xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision a4bfa463e087beb8b9a54eca9648097c7e25936a)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17 
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19 	(struct socfpga_sdr_rw_load_manager *)(BASE_RW_MGR + 0x800);
20 
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22 	(struct socfpga_sdr_rw_load_jump_manager *)(BASE_RW_MGR + 0xC00);
23 
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25 	(struct socfpga_sdr_reg_file *)(BASE_REG_FILE);
26 
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28 	(struct socfpga_sdr_scc_mgr *)(BASE_SCC_MGR + 0x0E00);
29 
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31 	(struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR);
32 
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34 	(struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000);
35 
36 static struct socfpga_data_mgr *data_mgr =
37 	(struct socfpga_data_mgr *)(BASE_DATA_MGR);
38 
39 #define DELTA_D		1
40 #define MGR_SELECT_MASK		0xf8000
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static u32 sdr_get_addr(u32 *base)
87 {
88 	u32 addr = (u32)base & MGR_SELECT_MASK;
89 
90 	switch (addr) {
91 	case BASE_PHY_MGR:
92 		addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
93 			SDR_PHYGRP_PHYMGRGRP_ADDRESS;
94 		break;
95 	case BASE_RW_MGR:
96 		addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
97 		break;
98 	case BASE_DATA_MGR:
99 		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
100 		break;
101 	case BASE_SCC_MGR:
102 		addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
103 		break;
104 	case BASE_REG_FILE:
105 		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
106 		break;
107 	case BASE_MMR:
108 		addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
109 		break;
110 	default:
111 		return -1;
112 	}
113 
114 	return addr;
115 }
116 
117 static void set_failing_group_stage(uint32_t group, uint32_t stage,
118 	uint32_t substage)
119 {
120 	/*
121 	 * Only set the global stage if there was not been any other
122 	 * failing group
123 	 */
124 	if (gbl->error_stage == CAL_STAGE_NIL)	{
125 		gbl->error_substage = substage;
126 		gbl->error_stage = stage;
127 		gbl->error_group = group;
128 	}
129 }
130 
131 static void reg_file_set_group(uint32_t set_group)
132 {
133 	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
134 
135 	/* Read the current group and stage */
136 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
137 
138 	/* Clear the group */
139 	cur_stage_group &= 0x0000FFFF;
140 
141 	/* Set the group */
142 	cur_stage_group |= (set_group << 16);
143 
144 	/* Write the data back */
145 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
146 }
147 
148 static void reg_file_set_stage(uint32_t set_stage)
149 {
150 	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
151 	/* Read the current group and stage */
152 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
153 
154 	/* Clear the stage and substage */
155 	cur_stage_group &= 0xFFFF0000;
156 
157 	/* Set the stage */
158 	cur_stage_group |= (set_stage & 0x000000FF);
159 
160 	/* Write the data back */
161 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
162 }
163 
164 static void reg_file_set_sub_stage(uint32_t set_sub_stage)
165 {
166 	u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage);
167 	/* Read the current group and stage */
168 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
169 
170 	/* Clear the substage */
171 	cur_stage_group &= 0xFFFF00FF;
172 
173 	/* Set the sub stage */
174 	cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
175 
176 	/* Write the data back */
177 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
178 }
179 
180 static void initialize(void)
181 {
182 	u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
183 
184 	debug("%s:%d\n", __func__, __LINE__);
185 	/* USER calibration has control over path to memory */
186 	/*
187 	 * In Hard PHY this is a 2-bit control:
188 	 * 0: AFI Mux Select
189 	 * 1: DDIO Mux Select
190 	 */
191 	writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
192 
193 	/* USER memory clock is not stable we begin initialization  */
194 	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
195 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
196 
197 	/* USER calibration status all set to zero */
198 	addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
199 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
200 
201 	addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
202 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
203 
204 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
205 		param->read_correct_mask_vg  = ((uint32_t)1 <<
206 			(RW_MGR_MEM_DQ_PER_READ_DQS /
207 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
208 		param->write_correct_mask_vg = ((uint32_t)1 <<
209 			(RW_MGR_MEM_DQ_PER_READ_DQS /
210 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
211 		param->read_correct_mask     = ((uint32_t)1 <<
212 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
213 		param->write_correct_mask    = ((uint32_t)1 <<
214 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
215 		param->dm_correct_mask       = ((uint32_t)1 <<
216 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
217 			- 1;
218 	}
219 }
220 
221 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
222 {
223 	uint32_t odt_mask_0 = 0;
224 	uint32_t odt_mask_1 = 0;
225 	uint32_t cs_and_odt_mask;
226 	uint32_t addr;
227 
228 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
229 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
230 			/*
231 			 * 1 Rank
232 			 * Read: ODT = 0
233 			 * Write: ODT = 1
234 			 */
235 			odt_mask_0 = 0x0;
236 			odt_mask_1 = 0x1;
237 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
238 			/* 2 Ranks */
239 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
240 				/* - Dual-Slot , Single-Rank
241 				 * (1 chip-select per DIMM)
242 				 * OR
243 				 * - RDIMM, 4 total CS (2 CS per DIMM)
244 				 * means 2 DIMM
245 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
246 				 * both single rank
247 				 * with 2 CS each (special for RDIMM)
248 				 * Read: Turn on ODT on the opposite rank
249 				 * Write: Turn on ODT on all ranks
250 				 */
251 				odt_mask_0 = 0x3 & ~(1 << rank);
252 				odt_mask_1 = 0x3;
253 			} else {
254 				/*
255 				 * USER - Single-Slot , Dual-rank DIMMs
256 				 * (2 chip-selects per DIMM)
257 				 * USER Read: Turn on ODT off on all ranks
258 				 * USER Write: Turn on ODT on active rank
259 				 */
260 				odt_mask_0 = 0x0;
261 				odt_mask_1 = 0x3 & (1 << rank);
262 			}
263 		} else {
264 			/* 4 Ranks
265 			 * Read:
266 			 * ----------+-----------------------+
267 			 *           |                       |
268 			 *           |         ODT           |
269 			 * Read From +-----------------------+
270 			 *   Rank    |  3  |  2  |  1  |  0  |
271 			 * ----------+-----+-----+-----+-----+
272 			 *     0     |  0  |  1  |  0  |  0  |
273 			 *     1     |  1  |  0  |  0  |  0  |
274 			 *     2     |  0  |  0  |  0  |  1  |
275 			 *     3     |  0  |  0  |  1  |  0  |
276 			 * ----------+-----+-----+-----+-----+
277 			 *
278 			 * Write:
279 			 * ----------+-----------------------+
280 			 *           |                       |
281 			 *           |         ODT           |
282 			 * Write To  +-----------------------+
283 			 *   Rank    |  3  |  2  |  1  |  0  |
284 			 * ----------+-----+-----+-----+-----+
285 			 *     0     |  0  |  1  |  0  |  1  |
286 			 *     1     |  1  |  0  |  1  |  0  |
287 			 *     2     |  0  |  1  |  0  |  1  |
288 			 *     3     |  1  |  0  |  1  |  0  |
289 			 * ----------+-----+-----+-----+-----+
290 			 */
291 			switch (rank) {
292 			case 0:
293 				odt_mask_0 = 0x4;
294 				odt_mask_1 = 0x5;
295 				break;
296 			case 1:
297 				odt_mask_0 = 0x8;
298 				odt_mask_1 = 0xA;
299 				break;
300 			case 2:
301 				odt_mask_0 = 0x1;
302 				odt_mask_1 = 0x5;
303 				break;
304 			case 3:
305 				odt_mask_0 = 0x2;
306 				odt_mask_1 = 0xA;
307 				break;
308 			}
309 		}
310 	} else {
311 		odt_mask_0 = 0x0;
312 		odt_mask_1 = 0x0;
313 	}
314 
315 	cs_and_odt_mask =
316 		(0xFF & ~(1 << rank)) |
317 		((0xFF & odt_mask_0) << 8) |
318 		((0xFF & odt_mask_1) << 16);
319 	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
320 	writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
321 }
322 
323 static void scc_mgr_initialize(void)
324 {
325 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
326 
327 	/*
328 	 * Clear register file for HPS
329 	 * 16 (2^4) is the size of the full register file in the scc mgr:
330 	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
331 	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
332 	 */
333 	uint32_t i;
334 	for (i = 0; i < 16; i++) {
335 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
336 			   __func__, __LINE__, i);
337 		writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
338 	}
339 }
340 
341 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
342 						uint32_t delay)
343 {
344 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
345 
346 	/* Load the setting in the SCC manager */
347 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
348 }
349 
350 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
351 	uint32_t delay)
352 {
353 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
354 
355 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
356 }
357 
358 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
359 {
360 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
361 
362 	/* Load the setting in the SCC manager */
363 	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
364 }
365 
366 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
367 					       uint32_t phase)
368 {
369 	uint32_t r;
370 	uint32_t update_scan_chains;
371 	uint32_t addr;
372 
373 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
374 	     r += NUM_RANKS_PER_SHADOW_REG) {
375 		/*
376 		 * USER although the h/w doesn't support different phases per
377 		 * shadow register, for simplicity our scc manager modeling
378 		 * keeps different phase settings per shadow reg, and it's
379 		 * important for us to keep them in sync to match h/w.
