xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision ac70d2f3873cea25b13d61e3442015696f27c597)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123 	u32 ratio;
124 
125 	debug("%s:%d\n", __func__, __LINE__);
126 	/* Calibration has control over path to memory */
127 	/*
128 	 * In Hard PHY this is a 2-bit control:
129 	 * 0: AFI Mux Select
130 	 * 1: DDIO Mux Select
131 	 */
132 	writel(0x3, &phy_mgr_cfg->mux_sel);
133 
134 	/* USER memory clock is not stable we begin initialization  */
135 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
136 
137 	/* USER calibration status all set to zero */
138 	writel(0, &phy_mgr_cfg->cal_status);
139 
140 	writel(0, &phy_mgr_cfg->cal_debug_info);
141 
142 	/* Init params only if we do NOT skip calibration. */
143 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144 		return;
145 
146 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148 	param->read_correct_mask_vg = (1 << ratio) - 1;
149 	param->write_correct_mask_vg = (1 << ratio) - 1;
150 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152 	ratio = RW_MGR_MEM_DATA_WIDTH /
153 		RW_MGR_MEM_DATA_MASK_WIDTH;
154 	param->dm_correct_mask = (1 << ratio) - 1;
155 }
156 
157 /**
158  * set_rank_and_odt_mask() - Set Rank and ODT mask
159  * @rank:	Rank mask
160  * @odt_mode:	ODT mode, OFF or READ_WRITE
161  *
162  * Set Rank and ODT mask (On-Die Termination).
163  */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166 	u32 odt_mask_0 = 0;
167 	u32 odt_mask_1 = 0;
168 	u32 cs_and_odt_mask;
169 
170 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171 		odt_mask_0 = 0x0;
172 		odt_mask_1 = 0x0;
173 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
174 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
175 		case 1:	/* 1 Rank */
176 			/* Read: ODT = 0 ; Write: ODT = 1 */
177 			odt_mask_0 = 0x0;
178 			odt_mask_1 = 0x1;
179 			break;
180 		case 2:	/* 2 Ranks */
181 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
182 				/*
183 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
184 				 *   OR
185 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186 				 *
187 				 * Since MEM_NUMBER_OF_RANKS is 2, they
188 				 * are both single rank with 2 CS each
189 				 * (special for RDIMM).
190 				 *
191 				 * Read: Turn on ODT on the opposite rank
192 				 * Write: Turn on ODT on all ranks
193 				 */
194 				odt_mask_0 = 0x3 & ~(1 << rank);
195 				odt_mask_1 = 0x3;
196 			} else {
197 				/*
198 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
199 				 *
200 				 * Read: Turn on ODT off on all ranks
201 				 * Write: Turn on ODT on active rank
202 				 */
203 				odt_mask_0 = 0x0;
204 				odt_mask_1 = 0x3 & (1 << rank);
205 			}
206 			break;
207 		case 4:	/* 4 Ranks */
208 			/* Read:
209 			 * ----------+-----------------------+
210 			 *           |         ODT           |
211 			 * Read From +-----------------------+
212 			 *   Rank    |  3  |  2  |  1  |  0  |
213 			 * ----------+-----+-----+-----+-----+
214 			 *     0     |  0  |  1  |  0  |  0  |
215 			 *     1     |  1  |  0  |  0  |  0  |
216 			 *     2     |  0  |  0  |  0  |  1  |
217 			 *     3     |  0  |  0  |  1  |  0  |
218 			 * ----------+-----+-----+-----+-----+
219 			 *
220 			 * Write:
221 			 * ----------+-----------------------+
222 			 *           |         ODT           |
223 			 * Write To  +-----------------------+
224 			 *   Rank    |  3  |  2  |  1  |  0  |
225 			 * ----------+-----+-----+-----+-----+
226 			 *     0     |  0  |  1  |  0  |  1  |
227 			 *     1     |  1  |  0  |  1  |  0  |
228 			 *     2     |  0  |  1  |  0  |  1  |
229 			 *     3     |  1  |  0  |  1  |  0  |
230 			 * ----------+-----+-----+-----+-----+
231 			 */
232 			switch (rank) {
233 			case 0:
234 				odt_mask_0 = 0x4;
235 				odt_mask_1 = 0x5;
236 				break;
237 			case 1:
238 				odt_mask_0 = 0x8;
239 				odt_mask_1 = 0xA;
240 				break;
241 			case 2:
242 				odt_mask_0 = 0x1;
243 				odt_mask_1 = 0x5;
244 				break;
245 			case 3:
246 				odt_mask_0 = 0x2;
247 				odt_mask_1 = 0xA;
248 				break;
249 			}
250 			break;
251 		}
252 	}
253 
254 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255 			  ((0xFF & odt_mask_0) << 8) |
256 			  ((0xFF & odt_mask_1) << 16);
257 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260 
261 /**
262  * scc_mgr_set() - Set SCC Manager register
263  * @off:	Base offset in SCC Manager space
264  * @grp:	Read/Write group
265  * @val:	Value to be set
266  *
267  * This function sets the SCC Manager (Scan Chain Control Manager) register.
268  */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273 
274 /**
275  * scc_mgr_initialize() - Initialize SCC Manager registers
276  *
277  * Initialize SCC Manager registers.
278  */
279 static void scc_mgr_initialize(void)
280 {
281 	/*
282 	 * Clear register file for HPS. 16 (2^4) is the size of the
283 	 * full register file in the scc mgr:
284 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
286 	 */
287 	int i;
288 
289 	for (i = 0; i < 16; i++) {
290 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291 			   __func__, __LINE__, i);
292 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293 	}
294 }
295 
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300 
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305 
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310 
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315 
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
319 		    delay);
320 }
321 
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326 
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331 
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
335 		    delay);
336 }
337 
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
342 		    delay);
343 }
344 
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348 	writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350 
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354 	writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356 
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362 
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366 	writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368 
369 /**
370  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371  * @off:	Base offset in SCC Manager space
372  * @grp:	Read/Write group
373  * @val:	Value to be set
374  * @update:	If non-zero, trigger SCC Manager update for all ranks
375  *
376  * This function sets the SCC Manager (Scan Chain Control Manager) register
377  * and optionally triggers the SCC update for all ranks.
378  */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380 				  const int update)
381 {
382 	u32 r;
383 
384 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
385 	     r += NUM_RANKS_PER_SHADOW_REG) {
386 		scc_mgr_set(off, grp, val);
387 
388 		if (update || (r == 0)) {
389 			writel(grp, &sdr_scc_mgr->dqs_ena);
390 			writel(0, &sdr_scc_mgr->update);
391 		}
392 	}
393 }
394 
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397 	/*
398 	 * USER although the h/w doesn't support different phases per
399 	 * shadow register, for simplicity our scc manager modeling
400 	 * keeps different phase settings per shadow reg, and it's
401 	 * important for us to keep them in sync to match h/w.
402 	 * for efficiency, the scan chain update should occur only
403 	 * once to sr0.
404 	 */
405 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406 			      read_group, phase, 0);
407 }
408 
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410 						     uint32_t phase)
411 {
412 	/*
413 	 * USER although the h/w doesn't support different phases per
414 	 * shadow register, for simplicity our scc manager modeling
415 	 * keeps different phase settings per shadow reg, and it's
416 	 * important for us to keep them in sync to match h/w.
417 	 * for efficiency, the scan chain update should occur only
418 	 * once to sr0.
419 	 */
420 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421 			      write_group, phase, 0);
422 }
423 
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425 					       uint32_t delay)
426 {
427 	/*
428 	 * In shadow register mode, the T11 settings are stored in
429 	 * registers in the core, which are updated by the DQS_ENA
430 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
431 	 * save lots of rank switching overhead, by calling
432 	 * select_shadow_regs_for_update with update_scan_chains
433 	 * set to 0.
434 	 */
435 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436 			      read_group, delay, 1);
437 	writel(0, &sdr_scc_mgr->update);
438 }
439 
440 /**
441  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442  * @write_group:	Write group
443  * @delay:		Delay value
444  *
445  * This function sets the OCT output delay in SCC manager.
446  */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
450 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
451 	const int base = write_group * ratio;
452 	int i;
453 	/*
454 	 * Load the setting in the SCC manager
455 	 * Although OCT affects only write data, the OCT delay is controlled
456 	 * by the DQS logic block which is instantiated once per read group.
457 	 * For protocols where a write group consists of multiple read groups,
458 	 * the setting must be set multiple times.
459 	 */
460 	for (i = 0; i < ratio; i++)
461 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463 
464 /**
465  * scc_mgr_set_hhp_extras() - Set HHP extras.
466  *
467  * Load the fixed setting in the SCC manager HHP extras.
468  */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471 	/*
472 	 * Load the fixed setting in the SCC manager
473 	 * bits: 0:0 = 1'b1	- DQS bypass
474 	 * bits: 1:1 = 1'b1	- DQ bypass
475 	 * bits: 4:2 = 3'b001	- rfifo_mode
476 	 * bits: 6:5 = 2'b01	- rfifo clock_select
477 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
478 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
479 	 */
480 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481 			  (1 << 2) | (1 << 1) | (1 << 0);
482 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483 			 SCC_MGR_HHP_GLOBALS_OFFSET |
484 			 SCC_MGR_HHP_EXTRAS_OFFSET;
485 
486 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 	writel(value, addr);
489 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490 		   __func__, __LINE__);
491 }
492 
493 /**
494  * scc_mgr_zero_all() - Zero all DQS config
495  *
496  * Zero all DQS config.
497  */
498 static void scc_mgr_zero_all(void)
499 {
500 	int i, r;
501 
502 	/*
503 	 * USER Zero all DQS config settings, across all groups and all
504 	 * shadow registers
505 	 */
506 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
507 	     r += NUM_RANKS_PER_SHADOW_REG) {
508 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
509 			/*
510 			 * The phases actually don't exist on a per-rank basis,
511 			 * but there's no harm updating them several times, so
512 			 * let's keep the code simple.
513 			 */
514 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
515 			scc_mgr_set_dqs_en_phase(i, 0);
516 			scc_mgr_set_dqs_en_delay(i, 0);
517 		}
518 
519 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
520 			scc_mgr_set_dqdqs_output_phase(i, 0);
521 			/* Arria V/Cyclone V don't have out2. */
522 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
523 		}
524 	}
525 
526 	/* Multicast to all DQS group enables. */
527 	writel(0xff, &sdr_scc_mgr->dqs_ena);
528 	writel(0, &sdr_scc_mgr->update);
529 }
530 
531 /**
532  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533  * @write_group:	Write group
534  *
535  * Set bypass mode and trigger SCC update.
536  */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539 	/* Multicast to all DQ enables. */
540 	writel(0xff, &sdr_scc_mgr->dq_ena);
541 	writel(0xff, &sdr_scc_mgr->dm_ena);
542 
543 	/* Update current DQS IO enable. */
544 	writel(0, &sdr_scc_mgr->dqs_io_ena);
545 
546 	/* Update the DQS logic. */
547 	writel(write_group, &sdr_scc_mgr->dqs_ena);
548 
549 	/* Hit update. */
550 	writel(0, &sdr_scc_mgr->update);
551 }
552 
553 /**
554  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555  * @write_group:	Write group
556  *
557  * Load DQS settings for Write Group, do not trigger SCC update.
558  */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
562 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
563 	const int base = write_group * ratio;
564 	int i;
565 	/*
566 	 * Load the setting in the SCC manager
567 	 * Although OCT affects only write data, the OCT delay is controlled
568 	 * by the DQS logic block which is instantiated once per read group.
569 	 * For protocols where a write group consists of multiple read groups,
570 	 * the setting must be set multiple times.
571 	 */
572 	for (i = 0; i < ratio; i++)
573 		writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575 
576 /**
577  * scc_mgr_zero_group() - Zero all configs for a group
578  *
579  * Zero DQ, DM, DQS and OCT configs for a group.
