1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 13 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 14 (struct socfpga_sdr_rw_load_manager *) 15 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 16 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 17 (struct socfpga_sdr_rw_load_jump_manager *) 18 (SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 19 static struct socfpga_sdr_reg_file *sdr_reg_file = 20 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 21 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 22 (struct socfpga_sdr_scc_mgr *) 23 (SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 24 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 25 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 26 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 27 (struct socfpga_phy_mgr_cfg *) 28 (SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 29 static struct socfpga_data_mgr *data_mgr = 30 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 31 static struct socfpga_sdr_ctrl *sdr_ctrl = 32 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 33 34 const struct socfpga_sdram_rw_mgr_config *rwcfg; 35 const struct socfpga_sdram_io_config *iocfg; 36 const struct socfpga_sdram_misc_config *misccfg; 37 38 #define DELTA_D 1 39 40 /* 41 * In order to reduce ROM size, most of the selectable calibration steps are 42 * decided at compile time based on the user's calibration mode selection, 43 * as captured by the STATIC_CALIB_STEPS selection below. 44 * 45 * However, to support simulation-time selection of fast simulation mode, where 46 * we skip everything except the bare minimum, we need a few of the steps to 47 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 48 * check, which is based on the rtl-supplied value, or we dynamically compute 49 * the value to use based on the dynamically-chosen calibration mode 50 */ 51 52 #define DLEVEL 0 53 #define STATIC_IN_RTL_SIM 0 54 #define STATIC_SKIP_DELAY_LOOPS 0 55 56 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 57 STATIC_SKIP_DELAY_LOOPS) 58 59 /* calibration steps requested by the rtl */ 60 u16 dyn_calib_steps; 61 62 /* 63 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 64 * instead of static, we use boolean logic to select between 65 * non-skip and skip values 66 * 67 * The mask is set to include all bits when not-skipping, but is 68 * zero when skipping 69 */ 70 71 u16 skip_delay_mask; /* mask off bits when skipping/not-skipping */ 72 73 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 74 ((non_skip_value) & skip_delay_mask) 75 76 struct gbl_type *gbl; 77 struct param_type *param; 78 79 static void set_failing_group_stage(u32 group, u32 stage, 80 u32 substage) 81 { 82 /* 83 * Only set the global stage if there was not been any other 84 * failing group 85 */ 86 if (gbl->error_stage == CAL_STAGE_NIL) { 87 gbl->error_substage = substage; 88 gbl->error_stage = stage; 89 gbl->error_group = group; 90 } 91 } 92 93 static void reg_file_set_group(u16 set_group) 94 { 95 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 96 } 97 98 static void reg_file_set_stage(u8 set_stage) 99 { 100 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 101 } 102 103 static void reg_file_set_sub_stage(u8 set_sub_stage) 104 { 105 set_sub_stage &= 0xff; 106 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 107 } 108 109 /** 110 * phy_mgr_initialize() - Initialize PHY Manager 111 * 112 * Initialize PHY Manager. 113 */ 114 static void phy_mgr_initialize(void) 115 { 116 u32 ratio; 117 118 debug("%s:%d\n", __func__, __LINE__); 119 /* Calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 /* Init params only if we do NOT skip calibration. */ 136 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 137 return; 138 139 ratio = rwcfg->mem_dq_per_read_dqs / 140 rwcfg->mem_virtual_groups_per_read_dqs; 141 param->read_correct_mask_vg = (1 << ratio) - 1; 142 param->write_correct_mask_vg = (1 << ratio) - 1; 143 param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1; 144 param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1; 145 } 146 147 /** 148 * set_rank_and_odt_mask() - Set Rank and ODT mask 149 * @rank: Rank mask 150 * @odt_mode: ODT mode, OFF or READ_WRITE 151 * 152 * Set Rank and ODT mask (On-Die Termination). 153 */ 154 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 155 { 156 u32 odt_mask_0 = 0; 157 u32 odt_mask_1 = 0; 158 u32 cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 161 odt_mask_0 = 0x0; 162 odt_mask_1 = 0x0; 163 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 164 switch (rwcfg->mem_number_of_ranks) { 165 case 1: /* 1 Rank */ 166 /* Read: ODT = 0 ; Write: ODT = 1 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 break; 170 case 2: /* 2 Ranks */ 171 if (rwcfg->mem_number_of_cs_per_dimm == 1) { 172 /* 173 * - Dual-Slot , Single-Rank (1 CS per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 176 * 177 * Since MEM_NUMBER_OF_RANKS is 2, they 178 * are both single rank with 2 CS each 179 * (special for RDIMM). 180 * 181 * Read: Turn on ODT on the opposite rank 182 * Write: Turn on ODT on all ranks 183 */ 184 odt_mask_0 = 0x3 & ~(1 << rank); 185 odt_mask_1 = 0x3; 186 } else { 187 /* 188 * - Single-Slot , Dual-Rank (2 CS per DIMM) 189 * 190 * Read: Turn on ODT off on all ranks 191 * Write: Turn on ODT on active rank 192 */ 193 odt_mask_0 = 0x0; 194 odt_mask_1 = 0x3 & (1 << rank); 195 } 196 break; 197 case 4: /* 4 Ranks */ 198 /* Read: 199 * ----------+-----------------------+ 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | ODT | 213 * Write To +-----------------------+ 214 * Rank | 3 | 2 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 0 | 0 | 1 | 0 | 1 | 217 * 1 | 1 | 0 | 1 | 0 | 218 * 2 | 0 | 1 | 0 | 1 | 219 * 3 | 1 | 0 | 1 | 0 | 220 * ----------+-----+-----+-----+-----+ 221 */ 222 switch (rank) { 223 case 0: 224 odt_mask_0 = 0x4; 225 odt_mask_1 = 0x5; 226 break; 227 case 1: 228 odt_mask_0 = 0x8; 229 odt_mask_1 = 0xA; 230 break; 231 case 2: 232 odt_mask_0 = 0x1; 233 odt_mask_1 = 0x5; 234 break; 235 case 3: 236 odt_mask_0 = 0x2; 237 odt_mask_1 = 0xA; 238 break; 239 } 240 break; 241 } 242 } 243 244 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 245 ((0xFF & odt_mask_0) << 8) | 246 ((0xFF & odt_mask_1) << 16); 247 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 248 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 249 } 250 251 /** 252 * scc_mgr_set() - Set SCC Manager register 253 * @off: Base offset in SCC Manager space 254 * @grp: Read/Write group 255 * @val: Value to be set 256 * 257 * This function sets the SCC Manager (Scan Chain Control Manager) register. 258 */ 259 static void scc_mgr_set(u32 off, u32 grp, u32 val) 260 { 261 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 262 } 263 264 /** 265 * scc_mgr_initialize() - Initialize SCC Manager registers 266 * 267 * Initialize SCC Manager registers. 268 */ 269 static void scc_mgr_initialize(void) 270 { 271 /* 272 * Clear register file for HPS. 16 (2^4) is the size of the 273 * full register file in the scc mgr: 274 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 275 * MEM_IF_READ_DQS_WIDTH - 1); 276 */ 277 int i; 278 279 for (i = 0; i < 16; i++) { 280 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 281 __func__, __LINE__, i); 282 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 283 } 284 } 285 286 static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase) 287 { 288 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 289 } 290 291 static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay) 292 { 293 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 294 } 295 296 static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase) 297 { 298 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 299 } 300 301 static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay) 302 { 303 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 304 } 305 306 static void scc_mgr_set_dqs_io_in_delay(u32 delay) 307 { 308 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 309 delay); 310 } 311 312 static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay) 313 { 314 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 315 } 316 317 static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 320 } 321 322 static void scc_mgr_set_dqs_out1_delay(u32 delay) 323 { 324 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs, 325 delay); 326 } 327 328 static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 331 rwcfg->mem_dq_per_write_dqs + 1 + dm, 332 delay); 333 } 334 335 /* load up dqs config settings */ 336 static void scc_mgr_load_dqs(u32 dqs) 337 { 338 writel(dqs, &sdr_scc_mgr->dqs_ena); 339 } 340 341 /* load up dqs io config settings */ 342 static void scc_mgr_load_dqs_io(void) 343 { 344 writel(0, &sdr_scc_mgr->dqs_io_ena); 345 } 346 347 /* load up dq config settings */ 348 static void scc_mgr_load_dq(u32 dq_in_group) 349 { 350 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 351 } 352 353 /* load up dm config settings */ 354 static void scc_mgr_load_dm(u32 dm) 355 { 356 writel(dm, &sdr_scc_mgr->dm_ena); 357 } 358 359 /** 360 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 361 * @off: Base offset in SCC Manager space 362 * @grp: Read/Write group 363 * @val: Value to be set 364 * @update: If non-zero, trigger SCC Manager update for all ranks 365 * 366 * This function sets the SCC Manager (Scan Chain Control Manager) register 367 * and optionally triggers the SCC update for all ranks. 368 */ 369 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 370 const int update) 371 { 372 u32 r; 373 374 for (r = 0; r < rwcfg->mem_number_of_ranks; 375 r += NUM_RANKS_PER_SHADOW_REG) { 376 scc_mgr_set(off, grp, val); 377 378 if (update || (r == 0)) { 379 writel(grp, &sdr_scc_mgr->dqs_ena); 380 writel(0, &sdr_scc_mgr->update); 381 } 382 } 383 } 384 385 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 386 { 387 /* 388 * USER although the h/w doesn't support different phases per 389 * shadow register, for simplicity our scc manager modeling 390 * keeps different phase settings per shadow reg, and it's 391 * important for us to keep them in sync to match h/w. 392 * for efficiency, the scan chain update should occur only 393 * once to sr0. 394 */ 395 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 396 read_group, phase, 0); 397 } 398 399 static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group, 400 u32 phase) 401 { 402 /* 403 * USER although the h/w doesn't support different phases per 404 * shadow register, for simplicity our scc manager modeling 405 * keeps different phase settings per shadow reg, and it's 406 * important for us to keep them in sync to match h/w. 407 * for efficiency, the scan chain update should occur only 408 * once to sr0. 409 */ 410 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 411 write_group, phase, 0); 412 } 413 414 static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group, 415 u32 delay) 416 { 417 /* 418 * In shadow register mode, the T11 settings are stored in 419 * registers in the core, which are updated by the DQS_ENA 420 * signals. Not issuing the SCC_MGR_UPD command allows us to 421 * save lots of rank switching overhead, by calling 422 * select_shadow_regs_for_update with update_scan_chains 423 * set to 0. 424 */ 425 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 426 read_group, delay, 1); 427 writel(0, &sdr_scc_mgr->update); 428 } 429 430 /** 431 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 432 * @write_group: Write group 433 * @delay: Delay value 434 * 435 * This function sets the OCT output delay in SCC manager. 436 */ 437 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 438 { 439 const int ratio = rwcfg->mem_if_read_dqs_width / 440 rwcfg->mem_if_write_dqs_width; 441 const int base = write_group * ratio; 442 int i; 443 /* 444 * Load the setting in the SCC manager 445 * Although OCT affects only write data, the OCT delay is controlled 446 * by the DQS logic block which is instantiated once per read group. 447 * For protocols where a write group consists of multiple read groups, 448 * the setting must be set multiple times. 449 */ 450 for (i = 0; i < ratio; i++) 451 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 452 } 453 454 /** 455 * scc_mgr_set_hhp_extras() - Set HHP extras. 456 * 457 * Load the fixed setting in the SCC manager HHP extras. 458 */ 459 static void scc_mgr_set_hhp_extras(void) 460 { 461 /* 462 * Load the fixed setting in the SCC manager 463 * bits: 0:0 = 1'b1 - DQS bypass 464 * bits: 1:1 = 1'b1 - DQ bypass 465 * bits: 4:2 = 3'b001 - rfifo_mode 466 * bits: 6:5 = 2'b01 - rfifo clock_select 467 * bits: 7:7 = 1'b0 - separate gating from ungating setting 468 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 469 */ 470 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 471 (1 << 2) | (1 << 1) | (1 << 0); 472 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 473 SCC_MGR_HHP_GLOBALS_OFFSET | 474 SCC_MGR_HHP_EXTRAS_OFFSET; 475 476 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 477 __func__, __LINE__); 478 writel(value, addr); 479 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 480 __func__, __LINE__); 481 } 482 483 /** 484 * scc_mgr_zero_all() - Zero all DQS config 485 * 486 * Zero all DQS config. 487 */ 488 static void scc_mgr_zero_all(void) 489 { 490 int i, r; 491 492 /* 493 * USER Zero all DQS config settings, across all groups and all 494 * shadow registers 495 */ 496 for (r = 0; r < rwcfg->mem_number_of_ranks; 497 r += NUM_RANKS_PER_SHADOW_REG) { 498 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 499 /* 500 * The phases actually don't exist on a per-rank basis, 501 * but there's no harm updating them several times, so 502 * let's keep the code simple. 503 */ 504 scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve); 505 scc_mgr_set_dqs_en_phase(i, 0); 506 scc_mgr_set_dqs_en_delay(i, 0); 507 } 508 509 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 510 scc_mgr_set_dqdqs_output_phase(i, 0); 511 /* Arria V/Cyclone V don't have out2. */ 512 scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve); 513 } 514 } 515 516 /* Multicast to all DQS group enables. */ 517 writel(0xff, &sdr_scc_mgr->dqs_ena); 518 writel(0, &sdr_scc_mgr->update); 519 } 520 521 /** 522 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 523 * @write_group: Write group 524 * 525 * Set bypass mode and trigger SCC update. 