380 		 * for efficiency, the scan chain update should occur only
381 		 * once to sr0.
382 		 */
383 		update_scan_chains = (r == 0) ? 1 : 0;
384 
385 		scc_mgr_set_dqs_en_phase(read_group, phase);
386 
387 		if (update_scan_chains) {
388 			addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
389 			writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
390 
391 			addr = sdr_get_addr(&sdr_scc_mgr->update);
392 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
393 		}
394 	}
395 }
396 
397 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
398 						  uint32_t phase)
399 {
400 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
401 
402 	/* Load the setting in the SCC manager */
403 	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	uint32_t r;
410 	uint32_t update_scan_chains;
411 	uint32_t addr;
412 
413 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
414 	     r += NUM_RANKS_PER_SHADOW_REG) {
415 		/*
416 		 * USER although the h/w doesn't support different phases per
417 		 * shadow register, for simplicity our scc manager modeling
418 		 * keeps different phase settings per shadow reg, and it's
419 		 * important for us to keep them in sync to match h/w.
420 		 * for efficiency, the scan chain update should occur only
421 		 * once to sr0.
422 		 */
423 		update_scan_chains = (r == 0) ? 1 : 0;
424 
425 		scc_mgr_set_dqdqs_output_phase(write_group, phase);
426 
427 		if (update_scan_chains) {
428 			addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
429 			writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
430 
431 			addr = sdr_get_addr(&sdr_scc_mgr->update);
432 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
433 		}
434 	}
435 }
436 
437 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
438 {
439 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
440 
441 	/* Load the setting in the SCC manager */
442 	writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
443 	       (read_group << 2));
444 }
445 
446 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
447 					       uint32_t delay)
448 {
449 	uint32_t r;
450 	uint32_t addr;
451 
452 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
453 		r += NUM_RANKS_PER_SHADOW_REG) {
454 		scc_mgr_set_dqs_en_delay(read_group, delay);
455 
456 		addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
457 		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
458 		/*
459 		 * In shadow register mode, the T11 settings are stored in
460 		 * registers in the core, which are updated by the DQS_ENA
461 		 * signals. Not issuing the SCC_MGR_UPD command allows us to
462 		 * save lots of rank switching overhead, by calling
463 		 * select_shadow_regs_for_update with update_scan_chains
464 		 * set to 0.
465 		 */
466 		addr = sdr_get_addr(&sdr_scc_mgr->update);
467 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
468 	}
469 	/*
470 	 * In shadow register mode, the T11 settings are stored in
471 	 * registers in the core, which are updated by the DQS_ENA
472 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
473 	 * save lots of rank switching overhead, by calling
474 	 * select_shadow_regs_for_update with update_scan_chains
475 	 * set to 0.
476 	 */
477 	addr = sdr_get_addr(&sdr_scc_mgr->update);
478 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
479 }
480 
481 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
482 {
483 	uint32_t read_group;
484 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
485 
486 	/*
487 	 * Load the setting in the SCC manager
488 	 * Although OCT affects only write data, the OCT delay is controlled
489 	 * by the DQS logic block which is instantiated once per read group.
490 	 * For protocols where a write group consists of multiple read groups,
491 	 * the setting must be set multiple times.
492 	 */
493 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
494 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
495 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
496 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
497 		writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
498 }
499 
500 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
501 				      uint32_t dq_in_group, uint32_t delay)
502 {
503 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
504 
505 	/* Load the setting in the SCC manager */
506 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
507 }
508 
509 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
510 	uint32_t dq_in_group, uint32_t delay)
511 {
512 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
513 
514 	/* Load the setting in the SCC manager */
515 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
516 }
517 
518 static void scc_mgr_set_hhp_extras(void)
519 {
520 	/*
521 	 * Load the fixed setting in the SCC manager
522 	 * bits: 0:0 = 1'b1   - dqs bypass
523 	 * bits: 1:1 = 1'b1   - dq bypass
524 	 * bits: 4:2 = 3'b001   - rfifo_mode
525 	 * bits: 6:5 = 2'b01  - rfifo clock_select
526 	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
527 	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
528 	 */
529 	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
530 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
531 
532 	writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
533 }
534 
535 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
536 					      uint32_t delay)
537 {
538 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
539 
540 	/* Load the setting in the SCC manager */
541 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
542 }
543 
544 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
545 					     uint32_t dm, uint32_t delay)
546 {
547 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
548 
549 	/* Load the setting in the SCC manager */
550 	writel(delay, SOCFPGA_SDR_ADDRESS + addr +
551 		((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
552 }
553 
554 /*
555  * USER Zero all DQS config
556  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
557  */
558 static void scc_mgr_zero_all(void)
559 {
560 	uint32_t i, r;
561 	uint32_t addr;
562 
563 	/*
564 	 * USER Zero all DQS config settings, across all groups and all
565 	 * shadow registers
566 	 */
567 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
568 	     NUM_RANKS_PER_SHADOW_REG) {
569 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
570 			/*
571 			 * The phases actually don't exist on a per-rank basis,
572 			 * but there's no harm updating them several times, so
573 			 * let's keep the code simple.
