for cases where we haven't found the left edge,
1909 		 * which makes our assignment of the the right edge invalid.
1910 		 * Reset it to the illegal value.
1911 		 */
1912 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1913 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1914 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1915 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1916 				   right_edge[%u]: %d\n", __func__, __LINE__,
1917 				   i, right_edge[i]);
1918 		}
1919 
1920 		/*
1921 		 * Reset sticky bit (except for bits where we have seen
1922 		 * both the left and right edge).
1923 		 */
1924 		sticky_bit_chk = sticky_bit_chk << 1;
1925 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1926 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1927 			sticky_bit_chk = sticky_bit_chk | 1;
1928 		}
1929 
1930 		if (i == 0)
1931 			break;
1932 	}
1933 
1934 	/* Search for the right edge of the window for each bit */
1935 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1936 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1937 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1938 			uint32_t delay = d + start_dqs_en;
1939 			if (delay > IO_DQS_EN_DELAY_MAX)
1940 				delay = IO_DQS_EN_DELAY_MAX;
1941 			scc_mgr_set_dqs_en_delay(read_group, delay);
1942 		}
1943 		scc_mgr_load_dqs(read_group);
1944 
1945 		writel(0, &sdr_scc_mgr->update);
1946 
1947 		/*
1948 		 * Stop searching when the read test doesn't pass AND when
1949 		 * we've seen a passing read on every bit.
1950 		 */
1951 		if (use_read_test) {
1952 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1953 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1954 				&bit_chk, 0, 0);
1955 		} else {
1956 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1957 							0, PASS_ONE_BIT,
1958 							&bit_chk, 0);
1959 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1960 				(read_group - (write_group *
1961 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1962 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1963 			stop = (bit_chk == 0);
1964 		}
1965 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1966 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1967 
1968 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1969 			   %u && %u", __func__, __LINE__, d,
1970 			   sticky_bit_chk, param->read_correct_mask, stop);
1971 
1972 		if (stop == 1) {
1973 			break;
1974 		} else {
1975 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1976 				if (bit_chk & 1) {
1977 					/* Remember a passing test as
1978 					the right_edge */
1979 					right_edge[i] = d;
1980 				} else {
1981 					if (d != 0) {
1982 						/* If a right edge has not been
1983 						seen yet, then a future passing
1984 						test will mark this edge as the
1985 						left edge */
1986 						if (right_edge[i] ==
1987 						IO_IO_IN_DELAY_MAX + 1) {
1988 							left_edge[i] = -(d + 1);
1989 						}
1990 					} else {
1991 						/* d = 0 failed, but it passed
1992 						when testing the left edge,
1993 						so it must be marginal,
1994 						set it to -1 */
1995 						if (right_edge[i] ==
1996 							IO_IO_IN_DELAY_MAX + 1 &&
1997 							left_edge[i] !=
1998 							IO_IO_IN_DELAY_MAX
1999 							+ 1) {
2000 							right_edge[i] = -1;
2001 						}
2002 						/* If a right edge has not been
2003 						seen yet, then a future passing
2004 						test will mark this edge as the
2005 						left edge */
2006 						else if (right_edge[i] ==
2007 							IO_IO_IN_DELAY_MAX +
2008 							1) {
2009 							left_edge[i] = -(d + 1);
2010 						}
2011 					}
2012 				}
2013 
2014 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2015 					   d=%u]: ", __func__, __LINE__, d);
2016 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2017 					   (int)(bit_chk & 1), i, left_edge[i]);
2018 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2019 					   right_edge[i]);
2020 				bit_chk = bit_chk >> 1;
2021 			}
2022 		}
2023 	}
2024 
2025 	/* Check that all bits have a window */
2026 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2027 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2028 			   %d right_edge[%u]: %d", __func__, __LINE__,
2029 			   i, left_edge[i], i, right_edge[i]);
2030 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2031 			== IO_IO_IN_DELAY_MAX + 1)) {
2032 			/*
2033 			 * Restore delay chain settings before letting the loop
2034 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2035 			 * dqs/ck relationships.
2036 			 */
2037 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2038 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2039 				scc_mgr_set_dqs_en_delay(read_group,
2040 							 start_dqs_en);
2041 			}
2042 			scc_mgr_load_dqs(read_group);
2043 			writel(0, &sdr_scc_mgr->update);
2044 
2045 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2046 				   find edge [%u]: %d %d", __func__, __LINE__,
2047 				   i, left_edge[i], right_edge[i]);
2048 			if (use_read_test) {
2049 				set_failing_group_stage(read_group *
2050 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2051 					CAL_STAGE_VFIFO,
2052 					CAL_SUBSTAGE_VFIFO_CENTER);
2053 			} else {
2054 				set_failing_group_stage(read_group *
2055 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2056 					CAL_STAGE_VFIFO_AFTER_WRITES,
2057 					CAL_SUBSTAGE_VFIFO_CENTER);
2058 			}
2059 			return 0;
2060 		}
2061 	}
2062 
2063 	/* Find middle of window for each DQ bit */
2064 	mid_min = left_edge[0] - right_edge[0];
2065 	min_index = 0;
2066 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2067 		mid = left_edge[i] - right_edge[i];
2068 		if (mid < mid_min) {
2069 			mid_min = mid;
2070 			min_index = i;
2071 		}
2072 	}
2073 
2074 	/*
2075 	 * -mid_min/2 represents the amount that we need to move DQS.
2076 	 * If mid_min is odd and positive we'll need to add one to
2077 	 * make sure the rounding in further calculations is correct
2078 	 * (always bias to the right), so just add 1 for all positive values.
