xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision ad64769ce04578e3e8f4079074b53e13e87c9d25)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763 	uint32_t afi_clocks;
764 	uint8_t inner = 0;
765 	uint8_t outer = 0;
766 	uint16_t c_loop = 0;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 
771 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772 	/* scale (rounding up) to get afi clocks */
773 
774 	/*
775 	 * Note, we don't bother accounting for being off a little bit
776 	 * because of a few extra instructions in outer loops
777 	 * Note, the loops have a test at the end, and do the test before
778 	 * the decrement, and so always perform the loop
779 	 * 1 time more than the counter value
780 	 */
781 	if (afi_clocks == 0) {
782 		;
783 	} else if (afi_clocks <= 0x100) {
784 		inner = afi_clocks-1;
785 		outer = 0;
786 		c_loop = 0;
787 	} else if (afi_clocks <= 0x10000) {
788 		inner = 0xff;
789 		outer = (afi_clocks-1) >> 8;
790 		c_loop = 0;
791 	} else {
792 		inner = 0xff;
793 		outer = 0xff;
794 		c_loop = (afi_clocks-1) >> 16;
795 	}
796 
797 	/*
798 	 * rom instructions are structured as follows:
799 	 *
800 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
801 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
802 	 *                return
803 	 *
804 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805 	 * TARGET_B is set to IDLE_LOOP2 as well
806 	 *
807 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809 	 *
810 	 * a little confusing, but it helps save precious space in the inst_rom
811 	 * and sequencer rom and keeps the delays more accurate and reduces
812 	 * overhead
813 	 */
814 	if (afi_clocks <= 0x100) {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr1);
817 
818 		writel(RW_MGR_IDLE_LOOP1,
819 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
820 
821 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823 	} else {
824 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825 			&sdr_rw_load_mgr_regs->load_cntr0);
826 
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828 			&sdr_rw_load_mgr_regs->load_cntr1);
829 
830 		writel(RW_MGR_IDLE_LOOP2,
831 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
835 
836 		/* hack to get around compiler not being smart enough */
837 		if (afi_clocks <= 0x10000) {
838 			/* only need to run once */
839 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841 		} else {
842 			do {
843 				writel(RW_MGR_IDLE_LOOP2,
844 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
845 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846 			} while (c_loop-- != 0);
847 		}
848 	}
849 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851 
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:	Counter 0 value
855  * @cntr1:	Counter 1 value
856  * @cntr2:	Counter 2 value
857  * @jump:	Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865 
866 	/* Load counters */
867 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868 	       &sdr_rw_load_mgr_regs->load_cntr0);
869 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870 	       &sdr_rw_load_mgr_regs->load_cntr1);
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872 	       &sdr_rw_load_mgr_regs->load_cntr2);
873 
874 	/* Load jump address */
875 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878 
879 	/* Execute count instruction */
880 	writel(jump, grpaddr);
881 }
882 
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:	Final instruction 1
886  * @fin2:	Final instruction 2
887  * @precharge:	If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892 				 const int precharge)
893 {
894 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896 	u32 r;
897 
898 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899 		if (param->skip_ranks[r]) {
900 			/* request to skip the rank */
901 			continue;
902 		}
903 
904 		/* set rank */
905 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906 
907 		/* precharge all banks ... */
908 		if (precharge)
909 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910 
911 		/*
912 		 * USER Use Mirror-ed commands for odd ranks if address
913 		 * mirrorring is on
914 		 */
915 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS2_MIRR, grpaddr);
918 			delay_for_n_mem_clocks(4);
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS3_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS1_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(fin1, grpaddr);
927 		} else {
928 			set_jump_as_return();
929 			writel(RW_MGR_MRS2, grpaddr);
930 			delay_for_n_mem_clocks(4);
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS3, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS1, grpaddr);
936 			set_jump_as_return();
937 			writel(fin2, grpaddr);
938 		}
939 
940 		if (precharge)
941 			continue;
942 
943 		set_jump_as_return();
944 		writel(RW_MGR_ZQCL, grpaddr);
945 
946 		/* tZQinit = tDLLK = 512 ck cycles */
947 		delay_for_n_mem_clocks(512);
948 	}
949 }
950 
951 /**
952  * rw_mgr_mem_initialize() - Initialize RW Manager
953  *
954  * Initialize RW Manager.
955  */
956 static void rw_mgr_mem_initialize(void)
957 {
958 	debug("%s:%d\n", __func__, __LINE__);
959 
960 	/* The reset / cke part of initialization is broadcasted to all ranks */
961 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
962 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
963 
964 	/*
965 	 * Here's how you load register for a loop
966 	 * Counters are located @ 0x800
967 	 * Jump address are located @ 0xC00
968 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
969 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
970 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
971 	 * significant bits
972 	 */
973 
974 	/* Start with memory RESET activated */
975 
976 	/* tINIT = 200us */
977 
978 	/*
979 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
980 	 * If a and b are the number of iteration in 2 nested loops
981 	 * it takes the following number of cycles to complete the operation:
982 	 * number_of_cycles = ((2 + n) * a + 2) * b
983 	 * where n is the number of instruction in the inner loop
984 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
985 	 * b = 6A
986 	 */
987 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
988 				  SEQ_TINIT_CNTR2_VAL,
989 				  RW_MGR_INIT_RESET_0_CKE_0);
990 
991 	/* Indicate that memory is stable. */
992 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
993 
994 	/*
995 	 * transition the RESET to high
996 	 * Wait for 500us
997 	 */
998 
999 	/*
1000 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1001 	 * If a and b are the number of iteration in 2 nested loops
1002 	 * it takes the following number of cycles to complete the operation
1003 	 * number_of_cycles = ((2 + n) * a + 2) * b
1004 	 * where n is the number of instruction in the inner loop
1005 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1006 	 * b = FF
1007 	 */
1008 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1009 				  SEQ_TRESET_CNTR2_VAL,
1010 				  RW_MGR_INIT_RESET_1_CKE_0);
1011 
1012 	/* Bring up clock enable. */
1013 
1014 	/* tXRP < 250 ck cycles */
1015 	delay_for_n_mem_clocks(250);
1016 
1017 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1018 			     0);
1019 }
1020 
1021 /*
1022  * At the end of calibration we have to program the user settings in, and
1023  * USER  hand off the memory to the user.
1024  */
1025 static void rw_mgr_mem_handoff(void)
1026 {
1027 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1028 	/*
1029 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1030 	 * other commands, but we will have plenty of NIOS cycles before
1031 	 * actual handoff so its okay.
1032 	 */
1033 }
1034 
1035 /*
1036  * issue write test command.
1037  * two variants are provided. one that just tests a write pattern and
1038  * another that tests datamask functionality.
1039  */
1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
1041 						  uint32_t test_dm)
1042 {
1043 	uint32_t mcc_instruction;
1044 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
1045 		ENABLE_SUPER_QUICK_CALIBRATION);
1046 	uint32_t rw_wl_nop_cycles;
1047 	uint32_t addr;
1048 
1049 	/*
1050 	 * Set counter and jump addresses for the right
1051 	 * number of NOP cycles.
1052 	 * The number of supported NOP cycles can range from -1 to infinity
1053 	 * Three different cases are handled:
1054 	 *
1055 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1056 	 *    mechanism will be used to insert the right number of NOPs
1057 	 *
1058 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1059 	 *    issuing the write command will jump straight to the
1060 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1061 	 *    data (for RLD), skipping
1062 	 *    the NOP micro-instruction all together
1063 	 *
1064 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1065 	 *    turned on in the same micro-instruction that issues the write
1066 	 *    command. Then we need
1067 	 *    to directly jump to the micro-instruction that sends out the data
1068 	 *
1069 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1070 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1071 	 *       write-read operations.
1072 	 *       one counter left to issue this command in "multiple-group" mode
1073 	 */
1074 
1075 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1076 
1077 	if (rw_wl_nop_cycles == -1) {
1078 		/*
1079 		 * CNTR 2 - We want to execute the special write operation that
1080 		 * turns on DQS right away and then skip directly to the
1081 		 * instruction that sends out the data. We set the counter to a
1082 		 * large number so that the jump is always taken.
1083 		 */
1084 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1085 
1086 		/* CNTR 3 - Not used */
1087 		if (test_dm) {
1088 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1089 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1090 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1092 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1093 		} else {
1094 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1095 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1096 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1097 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1098 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1099 		}
1100 	} else if (rw_wl_nop_cycles == 0) {
1101 		/*
1102 		 * CNTR 2 - We want to skip the NOP operation and go straight
1103 		 * to the DQS enable instruction. We set the counter to a large
1104 		 * number so that the jump is always taken.
1105 		 */
1106 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1107 
1108 		/* CNTR 3 - Not used */
1109 		if (test_dm) {
1110 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1111 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1112 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113 		} else {
1114 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1115 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1116 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1117 		}
1118 	} else {
1119 		/*
1120 		 * CNTR 2 - In this case we want to execute the next instruction
1121 		 * and NOT take the jump. So we set the counter to 0. The jump
1122 		 * address doesn't count.
1123 		 */
1124 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1125 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1126 
1127 		/*
1128 		 * CNTR 3 - Set the nop counter to the number of cycles we
1129 		 * need to loop for, minus 1.
1130 		 */
1131 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1132 		if (test_dm) {
1133 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1134 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1135 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1136 		} else {
1137 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1138 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1139 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1140 		}
1141 	}
1142 
1143 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1144 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1145 
1146 	if (quick_write_mode)
1147 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1148 	else
1149 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1150 
1151 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1152 
1153 	/*
1154 	 * CNTR 1 - This is used to ensure enough time elapses
1155 	 * for read data to come back.