574 			 */
575 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
576 			scc_mgr_set_dqs_en_phase(i, 0);
577 			scc_mgr_set_dqs_en_delay(i, 0);
578 		}
579 
580 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
581 			scc_mgr_set_dqdqs_output_phase(i, 0);
582 			/* av/cv don't have out2 */
583 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
584 		}
585 	}
586 
587 	/* multicast to all DQS group enables */
588 	addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
589 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
590 
591 	addr = sdr_get_addr(&sdr_scc_mgr->update);
592 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
593 }
594 
595 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
596 {
597 	uint32_t addr;
598 	/* mode = 0 : Do NOT bypass - Half Rate Mode */
599 	/* mode = 1 : Bypass - Full Rate Mode */
600 
601 	/* only need to set once for all groups, pins, dq, dqs, dm */
602 	if (write_group == 0) {
603 		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
604 			   __LINE__);
605 		scc_mgr_set_hhp_extras();
606 		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
607 			  __func__, __LINE__);
608 	}
609 	/* multicast to all DQ enables */
610 	addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
611 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
612 
613 	addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
614 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
615 
616 	/* update current DQS IO enable */
617 	addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
618 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
619 
620 	/* update the DQS logic */
621 	addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
622 	writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
623 
624 	/* hit update */
625 	addr = sdr_get_addr(&sdr_scc_mgr->update);
626 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
627 }
628 
629 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
630 			       int32_t out_only)
631 {
632 	uint32_t i, r;
633 	uint32_t addr;
634 
635 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
636 		NUM_RANKS_PER_SHADOW_REG) {
637 		/* Zero all DQ config settings */
638 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
639 			scc_mgr_set_dq_out1_delay(write_group, i, 0);
640 			if (!out_only)
641 				scc_mgr_set_dq_in_delay(write_group, i, 0);
642 		}
643 
644 		/* multicast to all DQ enables */
645 		addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
646 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
647 
648 		/* Zero all DM config settings */
649 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
650 			scc_mgr_set_dm_out1_delay(write_group, i, 0);
651 		}
652 
653 		/* multicast to all DM enables */
654 		addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
655 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
656 
657 		/* zero all DQS io settings */
658 		if (!out_only)
659 			scc_mgr_set_dqs_io_in_delay(write_group, 0);
660 		/* av/cv don't have out2 */
661 		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
662 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
663 		scc_mgr_load_dqs_for_write_group(write_group);
664 
665 		/* multicast to all DQS IO enables (only 1) */
666 		addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
667 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
668 
669 		/* hit update to zero everything */
670 		addr = sdr_get_addr(&sdr_scc_mgr->update);
671 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
672 	}
673 }
674 
675 /* load up dqs config settings */
676 static void scc_mgr_load_dqs(uint32_t dqs)
677 {
678 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
679 
680 	writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
681 }
682 
683 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
684 {
685 	uint32_t read_group;
686 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
687 	/*
688 	 * Although OCT affects only write data, the OCT delay is controlled
689 	 * by the DQS logic block which is instantiated once per read group.
690 	 * For protocols where a write group consists of multiple read groups,
691 	 * the setting must be scanned multiple times.
692 	 */
693 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
694 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
695 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
696 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
697 		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
698 }
699 
700 /* load up dqs io config settings */
701 static void scc_mgr_load_dqs_io(void)
702 {
703 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
704 
705 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
706 }
707 
708 /* load up dq config settings */
709 static void scc_mgr_load_dq(uint32_t dq_in_group)
710 {
711 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
712 
713 	writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
714 }
715 
716 /* load up dm config settings */
717 static void scc_mgr_load_dm(uint32_t dm)
718 {
719 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
720 
721 	writel(dm, SOCFPGA_SDR_ADDRESS + addr);
722 }
723 
724 /*
725  * apply and load a particular input delay for the DQ pins in a group
726  * group_bgn is the index of the first dq pin (in the write group)
727  */
728 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
729 					    uint32_t group_bgn, uint32_t delay)
730 {
731 	uint32_t i, p;
732 
733 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
734 		scc_mgr_set_dq_in_delay(write_group, p, delay);
735 		scc_mgr_load_dq(p);
736 	}
737 }
738 
739 /* apply and load a particular output delay for the DQ pins in a group */
740 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
741 					      uint32_t group_bgn,
742 					      uint32_t delay1)
743 {
744 	uint32_t i, p;
745 
746 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
747 		scc_mgr_set_dq_out1_delay(write_group, i, delay1);
748 		scc_mgr_load_dq(i);
749 	}
750 }
751 
752 /* apply and load a particular output delay for the DM pins in a group */
753 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
754 					      uint32_t delay1)
755 {
756 	uint32_t i;
757 
758 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
759 		scc_mgr_set_dm_out1_delay(write_group, i, delay1);
760 		scc_mgr_load_dm(i);
761 	}
762 }
763 
764 
765 /* apply and load delay on both DQS and OCT out1 */
766 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
767 						    uint32_t delay)
768 {
769 	scc_mgr_set_dqs_out1_delay(write_group, delay);
770 	scc_mgr_load_dqs_io();
771 
772 	scc_mgr_set_oct_out1_delay(write_group, delay);
773 	scc_mgr_load_dqs_for_write_group(write_group);
774 }
775 
776 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
777 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
778 						  uint32_t group_bgn,
779 						  uint32_t delay)
780 {
781 	uint32_t i, p, new_delay;
782 
783 	/* dq shift */
784 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
785 		new_delay = READ_SCC_DQ_OUT2_DELAY;
786 		new_delay += delay;
787 
788 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
789 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
790 				   %u > %lu => %lu", __func__, __LINE__,
791 				   write_group, group_bgn, delay, i, p, new_delay,
792 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
793 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
794 			new_delay = IO_IO_OUT2_DELAY_MAX;
795 		}
796 
797 		scc_mgr_load_dq(i);
798 	}
799 
800 	/* dm shift */
801 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
802 		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
803 		new_delay += delay;
804 
805 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
806 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
807 				   %u > %lu => %lu\n",  __func__, __LINE__,
808 				   write_group, group_bgn, delay, i, new_delay,
809 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
810 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
811 			new_delay = IO_IO_OUT2_DELAY_MAX;
812 		}
813 
814 		scc_mgr_load_dm(i);
815 	}
816 
817 	/* dqs shift */
818 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
819 	new_delay += delay;
820 
821 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
822 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
823 			   " adding %u to OUT1\n", __func__, __LINE__,
824 			   write_group, group_bgn, delay, new_delay,
825 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
826 			   new_delay - IO_IO_OUT2_DELAY_MAX);
827 		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
828 					   IO_IO_OUT2_DELAY_MAX);
829 		new_delay = IO_IO_OUT2_DELAY_MAX;
830 	}
831 
832 	scc_mgr_load_dqs_io();
833 
834 	/* oct shift */
835 	new_delay = READ_SCC_OCT_OUT2_DELAY;
836 	new_delay += delay;
837 
838 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
839 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
840 			   " adding %u to OUT1\n", __func__, __LINE__,
841 			   write_group, group_bgn, delay, new_delay,
842 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
843 			   new_delay - IO_IO_OUT2_DELAY_MAX);
844 		scc_mgr_set_oct_out1_delay(write_group, new_delay -
845 					   IO_IO_OUT2_DELAY_MAX);
846 		new_delay = IO_IO_OUT2_DELAY_MAX;
847 	}
848 
849 	scc_mgr_load_dqs_for_write_group(write_group);
850 }
851 
852 /*
853  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
854  * and to all ranks
855  */
856 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
857 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
858 {
859 	uint32_t r;
860 	uint32_t addr = sdr_get_addr(&sdr_scc_mgr->update);
861 
862 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
863 		r += NUM_RANKS_PER_SHADOW_REG) {
864 		scc_mgr_apply_group_all_out_delay_add(write_group,
865 						      group_bgn, delay);
866 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
867 	}
868 }
869 
870 /* optimization used to recover some slots in ddr3 inst_rom */
871 /* could be applied to other protocols if we wanted to */
872 static void set_jump_as_return(void)
873 {
874 	uint32_t addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
875 
876 	/*
877 	 * to save space, we replace return with jump to special shared
878 	 * RETURN instruction so we set the counter to large value so that
879 	 * we always jump
880 	 */
881 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
882 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
883 	writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
884 }
885 
886 /*
887  * should always use constants as argument to ensure all computations are
888  * performed at compile time
889  */
890 static void delay_for_n_mem_clocks(const uint32_t clocks)
891 {
892 	uint32_t afi_clocks;
893 	uint8_t inner = 0;
894 	uint8_t outer = 0;