2079 	 */
2080 	if (mid_min > 0)
2081 		mid_min++;
2082 
2083 	mid_min = mid_min / 2;
2084 
2085 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2086 		   __func__, __LINE__, mid_min, min_index);
2087 
2088 	/* Determine the amount we can change DQS (which is -mid_min) */
2089 	orig_mid_min = mid_min;
2090 	new_dqs = start_dqs - mid_min;
2091 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2092 		new_dqs = IO_DQS_IN_DELAY_MAX;
2093 	else if (new_dqs < 0)
2094 		new_dqs = 0;
2095 
2096 	mid_min = start_dqs - new_dqs;
2097 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2098 		   mid_min, new_dqs);
2099 
2100 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2101 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2102 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2103 		else if (start_dqs_en - mid_min < 0)
2104 			mid_min += start_dqs_en - mid_min;
2105 	}
2106 	new_dqs = start_dqs - mid_min;
2107 
2108 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2109 		   new_dqs=%d mid_min=%d\n", start_dqs,
2110 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2111 		   new_dqs, mid_min);
2112 
2113 	/* Initialize data for export structures */
2114 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2115 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2116 
2117 	/* add delay to bring centre of all DQ windows to the same "level" */
2118 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2119 		/* Use values before divide by 2 to reduce round off error */
2120 		shift_dq = (left_edge[i] - right_edge[i] -
2121 			(left_edge[min_index] - right_edge[min_index]))/2  +
2122 			(orig_mid_min - mid_min);
2123 
2124 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2125 			   shift_dq[%u]=%d\n", i, shift_dq);
2126 
2127 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2128 		temp_dq_in_delay1 = readl(addr + (p << 2));
2129 		temp_dq_in_delay2 = readl(addr + (i << 2));
2130 
2131 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2132 			(int32_t)IO_IO_IN_DELAY_MAX) {
2133 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2134 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2135 			shift_dq = -(int32_t)temp_dq_in_delay1;
2136 		}
2137 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2138 			   shift_dq[%u]=%d\n", i, shift_dq);
2139 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2140 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2141 		scc_mgr_load_dq(p);
2142 
2143 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2144 			   left_edge[i] - shift_dq + (-mid_min),
2145 			   right_edge[i] + shift_dq - (-mid_min));
2146 		/* To determine values for export structures */
2147 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2148 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2149 
2150 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2151 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2152 	}
2153 
2154 	final_dqs = new_dqs;
2155 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2156 		final_dqs_en = start_dqs_en - mid_min;
2157 
2158 	/* Move DQS-en */
2159 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2160 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2161 		scc_mgr_load_dqs(read_group);
2162 	}
2163 
2164 	/* Move DQS */
2165 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2166 	scc_mgr_load_dqs(read_group);
2167 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2168 		   dqs_margin=%d", __func__, __LINE__,
2169 		   dq_margin, dqs_margin);
2170 
2171 	/*
2172 	 * Do not remove this line as it makes sure all of our decisions
2173 	 * have been applied. Apply the update bit.
2174 	 */
2175 	writel(0, &sdr_scc_mgr->update);
2176 
2177 	return (dq_margin >= 0) && (dqs_margin >= 0);
2178 }
2179 
2180 /*
2181  * calibrate the read valid prediction FIFO.
2182  *
2183  *  - read valid prediction will consist of finding a good DQS enable phase,
2184  * DQS enable delay, DQS input phase, and DQS input delay.
2185  *  - we also do a per-bit deskew on the DQ lines.
2186  */
2187 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2188 					   uint32_t test_bgn)
2189 {
2190 	uint32_t p, d, rank_bgn, sr;
2191 	uint32_t dtaps_per_ptap;
2192 	uint32_t bit_chk;
2193 	uint32_t grp_calibrated;
2194 	uint32_t write_group, write_test_bgn;
2195 	uint32_t failed_substage;
2196 
2197 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2198 
2199 	/* update info for sims */
2200 	reg_file_set_stage(CAL_STAGE_VFIFO);
2201 
2202 	write_group = read_group;
2203 	write_test_bgn = test_bgn;
2204 
2205 	/* USER Determine number of delay taps for each phase tap */
2206 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2207 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2208 
2209 	/* update info for sims */
2210 	reg_file_set_group(read_group);
2211 
2212 	grp_calibrated = 0;
2213 
2214 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2215 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2216 
2217 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2218 		/*
2219 		 * In RLDRAMX we may be messing the delay of pins in
2220 		 * the same write group but outside of the current read
2221 		 * the group, but that's ok because we haven't
2222 		 * calibrated output side yet.
2223 		 */
2224 		if (d > 0) {
2225 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2226 								write_group, d);
2227 		}
2228 
2229 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2230 			p++) {
2231 			/* set a particular dqdqs phase */
2232 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2233 
2234 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2235 				   p=%u d=%u\n", __func__, __LINE__,
2236 				   read_group, p, d);
2237 
2238 			/*
2239 			 * Load up the patterns used by read calibration
2240 			 * using current DQDQS phase.
2241 			 */
2242 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2243 			if (!(gbl->phy_debug_mode_flags &
2244 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2245 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2246 				    (read_group, 1, &bit_chk)) {
2247 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2248 						   __func__, __LINE__);
2249 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2250 						   read_group, p, d);
2251 					break;
2252 				}
2253 			}
2254 
2255 /* case:56390 */
2256 			grp_calibrated = 1;
2257 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2258 		    (write_group, read_group, test_bgn)) {
2259 				/*
2260 				 * USER Read per-bit deskew can be done on a
2261 				 * per shadow register basis.
2262 				 */
2263 				for (rank_bgn = 0, sr = 0;
2264 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2265 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2266 					++sr) {
2267 					/*
2268 					 * Determine if this set of ranks
2269 					 * should be skipped entirely.
2270 					 */
2271 					if (!param->skip_shadow_regs[sr]) {
2272 						/*
2273 						 * If doing read after write
2274 						 * calibration, do not update
2275 						 * FOM, now - do it then.
2276 						 */
2277 					if (!rw_mgr_mem_calibrate_vfifo_center
2278 						(rank_bgn, write_group,
2279 						read_group, test_bgn, 1, 0)) {
2280 							grp_calibrated = 0;
2281 							failed_substage =
2282 						CAL_SUBSTAGE_VFIFO_CENTER;
2283 						}
2284 					}
2285 				}
2286 			} else {
2287 				grp_calibrated = 0;
2288 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2289 			}
2290 		}
2291 	}
2292 
2293 	if (grp_calibrated == 0) {
2294 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2295 					failed_substage);
2296 		return 0;
2297 	}
2298 
2299 	/*
2300 	 * Reset the delay chains back to zero if they have moved > 1
2301 	 * (check for > 1 because loop will increase d even when pass in
2302 	 * first case).