1156 	 */
1157 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1158 
1159 	if (test_dm) {
1160 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1161 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1162 	} else {
1163 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1164 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1165 	}
1166 
1167 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1168 	writel(mcc_instruction, addr + (group << 2));
1169 }
1170 
1171 /* Test writes, can check for a single bit pass or multiple bit pass */
1172 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
1173 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
1174 	uint32_t *bit_chk, uint32_t all_ranks)
1175 {
1176 	uint32_t r;
1177 	uint32_t correct_mask_vg;
1178 	uint32_t tmp_bit_chk;
1179 	uint32_t vg;
1180 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1181 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1182 	uint32_t addr_rw_mgr;
1183 	uint32_t base_rw_mgr;
1184 
1185 	*bit_chk = param->write_correct_mask;
1186 	correct_mask_vg = param->write_correct_mask_vg;
1187 
1188 	for (r = rank_bgn; r < rank_end; r++) {
1189 		if (param->skip_ranks[r]) {
1190 			/* request to skip the rank */
1191 			continue;
1192 		}
1193 
1194 		/* set rank */
1195 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1196 
1197 		tmp_bit_chk = 0;
1198 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1199 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
1200 			/* reset the fifos to get pointers to known state */
1201 			writel(0, &phy_mgr_cmd->fifo_reset);
1202 
1203 			tmp_bit_chk = tmp_bit_chk <<
1204 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
1205 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
1206 			rw_mgr_mem_calibrate_write_test_issue(write_group *
1207 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
1208 				use_dm);
1209 
1210 			base_rw_mgr = readl(addr_rw_mgr);
1211 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1212 			if (vg == 0)
1213 				break;
1214 		}
1215 		*bit_chk &= tmp_bit_chk;
1216 	}
1217 
1218 	if (all_correct) {
1219 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1220 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
1221 			   %u => %lu", write_group, use_dm,
1222 			   *bit_chk, param->write_correct_mask,
1223 			   (long unsigned int)(*bit_chk ==
1224 			   param->write_correct_mask));
1225 		return *bit_chk == param->write_correct_mask;
1226 	} else {
1227 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1228 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
1229 		       write_group, use_dm, *bit_chk);
1230 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
1231 			(long unsigned int)(*bit_chk != 0));
1232 		return *bit_chk != 0x00;
1233 	}
1234 }
1235 
1236 /**
1237  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1238  * @rank_bgn:	Rank number
1239  * @group:	Read/Write Group
1240  * @all_ranks:	Test all ranks
1241  *
1242  * Performs a guaranteed read on the patterns we are going to use during a
1243  * read test to ensure memory works.
1244  */
1245 static int
1246 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1247 					const u32 all_ranks)
1248 {
1249 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1250 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1251 	const u32 addr_offset =
1252 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1253 	const u32 rank_end = all_ranks ?
1254 				RW_MGR_MEM_NUMBER_OF_RANKS :
1255 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1256 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1257 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1258 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1259 
1260 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1261 	int vg, r;
1262 	int ret = 0;
1263 
1264 	bit_chk = param->read_correct_mask;
1265 
1266 	for (r = rank_bgn; r < rank_end; r++) {
1267 		/* Request to skip the rank */
1268 		if (param->skip_ranks[r])
1269 			continue;
1270 
1271 		/* Set rank */
1272 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1273 
1274 		/* Load up a constant bursts of read commands */
1275 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1276 		writel(RW_MGR_GUARANTEED_READ,
1277 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1278 
1279 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1280 		writel(RW_MGR_GUARANTEED_READ_CONT,
1281 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1282 
1283 		tmp_bit_chk = 0;
1284 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1285 		     vg >= 0; vg--) {
1286 			/* Reset the FIFOs to get pointers to known state. */
1287 			writel(0, &phy_mgr_cmd->fifo_reset);
1288 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1289 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1290 			writel(RW_MGR_GUARANTEED_READ,
1291 			       addr + addr_offset + (vg << 2));
1292 
1293 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1294 			tmp_bit_chk <<= shift_ratio;
1295 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1296 		}
1297 
1298 		bit_chk &= tmp_bit_chk;
1299 	}
1300 
1301 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1302 
1303 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1304 
1305 	if (bit_chk != param->read_correct_mask)
1306 		ret = -EIO;
1307 
1308 	debug_cond(DLEVEL == 1,
1309 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1310 		   __func__, __LINE__, group, bit_chk,
1311 		   param->read_correct_mask, ret);
1312 
1313 	return ret;
1314 }
1315 
1316 /**
1317  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1318  * @rank_bgn:	Rank number
1319  * @all_ranks:	Test all ranks
1320  *
1321  * Load up the patterns we are going to use during a read test.
1322  */
1323 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1324 						    const int all_ranks)
1325 {
1326 	const u32 rank_end = all_ranks ?
1327 			RW_MGR_MEM_NUMBER_OF_RANKS :
1328 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1329 	u32 r;
1330 
1331 	debug("%s:%d\n", __func__, __LINE__);
1332 
1333 	for (r = rank_bgn; r < rank_end; r++) {
1334 		if (param->skip_ranks[r])
1335 			/* request to skip the rank */
1336 			continue;
1337 
1338 		/* set rank */
1339 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1340 
1341 		/* Load up a constant bursts */
1342 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1343 
1344 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1345 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1346 
1347 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1348 
1349 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1350 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1351 
1352 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1353 
1354 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1355 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1356 
1357 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1358 
1359 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1360 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1361 
1362 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1363 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1364 	}
1365 
1366 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1367 }
1368 
1369 /**
1370  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1371  * @rank_bgn:		Rank number
1372  * @group:		Read/Write group
1373  * @num_tries:		Number of retries of the test
1374  * @all_correct:	All bits must be correct in the mask
1375  * @bit_chk:		Resulting bit mask after the test
1376  * @all_groups:		Test all R/W groups
1377  * @all_ranks:		Test all ranks
1378  *
1379  * Try a read and see if it returns correct data back. Test has dummy reads
1380  * inserted into the mix used to align DQS enable. Test has more thorough
1381  * checks than the regular read test.
1382  */
1383 static int
1384 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1385 			       const u32 num_tries, const u32 all_correct,
1386 			       u32 *bit_chk,
1387 			       const u32 all_groups, const u32 all_ranks)
1388 {
1389 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1390 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1391 	const u32 quick_read_mode =
1392 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1393 		 ENABLE_SUPER_QUICK_CALIBRATION);
1394 	u32 correct_mask_vg = param->read_correct_mask_vg;
1395 	u32 tmp_bit_chk;
1396 	u32 base_rw_mgr;
1397 	u32 addr;
1398 
1399 	int r, vg, ret;
1400 
1401 	*bit_chk = param->read_correct_mask;
1402 
1403 	for (r = rank_bgn; r < rank_end; r++) {
1404 		if (param->skip_ranks[r])
1405 			/* request to skip the rank */
1406 			continue;
1407 
1408 		/* set rank */
1409 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1410 
1411 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1412 
1413 		writel(RW_MGR_READ_B2B_WAIT1,
1414 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1415 
1416 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1417 		writel(RW_MGR_READ_B2B_WAIT2,
1418 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1419 
1420 		if (quick_read_mode)
1421 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1422 			/* need at least two (1+1) reads to capture failures */
1423 		else if (all_groups)
1424 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1425 		else
1426 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1427 
1428 		writel(RW_MGR_READ_B2B,
1429 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1430 		if (all_groups)
1431 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1432 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1433 			       &sdr_rw_load_mgr_regs->load_cntr3);
1434 		else
1435 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1436 
1437 		writel(RW_MGR_READ_B2B,
1438 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1439 
1440 		tmp_bit_chk = 0;
1441 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1442 		     vg--) {
1443 			/* Reset the FIFOs to get pointers to known state. */
1444 			writel(0, &phy_mgr_cmd->fifo_reset);
1445 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1446 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1447 
1448 			if (all_groups) {
1449 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1450 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1451 			} else {
1452 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1453 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1454 			}
1455 
1456 			writel(RW_MGR_READ_B2B, addr +
1457 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1458 			       vg) << 2));
1459 
1460 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1461 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1462 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1463 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1464 		}
1465 
1466 		*bit_chk &= tmp_bit_chk;
1467 	}
1468 
1469 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1470 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1471 
1472 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1473 
1474 	if (all_correct) {
1475 		ret = (*bit_chk == param->read_correct_mask);
1476 		debug_cond(DLEVEL == 2,
1477 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1478 			   __func__, __LINE__, group, all_groups, *bit_chk,
1479 			   param->read_correct_mask, ret);
1480 	} else	{
1481 		ret = (*bit_chk != 0x00);
1482 		debug_cond(DLEVEL == 2,
1483 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1484 			   __func__, __LINE__, group, all_groups, *bit_chk,
1485 			   0, ret);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1493  * @grp:		Read/Write group
1494  * @num_tries:		Number of retries of the test
1495  * @all_correct:	All bits must be correct in the mask
1496  * @all_groups:		Test all R/W groups
1497  *
1498  * Perform a READ test across all memory ranks.
1499  */
1500 static int
1501 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1502 					 const u32 all_correct,
1503 					 const u32 all_groups)
1504 {
1505 	u32 bit_chk;
1506 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1507 					      &bit_chk, all_groups, 1);
1508 }
1509 
1510 /**
1511  * rw_mgr_incr_vfifo() - Increase VFIFO value
1512  * @grp:	Read/Write group
1513  *
1514  * Increase VFIFO value.
1515  */
1516 static void rw_mgr_incr_vfifo(const u32 grp)
1517 {
1518 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1519 }
1520 
1521 /**
1522  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1523  * @grp:	Read/Write group
1524  *
1525  * Decrease VFIFO value.
1526  */
1527 static void rw_mgr_decr_vfifo(const u32 grp)
1528 {
1529 	u32 i;
1530 
1531 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1532 		rw_mgr_incr_vfifo(grp);
1533 }
1534 
1535 /**
1536  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1537  * @grp:	Read/Write group
1538  *
1539  * Push VFIFO until a failing read happens.
1540  */
1541 static int find_vfifo_failing_read(const u32 grp)
1542 {
1543 	u32 v, ret, fail_cnt = 0;
1544 
1545 	for (v = 0; v < VFIFO_SIZE; v++) {
1546 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1547 			   __func__, __LINE__, v);
1548 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1549 						PASS_ONE_BIT, 0);
1550 		if (!ret) {
1551 			fail_cnt++;
1552 
1553 			if (fail_cnt == 2)
1554 				return v;
1555 		}
1556 
1557 		/* Fiddle with FIFO. */
1558 		rw_mgr_incr_vfifo(grp);
1559 	}
1560 
1561 	/* No failing read found! Something must have gone wrong. */
1562 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1563 	return 0;
1564 }
1565 
1566 /**
1567  * sdr_find_phase_delay() - Find DQS enable phase or delay
1568  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1569  * @delay:	If 1, look for delay, if 0, look for phase
1570  * @grp:	Read/Write group
1571  * @work:	Working window position
1572  * @work_inc:	Working window increment
1573  * @pd:		DQS Phase/Delay Iterator
1574  *
1575  * Find working or non-working DQS enable phase setting.
1576  */
1577 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1578 				u32 *work, const u32 work_inc, u32 *pd)
1579 {
1580 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1581 	u32 ret;
1582 
1583 	for (; *pd <= max; (*pd)++) {
1584 		if (delay)
1585 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1586 		else
1587 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1588 
1589 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1590 					PASS_ONE_BIT, 0);
1591 		if (!working)
1592 			ret = !ret;
1593 
1594 		if (ret)
1595 			return 0;
1596 
1597 		if (work)
1598 			*work += work_inc;
1599 	}
1600 
1601 	return -EINVAL;
1602 }
1603 /**
1604  * sdr_find_phase() - Find DQS enable phase
1605  * @working:	If 1, look for working phase, if 0, look for non-working phase
1606  * @grp:	Read/Write group
1607  * @work:	Working window position
1608  * @i:		Iterator
1609  * @p:		DQS Phase Iterator
1610  *
1611  * Find working or non-working DQS enable phase setting.