580  */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583 	int i, r;
584 
585 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
586 	     r += NUM_RANKS_PER_SHADOW_REG) {
587 		/* Zero all DQ config settings. */
588 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
589 			scc_mgr_set_dq_out1_delay(i, 0);
590 			if (!out_only)
591 				scc_mgr_set_dq_in_delay(i, 0);
592 		}
593 
594 		/* Multicast to all DQ enables. */
595 		writel(0xff, &sdr_scc_mgr->dq_ena);
596 
597 		/* Zero all DM config settings. */
598 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599 			scc_mgr_set_dm_out1_delay(i, 0);
600 
601 		/* Multicast to all DM enables. */
602 		writel(0xff, &sdr_scc_mgr->dm_ena);
603 
604 		/* Zero all DQS IO settings. */
605 		if (!out_only)
606 			scc_mgr_set_dqs_io_in_delay(0);
607 
608 		/* Arria V/Cyclone V don't have out2. */
609 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
610 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
611 		scc_mgr_load_dqs_for_write_group(write_group);
612 
613 		/* Multicast to all DQS IO enables (only 1 in total). */
614 		writel(0, &sdr_scc_mgr->dqs_io_ena);
615 
616 		/* Hit update to zero everything. */
617 		writel(0, &sdr_scc_mgr->update);
618 	}
619 }
620 
621 /*
622  * apply and load a particular input delay for the DQ pins in a group
623  * group_bgn is the index of the first dq pin (in the write group)
624  */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627 	uint32_t i, p;
628 
629 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
630 		scc_mgr_set_dq_in_delay(p, delay);
631 		scc_mgr_load_dq(p);
632 	}
633 }
634 
635 /**
636  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637  * @delay:		Delay value
638  *
639  * Apply and load a particular output delay for the DQ pins in a group.
640  */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643 	int i;
644 
645 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
646 		scc_mgr_set_dq_out1_delay(i, delay);
647 		scc_mgr_load_dq(i);
648 	}
649 }
650 
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654 	uint32_t i;
655 
656 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657 		scc_mgr_set_dm_out1_delay(i, delay1);
658 		scc_mgr_load_dm(i);
659 	}
660 }
661 
662 
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665 						    uint32_t delay)
666 {
667 	scc_mgr_set_dqs_out1_delay(delay);
668 	scc_mgr_load_dqs_io();
669 
670 	scc_mgr_set_oct_out1_delay(write_group, delay);
671 	scc_mgr_load_dqs_for_write_group(write_group);
672 }
673 
674 /**
675  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676  * @write_group:	Write group
677  * @delay:		Delay value
678  *
679  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680  */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682 						  const u32 delay)
683 {
684 	u32 i, new_delay;
685 
686 	/* DQ shift */
687 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
688 		scc_mgr_load_dq(i);
689 
690 	/* DM shift */
691 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692 		scc_mgr_load_dm(i);
693 
694 	/* DQS shift */
695 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
697 		debug_cond(DLEVEL == 1,
698 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699 			   __func__, __LINE__, write_group, delay, new_delay,
700 			   IO_IO_OUT2_DELAY_MAX,
701 			   new_delay - IO_IO_OUT2_DELAY_MAX);
702 		new_delay -= IO_IO_OUT2_DELAY_MAX;
703 		scc_mgr_set_dqs_out1_delay(new_delay);
704 	}
705 
706 	scc_mgr_load_dqs_io();
707 
708 	/* OCT shift */
709 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
711 		debug_cond(DLEVEL == 1,
712 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713 			   __func__, __LINE__, write_group, delay,
714 			   new_delay, IO_IO_OUT2_DELAY_MAX,
715 			   new_delay - IO_IO_OUT2_DELAY_MAX);
716 		new_delay -= IO_IO_OUT2_DELAY_MAX;
717 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
718 	}
719 
720 	scc_mgr_load_dqs_for_write_group(write_group);
721 }
722 
723 /**
724  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725  * @write_group:	Write group
726  * @delay:		Delay value
727  *
728  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729  */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732 						const u32 delay)
733 {
734 	int r;
735 
736 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
737 	     r += NUM_RANKS_PER_SHADOW_REG) {
738 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739 		writel(0, &sdr_scc_mgr->update);
740 	}
741 }
742 
743 /**
744  * set_jump_as_return() - Return instruction optimization
745  *
746  * Optimization used to recover some slots in ddr3 inst_rom could be
747  * applied to other protocols if we wanted to
748  */
749 static void set_jump_as_return(void)
750 {
751 	/*
752 	 * To save space, we replace return with jump to special shared
753 	 * RETURN instruction so we set the counter to large value so that
754 	 * we always jump.
755 	 */
756 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759 
760 /*
761  * should always use constants as argument to ensure all computations are
762  * performed at compile time
763  */
764 static void delay_for_n_mem_clocks(const uint32_t clocks)
765 {
766 	uint32_t afi_clocks;
767 	uint8_t inner = 0;
768 	uint8_t outer = 0;
769 	uint16_t c_loop = 0;
770 
771 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772 
773 
774 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
775 	/* scale (rounding up) to get afi clocks */
776 
777 	/*
778 	 * Note, we don't bother accounting for being off a little bit
779 	 * because of a few extra instructions in outer loops
780 	 * Note, the loops have a test at the end, and do the test before
781 	 * the decrement, and so always perform the loop
782 	 * 1 time more than the counter value
783 	 */
784 	if (afi_clocks == 0) {
785 		;
786 	} else if (afi_clocks <= 0x100) {
787 		inner = afi_clocks-1;
788 		outer = 0;
789 		c_loop = 0;
790 	} else if (afi_clocks <= 0x10000) {
791 		inner = 0xff;
792 		outer = (afi_clocks-1) >> 8;
793 		c_loop = 0;
794 	} else {
795 		inner = 0xff;
796 		outer = 0xff;
797 		c_loop = (afi_clocks-1) >> 16;
798 	}
799 
800 	/*
801 	 * rom instructions are structured as follows:
802 	 *
803 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
804 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
805 	 *                return
806 	 *
807 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
808 	 * TARGET_B is set to IDLE_LOOP2 as well
809 	 *
810 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
811 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
812 	 *
813 	 * a little confusing, but it helps save precious space in the inst_rom
814 	 * and sequencer rom and keeps the delays more accurate and reduces
815 	 * overhead
816 	 */
817 	if (afi_clocks <= 0x100) {
818 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819 			&sdr_rw_load_mgr_regs->load_cntr1);
820 
821 		writel(RW_MGR_IDLE_LOOP1,
822 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
823 
824 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
825 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
826 	} else {
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
828 			&sdr_rw_load_mgr_regs->load_cntr0);
829 
830 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
831 			&sdr_rw_load_mgr_regs->load_cntr1);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
835 
836 		writel(RW_MGR_IDLE_LOOP2,
837 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
838 
839 		/* hack to get around compiler not being smart enough */
840 		if (afi_clocks <= 0x10000) {
841 			/* only need to run once */
842 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
843 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
844 		} else {
845 			do {
846 				writel(RW_MGR_IDLE_LOOP2,
847 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
848 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
849 			} while (c_loop-- != 0);
850 		}
851 	}
852 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
853 }
854 
855 /**
856  * rw_mgr_mem_init_load_regs() - Load instruction registers
857  * @cntr0:	Counter 0 value
858  * @cntr1:	Counter 1 value
859  * @cntr2:	Counter 2 value
860  * @jump:	Jump instruction value
861  *
862  * Load instruction registers.
863  */
864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
865 {
866 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
867 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
868 
869 	/* Load counters */
870 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
871 	       &sdr_rw_load_mgr_regs->load_cntr0);
872 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
873 	       &sdr_rw_load_mgr_regs->load_cntr1);
874 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
875 	       &sdr_rw_load_mgr_regs->load_cntr2);
876 
877 	/* Load jump address */
878 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
881 
882 	/* Execute count instruction */
883 	writel(jump, grpaddr);
884 }
885 
886 /**
887  * rw_mgr_mem_load_user() - Load user calibration values
888  * @fin1:	Final instruction 1
889  * @fin2:	Final instruction 2
890  * @precharge:	If 1, precharge the banks at the end
891  *
892  * Load user calibration values and optionally precharge the banks.
893  */
894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
895 				 const int precharge)
896 {
897 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
898 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
899 	u32 r;
900 
901 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
902 		if (param->skip_ranks[r]) {
903 			/* request to skip the rank */
904 			continue;
905 		}
906 
907 		/* set rank */
908 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
909 
910 		/* precharge all banks ... */
911 		if (precharge)
912 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
913 
914 		/*
915 		 * USER Use Mirror-ed commands for odd ranks if address
916 		 * mirrorring is on
917 		 */
918 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS2_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS3_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(RW_MGR_MRS1_MIRR, grpaddr);
927 			delay_for_n_mem_clocks(4);
928 			set_jump_as_return();
929 			writel(fin1, grpaddr);
930 		} else {
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS2, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS3, grpaddr);
936 			delay_for_n_mem_clocks(4);
937 			set_jump_as_return();
938 			writel(RW_MGR_MRS1, grpaddr);
939 			set_jump_as_return();
940 			writel(fin2, grpaddr);
941 		}
942 
943 		if (precharge)
944 			continue;
945 
946 		set_jump_as_return();
947 		writel(RW_MGR_ZQCL, grpaddr);
948 
949 		/* tZQinit = tDLLK = 512 ck cycles */
950 		delay_for_n_mem_clocks(512);
951 	}
952 }
953 
954 /**
955  * rw_mgr_mem_initialize() - Initialize RW Manager
956  *
957  * Initialize RW Manager.
958  */
959 static void rw_mgr_mem_initialize(void)
960 {
961 	debug("%s:%d\n", __func__, __LINE__);
962 
963 	/* The reset / cke part of initialization is broadcasted to all ranks */
964 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
965 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
966 
967 	/*
968 	 * Here's how you load register for a loop
969 	 * Counters are located @ 0x800
970 	 * Jump address are located @ 0xC00
971 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
972 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
973 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
974 	 * significant bits
975 	 */
976 
977 	/* Start with memory RESET activated */
978 
979 	/* tINIT = 200us */
980 
981 	/*
982 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
983 	 * If a and b are the number of iteration in 2 nested loops
984 	 * it takes the following number of cycles to complete the operation:
985 	 * number_of_cycles = ((2 + n) * a + 2) * b
986 	 * where n is the number of instruction in the inner loop
987 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
988 	 * b = 6A
989 	 */
990 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
991 				  SEQ_TINIT_CNTR2_VAL,
992 				  RW_MGR_INIT_RESET_0_CKE_0);
993 
994 	/* Indicate that memory is stable. */
995 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
996 
997 	/*
998 	 * transition the RESET to high
999 	 * Wait for 500us
1000 	 */
1001 
1002 	/*
1003 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1004 	 * If a and b are the number of iteration in 2 nested loops
1005 	 * it takes the following number of cycles to complete the operation
1006 	 * number_of_cycles = ((2 + n) * a + 2) * b
1007 	 * where n is the number of instruction in the inner loop
1008 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1009 	 * b = FF
1010 	 */
1011 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1012 				  SEQ_TRESET_CNTR2_VAL,
1013 				  RW_MGR_INIT_RESET_1_CKE_0);
1014 
1015 	/* Bring up clock enable. */
1016 
1017 	/* tXRP < 250 ck cycles */
1018 	delay_for_n_mem_clocks(250);
1019 
1020 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1021 			     0);
1022 }
1023 
1024 /*
1025  * At the end of calibration we have to program the user settings in, and
1026  * USER  hand off the memory to the user.
1027  */
1028 static void rw_mgr_mem_handoff(void)
1029 {
1030 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1031 	/*
1032 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1033 	 * other commands, but we will have plenty of NIOS cycles before
1034 	 * actual handoff so its okay.