526 */ 527 static void scc_set_bypass_mode(const u32 write_group) 528 { 529 /* Multicast to all DQ enables. */ 530 writel(0xff, &sdr_scc_mgr->dq_ena); 531 writel(0xff, &sdr_scc_mgr->dm_ena); 532 533 /* Update current DQS IO enable. */ 534 writel(0, &sdr_scc_mgr->dqs_io_ena); 535 536 /* Update the DQS logic. */ 537 writel(write_group, &sdr_scc_mgr->dqs_ena); 538 539 /* Hit update. */ 540 writel(0, &sdr_scc_mgr->update); 541 } 542 543 /** 544 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 545 * @write_group: Write group 546 * 547 * Load DQS settings for Write Group, do not trigger SCC update. 548 */ 549 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 550 { 551 const int ratio = rwcfg->mem_if_read_dqs_width / 552 rwcfg->mem_if_write_dqs_width; 553 const int base = write_group * ratio; 554 int i; 555 /* 556 * Load the setting in the SCC manager 557 * Although OCT affects only write data, the OCT delay is controlled 558 * by the DQS logic block which is instantiated once per read group. 559 * For protocols where a write group consists of multiple read groups, 560 * the setting must be set multiple times. 561 */ 562 for (i = 0; i < ratio; i++) 563 writel(base + i, &sdr_scc_mgr->dqs_ena); 564 } 565 566 /** 567 * scc_mgr_zero_group() - Zero all configs for a group 568 * 569 * Zero DQ, DM, DQS and OCT configs for a group. 570 */ 571 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 572 { 573 int i, r; 574 575 for (r = 0; r < rwcfg->mem_number_of_ranks; 576 r += NUM_RANKS_PER_SHADOW_REG) { 577 /* Zero all DQ config settings. */ 578 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 579 scc_mgr_set_dq_out1_delay(i, 0); 580 if (!out_only) 581 scc_mgr_set_dq_in_delay(i, 0); 582 } 583 584 /* Multicast to all DQ enables. */ 585 writel(0xff, &sdr_scc_mgr->dq_ena); 586 587 /* Zero all DM config settings. */ 588 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 589 scc_mgr_set_dm_out1_delay(i, 0); 590 591 /* Multicast to all DM enables. */ 592 writel(0xff, &sdr_scc_mgr->dm_ena); 593 594 /* Zero all DQS IO settings. */ 595 if (!out_only) 596 scc_mgr_set_dqs_io_in_delay(0); 597 598 /* Arria V/Cyclone V don't have out2. */ 599 scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve); 600 scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve); 601 scc_mgr_load_dqs_for_write_group(write_group); 602 603 /* Multicast to all DQS IO enables (only 1 in total). */ 604 writel(0, &sdr_scc_mgr->dqs_io_ena); 605 606 /* Hit update to zero everything. */ 607 writel(0, &sdr_scc_mgr->update); 608 } 609 } 610 611 /* 612 * apply and load a particular input delay for the DQ pins in a group 613 * group_bgn is the index of the first dq pin (in the write group) 614 */ 615 static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay) 616 { 617 u32 i, p; 618 619 for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) { 620 scc_mgr_set_dq_in_delay(p, delay); 621 scc_mgr_load_dq(p); 622 } 623 } 624 625 /** 626 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 627 * @delay: Delay value 628 * 629 * Apply and load a particular output delay for the DQ pins in a group. 630 */ 631 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 632 { 633 int i; 634 635 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 636 scc_mgr_set_dq_out1_delay(i, delay); 637 scc_mgr_load_dq(i); 638 } 639 } 640 641 /* apply and load a particular output delay for the DM pins in a group */ 642 static void scc_mgr_apply_group_dm_out1_delay(u32 delay1) 643 { 644 u32 i; 645 646 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 647 scc_mgr_set_dm_out1_delay(i, delay1); 648 scc_mgr_load_dm(i); 649 } 650 } 651 652 653 /* apply and load delay on both DQS and OCT out1 */ 654 static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group, 655 u32 delay) 656 { 657 scc_mgr_set_dqs_out1_delay(delay); 658 scc_mgr_load_dqs_io(); 659 660 scc_mgr_set_oct_out1_delay(write_group, delay); 661 scc_mgr_load_dqs_for_write_group(write_group); 662 } 663 664 /** 665 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 666 * @write_group: Write group 667 * @delay: Delay value 668 * 669 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 670 */ 671 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 672 const u32 delay) 673 { 674 u32 i, new_delay; 675 676 /* DQ shift */ 677 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) 678 scc_mgr_load_dq(i); 679 680 /* DM shift */ 681 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 682 scc_mgr_load_dm(i); 683 684 /* DQS shift */ 685 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 686 if (new_delay > iocfg->io_out2_delay_max) { 687 debug_cond(DLEVEL == 1, 688 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 689 __func__, __LINE__, write_group, delay, new_delay, 690 iocfg->io_out2_delay_max, 691 new_delay - iocfg->io_out2_delay_max); 692 new_delay -= iocfg->io_out2_delay_max; 693 scc_mgr_set_dqs_out1_delay(new_delay); 694 } 695 696 scc_mgr_load_dqs_io(); 697 698 /* OCT shift */ 699 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 700 if (new_delay > iocfg->io_out2_delay_max) { 701 debug_cond(DLEVEL == 1, 702 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 703 __func__, __LINE__, write_group, delay, 704 new_delay, iocfg->io_out2_delay_max, 705 new_delay - iocfg->io_out2_delay_max); 706 new_delay -= iocfg->io_out2_delay_max; 707 scc_mgr_set_oct_out1_delay(write_group, new_delay); 708 } 709 710 scc_mgr_load_dqs_for_write_group(write_group); 711 } 712 713 /** 714 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 715 * @write_group: Write group 716 * @delay: Delay value 717 * 718 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 719 */ 720 static void 721 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 722 const u32 delay) 723 { 724 int r; 725 726 for (r = 0; r < rwcfg->mem_number_of_ranks; 727 r += NUM_RANKS_PER_SHADOW_REG) { 728 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 729 writel(0, &sdr_scc_mgr->update); 730 } 731 } 732 733 /** 734 * set_jump_as_return() - Return instruction optimization 735 * 736 * Optimization used to recover some slots in ddr3 inst_rom could be 737 * applied to other protocols if we wanted to 738 */ 739 static void set_jump_as_return(void) 740 { 741 /* 742 * To save space, we replace return with jump to special shared 743 * RETURN instruction so we set the counter to large value so that 744 * we always jump. 745 */ 746 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 747 writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 748 } 749 750 /** 751 * delay_for_n_mem_clocks() - Delay for N memory clocks 752 * @clocks: Length of the delay 753 * 754 * Delay for N memory clocks. 755 */ 756 static void delay_for_n_mem_clocks(const u32 clocks) 757 { 758 u32 afi_clocks; 759 u16 c_loop; 760 u8 inner; 761 u8 outer; 762 763 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 764 765 /* Scale (rounding up) to get afi clocks. */ 766 afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio); 767 if (afi_clocks) /* Temporary underflow protection */ 768 afi_clocks--; 769 770 /* 771 * Note, we don't bother accounting for being off a little 772 * bit because of a few extra instructions in outer loops. 773 * Note, the loops have a test at the end, and do the test 774 * before the decrement, and so always perform the loop 775 * 1 time more than the counter value 776 */ 777 c_loop = afi_clocks >> 16; 778 outer = c_loop ? 0xff : (afi_clocks >> 8); 779 inner = outer ? 0xff : afi_clocks; 780 781 /* 782 * rom instructions are structured as follows: 783 * 784 * IDLE_LOOP2: jnz cntr0, TARGET_A 785 * IDLE_LOOP1: jnz cntr1, TARGET_B 786 * return 787 * 788 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 789 * TARGET_B is set to IDLE_LOOP2 as well 790 * 791 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 792 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 793 * 794 * a little confusing, but it helps save precious space in the inst_rom 795 * and sequencer rom and keeps the delays more accurate and reduces 796 * overhead 797 */ 798 if (afi_clocks < 0x100) { 799 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 800 &sdr_rw_load_mgr_regs->load_cntr1); 801 802 writel(rwcfg->idle_loop1, 803 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 804 805 writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 806 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 807 } else { 808 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 809 &sdr_rw_load_mgr_regs->load_cntr0); 810 811 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 812 &sdr_rw_load_mgr_regs->load_cntr1); 813 814 writel(rwcfg->idle_loop2, 815 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 816 817 writel(rwcfg->idle_loop2, 818 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 819 820 do { 821 writel(rwcfg->idle_loop2, 822 SDR_PHYGRP_RWMGRGRP_ADDRESS | 823 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 824 } while (c_loop-- != 0); 825 } 826 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 827 } 828 829 /** 830 * rw_mgr_mem_init_load_regs() - Load instruction registers 831 * @cntr0: Counter 0 value 832 * @cntr1: Counter 1 value 833 * @cntr2: Counter 2 value 834 * @jump: Jump instruction value 835 * 836 * Load instruction registers. 837 */ 838 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 839 { 840 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 841 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 842 843 /* Load counters */ 844 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 845 &sdr_rw_load_mgr_regs->load_cntr0); 846 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 847 &sdr_rw_load_mgr_regs->load_cntr1); 848 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 849 &sdr_rw_load_mgr_regs->load_cntr2); 850 851 /* Load jump address */ 852 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 853 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 854 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 855 856 /* Execute count instruction */ 857 writel(jump, grpaddr); 858 } 859 860 /** 861 * rw_mgr_mem_load_user() - Load user calibration values 862 * @fin1: Final instruction 1 863 * @fin2: Final instruction 2 864 * @precharge: If 1, precharge the banks at the end 865 * 866 * Load user calibration values and optionally precharge the banks. 867 */ 868 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 869 const int precharge) 870 { 871 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 872 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 873 u32 r; 874 875 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 876 /* set rank */ 877 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 878 879 /* precharge all banks ... */ 880 if (precharge) 881 writel(rwcfg->precharge_all, grpaddr); 882 883 /* 884 * USER Use Mirror-ed commands for odd ranks if address 885 * mirrorring is on 886 */ 887 if ((rwcfg->mem_address_mirroring >> r) & 0x1) { 888 set_jump_as_return(); 889 writel(rwcfg->mrs2_mirr, grpaddr); 890 delay_for_n_mem_clocks(4); 891 set_jump_as_return(); 892 writel(rwcfg->mrs3_mirr, grpaddr); 893 delay_for_n_mem_clocks(4); 894 set_jump_as_return(); 895 writel(rwcfg->mrs1_mirr, grpaddr); 896 delay_for_n_mem_clocks(4); 897 set_jump_as_return(); 898 writel(fin1, grpaddr); 899 } else { 900 set_jump_as_return(); 901 writel(rwcfg->mrs2, grpaddr); 902 delay_for_n_mem_clocks(4); 903 set_jump_as_return(); 904 writel(rwcfg->mrs3, grpaddr); 905 delay_for_n_mem_clocks(4); 906 set_jump_as_return(); 907 writel(rwcfg->mrs1, grpaddr); 908 set_jump_as_return(); 909 writel(fin2, grpaddr); 910 } 911 912 if (precharge) 913 continue; 914 915 set_jump_as_return(); 916 writel(rwcfg->zqcl, grpaddr); 917 918 /* tZQinit = tDLLK = 512 ck cycles */ 919 delay_for_n_mem_clocks(512); 920 } 921 } 922 923 /** 924 * rw_mgr_mem_initialize() - Initialize RW Manager 925 * 926 * Initialize RW Manager. 927 */ 928 static void rw_mgr_mem_initialize(void) 929 { 930 debug("%s:%d\n", __func__, __LINE__); 931 932 /* The reset / cke part of initialization is broadcasted to all ranks */ 933 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 934 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 935 936 /* 937 * Here's how you load register for a loop 938 * Counters are located @ 0x800 939 * Jump address are located @ 0xC00 940 * For both, registers 0 to 3 are selected using bits 3 and 2, like 941 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 942 * I know this ain't pretty, but Avalon bus throws away the 2 least 943 * significant bits 944 */ 945 946 /* Start with memory RESET activated */ 947 948 /* tINIT = 200us */ 949 950 /* 951 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 952 * If a and b are the number of iteration in 2 nested loops 953 * it takes the following number of cycles to complete the operation: 954 * number_of_cycles = ((2 + n) * a + 2) * b 955 * where n is the number of instruction in the inner loop 956 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 957 * b = 6A 958 */ 959 rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val, 960 misccfg->tinit_cntr1_val, 961 misccfg->tinit_cntr2_val, 962 rwcfg->init_reset_0_cke_0); 963 964 /* Indicate that memory is stable. */ 965 writel(1, &phy_mgr_cfg->reset_mem_stbl); 966 967 /* 968 * transition the RESET to high 969 * Wait for 500us 970 */ 971 972 /* 973 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 974 * If a and b are the number of iteration in 2 nested loops 975 * it takes the following number of cycles to complete the operation 976 * number_of_cycles = ((2 + n) * a + 2) * b 977 * where n is the number of instruction in the inner loop 978 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 979 * b = FF 980 */ 981 rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val, 982 misccfg->treset_cntr1_val, 983 misccfg->treset_cntr2_val, 984 rwcfg->init_reset_1_cke_0); 985 986 /* Bring up clock enable. */ 987 988 /* tXRP < 250 ck cycles */ 989 delay_for_n_mem_clocks(250); 990 991 rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset, 992 0); 993 } 994 995 /** 996 * rw_mgr_mem_handoff() - Hand off the memory to user 997 * 998 * At the end of calibration we have to program the user settings in 999 * and hand off the memory to the user. 1000 */ 1001 static void rw_mgr_mem_handoff(void) 1002 { 1003 rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1); 1004 /* 1005 * Need to wait tMOD (12CK or 15ns) time before issuing other 1006 * commands, but we will have plenty of NIOS cycles before actual 1007 * handoff so its okay. 1008 */ 1009 } 1010 1011 /** 1012 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1013 * @group: Write Group 1014 * @use_dm: Use DM 1015 * 1016 * Issue write test command. Two variants are provided, one that just tests 1017 * a write pattern and another that tests datamask functionality. 