1612  */
1613 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1614 			  u32 *i, u32 *p)
1615 {
1616 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1617 	int ret;
1618 
1619 	for (; *i < end; (*i)++) {
1620 		if (working)
1621 			*p = 0;
1622 
1623 		ret = sdr_find_phase_delay(working, 0, grp, work,
1624 					   IO_DELAY_PER_OPA_TAP, p);
1625 		if (!ret)
1626 			return 0;
1627 
1628 		if (*p > IO_DQS_EN_PHASE_MAX) {
1629 			/* Fiddle with FIFO. */
1630 			rw_mgr_incr_vfifo(grp);
1631 			if (!working)
1632 				*p = 0;
1633 		}
1634 	}
1635 
1636 	return -EINVAL;
1637 }
1638 
1639 /**
1640  * sdr_working_phase() - Find working DQS enable phase
1641  * @grp:	Read/Write group
1642  * @work_bgn:	Working window start position
1643  * @d:		dtaps output value
1644  * @p:		DQS Phase Iterator
1645  * @i:		Iterator
1646  *
1647  * Find working DQS enable phase setting.
1648  */
1649 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1650 			     u32 *p, u32 *i)
1651 {
1652 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1653 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1654 	int ret;
1655 
1656 	*work_bgn = 0;
1657 
1658 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1659 		*i = 0;
1660 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1661 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1662 		if (!ret)
1663 			return 0;
1664 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1665 	}
1666 
1667 	/* Cannot find working solution */
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1669 		   __func__, __LINE__);
1670 	return -EINVAL;
1671 }
1672 
1673 /**
1674  * sdr_backup_phase() - Find DQS enable backup phase
1675  * @grp:	Read/Write group
1676  * @work_bgn:	Working window start position
1677  * @p:		DQS Phase Iterator
1678  *
1679  * Find DQS enable backup phase setting.
1680  */
1681 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1682 {
1683 	u32 tmp_delay, d;
1684 	int ret;
1685 
1686 	/* Special case code for backing up a phase */
1687 	if (*p == 0) {
1688 		*p = IO_DQS_EN_PHASE_MAX;
1689 		rw_mgr_decr_vfifo(grp);
1690 	} else {
1691 		(*p)--;
1692 	}
1693 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1694 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1695 
1696 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1697 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1698 
1699 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1700 					PASS_ONE_BIT, 0);
1701 		if (ret) {
1702 			*work_bgn = tmp_delay;
1703 			break;
1704 		}
1705 
1706 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1707 	}
1708 
1709 	/* Restore VFIFO to old state before we decremented it (if needed). */
1710 	(*p)++;
1711 	if (*p > IO_DQS_EN_PHASE_MAX) {
1712 		*p = 0;
1713 		rw_mgr_incr_vfifo(grp);
1714 	}
1715 
1716 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1717 }
1718 
1719 /**
1720  * sdr_nonworking_phase() - Find non-working DQS enable phase
1721  * @grp:	Read/Write group
1722  * @work_end:	Working window end position
1723  * @p:		DQS Phase Iterator
1724  * @i:		Iterator
1725  *
1726  * Find non-working DQS enable phase setting.
1727  */
1728 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1729 {
1730 	int ret;
1731 
1732 	(*p)++;
1733 	*work_end += IO_DELAY_PER_OPA_TAP;
1734 	if (*p > IO_DQS_EN_PHASE_MAX) {
1735 		/* Fiddle with FIFO. */
1736 		*p = 0;
1737 		rw_mgr_incr_vfifo(grp);
1738 	}
1739 
1740 	ret = sdr_find_phase(0, grp, work_end, i, p);
1741 	if (ret) {
1742 		/* Cannot see edge of failing read. */
1743 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1744 			   __func__, __LINE__);
1745 	}
1746 
1747 	return ret;
1748 }
1749 
1750 /**
1751  * sdr_find_window_center() - Find center of the working DQS window.
1752  * @grp:	Read/Write group
1753  * @work_bgn:	First working settings
1754  * @work_end:	Last working settings
1755  *
1756  * Find center of the working DQS enable window.
1757  */
1758 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1759 				  const u32 work_end)
1760 {
1761 	u32 work_mid;
1762 	int tmp_delay = 0;
1763 	int i, p, d;
1764 
1765 	work_mid = (work_bgn + work_end) / 2;
1766 
1767 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1768 		   work_bgn, work_end, work_mid);
1769 	/* Get the middle delay to be less than a VFIFO delay */
1770 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1771 
1772 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1773 	work_mid %= tmp_delay;
1774 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1775 
1776 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1777 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1778 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1779 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1780 
1781 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1782 
1783 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1784 	if (d > IO_DQS_EN_DELAY_MAX)
1785 		d = IO_DQS_EN_DELAY_MAX;
1786 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1787 
1788 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1789 
1790 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1791 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1792 
1793 	/*
1794 	 * push vfifo until we can successfully calibrate. We can do this
1795 	 * because the largest possible margin in 1 VFIFO cycle.
1796 	 */
1797 	for (i = 0; i < VFIFO_SIZE; i++) {
1798 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1799 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1800 							     PASS_ONE_BIT,
1801 							     0)) {
1802 			debug_cond(DLEVEL == 2,
1803 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1804 				   __func__, __LINE__, p, d);
1805 			return 0;
1806 		}
1807 
1808 		/* Fiddle with FIFO. */
1809 		rw_mgr_incr_vfifo(grp);
1810 	}
1811 
1812 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1813 		   __func__, __LINE__);
1814 	return -EINVAL;
1815 }
1816 
1817 /**
1818  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1819  * @grp:	Read/Write Group
1820  *
1821  * Find a good DQS enable to use.
1822  */
1823 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1824 {
1825 	u32 d, p, i;
1826 	u32 dtaps_per_ptap;
1827 	u32 work_bgn, work_end;
1828 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1829 	int ret;
1830 
1831 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1832 
1833 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1834 
1835 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1836 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1837 
1838 	/* Step 0: Determine number of delay taps for each phase tap. */
1839 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1840 
1841 	/* Step 1: First push vfifo until we get a failing read. */
1842 	find_vfifo_failing_read(grp);
1843 
1844 	/* Step 2: Find first working phase, increment in ptaps. */
1845 	work_bgn = 0;
1846 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1847 	if (ret)
1848 		return ret;
1849 
1850 	work_end = work_bgn;
1851 
1852 	/*
1853 	 * If d is 0 then the working window covers a phase tap and we can
1854 	 * follow the old procedure. Otherwise, we've found the beginning
1855 	 * and we need to increment the dtaps until we find the end.
1856 	 */
1857 	if (d == 0) {
1858 		/*
1859 		 * Step 3a: If we have room, back off by one and
1860 		 *          increment in dtaps.
1861 		 */
1862 		sdr_backup_phase(grp, &work_bgn, &p);
1863 
1864 		/*
1865 		 * Step 4a: go forward from working phase to non working
1866 		 * phase, increment in ptaps.
1867 		 */
1868 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1869 		if (ret)
1870 			return ret;
1871 
1872 		/* Step 5a: Back off one from last, increment in dtaps. */
1873 
1874 		/* Special case code for backing up a phase */
1875 		if (p == 0) {
1876 			p = IO_DQS_EN_PHASE_MAX;
1877 			rw_mgr_decr_vfifo(grp);
1878 		} else {
1879 			p = p - 1;
1880 		}
1881 
1882 		work_end -= IO_DELAY_PER_OPA_TAP;
1883 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1884 
1885 		d = 0;
1886 
1887 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1888 			   __func__, __LINE__, p);
1889 	}
1890 
1891 	/* The dtap increment to find the failing edge is done here. */
1892 	sdr_find_phase_delay(0, 1, grp, &work_end,
1893 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1894 
1895 	/* Go back to working dtap */
1896 	if (d != 0)
1897 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1898 
1899 	debug_cond(DLEVEL == 2,
1900 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1901 		   __func__, __LINE__, p, d - 1, work_end);
1902 
1903 	if (work_end < work_bgn) {
1904 		/* nil range */
1905 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1906 			   __func__, __LINE__);
1907 		return -EINVAL;
1908 	}
1909 
1910 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1911 		   __func__, __LINE__, work_bgn, work_end);
1912 
1913 	/*
1914 	 * We need to calculate the number of dtaps that equal a ptap.
1915 	 * To do that we'll back up a ptap and re-find the edge of the
1916 	 * window using dtaps
1917 	 */
1918 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1919 		   __func__, __LINE__);
1920 
1921 	/* Special case code for backing up a phase */
1922 	if (p == 0) {
1923 		p = IO_DQS_EN_PHASE_MAX;
1924 		rw_mgr_decr_vfifo(grp);
1925 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1926 			   __func__, __LINE__, p);
1927 	} else {
1928 		p = p - 1;
1929 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1930 			   __func__, __LINE__, p);
1931 	}
1932 
1933 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1934 
1935 	/*
1936 	 * Increase dtap until we first see a passing read (in case the
1937 	 * window is smaller than a ptap), and then a failing read to
1938 	 * mark the edge of the window again.
1939 	 */
1940 
1941 	/* Find a passing read. */
1942 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1943 		   __func__, __LINE__);
1944 
1945 	initial_failing_dtap = d;
1946 
1947 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1948 	if (found_passing_read) {
1949 		/* Find a failing read. */
1950 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1951 			   __func__, __LINE__);
1952 		d++;
1953 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1954 							   &d);
1955 	} else {
1956 		debug_cond(DLEVEL == 1,
1957 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1958 			   __func__, __LINE__);
1959 	}
1960 
1961 	/*
1962 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1963 	 * found a passing/failing read. If we didn't, it means d hit the max
1964 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1965 	 * statically calculated value.
1966 	 */
1967 	if (found_passing_read && found_failing_read)
1968 		dtaps_per_ptap = d - initial_failing_dtap;
1969 
1970 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1971 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1972 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1973 
1974 	/* Step 6: Find the centre of the window. */
1975 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1976 
1977 	return ret;
1978 }
1979 
1980 /**
1981  * search_stop_check() - Check if the detected edge is valid
1982  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1983  * @d:			DQS delay
1984  * @rank_bgn:		Rank number
1985  * @write_group:	Write Group
1986  * @read_group:		Read Group
1987  * @bit_chk:		Resulting bit mask after the test
1988  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1989  * @use_read_test:	Perform read test
1990  *
1991  * Test if the found edge is valid.
