1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 /** 952 * rw_mgr_mem_initialize() - Initialize RW Manager 953 * 954 * Initialize RW Manager. 955 */ 956 static void rw_mgr_mem_initialize(void) 957 { 958 debug("%s:%d\n", __func__, __LINE__); 959 960 /* The reset / cke part of initialization is broadcasted to all ranks */ 961 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 962 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 963 964 /* 965 * Here's how you load register for a loop 966 * Counters are located @ 0x800 967 * Jump address are located @ 0xC00 968 * For both, registers 0 to 3 are selected using bits 3 and 2, like 969 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 970 * I know this ain't pretty, but Avalon bus throws away the 2 least 971 * significant bits 972 */ 973 974 /* Start with memory RESET activated */ 975 976 /* tINIT = 200us */ 977 978 /* 979 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 980 * If a and b are the number of iteration in 2 nested loops 981 * it takes the following number of cycles to complete the operation: 982 * number_of_cycles = ((2 + n) * a + 2) * b 983 * where n is the number of instruction in the inner loop 984 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 985 * b = 6A 986 */ 987 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 988 SEQ_TINIT_CNTR2_VAL, 989 RW_MGR_INIT_RESET_0_CKE_0); 990 991 /* Indicate that memory is stable. */ 992 writel(1, &phy_mgr_cfg->reset_mem_stbl); 993 994 /* 995 * transition the RESET to high 996 * Wait for 500us 997 */ 998 999 /* 1000 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1001 * If a and b are the number of iteration in 2 nested loops 1002 * it takes the following number of cycles to complete the operation 1003 * number_of_cycles = ((2 + n) * a + 2) * b 1004 * where n is the number of instruction in the inner loop 1005 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1006 * b = FF 1007 */ 1008 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1009 SEQ_TRESET_CNTR2_VAL, 1010 RW_MGR_INIT_RESET_1_CKE_0); 1011 1012 /* Bring up clock enable. */ 1013 1014 /* tXRP < 250 ck cycles */ 1015 delay_for_n_mem_clocks(250); 1016 1017 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1018 0); 1019 } 1020 1021 /* 1022 * At the end of calibration we have to program the user settings in, and 1023 * USER hand off the memory to the user. 1024 */ 1025 static void rw_mgr_mem_handoff(void) 1026 { 1027 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1028 /* 1029 * USER need to wait tMOD (12CK or 15ns) time before issuing 1030 * other commands, but we will have plenty of NIOS cycles before 1031 * actual handoff so its okay. 1032 */ 1033 } 1034 1035 /* 1036 * issue write test command. 1037 * two variants are provided. one that just tests a write pattern and 1038 * another that tests datamask functionality. 1039 */ 1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 1041 uint32_t test_dm) 1042 { 1043 uint32_t mcc_instruction; 1044 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 1045 ENABLE_SUPER_QUICK_CALIBRATION); 1046 uint32_t rw_wl_nop_cycles; 1047 uint32_t addr; 1048 1049 /* 1050 * Set counter and jump addresses for the right 1051 * number of NOP cycles. 1052 * The number of supported NOP cycles can range from -1 to infinity 1053 * Three different cases are handled: 1054 * 1055 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1056 * mechanism will be used to insert the right number of NOPs 1057 * 1058 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1059 * issuing the write command will jump straight to the 1060 * micro-instruction that turns on DQS (for DDRx), or outputs write 1061 * data (for RLD), skipping 1062 * the NOP micro-instruction all together 1063 * 1064 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1065 * turned on in the same micro-instruction that issues the write 1066 * command. Then we need 1067 * to directly jump to the micro-instruction that sends out the data 1068 * 1069 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1070 * (2 and 3). One jump-counter (0) is used to perform multiple 1071 * write-read operations. 1072 * one counter left to issue this command in "multiple-group" mode 1073 */ 1074 1075 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1076 1077 if (rw_wl_nop_cycles == -1) { 1078 /* 1079 * CNTR 2 - We want to execute the special write operation that 1080 * turns on DQS right away and then skip directly to the 1081 * instruction that sends out the data. We set the counter to a 1082 * large number so that the jump is always taken. 1083 */ 1084 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1085 1086 /* CNTR 3 - Not used */ 1087 if (test_dm) { 1088 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1089 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1091 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1092 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1093 } else { 1094 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1095 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1097 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1098 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1099 } 1100 } else if (rw_wl_nop_cycles == 0) { 1101 /* 1102 * CNTR 2 - We want to skip the NOP operation and go straight 1103 * to the DQS enable instruction. We set the counter to a large 1104 * number so that the jump is always taken. 1105 */ 1106 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1107 1108 /* CNTR 3 - Not used */ 1109 if (test_dm) { 1110 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1111 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1112 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1113 } else { 1114 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1115 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1116 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1117 } 1118 } else { 1119 /* 1120 * CNTR 2 - In this case we want to execute the next instruction 1121 * and NOT take the jump. So we set the counter to 0. The jump 1122 * address doesn't count. 1123 */ 1124 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1125 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1126 1127 /* 1128 * CNTR 3 - Set the nop counter to the number of cycles we 1129 * need to loop for, minus 1. 1130 */ 1131 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1132 if (test_dm) { 1133 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1134 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1135 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1136 } else { 1137 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1138 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1140 } 1141 } 1142 1143 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1144 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1145 1146 if (quick_write_mode) 1147 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1148 else 1149 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1150 1151 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1152 1153 /* 1154 * CNTR 1 - This is used to ensure enough time elapses 1155 * for read data to come back. 1156 */ 1157 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1158 1159 if (test_dm) { 1160 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1161 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1162 } else { 1163 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1165 } 1166 1167 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1168 writel(mcc_instruction, addr + (group << 2)); 1169 } 1170 1171 /* Test writes, can check for a single bit pass or multiple bit pass */ 1172 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 1173 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 1174 uint32_t *bit_chk, uint32_t all_ranks) 1175 { 1176 uint32_t r; 1177 uint32_t correct_mask_vg; 1178 uint32_t tmp_bit_chk; 1179 uint32_t vg; 1180 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1181 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1182 uint32_t addr_rw_mgr; 1183 uint32_t base_rw_mgr; 1184 1185 *bit_chk = param->write_correct_mask; 1186 correct_mask_vg = param->write_correct_mask_vg; 1187 1188 for (r = rank_bgn; r < rank_end; r++) { 1189 if (param->skip_ranks[r]) { 1190 /* request to skip the rank */ 1191 continue; 1192 } 1193 1194 /* set rank */ 1195 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1196 1197 tmp_bit_chk = 0; 1198 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 1199 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 1200 /* reset the fifos to get pointers to known state */ 1201 writel(0, &phy_mgr_cmd->fifo_reset); 1202 1203 tmp_bit_chk = tmp_bit_chk << 1204 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 1205 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 1206 rw_mgr_mem_calibrate_write_test_issue(write_group * 1207 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 1208 use_dm); 1209 1210 base_rw_mgr = readl(addr_rw_mgr); 1211 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1212 if (vg == 0) 1213 break; 1214 } 1215 *bit_chk &= tmp_bit_chk; 1216 } 1217 1218 if (all_correct) { 1219 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1220 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 1221 %u => %lu", write_group, use_dm, 1222 *bit_chk, param->write_correct_mask, 1223 (long unsigned int)(*bit_chk == 1224 param->write_correct_mask)); 1225 return *bit_chk == param->write_correct_mask; 1226 } else { 1227 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1228 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 1229 write_group, use_dm, *bit_chk); 1230 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 1231 (long unsigned int)(*bit_chk != 0)); 1232 return *bit_chk != 0x00; 1233 } 1234 } 1235 1236 /** 1237 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1238 * @rank_bgn: Rank number 1239 * @group: Read/Write Group 1240 * @all_ranks: Test all ranks 1241 * 1242 * Performs a guaranteed read on the patterns we are going to use during a 1243 * read test to ensure memory works. 1244 */ 1245 static int 1246 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1247 const u32 all_ranks) 1248 { 1249 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1250 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1251 const u32 addr_offset = 1252 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1253 const u32 rank_end = all_ranks ? 