2303 	 */
2304 	if (d > 2)
2305 		scc_mgr_zero_group(write_group, 1);
2306 
2307 	return 1;
2308 }
2309 
2310 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2311 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2312 					       uint32_t test_bgn)
2313 {
2314 	uint32_t rank_bgn, sr;
2315 	uint32_t grp_calibrated;
2316 	uint32_t write_group;
2317 
2318 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2319 
2320 	/* update info for sims */
2321 
2322 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2323 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2324 
2325 	write_group = read_group;
2326 
2327 	/* update info for sims */
2328 	reg_file_set_group(read_group);
2329 
2330 	grp_calibrated = 1;
2331 	/* Read per-bit deskew can be done on a per shadow register basis */
2332 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2333 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2334 		/* Determine if this set of ranks should be skipped entirely */
2335 		if (!param->skip_shadow_regs[sr]) {
2336 		/* This is the last calibration round, update FOM here */
2337 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2338 								write_group,
2339 								read_group,
2340 								test_bgn, 0,
2341 								1)) {
2342 				grp_calibrated = 0;
2343 			}
2344 		}
2345 	}
2346 
2347 
2348 	if (grp_calibrated == 0) {
2349 		set_failing_group_stage(write_group,
2350 					CAL_STAGE_VFIFO_AFTER_WRITES,
2351 					CAL_SUBSTAGE_VFIFO_CENTER);
2352 		return 0;
2353 	}
2354 
2355 	return 1;
2356 }
2357 
2358 /* Calibrate LFIFO to find smallest read latency */
2359 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2360 {
2361 	uint32_t found_one;
2362 	uint32_t bit_chk;
2363 
2364 	debug("%s:%d\n", __func__, __LINE__);
2365 
2366 	/* update info for sims */
2367 	reg_file_set_stage(CAL_STAGE_LFIFO);
2368 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2369 
2370 	/* Load up the patterns used by read calibration for all ranks */
2371 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2372 	found_one = 0;
2373 
2374 	do {
2375 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2376 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2377 			   __func__, __LINE__, gbl->curr_read_lat);
2378 
2379 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2380 							      NUM_READ_TESTS,
2381 							      PASS_ALL_BITS,
2382 							      &bit_chk, 1)) {
2383 			break;
2384 		}
2385 
2386 		found_one = 1;
2387 		/* reduce read latency and see if things are working */
2388 		/* correctly */
2389 		gbl->curr_read_lat--;
2390 	} while (gbl->curr_read_lat > 0);
2391 
2392 	/* reset the fifos to get pointers to known state */
2393 
2394 	writel(0, &phy_mgr_cmd->fifo_reset);
2395 
2396 	if (found_one) {
2397 		/* add a fudge factor to the read latency that was determined */
2398 		gbl->curr_read_lat += 2;
2399 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2400 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2401 			   read_lat=%u\n", __func__, __LINE__,
2402 			   gbl->curr_read_lat);
2403 		return 1;
2404 	} else {
2405 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2406 					CAL_SUBSTAGE_READ_LATENCY);
2407 
2408 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2409 			   read_lat=%u\n", __func__, __LINE__,
2410 			   gbl->curr_read_lat);
2411 		return 0;
2412 	}
2413 }
2414 
2415 /*
2416  * issue write test command.
2417  * two variants are provided. one that just tests a write pattern and
2418  * another that tests datamask functionality.
2419  */
2420 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2421 						  uint32_t test_dm)
2422 {
2423 	uint32_t mcc_instruction;
2424 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2425 		ENABLE_SUPER_QUICK_CALIBRATION);
2426 	uint32_t rw_wl_nop_cycles;
2427 	uint32_t addr;
2428 
2429 	/*
2430 	 * Set counter and jump addresses for the right
2431 	 * number of NOP cycles.
2432 	 * The number of supported NOP cycles can range from -1 to infinity
2433 	 * Three different cases are handled:
2434 	 *
2435 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2436 	 *    mechanism will be used to insert the right number of NOPs
2437 	 *
2438 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2439 	 *    issuing the write command will jump straight to the
2440 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2441 	 *    data (for RLD), skipping
2442 	 *    the NOP micro-instruction all together
2443 	 *
2444 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2445 	 *    turned on in the same micro-instruction that issues the write
2446 	 *    command. Then we need
2447 	 *    to directly jump to the micro-instruction that sends out the data
2448 	 *
2449 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2450 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2451 	 *       write-read operations.
2452 	 *       one counter left to issue this command in "multiple-group" mode
2453 	 */
2454 
2455 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2456 
2457 	if (rw_wl_nop_cycles == -1) {
2458 		/*
2459 		 * CNTR 2 - We want to execute the special write operation that
2460 		 * turns on DQS right away and then skip directly to the
2461 		 * instruction that sends out the data. We set the counter to a
2462 		 * large number so that the jump is always taken.
2463 		 */
2464 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2465 
2466 		/* CNTR 3 - Not used */
2467 		if (test_dm) {
2468 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2469 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2470 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2471 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2472 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2473 		} else {
2474 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2475 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2476 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2477 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2478 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2479 		}
2480 	} else if (rw_wl_nop_cycles == 0) {
2481 		/*
2482 		 * CNTR 2 - We want to skip the NOP operation and go straight
2483 		 * to the DQS enable instruction. We set the counter to a large
2484 		 * number so that the jump is always taken.
2485 		 */
2486 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2487 
2488 		/* CNTR 3 - Not used */
2489 		if (test_dm) {
2490 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2491 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2492 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2493 		} else {
2494 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2495 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2496 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2497 		}
2498 	} else {
2499 		/*
2500 		 * CNTR 2 - In this case we want to execute the next instruction
2501 		 * and NOT take the jump. So we set the counter to 0. The jump
2502 		 * address doesn't count.
2503 		 */
2504 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2505 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2506 
2507 		/*
2508 		 * CNTR 3 - Set the nop counter to the number of cycles we
2509 		 * need to loop for, minus 1.
2510 		 */
2511 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2512 		if (test_dm) {
2513 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2514 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2515 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2516 		} else {
2517 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2518 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2519 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2520 		}
2521 	}
2522 
2523 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2524 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2525 
2526 	if (quick_write_mode)
2527 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2528 	else
2529 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2530 
2531 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2532 
2533 	/*
2534 	 * CNTR 1 - This is used to ensure enough time elapses
2535 	 * for read data to come back.
2536 	 */
2537 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2538 
2539 	if (test_dm) {
2540 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2541 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2542 	} else {
2543 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2544 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2545 	}
2546 
2547 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2548 	writel(mcc_instruction, addr + (group << 2));
2549 }
2550 
2551 /* Test writes, can check for a single bit pass or multiple bit pass */
2552 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2553 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2554 	uint32_t *bit_chk, uint32_t all_ranks)
2555 {
2556 	uint32_t r;
2557 	uint32_t correct_mask_vg;
2558 	uint32_t tmp_bit_chk;
2559 	uint32_t vg;
2560 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2561 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2562 	uint32_t addr_rw_mgr;
2563 	uint32_t base_rw_mgr;
2564 
2565 	*bit_chk = param->write_correct_mask;
2566 	correct_mask_vg = param->write_correct_mask_vg;
2567 
2568 	for (r = rank_bgn; r < rank_end; r++) {
2569 		if (param->skip_ranks[r]) {
2570 			/* request to skip the rank */
2571 			continue;
2572 		}
2573 
2574 		/* set rank */
2575 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2576 
2577 		tmp_bit_chk = 0;
2578 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2579 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2580 			/* reset the fifos to get pointers to known state */
2581 			writel(0, &phy_mgr_cmd->fifo_reset);
2582 
2583 			tmp_bit_chk = tmp_bit_chk <<
2584 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2585 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2586 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2587 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2588 				use_dm);
2589 
2590 			base_rw_mgr = readl(addr_rw_mgr);
2591 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2592 			if (vg == 0)
2593 				break;
2594 		}
2595 		*bit_chk &= tmp_bit_chk;
2596 	}
2597 
2598 	if (all_correct) {
2599 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2600 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2601 			   %u => %lu", write_group, use_dm,
2602 			   *bit_chk, param->write_correct_mask,
2603 			   (long unsigned int)(*bit_chk ==
2604 			   param->write_correct_mask));
2605 		return *bit_chk == param->write_correct_mask;
2606 	} else {
2607 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2608 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2609 		       write_group, use_dm, *bit_chk);
2610 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2611 			(long unsigned int)(*bit_chk != 0));
2612 		return *bit_chk != 0x00;
2613 	}
2614 }
2615 
2616 /*
2617  * center all windows. do per-bit-deskew to possibly increase size of
2618  * certain windows.