1992  */
1993 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1994 			     const u32 write_group, const u32 read_group,
1995 			     u32 *bit_chk, u32 *sticky_bit_chk,
1996 			     const u32 use_read_test)
1997 {
1998 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1999 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2000 	const u32 correct_mask = write ? param->write_correct_mask :
2001 					 param->read_correct_mask;
2002 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2003 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2004 	u32 ret;
2005 	/*
2006 	 * Stop searching when the read test doesn't pass AND when
2007 	 * we've seen a passing read on every bit.
2008 	 */
2009 	if (write) {			/* WRITE-ONLY */
2010 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2011 							 0, PASS_ONE_BIT,
2012 							 bit_chk, 0);
2013 	} else if (use_read_test) {	/* READ-ONLY */
2014 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2015 							NUM_READ_PB_TESTS,
2016 							PASS_ONE_BIT, bit_chk,
2017 							0, 0);
2018 	} else {			/* READ-ONLY */
2019 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2020 						PASS_ONE_BIT, bit_chk, 0);
2021 		*bit_chk = *bit_chk >> (per_dqs *
2022 			(read_group - (write_group * ratio)));
2023 		ret = (*bit_chk == 0);
2024 	}
2025 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2026 	ret = ret && (*sticky_bit_chk == correct_mask);
2027 	debug_cond(DLEVEL == 2,
2028 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2029 		   __func__, __LINE__, d,
2030 		   *sticky_bit_chk, correct_mask, ret);
2031 	return ret;
2032 }
2033 
2034 /**
2035  * search_left_edge() - Find left edge of DQ/DQS working phase
2036  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2037  * @rank_bgn:		Rank number
2038  * @write_group:	Write Group
2039  * @read_group:		Read Group
2040  * @test_bgn:		Rank number to begin the test
2041  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2042  * @left_edge:		Left edge of the DQ/DQS phase
2043  * @right_edge:		Right edge of the DQ/DQS phase
2044  * @use_read_test:	Perform read test
2045  *
2046  * Find left edge of DQ/DQS working phase.
2047  */
2048 static void search_left_edge(const int write, const int rank_bgn,
2049 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2050 	u32 *sticky_bit_chk,
2051 	int *left_edge, int *right_edge, const u32 use_read_test)
2052 {
2053 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2054 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2055 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2056 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2057 	u32 stop, bit_chk;
2058 	int i, d;
2059 
2060 	for (d = 0; d <= dqs_max; d++) {
2061 		if (write)
2062 			scc_mgr_apply_group_dq_out1_delay(d);
2063 		else
2064 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2065 
2066 		writel(0, &sdr_scc_mgr->update);
2067 
2068 		stop = search_stop_check(write, d, rank_bgn, write_group,
2069 					 read_group, &bit_chk, sticky_bit_chk,
2070 					 use_read_test);
2071 		if (stop == 1)
2072 			break;
2073 
2074 		/* stop != 1 */
2075 		for (i = 0; i < per_dqs; i++) {
2076 			if (bit_chk & 1) {
2077 				/*
2078 				 * Remember a passing test as
2079 				 * the left_edge.
2080 				 */
2081 				left_edge[i] = d;
2082 			} else {
2083 				/*
2084 				 * If a left edge has not been seen
2085 				 * yet, then a future passing test
2086 				 * will mark this edge as the right
2087 				 * edge.
2088 				 */
2089 				if (left_edge[i] == delay_max + 1)
2090 					right_edge[i] = -(d + 1);
2091 			}
2092 			bit_chk >>= 1;
2093 		}
2094 	}
2095 
2096 	/* Reset DQ delay chains to 0 */
2097 	if (write)
2098 		scc_mgr_apply_group_dq_out1_delay(0);
2099 	else
2100 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2101 
2102 	*sticky_bit_chk = 0;
2103 	for (i = per_dqs - 1; i >= 0; i--) {
2104 		debug_cond(DLEVEL == 2,
2105 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2106 			   __func__, __LINE__, i, left_edge[i],
2107 			   i, right_edge[i]);
2108 
2109 		/*
2110 		 * Check for cases where we haven't found the left edge,
2111 		 * which makes our assignment of the the right edge invalid.
2112 		 * Reset it to the illegal value.
2113 		 */
2114 		if ((left_edge[i] == delay_max + 1) &&
2115 		    (right_edge[i] != delay_max + 1)) {
2116 			right_edge[i] = delay_max + 1;
2117 			debug_cond(DLEVEL == 2,
2118 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2119 				   __func__, __LINE__, i, right_edge[i]);
2120 		}
2121 
2122 		/*
2123 		 * Reset sticky bit
2124 		 * READ: except for bits where we have seen both
2125 		 *       the left and right edge.
2126 		 * WRITE: except for bits where we have seen the
2127 		 *        left edge.
2128 		 */
2129 		*sticky_bit_chk <<= 1;
2130 		if (write) {
2131 			if (left_edge[i] != delay_max + 1)
2132 				*sticky_bit_chk |= 1;
2133 		} else {
2134 			if ((left_edge[i] != delay_max + 1) &&
2135 			    (right_edge[i] != delay_max + 1))
2136 				*sticky_bit_chk |= 1;
2137 		}
2138 	}
2139 
2140 
2141 }
2142 
2143 /**
2144  * search_right_edge() - Find right edge of DQ/DQS working phase
2145  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2146  * @rank_bgn:		Rank number
2147  * @write_group:	Write Group
2148  * @read_group:		Read Group
2149  * @start_dqs:		DQS start phase
2150  * @start_dqs_en:	DQS enable start phase
2151  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2152  * @left_edge:		Left edge of the DQ/DQS phase
2153  * @right_edge:		Right edge of the DQ/DQS phase
2154  * @use_read_test:	Perform read test
2155  *
2156  * Find right edge of DQ/DQS working phase.
2157  */
2158 static int search_right_edge(const int write, const int rank_bgn,
2159 	const u32 write_group, const u32 read_group,
2160 	const int start_dqs, const int start_dqs_en,
2161 	u32 *sticky_bit_chk,
2162 	int *left_edge, int *right_edge, const u32 use_read_test)
2163 {
2164 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2165 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2166 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2167 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2168 	u32 stop, bit_chk;
2169 	int i, d;
2170 
2171 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2172 		if (write) {	/* WRITE-ONLY */
2173 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2174 								d + start_dqs);
2175 		} else {	/* READ-ONLY */
2176 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2177 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2178 				uint32_t delay = d + start_dqs_en;
2179 				if (delay > IO_DQS_EN_DELAY_MAX)
2180 					delay = IO_DQS_EN_DELAY_MAX;
2181 				scc_mgr_set_dqs_en_delay(read_group, delay);
2182 			}
2183 			scc_mgr_load_dqs(read_group);
2184 		}
2185 
2186 		writel(0, &sdr_scc_mgr->update);
2187 
2188 		stop = search_stop_check(write, d, rank_bgn, write_group,
2189 					 read_group, &bit_chk, sticky_bit_chk,
2190 					 use_read_test);
2191 		if (stop == 1) {
2192 			if (write && (d == 0)) {	/* WRITE-ONLY */
2193 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2194 					/*
2195 					 * d = 0 failed, but it passed when
2196 					 * testing the left edge, so it must be
2197 					 * marginal, set it to -1
2198 					 */
2199 					if (right_edge[i] == delay_max + 1 &&
2200 					    left_edge[i] != delay_max + 1)
2201 						right_edge[i] = -1;
2202 				}
2203 			}
2204 			break;
2205 		}
2206 
2207 		/* stop != 1 */
2208 		for (i = 0; i < per_dqs; i++) {
2209 			if (bit_chk & 1) {
2210 				/*
2211 				 * Remember a passing test as
2212 				 * the right_edge.
2213 				 */
2214 				right_edge[i] = d;
2215 			} else {
2216 				if (d != 0) {
2217 					/*
2218 					 * If a right edge has not
2219 					 * been seen yet, then a future
2220 					 * passing test will mark this
2221 					 * edge as the left edge.
2222 					 */
2223 					if (right_edge[i] == delay_max + 1)
2224 						left_edge[i] = -(d + 1);
2225 				} else {
2226 					/*
2227 					 * d = 0 failed, but it passed
2228 					 * when testing the left edge,
2229 					 * so it must be marginal, set
2230 					 * it to -1
2231 					 */
2232 					if (right_edge[i] == delay_max + 1 &&
2233 					    left_edge[i] != delay_max + 1)
2234 						right_edge[i] = -1;
2235 					/*
2236 					 * If a right edge has not been
2237 					 * seen yet, then a future
2238 					 * passing test will mark this
2239 					 * edge as the left edge.
2240 					 */
2241 					else if (right_edge[i] == delay_max + 1)
2242 						left_edge[i] = -(d + 1);
2243 				}
2244 			}
2245 
2246 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2247 				   __func__, __LINE__, d);
2248 			debug_cond(DLEVEL == 2,
2249 				   "bit_chk_test=%i left_edge[%u]: %d ",
2250 				   bit_chk & 1, i, left_edge[i]);
2251 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2252 				   right_edge[i]);
2253 			bit_chk >>= 1;
2254 		}
2255 	}
2256 
2257 	/* Check that all bits have a window */
2258 	for (i = 0; i < per_dqs; i++) {
2259 		debug_cond(DLEVEL == 2,
2260 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2261 			   __func__, __LINE__, i, left_edge[i],
2262 			   i, right_edge[i]);
2263 		if ((left_edge[i] == dqs_max + 1) ||
2264 		    (right_edge[i] == dqs_max + 1))
2265 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2273  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2274  * @left_edge:		Left edge of the DQ/DQS phase
2275  * @right_edge:		Right edge of the DQ/DQS phase
2276  * @mid_min:		Best DQ/DQS phase middle setting
2277  *
2278  * Find index and value of the middle of the DQ/DQS working phase.
2279  */
2280 static int get_window_mid_index(const int write, int *left_edge,
2281 				int *right_edge, int *mid_min)
2282 {
2283 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2284 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2285 	int i, mid, min_index;
2286 
2287 	/* Find middle of window for each DQ bit */
2288 	*mid_min = left_edge[0] - right_edge[0];
2289 	min_index = 0;
2290 	for (i = 1; i < per_dqs; i++) {
2291 		mid = left_edge[i] - right_edge[i];
2292 		if (mid < *mid_min) {
2293 			*mid_min = mid;
2294 			min_index = i;
2295 		}
2296 	}
2297 
2298 	/*
2299 	 * -mid_min/2 represents the amount that we need to move DQS.
2300 	 * If mid_min is odd and positive we'll need to add one to make
2301 	 * sure the rounding in further calculations is correct (always
2302 	 * bias to the right), so just add 1 for all positive values.