1035 	 */
1036 }
1037 
1038 /*
1039  * performs a guaranteed read on the patterns we are going to use during a
1040  * read test to ensure memory works
1041  */
1042 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1043 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1044 	uint32_t all_ranks)
1045 {
1046 	uint32_t r, vg;
1047 	uint32_t correct_mask_vg;
1048 	uint32_t tmp_bit_chk;
1049 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1050 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1051 	uint32_t addr;
1052 	uint32_t base_rw_mgr;
1053 
1054 	*bit_chk = param->read_correct_mask;
1055 	correct_mask_vg = param->read_correct_mask_vg;
1056 
1057 	for (r = rank_bgn; r < rank_end; r++) {
1058 		if (param->skip_ranks[r])
1059 			/* request to skip the rank */
1060 			continue;
1061 
1062 		/* set rank */
1063 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1064 
1065 		/* Load up a constant bursts of read commands */
1066 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1067 		writel(RW_MGR_GUARANTEED_READ,
1068 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1069 
1070 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1071 		writel(RW_MGR_GUARANTEED_READ_CONT,
1072 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1073 
1074 		tmp_bit_chk = 0;
1075 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1076 			/* reset the fifos to get pointers to known state */
1077 
1078 			writel(0, &phy_mgr_cmd->fifo_reset);
1079 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1080 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1081 
1082 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1083 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1084 
1085 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1086 			writel(RW_MGR_GUARANTEED_READ, addr +
1087 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1088 				vg) << 2));
1089 
1090 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1091 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1092 
1093 			if (vg == 0)
1094 				break;
1095 		}
1096 		*bit_chk &= tmp_bit_chk;
1097 	}
1098 
1099 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1100 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1101 
1102 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1103 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1104 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1105 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1106 	return *bit_chk == param->read_correct_mask;
1107 }
1108 
1109 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1110 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1111 {
1112 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1113 		num_tries, bit_chk, 1);
1114 }
1115 
1116 /* load up the patterns we are going to use during a read test */
1117 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1118 	uint32_t all_ranks)
1119 {
1120 	uint32_t r;
1121 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1122 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1123 
1124 	debug("%s:%d\n", __func__, __LINE__);
1125 	for (r = rank_bgn; r < rank_end; r++) {
1126 		if (param->skip_ranks[r])
1127 			/* request to skip the rank */
1128 			continue;
1129 
1130 		/* set rank */
1131 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1132 
1133 		/* Load up a constant bursts */
1134 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1135 
1136 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1137 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1138 
1139 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1140 
1141 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1142 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1143 
1144 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1145 
1146 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1147 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1148 
1149 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1150 
1151 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1152 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1153 
1154 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1156 	}
1157 
1158 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1159 }
1160 
1161 /*
1162  * try a read and see if it returns correct data back. has dummy reads
1163  * inserted into the mix used to align dqs enable. has more thorough checks
1164  * than the regular read test.
1165  */
1166 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1167 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1168 	uint32_t all_groups, uint32_t all_ranks)
1169 {
1170 	uint32_t r, vg;
1171 	uint32_t correct_mask_vg;
1172 	uint32_t tmp_bit_chk;
1173 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1174 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1175 	uint32_t addr;
1176 	uint32_t base_rw_mgr;
1177 
1178 	*bit_chk = param->read_correct_mask;
1179 	correct_mask_vg = param->read_correct_mask_vg;
1180 
1181 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1182 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1183 
1184 	for (r = rank_bgn; r < rank_end; r++) {
1185 		if (param->skip_ranks[r])
1186 			/* request to skip the rank */
1187 			continue;
1188 
1189 		/* set rank */
1190 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1191 
1192 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1193 
1194 		writel(RW_MGR_READ_B2B_WAIT1,
1195 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1196 
1197 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1198 		writel(RW_MGR_READ_B2B_WAIT2,
1199 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1200 
1201 		if (quick_read_mode)
1202 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1203 			/* need at least two (1+1) reads to capture failures */
1204 		else if (all_groups)
1205 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1206 		else
1207 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1208 
1209 		writel(RW_MGR_READ_B2B,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1211 		if (all_groups)
1212 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1213 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1214 			       &sdr_rw_load_mgr_regs->load_cntr3);
1215 		else
1216 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1217 
1218 		writel(RW_MGR_READ_B2B,
1219 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1220 
1221 		tmp_bit_chk = 0;
1222 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1223 			/* reset the fifos to get pointers to known state */
1224 			writel(0, &phy_mgr_cmd->fifo_reset);
1225 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1226 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1227 
1228 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1229 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1230 
1231 			if (all_groups)
1232 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1233 			else
1234 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1235 
1236 			writel(RW_MGR_READ_B2B, addr +
1237 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1238 			       vg) << 2));
1239 
1240 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1241 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1242 
1243 			if (vg == 0)
1244 				break;
1245 		}
1246 		*bit_chk &= tmp_bit_chk;
1247 	}
1248 
1249 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1250 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1251 
1252 	if (all_correct) {
1253 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1254 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1255 			   (%u == %u) => %lu", __func__, __LINE__, group,
1256 			   all_groups, *bit_chk, param->read_correct_mask,
1257 			   (long unsigned int)(*bit_chk ==
1258 			   param->read_correct_mask));
1259 		return *bit_chk == param->read_correct_mask;
1260 	} else	{
1261 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1262 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1263 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1264 			   group, all_groups, *bit_chk, (long unsigned int)0,
1265 			   (long unsigned int)(*bit_chk != 0x00));
1266 		return *bit_chk != 0x00;
1267 	}
1268 }
1269 
1270 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1271 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1272 	uint32_t all_groups)
1273 {
1274 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1275 					      bit_chk, all_groups, 1);
1276 }
1277 
1278 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1279 {
1280 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1281 	(*v)++;
1282 }
1283 
1284 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1285 {
1286 	uint32_t i;
1287 
1288 	for (i = 0; i < VFIFO_SIZE-1; i++)
1289 		rw_mgr_incr_vfifo(grp, v);
1290 }
1291 
1292 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1293 {
1294 	uint32_t  v;
1295 	uint32_t fail_cnt = 0;
1296 	uint32_t test_status;
1297 
1298 	for (v = 0; v < VFIFO_SIZE; ) {
1299 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1300 			   __func__, __LINE__, v);
1301 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1302 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1303 		if (!test_status) {
1304 			fail_cnt++;
1305 
1306 			if (fail_cnt == 2)
1307 				break;
1308 		}
1309 
1310 		/* fiddle with FIFO */
1311 		rw_mgr_incr_vfifo(grp, &v);
1312 	}
1313 
1314 	if (v >= VFIFO_SIZE) {
1315 		/* no failing read found!! Something must have gone wrong */
1316 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1317 			   __func__, __LINE__);
1318 		return 0;
1319 	} else {
1320 		return v;
1321 	}
1322 }
1323 
1324 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1325 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1326 			      uint32_t *v, uint32_t *d, uint32_t *p,
1327 			      uint32_t *i, uint32_t *max_working_cnt)
1328 {
1329 	uint32_t found_begin = 0;
1330 	uint32_t tmp_delay = 0;
1331 	uint32_t test_status;
1332 
1333 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1334 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1335 		*work_bgn = tmp_delay;
1336 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1337 
1338 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1339 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1340 				IO_DELAY_PER_OPA_TAP) {
1341 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1342 
1343 				test_status =
1344 				rw_mgr_mem_calibrate_read_test_all_ranks
1345 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1346 
1347 				if (test_status) {
1348 					*max_working_cnt = 1;
1349 					found_begin = 1;
1350 					break;
1351 				}
1352 			}
1353 
1354 			if (found_begin)
1355 				break;
1356 
1357 			if (*p > IO_DQS_EN_PHASE_MAX)
1358 				/* fiddle with FIFO */
1359 				rw_mgr_incr_vfifo(*grp, v);
1360 		}
1361 
1362 		if (found_begin)
1363 			break;
1364 	}
1365 
1366 	if (*i >= VFIFO_SIZE) {
1367 		/* cannot find working solution */
1368 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1369 			   ptap/dtap\n", __func__, __LINE__);
1370 		return 0;
1371 	} else {
1372 		return 1;
1373 	}
1374 }
1375 
1376 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1377 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1378 			     uint32_t *p, uint32_t *max_working_cnt)
1379 {
1380 	uint32_t found_begin = 0;
1381 	uint32_t tmp_delay;
1382 
1383 	/* Special case code for backing up a phase */
1384 	if (*p == 0) {
1385 		*p = IO_DQS_EN_PHASE_MAX;
1386 		rw_mgr_decr_vfifo(*grp, v);
1387 	} else {
1388 		(*p)--;
1389 	}
1390 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1391 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1392 
1393 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1394 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1395 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1396 
1397 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1398 							     PASS_ONE_BIT,
1399 							     bit_chk, 0)) {
1400 			found_begin = 1;
1401 			*work_bgn = tmp_delay;
1402 			break;
1403 		}
1404 	}
1405 
1406 	/* We have found a working dtap before the ptap found above */
1407 	if (found_begin == 1)
1408 		(*max_working_cnt)++;
1409 
1410 	/*
1411 	 * Restore VFIFO to old state before we decremented it
1412 	 * (if needed).
1413 	 */
1414 	(*p)++;
1415 	if (*p > IO_DQS_EN_PHASE_MAX) {
1416 		*p = 0;
1417 		rw_mgr_incr_vfifo(*grp, v);
1418 	}
1419 
1420 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1421 }
1422 
1423 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1424 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1425 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1426 			     uint32_t *work_end)
1427 {
1428 	uint32_t found_end = 0;
1429 
1430 	(*p)++;
1431 	*work_end += IO_DELAY_PER_OPA_TAP;
1432 	if (*p > IO_DQS_EN_PHASE_MAX) {
1433 		/* fiddle with FIFO */
1434 		*p = 0;
1435 		rw_mgr_incr_vfifo(*grp, v);
1436 	}
1437 
1438 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1439 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1440 			+= IO_DELAY_PER_OPA_TAP) {
1441 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1442 
1443 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1444 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1445 				found_end = 1;
1446 				break;
1447 			} else {
1448 				(*max_working_cnt)++;
1449 			}
1450 		}
1451 
1452 		if (found_end)
1453 			break;
1454 
1455 		if (*p > IO_DQS_EN_PHASE_MAX) {
1456 			/* fiddle with FIFO */
1457 			rw_mgr_incr_vfifo(*grp, v);
1458 			*p = 0;
1459 		}
1460 	}
1461 
1462 	if (*i >= VFIFO_SIZE + 1) {
1463 		/* cannot see edge of failing read */
1464 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1465 			   failed\n", __func__, __LINE__);
1466 		return 0;
1467 	} else {
1468 		return 1;
1469 	}
1470 }
1471 
1472 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1473 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1474 				  uint32_t *p, uint32_t *work_mid,
1475 				  uint32_t *work_end)
1476 {
1477 	int i;
1478 	int tmp_delay = 0;
1479 
1480 	*work_mid = (*work_bgn + *work_end) / 2;
1481 
1482 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1483 		   *work_bgn, *work_end, *work_mid);
1484 	/* Get the middle delay to be less than a VFIFO delay */
1485 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1486 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1487 		;
1488 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1489 	while (*work_mid > tmp_delay)
1490 		*work_mid -= tmp_delay;
1491 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1492 
1493 	tmp_delay = 0;
1494 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1495 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1496 		;
1497 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1498 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1499 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1500 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1501 		;
1502 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1503 
1504 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1505 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1506 
1507 	/*
1508 	 * push vfifo until we can successfully calibrate. We can do this
1509 	 * because the largest possible margin in 1 VFIFO cycle.
1510 	 */
1511 	for (i = 0; i < VFIFO_SIZE; i++) {
1512 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1513 			   *v);
1514 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1515 							     PASS_ONE_BIT,
1516 							     bit_chk, 0)) {
1517 			break;
1518 		}
1519 
1520 		/* fiddle with FIFO */
1521 		rw_mgr_incr_vfifo(*grp, v);
1522 	}
1523 
1524 	if (i >= VFIFO_SIZE) {
1525 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1526 			   failed\n", __func__, __LINE__);
1527 		return 0;
1528 	} else {
1529 		return 1;
1530 	}
1531 }
1532 
1533 /* find a good dqs enable to use */
1534 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1535 {
1536 	uint32_t v, d, p, i;
1537 	uint32_t max_working_cnt;
1538 	uint32_t bit_chk;
1539 	uint32_t dtaps_per_ptap;
1540 	uint32_t work_bgn, work_mid, work_end;
1541 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1542 
1543 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1544 
1545 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1546 
1547 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1548 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1549 
1550 	/* ************************************************************** */
1551 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1552 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1553 
1554 	/* ********************************************************* */
1555 	/* * Step 1 : First push vfifo until we get a failing read * */
1556 	v = find_vfifo_read(grp, &bit_chk);
1557 
1558 	max_working_cnt = 0;
1559 
1560 	/* ******************************************************** */
1561 	/* * step 2: find first working phase, increment in ptaps * */
1562 	work_bgn = 0;
1563 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1564 				&p, &i, &max_working_cnt) == 0)
1565 		return 0;
1566 
1567 	work_end = work_bgn;
1568 
1569 	/*
1570 	 * If d is 0 then the working window covers a phase tap and
1571 	 * we can follow the old procedure otherwise, we've found the beginning,
1572 	 * and we need to increment the dtaps until we find the end.