2619  */
2620 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2621 	uint32_t write_group, uint32_t test_bgn)
2622 {
2623 	uint32_t i, p, min_index;
2624 	int32_t d;
2625 	/*
2626 	 * Store these as signed since there are comparisons with
2627 	 * signed numbers.
2628 	 */
2629 	uint32_t bit_chk;
2630 	uint32_t sticky_bit_chk;
2631 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2632 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2633 	int32_t mid;
2634 	int32_t mid_min, orig_mid_min;
2635 	int32_t new_dqs, start_dqs, shift_dq;
2636 	int32_t dq_margin, dqs_margin, dm_margin;
2637 	uint32_t stop;
2638 	uint32_t temp_dq_out1_delay;
2639 	uint32_t addr;
2640 
2641 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2642 
2643 	dm_margin = 0;
2644 
2645 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2646 	start_dqs = readl(addr +
2647 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2648 
2649 	/* per-bit deskew */
2650 
2651 	/*
2652 	 * set the left and right edge of each bit to an illegal value
2653 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2654 	 */
2655 	sticky_bit_chk = 0;
2656 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2657 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2658 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2659 	}
2660 
2661 	/* Search for the left edge of the window for each bit */
2662 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2663 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2664 
2665 		writel(0, &sdr_scc_mgr->update);
2666 
2667 		/*
2668 		 * Stop searching when the read test doesn't pass AND when
2669 		 * we've seen a passing read on every bit.
2670 		 */
2671 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2672 			0, PASS_ONE_BIT, &bit_chk, 0);
2673 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2674 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2675 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2676 			   == %u && %u [bit_chk= %u ]\n",
2677 			d, sticky_bit_chk, param->write_correct_mask,
2678 			stop, bit_chk);
2679 
2680 		if (stop == 1) {
2681 			break;
2682 		} else {
2683 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2684 				if (bit_chk & 1) {
2685 					/*
2686 					 * Remember a passing test as the
2687 					 * left_edge.
2688 					 */
2689 					left_edge[i] = d;
2690 				} else {
2691 					/*
2692 					 * If a left edge has not been seen
2693 					 * yet, then a future passing test will
2694 					 * mark this edge as the right edge.
2695 					 */
2696 					if (left_edge[i] ==
2697 						IO_IO_OUT1_DELAY_MAX + 1) {
2698 						right_edge[i] = -(d + 1);
2699 					}
2700 				}
2701 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2702 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2703 					   (int)(bit_chk & 1), i, left_edge[i]);
2704 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2705 				       right_edge[i]);
2706 				bit_chk = bit_chk >> 1;
2707 			}
2708 		}
2709 	}
2710 
2711 	/* Reset DQ delay chains to 0 */
2712 	scc_mgr_apply_group_dq_out1_delay(0);
2713 	sticky_bit_chk = 0;
2714 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2715 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2716 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2717 			   i, left_edge[i], i, right_edge[i]);
2718 
2719 		/*
2720 		 * Check for cases where we haven't found the left edge,
2721 		 * which makes our assignment of the the right edge invalid.
2722 		 * Reset it to the illegal value.
2723 		 */
2724 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2725 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2726 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2727 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2728 				   right_edge[%u]: %d\n", __func__, __LINE__,
2729 				   i, right_edge[i]);
2730 		}
2731 
2732 		/*
2733 		 * Reset sticky bit (except for bits where we have
2734 		 * seen the left edge).
2735 		 */
2736 		sticky_bit_chk = sticky_bit_chk << 1;
2737 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2738 			sticky_bit_chk = sticky_bit_chk | 1;
2739 
2740 		if (i == 0)
2741 			break;
2742 	}
2743 
2744 	/* Search for the right edge of the window for each bit */
2745 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2746 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2747 							d + start_dqs);
2748 
2749 		writel(0, &sdr_scc_mgr->update);
2750 
2751 		/*
2752 		 * Stop searching when the read test doesn't pass AND when
2753 		 * we've seen a passing read on every bit.
2754 		 */
2755 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2756 			0, PASS_ONE_BIT, &bit_chk, 0);
2757 
2758 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2759 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2760 
2761 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2762 			   %u && %u\n", d, sticky_bit_chk,
2763 			   param->write_correct_mask, stop);
2764 
2765 		if (stop == 1) {
2766 			if (d == 0) {
2767 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2768 					i++) {
2769 					/* d = 0 failed, but it passed when
2770 					testing the left edge, so it must be
2771 					marginal, set it to -1 */
2772 					if (right_edge[i] ==
2773 						IO_IO_OUT1_DELAY_MAX + 1 &&
2774 						left_edge[i] !=
2775 						IO_IO_OUT1_DELAY_MAX + 1) {
2776 						right_edge[i] = -1;
2777 					}
2778 				}
2779 			}
2780 			break;
2781 		} else {
2782 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2783 				if (bit_chk & 1) {
2784 					/*
2785 					 * Remember a passing test as
2786 					 * the right_edge.
2787 					 */
2788 					right_edge[i] = d;
2789 				} else {
2790 					if (d != 0) {
2791 						/*
2792 						 * If a right edge has not
2793 						 * been seen yet, then a future
2794 						 * passing test will mark this
2795 						 * edge as the left edge.
2796 						 */
2797 						if (right_edge[i] ==
2798 						    IO_IO_OUT1_DELAY_MAX + 1)
2799 							left_edge[i] = -(d + 1);
2800 					} else {
2801 						/*
2802 						 * d = 0 failed, but it passed
2803 						 * when testing the left edge,
2804 						 * so it must be marginal, set
2805 						 * it to -1.
2806 						 */
2807 						if (right_edge[i] ==
2808 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2809 						    left_edge[i] !=
2810 						    IO_IO_OUT1_DELAY_MAX + 1)
2811 							right_edge[i] = -1;
2812 						/*
2813 						 * If a right edge has not been
2814 						 * seen yet, then a future
2815 						 * passing test will mark this
2816 						 * edge as the left edge.