895 	uint16_t c_loop = 0;
896 	uint32_t addr;
897 
898 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
899 
900 
901 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
902 	/* scale (rounding up) to get afi clocks */
903 
904 	/*
905 	 * Note, we don't bother accounting for being off a little bit
906 	 * because of a few extra instructions in outer loops
907 	 * Note, the loops have a test at the end, and do the test before
908 	 * the decrement, and so always perform the loop
909 	 * 1 time more than the counter value
910 	 */
911 	if (afi_clocks == 0) {
912 		;
913 	} else if (afi_clocks <= 0x100) {
914 		inner = afi_clocks-1;
915 		outer = 0;
916 		c_loop = 0;
917 	} else if (afi_clocks <= 0x10000) {
918 		inner = 0xff;
919 		outer = (afi_clocks-1) >> 8;
920 		c_loop = 0;
921 	} else {
922 		inner = 0xff;
923 		outer = 0xff;
924 		c_loop = (afi_clocks-1) >> 16;
925 	}
926 
927 	/*
928 	 * rom instructions are structured as follows:
929 	 *
930 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
931 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
932 	 *                return
933 	 *
934 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
935 	 * TARGET_B is set to IDLE_LOOP2 as well
936 	 *
937 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
938 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
939 	 *
940 	 * a little confusing, but it helps save precious space in the inst_rom
941 	 * and sequencer rom and keeps the delays more accurate and reduces
942 	 * overhead
943 	 */
944 	if (afi_clocks <= 0x100) {
945 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
946 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
947 
948 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
949 		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
950 
951 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
952 		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
953 	} else {
954 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
955 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
956 
957 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
958 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
959 
960 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
961 		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
962 
963 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
964 		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
965 
966 		/* hack to get around compiler not being smart enough */
967 		if (afi_clocks <= 0x10000) {
968 			/* only need to run once */
969 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
970 			writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
971 		} else {
972 			do {
973 				addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
974 				writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
975 			} while (c_loop-- != 0);
976 		}
977 	}
978 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
979 }
980 
981 static void rw_mgr_mem_initialize(void)
982 {
983 	uint32_t r;
984 	uint32_t addr;
985 
986 	debug("%s:%d\n", __func__, __LINE__);
987 
988 	/* The reset / cke part of initialization is broadcasted to all ranks */
989 	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
990 	writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
991 
992 	/*
993 	 * Here's how you load register for a loop
994 	 * Counters are located @ 0x800
995 	 * Jump address are located @ 0xC00
996 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
997 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
998 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
999 	 * significant bits
1000 	 */
1001 
1002 	/* start with memory RESET activated */
1003 
1004 	/* tINIT = 200us */
1005 
1006 	/*
1007 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1008 	 * If a and b are the number of iteration in 2 nested loops
1009 	 * it takes the following number of cycles to complete the operation:
1010 	 * number_of_cycles = ((2 + n) * a + 2) * b
1011 	 * where n is the number of instruction in the inner loop
1012 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1013 	 * b = 6A
1014 	 */
1015 
1016 	/* Load counters */
1017 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1018 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
1019 	       SOCFPGA_SDR_ADDRESS + addr);
1020 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1021 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
1022 	       SOCFPGA_SDR_ADDRESS + addr);
1023 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1024 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
1025 	       SOCFPGA_SDR_ADDRESS + addr);
1026 
1027 	/* Load jump address */
1028 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1029 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1030 
1031 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1032 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1033 
1034 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1035 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1036 
1037 	/* Execute count instruction */
1038 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1039 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1040 
1041 	/* indicate that memory is stable */
1042 	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
1043 	writel(1, SOCFPGA_SDR_ADDRESS + addr);
1044 
1045 	/*
1046 	 * transition the RESET to high
1047 	 * Wait for 500us
1048 	 */
1049 
1050 	/*
1051 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1052 	 * If a and b are the number of iteration in 2 nested loops
1053 	 * it takes the following number of cycles to complete the operation
1054 	 * number_of_cycles = ((2 + n) * a + 2) * b
1055 	 * where n is the number of instruction in the inner loop
1056 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1057 	 * b = FF
1058 	 */
1059 
1060 	/* Load counters */
1061 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1062 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
1063 	       SOCFPGA_SDR_ADDRESS + addr);
1064 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1065 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
1066 	       SOCFPGA_SDR_ADDRESS + addr);
1067 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1068 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
1069 	       SOCFPGA_SDR_ADDRESS + addr);
1070 
1071 	/* Load jump address */
1072 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1073 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1074 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1075 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1076 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1077 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1078 
1079 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1080 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1081 
1082 	/* bring up clock enable */
1083 
1084 	/* tXRP < 250 ck cycles */
1085 	delay_for_n_mem_clocks(250);
1086 
1087 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1088 		if (param->skip_ranks[r]) {
1089 			/* request to skip the rank */
1090 			continue;
1091 		}
1092 
1093 		/* set rank */
1094 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1095 
1096 		/*
1097 		 * USER Use Mirror-ed commands for odd ranks if address
1098 		 * mirrorring is on
1099 		 */
1100 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1101 			set_jump_as_return();
1102 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1103 			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1104 			delay_for_n_mem_clocks(4);
1105 			set_jump_as_return();
1106 			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1107 			delay_for_n_mem_clocks(4);
1108 			set_jump_as_return();
1109 			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1110 			delay_for_n_mem_clocks(4);
1111 			set_jump_as_return();
1112 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1113 		} else {
1114 			set_jump_as_return();
1115 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1116 			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1117 			delay_for_n_mem_clocks(4);
1118 			set_jump_as_return();
1119 			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1120 			delay_for_n_mem_clocks(4);
1121 			set_jump_as_return();
1122 			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1123 			set_jump_as_return();
1124 			writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
1125 		}
1126 		set_jump_as_return();
1127 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1128 		writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
1129 
1130 		/* tZQinit = tDLLK = 512 ck cycles */
1131 		delay_for_n_mem_clocks(512);
1132 	}
1133 }
1134 
1135 /*
1136  * At the end of calibration we have to program the user settings in, and
1137  * USER  hand off the memory to the user.
1138  */
1139 static void rw_mgr_mem_handoff(void)
1140 {
1141 	uint32_t r;
1142 	uint32_t addr;
1143 
1144 	debug("%s:%d\n", __func__, __LINE__);
1145 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1146 		if (param->skip_ranks[r])
1147 			/* request to skip the rank */
1148 			continue;
1149 		/* set rank */
1150 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1151 
1152 		/* precharge all banks ... */
1153 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1154 		writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
1155 
1156 		/* load up MR settings specified by user */
1157 
1158 		/*
1159 		 * Use Mirror-ed commands for odd ranks if address
1160 		 * mirrorring is on
1161 		 */
1162 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1163 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1164 			set_jump_as_return();
1165 			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1166 			delay_for_n_mem_clocks(4);
1167 			set_jump_as_return();
1168 			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1169 			delay_for_n_mem_clocks(4);
1170 			set_jump_as_return();
1171 			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1172 			delay_for_n_mem_clocks(4);
1173 			set_jump_as_return();
1174 			writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1175 		} else {
1176 			set_jump_as_return();
1177 			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1178 			delay_for_n_mem_clocks(4);
1179 			set_jump_as_return();
1180 			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1181 			delay_for_n_mem_clocks(4);
1182 			set_jump_as_return();
1183 			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1184 			delay_for_n_mem_clocks(4);
1185 			set_jump_as_return();
1186 			writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
1187 		}
1188 		/*
1189 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1190 		 * other commands, but we will have plenty of NIOS cycles before
1191 		 * actual handoff so its okay.