1573 	 */
1574 	if (d == 0) {
1575 		/* ********************************************************* */
1576 		/* * step 3a: if we have room, back off by one and
1577 		increment in dtaps * */
1578 
1579 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1580 				 &max_working_cnt);
1581 
1582 		/* ********************************************************* */
1583 		/* * step 4a: go forward from working phase to non working
1584 		phase, increment in ptaps * */
1585 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1586 					 &i, &max_working_cnt, &work_end) == 0)
1587 			return 0;
1588 
1589 		/* ********************************************************* */
1590 		/* * step 5a:  back off one from last, increment in dtaps  * */
1591 
1592 		/* Special case code for backing up a phase */
1593 		if (p == 0) {
1594 			p = IO_DQS_EN_PHASE_MAX;
1595 			rw_mgr_decr_vfifo(grp, &v);
1596 		} else {
1597 			p = p - 1;
1598 		}
1599 
1600 		work_end -= IO_DELAY_PER_OPA_TAP;
1601 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1602 
1603 		/* * The actual increment of dtaps is done outside of
1604 		the if/else loop to share code */
1605 		d = 0;
1606 
1607 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1608 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1609 			   v, p);
1610 	} else {
1611 		/* ******************************************************* */
1612 		/* * step 3-5b:  Find the right edge of the window using
1613 		delay taps   * */
1614 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1615 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1616 			   v, p, d, work_bgn);
1617 
1618 		work_end = work_bgn;
1619 
1620 		/* * The actual increment of dtaps is done outside of the
1621 		if/else loop to share code */
1622 
1623 		/* Only here to counterbalance a subtract later on which is
1624 		not needed if this branch of the algorithm is taken */
1625 		max_working_cnt++;
1626 	}
1627 
1628 	/* The dtap increment to find the failing edge is done here */
1629 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1630 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1631 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1632 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1633 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1634 
1635 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1636 								      PASS_ONE_BIT,
1637 								      &bit_chk, 0)) {
1638 				break;
1639 			}
1640 	}
1641 
1642 	/* Go back to working dtap */
1643 	if (d != 0)
1644 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1645 
1646 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1647 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1648 		   v, p, d-1, work_end);
1649 
1650 	if (work_end < work_bgn) {
1651 		/* nil range */
1652 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1653 			   failed\n", __func__, __LINE__);
1654 		return 0;
1655 	}
1656 
1657 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1658 		   __func__, __LINE__, work_bgn, work_end);
1659 
1660 	/* *************************************************************** */
1661 	/*
1662 	 * * We need to calculate the number of dtaps that equal a ptap
1663 	 * * To do that we'll back up a ptap and re-find the edge of the
1664 	 * * window using dtaps
1665 	 */
1666 
1667 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1668 		   for tracking\n", __func__, __LINE__);
1669 
1670 	/* Special case code for backing up a phase */
1671 	if (p == 0) {
1672 		p = IO_DQS_EN_PHASE_MAX;
1673 		rw_mgr_decr_vfifo(grp, &v);
1674 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1675 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1676 			   v, p);
1677 	} else {
1678 		p = p - 1;
1679 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1680 			   phase only: v=%u p=%u", __func__, __LINE__,
1681 			   v, p);
1682 	}
1683 
1684 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1685 
1686 	/*
1687 	 * Increase dtap until we first see a passing read (in case the
1688 	 * window is smaller than a ptap),
1689 	 * and then a failing read to mark the edge of the window again
1690 	 */
1691 
1692 	/* Find a passing read */
1693 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1694 		   __func__, __LINE__);
1695 	found_passing_read = 0;
1696 	found_failing_read = 0;
1697 	initial_failing_dtap = d;
1698 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1699 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1700 			   read d=%u\n", __func__, __LINE__, d);
1701 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1702 
1703 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1704 							     PASS_ONE_BIT,
1705 							     &bit_chk, 0)) {
1706 			found_passing_read = 1;
1707 			break;
1708 		}
1709 	}
1710 
1711 	if (found_passing_read) {
1712 		/* Find a failing read */
1713 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1714 			   read\n", __func__, __LINE__);
1715 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1716 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1717 				   testing read d=%u\n", __func__, __LINE__, d);
1718 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1719 
1720 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1721 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1722 				found_failing_read = 1;
1723 				break;
1724 			}
1725 		}
1726 	} else {
1727 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1728 			   calculate dtaps", __func__, __LINE__);
1729 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1730 	}
1731 
1732 	/*
1733 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1734 	 * found a passing/failing read. If we didn't, it means d hit the max
1735 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1736 	 * statically calculated value.
1737 	 */
1738 	if (found_passing_read && found_failing_read)
1739 		dtaps_per_ptap = d - initial_failing_dtap;
1740 
1741 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1742 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1743 		   - %u = %u",  __func__, __LINE__, d,
1744 		   initial_failing_dtap, dtaps_per_ptap);
1745 
1746 	/* ******************************************** */
1747 	/* * step 6:  Find the centre of the window   * */
1748 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1749 				   &work_mid, &work_end) == 0)
1750 		return 0;
1751 
1752 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1753 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1754 		   v, p-1, d);
1755 	return 1;
1756 }
1757 
1758 /*
1759  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1760  * dq_in_delay values
1761  */
1762 static uint32_t
1763 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1764 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1765 {
1766 	uint32_t found;
1767 	uint32_t i;
1768 	uint32_t p;
1769 	uint32_t d;
1770 	uint32_t r;
1771 
1772 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1773 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1774 		/* we start at zero, so have one less dq to devide among */
1775 
1776 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1777 	      test_bgn);
1778 
1779 	/* try different dq_in_delays since the dq path is shorter than dqs */
1780 
1781 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1782 	     r += NUM_RANKS_PER_SHADOW_REG) {
1783 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1784 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1785 				   vfifo_find_dqs_", __func__, __LINE__);
1786 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1787 			       write_group, read_group);
1788 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1789 			scc_mgr_set_dq_in_delay(p, d);
1790 			scc_mgr_load_dq(p);
1791 		}
1792 		writel(0, &sdr_scc_mgr->update);
1793 	}
1794 
1795 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1796 
1797 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1798 		   en_phase_sweep_dq", __func__, __LINE__);
1799 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1800 		   chain to zero\n", write_group, read_group, found);
1801 
1802 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1803 	     r += NUM_RANKS_PER_SHADOW_REG) {
1804 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1805 			i++, p++) {
1806 			scc_mgr_set_dq_in_delay(p, 0);
1807 			scc_mgr_load_dq(p);
1808 		}
1809 		writel(0, &sdr_scc_mgr->update);
1810 	}
1811 
1812 	return found;
1813 }
1814 
1815 /* per-bit deskew DQ and center */
1816 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1817 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1818 	uint32_t use_read_test, uint32_t update_fom)
1819 {
1820 	uint32_t i, p, d, min_index;
1821 	/*
1822 	 * Store these as signed since there are comparisons with
1823 	 * signed numbers.
1824 	 */
1825 	uint32_t bit_chk;
1826 	uint32_t sticky_bit_chk;
1827 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1828 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1829 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1830 	int32_t mid;
1831 	int32_t orig_mid_min, mid_min;
1832 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1833 		final_dqs_en;
1834 	int32_t dq_margin, dqs_margin;
1835 	uint32_t stop;
1836 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1837 	uint32_t addr;
1838 
1839 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1840 
1841 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1842 	start_dqs = readl(addr + (read_group << 2));
1843 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1844 		start_dqs_en = readl(addr + ((read_group << 2)
1845 				     - IO_DQS_EN_DELAY_OFFSET));
1846 
1847 	/* set the left and right edge of each bit to an illegal value */
1848 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1849 	sticky_bit_chk = 0;
1850 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1851 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1852 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1853 	}
1854 
1855 	/* Search for the left edge of the window for each bit */
1856 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1857 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1858 
1859 		writel(0, &sdr_scc_mgr->update);
1860 
1861 		/*
1862 		 * Stop searching when the read test doesn't pass AND when
1863 		 * we've seen a passing read on every bit.
1864 		 */
1865 		if (use_read_test) {
1866 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1867 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1868 				&bit_chk, 0, 0);
1869 		} else {
1870 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1871 							0, PASS_ONE_BIT,
1872 							&bit_chk, 0);
1873 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1874 				(read_group - (write_group *
1875 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1876 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1877 			stop = (bit_chk == 0);
1878 		}
1879 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1880 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1881 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1882 			   && %u", __func__, __LINE__, d,
1883 			   sticky_bit_chk,
1884 			param->read_correct_mask, stop);
1885 
1886 		if (stop == 1) {
1887 			break;
1888 		} else {
1889 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1890 				if (bit_chk & 1) {
1891 					/* Remember a passing test as the
1892 					left_edge */
1893 					left_edge[i] = d;
1894 				} else {
1895 					/* If a left edge has not been seen yet,
1896 					then a future passing test will mark
1897 					this edge as the right edge */
1898 					if (left_edge[i] ==
1899 						IO_IO_IN_DELAY_MAX + 1) {
1900 						right_edge[i] = -(d + 1);
1901 					}
1902 				}
1903 				bit_chk = bit_chk >> 1;
1904 			}
1905 		}
1906 	}
1907 
1908 	/* Reset DQ delay chains to 0 */
1909 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1910 	sticky_bit_chk = 0;
1911 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1912 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1913 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1914 			   i, left_edge[i], i, right_edge[i]);
1915 
1916 		/*
1917 		 * Check for cases where we haven't found the left edge,
1918 		 * which makes our assignment of the the right edge invalid.
1919 		 * Reset it to the illegal value.
1920 		 */
1921 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1922 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1923 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1924 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1925 				   right_edge[%u]: %d\n", __func__, __LINE__,
1926 				   i, right_edge[i]);
1927 		}
1928 
1929 		/*
1930 		 * Reset sticky bit (except for bits where we have seen
1931 		 * both the left and right edge).
1932 		 */
1933 		sticky_bit_chk = sticky_bit_chk << 1;
1934 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1935 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1936 			sticky_bit_chk = sticky_bit_chk | 1;
1937 		}
1938 
1939 		if (i == 0)
1940 			break;
1941 	}
1942 
1943 	/* Search for the right edge of the window for each bit */
1944 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1945 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1946 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1947 			uint32_t delay = d + start_dqs_en;
1948 			if (delay > IO_DQS_EN_DELAY_MAX)
1949 				delay = IO_DQS_EN_DELAY_MAX;
1950 			scc_mgr_set_dqs_en_delay(read_group, delay);
1951 		}
1952 		scc_mgr_load_dqs(read_group);
1953 
1954 		writel(0, &sdr_scc_mgr->update);
1955 
1956 		/*
1957 		 * Stop searching when the read test doesn't pass AND when
1958 		 * we've seen a passing read on every bit.
1959 		 */
1960 		if (use_read_test) {
1961 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1962 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1963 				&bit_chk, 0, 0);
1964 		} else {
1965 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1966 							0, PASS_ONE_BIT,
1967 							&bit_chk, 0);
1968 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1969 				(read_group - (write_group *
1970 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1971 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1972 			stop = (bit_chk == 0);
1973 		}
1974 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1975 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1976 
1977 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1978 			   %u && %u", __func__, __LINE__, d,
1979 			   sticky_bit_chk, param->read_correct_mask, stop);
1980 
1981 		if (stop == 1) {
1982 			break;
1983 		} else {
1984 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1985 				if (bit_chk & 1) {
1986 					/* Remember a passing test as
1987 					the right_edge */
1988 					right_edge[i] = d;
1989 				} else {
1990 					if (d != 0) {
1991 						/* If a right edge has not been
1992 						seen yet, then a future passing
1993 						test will mark this edge as the
1994 						left edge */
1995 						if (right_edge[i] ==
1996 						IO_IO_IN_DELAY_MAX + 1) {
1997 							left_edge[i] = -(d + 1);
1998 						}
1999 					} else {
2000 						/* d = 0 failed, but it passed
2001 						when testing the left edge,
2002 						so it must be marginal,
2003 						set it to -1 */
2004 						if (right_edge[i] ==
2005 							IO_IO_IN_DELAY_MAX + 1 &&
2006 							left_edge[i] !=
2007 							IO_IO_IN_DELAY_MAX
2008 							+ 1) {
2009 							right_edge[i] = -1;
2010 						}
2011 						/* If a right edge has not been
2012 						seen yet, then a future passing
2013 						test will mark this edge as the
2014 						left edge */
2015 						else if (right_edge[i] ==
2016 							IO_IO_IN_DELAY_MAX +
2017 							1) {
2018 							left_edge[i] = -(d + 1);
2019 						}
2020 					}
2021 				}
2022 
2023 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2024 					   d=%u]: ", __func__, __LINE__, d);
2025 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2026 					   (int)(bit_chk & 1), i, left_edge[i]);
2027 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2028 					   right_edge[i]);
2029 				bit_chk = bit_chk >> 1;
2030 			}
2031 		}
2032 	}
2033 
2034 	/* Check that all bits have a window */
2035 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2036 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2037 			   %d right_edge[%u]: %d", __func__, __LINE__,
2038 			   i, left_edge[i], i, right_edge[i]);
2039 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2040 			== IO_IO_IN_DELAY_MAX + 1)) {
2041 			/*
2042 			 * Restore delay chain settings before letting the loop
2043 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2044 			 * dqs/ck relationships.