2303 	 */
2304 	if (*mid_min > 0)
2305 		(*mid_min)++;
2306 	*mid_min = *mid_min / 2;
2307 
2308 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2309 		   __func__, __LINE__, *mid_min, min_index);
2310 	return min_index;
2311 }
2312 
2313 /**
2314  * center_dq_windows() - Center the DQ/DQS windows
2315  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2316  * @left_edge:		Left edge of the DQ/DQS phase
2317  * @right_edge:		Right edge of the DQ/DQS phase
2318  * @mid_min:		Adjusted DQ/DQS phase middle setting
2319  * @orig_mid_min:	Original DQ/DQS phase middle setting
2320  * @min_index:		DQ/DQS phase middle setting index
2321  * @test_bgn:		Rank number to begin the test
2322  * @dq_margin:		Amount of shift for the DQ
2323  * @dqs_margin:		Amount of shift for the DQS
2324  *
2325  * Align the DQ/DQS windows in each group.
2326  */
2327 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2328 			      const int mid_min, const int orig_mid_min,
2329 			      const int min_index, const int test_bgn,
2330 			      int *dq_margin, int *dqs_margin)
2331 {
2332 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2333 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2334 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2335 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2336 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2337 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2338 
2339 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2340 	int shift_dq, i, p;
2341 
2342 	/* Initialize data for export structures */
2343 	*dqs_margin = delay_max + 1;
2344 	*dq_margin  = delay_max + 1;
2345 
2346 	/* add delay to bring centre of all DQ windows to the same "level" */
2347 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2348 		/* Use values before divide by 2 to reduce round off error */
2349 		shift_dq = (left_edge[i] - right_edge[i] -
2350 			(left_edge[min_index] - right_edge[min_index]))/2  +
2351 			(orig_mid_min - mid_min);
2352 
2353 		debug_cond(DLEVEL == 2,
2354 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2355 			   i, shift_dq);
2356 
2357 		temp_dq_io_delay1 = readl(addr + (p << 2));
2358 		temp_dq_io_delay2 = readl(addr + (i << 2));
2359 
2360 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2361 			shift_dq = delay_max - temp_dq_io_delay2;
2362 		else if (shift_dq + temp_dq_io_delay1 < 0)
2363 			shift_dq = -temp_dq_io_delay1;
2364 
2365 		debug_cond(DLEVEL == 2,
2366 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2367 			   i, shift_dq);
2368 
2369 		if (write)
2370 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2371 		else
2372 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2373 
2374 		scc_mgr_load_dq(p);
2375 
2376 		debug_cond(DLEVEL == 2,
2377 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2378 			   left_edge[i] - shift_dq + (-mid_min),
2379 			   right_edge[i] + shift_dq - (-mid_min));
2380 
2381 		/* To determine values for export structures */
2382 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2383 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2384 
2385 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2386 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2387 	}
2388 
2389 }
2390 
2391 /**
2392  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2393  * @rank_bgn:		Rank number
2394  * @rw_group:		Read/Write Group
2395  * @test_bgn:		Rank at which the test begins
2396  * @use_read_test:	Perform a read test
2397  * @update_fom:		Update FOM
2398  *
2399  * Per-bit deskew DQ and centering.
2400  */
2401 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2402 			const u32 rw_group, const u32 test_bgn,
2403 			const int use_read_test, const int update_fom)
2404 {
2405 	const u32 addr =
2406 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2407 		(rw_group << 2);
2408 	/*
2409 	 * Store these as signed since there are comparisons with
2410 	 * signed numbers.
2411 	 */
2412 	uint32_t sticky_bit_chk;
2413 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2414 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2415 	int32_t orig_mid_min, mid_min;
2416 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2417 	int32_t dq_margin, dqs_margin;
2418 	int i, min_index;
2419 	int ret;
2420 
2421 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2422 
2423 	start_dqs = readl(addr);
2424 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2425 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2426 
2427 	/* set the left and right edge of each bit to an illegal value */
2428 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2429 	sticky_bit_chk = 0;
2430 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2431 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2432 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2433 	}
2434 
2435 	/* Search for the left edge of the window for each bit */
2436 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2437 			 &sticky_bit_chk,
2438 			 left_edge, right_edge, use_read_test);
2439 
2440 
2441 	/* Search for the right edge of the window for each bit */
2442 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2443 				start_dqs, start_dqs_en,
2444 				&sticky_bit_chk,
2445 				left_edge, right_edge, use_read_test);
2446 	if (ret) {
2447 		/*
2448 		 * Restore delay chain settings before letting the loop
2449 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2450 		 * dqs/ck relationships.
2451 		 */
2452 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2453 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2454 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2455 
2456 		scc_mgr_load_dqs(rw_group);
2457 		writel(0, &sdr_scc_mgr->update);
2458 
2459 		debug_cond(DLEVEL == 1,
2460 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2461 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2462 		if (use_read_test) {
2463 			set_failing_group_stage(rw_group *
2464 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2465 				CAL_STAGE_VFIFO,
2466 				CAL_SUBSTAGE_VFIFO_CENTER);
2467 		} else {
2468 			set_failing_group_stage(rw_group *
2469 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2470 				CAL_STAGE_VFIFO_AFTER_WRITES,
2471 				CAL_SUBSTAGE_VFIFO_CENTER);
2472 		}
2473 		return -EIO;
2474 	}
2475 
2476 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2477 
2478 	/* Determine the amount we can change DQS (which is -mid_min) */
2479 	orig_mid_min = mid_min;
2480 	new_dqs = start_dqs - mid_min;
2481 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2482 		new_dqs = IO_DQS_IN_DELAY_MAX;
2483 	else if (new_dqs < 0)
2484 		new_dqs = 0;
2485 
2486 	mid_min = start_dqs - new_dqs;
2487 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2488 		   mid_min, new_dqs);
2489 
2490 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2491 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2492 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2493 		else if (start_dqs_en - mid_min < 0)
2494 			mid_min += start_dqs_en - mid_min;
2495 	}
2496 	new_dqs = start_dqs - mid_min;
2497 
2498 	debug_cond(DLEVEL == 1,
2499 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2500 		   start_dqs,
2501 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2502 		   new_dqs, mid_min);
2503 
2504 	/* Add delay to bring centre of all DQ windows to the same "level". */
2505 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2506 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2507 
2508 	/* Move DQS-en */
2509 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2510 		final_dqs_en = start_dqs_en - mid_min;
2511 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2512 		scc_mgr_load_dqs(rw_group);
2513 	}
2514 
2515 	/* Move DQS */
2516 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2517 	scc_mgr_load_dqs(rw_group);
2518 	debug_cond(DLEVEL == 2,
2519 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2520 		   __func__, __LINE__, dq_margin, dqs_margin);
2521 
2522 	/*
2523 	 * Do not remove this line as it makes sure all of our decisions
2524 	 * have been applied. Apply the update bit.
2525 	 */
2526 	writel(0, &sdr_scc_mgr->update);
2527 
2528 	if ((dq_margin < 0) || (dqs_margin < 0))
2529 		return -EINVAL;
2530 
2531 	return 0;
2532 }
2533 
2534 /**
2535  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2536  * @rw_group:	Read/Write Group
2537  * @phase:	DQ/DQS phase
2538  *
2539  * Because initially no communication ca be reliably performed with the memory
2540  * device, the sequencer uses a guaranteed write mechanism to write data into
2541  * the memory device.
2542  */
2543 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2544 						 const u32 phase)
2545 {
2546 	int ret;
2547 
2548 	/* Set a particular DQ/DQS phase. */
2549 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2550 
2551 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2552 		   __func__, __LINE__, rw_group, phase);
2553 
2554 	/*
2555 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2556 	 * Load up the patterns used by read calibration using the
2557 	 * current DQDQS phase.
2558 	 */
2559 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2560 
2561 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2562 		return 0;
2563 
2564 	/*
2565 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2566 	 * Back-to-Back reads of the patterns used for calibration.
2567 	 */
2568 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2569 	if (ret)
2570 		debug_cond(DLEVEL == 1,
2571 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2572 			   __func__, __LINE__, rw_group, phase);
2573 	return ret;
2574 }
2575 
2576 /**
2577  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2578  * @rw_group:	Read/Write Group
2579  * @test_bgn:	Rank at which the test begins
2580  *
2581  * DQS enable calibration ensures reliable capture of the DQ signal without
2582  * glitches on the DQS line.
2583  */
2584 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2585 						       const u32 test_bgn)
2586 {
2587 	/*
2588 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2589 	 * DQS and DQS Eanble Signal Relationships.
2590 	 */
2591 
2592 	/* We start at zero, so have one less dq to devide among */
2593 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2594 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2595 	int ret;
2596 	u32 i, p, d, r;
2597 
2598 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2599 
2600 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2601 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2602 	     r += NUM_RANKS_PER_SHADOW_REG) {
2603 		for (i = 0, p = test_bgn, d = 0;
2604 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2605 		     i++, p++, d += delay_step) {
2606 			debug_cond(DLEVEL == 1,
2607 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2608 				   __func__, __LINE__, rw_group, r, i, p, d);
2609 
2610 			scc_mgr_set_dq_in_delay(p, d);
2611 			scc_mgr_load_dq(p);
2612 		}
2613 
2614 		writel(0, &sdr_scc_mgr->update);
2615 	}
2616 
2617 	/*
2618 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2619 	 * dq_in_delay values
2620 	 */
2621 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2622 
2623 	debug_cond(DLEVEL == 1,
2624 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2625 		   __func__, __LINE__, rw_group, !ret);
2626 
2627 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2628 	     r += NUM_RANKS_PER_SHADOW_REG) {
2629 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2630 		writel(0, &sdr_scc_mgr->update);
2631 	}
2632 
2633 	return ret;
2634 }
2635 
2636 /**
2637  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2638  * @rw_group:		Read/Write Group
2639  * @test_bgn:		Rank at which the test begins
2640  * @use_read_test:	Perform a read test
2641  * @update_fom:		Update FOM
2642  *
2643  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2644  * within a group.
2645  */
2646 static int
2647 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2648 				      const int use_read_test,
2649 				      const int update_fom)
2650 
2651 {
2652 	int ret, grp_calibrated;
2653 	u32 rank_bgn, sr;
2654 
2655 	/*
2656 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2657 	 * Read per-bit deskew can be done on a per shadow register basis.
2658 	 */
2659 	grp_calibrated = 1;
2660 	for (rank_bgn = 0, sr = 0;
2661 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2662 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2663 		/* Check if this set of ranks should be skipped entirely. */
2664 		if (param->skip_shadow_regs[sr])
2665 			continue;
2666 
2667 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2668 							test_bgn,
2669 							use_read_test,
2670 							update_fom);
2671 		if (!ret)
2672 			continue;
2673 
2674 		grp_calibrated = 0;
2675 	}
2676 
2677 	if (!grp_calibrated)
2678 		return -EIO;
2679 
2680 	return 0;
2681 }
2682 
2683 /**
2684  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2685  * @rw_group:		Read/Write Group
2686  * @test_bgn:		Rank at which the test begins
2687  *
2688  * Stage 1: Calibrate the read valid prediction FIFO.