1192 		 */
1193 	}
1194 }
1195 
1196 /*
1197  * performs a guaranteed read on the patterns we are going to use during a
1198  * read test to ensure memory works
1199  */
1200 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1201 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1202 	uint32_t all_ranks)
1203 {
1204 	uint32_t r, vg;
1205 	uint32_t correct_mask_vg;
1206 	uint32_t tmp_bit_chk;
1207 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1208 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1209 	uint32_t addr;
1210 	uint32_t base_rw_mgr;
1211 
1212 	*bit_chk = param->read_correct_mask;
1213 	correct_mask_vg = param->read_correct_mask_vg;
1214 
1215 	for (r = rank_bgn; r < rank_end; r++) {
1216 		if (param->skip_ranks[r])
1217 			/* request to skip the rank */
1218 			continue;
1219 
1220 		/* set rank */
1221 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1222 
1223 		/* Load up a constant bursts of read commands */
1224 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1225 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1226 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1227 		writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
1228 
1229 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1230 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1231 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1232 		writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
1233 
1234 		tmp_bit_chk = 0;
1235 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1236 			/* reset the fifos to get pointers to known state */
1237 
1238 			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1239 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1240 			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1241 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1242 
1243 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1244 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1245 
1246 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1247 			writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 				vg) << 2));
1250 
1251 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1252 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1253 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1254 
1255 			if (vg == 0)
1256 				break;
1257 		}
1258 		*bit_chk &= tmp_bit_chk;
1259 	}
1260 
1261 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1262 	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1263 
1264 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1266 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1267 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1268 	return *bit_chk == param->read_correct_mask;
1269 }
1270 
1271 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1272 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1273 {
1274 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1275 		num_tries, bit_chk, 1);
1276 }
1277 
1278 /* load up the patterns we are going to use during a read test */
1279 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1280 	uint32_t all_ranks)
1281 {
1282 	uint32_t r;
1283 	uint32_t addr;
1284 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1285 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1286 
1287 	debug("%s:%d\n", __func__, __LINE__);
1288 	for (r = rank_bgn; r < rank_end; r++) {
1289 		if (param->skip_ranks[r])
1290 			/* request to skip the rank */
1291 			continue;
1292 
1293 		/* set rank */
1294 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1295 
1296 		/* Load up a constant bursts */
1297 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1298 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1299 
1300 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1301 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
1302 
1303 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1304 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1305 
1306 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1307 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1308 
1309 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1310 		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1311 
1312 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1313 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1314 
1315 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
1316 		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1317 
1318 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1319 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
1320 
1321 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1322 		writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
1323 	}
1324 
1325 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1326 }
1327 
1328 /*
1329  * try a read and see if it returns correct data back. has dummy reads
1330  * inserted into the mix used to align dqs enable. has more thorough checks
1331  * than the regular read test.
1332  */
1333 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1334 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1335 	uint32_t all_groups, uint32_t all_ranks)
1336 {
1337 	uint32_t r, vg;
1338 	uint32_t correct_mask_vg;
1339 	uint32_t tmp_bit_chk;
1340 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1341 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1342 	uint32_t addr;
1343 	uint32_t base_rw_mgr;
1344 
1345 	*bit_chk = param->read_correct_mask;
1346 	correct_mask_vg = param->read_correct_mask_vg;
1347 
1348 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1349 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1350 
1351 	for (r = rank_bgn; r < rank_end; r++) {
1352 		if (param->skip_ranks[r])
1353 			/* request to skip the rank */
1354 			continue;
1355 
1356 		/* set rank */
1357 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1358 
1359 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
1360 		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1361 
1362 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1363 		writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1364 
1365 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
1366 		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1367 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1368 		writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1369 
1370 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
1371 		if (quick_read_mode)
1372 			writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
1373 			/* need at least two (1+1) reads to capture failures */
1374 		else if (all_groups)
1375 			writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
1376 		else
1377 			writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
1378 
1379 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1380 		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1381 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
1382 		if (all_groups)
1383 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1384 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1385 			       SOCFPGA_SDR_ADDRESS + addr);
1386 		else
1387 			writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
1388 
1389 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1390 		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1391 
1392 		tmp_bit_chk = 0;
1393 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1394 			/* reset the fifos to get pointers to known state */
1395 			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1396 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1397 			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1398 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1399 
1400 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1401 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1402 
1403 			addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
1404 					    RW_MGR_RUN_SINGLE_GROUP));
1405 			writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
1406 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1407 			       vg) << 2));
1408 
1409 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1410 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1411 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1412 
1413 			if (vg == 0)
1414 				break;
1415 		}
1416 		*bit_chk &= tmp_bit_chk;
1417 	}
1418 
1419 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1420 	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1421 
1422 	if (all_correct) {
1423 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1424 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1425 			   (%u == %u) => %lu", __func__, __LINE__, group,
1426 			   all_groups, *bit_chk, param->read_correct_mask,
1427 			   (long unsigned int)(*bit_chk ==
1428 			   param->read_correct_mask));
1429 		return *bit_chk == param->read_correct_mask;
1430 	} else	{
1431 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1432 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1433 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1434 			   group, all_groups, *bit_chk, (long unsigned int)0,
1435 			   (long unsigned int)(*bit_chk != 0x00));
1436 		return *bit_chk != 0x00;
1437 	}
1438 }
1439 
1440 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1441 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1442 	uint32_t all_groups)
1443 {
1444 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1445 					      bit_chk, all_groups, 1);
1446 }
1447 
1448 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1449 {
1450 	uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
1451 
1452 	writel(grp, SOCFPGA_SDR_ADDRESS + addr);
1453 	(*v)++;
1454 }
1455 
1456 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1457 {
1458 	uint32_t i;
1459 
1460 	for (i = 0; i < VFIFO_SIZE-1; i++)
1461 		rw_mgr_incr_vfifo(grp, v);
1462 }
1463 
1464 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1465 {
1466 	uint32_t  v;
1467 	uint32_t fail_cnt = 0;
1468 	uint32_t test_status;
1469 
1470 	for (v = 0; v < VFIFO_SIZE; ) {
1471 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1472 			   __func__, __LINE__, v);
1473 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1474 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1475 		if (!test_status) {
1476 			fail_cnt++;
1477 
1478 			if (fail_cnt == 2)
1479 				break;
1480 		}
1481 
1482 		/* fiddle with FIFO */
1483 		rw_mgr_incr_vfifo(grp, &v);
1484 	}
1485 
1486 	if (v >= VFIFO_SIZE) {
1487 		/* no failing read found!! Something must have gone wrong */
1488 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1489 			   __func__, __LINE__);
1490 		return 0;
1491 	} else {
1492 		return v;
1493 	}
1494 }
1495 
1496 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1497 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1498 			      uint32_t *v, uint32_t *d, uint32_t *p,
1499 			      uint32_t *i, uint32_t *max_working_cnt)
1500 {
1501 	uint32_t found_begin = 0;
1502 	uint32_t tmp_delay = 0;
1503 	uint32_t test_status;
1504 
1505 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1506 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1507 		*work_bgn = tmp_delay;
1508 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1509 
1510 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1511 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1512 				IO_DELAY_PER_OPA_TAP) {
1513 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1514 
1515 				test_status =
1516 				rw_mgr_mem_calibrate_read_test_all_ranks
1517 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1518 
1519 				if (test_status) {
1520 					*max_working_cnt = 1;
1521 					found_begin = 1;
1522 					break;
1523 				}
1524 			}
1525 
1526 			if (found_begin)
1527 				break;
1528 
1529 			if (*p > IO_DQS_EN_PHASE_MAX)
1530 				/* fiddle with FIFO */
1531 				rw_mgr_incr_vfifo(*grp, v);
1532 		}
1533 
1534 		if (found_begin)
1535 			break;
1536 	}
1537 
1538 	if (*i >= VFIFO_SIZE) {
1539 		/* cannot find working solution */
1540 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1541 			   ptap/dtap\n", __func__, __LINE__);
1542 		return 0;
1543 	} else {
1544 		return 1;
1545 	}
1546 }
1547 
1548 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1549 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1550 			     uint32_t *p, uint32_t *max_working_cnt)
1551 {
1552 	uint32_t found_begin = 0;
1553 	uint32_t tmp_delay;
1554 
1555 	/* Special case code for backing up a phase */
1556 	if (*p == 0) {
1557 		*p = IO_DQS_EN_PHASE_MAX;
1558 		rw_mgr_decr_vfifo(*grp, v);
1559 	} else {
1560 		(*p)--;
1561 	}
1562 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1563 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1564 
1565 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1566 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1567 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1568 
1569 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1570 							     PASS_ONE_BIT,
1571 							     bit_chk, 0)) {
1572 			found_begin = 1;
1573 			*work_bgn = tmp_delay;
1574 			break;
1575 		}
1576 	}
1577 
1578 	/* We have found a working dtap before the ptap found above */
1579 	if (found_begin == 1)
1580 		(*max_working_cnt)++;
1581 
1582 	/*
1583 	 * Restore VFIFO to old state before we decremented it
1584 	 * (if needed).