2817 						 */
2818 						else if (right_edge[i] ==
2819 							IO_IO_OUT1_DELAY_MAX +
2820 							1)
2821 							left_edge[i] = -(d + 1);
2822 					}
2823 				}
2824 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2825 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2826 					   (int)(bit_chk & 1), i, left_edge[i]);
2827 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2828 					   right_edge[i]);
2829 				bit_chk = bit_chk >> 1;
2830 			}
2831 		}
2832 	}
2833 
2834 	/* Check that all bits have a window */
2835 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2836 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2837 			   %d right_edge[%u]: %d", __func__, __LINE__,
2838 			   i, left_edge[i], i, right_edge[i]);
2839 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2840 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2841 			set_failing_group_stage(test_bgn + i,
2842 						CAL_STAGE_WRITES,
2843 						CAL_SUBSTAGE_WRITES_CENTER);
2844 			return 0;
2845 		}
2846 	}
2847 
2848 	/* Find middle of window for each DQ bit */
2849 	mid_min = left_edge[0] - right_edge[0];
2850 	min_index = 0;
2851 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2852 		mid = left_edge[i] - right_edge[i];
2853 		if (mid < mid_min) {
2854 			mid_min = mid;
2855 			min_index = i;
2856 		}
2857 	}
2858 
2859 	/*
2860 	 * -mid_min/2 represents the amount that we need to move DQS.
2861 	 * If mid_min is odd and positive we'll need to add one to
2862 	 * make sure the rounding in further calculations is correct
2863 	 * (always bias to the right), so just add 1 for all positive values.
2864 	 */
2865 	if (mid_min > 0)
2866 		mid_min++;
2867 	mid_min = mid_min / 2;
2868 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2869 		   __LINE__, mid_min);
2870 
2871 	/* Determine the amount we can change DQS (which is -mid_min) */
2872 	orig_mid_min = mid_min;
2873 	new_dqs = start_dqs;
2874 	mid_min = 0;
2875 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2876 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2877 	/* Initialize data for export structures */
2878 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2879 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2880 
2881 	/* add delay to bring centre of all DQ windows to the same "level" */
2882 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2883 		/* Use values before divide by 2 to reduce round off error */
2884 		shift_dq = (left_edge[i] - right_edge[i] -
2885 			(left_edge[min_index] - right_edge[min_index]))/2  +
2886 		(orig_mid_min - mid_min);
2887 
2888 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2889 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2890 
2891 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2892 		temp_dq_out1_delay = readl(addr + (i << 2));
2893 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2894 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2895 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2896 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2897 			shift_dq = -(int32_t)temp_dq_out1_delay;
2898 		}
2899 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2900 			   i, shift_dq);
2901 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2902 		scc_mgr_load_dq(i);
2903 
2904 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2905 			   left_edge[i] - shift_dq + (-mid_min),
2906 			   right_edge[i] + shift_dq - (-mid_min));
2907 		/* To determine values for export structures */
2908 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2909 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2910 
2911 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2912 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2913 	}
2914 
2915 	/* Move DQS */
2916 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2917 	writel(0, &sdr_scc_mgr->update);
2918 
2919 	/* Centre DM */
2920 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2921 
2922 	/*
2923 	 * set the left and right edge of each bit to an illegal value,
2924 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2925 	 */
2926 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2927 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2928 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2929 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2930 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2931 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2932 	int32_t win_best = 0;
2933 
2934 	/* Search for the/part of the window with DM shift */
2935 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2936 		scc_mgr_apply_group_dm_out1_delay(d);
2937 		writel(0, &sdr_scc_mgr->update);
2938 
2939 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2940 						    PASS_ALL_BITS, &bit_chk,
2941 						    0)) {
2942 			/* USE Set current end of the window */
2943 			end_curr = -d;
2944 			/*
2945 			 * If a starting edge of our window has not been seen
2946 			 * this is our current start of the DM window.
2947 			 */
2948 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2949 				bgn_curr = -d;
2950 
2951 			/*
2952 			 * If current window is bigger than best seen.
2953 			 * Set best seen to be current window.
2954 			 */
2955 			if ((end_curr-bgn_curr+1) > win_best) {
2956 				win_best = end_curr-bgn_curr+1;
2957 				bgn_best = bgn_curr;
2958 				end_best = end_curr;
2959 			}
2960 		} else {
2961 			/* We just saw a failing test. Reset temp edge */
2962 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2963 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2964 			}
2965 		}
2966 
2967 
2968 	/* Reset DM delay chains to 0 */
2969 	scc_mgr_apply_group_dm_out1_delay(0);
2970 
2971 	/*
2972 	 * Check to see if the current window nudges up aganist 0 delay.
2973 	 * If so we need to continue the search by shifting DQS otherwise DQS
2974 	 * search begins as a new search. */
2975 	if (end_curr != 0) {
2976 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2977 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2978 	}
2979 
2980 	/* Search for the/part of the window with DQS shifts */
2981 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2982 		/*
2983 		 * Note: This only shifts DQS, so are we limiting ourselve to
2984 		 * width of DQ unnecessarily.
2985 		 */
2986 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2987 							d + new_dqs);
2988 
2989 		writel(0, &sdr_scc_mgr->update);
2990 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2991 						    PASS_ALL_BITS, &bit_chk,
2992 						    0)) {
2993 			/* USE Set current end of the window */
2994 			end_curr = d;
2995 			/*
2996 			 * If a beginning edge of our window has not been seen
2997 			 * this is our current begin of the DM window.
2998 			 */
2999 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3000 				bgn_curr = d;
3001 
3002 			/*
3003 			 * If current window is bigger than best seen. Set best
3004 			 * seen to be current window.
3005 			 */
3006 			if ((end_curr-bgn_curr+1) > win_best) {
3007 				win_best = end_curr-bgn_curr+1;
3008 				bgn_best = bgn_curr;
3009 				end_best = end_curr;
3010 			}
3011 		} else {
3012 			/* We just saw a failing test. Reset temp edge */
3013 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 
3016 			/* Early exit optimization: if ther remaining delay
3017 			chain space is less than already seen largest window
3018 			we can exit */
3019 			if ((win_best-1) >
3020 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3021 					break;
3022 				}
3023 			}
3024 		}
3025 
3026 	/* assign left and right edge for cal and reporting; */
3027 	left_edge[0] = -1*bgn_best;
3028 	right_edge[0] = end_best;
3029 
3030 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3031 		   __LINE__, left_edge[0], right_edge[0]);
3032 
3033 	/* Move DQS (back to orig) */
3034 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3035 
3036 	/* Move DM */
3037 
3038 	/* Find middle of window for the DM bit */
3039 	mid = (left_edge[0] - right_edge[0]) / 2;
3040 
3041 	/* only move right, since we are not moving DQS/DQ */
3042 	if (mid < 0)
3043 		mid = 0;
3044 
3045 	/* dm_marign should fail if we never find a window */
3046 	if (win_best == 0)
3047 		dm_margin = -1;
3048 	else
3049 		dm_margin = left_edge[0] - mid;
3050 
3051 	scc_mgr_apply_group_dm_out1_delay(mid);
3052 	writel(0, &sdr_scc_mgr->update);
3053 
3054 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3055 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3056 		   right_edge[0], mid, dm_margin);
3057 	/* Export values */
3058 	gbl->fom_out += dq_margin + dqs_margin;
3059 
3060 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3061 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3062 		   dq_margin, dqs_margin, dm_margin);
3063 
3064 	/*
3065 	 * Do not remove this line as it makes sure all of our
3066 	 * decisions have been applied.