1254 RW_MGR_MEM_NUMBER_OF_RANKS : 1255 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1256 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1257 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1258 const u32 correct_mask_vg = param->read_correct_mask_vg; 1259 1260 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1261 int vg, r; 1262 int ret = 0; 1263 1264 bit_chk = param->read_correct_mask; 1265 1266 for (r = rank_bgn; r < rank_end; r++) { 1267 /* Request to skip the rank */ 1268 if (param->skip_ranks[r]) 1269 continue; 1270 1271 /* Set rank */ 1272 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1273 1274 /* Load up a constant bursts of read commands */ 1275 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1276 writel(RW_MGR_GUARANTEED_READ, 1277 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1278 1279 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1280 writel(RW_MGR_GUARANTEED_READ_CONT, 1281 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1282 1283 tmp_bit_chk = 0; 1284 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1285 vg >= 0; vg--) { 1286 /* Reset the FIFOs to get pointers to known state. */ 1287 writel(0, &phy_mgr_cmd->fifo_reset); 1288 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1289 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1290 writel(RW_MGR_GUARANTEED_READ, 1291 addr + addr_offset + (vg << 2)); 1292 1293 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1294 tmp_bit_chk <<= shift_ratio; 1295 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1296 } 1297 1298 bit_chk &= tmp_bit_chk; 1299 } 1300 1301 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1302 1303 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1304 1305 if (bit_chk != param->read_correct_mask) 1306 ret = -EIO; 1307 1308 debug_cond(DLEVEL == 1, 1309 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1310 __func__, __LINE__, group, bit_chk, 1311 param->read_correct_mask, ret); 1312 1313 return ret; 1314 } 1315 1316 /** 1317 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1318 * @rank_bgn: Rank number 1319 * @all_ranks: Test all ranks 1320 * 1321 * Load up the patterns we are going to use during a read test. 1322 */ 1323 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1324 const int all_ranks) 1325 { 1326 const u32 rank_end = all_ranks ? 1327 RW_MGR_MEM_NUMBER_OF_RANKS : 1328 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1329 u32 r; 1330 1331 debug("%s:%d\n", __func__, __LINE__); 1332 1333 for (r = rank_bgn; r < rank_end; r++) { 1334 if (param->skip_ranks[r]) 1335 /* request to skip the rank */ 1336 continue; 1337 1338 /* set rank */ 1339 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1340 1341 /* Load up a constant bursts */ 1342 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1343 1344 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1345 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1346 1347 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1348 1349 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1350 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1351 1352 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1353 1354 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1355 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1356 1357 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1358 1359 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1360 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1361 1362 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1363 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1364 } 1365 1366 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1367 } 1368 1369 /** 1370 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1371 * @rank_bgn: Rank number 1372 * @group: Read/Write group 1373 * @num_tries: Number of retries of the test 1374 * @all_correct: All bits must be correct in the mask 1375 * @bit_chk: Resulting bit mask after the test 1376 * @all_groups: Test all R/W groups 1377 * @all_ranks: Test all ranks 1378 * 1379 * Try a read and see if it returns correct data back. Test has dummy reads 1380 * inserted into the mix used to align DQS enable. Test has more thorough 1381 * checks than the regular read test. 1382 */ 1383 static int 1384 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1385 const u32 num_tries, const u32 all_correct, 1386 u32 *bit_chk, 1387 const u32 all_groups, const u32 all_ranks) 1388 { 1389 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1390 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1391 const u32 quick_read_mode = 1392 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1393 ENABLE_SUPER_QUICK_CALIBRATION); 1394 u32 correct_mask_vg = param->read_correct_mask_vg; 1395 u32 tmp_bit_chk; 1396 u32 base_rw_mgr; 1397 u32 addr; 1398 1399 int r, vg, ret; 1400 1401 *bit_chk = param->read_correct_mask; 1402 1403 for (r = rank_bgn; r < rank_end; r++) { 1404 if (param->skip_ranks[r]) 1405 /* request to skip the rank */ 1406 continue; 1407 1408 /* set rank */ 1409 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1410 1411 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1412 1413 writel(RW_MGR_READ_B2B_WAIT1, 1414 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1415 1416 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1417 writel(RW_MGR_READ_B2B_WAIT2, 1418 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1419 1420 if (quick_read_mode) 1421 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1422 /* need at least two (1+1) reads to capture failures */ 1423 else if (all_groups) 1424 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1425 else 1426 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1427 1428 writel(RW_MGR_READ_B2B, 1429 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1430 if (all_groups) 1431 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1432 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1433 &sdr_rw_load_mgr_regs->load_cntr3); 1434 else 1435 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1436 1437 writel(RW_MGR_READ_B2B, 1438 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1439 1440 tmp_bit_chk = 0; 1441 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1442 vg--) { 1443 /* Reset the FIFOs to get pointers to known state. */ 1444 writel(0, &phy_mgr_cmd->fifo_reset); 1445 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1446 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1447 1448 if (all_groups) { 1449 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1450 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1451 } else { 1452 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1453 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1454 } 1455 1456 writel(RW_MGR_READ_B2B, addr + 1457 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1458 vg) << 2)); 1459 1460 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1461 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1462 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1463 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1464 } 1465 1466 *bit_chk &= tmp_bit_chk; 1467 } 1468 1469 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1470 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1471 1472 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1473 1474 if (all_correct) { 1475 ret = (*bit_chk == param->read_correct_mask); 1476 debug_cond(DLEVEL == 2, 1477 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1478 __func__, __LINE__, group, all_groups, *bit_chk, 1479 param->read_correct_mask, ret); 1480 } else { 1481 ret = (*bit_chk != 0x00); 1482 debug_cond(DLEVEL == 2, 1483 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1484 __func__, __LINE__, group, all_groups, *bit_chk, 1485 0, ret); 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1493 * @grp: Read/Write group 1494 * @num_tries: Number of retries of the test 1495 * @all_correct: All bits must be correct in the mask 1496 * @all_groups: Test all R/W groups 1497 * 1498 * Perform a READ test across all memory ranks. 1499 */ 1500 static int 1501 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1502 const u32 all_correct, 1503 const u32 all_groups) 1504 { 1505 u32 bit_chk; 1506 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1507 &bit_chk, all_groups, 1); 1508 } 1509 1510 /** 1511 * rw_mgr_incr_vfifo() - Increase VFIFO value 1512 * @grp: Read/Write group 1513 * 1514 * Increase VFIFO value. 1515 */ 1516 static void rw_mgr_incr_vfifo(const u32 grp) 1517 { 1518 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1519 } 1520 1521 /** 1522 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1523 * @grp: Read/Write group 1524 * 1525 * Decrease VFIFO value. 1526 */ 1527 static void rw_mgr_decr_vfifo(const u32 grp) 1528 { 1529 u32 i; 1530 1531 for (i = 0; i < VFIFO_SIZE - 1; i++) 1532 rw_mgr_incr_vfifo(grp); 1533 } 1534 1535 /** 1536 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1537 * @grp: Read/Write group 1538 * 1539 * Push VFIFO until a failing read happens. 1540 */ 1541 static int find_vfifo_failing_read(const u32 grp) 1542 { 1543 u32 v, ret, fail_cnt = 0; 1544 1545 for (v = 0; v < VFIFO_SIZE; v++) { 1546 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1547 __func__, __LINE__, v); 1548 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1549 PASS_ONE_BIT, 0); 1550 if (!ret) { 1551 fail_cnt++; 1552 1553 if (fail_cnt == 2) 1554 return v; 1555 } 1556 1557 /* Fiddle with FIFO. */ 1558 rw_mgr_incr_vfifo(grp); 1559 } 1560 1561 /* No failing read found! Something must have gone wrong. */ 1562 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1563 return 0; 1564 } 1565 1566 /** 1567 * sdr_find_phase_delay() - Find DQS enable phase or delay 1568 * @working: If 1, look for working phase/delay, if 0, look for non-working 1569 * @delay: If 1, look for delay, if 0, look for phase 1570 * @grp: Read/Write group 1571 * @work: Working window position 1572 * @work_inc: Working window increment 1573 * @pd: DQS Phase/Delay Iterator 1574 * 1575 * Find working or non-working DQS enable phase setting. 1576 */ 1577 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1578 u32 *work, const u32 work_inc, u32 *pd) 1579 { 1580 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1581 u32 ret; 1582 1583 for (; *pd <= max; (*pd)++) { 1584 if (delay) 1585 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1586 else 1587 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1588 1589 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1590 PASS_ONE_BIT, 0); 1591 if (!working) 1592 ret = !ret; 1593 1594 if (ret) 1595 return 0; 1596 1597 if (work) 1598 *work += work_inc; 1599 } 1600 1601 return -EINVAL; 1602 } 1603 /** 1604 * sdr_find_phase() - Find DQS enable phase 1605 * @working: If 1, look for working phase, if 0, look for non-working phase 1606 * @grp: Read/Write group 1607 * @work: Working window position 1608 * @i: Iterator 1609 * @p: DQS Phase Iterator 1610 * 1611 * Find working or non-working DQS enable phase setting. 1612 */ 1613 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1614 u32 *i, u32 *p) 1615 { 1616 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1617 int ret; 1618 1619 for (; *i < end; (*i)++) { 1620 if (working) 1621 *p = 0; 1622 1623 ret = sdr_find_phase_delay(working, 0, grp, work, 1624 IO_DELAY_PER_OPA_TAP, p); 1625 if (!ret) 1626 return 0; 1627 1628 if (*p > IO_DQS_EN_PHASE_MAX) { 1629 /* Fiddle with FIFO. */ 1630 rw_mgr_incr_vfifo(grp); 1631 if (!working) 1632 *p = 0; 1633 } 1634 } 1635 1636 return -EINVAL; 1637 } 1638 1639 /** 1640 * sdr_working_phase() - Find working DQS enable phase 1641 * @grp: Read/Write group 1642 * @work_bgn: Working window start position 1643 * @d: dtaps output value 1644 * @p: DQS Phase Iterator 1645 * @i: Iterator 1646 * 1647 * Find working DQS enable phase setting. 