1585 	 */
1586 	(*p)++;
1587 	if (*p > IO_DQS_EN_PHASE_MAX) {
1588 		*p = 0;
1589 		rw_mgr_incr_vfifo(*grp, v);
1590 	}
1591 
1592 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1593 }
1594 
1595 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1596 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1597 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1598 			     uint32_t *work_end)
1599 {
1600 	uint32_t found_end = 0;
1601 
1602 	(*p)++;
1603 	*work_end += IO_DELAY_PER_OPA_TAP;
1604 	if (*p > IO_DQS_EN_PHASE_MAX) {
1605 		/* fiddle with FIFO */
1606 		*p = 0;
1607 		rw_mgr_incr_vfifo(*grp, v);
1608 	}
1609 
1610 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1611 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1612 			+= IO_DELAY_PER_OPA_TAP) {
1613 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1614 
1615 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1616 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1617 				found_end = 1;
1618 				break;
1619 			} else {
1620 				(*max_working_cnt)++;
1621 			}
1622 		}
1623 
1624 		if (found_end)
1625 			break;
1626 
1627 		if (*p > IO_DQS_EN_PHASE_MAX) {
1628 			/* fiddle with FIFO */
1629 			rw_mgr_incr_vfifo(*grp, v);
1630 			*p = 0;
1631 		}
1632 	}
1633 
1634 	if (*i >= VFIFO_SIZE + 1) {
1635 		/* cannot see edge of failing read */
1636 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1637 			   failed\n", __func__, __LINE__);
1638 		return 0;
1639 	} else {
1640 		return 1;
1641 	}
1642 }
1643 
1644 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1645 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1646 				  uint32_t *p, uint32_t *work_mid,
1647 				  uint32_t *work_end)
1648 {
1649 	int i;
1650 	int tmp_delay = 0;
1651 
1652 	*work_mid = (*work_bgn + *work_end) / 2;
1653 
1654 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1655 		   *work_bgn, *work_end, *work_mid);
1656 	/* Get the middle delay to be less than a VFIFO delay */
1657 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1658 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1659 		;
1660 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1661 	while (*work_mid > tmp_delay)
1662 		*work_mid -= tmp_delay;
1663 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1664 
1665 	tmp_delay = 0;
1666 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1667 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1668 		;
1669 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1670 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1671 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1672 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1673 		;
1674 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1675 
1676 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1677 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1678 
1679 	/*
1680 	 * push vfifo until we can successfully calibrate. We can do this
1681 	 * because the largest possible margin in 1 VFIFO cycle.
1682 	 */
1683 	for (i = 0; i < VFIFO_SIZE; i++) {
1684 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1685 			   *v);
1686 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1687 							     PASS_ONE_BIT,
1688 							     bit_chk, 0)) {
1689 			break;
1690 		}
1691 
1692 		/* fiddle with FIFO */
1693 		rw_mgr_incr_vfifo(*grp, v);
1694 	}
1695 
1696 	if (i >= VFIFO_SIZE) {
1697 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1698 			   failed\n", __func__, __LINE__);
1699 		return 0;
1700 	} else {
1701 		return 1;
1702 	}
1703 }
1704 
1705 /* find a good dqs enable to use */
1706 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1707 {
1708 	uint32_t v, d, p, i;
1709 	uint32_t max_working_cnt;
1710 	uint32_t bit_chk;
1711 	uint32_t dtaps_per_ptap;
1712 	uint32_t work_bgn, work_mid, work_end;
1713 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1714 	uint32_t addr;
1715 
1716 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1717 
1718 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1719 
1720 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1721 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1722 
1723 	/* ************************************************************** */
1724 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1725 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1726 
1727 	/* ********************************************************* */
1728 	/* * Step 1 : First push vfifo until we get a failing read * */
1729 	v = find_vfifo_read(grp, &bit_chk);
1730 
1731 	max_working_cnt = 0;
1732 
1733 	/* ******************************************************** */
1734 	/* * step 2: find first working phase, increment in ptaps * */
1735 	work_bgn = 0;
1736 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1737 				&p, &i, &max_working_cnt) == 0)
1738 		return 0;
1739 
1740 	work_end = work_bgn;
1741 
1742 	/*
1743 	 * If d is 0 then the working window covers a phase tap and
1744 	 * we can follow the old procedure otherwise, we've found the beginning,
1745 	 * and we need to increment the dtaps until we find the end.
1746 	 */
1747 	if (d == 0) {
1748 		/* ********************************************************* */
1749 		/* * step 3a: if we have room, back off by one and
1750 		increment in dtaps * */
1751 
1752 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1753 				 &max_working_cnt);
1754 
1755 		/* ********************************************************* */
1756 		/* * step 4a: go forward from working phase to non working
1757 		phase, increment in ptaps * */
1758 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1759 					 &i, &max_working_cnt, &work_end) == 0)
1760 			return 0;
1761 
1762 		/* ********************************************************* */
1763 		/* * step 5a:  back off one from last, increment in dtaps  * */
1764 
1765 		/* Special case code for backing up a phase */
1766 		if (p == 0) {
1767 			p = IO_DQS_EN_PHASE_MAX;
1768 			rw_mgr_decr_vfifo(grp, &v);
1769 		} else {
1770 			p = p - 1;
1771 		}
1772 
1773 		work_end -= IO_DELAY_PER_OPA_TAP;
1774 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1775 
1776 		/* * The actual increment of dtaps is done outside of
1777 		the if/else loop to share code */
1778 		d = 0;
1779 
1780 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1781 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1782 			   v, p);
1783 	} else {
1784 		/* ******************************************************* */
1785 		/* * step 3-5b:  Find the right edge of the window using
1786 		delay taps   * */
1787 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1788 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1789 			   v, p, d, work_bgn);
1790 
1791 		work_end = work_bgn;
1792 
1793 		/* * The actual increment of dtaps is done outside of the
1794 		if/else loop to share code */
1795 
1796 		/* Only here to counterbalance a subtract later on which is
1797 		not needed if this branch of the algorithm is taken */
1798 		max_working_cnt++;
1799 	}
1800 
1801 	/* The dtap increment to find the failing edge is done here */
1802 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1803 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1804 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1805 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1806 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1807 
1808 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1809 								      PASS_ONE_BIT,
1810 								      &bit_chk, 0)) {
1811 				break;
1812 			}
1813 	}
1814 
1815 	/* Go back to working dtap */
1816 	if (d != 0)
1817 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1818 
1819 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1820 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1821 		   v, p, d-1, work_end);
1822 
1823 	if (work_end < work_bgn) {
1824 		/* nil range */
1825 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1826 			   failed\n", __func__, __LINE__);
1827 		return 0;
1828 	}
1829 
1830 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1831 		   __func__, __LINE__, work_bgn, work_end);
1832 
1833 	/* *************************************************************** */
1834 	/*
1835 	 * * We need to calculate the number of dtaps that equal a ptap
1836 	 * * To do that we'll back up a ptap and re-find the edge of the
1837 	 * * window using dtaps
1838 	 */
1839 
1840 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1841 		   for tracking\n", __func__, __LINE__);
1842 
1843 	/* Special case code for backing up a phase */
1844 	if (p == 0) {
1845 		p = IO_DQS_EN_PHASE_MAX;
1846 		rw_mgr_decr_vfifo(grp, &v);
1847 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1848 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1849 			   v, p);
1850 	} else {
1851 		p = p - 1;
1852 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1853 			   phase only: v=%u p=%u", __func__, __LINE__,
1854 			   v, p);
1855 	}
1856 
1857 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1858 
1859 	/*
1860 	 * Increase dtap until we first see a passing read (in case the
1861 	 * window is smaller than a ptap),
1862 	 * and then a failing read to mark the edge of the window again
1863 	 */
1864 
1865 	/* Find a passing read */
1866 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1867 		   __func__, __LINE__);
1868 	found_passing_read = 0;
1869 	found_failing_read = 0;
1870 	initial_failing_dtap = d;
1871 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1872 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1873 			   read d=%u\n", __func__, __LINE__, d);
1874 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1875 
1876 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1877 							     PASS_ONE_BIT,
1878 							     &bit_chk, 0)) {
1879 			found_passing_read = 1;
1880 			break;
1881 		}
1882 	}
1883 
1884 	if (found_passing_read) {
1885 		/* Find a failing read */
1886 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1887 			   read\n", __func__, __LINE__);
1888 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1889 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1890 				   testing read d=%u\n", __func__, __LINE__, d);
1891 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1892 
1893 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1894 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1895 				found_failing_read = 1;
1896 				break;
1897 			}
1898 		}
1899 	} else {
1900 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1901 			   calculate dtaps", __func__, __LINE__);
1902 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1903 	}
1904 
1905 	/*
1906 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1907 	 * found a passing/failing read. If we didn't, it means d hit the max
1908 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1909 	 * statically calculated value.