3067 	 */
3068 	writel(0, &sdr_scc_mgr->update);
3069 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3070 }
3071 
3072 /* calibrate the write operations */
3073 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3074 	uint32_t test_bgn)
3075 {
3076 	/* update info for sims */
3077 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3078 
3079 	reg_file_set_stage(CAL_STAGE_WRITES);
3080 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3081 
3082 	reg_file_set_group(g);
3083 
3084 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3085 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3086 					CAL_SUBSTAGE_WRITES_CENTER);
3087 		return 0;
3088 	}
3089 
3090 	return 1;
3091 }
3092 
3093 /**
3094  * mem_precharge_and_activate() - Precharge all banks and activate
3095  *
3096  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3097  */
3098 static void mem_precharge_and_activate(void)
3099 {
3100 	int r;
3101 
3102 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3103 		/* Test if the rank should be skipped. */
3104 		if (param->skip_ranks[r])
3105 			continue;
3106 
3107 		/* Set rank. */
3108 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3109 
3110 		/* Precharge all banks. */
3111 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3112 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3113 
3114 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3115 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3116 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3117 
3118 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3119 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3120 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3121 
3122 		/* Activate rows. */
3123 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3124 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3125 	}
3126 }
3127 
3128 /**
3129  * mem_init_latency() - Configure memory RLAT and WLAT settings
3130  *
3131  * Configure memory RLAT and WLAT parameters.
3132  */
3133 static void mem_init_latency(void)
3134 {
3135 	/*
3136 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3137 	 * so max latency in AFI clocks, used here, is correspondingly
3138 	 * smaller.
3139 	 */
3140 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3141 	u32 rlat, wlat;
3142 
3143 	debug("%s:%d\n", __func__, __LINE__);
3144 
3145 	/*
3146 	 * Read in write latency.
3147 	 * WL for Hard PHY does not include additive latency.
3148 	 */
3149 	wlat = readl(&data_mgr->t_wl_add);
3150 	wlat += readl(&data_mgr->mem_t_add);
3151 
3152 	gbl->rw_wl_nop_cycles = wlat - 1;
3153 
3154 	/* Read in readl latency. */
3155 	rlat = readl(&data_mgr->t_rl_add);
3156 
3157 	/* Set a pretty high read latency initially. */
3158 	gbl->curr_read_lat = rlat + 16;
3159 	if (gbl->curr_read_lat > max_latency)
3160 		gbl->curr_read_lat = max_latency;
3161 
3162 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3163 
3164 	/* Advertise write latency. */
3165 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3166 }
3167 
3168 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3169 static void mem_skip_calibrate(void)
3170 {
3171 	uint32_t vfifo_offset;
3172 	uint32_t i, j, r;
3173 
3174 	debug("%s:%d\n", __func__, __LINE__);
3175 	/* Need to update every shadow register set used by the interface */
3176 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3177 		r += NUM_RANKS_PER_SHADOW_REG) {
3178 		/*
3179 		 * Set output phase alignment settings appropriate for
3180 		 * skip calibration.
3181 		 */
3182 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3183 			scc_mgr_set_dqs_en_phase(i, 0);
3184 #if IO_DLL_CHAIN_LENGTH == 6
3185 			scc_mgr_set_dqdqs_output_phase(i, 6);
3186 #else
3187 			scc_mgr_set_dqdqs_output_phase(i, 7);
3188 #endif
3189 			/*
3190 			 * Case:33398
3191 			 *
3192 			 * Write data arrives to the I/O two cycles before write
3193 			 * latency is reached (720 deg).
3194 			 *   -> due to bit-slip in a/c bus
3195 			 *   -> to allow board skew where dqs is longer than ck
3196 			 *      -> how often can this happen!?
3197 			 *      -> can claim back some ptaps for high freq
3198 			 *       support if we can relax this, but i digress...
3199 			 *
3200 			 * The write_clk leads mem_ck by 90 deg
3201 			 * The minimum ptap of the OPA is 180 deg
3202 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3203 			 * The write_clk is always delayed by 2 ptaps
3204 			 *
3205 			 * Hence, to make DQS aligned to CK, we need to delay
3206 			 * DQS by:
3207 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3208 			 *
3209 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3210 			 * gives us the number of ptaps, which simplies to:
3211 			 *
3212 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3213 			 */
3214 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3215 				IO_DLL_CHAIN_LENGTH - 2));
3216 		}
3217 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3218 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3219 
3220 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3221 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3222 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3223 		}
3224 		writel(0xff, &sdr_scc_mgr->dq_ena);
3225 		writel(0xff, &sdr_scc_mgr->dm_ena);
3226 		writel(0, &sdr_scc_mgr->update);
3227 	}
3228 
3229 	/* Compensate for simulation model behaviour */
3230 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3231 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3232 		scc_mgr_load_dqs(i);
3233 	}
3234 	writel(0, &sdr_scc_mgr->update);
3235 
3236 	/*
3237 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3238 	 * in sequencer.
3239 	 */
3240 	vfifo_offset = CALIB_VFIFO_OFFSET;
3241 	for (j = 0; j < vfifo_offset; j++) {
3242 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3243 	}
3244 	writel(0, &phy_mgr_cmd->fifo_reset);
3245 
3246 	/*
3247 	 * For ACV with hard lfifo, we get the skip-cal setting from
3248 	 * generation-time constant.
3249 	 */
3250 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3251 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3252 }
3253 
3254 /* Memory calibration entry point */
3255 static uint32_t mem_calibrate(void)
3256 {
3257 	uint32_t i;
3258 	uint32_t rank_bgn, sr;
3259 	uint32_t write_group, write_test_bgn;
3260 	uint32_t read_group, read_test_bgn;
3261 	uint32_t run_groups, current_run;
3262 	uint32_t failing_groups = 0;
3263 	uint32_t group_failed = 0;
3264 	uint32_t sr_failed = 0;
3265 
3266 	debug("%s:%d\n", __func__, __LINE__);
3267 
3268 	/* Initialize the data settings */
3269 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3270 	gbl->error_stage = CAL_STAGE_NIL;
3271 	gbl->error_group = 0xff;
3272 	gbl->fom_in = 0;
3273 	gbl->fom_out = 0;
3274 
3275 	/* Initialize WLAT and RLAT. */
3276 	mem_init_latency();
3277 
3278 	/* Initialize bit slips. */
3279 	mem_precharge_and_activate();
3280 
3281 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3282 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3283 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3284 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3285 		if (i == 0)
3286 			scc_mgr_set_hhp_extras();
3287 
3288 		scc_set_bypass_mode(i);
3289 	}
3290 
3291 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3292 		/*
3293 		 * Set VFIFO and LFIFO to instant-on settings in skip
3294 		 * calibration mode.