1648 */ 1649 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1650 u32 *p, u32 *i) 1651 { 1652 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1653 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1654 int ret; 1655 1656 *work_bgn = 0; 1657 1658 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1659 *i = 0; 1660 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1661 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1662 if (!ret) 1663 return 0; 1664 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1665 } 1666 1667 /* Cannot find working solution */ 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1669 __func__, __LINE__); 1670 return -EINVAL; 1671 } 1672 1673 /** 1674 * sdr_backup_phase() - Find DQS enable backup phase 1675 * @grp: Read/Write group 1676 * @work_bgn: Working window start position 1677 * @p: DQS Phase Iterator 1678 * 1679 * Find DQS enable backup phase setting. 1680 */ 1681 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1682 { 1683 u32 tmp_delay, d; 1684 int ret; 1685 1686 /* Special case code for backing up a phase */ 1687 if (*p == 0) { 1688 *p = IO_DQS_EN_PHASE_MAX; 1689 rw_mgr_decr_vfifo(grp); 1690 } else { 1691 (*p)--; 1692 } 1693 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1694 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1695 1696 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1697 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1698 1699 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1700 PASS_ONE_BIT, 0); 1701 if (ret) { 1702 *work_bgn = tmp_delay; 1703 break; 1704 } 1705 1706 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1707 } 1708 1709 /* Restore VFIFO to old state before we decremented it (if needed). */ 1710 (*p)++; 1711 if (*p > IO_DQS_EN_PHASE_MAX) { 1712 *p = 0; 1713 rw_mgr_incr_vfifo(grp); 1714 } 1715 1716 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1717 } 1718 1719 /** 1720 * sdr_nonworking_phase() - Find non-working DQS enable phase 1721 * @grp: Read/Write group 1722 * @work_end: Working window end position 1723 * @p: DQS Phase Iterator 1724 * @i: Iterator 1725 * 1726 * Find non-working DQS enable phase setting. 1727 */ 1728 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1729 { 1730 int ret; 1731 1732 (*p)++; 1733 *work_end += IO_DELAY_PER_OPA_TAP; 1734 if (*p > IO_DQS_EN_PHASE_MAX) { 1735 /* Fiddle with FIFO. */ 1736 *p = 0; 1737 rw_mgr_incr_vfifo(grp); 1738 } 1739 1740 ret = sdr_find_phase(0, grp, work_end, i, p); 1741 if (ret) { 1742 /* Cannot see edge of failing read. */ 1743 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1744 __func__, __LINE__); 1745 } 1746 1747 return ret; 1748 } 1749 1750 /** 1751 * sdr_find_window_center() - Find center of the working DQS window. 1752 * @grp: Read/Write group 1753 * @work_bgn: First working settings 1754 * @work_end: Last working settings 1755 * 1756 * Find center of the working DQS enable window. 1757 */ 1758 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1759 const u32 work_end) 1760 { 1761 u32 work_mid; 1762 int tmp_delay = 0; 1763 int i, p, d; 1764 1765 work_mid = (work_bgn + work_end) / 2; 1766 1767 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1768 work_bgn, work_end, work_mid); 1769 /* Get the middle delay to be less than a VFIFO delay */ 1770 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1771 1772 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1773 work_mid %= tmp_delay; 1774 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1775 1776 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1777 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1778 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1779 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1780 1781 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1782 1783 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1784 if (d > IO_DQS_EN_DELAY_MAX) 1785 d = IO_DQS_EN_DELAY_MAX; 1786 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1787 1788 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1789 1790 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1791 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1792 1793 /* 1794 * push vfifo until we can successfully calibrate. We can do this 1795 * because the largest possible margin in 1 VFIFO cycle. 1796 */ 1797 for (i = 0; i < VFIFO_SIZE; i++) { 1798 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1799 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1800 PASS_ONE_BIT, 1801 0)) { 1802 debug_cond(DLEVEL == 2, 1803 "%s:%d center: found: ptap=%u dtap=%u\n", 1804 __func__, __LINE__, p, d); 1805 return 0; 1806 } 1807 1808 /* Fiddle with FIFO. */ 1809 rw_mgr_incr_vfifo(grp); 1810 } 1811 1812 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1813 __func__, __LINE__); 1814 return -EINVAL; 1815 } 1816 1817 /** 1818 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1819 * @grp: Read/Write Group 1820 * 1821 * Find a good DQS enable to use. 1822 */ 1823 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1824 { 1825 u32 d, p, i; 1826 u32 dtaps_per_ptap; 1827 u32 work_bgn, work_end; 1828 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1829 int ret; 1830 1831 debug("%s:%d %u\n", __func__, __LINE__, grp); 1832 1833 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1834 1835 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1836 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1837 1838 /* Step 0: Determine number of delay taps for each phase tap. */ 1839 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1840 1841 /* Step 1: First push vfifo until we get a failing read. */ 1842 find_vfifo_failing_read(grp); 1843 1844 /* Step 2: Find first working phase, increment in ptaps. */ 1845 work_bgn = 0; 1846 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1847 if (ret) 1848 return ret; 1849 1850 work_end = work_bgn; 1851 1852 /* 1853 * If d is 0 then the working window covers a phase tap and we can 1854 * follow the old procedure. Otherwise, we've found the beginning 1855 * and we need to increment the dtaps until we find the end. 1856 */ 1857 if (d == 0) { 1858 /* 1859 * Step 3a: If we have room, back off by one and 1860 * increment in dtaps. 1861 */ 1862 sdr_backup_phase(grp, &work_bgn, &p); 1863 1864 /* 1865 * Step 4a: go forward from working phase to non working 1866 * phase, increment in ptaps. 1867 */ 1868 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1869 if (ret) 1870 return ret; 1871 1872 /* Step 5a: Back off one from last, increment in dtaps. */ 1873 1874 /* Special case code for backing up a phase */ 1875 if (p == 0) { 1876 p = IO_DQS_EN_PHASE_MAX; 1877 rw_mgr_decr_vfifo(grp); 1878 } else { 1879 p = p - 1; 1880 } 1881 1882 work_end -= IO_DELAY_PER_OPA_TAP; 1883 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1884 1885 d = 0; 1886 1887 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1888 __func__, __LINE__, p); 1889 } 1890 1891 /* The dtap increment to find the failing edge is done here. */ 1892 sdr_find_phase_delay(0, 1, grp, &work_end, 1893 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1894 1895 /* Go back to working dtap */ 1896 if (d != 0) 1897 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1898 1899 debug_cond(DLEVEL == 2, 1900 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1901 __func__, __LINE__, p, d - 1, work_end); 1902 1903 if (work_end < work_bgn) { 1904 /* nil range */ 1905 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1906 __func__, __LINE__); 1907 return -EINVAL; 1908 } 1909 1910 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1911 __func__, __LINE__, work_bgn, work_end); 1912 1913 /* 1914 * We need to calculate the number of dtaps that equal a ptap. 1915 * To do that we'll back up a ptap and re-find the edge of the 1916 * window using dtaps 1917 */ 1918 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1919 __func__, __LINE__); 1920 1921 /* Special case code for backing up a phase */ 1922 if (p == 0) { 1923 p = IO_DQS_EN_PHASE_MAX; 1924 rw_mgr_decr_vfifo(grp); 1925 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1926 __func__, __LINE__, p); 1927 } else { 1928 p = p - 1; 1929 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1930 __func__, __LINE__, p); 1931 } 1932 1933 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1934 1935 /* 1936 * Increase dtap until we first see a passing read (in case the 1937 * window is smaller than a ptap), and then a failing read to 1938 * mark the edge of the window again. 1939 */ 1940 1941 /* Find a passing read. */ 1942 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1943 __func__, __LINE__); 1944 1945 initial_failing_dtap = d; 1946 1947 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1948 if (found_passing_read) { 1949 /* Find a failing read. */ 1950 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1951 __func__, __LINE__); 1952 d++; 1953 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1954 &d); 1955 } else { 1956 debug_cond(DLEVEL == 1, 1957 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1958 __func__, __LINE__); 1959 } 1960 1961 /* 1962 * The dynamically calculated dtaps_per_ptap is only valid if we 1963 * found a passing/failing read. If we didn't, it means d hit the max 1964 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1965 * statically calculated value. 1966 */ 1967 if (found_passing_read && found_failing_read) 1968 dtaps_per_ptap = d - initial_failing_dtap; 1969 1970 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1971 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1972 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1973 1974 /* Step 6: Find the centre of the window. */ 1975 ret = sdr_find_window_center(grp, work_bgn, work_end); 1976 1977 return ret; 1978 } 1979 1980 /** 1981 * search_stop_check() - Check if the detected edge is valid 1982 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1983 * @d: DQS delay 1984 * @rank_bgn: Rank number 1985 * @write_group: Write Group 1986 * @read_group: Read Group 1987 * @bit_chk: Resulting bit mask after the test 1988 * @sticky_bit_chk: Resulting sticky bit mask after the test 1989 * @use_read_test: Perform read test 1990 * 1991 * Test if the found edge is valid. 