2689  *
2690  * This function implements UniPHY calibration Stage 1, as explained in
2691  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2692  *
2693  * - read valid prediction will consist of finding:
2694  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2695  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2696  *  - we also do a per-bit deskew on the DQ lines.
2697  */
2698 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2699 {
2700 	uint32_t p, d;
2701 	uint32_t dtaps_per_ptap;
2702 	uint32_t failed_substage;
2703 
2704 	int ret;
2705 
2706 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2707 
2708 	/* Update info for sims */
2709 	reg_file_set_group(rw_group);
2710 	reg_file_set_stage(CAL_STAGE_VFIFO);
2711 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2712 
2713 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2714 
2715 	/* USER Determine number of delay taps for each phase tap. */
2716 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2717 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2718 
2719 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2720 		/*
2721 		 * In RLDRAMX we may be messing the delay of pins in
2722 		 * the same write rw_group but outside of the current read
2723 		 * the rw_group, but that's ok because we haven't calibrated
2724 		 * output side yet.
2725 		 */
2726 		if (d > 0) {
2727 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2728 								rw_group, d);
2729 		}
2730 
2731 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2732 			/* 1) Guaranteed Write */
2733 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2734 			if (ret)
2735 				break;
2736 
2737 			/* 2) DQS Enable Calibration */
2738 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2739 									  test_bgn);
2740 			if (ret) {
2741 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2742 				continue;
2743 			}
2744 
2745 			/* 3) Centering DQ/DQS */
2746 			/*
2747 			 * If doing read after write calibration, do not update
2748 			 * FOM now. Do it then.
2749 			 */
2750 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2751 								test_bgn, 1, 0);
2752 			if (ret) {
2753 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2754 				continue;
2755 			}
2756 
2757 			/* All done. */
2758 			goto cal_done_ok;
2759 		}
2760 	}
2761 
2762 	/* Calibration Stage 1 failed. */
2763 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2764 	return 0;
2765 
2766 	/* Calibration Stage 1 completed OK. */
2767 cal_done_ok:
2768 	/*
2769 	 * Reset the delay chains back to zero if they have moved > 1
2770 	 * (check for > 1 because loop will increase d even when pass in
2771 	 * first case).
2772 	 */
2773 	if (d > 2)
2774 		scc_mgr_zero_group(rw_group, 1);
2775 
2776 	return 1;
2777 }
2778 
2779 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2780 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2781 					       uint32_t test_bgn)
2782 {
2783 	uint32_t rank_bgn, sr;
2784 	uint32_t grp_calibrated;
2785 	uint32_t write_group;
2786 
2787 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2788 
2789 	/* update info for sims */
2790 
2791 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2792 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2793 
2794 	write_group = read_group;
2795 
2796 	/* update info for sims */
2797 	reg_file_set_group(read_group);
2798 
2799 	grp_calibrated = 1;
2800 	/* Read per-bit deskew can be done on a per shadow register basis */
2801 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2802 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2803 		/* Determine if this set of ranks should be skipped entirely */
2804 		if (!param->skip_shadow_regs[sr]) {
2805 		/* This is the last calibration round, update FOM here */
2806 			if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2807 								read_group,
2808 								test_bgn, 0,
2809 								1)) {
2810 				grp_calibrated = 0;
2811 			}
2812 		}
2813 	}
2814 
2815 
2816 	if (grp_calibrated == 0) {
2817 		set_failing_group_stage(write_group,
2818 					CAL_STAGE_VFIFO_AFTER_WRITES,
2819 					CAL_SUBSTAGE_VFIFO_CENTER);
2820 		return 0;
2821 	}
2822 
2823 	return 1;
2824 }
2825 
2826 /* Calibrate LFIFO to find smallest read latency */
2827 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2828 {
2829 	uint32_t found_one;
2830 
2831 	debug("%s:%d\n", __func__, __LINE__);
2832 
2833 	/* update info for sims */
2834 	reg_file_set_stage(CAL_STAGE_LFIFO);
2835 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2836 
2837 	/* Load up the patterns used by read calibration for all ranks */
2838 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2839 	found_one = 0;
2840 
2841 	do {
2842 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2843 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2844 			   __func__, __LINE__, gbl->curr_read_lat);
2845 
2846 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2847 							      NUM_READ_TESTS,
2848 							      PASS_ALL_BITS,
2849 							      1)) {
2850 			break;
2851 		}
2852 
2853 		found_one = 1;
2854 		/* reduce read latency and see if things are working */
2855 		/* correctly */
2856 		gbl->curr_read_lat--;
2857 	} while (gbl->curr_read_lat > 0);
2858 
2859 	/* reset the fifos to get pointers to known state */
2860 
2861 	writel(0, &phy_mgr_cmd->fifo_reset);
2862 
2863 	if (found_one) {
2864 		/* add a fudge factor to the read latency that was determined */
2865 		gbl->curr_read_lat += 2;
2866 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2867 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2868 			   read_lat=%u\n", __func__, __LINE__,
2869 			   gbl->curr_read_lat);
2870 		return 1;
2871 	} else {
2872 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2873 					CAL_SUBSTAGE_READ_LATENCY);
2874 
2875 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2876 			   read_lat=%u\n", __func__, __LINE__,
2877 			   gbl->curr_read_lat);
2878 		return 0;
2879 	}
2880 }
2881 
2882 /**
2883  * search_window() - Search for the/part of the window with DM/DQS shift
2884  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2885  * @rank_bgn:		Rank number
2886  * @write_group:	Write Group
2887  * @bgn_curr:		Current window begin
2888  * @end_curr:		Current window end
2889  * @bgn_best:		Current best window begin
2890  * @end_best:		Current best window end
2891  * @win_best:		Size of the best window
2892  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2893  *
2894  * Search for the/part of the window with DM/DQS shift.
2895  */
2896 static void search_window(const int search_dm,
2897 			  const u32 rank_bgn, const u32 write_group,
2898 			  int *bgn_curr, int *end_curr, int *bgn_best,
2899 			  int *end_best, int *win_best, int new_dqs)
2900 {
2901 	u32 bit_chk;
2902 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2903 	int d, di;
2904 
2905 	/* Search for the/part of the window with DM/DQS shift. */
2906 	for (di = max; di >= 0; di -= DELTA_D) {
2907 		if (search_dm) {
2908 			d = di;
2909 			scc_mgr_apply_group_dm_out1_delay(d);
2910 		} else {
2911 			/* For DQS, we go from 0...max */
2912 			d = max - di;
2913 			/*
2914 			 * Note: This only shifts DQS, so are we limiting ourselve to
2915 			 * width of DQ unnecessarily.
2916 			 */
2917 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2918 								d + new_dqs);
2919 		}
2920 
2921 		writel(0, &sdr_scc_mgr->update);
2922 
2923 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2924 						    PASS_ALL_BITS, &bit_chk,
2925 						    0)) {
2926 			/* Set current end of the window. */
2927 			*end_curr = search_dm ? -d : d;
2928 
2929 			/*
2930 			 * If a starting edge of our window has not been seen
2931 			 * this is our current start of the DM window.
2932 			 */
2933 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2934 				*bgn_curr = search_dm ? -d : d;
2935 
2936 			/*
2937 			 * If current window is bigger than best seen.
2938 			 * Set best seen to be current window.
2939 			 */
2940 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2941 				*win_best = *end_curr - *bgn_curr + 1;
2942 				*bgn_best = *bgn_curr;
2943 				*end_best = *end_curr;
2944 			}
2945 		} else {
2946 			/* We just saw a failing test. Reset temp edge. */
2947 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2948 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2949 
2950 			/* Early exit is only applicable to DQS. */
2951 			if (search_dm)
2952 				continue;
2953 
2954 			/*
2955 			 * Early exit optimization: if the remaining delay
2956 			 * chain space is less than already seen largest
2957 			 * window we can exit.
2958 			 */
2959 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2960 				break;
2961 		}
2962 	}
2963 }
2964 
2965 /*
2966  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2967  * @rank_bgn:		Rank number
2968  * @write_group:	Write group
2969  * @test_bgn:		Rank at which the test begins
2970  *
2971  * Center all windows. Do per-bit-deskew to possibly increase size of
2972  * certain windows.
2973  */
2974 static int
2975 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2976 				   const u32 test_bgn)
2977 {
2978 	int i;
2979 	u32 sticky_bit_chk;
2980 	u32 min_index;
2981 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2982 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2983 	int mid;
2984 	int mid_min, orig_mid_min;
2985 	int new_dqs, start_dqs;
2986 	int dq_margin, dqs_margin, dm_margin;
2987 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2988 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2989 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2990 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2991 	int win_best = 0;
2992 
2993 	int ret;
2994 
2995 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2996 
2997 	dm_margin = 0;
2998 
2999 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
3000 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
3001 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
3002 
3003 	/* Per-bit deskew. */
3004 
3005 	/*
3006 	 * Set the left and right edge of each bit to an illegal value.
3007 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3008 	 */
3009 	sticky_bit_chk = 0;
3010 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3011 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3012 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3013 	}
3014 
3015 	/* Search for the left edge of the window for each bit. */
3016 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3017 			 &sticky_bit_chk,
3018 			 left_edge, right_edge, 0);
3019 
3020 	/* Search for the right edge of the window for each bit. */
3021 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3022 				start_dqs, 0,
3023 				&sticky_bit_chk,
3024 				left_edge, right_edge, 0);
3025 	if (ret) {
3026 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3027 					CAL_SUBSTAGE_WRITES_CENTER);
3028 		return -EINVAL;
3029 	}
3030 
3031 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3032 
3033 	/* Determine the amount we can change DQS (which is -mid_min). */
3034 	orig_mid_min = mid_min;
3035 	new_dqs = start_dqs;
3036 	mid_min = 0;
3037 	debug_cond(DLEVEL == 1,
3038 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3039 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3040 
3041 	/* Add delay to bring centre of all DQ windows to the same "level". */
3042 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3043 			  min_index, 0, &dq_margin, &dqs_margin);
3044 
3045 	/* Move DQS */
3046 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3047 	writel(0, &sdr_scc_mgr->update);
3048 
3049 	/* Centre DM */
3050 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3051 
3052 	/*
3053 	 * Set the left and right edge of each bit to an illegal value.
3054 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3055 	 */
3056 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3057 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3058 
3059 	/* Search for the/part of the window with DM shift. */
3060 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3061 		      &bgn_best, &end_best, &win_best, 0);
3062 
3063 	/* Reset DM delay chains to 0. */
3064 	scc_mgr_apply_group_dm_out1_delay(0);
3065 
3066 	/*
3067 	 * Check to see if the current window nudges up aganist 0 delay.