1910 	 */
1911 	if (found_passing_read && found_failing_read)
1912 		dtaps_per_ptap = d - initial_failing_dtap;
1913 
1914 	addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
1915 	writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
1916 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1917 		   - %u = %u",  __func__, __LINE__, d,
1918 		   initial_failing_dtap, dtaps_per_ptap);
1919 
1920 	/* ******************************************** */
1921 	/* * step 6:  Find the centre of the window   * */
1922 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1923 				   &work_mid, &work_end) == 0)
1924 		return 0;
1925 
1926 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1927 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1928 		   v, p-1, d);
1929 	return 1;
1930 }
1931 
1932 /*
1933  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1934  * dq_in_delay values
1935  */
1936 static uint32_t
1937 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1938 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1939 {
1940 	uint32_t found;
1941 	uint32_t i;
1942 	uint32_t p;
1943 	uint32_t d;
1944 	uint32_t r;
1945 	uint32_t addr;
1946 
1947 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1948 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1949 		/* we start at zero, so have one less dq to devide among */
1950 
1951 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1952 	      test_bgn);
1953 
1954 	/* try different dq_in_delays since the dq path is shorter than dqs */
1955 
1956 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1957 	     r += NUM_RANKS_PER_SHADOW_REG) {
1958 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1959 			i++, p++, d += delay_step) {
1960 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1961 				   vfifo_find_dqs_", __func__, __LINE__);
1962 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1963 			       write_group, read_group);
1964 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1965 			scc_mgr_set_dq_in_delay(write_group, p, d);
1966 			scc_mgr_load_dq(p);
1967 		}
1968 		addr = sdr_get_addr(&sdr_scc_mgr->update);
1969 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
1970 	}
1971 
1972 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1973 
1974 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1975 		   en_phase_sweep_dq", __func__, __LINE__);
1976 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1977 		   chain to zero\n", write_group, read_group, found);
1978 
1979 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1980 	     r += NUM_RANKS_PER_SHADOW_REG) {
1981 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1982 			i++, p++) {
1983 			scc_mgr_set_dq_in_delay(write_group, p, 0);
1984 			scc_mgr_load_dq(p);
1985 		}
1986 		addr = sdr_get_addr(&sdr_scc_mgr->update);
1987 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
1988 	}
1989 
1990 	return found;
1991 }
1992 
1993 /* per-bit deskew DQ and center */
1994 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1995 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1996 	uint32_t use_read_test, uint32_t update_fom)
1997 {
1998 	uint32_t i, p, d, min_index;
1999 	/*
2000 	 * Store these as signed since there are comparisons with
2001 	 * signed numbers.
2002 	 */
2003 	uint32_t bit_chk;
2004 	uint32_t sticky_bit_chk;
2005 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2006 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2007 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
2008 	int32_t mid;
2009 	int32_t orig_mid_min, mid_min;
2010 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
2011 		final_dqs_en;
2012 	int32_t dq_margin, dqs_margin;
2013 	uint32_t stop;
2014 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
2015 	uint32_t addr;
2016 
2017 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
2018 
2019 	addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
2020 	start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
2021 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2022 		start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
2023 				     - IO_DQS_EN_DELAY_OFFSET));
2024 
2025 	/* set the left and right edge of each bit to an illegal value */
2026 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2027 	sticky_bit_chk = 0;
2028 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2029 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2030 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2031 	}
2032 
2033 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2034 	/* Search for the left edge of the window for each bit */
2035 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
2036 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
2037 
2038 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2039 
2040 		/*
2041 		 * Stop searching when the read test doesn't pass AND when
2042 		 * we've seen a passing read on every bit.
2043 		 */
2044 		if (use_read_test) {
2045 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2046 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2047 				&bit_chk, 0, 0);
2048 		} else {
2049 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2050 							0, PASS_ONE_BIT,
2051 							&bit_chk, 0);
2052 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2053 				(read_group - (write_group *
2054 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2055 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2056 			stop = (bit_chk == 0);
2057 		}
2058 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2059 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2060 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
2061 			   && %u", __func__, __LINE__, d,
2062 			   sticky_bit_chk,
2063 			param->read_correct_mask, stop);
2064 
2065 		if (stop == 1) {
2066 			break;
2067 		} else {
2068 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2069 				if (bit_chk & 1) {
2070 					/* Remember a passing test as the
2071 					left_edge */
2072 					left_edge[i] = d;
2073 				} else {
2074 					/* If a left edge has not been seen yet,
2075 					then a future passing test will mark
2076 					this edge as the right edge */
2077 					if (left_edge[i] ==
2078 						IO_IO_IN_DELAY_MAX + 1) {
2079 						right_edge[i] = -(d + 1);
2080 					}
2081 				}
2082 				bit_chk = bit_chk >> 1;
2083 			}
2084 		}
2085 	}
2086 
2087 	/* Reset DQ delay chains to 0 */
2088 	scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
2089 	sticky_bit_chk = 0;
2090 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
2091 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2092 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2093 			   i, left_edge[i], i, right_edge[i]);
2094 
2095 		/*
2096 		 * Check for cases where we haven't found the left edge,
2097 		 * which makes our assignment of the the right edge invalid.
2098 		 * Reset it to the illegal value.
2099 		 */
2100 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
2101 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2102 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2103 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
2104 				   right_edge[%u]: %d\n", __func__, __LINE__,
2105 				   i, right_edge[i]);
2106 		}
2107 
2108 		/*
2109 		 * Reset sticky bit (except for bits where we have seen
2110 		 * both the left and right edge).
2111 		 */
2112 		sticky_bit_chk = sticky_bit_chk << 1;
2113 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2114 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2115 			sticky_bit_chk = sticky_bit_chk | 1;
2116 		}
2117 
2118 		if (i == 0)
2119 			break;
2120 	}
2121 
2122 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2123 	/* Search for the right edge of the window for each bit */
2124 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2125 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2126 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2127 			uint32_t delay = d + start_dqs_en;
2128 			if (delay > IO_DQS_EN_DELAY_MAX)
2129 				delay = IO_DQS_EN_DELAY_MAX;
2130 			scc_mgr_set_dqs_en_delay(read_group, delay);
2131 		}
2132 		scc_mgr_load_dqs(read_group);
2133 
2134 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2135 
2136 		/*
2137 		 * Stop searching when the read test doesn't pass AND when
2138 		 * we've seen a passing read on every bit.