1992 */ 1993 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1994 const u32 write_group, const u32 read_group, 1995 u32 *bit_chk, u32 *sticky_bit_chk, 1996 const u32 use_read_test) 1997 { 1998 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 1999 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2000 const u32 correct_mask = write ? param->write_correct_mask : 2001 param->read_correct_mask; 2002 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2003 RW_MGR_MEM_DQ_PER_READ_DQS; 2004 u32 ret; 2005 /* 2006 * Stop searching when the read test doesn't pass AND when 2007 * we've seen a passing read on every bit. 2008 */ 2009 if (write) { /* WRITE-ONLY */ 2010 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2011 0, PASS_ONE_BIT, 2012 bit_chk, 0); 2013 } else if (use_read_test) { /* READ-ONLY */ 2014 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2015 NUM_READ_PB_TESTS, 2016 PASS_ONE_BIT, bit_chk, 2017 0, 0); 2018 } else { /* READ-ONLY */ 2019 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2020 PASS_ONE_BIT, bit_chk, 0); 2021 *bit_chk = *bit_chk >> (per_dqs * 2022 (read_group - (write_group * ratio))); 2023 ret = (*bit_chk == 0); 2024 } 2025 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2026 ret = ret && (*sticky_bit_chk == correct_mask); 2027 debug_cond(DLEVEL == 2, 2028 "%s:%d center(left): dtap=%u => %u == %u && %u", 2029 __func__, __LINE__, d, 2030 *sticky_bit_chk, correct_mask, ret); 2031 return ret; 2032 } 2033 2034 /** 2035 * search_left_edge() - Find left edge of DQ/DQS working phase 2036 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2037 * @rank_bgn: Rank number 2038 * @write_group: Write Group 2039 * @read_group: Read Group 2040 * @test_bgn: Rank number to begin the test 2041 * @sticky_bit_chk: Resulting sticky bit mask after the test 2042 * @left_edge: Left edge of the DQ/DQS phase 2043 * @right_edge: Right edge of the DQ/DQS phase 2044 * @use_read_test: Perform read test 2045 * 2046 * Find left edge of DQ/DQS working phase. 2047 */ 2048 static void search_left_edge(const int write, const int rank_bgn, 2049 const u32 write_group, const u32 read_group, const u32 test_bgn, 2050 u32 *sticky_bit_chk, 2051 int *left_edge, int *right_edge, const u32 use_read_test) 2052 { 2053 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2054 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2055 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2056 RW_MGR_MEM_DQ_PER_READ_DQS; 2057 u32 stop, bit_chk; 2058 int i, d; 2059 2060 for (d = 0; d <= dqs_max; d++) { 2061 if (write) 2062 scc_mgr_apply_group_dq_out1_delay(d); 2063 else 2064 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2065 2066 writel(0, &sdr_scc_mgr->update); 2067 2068 stop = search_stop_check(write, d, rank_bgn, write_group, 2069 read_group, &bit_chk, sticky_bit_chk, 2070 use_read_test); 2071 if (stop == 1) 2072 break; 2073 2074 /* stop != 1 */ 2075 for (i = 0; i < per_dqs; i++) { 2076 if (bit_chk & 1) { 2077 /* 2078 * Remember a passing test as 2079 * the left_edge. 2080 */ 2081 left_edge[i] = d; 2082 } else { 2083 /* 2084 * If a left edge has not been seen 2085 * yet, then a future passing test 2086 * will mark this edge as the right 2087 * edge. 2088 */ 2089 if (left_edge[i] == delay_max + 1) 2090 right_edge[i] = -(d + 1); 2091 } 2092 bit_chk >>= 1; 2093 } 2094 } 2095 2096 /* Reset DQ delay chains to 0 */ 2097 if (write) 2098 scc_mgr_apply_group_dq_out1_delay(0); 2099 else 2100 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2101 2102 *sticky_bit_chk = 0; 2103 for (i = per_dqs - 1; i >= 0; i--) { 2104 debug_cond(DLEVEL == 2, 2105 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2106 __func__, __LINE__, i, left_edge[i], 2107 i, right_edge[i]); 2108 2109 /* 2110 * Check for cases where we haven't found the left edge, 2111 * which makes our assignment of the the right edge invalid. 2112 * Reset it to the illegal value. 2113 */ 2114 if ((left_edge[i] == delay_max + 1) && 2115 (right_edge[i] != delay_max + 1)) { 2116 right_edge[i] = delay_max + 1; 2117 debug_cond(DLEVEL == 2, 2118 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2119 __func__, __LINE__, i, right_edge[i]); 2120 } 2121 2122 /* 2123 * Reset sticky bit 2124 * READ: except for bits where we have seen both 2125 * the left and right edge. 2126 * WRITE: except for bits where we have seen the 2127 * left edge. 2128 */ 2129 *sticky_bit_chk <<= 1; 2130 if (write) { 2131 if (left_edge[i] != delay_max + 1) 2132 *sticky_bit_chk |= 1; 2133 } else { 2134 if ((left_edge[i] != delay_max + 1) && 2135 (right_edge[i] != delay_max + 1)) 2136 *sticky_bit_chk |= 1; 2137 } 2138 } 2139 2140 2141 } 2142 2143 /** 2144 * search_right_edge() - Find right edge of DQ/DQS working phase 2145 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2146 * @rank_bgn: Rank number 2147 * @write_group: Write Group 2148 * @read_group: Read Group 2149 * @start_dqs: DQS start phase 2150 * @start_dqs_en: DQS enable start phase 2151 * @sticky_bit_chk: Resulting sticky bit mask after the test 2152 * @left_edge: Left edge of the DQ/DQS phase 2153 * @right_edge: Right edge of the DQ/DQS phase 2154 * @use_read_test: Perform read test 2155 * 2156 * Find right edge of DQ/DQS working phase. 2157 */ 2158 static int search_right_edge(const int write, const int rank_bgn, 2159 const u32 write_group, const u32 read_group, 2160 const int start_dqs, const int start_dqs_en, 2161 u32 *sticky_bit_chk, 2162 int *left_edge, int *right_edge, const u32 use_read_test) 2163 { 2164 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2165 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2166 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2167 RW_MGR_MEM_DQ_PER_READ_DQS; 2168 u32 stop, bit_chk; 2169 int i, d; 2170 2171 for (d = 0; d <= dqs_max - start_dqs; d++) { 2172 if (write) { /* WRITE-ONLY */ 2173 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2174 d + start_dqs); 2175 } else { /* READ-ONLY */ 2176 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2177 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2178 uint32_t delay = d + start_dqs_en; 2179 if (delay > IO_DQS_EN_DELAY_MAX) 2180 delay = IO_DQS_EN_DELAY_MAX; 2181 scc_mgr_set_dqs_en_delay(read_group, delay); 2182 } 2183 scc_mgr_load_dqs(read_group); 2184 } 2185 2186 writel(0, &sdr_scc_mgr->update); 2187 2188 stop = search_stop_check(write, d, rank_bgn, write_group, 2189 read_group, &bit_chk, sticky_bit_chk, 2190 use_read_test); 2191 if (stop == 1) { 2192 if (write && (d == 0)) { /* WRITE-ONLY */ 2193 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2194 /* 2195 * d = 0 failed, but it passed when 2196 * testing the left edge, so it must be 2197 * marginal, set it to -1 2198 */ 2199 if (right_edge[i] == delay_max + 1 && 2200 left_edge[i] != delay_max + 1) 2201 right_edge[i] = -1; 2202 } 2203 } 2204 break; 2205 } 2206 2207 /* stop != 1 */ 2208 for (i = 0; i < per_dqs; i++) { 2209 if (bit_chk & 1) { 2210 /* 2211 * Remember a passing test as 2212 * the right_edge. 2213 */ 2214 right_edge[i] = d; 2215 } else { 2216 if (d != 0) { 2217 /* 2218 * If a right edge has not 2219 * been seen yet, then a future 2220 * passing test will mark this 2221 * edge as the left edge. 2222 */ 2223 if (right_edge[i] == delay_max + 1) 2224 left_edge[i] = -(d + 1); 2225 } else { 2226 /* 2227 * d = 0 failed, but it passed 2228 * when testing the left edge, 2229 * so it must be marginal, set 2230 * it to -1 2231 */ 2232 if (right_edge[i] == delay_max + 1 && 2233 left_edge[i] != delay_max + 1) 2234 right_edge[i] = -1; 2235 /* 2236 * If a right edge has not been 2237 * seen yet, then a future 2238 * passing test will mark this 2239 * edge as the left edge. 2240 */ 2241 else if (right_edge[i] == delay_max + 1) 2242 left_edge[i] = -(d + 1); 2243 } 2244 } 2245 2246 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2247 __func__, __LINE__, d); 2248 debug_cond(DLEVEL == 2, 2249 "bit_chk_test=%i left_edge[%u]: %d ", 2250 bit_chk & 1, i, left_edge[i]); 2251 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2252 right_edge[i]); 2253 bit_chk >>= 1; 2254 } 2255 } 2256 2257 /* Check that all bits have a window */ 2258 for (i = 0; i < per_dqs; i++) { 2259 debug_cond(DLEVEL == 2, 2260 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2261 __func__, __LINE__, i, left_edge[i], 2262 i, right_edge[i]); 2263 if ((left_edge[i] == dqs_max + 1) || 2264 (right_edge[i] == dqs_max + 1)) 2265 return i + 1; /* FIXME: If we fail, retval > 0 */ 2266 } 2267 2268 return 0; 2269 } 2270 2271 /** 2272 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2273 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2274 * @left_edge: Left edge of the DQ/DQS phase 2275 * @right_edge: Right edge of the DQ/DQS phase 2276 * @mid_min: Best DQ/DQS phase middle setting 2277 * 2278 * Find index and value of the middle of the DQ/DQS working phase. 2279 */ 2280 static int get_window_mid_index(const int write, int *left_edge, 2281 int *right_edge, int *mid_min) 2282 { 2283 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2284 RW_MGR_MEM_DQ_PER_READ_DQS; 2285 int i, mid, min_index; 2286 2287 /* Find middle of window for each DQ bit */ 2288 *mid_min = left_edge[0] - right_edge[0]; 2289 min_index = 0; 2290 for (i = 1; i < per_dqs; i++) { 2291 mid = left_edge[i] - right_edge[i]; 2292 if (mid < *mid_min) { 2293 *mid_min = mid; 2294 min_index = i; 2295 } 2296 } 2297 2298 /* 2299 * -mid_min/2 represents the amount that we need to move DQS. 2300 * If mid_min is odd and positive we'll need to add one to make 2301 * sure the rounding in further calculations is correct (always 2302 * bias to the right), so just add 1 for all positive values. 2303 */ 2304 if (*mid_min > 0) 2305 (*mid_min)++; 2306 *mid_min = *mid_min / 2; 2307 2308 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2309 __func__, __LINE__, *mid_min, min_index); 2310 return min_index; 2311 } 2312 2313 /** 2314 * center_dq_windows() - Center the DQ/DQS windows 2315 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2316 * @left_edge: Left edge of the DQ/DQS phase 2317 * @right_edge: Right edge of the DQ/DQS phase 2318 * @mid_min: Adjusted DQ/DQS phase middle setting 2319 * @orig_mid_min: Original DQ/DQS phase middle setting 2320 * @min_index: DQ/DQS phase middle setting index 2321 * @test_bgn: Rank number to begin the test 2322 * @dq_margin: Amount of shift for the DQ 2323 * @dqs_margin: Amount of shift for the DQS 2324 * 2325 * Align the DQ/DQS windows in each group. 2326 */ 2327 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2328 const int mid_min, const int orig_mid_min, 2329 const int min_index, const int test_bgn, 2330 int *dq_margin, int *dqs_margin) 2331 { 2332 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2333 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2334 RW_MGR_MEM_DQ_PER_READ_DQS; 2335 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2336 SCC_MGR_IO_IN_DELAY_OFFSET; 2337 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2338 2339 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2340 int shift_dq, i, p; 2341 2342 /* Initialize data for export structures */ 2343 *dqs_margin = delay_max + 1; 2344 *dq_margin = delay_max + 1; 2345 2346 /* add delay to bring centre of all DQ windows to the same "level" */ 2347 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2348 /* Use values before divide by 2 to reduce round off error */ 2349 shift_dq = (left_edge[i] - right_edge[i] - 2350 (left_edge[min_index] - right_edge[min_index]))/2 + 2351 (orig_mid_min - mid_min); 2352 2353 debug_cond(DLEVEL == 2, 2354 "vfifo_center: before: shift_dq[%u]=%d\n", 2355 i, shift_dq); 2356 2357 temp_dq_io_delay1 = readl(addr + (p << 2)); 2358 temp_dq_io_delay2 = readl(addr + (i << 2)); 2359 2360 if (shift_dq + temp_dq_io_delay1 > delay_max) 2361 shift_dq = delay_max - temp_dq_io_delay2; 2362 else if (shift_dq + temp_dq_io_delay1 < 0) 2363 shift_dq = -temp_dq_io_delay1; 2364 2365 debug_cond(DLEVEL == 2, 2366 "vfifo_center: after: shift_dq[%u]=%d\n", 2367 i, shift_dq); 2368 2369 if (write) 2370 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2371 else 2372 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2373 2374 scc_mgr_load_dq(p); 2375 2376 debug_cond(DLEVEL == 2, 2377 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2378 left_edge[i] - shift_dq + (-mid_min), 2379 right_edge[i] + shift_dq - (-mid_min)); 2380 2381 /* To determine values for export structures */ 2382 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2383 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2384 2385 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2386 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2387 } 2388 2389 } 2390 2391 /** 2392 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2393 * @rank_bgn: Rank number 2394 * @rw_group: Read/Write Group 2395 * @test_bgn: Rank at which the test begins 2396 * @use_read_test: Perform a read test 2397 * @update_fom: Update FOM 2398 * 2399 * Per-bit deskew DQ and centering. 