2045 			 */
2046 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2047 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2048 				scc_mgr_set_dqs_en_delay(read_group,
2049 							 start_dqs_en);
2050 			}
2051 			scc_mgr_load_dqs(read_group);
2052 			writel(0, &sdr_scc_mgr->update);
2053 
2054 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2055 				   find edge [%u]: %d %d", __func__, __LINE__,
2056 				   i, left_edge[i], right_edge[i]);
2057 			if (use_read_test) {
2058 				set_failing_group_stage(read_group *
2059 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2060 					CAL_STAGE_VFIFO,
2061 					CAL_SUBSTAGE_VFIFO_CENTER);
2062 			} else {
2063 				set_failing_group_stage(read_group *
2064 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2065 					CAL_STAGE_VFIFO_AFTER_WRITES,
2066 					CAL_SUBSTAGE_VFIFO_CENTER);
2067 			}
2068 			return 0;
2069 		}
2070 	}
2071 
2072 	/* Find middle of window for each DQ bit */
2073 	mid_min = left_edge[0] - right_edge[0];
2074 	min_index = 0;
2075 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2076 		mid = left_edge[i] - right_edge[i];
2077 		if (mid < mid_min) {
2078 			mid_min = mid;
2079 			min_index = i;
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * -mid_min/2 represents the amount that we need to move DQS.
2085 	 * If mid_min is odd and positive we'll need to add one to
2086 	 * make sure the rounding in further calculations is correct
2087 	 * (always bias to the right), so just add 1 for all positive values.
2088 	 */
2089 	if (mid_min > 0)
2090 		mid_min++;
2091 
2092 	mid_min = mid_min / 2;
2093 
2094 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2095 		   __func__, __LINE__, mid_min, min_index);
2096 
2097 	/* Determine the amount we can change DQS (which is -mid_min) */
2098 	orig_mid_min = mid_min;
2099 	new_dqs = start_dqs - mid_min;
2100 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2101 		new_dqs = IO_DQS_IN_DELAY_MAX;
2102 	else if (new_dqs < 0)
2103 		new_dqs = 0;
2104 
2105 	mid_min = start_dqs - new_dqs;
2106 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2107 		   mid_min, new_dqs);
2108 
2109 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2110 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2111 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2112 		else if (start_dqs_en - mid_min < 0)
2113 			mid_min += start_dqs_en - mid_min;
2114 	}
2115 	new_dqs = start_dqs - mid_min;
2116 
2117 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2118 		   new_dqs=%d mid_min=%d\n", start_dqs,
2119 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2120 		   new_dqs, mid_min);
2121 
2122 	/* Initialize data for export structures */
2123 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2124 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2125 
2126 	/* add delay to bring centre of all DQ windows to the same "level" */
2127 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2128 		/* Use values before divide by 2 to reduce round off error */
2129 		shift_dq = (left_edge[i] - right_edge[i] -
2130 			(left_edge[min_index] - right_edge[min_index]))/2  +
2131 			(orig_mid_min - mid_min);
2132 
2133 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2134 			   shift_dq[%u]=%d\n", i, shift_dq);
2135 
2136 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2137 		temp_dq_in_delay1 = readl(addr + (p << 2));
2138 		temp_dq_in_delay2 = readl(addr + (i << 2));
2139 
2140 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2141 			(int32_t)IO_IO_IN_DELAY_MAX) {
2142 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2143 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2144 			shift_dq = -(int32_t)temp_dq_in_delay1;
2145 		}
2146 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2147 			   shift_dq[%u]=%d\n", i, shift_dq);
2148 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2149 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2150 		scc_mgr_load_dq(p);
2151 
2152 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2153 			   left_edge[i] - shift_dq + (-mid_min),
2154 			   right_edge[i] + shift_dq - (-mid_min));
2155 		/* To determine values for export structures */
2156 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2157 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2158 
2159 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2160 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2161 	}
2162 
2163 	final_dqs = new_dqs;
2164 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2165 		final_dqs_en = start_dqs_en - mid_min;
2166 
2167 	/* Move DQS-en */
2168 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2169 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2170 		scc_mgr_load_dqs(read_group);
2171 	}
2172 
2173 	/* Move DQS */
2174 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2175 	scc_mgr_load_dqs(read_group);
2176 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2177 		   dqs_margin=%d", __func__, __LINE__,
2178 		   dq_margin, dqs_margin);
2179 
2180 	/*
2181 	 * Do not remove this line as it makes sure all of our decisions
2182 	 * have been applied. Apply the update bit.
2183 	 */
2184 	writel(0, &sdr_scc_mgr->update);
2185 
2186 	return (dq_margin >= 0) && (dqs_margin >= 0);
2187 }
2188 
2189 /**
2190  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2191  * @rw_group:		Read/Write Group
2192  * @test_bgn:		Rank at which the test begins
2193  *
2194  * Stage 1: Calibrate the read valid prediction FIFO.
2195  *
2196  * This function implements UniPHY calibration Stage 1, as explained in
2197  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2198  *
2199  * - read valid prediction will consist of finding:
2200  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2201  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2202  *  - we also do a per-bit deskew on the DQ lines.
2203  */
2204 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2205 					   uint32_t test_bgn)
2206 {
2207 	uint32_t p, d, rank_bgn, sr;
2208 	uint32_t dtaps_per_ptap;
2209 	uint32_t bit_chk;
2210 	uint32_t grp_calibrated;
2211 	uint32_t write_group, write_test_bgn;
2212 	uint32_t failed_substage;
2213 
2214 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2215 
2216 	/* update info for sims */
2217 	reg_file_set_stage(CAL_STAGE_VFIFO);
2218 
2219 	write_group = read_group;
2220 	write_test_bgn = test_bgn;
2221 
2222 	/* USER Determine number of delay taps for each phase tap */
2223 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2224 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2225 
2226 	/* update info for sims */
2227 	reg_file_set_group(read_group);
2228 
2229 	grp_calibrated = 0;
2230 
2231 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2232 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2233 
2234 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2235 		/*
2236 		 * In RLDRAMX we may be messing the delay of pins in
2237 		 * the same write group but outside of the current read
2238 		 * the group, but that's ok because we haven't calibrated
2239 		 * output side yet.
2240 		 */
2241 		if (d > 0) {
2242 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2243 								write_group, d);
2244 		}
2245 
2246 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
2247 			/* set a particular dqdqs phase */
2248 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2249 
2250 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2251 				   p=%u d=%u\n", __func__, __LINE__,
2252 				   read_group, p, d);
2253 
2254 			/*
2255 			 * Load up the patterns used by read calibration
2256 			 * using current DQDQS phase.
2257 			 */
2258 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2259 			if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2260 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2261 								(read_group, 1, &bit_chk)) {
2262 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2263 						   __func__, __LINE__);
2264 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2265 						   read_group, p, d);
2266 					break;
2267 				}
2268 			}
2269 
2270 			/* case:56390 */
2271 			grp_calibrated = 1;
2272 			if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2273 			    (write_group, read_group, test_bgn)) {
2274 					/*
2275 					 * USER Read per-bit deskew can be done on a
2276 					 * per shadow register basis.
2277 					 */
2278 					for (rank_bgn = 0, sr = 0;
2279 					     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2280 					     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2281 						/*
2282 						 * Determine if this set of ranks
2283 						 * should be skipped entirely.
2284 						 */
2285 						if (param->skip_shadow_regs[sr])
2286 							continue;
2287 						/*
2288 						 * If doing read after write
2289 						 * calibration, do not update
2290 						 * FOM, now - do it then.
2291 						 */
2292 						if (rw_mgr_mem_calibrate_vfifo_center
2293 								(rank_bgn, write_group,
2294 								read_group, test_bgn,
2295 								1, 0))
2296 							continue;
2297 
2298 						grp_calibrated = 0;
2299 						failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2300 					}
2301 			} else {
2302 				grp_calibrated = 0;
2303 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2304 			}
2305 		}
2306 	}
2307 
2308 	if (grp_calibrated == 0) {
2309 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2310 					failed_substage);
2311 		return 0;
2312 	}
2313 
2314 	/*
2315 	 * Reset the delay chains back to zero if they have moved > 1
2316 	 * (check for > 1 because loop will increase d even when pass in
2317 	 * first case).
2318 	 */
2319 	if (d > 2)
2320 		scc_mgr_zero_group(write_group, 1);
2321 
2322 	return 1;
2323 }
2324 
2325 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2326 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2327 					       uint32_t test_bgn)
2328 {
2329 	uint32_t rank_bgn, sr;
2330 	uint32_t grp_calibrated;
2331 	uint32_t write_group;
2332 
2333 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2334 
2335 	/* update info for sims */
2336 
2337 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2338 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2339 
2340 	write_group = read_group;
2341 
2342 	/* update info for sims */
2343 	reg_file_set_group(read_group);
2344 
2345 	grp_calibrated = 1;
2346 	/* Read per-bit deskew can be done on a per shadow register basis */
2347 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2348 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2349 		/* Determine if this set of ranks should be skipped entirely */
2350 		if (!param->skip_shadow_regs[sr]) {
2351 		/* This is the last calibration round, update FOM here */
2352 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2353 								write_group,
2354 								read_group,
2355 								test_bgn, 0,
2356 								1)) {
2357 				grp_calibrated = 0;
2358 			}
2359 		}
2360 	}
2361 
2362 
2363 	if (grp_calibrated == 0) {
2364 		set_failing_group_stage(write_group,
2365 					CAL_STAGE_VFIFO_AFTER_WRITES,
2366 					CAL_SUBSTAGE_VFIFO_CENTER);
2367 		return 0;
2368 	}
2369 
2370 	return 1;
2371 }
2372 
2373 /* Calibrate LFIFO to find smallest read latency */
2374 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2375 {
2376 	uint32_t found_one;
2377 	uint32_t bit_chk;
2378 
2379 	debug("%s:%d\n", __func__, __LINE__);
2380 
2381 	/* update info for sims */
2382 	reg_file_set_stage(CAL_STAGE_LFIFO);
2383 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2384 
2385 	/* Load up the patterns used by read calibration for all ranks */
2386 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2387 	found_one = 0;
2388 
2389 	do {
2390 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2391 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2392 			   __func__, __LINE__, gbl->curr_read_lat);
2393 
2394 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2395 							      NUM_READ_TESTS,
2396 							      PASS_ALL_BITS,
2397 							      &bit_chk, 1)) {
2398 			break;
2399 		}
2400 
2401 		found_one = 1;
2402 		/* reduce read latency and see if things are working */
2403 		/* correctly */
2404 		gbl->curr_read_lat--;
2405 	} while (gbl->curr_read_lat > 0);
2406 
2407 	/* reset the fifos to get pointers to known state */
2408 
2409 	writel(0, &phy_mgr_cmd->fifo_reset);
2410 
2411 	if (found_one) {
2412 		/* add a fudge factor to the read latency that was determined */
2413 		gbl->curr_read_lat += 2;
2414 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2415 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2416 			   read_lat=%u\n", __func__, __LINE__,
2417 			   gbl->curr_read_lat);
2418 		return 1;
2419 	} else {
2420 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2421 					CAL_SUBSTAGE_READ_LATENCY);
2422 
2423 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2424 			   read_lat=%u\n", __func__, __LINE__,
2425 			   gbl->curr_read_lat);
2426 		return 0;
2427 	}
2428 }
2429 
2430 /*
2431  * issue write test command.
2432  * two variants are provided. one that just tests a write pattern and
2433  * another that tests datamask functionality.
2434  */
2435 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2436 						  uint32_t test_dm)
2437 {
2438 	uint32_t mcc_instruction;
2439 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2440 		ENABLE_SUPER_QUICK_CALIBRATION);
2441 	uint32_t rw_wl_nop_cycles;
2442 	uint32_t addr;
2443 
2444 	/*
2445 	 * Set counter and jump addresses for the right
2446 	 * number of NOP cycles.