3068 	 * If so we need to continue the search by shifting DQS otherwise DQS
3069 	 * search begins as a new search.
3070 	 */
3071 	if (end_curr != 0) {
3072 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3073 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3074 	}
3075 
3076 	/* Search for the/part of the window with DQS shifts. */
3077 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3078 		      &bgn_best, &end_best, &win_best, new_dqs);
3079 
3080 	/* Assign left and right edge for cal and reporting. */
3081 	left_edge[0] = -1 * bgn_best;
3082 	right_edge[0] = end_best;
3083 
3084 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3085 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3086 
3087 	/* Move DQS (back to orig). */
3088 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3089 
3090 	/* Move DM */
3091 
3092 	/* Find middle of window for the DM bit. */
3093 	mid = (left_edge[0] - right_edge[0]) / 2;
3094 
3095 	/* Only move right, since we are not moving DQS/DQ. */
3096 	if (mid < 0)
3097 		mid = 0;
3098 
3099 	/* dm_marign should fail if we never find a window. */
3100 	if (win_best == 0)
3101 		dm_margin = -1;
3102 	else
3103 		dm_margin = left_edge[0] - mid;
3104 
3105 	scc_mgr_apply_group_dm_out1_delay(mid);
3106 	writel(0, &sdr_scc_mgr->update);
3107 
3108 	debug_cond(DLEVEL == 2,
3109 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3110 		   __func__, __LINE__, left_edge[0], right_edge[0],
3111 		   mid, dm_margin);
3112 	/* Export values. */
3113 	gbl->fom_out += dq_margin + dqs_margin;
3114 
3115 	debug_cond(DLEVEL == 2,
3116 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3117 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3118 
3119 	/*
3120 	 * Do not remove this line as it makes sure all of our
3121 	 * decisions have been applied.
3122 	 */
3123 	writel(0, &sdr_scc_mgr->update);
3124 
3125 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3126 		return -EINVAL;
3127 
3128 	return 0;
3129 }
3130 
3131 /**
3132  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3133  * @rank_bgn:		Rank number
3134  * @group:		Read/Write Group
3135  * @test_bgn:		Rank at which the test begins
3136  *
3137  * Stage 2: Write Calibration Part One.
3138  *
3139  * This function implements UniPHY calibration Stage 2, as explained in
3140  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3141  */
3142 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3143 				       const u32 test_bgn)
3144 {
3145 	int ret;
3146 
3147 	/* Update info for sims */
3148 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3149 
3150 	reg_file_set_group(group);
3151 	reg_file_set_stage(CAL_STAGE_WRITES);
3152 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3153 
3154 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3155 	if (ret)
3156 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3157 					CAL_SUBSTAGE_WRITES_CENTER);
3158 
3159 	return ret;
3160 }
3161 
3162 /**
3163  * mem_precharge_and_activate() - Precharge all banks and activate
3164  *
3165  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3166  */
3167 static void mem_precharge_and_activate(void)
3168 {
3169 	int r;
3170 
3171 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3172 		/* Test if the rank should be skipped. */
3173 		if (param->skip_ranks[r])
3174 			continue;
3175 
3176 		/* Set rank. */
3177 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3178 
3179 		/* Precharge all banks. */
3180 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3181 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3182 
3183 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3184 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3185 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3186 
3187 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3188 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3189 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3190 
3191 		/* Activate rows. */
3192 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3193 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3194 	}
3195 }
3196 
3197 /**
3198  * mem_init_latency() - Configure memory RLAT and WLAT settings
3199  *
3200  * Configure memory RLAT and WLAT parameters.
3201  */
3202 static void mem_init_latency(void)
3203 {
3204 	/*
3205 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3206 	 * so max latency in AFI clocks, used here, is correspondingly
3207 	 * smaller.
3208 	 */
3209 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3210 	u32 rlat, wlat;
3211 
3212 	debug("%s:%d\n", __func__, __LINE__);
3213 
3214 	/*
3215 	 * Read in write latency.
3216 	 * WL for Hard PHY does not include additive latency.
3217 	 */
3218 	wlat = readl(&data_mgr->t_wl_add);
3219 	wlat += readl(&data_mgr->mem_t_add);
3220 
3221 	gbl->rw_wl_nop_cycles = wlat - 1;
3222 
3223 	/* Read in readl latency. */
3224 	rlat = readl(&data_mgr->t_rl_add);
3225 
3226 	/* Set a pretty high read latency initially. */
3227 	gbl->curr_read_lat = rlat + 16;
3228 	if (gbl->curr_read_lat > max_latency)
3229 		gbl->curr_read_lat = max_latency;
3230 
3231 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3232 
3233 	/* Advertise write latency. */
3234 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3235 }
3236 
3237 /**
3238  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3239  *
3240  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3241  */
3242 static void mem_skip_calibrate(void)
3243 {
3244 	uint32_t vfifo_offset;
3245 	uint32_t i, j, r;
3246 
3247 	debug("%s:%d\n", __func__, __LINE__);
3248 	/* Need to update every shadow register set used by the interface */
3249 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3250 	     r += NUM_RANKS_PER_SHADOW_REG) {
3251 		/*
3252 		 * Set output phase alignment settings appropriate for
3253 		 * skip calibration.
3254 		 */
3255 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3256 			scc_mgr_set_dqs_en_phase(i, 0);
3257 #if IO_DLL_CHAIN_LENGTH == 6
3258 			scc_mgr_set_dqdqs_output_phase(i, 6);
3259 #else
3260 			scc_mgr_set_dqdqs_output_phase(i, 7);
3261 #endif
3262 			/*
3263 			 * Case:33398
3264 			 *
3265 			 * Write data arrives to the I/O two cycles before write
3266 			 * latency is reached (720 deg).
3267 			 *   -> due to bit-slip in a/c bus
3268 			 *   -> to allow board skew where dqs is longer than ck
3269 			 *      -> how often can this happen!?
3270 			 *      -> can claim back some ptaps for high freq
3271 			 *       support if we can relax this, but i digress...
3272 			 *
3273 			 * The write_clk leads mem_ck by 90 deg
3274 			 * The minimum ptap of the OPA is 180 deg
3275 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3276 			 * The write_clk is always delayed by 2 ptaps
3277 			 *
3278 			 * Hence, to make DQS aligned to CK, we need to delay
3279 			 * DQS by:
3280 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3281 			 *
3282 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3283 			 * gives us the number of ptaps, which simplies to:
3284 			 *
3285 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3286 			 */
3287 			scc_mgr_set_dqdqs_output_phase(i,
3288 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3289 		}
3290 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3291 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3292 
3293 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3294 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3295 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3296 		}
3297 		writel(0xff, &sdr_scc_mgr->dq_ena);
3298 		writel(0xff, &sdr_scc_mgr->dm_ena);
3299 		writel(0, &sdr_scc_mgr->update);
3300 	}
3301 
3302 	/* Compensate for simulation model behaviour */
3303 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3304 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3305 		scc_mgr_load_dqs(i);
3306 	}
3307 	writel(0, &sdr_scc_mgr->update);
3308 
3309 	/*
3310 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3311 	 * in sequencer.
3312 	 */
3313 	vfifo_offset = CALIB_VFIFO_OFFSET;
3314 	for (j = 0; j < vfifo_offset; j++)
3315 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3316 	writel(0, &phy_mgr_cmd->fifo_reset);
3317 
3318 	/*
3319 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3320 	 * setting from generation-time constant.
3321 	 */
3322 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3323 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3324 }
3325 
3326 /**
3327  * mem_calibrate() - Memory calibration entry point.
3328  *
3329  * Perform memory calibration.
3330  */
3331 static uint32_t mem_calibrate(void)
3332 {
3333 	uint32_t i;
3334 	uint32_t rank_bgn, sr;
3335 	uint32_t write_group, write_test_bgn;
3336 	uint32_t read_group, read_test_bgn;
3337 	uint32_t run_groups, current_run;
3338 	uint32_t failing_groups = 0;
3339 	uint32_t group_failed = 0;
3340 
3341 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3342 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3343 
3344 	debug("%s:%d\n", __func__, __LINE__);
3345 
3346 	/* Initialize the data settings */
3347 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3348 	gbl->error_stage = CAL_STAGE_NIL;
3349 	gbl->error_group = 0xff;
3350 	gbl->fom_in = 0;
3351 	gbl->fom_out = 0;
3352 
3353 	/* Initialize WLAT and RLAT. */
3354 	mem_init_latency();
3355 
3356 	/* Initialize bit slips. */
3357 	mem_precharge_and_activate();
3358 
3359 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3360 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3361 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3362 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3363 		if (i == 0)
3364 			scc_mgr_set_hhp_extras();
3365 
3366 		scc_set_bypass_mode(i);
3367 	}
3368 
3369 	/* Calibration is skipped. */
3370 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3371 		/*
3372 		 * Set VFIFO and LFIFO to instant-on settings in skip
3373 		 * calibration mode.
3374 		 */
3375 		mem_skip_calibrate();
3376 
3377 		/*
3378 		 * Do not remove this line as it makes sure all of our
3379 		 * decisions have been applied.
3380 		 */
3381 		writel(0, &sdr_scc_mgr->update);
3382 		return 1;
3383 	}
3384 
3385 	/* Calibration is not skipped. */
3386 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3387 		/*
3388 		 * Zero all delay chain/phase settings for all
3389 		 * groups and all shadow register sets.
3390 		 */
3391 		scc_mgr_zero_all();
3392 
3393 		run_groups = ~param->skip_groups;
3394 
3395 		for (write_group = 0, write_test_bgn = 0; write_group
3396 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3397 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3398 
3399 			/* Initialize the group failure */
3400 			group_failed = 0;
3401 
3402 			current_run = run_groups & ((1 <<
3403 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3404 			run_groups = run_groups >>
3405 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3406 
3407 			if (current_run == 0)
3408 				continue;
3409 
3410 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3411 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3412 			scc_mgr_zero_group(write_group, 0);
3413 
3414 			for (read_group = write_group * rwdqs_ratio,
3415 			     read_test_bgn = 0;
3416 			     read_group < (write_group + 1) * rwdqs_ratio;
3417 			     read_group++,
3418 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3419 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3420 					continue;
3421 
3422 				/* Calibrate the VFIFO */
3423 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3424 							       read_test_bgn))
3425 					continue;
3426 
3427 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3428 					return 0;
3429 
3430 				/* The group failed, we're done. */
3431 				goto grp_failed;
3432 			}
3433 
3434 			/* Calibrate the output side */
3435 			for (rank_bgn = 0, sr = 0;
3436 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3437 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3438 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3439 					continue;
3440 
3441 				/* Not needed in quick mode! */
3442 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3443 					continue;
3444 
3445 				/*
3446 				 * Determine if this set of ranks
3447 				 * should be skipped entirely.