2400 */ 2401 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2402 const u32 rw_group, const u32 test_bgn, 2403 const int use_read_test, const int update_fom) 2404 { 2405 const u32 addr = 2406 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2407 (rw_group << 2); 2408 /* 2409 * Store these as signed since there are comparisons with 2410 * signed numbers. 2411 */ 2412 uint32_t sticky_bit_chk; 2413 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2414 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2415 int32_t orig_mid_min, mid_min; 2416 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2417 int32_t dq_margin, dqs_margin; 2418 int i, min_index; 2419 int ret; 2420 2421 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2422 2423 start_dqs = readl(addr); 2424 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2425 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2426 2427 /* set the left and right edge of each bit to an illegal value */ 2428 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2429 sticky_bit_chk = 0; 2430 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2431 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2432 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2433 } 2434 2435 /* Search for the left edge of the window for each bit */ 2436 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2437 &sticky_bit_chk, 2438 left_edge, right_edge, use_read_test); 2439 2440 2441 /* Search for the right edge of the window for each bit */ 2442 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2443 start_dqs, start_dqs_en, 2444 &sticky_bit_chk, 2445 left_edge, right_edge, use_read_test); 2446 if (ret) { 2447 /* 2448 * Restore delay chain settings before letting the loop 2449 * in rw_mgr_mem_calibrate_vfifo to retry different 2450 * dqs/ck relationships. 2451 */ 2452 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2453 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2454 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2455 2456 scc_mgr_load_dqs(rw_group); 2457 writel(0, &sdr_scc_mgr->update); 2458 2459 debug_cond(DLEVEL == 1, 2460 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2461 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2462 if (use_read_test) { 2463 set_failing_group_stage(rw_group * 2464 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2465 CAL_STAGE_VFIFO, 2466 CAL_SUBSTAGE_VFIFO_CENTER); 2467 } else { 2468 set_failing_group_stage(rw_group * 2469 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2470 CAL_STAGE_VFIFO_AFTER_WRITES, 2471 CAL_SUBSTAGE_VFIFO_CENTER); 2472 } 2473 return -EIO; 2474 } 2475 2476 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2477 2478 /* Determine the amount we can change DQS (which is -mid_min) */ 2479 orig_mid_min = mid_min; 2480 new_dqs = start_dqs - mid_min; 2481 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2482 new_dqs = IO_DQS_IN_DELAY_MAX; 2483 else if (new_dqs < 0) 2484 new_dqs = 0; 2485 2486 mid_min = start_dqs - new_dqs; 2487 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2488 mid_min, new_dqs); 2489 2490 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2491 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2492 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2493 else if (start_dqs_en - mid_min < 0) 2494 mid_min += start_dqs_en - mid_min; 2495 } 2496 new_dqs = start_dqs - mid_min; 2497 2498 debug_cond(DLEVEL == 1, 2499 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2500 start_dqs, 2501 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2502 new_dqs, mid_min); 2503 2504 /* Add delay to bring centre of all DQ windows to the same "level". */ 2505 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2506 min_index, test_bgn, &dq_margin, &dqs_margin); 2507 2508 /* Move DQS-en */ 2509 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2510 final_dqs_en = start_dqs_en - mid_min; 2511 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2512 scc_mgr_load_dqs(rw_group); 2513 } 2514 2515 /* Move DQS */ 2516 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2517 scc_mgr_load_dqs(rw_group); 2518 debug_cond(DLEVEL == 2, 2519 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2520 __func__, __LINE__, dq_margin, dqs_margin); 2521 2522 /* 2523 * Do not remove this line as it makes sure all of our decisions 2524 * have been applied. Apply the update bit. 2525 */ 2526 writel(0, &sdr_scc_mgr->update); 2527 2528 if ((dq_margin < 0) || (dqs_margin < 0)) 2529 return -EINVAL; 2530 2531 return 0; 2532 } 2533 2534 /** 2535 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2536 * @rw_group: Read/Write Group 2537 * @phase: DQ/DQS phase 2538 * 2539 * Because initially no communication ca be reliably performed with the memory 2540 * device, the sequencer uses a guaranteed write mechanism to write data into 2541 * the memory device. 2542 */ 2543 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2544 const u32 phase) 2545 { 2546 int ret; 2547 2548 /* Set a particular DQ/DQS phase. */ 2549 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2550 2551 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2552 __func__, __LINE__, rw_group, phase); 2553 2554 /* 2555 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2556 * Load up the patterns used by read calibration using the 2557 * current DQDQS phase. 2558 */ 2559 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2560 2561 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2562 return 0; 2563 2564 /* 2565 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2566 * Back-to-Back reads of the patterns used for calibration. 2567 */ 2568 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2569 if (ret) 2570 debug_cond(DLEVEL == 1, 2571 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2572 __func__, __LINE__, rw_group, phase); 2573 return ret; 2574 } 2575 2576 /** 2577 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2578 * @rw_group: Read/Write Group 2579 * @test_bgn: Rank at which the test begins 2580 * 2581 * DQS enable calibration ensures reliable capture of the DQ signal without 2582 * glitches on the DQS line. 2583 */ 2584 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2585 const u32 test_bgn) 2586 { 2587 /* 2588 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2589 * DQS and DQS Eanble Signal Relationships. 2590 */ 2591 2592 /* We start at zero, so have one less dq to devide among */ 2593 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2594 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2595 int ret; 2596 u32 i, p, d, r; 2597 2598 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2599 2600 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2601 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2602 r += NUM_RANKS_PER_SHADOW_REG) { 2603 for (i = 0, p = test_bgn, d = 0; 2604 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2605 i++, p++, d += delay_step) { 2606 debug_cond(DLEVEL == 1, 2607 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2608 __func__, __LINE__, rw_group, r, i, p, d); 2609 2610 scc_mgr_set_dq_in_delay(p, d); 2611 scc_mgr_load_dq(p); 2612 } 2613 2614 writel(0, &sdr_scc_mgr->update); 2615 } 2616 2617 /* 2618 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2619 * dq_in_delay values 2620 */ 2621 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2622 2623 debug_cond(DLEVEL == 1, 2624 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2625 __func__, __LINE__, rw_group, !ret); 2626 2627 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2628 r += NUM_RANKS_PER_SHADOW_REG) { 2629 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2630 writel(0, &sdr_scc_mgr->update); 2631 } 2632 2633 return ret; 2634 } 2635 2636 /** 2637 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2638 * @rw_group: Read/Write Group 2639 * @test_bgn: Rank at which the test begins 2640 * @use_read_test: Perform a read test 2641 * @update_fom: Update FOM 2642 * 2643 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2644 * within a group. 2645 */ 2646 static int 2647 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2648 const int use_read_test, 2649 const int update_fom) 2650 2651 { 2652 int ret, grp_calibrated; 2653 u32 rank_bgn, sr; 2654 2655 /* 2656 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2657 * Read per-bit deskew can be done on a per shadow register basis. 2658 */ 2659 grp_calibrated = 1; 2660 for (rank_bgn = 0, sr = 0; 2661 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2662 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2663 /* Check if this set of ranks should be skipped entirely. */ 2664 if (param->skip_shadow_regs[sr]) 2665 continue; 2666 2667 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2668 test_bgn, 2669 use_read_test, 2670 update_fom); 2671 if (!ret) 2672 continue; 2673 2674 grp_calibrated = 0; 2675 } 2676 2677 if (!grp_calibrated) 2678 return -EIO; 2679 2680 return 0; 2681 } 2682 2683 /** 2684 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2685 * @rw_group: Read/Write Group 2686 * @test_bgn: Rank at which the test begins 2687 * 2688 * Stage 1: Calibrate the read valid prediction FIFO. 2689 * 2690 * This function implements UniPHY calibration Stage 1, as explained in 2691 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2692 * 2693 * - read valid prediction will consist of finding: 2694 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2695 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2696 * - we also do a per-bit deskew on the DQ lines. 