1018 */ 1019 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1020 u32 test_dm) 1021 { 1022 const u32 quick_write_mode = 1023 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1024 misccfg->enable_super_quick_calibration; 1025 u32 mcc_instruction; 1026 u32 rw_wl_nop_cycles; 1027 1028 /* 1029 * Set counter and jump addresses for the right 1030 * number of NOP cycles. 1031 * The number of supported NOP cycles can range from -1 to infinity 1032 * Three different cases are handled: 1033 * 1034 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1035 * mechanism will be used to insert the right number of NOPs 1036 * 1037 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1038 * issuing the write command will jump straight to the 1039 * micro-instruction that turns on DQS (for DDRx), or outputs write 1040 * data (for RLD), skipping 1041 * the NOP micro-instruction all together 1042 * 1043 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1044 * turned on in the same micro-instruction that issues the write 1045 * command. Then we need 1046 * to directly jump to the micro-instruction that sends out the data 1047 * 1048 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1049 * (2 and 3). One jump-counter (0) is used to perform multiple 1050 * write-read operations. 1051 * one counter left to issue this command in "multiple-group" mode 1052 */ 1053 1054 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1055 1056 if (rw_wl_nop_cycles == -1) { 1057 /* 1058 * CNTR 2 - We want to execute the special write operation that 1059 * turns on DQS right away and then skip directly to the 1060 * instruction that sends out the data. We set the counter to a 1061 * large number so that the jump is always taken. 1062 */ 1063 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1064 1065 /* CNTR 3 - Not used */ 1066 if (test_dm) { 1067 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1; 1068 writel(rwcfg->lfsr_wr_rd_dm_bank_0_data, 1069 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1070 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1071 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1072 } else { 1073 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1; 1074 writel(rwcfg->lfsr_wr_rd_bank_0_data, 1075 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1076 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1077 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1078 } 1079 } else if (rw_wl_nop_cycles == 0) { 1080 /* 1081 * CNTR 2 - We want to skip the NOP operation and go straight 1082 * to the DQS enable instruction. We set the counter to a large 1083 * number so that the jump is always taken. 1084 */ 1085 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1086 1087 /* CNTR 3 - Not used */ 1088 if (test_dm) { 1089 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1090 writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs, 1091 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1092 } else { 1093 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1094 writel(rwcfg->lfsr_wr_rd_bank_0_dqs, 1095 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1096 } 1097 } else { 1098 /* 1099 * CNTR 2 - In this case we want to execute the next instruction 1100 * and NOT take the jump. So we set the counter to 0. The jump 1101 * address doesn't count. 1102 */ 1103 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1104 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1105 1106 /* 1107 * CNTR 3 - Set the nop counter to the number of cycles we 1108 * need to loop for, minus 1. 1109 */ 1110 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1111 if (test_dm) { 1112 mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0; 1113 writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop, 1114 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1115 } else { 1116 mcc_instruction = rwcfg->lfsr_wr_rd_bank_0; 1117 writel(rwcfg->lfsr_wr_rd_bank_0_nop, 1118 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1119 } 1120 } 1121 1122 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1123 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1124 1125 if (quick_write_mode) 1126 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1127 else 1128 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1129 1130 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1131 1132 /* 1133 * CNTR 1 - This is used to ensure enough time elapses 1134 * for read data to come back. 1135 */ 1136 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1137 1138 if (test_dm) { 1139 writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait, 1140 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1141 } else { 1142 writel(rwcfg->lfsr_wr_rd_bank_0_wait, 1143 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1144 } 1145 1146 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1147 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1148 (group << 2)); 1149 } 1150 1151 /** 1152 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1153 * @rank_bgn: Rank number 1154 * @write_group: Write Group 1155 * @use_dm: Use DM 1156 * @all_correct: All bits must be correct in the mask 1157 * @bit_chk: Resulting bit mask after the test 1158 * @all_ranks: Test all ranks 1159 * 1160 * Test writes, can check for a single bit pass or multiple bit pass. 1161 */ 1162 static int 1163 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1164 const u32 use_dm, const u32 all_correct, 1165 u32 *bit_chk, const u32 all_ranks) 1166 { 1167 const u32 rank_end = all_ranks ? 1168 rwcfg->mem_number_of_ranks : 1169 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1170 const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs / 1171 rwcfg->mem_virtual_groups_per_write_dqs; 1172 const u32 correct_mask_vg = param->write_correct_mask_vg; 1173 1174 u32 tmp_bit_chk, base_rw_mgr; 1175 int vg, r; 1176 1177 *bit_chk = param->write_correct_mask; 1178 1179 for (r = rank_bgn; r < rank_end; r++) { 1180 /* Set rank */ 1181 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1182 1183 tmp_bit_chk = 0; 1184 for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1; 1185 vg >= 0; vg--) { 1186 /* Reset the FIFOs to get pointers to known state. */ 1187 writel(0, &phy_mgr_cmd->fifo_reset); 1188 1189 rw_mgr_mem_calibrate_write_test_issue( 1190 write_group * 1191 rwcfg->mem_virtual_groups_per_write_dqs + vg, 1192 use_dm); 1193 1194 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1195 tmp_bit_chk <<= shift_ratio; 1196 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1197 } 1198 1199 *bit_chk &= tmp_bit_chk; 1200 } 1201 1202 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1203 if (all_correct) { 1204 debug_cond(DLEVEL == 2, 1205 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1206 write_group, use_dm, *bit_chk, 1207 param->write_correct_mask, 1208 *bit_chk == param->write_correct_mask); 1209 return *bit_chk == param->write_correct_mask; 1210 } else { 1211 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1212 debug_cond(DLEVEL == 2, 1213 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1214 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1215 return *bit_chk != 0x00; 1216 } 1217 } 1218 1219 /** 1220 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1221 * @rank_bgn: Rank number 1222 * @group: Read/Write Group 1223 * @all_ranks: Test all ranks 1224 * 1225 * Performs a guaranteed read on the patterns we are going to use during a 1226 * read test to ensure memory works. 1227 */ 1228 static int 1229 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1230 const u32 all_ranks) 1231 { 1232 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1233 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1234 const u32 addr_offset = 1235 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2; 1236 const u32 rank_end = all_ranks ? 1237 rwcfg->mem_number_of_ranks : 1238 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1239 const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs / 1240 rwcfg->mem_virtual_groups_per_read_dqs; 1241 const u32 correct_mask_vg = param->read_correct_mask_vg; 1242 1243 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1244 int vg, r; 1245 int ret = 0; 1246 1247 bit_chk = param->read_correct_mask; 1248 1249 for (r = rank_bgn; r < rank_end; r++) { 1250 /* Set rank */ 1251 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1252 1253 /* Load up a constant bursts of read commands */ 1254 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1255 writel(rwcfg->guaranteed_read, 1256 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1257 1258 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1259 writel(rwcfg->guaranteed_read_cont, 1260 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1261 1262 tmp_bit_chk = 0; 1263 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; 1264 vg >= 0; vg--) { 1265 /* Reset the FIFOs to get pointers to known state. */ 1266 writel(0, &phy_mgr_cmd->fifo_reset); 1267 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1268 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1269 writel(rwcfg->guaranteed_read, 1270 addr + addr_offset + (vg << 2)); 1271 1272 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1273 tmp_bit_chk <<= shift_ratio; 1274 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1275 } 1276 1277 bit_chk &= tmp_bit_chk; 1278 } 1279 1280 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1281 1282 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1283 1284 if (bit_chk != param->read_correct_mask) 1285 ret = -EIO; 1286 1287 debug_cond(DLEVEL == 1, 1288 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1289 __func__, __LINE__, group, bit_chk, 1290 param->read_correct_mask, ret); 1291 1292 return ret; 1293 } 1294 1295 /** 1296 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1297 * @rank_bgn: Rank number 1298 * @all_ranks: Test all ranks 1299 * 1300 * Load up the patterns we are going to use during a read test. 1301 */ 1302 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1303 const int all_ranks) 1304 { 1305 const u32 rank_end = all_ranks ? 1306 rwcfg->mem_number_of_ranks : 1307 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1308 u32 r; 1309 1310 debug("%s:%d\n", __func__, __LINE__); 1311 1312 for (r = rank_bgn; r < rank_end; r++) { 1313 /* set rank */ 1314 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1315 1316 /* Load up a constant bursts */ 1317 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1318 1319 writel(rwcfg->guaranteed_write_wait0, 1320 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1321 1322 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1323 1324 writel(rwcfg->guaranteed_write_wait1, 1325 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1326 1327 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1328 1329 writel(rwcfg->guaranteed_write_wait2, 1330 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1331 1332 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1333 1334 writel(rwcfg->guaranteed_write_wait3, 1335 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1336 1337 writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1338 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1339 } 1340 1341 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1342 } 1343 1344 /** 1345 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1346 * @rank_bgn: Rank number 1347 * @group: Read/Write group 1348 * @num_tries: Number of retries of the test 1349 * @all_correct: All bits must be correct in the mask 1350 * @bit_chk: Resulting bit mask after the test 1351 * @all_groups: Test all R/W groups 1352 * @all_ranks: Test all ranks 1353 * 1354 * Try a read and see if it returns correct data back. Test has dummy reads 1355 * inserted into the mix used to align DQS enable. Test has more thorough 1356 * checks than the regular read test. 1357 */ 1358 static int 1359 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1360 const u32 num_tries, const u32 all_correct, 1361 u32 *bit_chk, 1362 const u32 all_groups, const u32 all_ranks) 1363 { 1364 const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks : 1365 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1366 const u32 quick_read_mode = 1367 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1368 misccfg->enable_super_quick_calibration); 1369 u32 correct_mask_vg = param->read_correct_mask_vg; 1370 u32 tmp_bit_chk; 1371 u32 base_rw_mgr; 1372 u32 addr; 1373 1374 int r, vg, ret; 1375 1376 *bit_chk = param->read_correct_mask; 1377 1378 for (r = rank_bgn; r < rank_end; r++) { 1379 /* set rank */ 1380 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1381 1382 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1383 1384 writel(rwcfg->read_b2b_wait1, 1385 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1386 1387 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1388 writel(rwcfg->read_b2b_wait2, 1389 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1390 1391 if (quick_read_mode) 1392 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1393 /* need at least two (1+1) reads to capture failures */ 1394 else if (all_groups) 1395 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1396 else 1397 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1398 1399 writel(rwcfg->read_b2b, 1400 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1401 if (all_groups) 1402 writel(rwcfg->mem_if_read_dqs_width * 1403 rwcfg->mem_virtual_groups_per_read_dqs - 1, 1404 &sdr_rw_load_mgr_regs->load_cntr3); 1405 else 1406 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1407 1408 writel(rwcfg->read_b2b, 1409 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1410 1411 tmp_bit_chk = 0; 1412 for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0; 1413 vg--) { 1414 /* Reset the FIFOs to get pointers to known state. */ 1415 writel(0, &phy_mgr_cmd->fifo_reset); 1416 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1417 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1418 1419 if (all_groups) { 1420 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1421 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1422 } else { 1423 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1424 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1425 } 1426 1427 writel(rwcfg->read_b2b, addr + 1428 ((group * 1429 rwcfg->mem_virtual_groups_per_read_dqs + 1430 vg) << 2)); 1431 1432 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1433 tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs / 1434 rwcfg->mem_virtual_groups_per_read_dqs; 1435 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1436 } 1437 1438 *bit_chk &= tmp_bit_chk; 1439 } 1440 1441 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1442 writel(rwcfg->clear_dqs_enable, addr + (group << 2)); 1443 1444 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1445 1446 if (all_correct) { 1447 ret = (*bit_chk == param->read_correct_mask); 1448 debug_cond(DLEVEL == 2, 1449 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1450 __func__, __LINE__, group, all_groups, *bit_chk, 1451 param->read_correct_mask, ret); 1452 } else { 1453 ret = (*bit_chk != 0x00); 1454 debug_cond(DLEVEL == 2, 1455 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1456 __func__, __LINE__, group, all_groups, *bit_chk, 1457 0, ret); 1458 } 1459 1460 return ret; 1461 } 1462 1463 /** 1464 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1465 * @grp: Read/Write group 1466 * @num_tries: Number of retries of the test 1467 * @all_correct: All bits must be correct in the mask 1468 * @all_groups: Test all R/W groups 1469 * 1470 * Perform a READ test across all memory ranks. 