2447 	 * The number of supported NOP cycles can range from -1 to infinity
2448 	 * Three different cases are handled:
2449 	 *
2450 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2451 	 *    mechanism will be used to insert the right number of NOPs
2452 	 *
2453 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2454 	 *    issuing the write command will jump straight to the
2455 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2456 	 *    data (for RLD), skipping
2457 	 *    the NOP micro-instruction all together
2458 	 *
2459 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2460 	 *    turned on in the same micro-instruction that issues the write
2461 	 *    command. Then we need
2462 	 *    to directly jump to the micro-instruction that sends out the data
2463 	 *
2464 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2465 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2466 	 *       write-read operations.
2467 	 *       one counter left to issue this command in "multiple-group" mode
2468 	 */
2469 
2470 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2471 
2472 	if (rw_wl_nop_cycles == -1) {
2473 		/*
2474 		 * CNTR 2 - We want to execute the special write operation that
2475 		 * turns on DQS right away and then skip directly to the
2476 		 * instruction that sends out the data. We set the counter to a
2477 		 * large number so that the jump is always taken.
2478 		 */
2479 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2480 
2481 		/* CNTR 3 - Not used */
2482 		if (test_dm) {
2483 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2484 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2485 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2486 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2487 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2488 		} else {
2489 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2490 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2491 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2492 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2493 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2494 		}
2495 	} else if (rw_wl_nop_cycles == 0) {
2496 		/*
2497 		 * CNTR 2 - We want to skip the NOP operation and go straight
2498 		 * to the DQS enable instruction. We set the counter to a large
2499 		 * number so that the jump is always taken.
2500 		 */
2501 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2502 
2503 		/* CNTR 3 - Not used */
2504 		if (test_dm) {
2505 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2506 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2507 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2508 		} else {
2509 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2510 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2511 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2512 		}
2513 	} else {
2514 		/*
2515 		 * CNTR 2 - In this case we want to execute the next instruction
2516 		 * and NOT take the jump. So we set the counter to 0. The jump
2517 		 * address doesn't count.
2518 		 */
2519 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2520 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2521 
2522 		/*
2523 		 * CNTR 3 - Set the nop counter to the number of cycles we
2524 		 * need to loop for, minus 1.
2525 		 */
2526 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2527 		if (test_dm) {
2528 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2529 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2530 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2531 		} else {
2532 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2533 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2534 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2535 		}
2536 	}
2537 
2538 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2539 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2540 
2541 	if (quick_write_mode)
2542 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2543 	else
2544 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2545 
2546 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2547 
2548 	/*
2549 	 * CNTR 1 - This is used to ensure enough time elapses
2550 	 * for read data to come back.
2551 	 */
2552 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2553 
2554 	if (test_dm) {
2555 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2556 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2557 	} else {
2558 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2559 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2560 	}
2561 
2562 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2563 	writel(mcc_instruction, addr + (group << 2));
2564 }
2565 
2566 /* Test writes, can check for a single bit pass or multiple bit pass */
2567 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2568 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2569 	uint32_t *bit_chk, uint32_t all_ranks)
2570 {
2571 	uint32_t r;
2572 	uint32_t correct_mask_vg;
2573 	uint32_t tmp_bit_chk;
2574 	uint32_t vg;
2575 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2576 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2577 	uint32_t addr_rw_mgr;
2578 	uint32_t base_rw_mgr;
2579 
2580 	*bit_chk = param->write_correct_mask;
2581 	correct_mask_vg = param->write_correct_mask_vg;
2582 
2583 	for (r = rank_bgn; r < rank_end; r++) {
2584 		if (param->skip_ranks[r]) {
2585 			/* request to skip the rank */
2586 			continue;
2587 		}
2588 
2589 		/* set rank */
2590 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2591 
2592 		tmp_bit_chk = 0;
2593 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2594 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2595 			/* reset the fifos to get pointers to known state */
2596 			writel(0, &phy_mgr_cmd->fifo_reset);
2597 
2598 			tmp_bit_chk = tmp_bit_chk <<
2599 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2600 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2601 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2602 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2603 				use_dm);
2604 
2605 			base_rw_mgr = readl(addr_rw_mgr);
2606 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2607 			if (vg == 0)
2608 				break;
2609 		}
2610 		*bit_chk &= tmp_bit_chk;
2611 	}
2612 
2613 	if (all_correct) {
2614 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2615 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2616 			   %u => %lu", write_group, use_dm,
2617 			   *bit_chk, param->write_correct_mask,
2618 			   (long unsigned int)(*bit_chk ==
2619 			   param->write_correct_mask));
2620 		return *bit_chk == param->write_correct_mask;
2621 	} else {
2622 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2623 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2624 		       write_group, use_dm, *bit_chk);
2625 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2626 			(long unsigned int)(*bit_chk != 0));
2627 		return *bit_chk != 0x00;
2628 	}
2629 }
2630 
2631 /*
2632  * center all windows. do per-bit-deskew to possibly increase size of
2633  * certain windows.
2634  */
2635 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2636 	uint32_t write_group, uint32_t test_bgn)
2637 {
2638 	uint32_t i, p, min_index;
2639 	int32_t d;
2640 	/*
2641 	 * Store these as signed since there are comparisons with
2642 	 * signed numbers.
2643 	 */
2644 	uint32_t bit_chk;
2645 	uint32_t sticky_bit_chk;
2646 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2647 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2648 	int32_t mid;
2649 	int32_t mid_min, orig_mid_min;
2650 	int32_t new_dqs, start_dqs, shift_dq;
2651 	int32_t dq_margin, dqs_margin, dm_margin;
2652 	uint32_t stop;
2653 	uint32_t temp_dq_out1_delay;
2654 	uint32_t addr;
2655 
2656 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2657 
2658 	dm_margin = 0;
2659 
2660 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2661 	start_dqs = readl(addr +
2662 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2663 
2664 	/* per-bit deskew */
2665 
2666 	/*
2667 	 * set the left and right edge of each bit to an illegal value
2668 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2669 	 */
2670 	sticky_bit_chk = 0;
2671 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2672 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2673 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2674 	}
2675 
2676 	/* Search for the left edge of the window for each bit */
2677 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2678 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2679 
2680 		writel(0, &sdr_scc_mgr->update);
2681 
2682 		/*
2683 		 * Stop searching when the read test doesn't pass AND when
2684 		 * we've seen a passing read on every bit.
2685 		 */
2686 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2687 			0, PASS_ONE_BIT, &bit_chk, 0);
2688 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2689 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2690 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2691 			   == %u && %u [bit_chk= %u ]\n",
2692 			d, sticky_bit_chk, param->write_correct_mask,
2693 			stop, bit_chk);
2694 
2695 		if (stop == 1) {
2696 			break;
2697 		} else {
2698 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2699 				if (bit_chk & 1) {
2700 					/*
2701 					 * Remember a passing test as the
2702 					 * left_edge.
2703 					 */
2704 					left_edge[i] = d;
2705 				} else {
2706 					/*
2707 					 * If a left edge has not been seen
2708 					 * yet, then a future passing test will
2709 					 * mark this edge as the right edge.
2710 					 */
2711 					if (left_edge[i] ==
2712 						IO_IO_OUT1_DELAY_MAX + 1) {
2713 						right_edge[i] = -(d + 1);
2714 					}
2715 				}
2716 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2717 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2718 					   (int)(bit_chk & 1), i, left_edge[i]);
2719 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2720 				       right_edge[i]);
2721 				bit_chk = bit_chk >> 1;
2722 			}
2723 		}
2724 	}
2725 
2726 	/* Reset DQ delay chains to 0 */
2727 	scc_mgr_apply_group_dq_out1_delay(0);
2728 	sticky_bit_chk = 0;
2729 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2730 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2731 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2732 			   i, left_edge[i], i, right_edge[i]);
2733 
2734 		/*
2735 		 * Check for cases where we haven't found the left edge,
2736 		 * which makes our assignment of the the right edge invalid.
2737 		 * Reset it to the illegal value.
2738 		 */
2739 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2740 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2741 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2742 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2743 				   right_edge[%u]: %d\n", __func__, __LINE__,
2744 				   i, right_edge[i]);
2745 		}
2746 
2747 		/*
2748 		 * Reset sticky bit (except for bits where we have
2749 		 * seen the left edge).
2750 		 */
2751 		sticky_bit_chk = sticky_bit_chk << 1;
2752 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2753 			sticky_bit_chk = sticky_bit_chk | 1;
2754 
2755 		if (i == 0)
2756 			break;
2757 	}
2758 
2759 	/* Search for the right edge of the window for each bit */
2760 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2761 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2762 							d + start_dqs);
2763 
2764 		writel(0, &sdr_scc_mgr->update);
2765 
2766 		/*
2767 		 * Stop searching when the read test doesn't pass AND when
2768 		 * we've seen a passing read on every bit.
2769 		 */
2770 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2771 			0, PASS_ONE_BIT, &bit_chk, 0);
2772 
2773 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2774 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2775 
2776 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2777 			   %u && %u\n", d, sticky_bit_chk,
2778 			   param->write_correct_mask, stop);
2779 
2780 		if (stop == 1) {
2781 			if (d == 0) {
2782 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2783 					i++) {
2784 					/* d = 0 failed, but it passed when
2785 					testing the left edge, so it must be
2786 					marginal, set it to -1 */
2787 					if (right_edge[i] ==
2788 						IO_IO_OUT1_DELAY_MAX + 1 &&
2789 						left_edge[i] !=
2790 						IO_IO_OUT1_DELAY_MAX + 1) {
2791 						right_edge[i] = -1;
2792 					}
2793 				}
2794 			}
2795 			break;
2796 		} else {
2797 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2798 				if (bit_chk & 1) {
2799 					/*
2800 					 * Remember a passing test as
2801 					 * the right_edge.
2802 					 */
2803 					right_edge[i] = d;
2804 				} else {
2805 					if (d != 0) {
2806 						/*
2807 						 * If a right edge has not
2808 						 * been seen yet, then a future
2809 						 * passing test will mark this
2810 						 * edge as the left edge.
2811 						 */
2812 						if (right_edge[i] ==
2813 						    IO_IO_OUT1_DELAY_MAX + 1)
2814 							left_edge[i] = -(d + 1);
2815 					} else {
2816 						/*
2817 						 * d = 0 failed, but it passed
2818 						 * when testing the left edge,
2819 						 * so it must be marginal, set
2820 						 * it to -1.
2821 						 */
2822 						if (right_edge[i] ==
2823 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2824 						    left_edge[i] !=
2825 						    IO_IO_OUT1_DELAY_MAX + 1)
2826 							right_edge[i] = -1;
2827 						/*
2828 						 * If a right edge has not been
2829 						 * seen yet, then a future
2830 						 * passing test will mark this
2831 						 * edge as the left edge.
2832 						 */
2833 						else if (right_edge[i] ==
2834 							IO_IO_OUT1_DELAY_MAX +
2835 							1)
2836 							left_edge[i] = -(d + 1);
2837 					}
2838 				}
2839 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2840 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2841 					   (int)(bit_chk & 1), i, left_edge[i]);
2842 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2843 					   right_edge[i]);
2844 				bit_chk = bit_chk >> 1;
2845 			}
2846 		}
2847 	}
2848 
2849 	/* Check that all bits have a window */
2850 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2851 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2852 			   %d right_edge[%u]: %d", __func__, __LINE__,
2853 			   i, left_edge[i], i, right_edge[i]);
2854 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2855 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2856 			set_failing_group_stage(test_bgn + i,
2857 						CAL_STAGE_WRITES,
2858 						CAL_SUBSTAGE_WRITES_CENTER);
2859 			return 0;
2860 		}
2861 	}
2862 
2863 	/* Find middle of window for each DQ bit */
2864 	mid_min = left_edge[0] - right_edge[0];
2865 	min_index = 0;
2866 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2867 		mid = left_edge[i] - right_edge[i];
2868 		if (mid < mid_min) {
2869 			mid_min = mid;
2870 			min_index = i;
2871 		}
2872 	}
2873 
2874 	/*
2875 	 * -mid_min/2 represents the amount that we need to move DQS.
2876 	 * If mid_min is odd and positive we'll need to add one to
2877 	 * make sure the rounding in further calculations is correct
2878 	 * (always bias to the right), so just add 1 for all positive values.