2697 */ 2698 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2699 { 2700 uint32_t p, d; 2701 uint32_t dtaps_per_ptap; 2702 uint32_t failed_substage; 2703 2704 int ret; 2705 2706 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2707 2708 /* Update info for sims */ 2709 reg_file_set_group(rw_group); 2710 reg_file_set_stage(CAL_STAGE_VFIFO); 2711 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2712 2713 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2714 2715 /* USER Determine number of delay taps for each phase tap. */ 2716 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2717 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2718 2719 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2720 /* 2721 * In RLDRAMX we may be messing the delay of pins in 2722 * the same write rw_group but outside of the current read 2723 * the rw_group, but that's ok because we haven't calibrated 2724 * output side yet. 2725 */ 2726 if (d > 0) { 2727 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2728 rw_group, d); 2729 } 2730 2731 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2732 /* 1) Guaranteed Write */ 2733 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2734 if (ret) 2735 break; 2736 2737 /* 2) DQS Enable Calibration */ 2738 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2739 test_bgn); 2740 if (ret) { 2741 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2742 continue; 2743 } 2744 2745 /* 3) Centering DQ/DQS */ 2746 /* 2747 * If doing read after write calibration, do not update 2748 * FOM now. Do it then. 2749 */ 2750 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2751 test_bgn, 1, 0); 2752 if (ret) { 2753 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2754 continue; 2755 } 2756 2757 /* All done. */ 2758 goto cal_done_ok; 2759 } 2760 } 2761 2762 /* Calibration Stage 1 failed. */ 2763 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2764 return 0; 2765 2766 /* Calibration Stage 1 completed OK. */ 2767 cal_done_ok: 2768 /* 2769 * Reset the delay chains back to zero if they have moved > 1 2770 * (check for > 1 because loop will increase d even when pass in 2771 * first case). 2772 */ 2773 if (d > 2) 2774 scc_mgr_zero_group(rw_group, 1); 2775 2776 return 1; 2777 } 2778 2779 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2780 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2781 uint32_t test_bgn) 2782 { 2783 uint32_t rank_bgn, sr; 2784 uint32_t grp_calibrated; 2785 uint32_t write_group; 2786 2787 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2788 2789 /* update info for sims */ 2790 2791 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2792 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2793 2794 write_group = read_group; 2795 2796 /* update info for sims */ 2797 reg_file_set_group(read_group); 2798 2799 grp_calibrated = 1; 2800 /* Read per-bit deskew can be done on a per shadow register basis */ 2801 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2802 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2803 /* Determine if this set of ranks should be skipped entirely */ 2804 if (!param->skip_shadow_regs[sr]) { 2805 /* This is the last calibration round, update FOM here */ 2806 if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2807 read_group, 2808 test_bgn, 0, 2809 1)) { 2810 grp_calibrated = 0; 2811 } 2812 } 2813 } 2814 2815 2816 if (grp_calibrated == 0) { 2817 set_failing_group_stage(write_group, 2818 CAL_STAGE_VFIFO_AFTER_WRITES, 2819 CAL_SUBSTAGE_VFIFO_CENTER); 2820 return 0; 2821 } 2822 2823 return 1; 2824 } 2825 2826 /* Calibrate LFIFO to find smallest read latency */ 2827 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2828 { 2829 uint32_t found_one; 2830 2831 debug("%s:%d\n", __func__, __LINE__); 2832 2833 /* update info for sims */ 2834 reg_file_set_stage(CAL_STAGE_LFIFO); 2835 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2836 2837 /* Load up the patterns used by read calibration for all ranks */ 2838 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2839 found_one = 0; 2840 2841 do { 2842 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2843 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2844 __func__, __LINE__, gbl->curr_read_lat); 2845 2846 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2847 NUM_READ_TESTS, 2848 PASS_ALL_BITS, 2849 1)) { 2850 break; 2851 } 2852 2853 found_one = 1; 2854 /* reduce read latency and see if things are working */ 2855 /* correctly */ 2856 gbl->curr_read_lat--; 2857 } while (gbl->curr_read_lat > 0); 2858 2859 /* reset the fifos to get pointers to known state */ 2860 2861 writel(0, &phy_mgr_cmd->fifo_reset); 2862 2863 if (found_one) { 2864 /* add a fudge factor to the read latency that was determined */ 2865 gbl->curr_read_lat += 2; 2866 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2867 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2868 read_lat=%u\n", __func__, __LINE__, 2869 gbl->curr_read_lat); 2870 return 1; 2871 } else { 2872 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2873 CAL_SUBSTAGE_READ_LATENCY); 2874 2875 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2876 read_lat=%u\n", __func__, __LINE__, 2877 gbl->curr_read_lat); 2878 return 0; 2879 } 2880 } 2881 2882 /** 2883 * search_window() - Search for the/part of the window with DM/DQS shift 2884 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2885 * @rank_bgn: Rank number 2886 * @write_group: Write Group 2887 * @bgn_curr: Current window begin 2888 * @end_curr: Current window end 2889 * @bgn_best: Current best window begin 2890 * @end_best: Current best window end 2891 * @win_best: Size of the best window 2892 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2893 * 2894 * Search for the/part of the window with DM/DQS shift. 2895 */ 2896 static void search_window(const int search_dm, 2897 const u32 rank_bgn, const u32 write_group, 2898 int *bgn_curr, int *end_curr, int *bgn_best, 2899 int *end_best, int *win_best, int new_dqs) 2900 { 2901 u32 bit_chk; 2902 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2903 int d, di; 2904 2905 /* Search for the/part of the window with DM/DQS shift. */ 2906 for (di = max; di >= 0; di -= DELTA_D) { 2907 if (search_dm) { 2908 d = di; 2909 scc_mgr_apply_group_dm_out1_delay(d); 2910 } else { 2911 /* For DQS, we go from 0...max */ 2912 d = max - di; 2913 /* 2914 * Note: This only shifts DQS, so are we limiting ourselve to 2915 * width of DQ unnecessarily. 2916 */ 2917 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2918 d + new_dqs); 2919 } 2920 2921 writel(0, &sdr_scc_mgr->update); 2922 2923 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2924 PASS_ALL_BITS, &bit_chk, 2925 0)) { 2926 /* Set current end of the window. */ 2927 *end_curr = search_dm ? -d : d; 2928 2929 /* 2930 * If a starting edge of our window has not been seen 2931 * this is our current start of the DM window. 2932 */ 2933 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2934 *bgn_curr = search_dm ? -d : d; 2935 2936 /* 2937 * If current window is bigger than best seen. 2938 * Set best seen to be current window. 2939 */ 2940 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2941 *win_best = *end_curr - *bgn_curr + 1; 2942 *bgn_best = *bgn_curr; 2943 *end_best = *end_curr; 2944 } 2945 } else { 2946 /* We just saw a failing test. Reset temp edge. */ 2947 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2948 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2949 2950 /* Early exit is only applicable to DQS. */ 2951 if (search_dm) 2952 continue; 2953 2954 /* 2955 * Early exit optimization: if the remaining delay 2956 * chain space is less than already seen largest 2957 * window we can exit. 2958 */ 2959 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2960 break; 2961 } 2962 } 2963 } 2964 2965 /* 2966 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2967 * @rank_bgn: Rank number 2968 * @write_group: Write group 2969 * @test_bgn: Rank at which the test begins 2970 * 2971 * Center all windows. Do per-bit-deskew to possibly increase size of 2972 * certain windows. 2973 */ 2974 static int 2975 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2976 const u32 test_bgn) 2977 { 2978 int i; 2979 u32 sticky_bit_chk; 2980 u32 min_index; 2981 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2982 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2983 int mid; 2984 int mid_min, orig_mid_min; 2985 int new_dqs, start_dqs; 2986 int dq_margin, dqs_margin, dm_margin; 2987 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2988 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2989 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2990 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2991 int win_best = 0; 2992 2993 int ret; 2994 2995 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2996 2997 dm_margin = 0; 2998 2999 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 3000 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 3001 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 3002 3003 /* Per-bit deskew. */ 3004 3005 /* 3006 * Set the left and right edge of each bit to an illegal value. 3007 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3008 */ 3009 sticky_bit_chk = 0; 3010 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3011 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3012 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3013 } 3014 3015 /* Search for the left edge of the window for each bit. */ 3016 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3017 &sticky_bit_chk, 3018 left_edge, right_edge, 0); 3019 3020 /* Search for the right edge of the window for each bit. */ 3021 ret = search_right_edge(1, rank_bgn, write_group, 0, 3022 start_dqs, 0, 3023 &sticky_bit_chk, 3024 left_edge, right_edge, 0); 3025 if (ret) { 3026 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3027 CAL_SUBSTAGE_WRITES_CENTER); 3028 return -EINVAL; 3029 } 3030 3031 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3032 3033 /* Determine the amount we can change DQS (which is -mid_min). */ 3034 orig_mid_min = mid_min; 3035 new_dqs = start_dqs; 3036 mid_min = 0; 3037 debug_cond(DLEVEL == 1, 3038 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3039 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3040 3041 /* Add delay to bring centre of all DQ windows to the same "level". */ 3042 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3043 min_index, 0, &dq_margin, &dqs_margin); 3044 3045 /* Move DQS */ 3046 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3047 writel(0, &sdr_scc_mgr->update); 3048 3049 /* Centre DM */ 3050 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3051 3052 /* 3053 * Set the left and right edge of each bit to an illegal value. 3054 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3055 */ 3056 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3057 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3058 3059 /* Search for the/part of the window with DM shift. */ 3060 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3061 &bgn_best, &end_best, &win_best, 0); 3062 3063 /* Reset DM delay chains to 0. */ 3064 scc_mgr_apply_group_dm_out1_delay(0); 3065 3066 /* 3067 * Check to see if the current window nudges up aganist 0 delay. 3068 * If so we need to continue the search by shifting DQS otherwise DQS 3069 * search begins as a new search. 