1471 */ 1472 static int 1473 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1474 const u32 all_correct, 1475 const u32 all_groups) 1476 { 1477 u32 bit_chk; 1478 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1479 &bit_chk, all_groups, 1); 1480 } 1481 1482 /** 1483 * rw_mgr_incr_vfifo() - Increase VFIFO value 1484 * @grp: Read/Write group 1485 * 1486 * Increase VFIFO value. 1487 */ 1488 static void rw_mgr_incr_vfifo(const u32 grp) 1489 { 1490 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1491 } 1492 1493 /** 1494 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1495 * @grp: Read/Write group 1496 * 1497 * Decrease VFIFO value. 1498 */ 1499 static void rw_mgr_decr_vfifo(const u32 grp) 1500 { 1501 u32 i; 1502 1503 for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++) 1504 rw_mgr_incr_vfifo(grp); 1505 } 1506 1507 /** 1508 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1509 * @grp: Read/Write group 1510 * 1511 * Push VFIFO until a failing read happens. 1512 */ 1513 static int find_vfifo_failing_read(const u32 grp) 1514 { 1515 u32 v, ret, fail_cnt = 0; 1516 1517 for (v = 0; v < misccfg->read_valid_fifo_size; v++) { 1518 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1519 __func__, __LINE__, v); 1520 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1521 PASS_ONE_BIT, 0); 1522 if (!ret) { 1523 fail_cnt++; 1524 1525 if (fail_cnt == 2) 1526 return v; 1527 } 1528 1529 /* Fiddle with FIFO. */ 1530 rw_mgr_incr_vfifo(grp); 1531 } 1532 1533 /* No failing read found! Something must have gone wrong. */ 1534 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1535 return 0; 1536 } 1537 1538 /** 1539 * sdr_find_phase_delay() - Find DQS enable phase or delay 1540 * @working: If 1, look for working phase/delay, if 0, look for non-working 1541 * @delay: If 1, look for delay, if 0, look for phase 1542 * @grp: Read/Write group 1543 * @work: Working window position 1544 * @work_inc: Working window increment 1545 * @pd: DQS Phase/Delay Iterator 1546 * 1547 * Find working or non-working DQS enable phase setting. 1548 */ 1549 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1550 u32 *work, const u32 work_inc, u32 *pd) 1551 { 1552 const u32 max = delay ? iocfg->dqs_en_delay_max : 1553 iocfg->dqs_en_phase_max; 1554 u32 ret; 1555 1556 for (; *pd <= max; (*pd)++) { 1557 if (delay) 1558 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1559 else 1560 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1561 1562 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1563 PASS_ONE_BIT, 0); 1564 if (!working) 1565 ret = !ret; 1566 1567 if (ret) 1568 return 0; 1569 1570 if (work) 1571 *work += work_inc; 1572 } 1573 1574 return -EINVAL; 1575 } 1576 /** 1577 * sdr_find_phase() - Find DQS enable phase 1578 * @working: If 1, look for working phase, if 0, look for non-working phase 1579 * @grp: Read/Write group 1580 * @work: Working window position 1581 * @i: Iterator 1582 * @p: DQS Phase Iterator 1583 * 1584 * Find working or non-working DQS enable phase setting. 1585 */ 1586 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1587 u32 *i, u32 *p) 1588 { 1589 const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1); 1590 int ret; 1591 1592 for (; *i < end; (*i)++) { 1593 if (working) 1594 *p = 0; 1595 1596 ret = sdr_find_phase_delay(working, 0, grp, work, 1597 iocfg->delay_per_opa_tap, p); 1598 if (!ret) 1599 return 0; 1600 1601 if (*p > iocfg->dqs_en_phase_max) { 1602 /* Fiddle with FIFO. */ 1603 rw_mgr_incr_vfifo(grp); 1604 if (!working) 1605 *p = 0; 1606 } 1607 } 1608 1609 return -EINVAL; 1610 } 1611 1612 /** 1613 * sdr_working_phase() - Find working DQS enable phase 1614 * @grp: Read/Write group 1615 * @work_bgn: Working window start position 1616 * @d: dtaps output value 1617 * @p: DQS Phase Iterator 1618 * @i: Iterator 1619 * 1620 * Find working DQS enable phase setting. 1621 */ 1622 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1623 u32 *p, u32 *i) 1624 { 1625 const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap / 1626 iocfg->delay_per_dqs_en_dchain_tap; 1627 int ret; 1628 1629 *work_bgn = 0; 1630 1631 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1632 *i = 0; 1633 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1634 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1635 if (!ret) 1636 return 0; 1637 *work_bgn += iocfg->delay_per_dqs_en_dchain_tap; 1638 } 1639 1640 /* Cannot find working solution */ 1641 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1642 __func__, __LINE__); 1643 return -EINVAL; 1644 } 1645 1646 /** 1647 * sdr_backup_phase() - Find DQS enable backup phase 1648 * @grp: Read/Write group 1649 * @work_bgn: Working window start position 1650 * @p: DQS Phase Iterator 1651 * 1652 * Find DQS enable backup phase setting. 1653 */ 1654 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1655 { 1656 u32 tmp_delay, d; 1657 int ret; 1658 1659 /* Special case code for backing up a phase */ 1660 if (*p == 0) { 1661 *p = iocfg->dqs_en_phase_max; 1662 rw_mgr_decr_vfifo(grp); 1663 } else { 1664 (*p)--; 1665 } 1666 tmp_delay = *work_bgn - iocfg->delay_per_opa_tap; 1667 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1668 1669 for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn; 1670 d++) { 1671 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1672 1673 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1674 PASS_ONE_BIT, 0); 1675 if (ret) { 1676 *work_bgn = tmp_delay; 1677 break; 1678 } 1679 1680 tmp_delay += iocfg->delay_per_dqs_en_dchain_tap; 1681 } 1682 1683 /* Restore VFIFO to old state before we decremented it (if needed). */ 1684 (*p)++; 1685 if (*p > iocfg->dqs_en_phase_max) { 1686 *p = 0; 1687 rw_mgr_incr_vfifo(grp); 1688 } 1689 1690 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1691 } 1692 1693 /** 1694 * sdr_nonworking_phase() - Find non-working DQS enable phase 1695 * @grp: Read/Write group 1696 * @work_end: Working window end position 1697 * @p: DQS Phase Iterator 1698 * @i: Iterator 1699 * 1700 * Find non-working DQS enable phase setting. 1701 */ 1702 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1703 { 1704 int ret; 1705 1706 (*p)++; 1707 *work_end += iocfg->delay_per_opa_tap; 1708 if (*p > iocfg->dqs_en_phase_max) { 1709 /* Fiddle with FIFO. */ 1710 *p = 0; 1711 rw_mgr_incr_vfifo(grp); 1712 } 1713 1714 ret = sdr_find_phase(0, grp, work_end, i, p); 1715 if (ret) { 1716 /* Cannot see edge of failing read. */ 1717 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1718 __func__, __LINE__); 1719 } 1720 1721 return ret; 1722 } 1723 1724 /** 1725 * sdr_find_window_center() - Find center of the working DQS window. 1726 * @grp: Read/Write group 1727 * @work_bgn: First working settings 1728 * @work_end: Last working settings 1729 * 1730 * Find center of the working DQS enable window. 1731 */ 1732 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1733 const u32 work_end) 1734 { 1735 u32 work_mid; 1736 int tmp_delay = 0; 1737 int i, p, d; 1738 1739 work_mid = (work_bgn + work_end) / 2; 1740 1741 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1742 work_bgn, work_end, work_mid); 1743 /* Get the middle delay to be less than a VFIFO delay */ 1744 tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap; 1745 1746 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1747 work_mid %= tmp_delay; 1748 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1749 1750 tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap); 1751 if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap) 1752 tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap; 1753 p = tmp_delay / iocfg->delay_per_opa_tap; 1754 1755 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1756 1757 d = DIV_ROUND_UP(work_mid - tmp_delay, 1758 iocfg->delay_per_dqs_en_dchain_tap); 1759 if (d > iocfg->dqs_en_delay_max) 1760 d = iocfg->dqs_en_delay_max; 1761 tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap; 1762 1763 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1764 1765 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1766 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1767 1768 /* 1769 * push vfifo until we can successfully calibrate. We can do this 1770 * because the largest possible margin in 1 VFIFO cycle. 1771 */ 1772 for (i = 0; i < misccfg->read_valid_fifo_size; i++) { 1773 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1774 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1775 PASS_ONE_BIT, 1776 0)) { 1777 debug_cond(DLEVEL == 2, 1778 "%s:%d center: found: ptap=%u dtap=%u\n", 1779 __func__, __LINE__, p, d); 1780 return 0; 1781 } 1782 1783 /* Fiddle with FIFO. */ 1784 rw_mgr_incr_vfifo(grp); 1785 } 1786 1787 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1788 __func__, __LINE__); 1789 return -EINVAL; 1790 } 1791 1792 /** 1793 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1794 * @grp: Read/Write Group 1795 * 1796 * Find a good DQS enable to use. 1797 */ 1798 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1799 { 1800 u32 d, p, i; 1801 u32 dtaps_per_ptap; 1802 u32 work_bgn, work_end; 1803 u32 found_passing_read, found_failing_read = 0, initial_failing_dtap; 1804 int ret; 1805 1806 debug("%s:%d %u\n", __func__, __LINE__, grp); 1807 1808 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1809 1810 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1811 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1812 1813 /* Step 0: Determine number of delay taps for each phase tap. */ 1814 dtaps_per_ptap = iocfg->delay_per_opa_tap / 1815 iocfg->delay_per_dqs_en_dchain_tap; 1816 1817 /* Step 1: First push vfifo until we get a failing read. */ 1818 find_vfifo_failing_read(grp); 1819 1820 /* Step 2: Find first working phase, increment in ptaps. */ 1821 work_bgn = 0; 1822 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1823 if (ret) 1824 return ret; 1825 1826 work_end = work_bgn; 1827 1828 /* 1829 * If d is 0 then the working window covers a phase tap and we can 1830 * follow the old procedure. Otherwise, we've found the beginning 1831 * and we need to increment the dtaps until we find the end. 1832 */ 1833 if (d == 0) { 1834 /* 1835 * Step 3a: If we have room, back off by one and 1836 * increment in dtaps. 1837 */ 1838 sdr_backup_phase(grp, &work_bgn, &p); 1839 1840 /* 1841 * Step 4a: go forward from working phase to non working 1842 * phase, increment in ptaps. 1843 */ 1844 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1845 if (ret) 1846 return ret; 1847 1848 /* Step 5a: Back off one from last, increment in dtaps. */ 1849 1850 /* Special case code for backing up a phase */ 1851 if (p == 0) { 1852 p = iocfg->dqs_en_phase_max; 1853 rw_mgr_decr_vfifo(grp); 1854 } else { 1855 p = p - 1; 1856 } 1857 1858 work_end -= iocfg->delay_per_opa_tap; 1859 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1860 1861 d = 0; 1862 1863 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1864 __func__, __LINE__, p); 1865 } 1866 1867 /* The dtap increment to find the failing edge is done here. */ 1868 sdr_find_phase_delay(0, 1, grp, &work_end, 1869 iocfg->delay_per_dqs_en_dchain_tap, &d); 1870 1871 /* Go back to working dtap */ 1872 if (d != 0) 1873 work_end -= iocfg->delay_per_dqs_en_dchain_tap; 1874 1875 debug_cond(DLEVEL == 2, 1876 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1877 __func__, __LINE__, p, d - 1, work_end); 1878 1879 if (work_end < work_bgn) { 1880 /* nil range */ 1881 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1882 __func__, __LINE__); 1883 return -EINVAL; 1884 } 1885 1886 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1887 __func__, __LINE__, work_bgn, work_end); 1888 1889 /* 1890 * We need to calculate the number of dtaps that equal a ptap. 1891 * To do that we'll back up a ptap and re-find the edge of the 1892 * window using dtaps 1893 */ 1894 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1895 __func__, __LINE__); 1896 1897 /* Special case code for backing up a phase */ 1898 if (p == 0) { 1899 p = iocfg->dqs_en_phase_max; 1900 rw_mgr_decr_vfifo(grp); 1901 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1902 __func__, __LINE__, p); 1903 } else { 1904 p = p - 1; 1905 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1906 __func__, __LINE__, p); 1907 } 1908 1909 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1910 1911 /* 1912 * Increase dtap until we first see a passing read (in case the 1913 * window is smaller than a ptap), and then a failing read to 1914 * mark the edge of the window again. 