3448 				 */
3449 				if (param->skip_shadow_regs[sr])
3450 					continue;
3451 
3452 				/* Calibrate WRITEs */
3453 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3454 						write_group, write_test_bgn))
3455 					continue;
3456 
3457 				group_failed = 1;
3458 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3459 					return 0;
3460 			}
3461 
3462 			/* Some group failed, we're done. */
3463 			if (group_failed)
3464 				goto grp_failed;
3465 
3466 			for (read_group = write_group * rwdqs_ratio,
3467 			     read_test_bgn = 0;
3468 			     read_group < (write_group + 1) * rwdqs_ratio;
3469 			     read_group++,
3470 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3471 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3472 					continue;
3473 
3474 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3475 								read_test_bgn))
3476 					continue;
3477 
3478 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3479 					return 0;
3480 
3481 				/* The group failed, we're done. */
3482 				goto grp_failed;
3483 			}
3484 
3485 			/* No group failed, continue as usual. */
3486 			continue;
3487 
3488 grp_failed:		/* A group failed, increment the counter. */
3489 			failing_groups++;
3490 		}
3491 
3492 		/*
3493 		 * USER If there are any failing groups then report
3494 		 * the failure.
3495 		 */
3496 		if (failing_groups != 0)
3497 			return 0;
3498 
3499 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3500 			continue;
3501 
3502 		/*
3503 		 * If we're skipping groups as part of debug,
3504 		 * don't calibrate LFIFO.
3505 		 */
3506 		if (param->skip_groups != 0)
3507 			continue;
3508 
3509 		/* Calibrate the LFIFO */
3510 		if (!rw_mgr_mem_calibrate_lfifo())
3511 			return 0;
3512 	}
3513 
3514 	/*
3515 	 * Do not remove this line as it makes sure all of our decisions
3516 	 * have been applied.
3517 	 */
3518 	writel(0, &sdr_scc_mgr->update);
3519 	return 1;
3520 }
3521 
3522 /**
3523  * run_mem_calibrate() - Perform memory calibration
3524  *
3525  * This function triggers the entire memory calibration procedure.
3526  */
3527 static int run_mem_calibrate(void)
3528 {
3529 	int pass;
3530 
3531 	debug("%s:%d\n", __func__, __LINE__);
3532 
3533 	/* Reset pass/fail status shown on afi_cal_success/fail */
3534 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3535 
3536 	/* Stop tracking manager. */
3537 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3538 
3539 	phy_mgr_initialize();
3540 	rw_mgr_mem_initialize();
3541 
3542 	/* Perform the actual memory calibration. */
3543 	pass = mem_calibrate();
3544 
3545 	mem_precharge_and_activate();
3546 	writel(0, &phy_mgr_cmd->fifo_reset);
3547 
3548 	/* Handoff. */
3549 	rw_mgr_mem_handoff();
3550 	/*
3551 	 * In Hard PHY this is a 2-bit control:
3552 	 * 0: AFI Mux Select
3553 	 * 1: DDIO Mux Select
3554 	 */
3555 	writel(0x2, &phy_mgr_cfg->mux_sel);
3556 
3557 	/* Start tracking manager. */
3558 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3559 
3560 	return pass;
3561 }
3562 
3563 /**
3564  * debug_mem_calibrate() - Report result of memory calibration
3565  * @pass:	Value indicating whether calibration passed or failed
3566  *
3567  * This function reports the results of the memory calibration
3568  * and writes debug information into the register file.
3569  */
3570 static void debug_mem_calibrate(int pass)
3571 {
3572 	uint32_t debug_info;
3573 
3574 	if (pass) {
3575 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3576 
3577 		gbl->fom_in /= 2;
3578 		gbl->fom_out /= 2;
3579 
3580 		if (gbl->fom_in > 0xff)
3581 			gbl->fom_in = 0xff;
3582 
3583 		if (gbl->fom_out > 0xff)
3584 			gbl->fom_out = 0xff;
3585 
3586 		/* Update the FOM in the register file */
3587 		debug_info = gbl->fom_in;
3588 		debug_info |= gbl->fom_out << 8;
3589 		writel(debug_info, &sdr_reg_file->fom);
3590 
3591 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3593 	} else {
3594 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3595 
3596 		debug_info = gbl->error_stage;
3597 		debug_info |= gbl->error_substage << 8;
3598 		debug_info |= gbl->error_group << 16;
3599 
3600 		writel(debug_info, &sdr_reg_file->failing_stage);
3601 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3602 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3603 
3604 		/* Update the failing group/stage in the register file */
3605 		debug_info = gbl->error_stage;
3606 		debug_info |= gbl->error_substage << 8;
3607 		debug_info |= gbl->error_group << 16;
3608 		writel(debug_info, &sdr_reg_file->failing_stage);
3609 	}
3610 
3611 	printf("%s: Calibration complete\n", __FILE__);
3612 }
3613 
3614 /**
3615  * hc_initialize_rom_data() - Initialize ROM data
3616  *
3617  * Initialize ROM data.
3618  */
3619 static void hc_initialize_rom_data(void)
3620 {
3621 	u32 i, addr;
3622 
3623 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3624 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3625 		writel(inst_rom_init[i], addr + (i << 2));
3626 
3627 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3628 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3629 		writel(ac_rom_init[i], addr + (i << 2));
3630 }
3631 
3632 /**
3633  * initialize_reg_file() - Initialize SDR register file
3634  *
3635  * Initialize SDR register file.
3636  */
3637 static void initialize_reg_file(void)
3638 {
3639 	/* Initialize the register file with the correct data */
3640 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3641 	writel(0, &sdr_reg_file->debug_data_addr);
3642 	writel(0, &sdr_reg_file->cur_stage);
3643 	writel(0, &sdr_reg_file->fom);
3644 	writel(0, &sdr_reg_file->failing_stage);
3645 	writel(0, &sdr_reg_file->debug1);
3646 	writel(0, &sdr_reg_file->debug2);
3647 }
3648 
3649 /**
3650  * initialize_hps_phy() - Initialize HPS PHY
3651  *
3652  * Initialize HPS PHY.
3653  */
3654 static void initialize_hps_phy(void)
3655 {
3656 	uint32_t reg;
3657 	/*
3658 	 * Tracking also gets configured here because it's in the
3659 	 * same register.
3660 	 */
3661 	uint32_t trk_sample_count = 7500;
3662 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3663 	/*
3664 	 * Format is number of outer loops in the 16 MSB, sample
3665 	 * count in 16 LSB.
3666 	 */
3667 
3668 	reg = 0;
3669 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3671 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3672 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3675 	/*
3676 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3677 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3678 	 */
3679 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3681 		trk_sample_count);
3682 	writel(reg, &sdr_ctrl->phy_ctrl0);
3683 
3684 	reg = 0;
3685 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3686 		trk_sample_count >>
3687 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3689 		trk_long_idle_sample_count);
3690 	writel(reg, &sdr_ctrl->phy_ctrl1);
3691 
3692 	reg = 0;
3693 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3694 		trk_long_idle_sample_count >>
3695 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3696 	writel(reg, &sdr_ctrl->phy_ctrl2);
3697 }
3698 
3699 /**
3700  * initialize_tracking() - Initialize tracking
3701  *
3702  * Initialize the register file with usable initial data.
3703  */
3704 static void initialize_tracking(void)
3705 {
3706 	/*
3707 	 * Initialize the register file with the correct data.
3708 	 * Compute usable version of value in case we skip full
3709 	 * computation later.
3710 	 */
3711 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3712 	       &sdr_reg_file->dtaps_per_ptap);
3713 
3714 	/* trk_sample_count */
3715 	writel(7500, &sdr_reg_file->trk_sample_count);
3716 
3717 	/* longidle outer loop [15:0] */
3718 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3719 
3720 	/*
3721 	 * longidle sample count [31:24]
3722 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3723 	 * trcd, worst case [15:8]
3724 	 * vfifo wait [7:0]
3725 	 */
3726 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3727 	       &sdr_reg_file->delays);
3728 
3729 	/* mux delay */
3730 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3731 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3732 	       &sdr_reg_file->trk_rw_mgr_addr);
3733 
3734 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3735 	       &sdr_reg_file->trk_read_dqs_width);
3736 
3737 	/* trefi [7:0] */
3738 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3739 	       &sdr_reg_file->trk_rfsh);
3740 }
3741 
3742 int sdram_calibration_full(void)
3743 {
3744 	struct param_type my_param;
3745 	struct gbl_type my_gbl;
3746 	uint32_t pass;
3747 
3748 	memset(&my_param, 0, sizeof(my_param));
3749 	memset(&my_gbl, 0, sizeof(my_gbl));
3750 
3751 	param = &my_param;
3752 	gbl = &my_gbl;
3753 
3754 	/* Set the calibration enabled by default */
3755 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3756 	/*
3757 	 * Only sweep all groups (regardless of fail state) by default
3758 	 * Set enabled read test by default.
3759 	 */
3760 #if DISABLE_GUARANTEED_READ
3761 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3762 #endif
3763 	/* Initialize the register file */
3764 	initialize_reg_file();
3765 
3766 	/* Initialize any PHY CSR */
3767 	initialize_hps_phy();
3768 
3769 	scc_mgr_initialize();
3770 
3771 	initialize_tracking();
3772 
3773 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3774 
3775 	debug("%s:%d\n", __func__, __LINE__);
3776 	debug_cond(DLEVEL == 1,
3777 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3778 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3779 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3780 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3781 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3782 	debug_cond(DLEVEL == 1,
3783 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3784 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3785 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3786 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3787 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3788 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3789 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3790 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3791 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3792 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3793 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3794 		   IO_IO_OUT2_DELAY_MAX);
3795 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3796 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3797 
3798 	hc_initialize_rom_data();
3799 
3800 	/* update info for sims */
3801 	reg_file_set_stage(CAL_STAGE_NIL);
3802 	reg_file_set_group(0);
3803 
3804 	/*
3805 	 * Load global needed for those actions that require
3806 	 * some dynamic calibration support.
3807 	 */
3808 	dyn_calib_steps = STATIC_CALIB_STEPS;
3809 	/*
3810 	 * Load global to allow dynamic selection of delay loop settings
3811 	 * based on calibration mode.
3812 	 */
3813 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3814 		skip_delay_mask = 0xff;
3815 	else
3816 		skip_delay_mask = 0x0;
3817 
3818 	pass = run_mem_calibrate();
3819 	debug_mem_calibrate(pass);
3820 	return pass;
3821 }
3822