3070 */ 3071 if (end_curr != 0) { 3072 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3073 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3074 } 3075 3076 /* Search for the/part of the window with DQS shifts. */ 3077 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3078 &bgn_best, &end_best, &win_best, new_dqs); 3079 3080 /* Assign left and right edge for cal and reporting. */ 3081 left_edge[0] = -1 * bgn_best; 3082 right_edge[0] = end_best; 3083 3084 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3085 __func__, __LINE__, left_edge[0], right_edge[0]); 3086 3087 /* Move DQS (back to orig). */ 3088 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3089 3090 /* Move DM */ 3091 3092 /* Find middle of window for the DM bit. */ 3093 mid = (left_edge[0] - right_edge[0]) / 2; 3094 3095 /* Only move right, since we are not moving DQS/DQ. */ 3096 if (mid < 0) 3097 mid = 0; 3098 3099 /* dm_marign should fail if we never find a window. */ 3100 if (win_best == 0) 3101 dm_margin = -1; 3102 else 3103 dm_margin = left_edge[0] - mid; 3104 3105 scc_mgr_apply_group_dm_out1_delay(mid); 3106 writel(0, &sdr_scc_mgr->update); 3107 3108 debug_cond(DLEVEL == 2, 3109 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3110 __func__, __LINE__, left_edge[0], right_edge[0], 3111 mid, dm_margin); 3112 /* Export values. */ 3113 gbl->fom_out += dq_margin + dqs_margin; 3114 3115 debug_cond(DLEVEL == 2, 3116 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3117 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3118 3119 /* 3120 * Do not remove this line as it makes sure all of our 3121 * decisions have been applied. 3122 */ 3123 writel(0, &sdr_scc_mgr->update); 3124 3125 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3126 return -EINVAL; 3127 3128 return 0; 3129 } 3130 3131 /** 3132 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3133 * @rank_bgn: Rank number 3134 * @group: Read/Write Group 3135 * @test_bgn: Rank at which the test begins 3136 * 3137 * Stage 2: Write Calibration Part One. 3138 * 3139 * This function implements UniPHY calibration Stage 2, as explained in 3140 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3141 */ 3142 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3143 const u32 test_bgn) 3144 { 3145 int ret; 3146 3147 /* Update info for sims */ 3148 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3149 3150 reg_file_set_group(group); 3151 reg_file_set_stage(CAL_STAGE_WRITES); 3152 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3153 3154 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3155 if (ret) 3156 set_failing_group_stage(group, CAL_STAGE_WRITES, 3157 CAL_SUBSTAGE_WRITES_CENTER); 3158 3159 return ret; 3160 } 3161 3162 /** 3163 * mem_precharge_and_activate() - Precharge all banks and activate 3164 * 3165 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3166 */ 3167 static void mem_precharge_and_activate(void) 3168 { 3169 int r; 3170 3171 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3172 /* Test if the rank should be skipped. */ 3173 if (param->skip_ranks[r]) 3174 continue; 3175 3176 /* Set rank. */ 3177 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3178 3179 /* Precharge all banks. */ 3180 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3181 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3182 3183 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3184 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3185 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3186 3187 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3188 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3189 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3190 3191 /* Activate rows. */ 3192 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3193 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3194 } 3195 } 3196 3197 /** 3198 * mem_init_latency() - Configure memory RLAT and WLAT settings 3199 * 3200 * Configure memory RLAT and WLAT parameters. 3201 */ 3202 static void mem_init_latency(void) 3203 { 3204 /* 3205 * For AV/CV, LFIFO is hardened and always runs at full rate 3206 * so max latency in AFI clocks, used here, is correspondingly 3207 * smaller. 3208 */ 3209 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3210 u32 rlat, wlat; 3211 3212 debug("%s:%d\n", __func__, __LINE__); 3213 3214 /* 3215 * Read in write latency. 3216 * WL for Hard PHY does not include additive latency. 3217 */ 3218 wlat = readl(&data_mgr->t_wl_add); 3219 wlat += readl(&data_mgr->mem_t_add); 3220 3221 gbl->rw_wl_nop_cycles = wlat - 1; 3222 3223 /* Read in readl latency. */ 3224 rlat = readl(&data_mgr->t_rl_add); 3225 3226 /* Set a pretty high read latency initially. */ 3227 gbl->curr_read_lat = rlat + 16; 3228 if (gbl->curr_read_lat > max_latency) 3229 gbl->curr_read_lat = max_latency; 3230 3231 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3232 3233 /* Advertise write latency. */ 3234 writel(wlat, &phy_mgr_cfg->afi_wlat); 3235 } 3236 3237 /** 3238 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3239 * 3240 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3241 */ 3242 static void mem_skip_calibrate(void) 3243 { 3244 uint32_t vfifo_offset; 3245 uint32_t i, j, r; 3246 3247 debug("%s:%d\n", __func__, __LINE__); 3248 /* Need to update every shadow register set used by the interface */ 3249 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3250 r += NUM_RANKS_PER_SHADOW_REG) { 3251 /* 3252 * Set output phase alignment settings appropriate for 3253 * skip calibration. 3254 */ 3255 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3256 scc_mgr_set_dqs_en_phase(i, 0); 3257 #if IO_DLL_CHAIN_LENGTH == 6 3258 scc_mgr_set_dqdqs_output_phase(i, 6); 3259 #else 3260 scc_mgr_set_dqdqs_output_phase(i, 7); 3261 #endif 3262 /* 3263 * Case:33398 3264 * 3265 * Write data arrives to the I/O two cycles before write 3266 * latency is reached (720 deg). 3267 * -> due to bit-slip in a/c bus 3268 * -> to allow board skew where dqs is longer than ck 3269 * -> how often can this happen!? 3270 * -> can claim back some ptaps for high freq 3271 * support if we can relax this, but i digress... 3272 * 3273 * The write_clk leads mem_ck by 90 deg 3274 * The minimum ptap of the OPA is 180 deg 3275 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3276 * The write_clk is always delayed by 2 ptaps 3277 * 3278 * Hence, to make DQS aligned to CK, we need to delay 3279 * DQS by: 3280 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3281 * 3282 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3283 * gives us the number of ptaps, which simplies to: 3284 * 3285 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3286 */ 3287 scc_mgr_set_dqdqs_output_phase(i, 3288 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3289 } 3290 writel(0xff, &sdr_scc_mgr->dqs_ena); 3291 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3292 3293 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3294 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3295 SCC_MGR_GROUP_COUNTER_OFFSET); 3296 } 3297 writel(0xff, &sdr_scc_mgr->dq_ena); 3298 writel(0xff, &sdr_scc_mgr->dm_ena); 3299 writel(0, &sdr_scc_mgr->update); 3300 } 3301 3302 /* Compensate for simulation model behaviour */ 3303 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3304 scc_mgr_set_dqs_bus_in_delay(i, 10); 3305 scc_mgr_load_dqs(i); 3306 } 3307 writel(0, &sdr_scc_mgr->update); 3308 3309 /* 3310 * ArriaV has hard FIFOs that can only be initialized by incrementing 3311 * in sequencer. 3312 */ 3313 vfifo_offset = CALIB_VFIFO_OFFSET; 3314 for (j = 0; j < vfifo_offset; j++) 3315 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3316 writel(0, &phy_mgr_cmd->fifo_reset); 3317 3318 /* 3319 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3320 * setting from generation-time constant. 3321 */ 3322 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3323 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3324 } 3325 3326 /** 3327 * mem_calibrate() - Memory calibration entry point. 3328 * 3329 * Perform memory calibration. 3330 */ 3331 static uint32_t mem_calibrate(void) 3332 { 3333 uint32_t i; 3334 uint32_t rank_bgn, sr; 3335 uint32_t write_group, write_test_bgn; 3336 uint32_t read_group, read_test_bgn; 3337 uint32_t run_groups, current_run; 3338 uint32_t failing_groups = 0; 3339 uint32_t group_failed = 0; 3340 3341 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3342 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3343 3344 debug("%s:%d\n", __func__, __LINE__); 3345 3346 /* Initialize the data settings */ 3347 gbl->error_substage = CAL_SUBSTAGE_NIL; 3348 gbl->error_stage = CAL_STAGE_NIL; 3349 gbl->error_group = 0xff; 3350 gbl->fom_in = 0; 3351 gbl->fom_out = 0; 3352 3353 /* Initialize WLAT and RLAT. */ 3354 mem_init_latency(); 3355 3356 /* Initialize bit slips. */ 3357 mem_precharge_and_activate(); 3358 3359 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3360 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3361 SCC_MGR_GROUP_COUNTER_OFFSET); 3362 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3363 if (i == 0) 3364 scc_mgr_set_hhp_extras(); 3365 3366 scc_set_bypass_mode(i); 3367 } 3368 3369 /* Calibration is skipped. */ 3370 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3371 /* 3372 * Set VFIFO and LFIFO to instant-on settings in skip 3373 * calibration mode. 3374 */ 3375 mem_skip_calibrate(); 3376 3377 /* 3378 * Do not remove this line as it makes sure all of our 3379 * decisions have been applied. 3380 */ 3381 writel(0, &sdr_scc_mgr->update); 3382 return 1; 3383 } 3384 3385 /* Calibration is not skipped. */ 3386 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3387 /* 3388 * Zero all delay chain/phase settings for all 3389 * groups and all shadow register sets. 3390 */ 3391 scc_mgr_zero_all(); 3392 3393 run_groups = ~param->skip_groups; 3394 3395 for (write_group = 0, write_test_bgn = 0; write_group 3396 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3397 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3398 3399 /* Initialize the group failure */ 3400 group_failed = 0; 3401 3402 current_run = run_groups & ((1 << 3403 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3404 run_groups = run_groups >> 3405 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3406 3407 if (current_run == 0) 3408 continue; 3409 3410 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3411 SCC_MGR_GROUP_COUNTER_OFFSET); 3412 scc_mgr_zero_group(write_group, 0); 3413 3414 for (read_group = write_group * rwdqs_ratio, 3415 read_test_bgn = 0; 3416 read_group < (write_group + 1) * rwdqs_ratio; 3417 read_group++, 3418 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3419 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3420 continue; 3421 3422 /* Calibrate the VFIFO */ 3423 if (rw_mgr_mem_calibrate_vfifo(read_group, 3424 read_test_bgn)) 3425 continue; 3426 3427 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3428 return 0; 3429 3430 /* The group failed, we're done. */ 3431 goto grp_failed; 3432 } 3433 3434 /* Calibrate the output side */ 3435 for (rank_bgn = 0, sr = 0; 3436 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3437 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3438 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3439 continue; 3440 3441 /* Not needed in quick mode! */ 3442 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3443 continue; 3444 3445 /* 3446 * Determine if this set of ranks 3447 * should be skipped entirely. 