1915 */ 1916 1917 /* Find a passing read. */ 1918 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1919 __func__, __LINE__); 1920 1921 initial_failing_dtap = d; 1922 1923 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1924 if (found_passing_read) { 1925 /* Find a failing read. */ 1926 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1927 __func__, __LINE__); 1928 d++; 1929 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1930 &d); 1931 } else { 1932 debug_cond(DLEVEL == 1, 1933 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1934 __func__, __LINE__); 1935 } 1936 1937 /* 1938 * The dynamically calculated dtaps_per_ptap is only valid if we 1939 * found a passing/failing read. If we didn't, it means d hit the max 1940 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its 1941 * statically calculated value. 1942 */ 1943 if (found_passing_read && found_failing_read) 1944 dtaps_per_ptap = d - initial_failing_dtap; 1945 1946 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1947 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1948 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1949 1950 /* Step 6: Find the centre of the window. */ 1951 ret = sdr_find_window_center(grp, work_bgn, work_end); 1952 1953 return ret; 1954 } 1955 1956 /** 1957 * search_stop_check() - Check if the detected edge is valid 1958 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1959 * @d: DQS delay 1960 * @rank_bgn: Rank number 1961 * @write_group: Write Group 1962 * @read_group: Read Group 1963 * @bit_chk: Resulting bit mask after the test 1964 * @sticky_bit_chk: Resulting sticky bit mask after the test 1965 * @use_read_test: Perform read test 1966 * 1967 * Test if the found edge is valid. 1968 */ 1969 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1970 const u32 write_group, const u32 read_group, 1971 u32 *bit_chk, u32 *sticky_bit_chk, 1972 const u32 use_read_test) 1973 { 1974 const u32 ratio = rwcfg->mem_if_read_dqs_width / 1975 rwcfg->mem_if_write_dqs_width; 1976 const u32 correct_mask = write ? param->write_correct_mask : 1977 param->read_correct_mask; 1978 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 1979 rwcfg->mem_dq_per_read_dqs; 1980 u32 ret; 1981 /* 1982 * Stop searching when the read test doesn't pass AND when 1983 * we've seen a passing read on every bit. 1984 */ 1985 if (write) { /* WRITE-ONLY */ 1986 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1987 0, PASS_ONE_BIT, 1988 bit_chk, 0); 1989 } else if (use_read_test) { /* READ-ONLY */ 1990 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 1991 NUM_READ_PB_TESTS, 1992 PASS_ONE_BIT, bit_chk, 1993 0, 0); 1994 } else { /* READ-ONLY */ 1995 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 1996 PASS_ONE_BIT, bit_chk, 0); 1997 *bit_chk = *bit_chk >> (per_dqs * 1998 (read_group - (write_group * ratio))); 1999 ret = (*bit_chk == 0); 2000 } 2001 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2002 ret = ret && (*sticky_bit_chk == correct_mask); 2003 debug_cond(DLEVEL == 2, 2004 "%s:%d center(left): dtap=%u => %u == %u && %u", 2005 __func__, __LINE__, d, 2006 *sticky_bit_chk, correct_mask, ret); 2007 return ret; 2008 } 2009 2010 /** 2011 * search_left_edge() - Find left edge of DQ/DQS working phase 2012 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2013 * @rank_bgn: Rank number 2014 * @write_group: Write Group 2015 * @read_group: Read Group 2016 * @test_bgn: Rank number to begin the test 2017 * @sticky_bit_chk: Resulting sticky bit mask after the test 2018 * @left_edge: Left edge of the DQ/DQS phase 2019 * @right_edge: Right edge of the DQ/DQS phase 2020 * @use_read_test: Perform read test 2021 * 2022 * Find left edge of DQ/DQS working phase. 2023 */ 2024 static void search_left_edge(const int write, const int rank_bgn, 2025 const u32 write_group, const u32 read_group, const u32 test_bgn, 2026 u32 *sticky_bit_chk, 2027 int *left_edge, int *right_edge, const u32 use_read_test) 2028 { 2029 const u32 delay_max = write ? iocfg->io_out1_delay_max : 2030 iocfg->io_in_delay_max; 2031 const u32 dqs_max = write ? iocfg->io_out1_delay_max : 2032 iocfg->dqs_in_delay_max; 2033 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2034 rwcfg->mem_dq_per_read_dqs; 2035 u32 stop, bit_chk; 2036 int i, d; 2037 2038 for (d = 0; d <= dqs_max; d++) { 2039 if (write) 2040 scc_mgr_apply_group_dq_out1_delay(d); 2041 else 2042 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2043 2044 writel(0, &sdr_scc_mgr->update); 2045 2046 stop = search_stop_check(write, d, rank_bgn, write_group, 2047 read_group, &bit_chk, sticky_bit_chk, 2048 use_read_test); 2049 if (stop == 1) 2050 break; 2051 2052 /* stop != 1 */ 2053 for (i = 0; i < per_dqs; i++) { 2054 if (bit_chk & 1) { 2055 /* 2056 * Remember a passing test as 2057 * the left_edge. 2058 */ 2059 left_edge[i] = d; 2060 } else { 2061 /* 2062 * If a left edge has not been seen 2063 * yet, then a future passing test 2064 * will mark this edge as the right 2065 * edge. 2066 */ 2067 if (left_edge[i] == delay_max + 1) 2068 right_edge[i] = -(d + 1); 2069 } 2070 bit_chk >>= 1; 2071 } 2072 } 2073 2074 /* Reset DQ delay chains to 0 */ 2075 if (write) 2076 scc_mgr_apply_group_dq_out1_delay(0); 2077 else 2078 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2079 2080 *sticky_bit_chk = 0; 2081 for (i = per_dqs - 1; i >= 0; i--) { 2082 debug_cond(DLEVEL == 2, 2083 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2084 __func__, __LINE__, i, left_edge[i], 2085 i, right_edge[i]); 2086 2087 /* 2088 * Check for cases where we haven't found the left edge, 2089 * which makes our assignment of the the right edge invalid. 2090 * Reset it to the illegal value. 2091 */ 2092 if ((left_edge[i] == delay_max + 1) && 2093 (right_edge[i] != delay_max + 1)) { 2094 right_edge[i] = delay_max + 1; 2095 debug_cond(DLEVEL == 2, 2096 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2097 __func__, __LINE__, i, right_edge[i]); 2098 } 2099 2100 /* 2101 * Reset sticky bit 2102 * READ: except for bits where we have seen both 2103 * the left and right edge. 2104 * WRITE: except for bits where we have seen the 2105 * left edge. 2106 */ 2107 *sticky_bit_chk <<= 1; 2108 if (write) { 2109 if (left_edge[i] != delay_max + 1) 2110 *sticky_bit_chk |= 1; 2111 } else { 2112 if ((left_edge[i] != delay_max + 1) && 2113 (right_edge[i] != delay_max + 1)) 2114 *sticky_bit_chk |= 1; 2115 } 2116 } 2117 } 2118 2119 /** 2120 * search_right_edge() - Find right edge of DQ/DQS working phase 2121 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2122 * @rank_bgn: Rank number 2123 * @write_group: Write Group 2124 * @read_group: Read Group 2125 * @start_dqs: DQS start phase 2126 * @start_dqs_en: DQS enable start phase 2127 * @sticky_bit_chk: Resulting sticky bit mask after the test 2128 * @left_edge: Left edge of the DQ/DQS phase 2129 * @right_edge: Right edge of the DQ/DQS phase 2130 * @use_read_test: Perform read test 2131 * 2132 * Find right edge of DQ/DQS working phase. 2133 */ 2134 static int search_right_edge(const int write, const int rank_bgn, 2135 const u32 write_group, const u32 read_group, 2136 const int start_dqs, const int start_dqs_en, 2137 u32 *sticky_bit_chk, 2138 int *left_edge, int *right_edge, const u32 use_read_test) 2139 { 2140 const u32 delay_max = write ? iocfg->io_out1_delay_max : 2141 iocfg->io_in_delay_max; 2142 const u32 dqs_max = write ? iocfg->io_out1_delay_max : 2143 iocfg->dqs_in_delay_max; 2144 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2145 rwcfg->mem_dq_per_read_dqs; 2146 u32 stop, bit_chk; 2147 int i, d; 2148 2149 for (d = 0; d <= dqs_max - start_dqs; d++) { 2150 if (write) { /* WRITE-ONLY */ 2151 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2152 d + start_dqs); 2153 } else { /* READ-ONLY */ 2154 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2155 if (iocfg->shift_dqs_en_when_shift_dqs) { 2156 u32 delay = d + start_dqs_en; 2157 if (delay > iocfg->dqs_en_delay_max) 2158 delay = iocfg->dqs_en_delay_max; 2159 scc_mgr_set_dqs_en_delay(read_group, delay); 2160 } 2161 scc_mgr_load_dqs(read_group); 2162 } 2163 2164 writel(0, &sdr_scc_mgr->update); 2165 2166 stop = search_stop_check(write, d, rank_bgn, write_group, 2167 read_group, &bit_chk, sticky_bit_chk, 2168 use_read_test); 2169 if (stop == 1) { 2170 if (write && (d == 0)) { /* WRITE-ONLY */ 2171 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; 2172 i++) { 2173 /* 2174 * d = 0 failed, but it passed when 2175 * testing the left edge, so it must be 2176 * marginal, set it to -1 2177 */ 2178 if (right_edge[i] == delay_max + 1 && 2179 left_edge[i] != delay_max + 1) 2180 right_edge[i] = -1; 2181 } 2182 } 2183 break; 2184 } 2185 2186 /* stop != 1 */ 2187 for (i = 0; i < per_dqs; i++) { 2188 if (bit_chk & 1) { 2189 /* 2190 * Remember a passing test as 2191 * the right_edge. 2192 */ 2193 right_edge[i] = d; 2194 } else { 2195 if (d != 0) { 2196 /* 2197 * If a right edge has not 2198 * been seen yet, then a future 2199 * passing test will mark this 2200 * edge as the left edge. 2201 */ 2202 if (right_edge[i] == delay_max + 1) 2203 left_edge[i] = -(d + 1); 2204 } else { 2205 /* 2206 * d = 0 failed, but it passed 2207 * when testing the left edge, 2208 * so it must be marginal, set 2209 * it to -1 2210 */ 2211 if (right_edge[i] == delay_max + 1 && 2212 left_edge[i] != delay_max + 1) 2213 right_edge[i] = -1; 2214 /* 2215 * If a right edge has not been 2216 * seen yet, then a future 2217 * passing test will mark this 2218 * edge as the left edge. 2219 */ 2220 else if (right_edge[i] == delay_max + 1) 2221 left_edge[i] = -(d + 1); 2222 } 2223 } 2224 2225 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2226 __func__, __LINE__, d); 2227 debug_cond(DLEVEL == 2, 2228 "bit_chk_test=%i left_edge[%u]: %d ", 2229 bit_chk & 1, i, left_edge[i]); 2230 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2231 right_edge[i]); 2232 bit_chk >>= 1; 2233 } 2234 } 2235 2236 /* Check that all bits have a window */ 2237 for (i = 0; i < per_dqs; i++) { 2238 debug_cond(DLEVEL == 2, 2239 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2240 __func__, __LINE__, i, left_edge[i], 2241 i, right_edge[i]); 2242 if ((left_edge[i] == dqs_max + 1) || 2243 (right_edge[i] == dqs_max + 1)) 2244 return i + 1; /* FIXME: If we fail, retval > 0 */ 2245 } 2246 2247 return 0; 2248 } 2249 2250 /** 2251 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2252 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2253 * @left_edge: Left edge of the DQ/DQS phase 2254 * @right_edge: Right edge of the DQ/DQS phase 2255 * @mid_min: Best DQ/DQS phase middle setting 2256 * 2257 * Find index and value of the middle of the DQ/DQS working phase. 2258 */ 2259 static int get_window_mid_index(const int write, int *left_edge, 2260 int *right_edge, int *mid_min) 2261 { 2262 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2263 rwcfg->mem_dq_per_read_dqs; 2264 int i, mid, min_index; 2265 2266 /* Find middle of window for each DQ bit */ 2267 *mid_min = left_edge[0] - right_edge[0]; 2268 min_index = 0; 2269 for (i = 1; i < per_dqs; i++) { 2270 mid = left_edge[i] - right_edge[i]; 2271 if (mid < *mid_min) { 2272 *mid_min = mid; 2273 min_index = i; 2274 } 2275 } 2276 2277 /* 2278 * -mid_min/2 represents the amount that we need to move DQS. 2279 * If mid_min is odd and positive we'll need to add one to make 2280 * sure the rounding in further calculations is correct (always 2281 * bias to the right), so just add 1 for all positive values. 2282 */ 2283 if (*mid_min > 0) 2284 (*mid_min)++; 2285 *mid_min = *mid_min / 2; 2286 2287 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2288 __func__, __LINE__, *mid_min, min_index); 2289 return min_index; 2290 } 2291 2292 /** 2293 * center_dq_windows() - Center the DQ/DQS windows 2294 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2295 * @left_edge: Left edge of the DQ/DQS phase 2296 * @right_edge: Right edge of the DQ/DQS phase 2297 * @mid_min: Adjusted DQ/DQS phase middle setting 2298 * @orig_mid_min: Original DQ/DQS phase middle setting 2299 * @min_index: DQ/DQS phase middle setting index 2300 * @test_bgn: Rank number to begin the test 2301 * @dq_margin: Amount of shift for the DQ 2302 * @dqs_margin: Amount of shift for the DQS 2303 * 2304 * Align the DQ/DQS windows in each group. 2305 */ 2306 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2307 const int mid_min, const int orig_mid_min, 2308 const int min_index, const int test_bgn, 2309 int *dq_margin, int *dqs_margin) 2310 { 2311 const u32 delay_max = write ? iocfg->io_out1_delay_max : 2312 iocfg->io_in_delay_max; 2313 const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs : 2314 rwcfg->mem_dq_per_read_dqs; 2315 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2316 SCC_MGR_IO_IN_DELAY_OFFSET; 2317 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2318 2319 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2320 int shift_dq, i, p; 2321 2322 /* Initialize data for export structures */ 2323 *dqs_margin = delay_max + 1; 2324 *dq_margin = delay_max + 1; 2325 2326 /* add delay to bring centre of all DQ windows to the same "level" */ 2327 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2328 /* Use values before divide by 2 to reduce round off error */ 2329 shift_dq = (left_edge[i] - right_edge[i] - 2330 (left_edge[min_index] - right_edge[min_index]))/2 + 2331 (orig_mid_min - mid_min); 2332 2333 debug_cond(DLEVEL == 2, 2334 "vfifo_center: before: shift_dq[%u]=%d\n", 2335 i, shift_dq); 2336 2337 temp_dq_io_delay1 = readl(addr + (p << 2)); 2338 temp_dq_io_delay2 = readl(addr + (i << 2)); 2339 2340 if (shift_dq + temp_dq_io_delay1 > delay_max) 2341 shift_dq = delay_max - temp_dq_io_delay2; 2342 else if (shift_dq + temp_dq_io_delay1 < 0) 2343 shift_dq = -temp_dq_io_delay1; 2344 2345 debug_cond(DLEVEL == 2, 2346 "vfifo_center: after: shift_dq[%u]=%d\n", 2347 i, shift_dq); 2348 2349 if (write) 2350 scc_mgr_set_dq_out1_delay(i, 2351 temp_dq_io_delay1 + shift_dq); 2352 else 2353 scc_mgr_set_dq_in_delay(p, 2354 temp_dq_io_delay1 + shift_dq); 2355 2356 scc_mgr_load_dq(p); 2357 2358 debug_cond(DLEVEL == 2, 2359 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2360 left_edge[i] - shift_dq + (-mid_min), 2361 right_edge[i] + shift_dq - (-mid_min)); 2362 2363 /* To determine values for export structures */ 2364 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2365 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2366 2367 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2368 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2369 } 2370 } 2371 2372 /** 2373 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2374 * @rank_bgn: Rank number 2375 * @rw_group: Read/Write Group 2376 * @test_bgn: Rank at which the test begins 2377 * @use_read_test: Perform a read test 2378 * @update_fom: Update FOM 2379 * 2380 * Per-bit deskew DQ and centering. 