3295 		 */
3296 		mem_skip_calibrate();
3297 	} else {
3298 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3299 			/*
3300 			 * Zero all delay chain/phase settings for all
3301 			 * groups and all shadow register sets.
3302 			 */
3303 			scc_mgr_zero_all();
3304 
3305 			run_groups = ~param->skip_groups;
3306 
3307 			for (write_group = 0, write_test_bgn = 0; write_group
3308 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3309 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3310 				/* Initialized the group failure */
3311 				group_failed = 0;
3312 
3313 				current_run = run_groups & ((1 <<
3314 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3315 				run_groups = run_groups >>
3316 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3317 
3318 				if (current_run == 0)
3319 					continue;
3320 
3321 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3322 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3323 				scc_mgr_zero_group(write_group, 0);
3324 
3325 				for (read_group = write_group *
3326 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3327 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3328 					read_test_bgn = 0;
3329 					read_group < (write_group + 1) *
3330 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3331 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3332 					group_failed == 0;
3333 					read_group++, read_test_bgn +=
3334 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3335 					/* Calibrate the VFIFO */
3336 					if (!((STATIC_CALIB_STEPS) &
3337 						CALIB_SKIP_VFIFO)) {
3338 						if (!rw_mgr_mem_calibrate_vfifo
3339 							(read_group,
3340 							read_test_bgn)) {
3341 							group_failed = 1;
3342 
3343 							if (!(gbl->
3344 							phy_debug_mode_flags &
3345 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3346 								return 0;
3347 							}
3348 						}
3349 					}
3350 				}
3351 
3352 				/* Calibrate the output side */
3353 				if (group_failed == 0)	{
3354 					for (rank_bgn = 0, sr = 0; rank_bgn
3355 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3356 						rank_bgn +=
3357 						NUM_RANKS_PER_SHADOW_REG,
3358 						++sr) {
3359 						sr_failed = 0;
3360 						if (!((STATIC_CALIB_STEPS) &
3361 						CALIB_SKIP_WRITES)) {
3362 							if ((STATIC_CALIB_STEPS)
3363 						& CALIB_SKIP_DELAY_SWEEPS) {
3364 						/* not needed in quick mode! */
3365 							} else {
3366 						/*
3367 						 * Determine if this set of
3368 						 * ranks should be skipped
3369 						 * entirely.
3370 						 */
3371 					if (!param->skip_shadow_regs[sr]) {
3372 						if (!rw_mgr_mem_calibrate_writes
3373 						(rank_bgn, write_group,
3374 						write_test_bgn)) {
3375 							sr_failed = 1;
3376 							if (!(gbl->
3377 							phy_debug_mode_flags &
3378 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3379 								return 0;
3380 									}
3381 									}
3382 								}
3383 							}
3384 						}
3385 						if (sr_failed != 0)
3386 							group_failed = 1;
3387 					}
3388 				}
3389 
3390 				if (group_failed == 0) {
3391 					for (read_group = write_group *
3392 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3393 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3394 					read_test_bgn = 0;
3395 						read_group < (write_group + 1)
3396 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3397 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3398 						group_failed == 0;
3399 						read_group++, read_test_bgn +=
3400 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3401 						if (!((STATIC_CALIB_STEPS) &
3402 							CALIB_SKIP_WRITES)) {
3403 					if (!rw_mgr_mem_calibrate_vfifo_end
3404 						(read_group, read_test_bgn)) {
3405 							group_failed = 1;
3406 
3407 						if (!(gbl->phy_debug_mode_flags
3408 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3409 								return 0;
3410 								}
3411 							}
3412 						}
3413 					}
3414 				}
3415 
3416 				if (group_failed != 0)
3417 					failing_groups++;
3418 			}
3419 
3420 			/*
3421 			 * USER If there are any failing groups then report
3422 			 * the failure.
3423 			 */
3424 			if (failing_groups != 0)
3425 				return 0;
3426 
3427 			/* Calibrate the LFIFO */
3428 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3429 				/*
3430 				 * If we're skipping groups as part of debug,
3431 				 * don't calibrate LFIFO.
3432 				 */
3433 				if (param->skip_groups == 0) {
3434 					if (!rw_mgr_mem_calibrate_lfifo())
3435 						return 0;
3436 				}
3437 			}
3438 		}
3439 	}
3440 
3441 	/*
3442 	 * Do not remove this line as it makes sure all of our decisions
3443 	 * have been applied.
3444 	 */
3445 	writel(0, &sdr_scc_mgr->update);
3446 	return 1;
3447 }
3448 
3449 /**
3450  * run_mem_calibrate() - Perform memory calibration
3451  *
3452  * This function triggers the entire memory calibration procedure.
3453  */
3454 static int run_mem_calibrate(void)
3455 {
3456 	int pass;
3457 
3458 	debug("%s:%d\n", __func__, __LINE__);
3459 
3460 	/* Reset pass/fail status shown on afi_cal_success/fail */
3461 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3462 
3463 	/* Stop tracking manager. */
3464 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3465 
3466 	phy_mgr_initialize();
3467 	rw_mgr_mem_initialize();
3468 
3469 	/* Perform the actual memory calibration. */
3470 	pass = mem_calibrate();
3471 
3472 	mem_precharge_and_activate();
3473 	writel(0, &phy_mgr_cmd->fifo_reset);
3474 
3475 	/* Handoff. */
3476 	rw_mgr_mem_handoff();
3477 	/*
3478 	 * In Hard PHY this is a 2-bit control:
3479 	 * 0: AFI Mux Select
3480 	 * 1: DDIO Mux Select
3481 	 */
3482 	writel(0x2, &phy_mgr_cfg->mux_sel);
3483 
3484 	/* Start tracking manager. */
3485 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3486 
3487 	return pass;
3488 }
3489 
3490 /**
3491  * debug_mem_calibrate() - Report result of memory calibration
3492  * @pass:	Value indicating whether calibration passed or failed
3493  *
3494  * This function reports the results of the memory calibration
3495  * and writes debug information into the register file.