3448 */ 3449 if (param->skip_shadow_regs[sr]) 3450 continue; 3451 3452 /* Calibrate WRITEs */ 3453 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3454 write_group, write_test_bgn)) 3455 continue; 3456 3457 group_failed = 1; 3458 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3459 return 0; 3460 } 3461 3462 /* Some group failed, we're done. */ 3463 if (group_failed) 3464 goto grp_failed; 3465 3466 for (read_group = write_group * rwdqs_ratio, 3467 read_test_bgn = 0; 3468 read_group < (write_group + 1) * rwdqs_ratio; 3469 read_group++, 3470 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3471 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3472 continue; 3473 3474 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3475 read_test_bgn)) 3476 continue; 3477 3478 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3479 return 0; 3480 3481 /* The group failed, we're done. */ 3482 goto grp_failed; 3483 } 3484 3485 /* No group failed, continue as usual. */ 3486 continue; 3487 3488 grp_failed: /* A group failed, increment the counter. */ 3489 failing_groups++; 3490 } 3491 3492 /* 3493 * USER If there are any failing groups then report 3494 * the failure. 3495 */ 3496 if (failing_groups != 0) 3497 return 0; 3498 3499 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3500 continue; 3501 3502 /* 3503 * If we're skipping groups as part of debug, 3504 * don't calibrate LFIFO. 3505 */ 3506 if (param->skip_groups != 0) 3507 continue; 3508 3509 /* Calibrate the LFIFO */ 3510 if (!rw_mgr_mem_calibrate_lfifo()) 3511 return 0; 3512 } 3513 3514 /* 3515 * Do not remove this line as it makes sure all of our decisions 3516 * have been applied. 3517 */ 3518 writel(0, &sdr_scc_mgr->update); 3519 return 1; 3520 } 3521 3522 /** 3523 * run_mem_calibrate() - Perform memory calibration 3524 * 3525 * This function triggers the entire memory calibration procedure. 3526 */ 3527 static int run_mem_calibrate(void) 3528 { 3529 int pass; 3530 3531 debug("%s:%d\n", __func__, __LINE__); 3532 3533 /* Reset pass/fail status shown on afi_cal_success/fail */ 3534 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3535 3536 /* Stop tracking manager. */ 3537 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3538 3539 phy_mgr_initialize(); 3540 rw_mgr_mem_initialize(); 3541 3542 /* Perform the actual memory calibration. */ 3543 pass = mem_calibrate(); 3544 3545 mem_precharge_and_activate(); 3546 writel(0, &phy_mgr_cmd->fifo_reset); 3547 3548 /* Handoff. */ 3549 rw_mgr_mem_handoff(); 3550 /* 3551 * In Hard PHY this is a 2-bit control: 3552 * 0: AFI Mux Select 3553 * 1: DDIO Mux Select 3554 */ 3555 writel(0x2, &phy_mgr_cfg->mux_sel); 3556 3557 /* Start tracking manager. */ 3558 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3559 3560 return pass; 3561 } 3562 3563 /** 3564 * debug_mem_calibrate() - Report result of memory calibration 3565 * @pass: Value indicating whether calibration passed or failed 3566 * 3567 * This function reports the results of the memory calibration 3568 * and writes debug information into the register file. 3569 */ 3570 static void debug_mem_calibrate(int pass) 3571 { 3572 uint32_t debug_info; 3573 3574 if (pass) { 3575 printf("%s: CALIBRATION PASSED\n", __FILE__); 3576 3577 gbl->fom_in /= 2; 3578 gbl->fom_out /= 2; 3579 3580 if (gbl->fom_in > 0xff) 3581 gbl->fom_in = 0xff; 3582 3583 if (gbl->fom_out > 0xff) 3584 gbl->fom_out = 0xff; 3585 3586 /* Update the FOM in the register file */ 3587 debug_info = gbl->fom_in; 3588 debug_info |= gbl->fom_out << 8; 3589 writel(debug_info, &sdr_reg_file->fom); 3590 3591 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3592 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3593 } else { 3594 printf("%s: CALIBRATION FAILED\n", __FILE__); 3595 3596 debug_info = gbl->error_stage; 3597 debug_info |= gbl->error_substage << 8; 3598 debug_info |= gbl->error_group << 16; 3599 3600 writel(debug_info, &sdr_reg_file->failing_stage); 3601 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3602 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3603 3604 /* Update the failing group/stage in the register file */ 3605 debug_info = gbl->error_stage; 3606 debug_info |= gbl->error_substage << 8; 3607 debug_info |= gbl->error_group << 16; 3608 writel(debug_info, &sdr_reg_file->failing_stage); 3609 } 3610 3611 printf("%s: Calibration complete\n", __FILE__); 3612 } 3613 3614 /** 3615 * hc_initialize_rom_data() - Initialize ROM data 3616 * 3617 * Initialize ROM data. 3618 */ 3619 static void hc_initialize_rom_data(void) 3620 { 3621 u32 i, addr; 3622 3623 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3624 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3625 writel(inst_rom_init[i], addr + (i << 2)); 3626 3627 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3628 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3629 writel(ac_rom_init[i], addr + (i << 2)); 3630 } 3631 3632 /** 3633 * initialize_reg_file() - Initialize SDR register file 3634 * 3635 * Initialize SDR register file. 3636 */ 3637 static void initialize_reg_file(void) 3638 { 3639 /* Initialize the register file with the correct data */ 3640 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3641 writel(0, &sdr_reg_file->debug_data_addr); 3642 writel(0, &sdr_reg_file->cur_stage); 3643 writel(0, &sdr_reg_file->fom); 3644 writel(0, &sdr_reg_file->failing_stage); 3645 writel(0, &sdr_reg_file->debug1); 3646 writel(0, &sdr_reg_file->debug2); 3647 } 3648 3649 /** 3650 * initialize_hps_phy() - Initialize HPS PHY 3651 * 3652 * Initialize HPS PHY. 3653 */ 3654 static void initialize_hps_phy(void) 3655 { 3656 uint32_t reg; 3657 /* 3658 * Tracking also gets configured here because it's in the 3659 * same register. 3660 */ 3661 uint32_t trk_sample_count = 7500; 3662 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3663 /* 3664 * Format is number of outer loops in the 16 MSB, sample 3665 * count in 16 LSB. 3666 */ 3667 3668 reg = 0; 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3675 /* 3676 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3677 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3678 */ 3679 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3681 trk_sample_count); 3682 writel(reg, &sdr_ctrl->phy_ctrl0); 3683 3684 reg = 0; 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3686 trk_sample_count >> 3687 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3689 trk_long_idle_sample_count); 3690 writel(reg, &sdr_ctrl->phy_ctrl1); 3691 3692 reg = 0; 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3694 trk_long_idle_sample_count >> 3695 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3696 writel(reg, &sdr_ctrl->phy_ctrl2); 3697 } 3698 3699 /** 3700 * initialize_tracking() - Initialize tracking 3701 * 3702 * Initialize the register file with usable initial data. 3703 */ 3704 static void initialize_tracking(void) 3705 { 3706 /* 3707 * Initialize the register file with the correct data. 3708 * Compute usable version of value in case we skip full 3709 * computation later. 3710 */ 3711 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3712 &sdr_reg_file->dtaps_per_ptap); 3713 3714 /* trk_sample_count */ 3715 writel(7500, &sdr_reg_file->trk_sample_count); 3716 3717 /* longidle outer loop [15:0] */ 3718 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3719 3720 /* 3721 * longidle sample count [31:24] 3722 * trfc, worst case of 933Mhz 4Gb [23:16] 3723 * trcd, worst case [15:8] 3724 * vfifo wait [7:0] 3725 */ 3726 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3727 &sdr_reg_file->delays); 3728 3729 /* mux delay */ 3730 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3731 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3732 &sdr_reg_file->trk_rw_mgr_addr); 3733 3734 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3735 &sdr_reg_file->trk_read_dqs_width); 3736 3737 /* trefi [7:0] */ 3738 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3739 &sdr_reg_file->trk_rfsh); 3740 } 3741 3742 int sdram_calibration_full(void) 3743 { 3744 struct param_type my_param; 3745 struct gbl_type my_gbl; 3746 uint32_t pass; 3747 3748 memset(&my_param, 0, sizeof(my_param)); 3749 memset(&my_gbl, 0, sizeof(my_gbl)); 3750 3751 param = &my_param; 3752 gbl = &my_gbl; 3753 3754 /* Set the calibration enabled by default */ 3755 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3756 /* 3757 * Only sweep all groups (regardless of fail state) by default 3758 * Set enabled read test by default. 3759 */ 3760 #if DISABLE_GUARANTEED_READ 3761 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3762 #endif 3763 /* Initialize the register file */ 3764 initialize_reg_file(); 3765 3766 /* Initialize any PHY CSR */ 3767 initialize_hps_phy(); 3768 3769 scc_mgr_initialize(); 3770 3771 initialize_tracking(); 3772 3773 printf("%s: Preparing to start memory calibration\n", __FILE__); 3774 3775 debug("%s:%d\n", __func__, __LINE__); 3776 debug_cond(DLEVEL == 1, 3777 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3778 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3779 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3780 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3781 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3782 debug_cond(DLEVEL == 1, 3783 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3784 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3785 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3786 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3787 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3788 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3789 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3790 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3791 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3792 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3793 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3794 IO_IO_OUT2_DELAY_MAX); 3795 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3796 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3797 3798 hc_initialize_rom_data(); 3799 3800 /* update info for sims */ 3801 reg_file_set_stage(CAL_STAGE_NIL); 3802 reg_file_set_group(0); 3803 3804 /* 3805 * Load global needed for those actions that require 3806 * some dynamic calibration support. 3807 */ 3808 dyn_calib_steps = STATIC_CALIB_STEPS; 3809 /* 3810 * Load global to allow dynamic selection of delay loop settings 3811 * based on calibration mode. 3812 */ 3813 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3814 skip_delay_mask = 0xff; 3815 else 3816 skip_delay_mask = 0x0; 3817 3818 pass = run_mem_calibrate(); 3819 debug_mem_calibrate(pass); 3820 return pass; 3821 } 3822