2381 */ 2382 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2383 const u32 rw_group, const u32 test_bgn, 2384 const int use_read_test, const int update_fom) 2385 { 2386 const u32 addr = 2387 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2388 (rw_group << 2); 2389 /* 2390 * Store these as signed since there are comparisons with 2391 * signed numbers. 2392 */ 2393 u32 sticky_bit_chk; 2394 int32_t left_edge[rwcfg->mem_dq_per_read_dqs]; 2395 int32_t right_edge[rwcfg->mem_dq_per_read_dqs]; 2396 int32_t orig_mid_min, mid_min; 2397 int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en; 2398 int32_t dq_margin, dqs_margin; 2399 int i, min_index; 2400 int ret; 2401 2402 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2403 2404 start_dqs = readl(addr); 2405 if (iocfg->shift_dqs_en_when_shift_dqs) 2406 start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset); 2407 2408 /* set the left and right edge of each bit to an illegal value */ 2409 /* use (iocfg->io_in_delay_max + 1) as an illegal value */ 2410 sticky_bit_chk = 0; 2411 for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) { 2412 left_edge[i] = iocfg->io_in_delay_max + 1; 2413 right_edge[i] = iocfg->io_in_delay_max + 1; 2414 } 2415 2416 /* Search for the left edge of the window for each bit */ 2417 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2418 &sticky_bit_chk, 2419 left_edge, right_edge, use_read_test); 2420 2421 2422 /* Search for the right edge of the window for each bit */ 2423 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2424 start_dqs, start_dqs_en, 2425 &sticky_bit_chk, 2426 left_edge, right_edge, use_read_test); 2427 if (ret) { 2428 /* 2429 * Restore delay chain settings before letting the loop 2430 * in rw_mgr_mem_calibrate_vfifo to retry different 2431 * dqs/ck relationships. 2432 */ 2433 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2434 if (iocfg->shift_dqs_en_when_shift_dqs) 2435 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2436 2437 scc_mgr_load_dqs(rw_group); 2438 writel(0, &sdr_scc_mgr->update); 2439 2440 debug_cond(DLEVEL == 1, 2441 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2442 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2443 if (use_read_test) { 2444 set_failing_group_stage(rw_group * 2445 rwcfg->mem_dq_per_read_dqs + i, 2446 CAL_STAGE_VFIFO, 2447 CAL_SUBSTAGE_VFIFO_CENTER); 2448 } else { 2449 set_failing_group_stage(rw_group * 2450 rwcfg->mem_dq_per_read_dqs + i, 2451 CAL_STAGE_VFIFO_AFTER_WRITES, 2452 CAL_SUBSTAGE_VFIFO_CENTER); 2453 } 2454 return -EIO; 2455 } 2456 2457 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2458 2459 /* Determine the amount we can change DQS (which is -mid_min) */ 2460 orig_mid_min = mid_min; 2461 new_dqs = start_dqs - mid_min; 2462 if (new_dqs > iocfg->dqs_in_delay_max) 2463 new_dqs = iocfg->dqs_in_delay_max; 2464 else if (new_dqs < 0) 2465 new_dqs = 0; 2466 2467 mid_min = start_dqs - new_dqs; 2468 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2469 mid_min, new_dqs); 2470 2471 if (iocfg->shift_dqs_en_when_shift_dqs) { 2472 if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max) 2473 mid_min += start_dqs_en - mid_min - 2474 iocfg->dqs_en_delay_max; 2475 else if (start_dqs_en - mid_min < 0) 2476 mid_min += start_dqs_en - mid_min; 2477 } 2478 new_dqs = start_dqs - mid_min; 2479 2480 debug_cond(DLEVEL == 1, 2481 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2482 start_dqs, 2483 iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1, 2484 new_dqs, mid_min); 2485 2486 /* Add delay to bring centre of all DQ windows to the same "level". */ 2487 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2488 min_index, test_bgn, &dq_margin, &dqs_margin); 2489 2490 /* Move DQS-en */ 2491 if (iocfg->shift_dqs_en_when_shift_dqs) { 2492 final_dqs_en = start_dqs_en - mid_min; 2493 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2494 scc_mgr_load_dqs(rw_group); 2495 } 2496 2497 /* Move DQS */ 2498 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2499 scc_mgr_load_dqs(rw_group); 2500 debug_cond(DLEVEL == 2, 2501 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2502 __func__, __LINE__, dq_margin, dqs_margin); 2503 2504 /* 2505 * Do not remove this line as it makes sure all of our decisions 2506 * have been applied. Apply the update bit. 2507 */ 2508 writel(0, &sdr_scc_mgr->update); 2509 2510 if ((dq_margin < 0) || (dqs_margin < 0)) 2511 return -EINVAL; 2512 2513 return 0; 2514 } 2515 2516 /** 2517 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2518 * @rw_group: Read/Write Group 2519 * @phase: DQ/DQS phase 2520 * 2521 * Because initially no communication ca be reliably performed with the memory 2522 * device, the sequencer uses a guaranteed write mechanism to write data into 2523 * the memory device. 2524 */ 2525 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2526 const u32 phase) 2527 { 2528 int ret; 2529 2530 /* Set a particular DQ/DQS phase. */ 2531 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2532 2533 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2534 __func__, __LINE__, rw_group, phase); 2535 2536 /* 2537 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2538 * Load up the patterns used by read calibration using the 2539 * current DQDQS phase. 2540 */ 2541 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2542 2543 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2544 return 0; 2545 2546 /* 2547 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2548 * Back-to-Back reads of the patterns used for calibration. 2549 */ 2550 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2551 if (ret) 2552 debug_cond(DLEVEL == 1, 2553 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2554 __func__, __LINE__, rw_group, phase); 2555 return ret; 2556 } 2557 2558 /** 2559 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2560 * @rw_group: Read/Write Group 2561 * @test_bgn: Rank at which the test begins 2562 * 2563 * DQS enable calibration ensures reliable capture of the DQ signal without 2564 * glitches on the DQS line. 2565 */ 2566 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2567 const u32 test_bgn) 2568 { 2569 /* 2570 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2571 * DQS and DQS Eanble Signal Relationships. 2572 */ 2573 2574 /* We start at zero, so have one less dq to devide among */ 2575 const u32 delay_step = iocfg->io_in_delay_max / 2576 (rwcfg->mem_dq_per_read_dqs - 1); 2577 int ret; 2578 u32 i, p, d, r; 2579 2580 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2581 2582 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2583 for (r = 0; r < rwcfg->mem_number_of_ranks; 2584 r += NUM_RANKS_PER_SHADOW_REG) { 2585 for (i = 0, p = test_bgn, d = 0; 2586 i < rwcfg->mem_dq_per_read_dqs; 2587 i++, p++, d += delay_step) { 2588 debug_cond(DLEVEL == 1, 2589 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2590 __func__, __LINE__, rw_group, r, i, p, d); 2591 2592 scc_mgr_set_dq_in_delay(p, d); 2593 scc_mgr_load_dq(p); 2594 } 2595 2596 writel(0, &sdr_scc_mgr->update); 2597 } 2598 2599 /* 2600 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2601 * dq_in_delay values 2602 */ 2603 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2604 2605 debug_cond(DLEVEL == 1, 2606 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2607 __func__, __LINE__, rw_group, !ret); 2608 2609 for (r = 0; r < rwcfg->mem_number_of_ranks; 2610 r += NUM_RANKS_PER_SHADOW_REG) { 2611 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2612 writel(0, &sdr_scc_mgr->update); 2613 } 2614 2615 return ret; 2616 } 2617 2618 /** 2619 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2620 * @rw_group: Read/Write Group 2621 * @test_bgn: Rank at which the test begins 2622 * @use_read_test: Perform a read test 2623 * @update_fom: Update FOM 2624 * 2625 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2626 * within a group. 2627 */ 2628 static int 2629 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2630 const int use_read_test, 2631 const int update_fom) 2632 2633 { 2634 int ret, grp_calibrated; 2635 u32 rank_bgn, sr; 2636 2637 /* 2638 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2639 * Read per-bit deskew can be done on a per shadow register basis. 2640 */ 2641 grp_calibrated = 1; 2642 for (rank_bgn = 0, sr = 0; 2643 rank_bgn < rwcfg->mem_number_of_ranks; 2644 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2645 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2646 test_bgn, 2647 use_read_test, 2648 update_fom); 2649 if (!ret) 2650 continue; 2651 2652 grp_calibrated = 0; 2653 } 2654 2655 if (!grp_calibrated) 2656 return -EIO; 2657 2658 return 0; 2659 } 2660 2661 /** 2662 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2663 * @rw_group: Read/Write Group 2664 * @test_bgn: Rank at which the test begins 2665 * 2666 * Stage 1: Calibrate the read valid prediction FIFO. 2667 * 2668 * This function implements UniPHY calibration Stage 1, as explained in 2669 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2670 * 2671 * - read valid prediction will consist of finding: 2672 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2673 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2674 * - we also do a per-bit deskew on the DQ lines. 2675 */ 2676 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2677 { 2678 u32 p, d; 2679 u32 dtaps_per_ptap; 2680 u32 failed_substage; 2681 2682 int ret; 2683 2684 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2685 2686 /* Update info for sims */ 2687 reg_file_set_group(rw_group); 2688 reg_file_set_stage(CAL_STAGE_VFIFO); 2689 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2690 2691 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2692 2693 /* USER Determine number of delay taps for each phase tap. */ 2694 dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap, 2695 iocfg->delay_per_dqs_en_dchain_tap) - 1; 2696 2697 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2698 /* 2699 * In RLDRAMX we may be messing the delay of pins in 2700 * the same write rw_group but outside of the current read 2701 * the rw_group, but that's ok because we haven't calibrated 2702 * output side yet. 2703 */ 2704 if (d > 0) { 2705 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2706 rw_group, d); 2707 } 2708 2709 for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) { 2710 /* 1) Guaranteed Write */ 2711 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2712 if (ret) 2713 break; 2714 2715 /* 2) DQS Enable Calibration */ 2716 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2717 test_bgn); 2718 if (ret) { 2719 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2720 continue; 2721 } 2722 2723 /* 3) Centering DQ/DQS */ 2724 /* 2725 * If doing read after write calibration, do not update 2726 * FOM now. Do it then. 2727 */ 2728 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2729 test_bgn, 1, 0); 2730 if (ret) { 2731 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2732 continue; 2733 } 2734 2735 /* All done. */ 2736 goto cal_done_ok; 2737 } 2738 } 2739 2740 /* Calibration Stage 1 failed. */ 2741 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2742 return 0; 2743 2744 /* Calibration Stage 1 completed OK. */ 2745 cal_done_ok: 2746 /* 2747 * Reset the delay chains back to zero if they have moved > 1 2748 * (check for > 1 because loop will increase d even when pass in 2749 * first case). 2750 */ 2751 if (d > 2) 2752 scc_mgr_zero_group(rw_group, 1); 2753 2754 return 1; 2755 } 2756 2757 /** 2758 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2759 * @rw_group: Read/Write Group 2760 * @test_bgn: Rank at which the test begins 2761 * 2762 * Stage 3: DQ/DQS Centering. 2763 * 2764 * This function implements UniPHY calibration Stage 3, as explained in 2765 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2766 */ 2767 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2768 const u32 test_bgn) 2769 { 2770 int ret; 2771 2772 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2773 2774 /* Update info for sims. */ 2775 reg_file_set_group(rw_group); 2776 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2777 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2778 2779 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2780 if (ret) 2781 set_failing_group_stage(rw_group, 2782 CAL_STAGE_VFIFO_AFTER_WRITES, 2783 CAL_SUBSTAGE_VFIFO_CENTER); 2784 return ret; 2785 } 2786 2787 /** 2788 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2789 * 2790 * Stage 4: Minimize latency. 2791 * 2792 * This function implements UniPHY calibration Stage 4, as explained in 2793 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2794 * Calibrate LFIFO to find smallest read latency. 2795 */ 2796 static u32 rw_mgr_mem_calibrate_lfifo(void) 2797 { 2798 int found_one = 0; 2799 2800 debug("%s:%d\n", __func__, __LINE__); 2801 2802 /* Update info for sims. */ 2803 reg_file_set_stage(CAL_STAGE_LFIFO); 2804 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2805 2806 /* Load up the patterns used by read calibration for all ranks */ 2807 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2808 2809 do { 2810 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2811 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2812 __func__, __LINE__, gbl->curr_read_lat); 2813 2814 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2815 PASS_ALL_BITS, 1)) 2816 break; 2817 2818 found_one = 1; 2819 /* 2820 * Reduce read latency and see if things are 2821 * working correctly. 