2879 	 */
2880 	if (mid_min > 0)
2881 		mid_min++;
2882 	mid_min = mid_min / 2;
2883 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2884 		   __LINE__, mid_min);
2885 
2886 	/* Determine the amount we can change DQS (which is -mid_min) */
2887 	orig_mid_min = mid_min;
2888 	new_dqs = start_dqs;
2889 	mid_min = 0;
2890 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2891 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2892 	/* Initialize data for export structures */
2893 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2894 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2895 
2896 	/* add delay to bring centre of all DQ windows to the same "level" */
2897 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2898 		/* Use values before divide by 2 to reduce round off error */
2899 		shift_dq = (left_edge[i] - right_edge[i] -
2900 			(left_edge[min_index] - right_edge[min_index]))/2  +
2901 		(orig_mid_min - mid_min);
2902 
2903 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2904 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2905 
2906 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2907 		temp_dq_out1_delay = readl(addr + (i << 2));
2908 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2909 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2910 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2911 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2912 			shift_dq = -(int32_t)temp_dq_out1_delay;
2913 		}
2914 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2915 			   i, shift_dq);
2916 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2917 		scc_mgr_load_dq(i);
2918 
2919 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2920 			   left_edge[i] - shift_dq + (-mid_min),
2921 			   right_edge[i] + shift_dq - (-mid_min));
2922 		/* To determine values for export structures */
2923 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2924 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2925 
2926 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2927 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2928 	}
2929 
2930 	/* Move DQS */
2931 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2932 	writel(0, &sdr_scc_mgr->update);
2933 
2934 	/* Centre DM */
2935 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2936 
2937 	/*
2938 	 * set the left and right edge of each bit to an illegal value,
2939 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2940 	 */
2941 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2942 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2943 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2944 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2945 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2946 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2947 	int32_t win_best = 0;
2948 
2949 	/* Search for the/part of the window with DM shift */
2950 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2951 		scc_mgr_apply_group_dm_out1_delay(d);
2952 		writel(0, &sdr_scc_mgr->update);
2953 
2954 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2955 						    PASS_ALL_BITS, &bit_chk,
2956 						    0)) {
2957 			/* USE Set current end of the window */
2958 			end_curr = -d;
2959 			/*
2960 			 * If a starting edge of our window has not been seen
2961 			 * this is our current start of the DM window.
2962 			 */
2963 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2964 				bgn_curr = -d;
2965 
2966 			/*
2967 			 * If current window is bigger than best seen.
2968 			 * Set best seen to be current window.
2969 			 */
2970 			if ((end_curr-bgn_curr+1) > win_best) {
2971 				win_best = end_curr-bgn_curr+1;
2972 				bgn_best = bgn_curr;
2973 				end_best = end_curr;
2974 			}
2975 		} else {
2976 			/* We just saw a failing test. Reset temp edge */
2977 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2978 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979 			}
2980 		}
2981 
2982 
2983 	/* Reset DM delay chains to 0 */
2984 	scc_mgr_apply_group_dm_out1_delay(0);
2985 
2986 	/*
2987 	 * Check to see if the current window nudges up aganist 0 delay.
2988 	 * If so we need to continue the search by shifting DQS otherwise DQS
2989 	 * search begins as a new search. */
2990 	if (end_curr != 0) {
2991 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2992 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2993 	}
2994 
2995 	/* Search for the/part of the window with DQS shifts */
2996 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2997 		/*
2998 		 * Note: This only shifts DQS, so are we limiting ourselve to
2999 		 * width of DQ unnecessarily.
3000 		 */
3001 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3002 							d + new_dqs);
3003 
3004 		writel(0, &sdr_scc_mgr->update);
3005 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3006 						    PASS_ALL_BITS, &bit_chk,
3007 						    0)) {
3008 			/* USE Set current end of the window */
3009 			end_curr = d;
3010 			/*
3011 			 * If a beginning edge of our window has not been seen
3012 			 * this is our current begin of the DM window.
3013 			 */
3014 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3015 				bgn_curr = d;
3016 
3017 			/*
3018 			 * If current window is bigger than best seen. Set best
3019 			 * seen to be current window.
3020 			 */
3021 			if ((end_curr-bgn_curr+1) > win_best) {
3022 				win_best = end_curr-bgn_curr+1;
3023 				bgn_best = bgn_curr;
3024 				end_best = end_curr;
3025 			}
3026 		} else {
3027 			/* We just saw a failing test. Reset temp edge */
3028 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3029 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3030 
3031 			/* Early exit optimization: if ther remaining delay
3032 			chain space is less than already seen largest window
3033 			we can exit */
3034 			if ((win_best-1) >
3035 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3036 					break;
3037 				}
3038 			}
3039 		}
3040 
3041 	/* assign left and right edge for cal and reporting; */
3042 	left_edge[0] = -1*bgn_best;
3043 	right_edge[0] = end_best;
3044 
3045 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3046 		   __LINE__, left_edge[0], right_edge[0]);
3047 
3048 	/* Move DQS (back to orig) */
3049 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3050 
3051 	/* Move DM */
3052 
3053 	/* Find middle of window for the DM bit */
3054 	mid = (left_edge[0] - right_edge[0]) / 2;
3055 
3056 	/* only move right, since we are not moving DQS/DQ */
3057 	if (mid < 0)
3058 		mid = 0;
3059 
3060 	/* dm_marign should fail if we never find a window */
3061 	if (win_best == 0)
3062 		dm_margin = -1;
3063 	else
3064 		dm_margin = left_edge[0] - mid;
3065 
3066 	scc_mgr_apply_group_dm_out1_delay(mid);
3067 	writel(0, &sdr_scc_mgr->update);
3068 
3069 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3070 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3071 		   right_edge[0], mid, dm_margin);
3072 	/* Export values */
3073 	gbl->fom_out += dq_margin + dqs_margin;
3074 
3075 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3076 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3077 		   dq_margin, dqs_margin, dm_margin);
3078 
3079 	/*
3080 	 * Do not remove this line as it makes sure all of our
3081 	 * decisions have been applied.
3082 	 */
3083 	writel(0, &sdr_scc_mgr->update);
3084 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3085 }
3086 
3087 /* calibrate the write operations */
3088 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3089 	uint32_t test_bgn)
3090 {
3091 	/* update info for sims */
3092 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3093 
3094 	reg_file_set_stage(CAL_STAGE_WRITES);
3095 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3096 
3097 	reg_file_set_group(g);
3098 
3099 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3100 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3101 					CAL_SUBSTAGE_WRITES_CENTER);
3102 		return 0;
3103 	}
3104 
3105 	return 1;
3106 }
3107 
3108 /**
3109  * mem_precharge_and_activate() - Precharge all banks and activate
3110  *
3111  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3112  */
3113 static void mem_precharge_and_activate(void)
3114 {
3115 	int r;
3116 
3117 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3118 		/* Test if the rank should be skipped. */
3119 		if (param->skip_ranks[r])
3120 			continue;
3121 
3122 		/* Set rank. */
3123 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3124 
3125 		/* Precharge all banks. */
3126 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3127 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3128 
3129 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3130 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3131 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3132 
3133 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3134 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3135 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3136 
3137 		/* Activate rows. */
3138 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3139 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3140 	}
3141 }
3142 
3143 /**
3144  * mem_init_latency() - Configure memory RLAT and WLAT settings
3145  *
3146  * Configure memory RLAT and WLAT parameters.
3147  */
3148 static void mem_init_latency(void)
3149 {
3150 	/*
3151 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3152 	 * so max latency in AFI clocks, used here, is correspondingly
3153 	 * smaller.
3154 	 */
3155 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3156 	u32 rlat, wlat;
3157 
3158 	debug("%s:%d\n", __func__, __LINE__);
3159 
3160 	/*
3161 	 * Read in write latency.
3162 	 * WL for Hard PHY does not include additive latency.
3163 	 */
3164 	wlat = readl(&data_mgr->t_wl_add);
3165 	wlat += readl(&data_mgr->mem_t_add);
3166 
3167 	gbl->rw_wl_nop_cycles = wlat - 1;
3168 
3169 	/* Read in readl latency. */
3170 	rlat = readl(&data_mgr->t_rl_add);
3171 
3172 	/* Set a pretty high read latency initially. */
3173 	gbl->curr_read_lat = rlat + 16;
3174 	if (gbl->curr_read_lat > max_latency)
3175 		gbl->curr_read_lat = max_latency;
3176 
3177 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3178 
3179 	/* Advertise write latency. */
3180 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3181 }
3182 
3183 /**
3184  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3185  *
3186  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3187  */
3188 static void mem_skip_calibrate(void)
3189 {
3190 	uint32_t vfifo_offset;
3191 	uint32_t i, j, r;
3192 
3193 	debug("%s:%d\n", __func__, __LINE__);
3194 	/* Need to update every shadow register set used by the interface */
3195 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3196 	     r += NUM_RANKS_PER_SHADOW_REG) {
3197 		/*
3198 		 * Set output phase alignment settings appropriate for
3199 		 * skip calibration.
3200 		 */
3201 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3202 			scc_mgr_set_dqs_en_phase(i, 0);
3203 #if IO_DLL_CHAIN_LENGTH == 6
3204 			scc_mgr_set_dqdqs_output_phase(i, 6);
3205 #else
3206 			scc_mgr_set_dqdqs_output_phase(i, 7);
3207 #endif
3208 			/*
3209 			 * Case:33398
3210 			 *
3211 			 * Write data arrives to the I/O two cycles before write
3212 			 * latency is reached (720 deg).
3213 			 *   -> due to bit-slip in a/c bus
3214 			 *   -> to allow board skew where dqs is longer than ck
3215 			 *      -> how often can this happen!?
3216 			 *      -> can claim back some ptaps for high freq
3217 			 *       support if we can relax this, but i digress...
3218 			 *
3219 			 * The write_clk leads mem_ck by 90 deg
3220 			 * The minimum ptap of the OPA is 180 deg
3221 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3222 			 * The write_clk is always delayed by 2 ptaps
3223 			 *
3224 			 * Hence, to make DQS aligned to CK, we need to delay
3225 			 * DQS by:
3226 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3227 			 *
3228 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3229 			 * gives us the number of ptaps, which simplies to:
3230 			 *
3231 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3232 			 */
3233 			scc_mgr_set_dqdqs_output_phase(i,
3234 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3235 		}
3236 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3237 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3238 
3239 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3240 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3241 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3242 		}
3243 		writel(0xff, &sdr_scc_mgr->dq_ena);
3244 		writel(0xff, &sdr_scc_mgr->dm_ena);
3245 		writel(0, &sdr_scc_mgr->update);
3246 	}
3247 
3248 	/* Compensate for simulation model behaviour */
3249 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3250 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3251 		scc_mgr_load_dqs(i);
3252 	}
3253 	writel(0, &sdr_scc_mgr->update);
3254 
3255 	/*
3256 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3257 	 * in sequencer.
3258 	 */
3259 	vfifo_offset = CALIB_VFIFO_OFFSET;
3260 	for (j = 0; j < vfifo_offset; j++)
3261 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3262 	writel(0, &phy_mgr_cmd->fifo_reset);
3263 
3264 	/*
3265 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3266 	 * setting from generation-time constant.
3267 	 */
3268 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3269 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3270 }
3271 
3272 /**
3273  * mem_calibrate() - Memory calibration entry point.
3274  *
3275  * Perform memory calibration.
3276  */
3277 static uint32_t mem_calibrate(void)
3278 {
3279 	uint32_t i;
3280 	uint32_t rank_bgn, sr;
3281 	uint32_t write_group, write_test_bgn;
3282 	uint32_t read_group, read_test_bgn;
3283 	uint32_t run_groups, current_run;
3284 	uint32_t failing_groups = 0;
3285 	uint32_t group_failed = 0;
3286 
3287 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3288 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3289 
3290 	debug("%s:%d\n", __func__, __LINE__);
3291 
3292 	/* Initialize the data settings */
3293 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3294 	gbl->error_stage = CAL_STAGE_NIL;
3295 	gbl->error_group = 0xff;
3296 	gbl->fom_in = 0;
3297 	gbl->fom_out = 0;
3298 
3299 	/* Initialize WLAT and RLAT. */
3300 	mem_init_latency();
3301 
3302 	/* Initialize bit slips. */
3303 	mem_precharge_and_activate();
3304 
3305 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3306 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3307 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3308 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3309 		if (i == 0)
3310 			scc_mgr_set_hhp_extras();
3311 
3312 		scc_set_bypass_mode(i);
3313 	}
3314 
3315 	/* Calibration is skipped. */
3316 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3317 		/*
3318 		 * Set VFIFO and LFIFO to instant-on settings in skip
3319 		 * calibration mode.