3496  */
3497 static void debug_mem_calibrate(int pass)
3498 {
3499 	uint32_t debug_info;
3500 
3501 	if (pass) {
3502 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3503 
3504 		gbl->fom_in /= 2;
3505 		gbl->fom_out /= 2;
3506 
3507 		if (gbl->fom_in > 0xff)
3508 			gbl->fom_in = 0xff;
3509 
3510 		if (gbl->fom_out > 0xff)
3511 			gbl->fom_out = 0xff;
3512 
3513 		/* Update the FOM in the register file */
3514 		debug_info = gbl->fom_in;
3515 		debug_info |= gbl->fom_out << 8;
3516 		writel(debug_info, &sdr_reg_file->fom);
3517 
3518 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3519 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3520 	} else {
3521 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3522 
3523 		debug_info = gbl->error_stage;
3524 		debug_info |= gbl->error_substage << 8;
3525 		debug_info |= gbl->error_group << 16;
3526 
3527 		writel(debug_info, &sdr_reg_file->failing_stage);
3528 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3529 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3530 
3531 		/* Update the failing group/stage in the register file */
3532 		debug_info = gbl->error_stage;
3533 		debug_info |= gbl->error_substage << 8;
3534 		debug_info |= gbl->error_group << 16;
3535 		writel(debug_info, &sdr_reg_file->failing_stage);
3536 	}
3537 
3538 	printf("%s: Calibration complete\n", __FILE__);
3539 }
3540 
3541 /**
3542  * hc_initialize_rom_data() - Initialize ROM data
3543  *
3544  * Initialize ROM data.
3545  */
3546 static void hc_initialize_rom_data(void)
3547 {
3548 	u32 i, addr;
3549 
3550 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3551 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3552 		writel(inst_rom_init[i], addr + (i << 2));
3553 
3554 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3555 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3556 		writel(ac_rom_init[i], addr + (i << 2));
3557 }
3558 
3559 /**
3560  * initialize_reg_file() - Initialize SDR register file
3561  *
3562  * Initialize SDR register file.
3563  */
3564 static void initialize_reg_file(void)
3565 {
3566 	/* Initialize the register file with the correct data */
3567 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3568 	writel(0, &sdr_reg_file->debug_data_addr);
3569 	writel(0, &sdr_reg_file->cur_stage);
3570 	writel(0, &sdr_reg_file->fom);
3571 	writel(0, &sdr_reg_file->failing_stage);
3572 	writel(0, &sdr_reg_file->debug1);
3573 	writel(0, &sdr_reg_file->debug2);
3574 }
3575 
3576 /**
3577  * initialize_hps_phy() - Initialize HPS PHY
3578  *
3579  * Initialize HPS PHY.
3580  */
3581 static void initialize_hps_phy(void)
3582 {
3583 	uint32_t reg;
3584 	/*
3585 	 * Tracking also gets configured here because it's in the
3586 	 * same register.
3587 	 */
3588 	uint32_t trk_sample_count = 7500;
3589 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3590 	/*
3591 	 * Format is number of outer loops in the 16 MSB, sample
3592 	 * count in 16 LSB.
3593 	 */
3594 
3595 	reg = 0;
3596 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3597 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3598 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3599 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3600 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3601 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3602 	/*
3603 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3604 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3605 	 */
3606 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3607 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3608 		trk_sample_count);
3609 	writel(reg, &sdr_ctrl->phy_ctrl0);
3610 
3611 	reg = 0;
3612 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3613 		trk_sample_count >>
3614 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3615 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3616 		trk_long_idle_sample_count);
3617 	writel(reg, &sdr_ctrl->phy_ctrl1);
3618 
3619 	reg = 0;
3620 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3621 		trk_long_idle_sample_count >>
3622 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3623 	writel(reg, &sdr_ctrl->phy_ctrl2);
3624 }
3625 
3626 /**
3627  * initialize_tracking() - Initialize tracking
3628  *
3629  * Initialize the register file with usable initial data.
3630  */
3631 static void initialize_tracking(void)
3632 {
3633 	/*
3634 	 * Initialize the register file with the correct data.
3635 	 * Compute usable version of value in case we skip full
3636 	 * computation later.
3637 	 */
3638 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3639 	       &sdr_reg_file->dtaps_per_ptap);
3640 
3641 	/* trk_sample_count */
3642 	writel(7500, &sdr_reg_file->trk_sample_count);
3643 
3644 	/* longidle outer loop [15:0] */
3645 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3646 
3647 	/*
3648 	 * longidle sample count [31:24]
3649 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3650 	 * trcd, worst case [15:8]
3651 	 * vfifo wait [7:0]
3652 	 */
3653 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3654 	       &sdr_reg_file->delays);
3655 
3656 	/* mux delay */
3657 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3658 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3659 	       &sdr_reg_file->trk_rw_mgr_addr);
3660 
3661 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3662 	       &sdr_reg_file->trk_read_dqs_width);
3663 
3664 	/* trefi [7:0] */
3665 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3666 	       &sdr_reg_file->trk_rfsh);
3667 }
3668 
3669 int sdram_calibration_full(void)
3670 {
3671 	struct param_type my_param;
3672 	struct gbl_type my_gbl;
3673 	uint32_t pass;
3674 
3675 	memset(&my_param, 0, sizeof(my_param));
3676 	memset(&my_gbl, 0, sizeof(my_gbl));
3677 
3678 	param = &my_param;
3679 	gbl = &my_gbl;
3680 
3681 	/* Set the calibration enabled by default */
3682 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3683 	/*
3684 	 * Only sweep all groups (regardless of fail state) by default
3685 	 * Set enabled read test by default.
3686 	 */
3687 #if DISABLE_GUARANTEED_READ
3688 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3689 #endif
3690 	/* Initialize the register file */
3691 	initialize_reg_file();
3692 
3693 	/* Initialize any PHY CSR */
3694 	initialize_hps_phy();
3695 
3696 	scc_mgr_initialize();
3697 
3698 	initialize_tracking();
3699 
3700 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3701 
3702 	debug("%s:%d\n", __func__, __LINE__);
3703 	debug_cond(DLEVEL == 1,
3704 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3705 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3706 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3707 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3708 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3709 	debug_cond(DLEVEL == 1,
3710 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3711 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3712 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3713 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3714 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3715 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3716 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3717 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3718 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3719 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3720 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3721 		   IO_IO_OUT2_DELAY_MAX);
3722 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3723 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3724 
3725 	hc_initialize_rom_data();
3726 
3727 	/* update info for sims */
3728 	reg_file_set_stage(CAL_STAGE_NIL);
3729 	reg_file_set_group(0);
3730 
3731 	/*
3732 	 * Load global needed for those actions that require
3733 	 * some dynamic calibration support.
3734 	 */
3735 	dyn_calib_steps = STATIC_CALIB_STEPS;
3736 	/*
3737 	 * Load global to allow dynamic selection of delay loop settings
3738 	 * based on calibration mode.
3739 	 */
3740 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3741 		skip_delay_mask = 0xff;
3742 	else
3743 		skip_delay_mask = 0x0;
3744 
3745 	pass = run_mem_calibrate();
3746 	debug_mem_calibrate(pass);
3747 	return pass;
3748 }
3749