2822 */ 2823 gbl->curr_read_lat--; 2824 } while (gbl->curr_read_lat > 0); 2825 2826 /* Reset the fifos to get pointers to known state. */ 2827 writel(0, &phy_mgr_cmd->fifo_reset); 2828 2829 if (found_one) { 2830 /* Add a fudge factor to the read latency that was determined */ 2831 gbl->curr_read_lat += 2; 2832 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2833 debug_cond(DLEVEL == 2, 2834 "%s:%d lfifo: success: using read_lat=%u\n", 2835 __func__, __LINE__, gbl->curr_read_lat); 2836 } else { 2837 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2838 CAL_SUBSTAGE_READ_LATENCY); 2839 2840 debug_cond(DLEVEL == 2, 2841 "%s:%d lfifo: failed at initial read_lat=%u\n", 2842 __func__, __LINE__, gbl->curr_read_lat); 2843 } 2844 2845 return found_one; 2846 } 2847 2848 /** 2849 * search_window() - Search for the/part of the window with DM/DQS shift 2850 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2851 * @rank_bgn: Rank number 2852 * @write_group: Write Group 2853 * @bgn_curr: Current window begin 2854 * @end_curr: Current window end 2855 * @bgn_best: Current best window begin 2856 * @end_best: Current best window end 2857 * @win_best: Size of the best window 2858 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2859 * 2860 * Search for the/part of the window with DM/DQS shift. 2861 */ 2862 static void search_window(const int search_dm, 2863 const u32 rank_bgn, const u32 write_group, 2864 int *bgn_curr, int *end_curr, int *bgn_best, 2865 int *end_best, int *win_best, int new_dqs) 2866 { 2867 u32 bit_chk; 2868 const int max = iocfg->io_out1_delay_max - new_dqs; 2869 int d, di; 2870 2871 /* Search for the/part of the window with DM/DQS shift. */ 2872 for (di = max; di >= 0; di -= DELTA_D) { 2873 if (search_dm) { 2874 d = di; 2875 scc_mgr_apply_group_dm_out1_delay(d); 2876 } else { 2877 /* For DQS, we go from 0...max */ 2878 d = max - di; 2879 /* 2880 * Note: This only shifts DQS, so are we limiting 2881 * ourselves to width of DQ unnecessarily. 2882 */ 2883 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2884 d + new_dqs); 2885 } 2886 2887 writel(0, &sdr_scc_mgr->update); 2888 2889 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2890 PASS_ALL_BITS, &bit_chk, 2891 0)) { 2892 /* Set current end of the window. */ 2893 *end_curr = search_dm ? -d : d; 2894 2895 /* 2896 * If a starting edge of our window has not been seen 2897 * this is our current start of the DM window. 2898 */ 2899 if (*bgn_curr == iocfg->io_out1_delay_max + 1) 2900 *bgn_curr = search_dm ? -d : d; 2901 2902 /* 2903 * If current window is bigger than best seen. 2904 * Set best seen to be current window. 2905 */ 2906 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2907 *win_best = *end_curr - *bgn_curr + 1; 2908 *bgn_best = *bgn_curr; 2909 *end_best = *end_curr; 2910 } 2911 } else { 2912 /* We just saw a failing test. Reset temp edge. */ 2913 *bgn_curr = iocfg->io_out1_delay_max + 1; 2914 *end_curr = iocfg->io_out1_delay_max + 1; 2915 2916 /* Early exit is only applicable to DQS. */ 2917 if (search_dm) 2918 continue; 2919 2920 /* 2921 * Early exit optimization: if the remaining delay 2922 * chain space is less than already seen largest 2923 * window we can exit. 2924 */ 2925 if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d) 2926 break; 2927 } 2928 } 2929 } 2930 2931 /* 2932 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2933 * @rank_bgn: Rank number 2934 * @write_group: Write group 2935 * @test_bgn: Rank at which the test begins 2936 * 2937 * Center all windows. Do per-bit-deskew to possibly increase size of 2938 * certain windows. 2939 */ 2940 static int 2941 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2942 const u32 test_bgn) 2943 { 2944 int i; 2945 u32 sticky_bit_chk; 2946 u32 min_index; 2947 int left_edge[rwcfg->mem_dq_per_write_dqs]; 2948 int right_edge[rwcfg->mem_dq_per_write_dqs]; 2949 int mid; 2950 int mid_min, orig_mid_min; 2951 int new_dqs, start_dqs; 2952 int dq_margin, dqs_margin, dm_margin; 2953 int bgn_curr = iocfg->io_out1_delay_max + 1; 2954 int end_curr = iocfg->io_out1_delay_max + 1; 2955 int bgn_best = iocfg->io_out1_delay_max + 1; 2956 int end_best = iocfg->io_out1_delay_max + 1; 2957 int win_best = 0; 2958 2959 int ret; 2960 2961 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2962 2963 dm_margin = 0; 2964 2965 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2966 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2967 (rwcfg->mem_dq_per_write_dqs << 2)); 2968 2969 /* Per-bit deskew. */ 2970 2971 /* 2972 * Set the left and right edge of each bit to an illegal value. 2973 * Use (iocfg->io_out1_delay_max + 1) as an illegal value. 2974 */ 2975 sticky_bit_chk = 0; 2976 for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) { 2977 left_edge[i] = iocfg->io_out1_delay_max + 1; 2978 right_edge[i] = iocfg->io_out1_delay_max + 1; 2979 } 2980 2981 /* Search for the left edge of the window for each bit. */ 2982 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 2983 &sticky_bit_chk, 2984 left_edge, right_edge, 0); 2985 2986 /* Search for the right edge of the window for each bit. */ 2987 ret = search_right_edge(1, rank_bgn, write_group, 0, 2988 start_dqs, 0, 2989 &sticky_bit_chk, 2990 left_edge, right_edge, 0); 2991 if (ret) { 2992 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 2993 CAL_SUBSTAGE_WRITES_CENTER); 2994 return -EINVAL; 2995 } 2996 2997 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 2998 2999 /* Determine the amount we can change DQS (which is -mid_min). */ 3000 orig_mid_min = mid_min; 3001 new_dqs = start_dqs; 3002 mid_min = 0; 3003 debug_cond(DLEVEL == 1, 3004 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3005 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3006 3007 /* Add delay to bring centre of all DQ windows to the same "level". */ 3008 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3009 min_index, 0, &dq_margin, &dqs_margin); 3010 3011 /* Move DQS */ 3012 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3013 writel(0, &sdr_scc_mgr->update); 3014 3015 /* Centre DM */ 3016 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3017 3018 /* 3019 * Set the left and right edge of each bit to an illegal value. 3020 * Use (iocfg->io_out1_delay_max + 1) as an illegal value. 3021 */ 3022 left_edge[0] = iocfg->io_out1_delay_max + 1; 3023 right_edge[0] = iocfg->io_out1_delay_max + 1; 3024 3025 /* Search for the/part of the window with DM shift. */ 3026 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3027 &bgn_best, &end_best, &win_best, 0); 3028 3029 /* Reset DM delay chains to 0. */ 3030 scc_mgr_apply_group_dm_out1_delay(0); 3031 3032 /* 3033 * Check to see if the current window nudges up aganist 0 delay. 3034 * If so we need to continue the search by shifting DQS otherwise DQS 3035 * search begins as a new search. 3036 */ 3037 if (end_curr != 0) { 3038 bgn_curr = iocfg->io_out1_delay_max + 1; 3039 end_curr = iocfg->io_out1_delay_max + 1; 3040 } 3041 3042 /* Search for the/part of the window with DQS shifts. */ 3043 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3044 &bgn_best, &end_best, &win_best, new_dqs); 3045 3046 /* Assign left and right edge for cal and reporting. */ 3047 left_edge[0] = -1 * bgn_best; 3048 right_edge[0] = end_best; 3049 3050 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3051 __func__, __LINE__, left_edge[0], right_edge[0]); 3052 3053 /* Move DQS (back to orig). */ 3054 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3055 3056 /* Move DM */ 3057 3058 /* Find middle of window for the DM bit. */ 3059 mid = (left_edge[0] - right_edge[0]) / 2; 3060 3061 /* Only move right, since we are not moving DQS/DQ. */ 3062 if (mid < 0) 3063 mid = 0; 3064 3065 /* dm_marign should fail if we never find a window. */ 3066 if (win_best == 0) 3067 dm_margin = -1; 3068 else 3069 dm_margin = left_edge[0] - mid; 3070 3071 scc_mgr_apply_group_dm_out1_delay(mid); 3072 writel(0, &sdr_scc_mgr->update); 3073 3074 debug_cond(DLEVEL == 2, 3075 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3076 __func__, __LINE__, left_edge[0], right_edge[0], 3077 mid, dm_margin); 3078 /* Export values. */ 3079 gbl->fom_out += dq_margin + dqs_margin; 3080 3081 debug_cond(DLEVEL == 2, 3082 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3083 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3084 3085 /* 3086 * Do not remove this line as it makes sure all of our 3087 * decisions have been applied. 3088 */ 3089 writel(0, &sdr_scc_mgr->update); 3090 3091 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3092 return -EINVAL; 3093 3094 return 0; 3095 } 3096 3097 /** 3098 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3099 * @rank_bgn: Rank number 3100 * @group: Read/Write Group 3101 * @test_bgn: Rank at which the test begins 3102 * 3103 * Stage 2: Write Calibration Part One. 3104 * 3105 * This function implements UniPHY calibration Stage 2, as explained in 3106 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3107 */ 3108 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3109 const u32 test_bgn) 3110 { 3111 int ret; 3112 3113 /* Update info for sims */ 3114 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3115 3116 reg_file_set_group(group); 3117 reg_file_set_stage(CAL_STAGE_WRITES); 3118 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3119 3120 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3121 if (ret) 3122 set_failing_group_stage(group, CAL_STAGE_WRITES, 3123 CAL_SUBSTAGE_WRITES_CENTER); 3124 3125 return ret; 3126 } 3127 3128 /** 3129 * mem_precharge_and_activate() - Precharge all banks and activate 3130 * 3131 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3132 */ 3133 static void mem_precharge_and_activate(void) 3134 { 3135 int r; 3136 3137 for (r = 0; r < rwcfg->mem_number_of_ranks; r++) { 3138 /* Set rank. */ 3139 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3140 3141 /* Precharge all banks. */ 3142 writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3143 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3144 3145 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3146 writel(rwcfg->activate_0_and_1_wait1, 3147 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3148 3149 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3150 writel(rwcfg->activate_0_and_1_wait2, 3151 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3152 3153 /* Activate rows. */ 3154 writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3155 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3156 } 3157 } 3158 3159 /** 3160 * mem_init_latency() - Configure memory RLAT and WLAT settings 3161 * 3162 * Configure memory RLAT and WLAT parameters. 3163 */ 3164 static void mem_init_latency(void) 3165 { 3166 /* 3167 * For AV/CV, LFIFO is hardened and always runs at full rate 3168 * so max latency in AFI clocks, used here, is correspondingly 3169 * smaller. 3170 */ 3171 const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1; 3172 u32 rlat, wlat; 3173 3174 debug("%s:%d\n", __func__, __LINE__); 3175 3176 /* 3177 * Read in write latency. 3178 * WL for Hard PHY does not include additive latency. 3179 */ 3180 wlat = readl(&data_mgr->t_wl_add); 3181 wlat += readl(&data_mgr->mem_t_add); 3182 3183 gbl->rw_wl_nop_cycles = wlat - 1; 3184 3185 /* Read in readl latency. */ 3186 rlat = readl(&data_mgr->t_rl_add); 3187 3188 /* Set a pretty high read latency initially. */ 3189 gbl->curr_read_lat = rlat + 16; 3190 if (gbl->curr_read_lat > max_latency) 3191 gbl->curr_read_lat = max_latency; 3192 3193 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3194 3195 /* Advertise write latency. */ 3196 writel(wlat, &phy_mgr_cfg->afi_wlat); 3197 } 3198 3199 /** 3200 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3201 * 3202 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3203 */ 3204 static void mem_skip_calibrate(void) 3205 { 3206 u32 vfifo_offset; 3207 u32 i, j, r; 3208 3209 debug("%s:%d\n", __func__, __LINE__); 3210 /* Need to update every shadow register set used by the interface */ 3211 for (r = 0; r < rwcfg->mem_number_of_ranks; 3212 r += NUM_RANKS_PER_SHADOW_REG) { 3213 /* 3214 * Set output phase alignment settings appropriate for 3215 * skip calibration. 3216 */ 3217 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3218 scc_mgr_set_dqs_en_phase(i, 0); 3219 if (iocfg->dll_chain_length == 6) 3220 scc_mgr_set_dqdqs_output_phase(i, 6); 3221 else 3222 scc_mgr_set_dqdqs_output_phase(i, 7); 3223 /* 3224 * Case:33398 3225 * 3226 * Write data arrives to the I/O two cycles before write 3227 * latency is reached (720 deg). 3228 * -> due to bit-slip in a/c bus 3229 * -> to allow board skew where dqs is longer than ck 3230 * -> how often can this happen!? 3231 * -> can claim back some ptaps for high freq 3232 * support if we can relax this, but i digress... 3233 * 3234 * The write_clk leads mem_ck by 90 deg 3235 * The minimum ptap of the OPA is 180 deg 3236 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3237 * The write_clk is always delayed by 2 ptaps 3238 * 3239 * Hence, to make DQS aligned to CK, we need to delay 3240 * DQS by: 3241 * (720 - 90 - 180 - 2) * 3242 * (360 / iocfg->dll_chain_length) 3243 * 3244 * Dividing the above by (360 / iocfg->dll_chain_length) 3245 * gives us the number of ptaps, which simplies to: 3246 * 3247 * (1.25 * iocfg->dll_chain_length - 2) 3248 */ 3249 scc_mgr_set_dqdqs_output_phase(i, 3250 ((125 * iocfg->dll_chain_length) / 100) - 2); 3251 } 3252 writel(0xff, &sdr_scc_mgr->dqs_ena); 3253 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3254 3255 for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) { 3256 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3257 SCC_MGR_GROUP_COUNTER_OFFSET); 3258 } 3259 writel(0xff, &sdr_scc_mgr->dq_ena); 3260 writel(0xff, &sdr_scc_mgr->dm_ena); 3261 writel(0, &sdr_scc_mgr->update); 3262 } 3263 3264 /* Compensate for simulation model behaviour */ 3265 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3266 scc_mgr_set_dqs_bus_in_delay(i, 10); 3267 scc_mgr_load_dqs(i); 3268 } 3269 writel(0, &sdr_scc_mgr->update); 3270 3271 /* 3272 * ArriaV has hard FIFOs that can only be initialized by incrementing 3273 * in sequencer. 3274 */ 3275 vfifo_offset = misccfg->calib_vfifo_offset; 3276 for (j = 0; j < vfifo_offset; j++) 3277 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3278 writel(0, &phy_mgr_cmd->fifo_reset); 3279 3280 /* 3281 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3282 * setting from generation-time constant. 3283 */ 3284 gbl->curr_read_lat = misccfg->calib_lfifo_offset; 3285 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3286 } 3287 3288 /** 3289 * mem_calibrate() - Memory calibration entry point. 