3320 		 */
3321 		mem_skip_calibrate();
3322 
3323 		/*
3324 		 * Do not remove this line as it makes sure all of our
3325 		 * decisions have been applied.
3326 		 */
3327 		writel(0, &sdr_scc_mgr->update);
3328 		return 1;
3329 	}
3330 
3331 	/* Calibration is not skipped. */
3332 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3333 		/*
3334 		 * Zero all delay chain/phase settings for all
3335 		 * groups and all shadow register sets.
3336 		 */
3337 		scc_mgr_zero_all();
3338 
3339 		run_groups = ~param->skip_groups;
3340 
3341 		for (write_group = 0, write_test_bgn = 0; write_group
3342 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3343 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3344 
3345 			/* Initialize the group failure */
3346 			group_failed = 0;
3347 
3348 			current_run = run_groups & ((1 <<
3349 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3350 			run_groups = run_groups >>
3351 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3352 
3353 			if (current_run == 0)
3354 				continue;
3355 
3356 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3357 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3358 			scc_mgr_zero_group(write_group, 0);
3359 
3360 			for (read_group = write_group * rwdqs_ratio,
3361 			     read_test_bgn = 0;
3362 			     read_group < (write_group + 1) * rwdqs_ratio;
3363 			     read_group++,
3364 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3365 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3366 					continue;
3367 
3368 				/* Calibrate the VFIFO */
3369 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3370 							       read_test_bgn))
3371 					continue;
3372 
3373 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3374 					return 0;
3375 
3376 				/* The group failed, we're done. */
3377 				goto grp_failed;
3378 			}
3379 
3380 			/* Calibrate the output side */
3381 			for (rank_bgn = 0, sr = 0;
3382 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3383 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3384 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3385 					continue;
3386 
3387 				/* Not needed in quick mode! */
3388 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3389 					continue;
3390 
3391 				/*
3392 				 * Determine if this set of ranks
3393 				 * should be skipped entirely.
3394 				 */
3395 				if (param->skip_shadow_regs[sr])
3396 					continue;
3397 
3398 				/* Calibrate WRITEs */
3399 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3400 						write_group, write_test_bgn))
3401 					continue;
3402 
3403 				group_failed = 1;
3404 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3405 					return 0;
3406 			}
3407 
3408 			/* Some group failed, we're done. */
3409 			if (group_failed)
3410 				goto grp_failed;
3411 
3412 			for (read_group = write_group * rwdqs_ratio,
3413 			     read_test_bgn = 0;
3414 			     read_group < (write_group + 1) * rwdqs_ratio;
3415 			     read_group++,
3416 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3417 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3418 					continue;
3419 
3420 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3421 								read_test_bgn))
3422 					continue;
3423 
3424 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3425 					return 0;
3426 
3427 				/* The group failed, we're done. */
3428 				goto grp_failed;
3429 			}
3430 
3431 			/* No group failed, continue as usual. */
3432 			continue;
3433 
3434 grp_failed:		/* A group failed, increment the counter. */
3435 			failing_groups++;
3436 		}
3437 
3438 		/*
3439 		 * USER If there are any failing groups then report
3440 		 * the failure.
3441 		 */
3442 		if (failing_groups != 0)
3443 			return 0;
3444 
3445 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3446 			continue;
3447 
3448 		/*
3449 		 * If we're skipping groups as part of debug,
3450 		 * don't calibrate LFIFO.
3451 		 */
3452 		if (param->skip_groups != 0)
3453 			continue;
3454 
3455 		/* Calibrate the LFIFO */
3456 		if (!rw_mgr_mem_calibrate_lfifo())
3457 			return 0;
3458 	}
3459 
3460 	/*
3461 	 * Do not remove this line as it makes sure all of our decisions
3462 	 * have been applied.
3463 	 */
3464 	writel(0, &sdr_scc_mgr->update);
3465 	return 1;
3466 }
3467 
3468 /**
3469  * run_mem_calibrate() - Perform memory calibration
3470  *
3471  * This function triggers the entire memory calibration procedure.
3472  */
3473 static int run_mem_calibrate(void)
3474 {
3475 	int pass;
3476 
3477 	debug("%s:%d\n", __func__, __LINE__);
3478 
3479 	/* Reset pass/fail status shown on afi_cal_success/fail */
3480 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3481 
3482 	/* Stop tracking manager. */
3483 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3484 
3485 	phy_mgr_initialize();
3486 	rw_mgr_mem_initialize();
3487 
3488 	/* Perform the actual memory calibration. */
3489 	pass = mem_calibrate();
3490 
3491 	mem_precharge_and_activate();
3492 	writel(0, &phy_mgr_cmd->fifo_reset);
3493 
3494 	/* Handoff. */
3495 	rw_mgr_mem_handoff();
3496 	/*
3497 	 * In Hard PHY this is a 2-bit control:
3498 	 * 0: AFI Mux Select
3499 	 * 1: DDIO Mux Select
3500 	 */
3501 	writel(0x2, &phy_mgr_cfg->mux_sel);
3502 
3503 	/* Start tracking manager. */
3504 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3505 
3506 	return pass;
3507 }
3508 
3509 /**
3510  * debug_mem_calibrate() - Report result of memory calibration
3511  * @pass:	Value indicating whether calibration passed or failed
3512  *
3513  * This function reports the results of the memory calibration
3514  * and writes debug information into the register file.
3515  */
3516 static void debug_mem_calibrate(int pass)
3517 {
3518 	uint32_t debug_info;
3519 
3520 	if (pass) {
3521 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3522 
3523 		gbl->fom_in /= 2;
3524 		gbl->fom_out /= 2;
3525 
3526 		if (gbl->fom_in > 0xff)
3527 			gbl->fom_in = 0xff;
3528 
3529 		if (gbl->fom_out > 0xff)
3530 			gbl->fom_out = 0xff;
3531 
3532 		/* Update the FOM in the register file */
3533 		debug_info = gbl->fom_in;
3534 		debug_info |= gbl->fom_out << 8;
3535 		writel(debug_info, &sdr_reg_file->fom);
3536 
3537 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3538 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3539 	} else {
3540 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3541 
3542 		debug_info = gbl->error_stage;
3543 		debug_info |= gbl->error_substage << 8;
3544 		debug_info |= gbl->error_group << 16;
3545 
3546 		writel(debug_info, &sdr_reg_file->failing_stage);
3547 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3548 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3549 
3550 		/* Update the failing group/stage in the register file */
3551 		debug_info = gbl->error_stage;
3552 		debug_info |= gbl->error_substage << 8;
3553 		debug_info |= gbl->error_group << 16;
3554 		writel(debug_info, &sdr_reg_file->failing_stage);
3555 	}
3556 
3557 	printf("%s: Calibration complete\n", __FILE__);
3558 }
3559 
3560 /**
3561  * hc_initialize_rom_data() - Initialize ROM data
3562  *
3563  * Initialize ROM data.
3564  */
3565 static void hc_initialize_rom_data(void)
3566 {
3567 	u32 i, addr;
3568 
3569 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3570 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3571 		writel(inst_rom_init[i], addr + (i << 2));
3572 
3573 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3574 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3575 		writel(ac_rom_init[i], addr + (i << 2));
3576 }
3577 
3578 /**
3579  * initialize_reg_file() - Initialize SDR register file
3580  *
3581  * Initialize SDR register file.
3582  */
3583 static void initialize_reg_file(void)
3584 {
3585 	/* Initialize the register file with the correct data */
3586 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3587 	writel(0, &sdr_reg_file->debug_data_addr);
3588 	writel(0, &sdr_reg_file->cur_stage);
3589 	writel(0, &sdr_reg_file->fom);
3590 	writel(0, &sdr_reg_file->failing_stage);
3591 	writel(0, &sdr_reg_file->debug1);
3592 	writel(0, &sdr_reg_file->debug2);
3593 }
3594 
3595 /**
3596  * initialize_hps_phy() - Initialize HPS PHY
3597  *
3598  * Initialize HPS PHY.
3599  */
3600 static void initialize_hps_phy(void)
3601 {
3602 	uint32_t reg;
3603 	/*
3604 	 * Tracking also gets configured here because it's in the
3605 	 * same register.
3606 	 */
3607 	uint32_t trk_sample_count = 7500;
3608 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3609 	/*
3610 	 * Format is number of outer loops in the 16 MSB, sample
3611 	 * count in 16 LSB.
3612 	 */
3613 
3614 	reg = 0;
3615 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3616 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3617 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3618 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3619 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3620 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3621 	/*
3622 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3623 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3624 	 */
3625 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3626 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3627 		trk_sample_count);
3628 	writel(reg, &sdr_ctrl->phy_ctrl0);
3629 
3630 	reg = 0;
3631 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3632 		trk_sample_count >>
3633 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3634 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3635 		trk_long_idle_sample_count);
3636 	writel(reg, &sdr_ctrl->phy_ctrl1);
3637 
3638 	reg = 0;
3639 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3640 		trk_long_idle_sample_count >>
3641 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3642 	writel(reg, &sdr_ctrl->phy_ctrl2);
3643 }
3644 
3645 /**
3646  * initialize_tracking() - Initialize tracking
3647  *
3648  * Initialize the register file with usable initial data.
3649  */
3650 static void initialize_tracking(void)
3651 {
3652 	/*
3653 	 * Initialize the register file with the correct data.
3654 	 * Compute usable version of value in case we skip full
3655 	 * computation later.
3656 	 */
3657 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3658 	       &sdr_reg_file->dtaps_per_ptap);
3659 
3660 	/* trk_sample_count */
3661 	writel(7500, &sdr_reg_file->trk_sample_count);
3662 
3663 	/* longidle outer loop [15:0] */
3664 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3665 
3666 	/*
3667 	 * longidle sample count [31:24]
3668 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3669 	 * trcd, worst case [15:8]
3670 	 * vfifo wait [7:0]
3671 	 */
3672 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3673 	       &sdr_reg_file->delays);
3674 
3675 	/* mux delay */
3676 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3677 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3678 	       &sdr_reg_file->trk_rw_mgr_addr);
3679 
3680 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3681 	       &sdr_reg_file->trk_read_dqs_width);
3682 
3683 	/* trefi [7:0] */
3684 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3685 	       &sdr_reg_file->trk_rfsh);
3686 }
3687 
3688 int sdram_calibration_full(void)
3689 {
3690 	struct param_type my_param;
3691 	struct gbl_type my_gbl;
3692 	uint32_t pass;
3693 
3694 	memset(&my_param, 0, sizeof(my_param));
3695 	memset(&my_gbl, 0, sizeof(my_gbl));
3696 
3697 	param = &my_param;
3698 	gbl = &my_gbl;
3699 
3700 	/* Set the calibration enabled by default */
3701 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3702 	/*
3703 	 * Only sweep all groups (regardless of fail state) by default
3704 	 * Set enabled read test by default.
3705 	 */
3706 #if DISABLE_GUARANTEED_READ
3707 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3708 #endif
3709 	/* Initialize the register file */
3710 	initialize_reg_file();
3711 
3712 	/* Initialize any PHY CSR */
3713 	initialize_hps_phy();
3714 
3715 	scc_mgr_initialize();
3716 
3717 	initialize_tracking();
3718 
3719 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3720 
3721 	debug("%s:%d\n", __func__, __LINE__);
3722 	debug_cond(DLEVEL == 1,
3723 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3724 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3725 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3726 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3727 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3728 	debug_cond(DLEVEL == 1,
3729 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3730 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3731 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3732 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3733 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3734 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3735 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3736 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3737 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3738 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3739 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3740 		   IO_IO_OUT2_DELAY_MAX);
3741 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3742 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3743 
3744 	hc_initialize_rom_data();
3745 
3746 	/* update info for sims */
3747 	reg_file_set_stage(CAL_STAGE_NIL);
3748 	reg_file_set_group(0);
3749 
3750 	/*
3751 	 * Load global needed for those actions that require
3752 	 * some dynamic calibration support.
3753 	 */
3754 	dyn_calib_steps = STATIC_CALIB_STEPS;
3755 	/*
3756 	 * Load global to allow dynamic selection of delay loop settings
3757 	 * based on calibration mode.
3758 	 */
3759 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3760 		skip_delay_mask = 0xff;
3761 	else
3762 		skip_delay_mask = 0x0;
3763 
3764 	pass = run_mem_calibrate();
3765 	debug_mem_calibrate(pass);
3766 	return pass;
3767 }
3768