3290 * 3291 * Perform memory calibration. 3292 */ 3293 static u32 mem_calibrate(void) 3294 { 3295 u32 i; 3296 u32 rank_bgn, sr; 3297 u32 write_group, write_test_bgn; 3298 u32 read_group, read_test_bgn; 3299 u32 run_groups, current_run; 3300 u32 failing_groups = 0; 3301 u32 group_failed = 0; 3302 3303 const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width / 3304 rwcfg->mem_if_write_dqs_width; 3305 3306 debug("%s:%d\n", __func__, __LINE__); 3307 3308 /* Initialize the data settings */ 3309 gbl->error_substage = CAL_SUBSTAGE_NIL; 3310 gbl->error_stage = CAL_STAGE_NIL; 3311 gbl->error_group = 0xff; 3312 gbl->fom_in = 0; 3313 gbl->fom_out = 0; 3314 3315 /* Initialize WLAT and RLAT. */ 3316 mem_init_latency(); 3317 3318 /* Initialize bit slips. */ 3319 mem_precharge_and_activate(); 3320 3321 for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) { 3322 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3323 SCC_MGR_GROUP_COUNTER_OFFSET); 3324 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3325 if (i == 0) 3326 scc_mgr_set_hhp_extras(); 3327 3328 scc_set_bypass_mode(i); 3329 } 3330 3331 /* Calibration is skipped. */ 3332 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3333 /* 3334 * Set VFIFO and LFIFO to instant-on settings in skip 3335 * calibration mode. 3336 */ 3337 mem_skip_calibrate(); 3338 3339 /* 3340 * Do not remove this line as it makes sure all of our 3341 * decisions have been applied. 3342 */ 3343 writel(0, &sdr_scc_mgr->update); 3344 return 1; 3345 } 3346 3347 /* Calibration is not skipped. */ 3348 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3349 /* 3350 * Zero all delay chain/phase settings for all 3351 * groups and all shadow register sets. 3352 */ 3353 scc_mgr_zero_all(); 3354 3355 run_groups = ~0; 3356 3357 for (write_group = 0, write_test_bgn = 0; write_group 3358 < rwcfg->mem_if_write_dqs_width; write_group++, 3359 write_test_bgn += rwcfg->mem_dq_per_write_dqs) { 3360 /* Initialize the group failure */ 3361 group_failed = 0; 3362 3363 current_run = run_groups & ((1 << 3364 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3365 run_groups = run_groups >> 3366 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3367 3368 if (current_run == 0) 3369 continue; 3370 3371 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3372 SCC_MGR_GROUP_COUNTER_OFFSET); 3373 scc_mgr_zero_group(write_group, 0); 3374 3375 for (read_group = write_group * rwdqs_ratio, 3376 read_test_bgn = 0; 3377 read_group < (write_group + 1) * rwdqs_ratio; 3378 read_group++, 3379 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3380 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3381 continue; 3382 3383 /* Calibrate the VFIFO */ 3384 if (rw_mgr_mem_calibrate_vfifo(read_group, 3385 read_test_bgn)) 3386 continue; 3387 3388 if (!(gbl->phy_debug_mode_flags & 3389 PHY_DEBUG_SWEEP_ALL_GROUPS)) 3390 return 0; 3391 3392 /* The group failed, we're done. */ 3393 goto grp_failed; 3394 } 3395 3396 /* Calibrate the output side */ 3397 for (rank_bgn = 0, sr = 0; 3398 rank_bgn < rwcfg->mem_number_of_ranks; 3399 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3400 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3401 continue; 3402 3403 /* Not needed in quick mode! */ 3404 if (STATIC_CALIB_STEPS & 3405 CALIB_SKIP_DELAY_SWEEPS) 3406 continue; 3407 3408 /* Calibrate WRITEs */ 3409 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3410 write_group, 3411 write_test_bgn)) 3412 continue; 3413 3414 group_failed = 1; 3415 if (!(gbl->phy_debug_mode_flags & 3416 PHY_DEBUG_SWEEP_ALL_GROUPS)) 3417 return 0; 3418 } 3419 3420 /* Some group failed, we're done. */ 3421 if (group_failed) 3422 goto grp_failed; 3423 3424 for (read_group = write_group * rwdqs_ratio, 3425 read_test_bgn = 0; 3426 read_group < (write_group + 1) * rwdqs_ratio; 3427 read_group++, 3428 read_test_bgn += rwcfg->mem_dq_per_read_dqs) { 3429 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3430 continue; 3431 3432 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3433 read_test_bgn)) 3434 continue; 3435 3436 if (!(gbl->phy_debug_mode_flags & 3437 PHY_DEBUG_SWEEP_ALL_GROUPS)) 3438 return 0; 3439 3440 /* The group failed, we're done. */ 3441 goto grp_failed; 3442 } 3443 3444 /* No group failed, continue as usual. */ 3445 continue; 3446 3447 grp_failed: /* A group failed, increment the counter. */ 3448 failing_groups++; 3449 } 3450 3451 /* 3452 * USER If there are any failing groups then report 3453 * the failure. 3454 */ 3455 if (failing_groups != 0) 3456 return 0; 3457 3458 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3459 continue; 3460 3461 /* Calibrate the LFIFO */ 3462 if (!rw_mgr_mem_calibrate_lfifo()) 3463 return 0; 3464 } 3465 3466 /* 3467 * Do not remove this line as it makes sure all of our decisions 3468 * have been applied. 3469 */ 3470 writel(0, &sdr_scc_mgr->update); 3471 return 1; 3472 } 3473 3474 /** 3475 * run_mem_calibrate() - Perform memory calibration 3476 * 3477 * This function triggers the entire memory calibration procedure. 3478 */ 3479 static int run_mem_calibrate(void) 3480 { 3481 int pass; 3482 3483 debug("%s:%d\n", __func__, __LINE__); 3484 3485 /* Reset pass/fail status shown on afi_cal_success/fail */ 3486 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3487 3488 /* Stop tracking manager. */ 3489 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3490 3491 phy_mgr_initialize(); 3492 rw_mgr_mem_initialize(); 3493 3494 /* Perform the actual memory calibration. */ 3495 pass = mem_calibrate(); 3496 3497 mem_precharge_and_activate(); 3498 writel(0, &phy_mgr_cmd->fifo_reset); 3499 3500 /* Handoff. */ 3501 rw_mgr_mem_handoff(); 3502 /* 3503 * In Hard PHY this is a 2-bit control: 3504 * 0: AFI Mux Select 3505 * 1: DDIO Mux Select 3506 */ 3507 writel(0x2, &phy_mgr_cfg->mux_sel); 3508 3509 /* Start tracking manager. */ 3510 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3511 3512 return pass; 3513 } 3514 3515 /** 3516 * debug_mem_calibrate() - Report result of memory calibration 3517 * @pass: Value indicating whether calibration passed or failed 3518 * 3519 * This function reports the results of the memory calibration 3520 * and writes debug information into the register file. 3521 */ 3522 static void debug_mem_calibrate(int pass) 3523 { 3524 u32 debug_info; 3525 3526 if (pass) { 3527 printf("%s: CALIBRATION PASSED\n", __FILE__); 3528 3529 gbl->fom_in /= 2; 3530 gbl->fom_out /= 2; 3531 3532 if (gbl->fom_in > 0xff) 3533 gbl->fom_in = 0xff; 3534 3535 if (gbl->fom_out > 0xff) 3536 gbl->fom_out = 0xff; 3537 3538 /* Update the FOM in the register file */ 3539 debug_info = gbl->fom_in; 3540 debug_info |= gbl->fom_out << 8; 3541 writel(debug_info, &sdr_reg_file->fom); 3542 3543 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3544 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3545 } else { 3546 printf("%s: CALIBRATION FAILED\n", __FILE__); 3547 3548 debug_info = gbl->error_stage; 3549 debug_info |= gbl->error_substage << 8; 3550 debug_info |= gbl->error_group << 16; 3551 3552 writel(debug_info, &sdr_reg_file->failing_stage); 3553 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3554 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3555 3556 /* Update the failing group/stage in the register file */ 3557 debug_info = gbl->error_stage; 3558 debug_info |= gbl->error_substage << 8; 3559 debug_info |= gbl->error_group << 16; 3560 writel(debug_info, &sdr_reg_file->failing_stage); 3561 } 3562 3563 printf("%s: Calibration complete\n", __FILE__); 3564 } 3565 3566 /** 3567 * hc_initialize_rom_data() - Initialize ROM data 3568 * 3569 * Initialize ROM data. 3570 */ 3571 static void hc_initialize_rom_data(void) 3572 { 3573 unsigned int nelem = 0; 3574 const u32 *rom_init; 3575 u32 i, addr; 3576 3577 socfpga_get_seq_inst_init(&rom_init, &nelem); 3578 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3579 for (i = 0; i < nelem; i++) 3580 writel(rom_init[i], addr + (i << 2)); 3581 3582 socfpga_get_seq_ac_init(&rom_init, &nelem); 3583 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3584 for (i = 0; i < nelem; i++) 3585 writel(rom_init[i], addr + (i << 2)); 3586 } 3587 3588 /** 3589 * initialize_reg_file() - Initialize SDR register file 3590 * 3591 * Initialize SDR register file. 3592 */ 3593 static void initialize_reg_file(void) 3594 { 3595 /* Initialize the register file with the correct data */ 3596 writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature); 3597 writel(0, &sdr_reg_file->debug_data_addr); 3598 writel(0, &sdr_reg_file->cur_stage); 3599 writel(0, &sdr_reg_file->fom); 3600 writel(0, &sdr_reg_file->failing_stage); 3601 writel(0, &sdr_reg_file->debug1); 3602 writel(0, &sdr_reg_file->debug2); 3603 } 3604 3605 /** 3606 * initialize_hps_phy() - Initialize HPS PHY 3607 * 3608 * Initialize HPS PHY. 3609 */ 3610 static void initialize_hps_phy(void) 3611 { 3612 u32 reg; 3613 /* 3614 * Tracking also gets configured here because it's in the 3615 * same register. 3616 */ 3617 u32 trk_sample_count = 7500; 3618 u32 trk_long_idle_sample_count = (10 << 16) | 100; 3619 /* 3620 * Format is number of outer loops in the 16 MSB, sample 3621 * count in 16 LSB. 3622 */ 3623 3624 reg = 0; 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3630 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3631 /* 3632 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3633 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3634 */ 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3637 trk_sample_count); 3638 writel(reg, &sdr_ctrl->phy_ctrl0); 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3642 trk_sample_count >> 3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3644 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3645 trk_long_idle_sample_count); 3646 writel(reg, &sdr_ctrl->phy_ctrl1); 3647 3648 reg = 0; 3649 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3650 trk_long_idle_sample_count >> 3651 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3652 writel(reg, &sdr_ctrl->phy_ctrl2); 3653 } 3654 3655 /** 3656 * initialize_tracking() - Initialize tracking 3657 * 3658 * Initialize the register file with usable initial data. 3659 */ 3660 static void initialize_tracking(void) 3661 { 3662 /* 3663 * Initialize the register file with the correct data. 3664 * Compute usable version of value in case we skip full 3665 * computation later. 3666 */ 3667 writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap, 3668 iocfg->delay_per_dchain_tap) - 1, 3669 &sdr_reg_file->dtaps_per_ptap); 3670 3671 /* trk_sample_count */ 3672 writel(7500, &sdr_reg_file->trk_sample_count); 3673 3674 /* longidle outer loop [15:0] */ 3675 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3676 3677 /* 3678 * longidle sample count [31:24] 3679 * trfc, worst case of 933Mhz 4Gb [23:16] 3680 * trcd, worst case [15:8] 3681 * vfifo wait [7:0] 3682 */ 3683 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3684 &sdr_reg_file->delays); 3685 3686 /* mux delay */ 3687 writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) | 3688 (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0), 3689 &sdr_reg_file->trk_rw_mgr_addr); 3690 3691 writel(rwcfg->mem_if_read_dqs_width, 3692 &sdr_reg_file->trk_read_dqs_width); 3693 3694 /* trefi [7:0] */ 3695 writel((rwcfg->refresh_all << 24) | (1000 << 0), 3696 &sdr_reg_file->trk_rfsh); 3697 } 3698 3699 int sdram_calibration_full(void) 3700 { 3701 struct param_type my_param; 3702 struct gbl_type my_gbl; 3703 u32 pass; 3704 3705 memset(&my_param, 0, sizeof(my_param)); 3706 memset(&my_gbl, 0, sizeof(my_gbl)); 3707 3708 param = &my_param; 3709 gbl = &my_gbl; 3710 3711 rwcfg = socfpga_get_sdram_rwmgr_config(); 3712 iocfg = socfpga_get_sdram_io_config(); 3713 misccfg = socfpga_get_sdram_misc_config(); 3714 3715 /* Set the calibration enabled by default */ 3716 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3717 /* 3718 * Only sweep all groups (regardless of fail state) by default 3719 * Set enabled read test by default. 3720 */ 3721 #if DISABLE_GUARANTEED_READ 3722 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3723 #endif 3724 /* Initialize the register file */ 3725 initialize_reg_file(); 3726 3727 /* Initialize any PHY CSR */ 3728 initialize_hps_phy(); 3729 3730 scc_mgr_initialize(); 3731 3732 initialize_tracking(); 3733 3734 printf("%s: Preparing to start memory calibration\n", __FILE__); 3735 3736 debug("%s:%d\n", __func__, __LINE__); 3737 debug_cond(DLEVEL == 1, 3738 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3739 rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm, 3740 rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs, 3741 rwcfg->mem_virtual_groups_per_read_dqs, 3742 rwcfg->mem_virtual_groups_per_write_dqs); 3743 debug_cond(DLEVEL == 1, 3744 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3745 rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width, 3746 rwcfg->mem_data_width, rwcfg->mem_data_mask_width, 3747 iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap); 3748 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3749 iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length); 3750 debug_cond(DLEVEL == 1, 3751 "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3752 iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max, 3753 iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max); 3754 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3755 iocfg->io_in_delay_max, iocfg->io_out1_delay_max, 3756 iocfg->io_out2_delay_max); 3757 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3758 iocfg->dqs_in_reserve, iocfg->dqs_out_reserve); 3759 3760 hc_initialize_rom_data(); 3761 3762 /* update info for sims */ 3763 reg_file_set_stage(CAL_STAGE_NIL); 3764 reg_file_set_group(0); 3765 3766 /* 3767 * Load global needed for those actions that require 3768 * some dynamic calibration support. 3769 */ 3770 dyn_calib_steps = STATIC_CALIB_STEPS; 3771 /* 3772 * Load global to allow dynamic selection of delay loop settings 3773 * based on calibration mode. 3774 */ 3775 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3776 skip_delay_mask = 0xff; 3777 else 3778 skip_delay_mask = 0x0; 3779 3780 pass = run_mem_calibrate(); 3781 debug_mem_calibrate(pass); 3782 return pass; 3783 } 3784