2139 		 */
2140 		if (use_read_test) {
2141 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2142 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2143 				&bit_chk, 0, 0);
2144 		} else {
2145 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2146 							0, PASS_ONE_BIT,
2147 							&bit_chk, 0);
2148 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2149 				(read_group - (write_group *
2150 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2151 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2152 			stop = (bit_chk == 0);
2153 		}
2154 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2155 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2156 
2157 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2158 			   %u && %u", __func__, __LINE__, d,
2159 			   sticky_bit_chk, param->read_correct_mask, stop);
2160 
2161 		if (stop == 1) {
2162 			break;
2163 		} else {
2164 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2165 				if (bit_chk & 1) {
2166 					/* Remember a passing test as
2167 					the right_edge */
2168 					right_edge[i] = d;
2169 				} else {
2170 					if (d != 0) {
2171 						/* If a right edge has not been
2172 						seen yet, then a future passing
2173 						test will mark this edge as the
2174 						left edge */
2175 						if (right_edge[i] ==
2176 						IO_IO_IN_DELAY_MAX + 1) {
2177 							left_edge[i] = -(d + 1);
2178 						}
2179 					} else {
2180 						/* d = 0 failed, but it passed
2181 						when testing the left edge,
2182 						so it must be marginal,
2183 						set it to -1 */
2184 						if (right_edge[i] ==
2185 							IO_IO_IN_DELAY_MAX + 1 &&
2186 							left_edge[i] !=
2187 							IO_IO_IN_DELAY_MAX
2188 							+ 1) {
2189 							right_edge[i] = -1;
2190 						}
2191 						/* If a right edge has not been
2192 						seen yet, then a future passing
2193 						test will mark this edge as the
2194 						left edge */
2195 						else if (right_edge[i] ==
2196 							IO_IO_IN_DELAY_MAX +
2197 							1) {
2198 							left_edge[i] = -(d + 1);
2199 						}
2200 					}
2201 				}
2202 
2203 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2204 					   d=%u]: ", __func__, __LINE__, d);
2205 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2206 					   (int)(bit_chk & 1), i, left_edge[i]);
2207 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2208 					   right_edge[i]);
2209 				bit_chk = bit_chk >> 1;
2210 			}
2211 		}
2212 	}
2213 
2214 	/* Check that all bits have a window */
2215 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2216 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2217 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2218 			   %d right_edge[%u]: %d", __func__, __LINE__,
2219 			   i, left_edge[i], i, right_edge[i]);
2220 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2221 			== IO_IO_IN_DELAY_MAX + 1)) {
2222 			/*
2223 			 * Restore delay chain settings before letting the loop
2224 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2225 			 * dqs/ck relationships.
2226 			 */
2227 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2228 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2229 				scc_mgr_set_dqs_en_delay(read_group,
2230 							 start_dqs_en);
2231 			}
2232 			scc_mgr_load_dqs(read_group);
2233 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
2234 
2235 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2236 				   find edge [%u]: %d %d", __func__, __LINE__,
2237 				   i, left_edge[i], right_edge[i]);
2238 			if (use_read_test) {
2239 				set_failing_group_stage(read_group *
2240 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2241 					CAL_STAGE_VFIFO,
2242 					CAL_SUBSTAGE_VFIFO_CENTER);
2243 			} else {
2244 				set_failing_group_stage(read_group *
2245 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2246 					CAL_STAGE_VFIFO_AFTER_WRITES,
2247 					CAL_SUBSTAGE_VFIFO_CENTER);
2248 			}
2249 			return 0;
2250 		}
2251 	}
2252 
2253 	/* Find middle of window for each DQ bit */
2254 	mid_min = left_edge[0] - right_edge[0];
2255 	min_index = 0;
2256 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2257 		mid = left_edge[i] - right_edge[i];
2258 		if (mid < mid_min) {
2259 			mid_min = mid;
2260 			min_index = i;
2261 		}
2262 	}
2263 
2264 	/*
2265 	 * -mid_min/2 represents the amount that we need to move DQS.
2266 	 * If mid_min is odd and positive we'll need to add one to
2267 	 * make sure the rounding in further calculations is correct
2268 	 * (always bias to the right), so just add 1 for all positive values.
2269 	 */
2270 	if (mid_min > 0)
2271 		mid_min++;
2272 
2273 	mid_min = mid_min / 2;
2274 
2275 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2276 		   __func__, __LINE__, mid_min, min_index);
2277 
2278 	/* Determine the amount we can change DQS (which is -mid_min) */
2279 	orig_mid_min = mid_min;
2280 	new_dqs = start_dqs - mid_min;
2281 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2282 		new_dqs = IO_DQS_IN_DELAY_MAX;
2283 	else if (new_dqs < 0)
2284 		new_dqs = 0;
2285 
2286 	mid_min = start_dqs - new_dqs;
2287 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2288 		   mid_min, new_dqs);
2289 
2290 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2291 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2292 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2293 		else if (start_dqs_en - mid_min < 0)
2294 			mid_min += start_dqs_en - mid_min;
2295 	}
2296 	new_dqs = start_dqs - mid_min;
2297 
2298 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2299 		   new_dqs=%d mid_min=%d\n", start_dqs,
2300 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2301 		   new_dqs, mid_min);
2302 
2303 	/* Initialize data for export structures */
2304 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2305 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2306 
2307 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
2308 	/* add delay to bring centre of all DQ windows to the same "level" */
2309 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2310 		/* Use values before divide by 2 to reduce round off error */
2311 		shift_dq = (left_edge[i] - right_edge[i] -
2312 			(left_edge[min_index] - right_edge[min_index]))/2  +
2313 			(orig_mid_min - mid_min);
2314 
2315 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2316 			   shift_dq[%u]=%d\n", i, shift_dq);
2317 
2318 		temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2));
2319 		temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
2320 
2321 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2322 			(int32_t)IO_IO_IN_DELAY_MAX) {
2323 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2324 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2325 			shift_dq = -(int32_t)temp_dq_in_delay1;
2326 		}
2327 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2328 			   shift_dq[%u]=%d\n", i, shift_dq);
2329 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2330 		scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2331 		scc_mgr_load_dq(p);
2332 
2333 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2334 			   left_edge[i] - shift_dq + (-mid_min),
2335 			   right_edge[i] + shift_dq - (-mid_min));
2336 		/* To determine values for export structures */
2337 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2338 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2339 
2340 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2341 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2342 	}
2343 
2344 	final_dqs = new_dqs;
2345 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2346 		final_dqs_en = start_dqs_en - mid_min;
2347 
2348 	/* Move DQS-en */
2349 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2350 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2351 		scc_mgr_load_dqs(read_group);
2352 	}
2353 
2354 	/* Move DQS */
2355 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2356 	scc_mgr_load_dqs(read_group);
2357 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2358 		   dqs_margin=%d", __func__, __LINE__,
2359 		   dq_margin, dqs_margin);
2360 
2361 	/*
2362 	 * Do not remove this line as it makes sure all of our decisions
2363 	 * have been applied. Apply the update bit.
2364 	 */
2365 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2366 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2367 
2368 	return (dq_margin >= 0) && (dqs_margin >= 0);
2369 }
2370 
2371 /*
2372  * calibrate the read valid prediction FIFO.
2373  *
2374  *  - read valid prediction will consist of finding a good DQS enable phase,
2375  * DQS enable delay, DQS input phase, and DQS input delay.
2376  *  - we also do a per-bit deskew on the DQ lines.
2377  */
2378 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2379 					   uint32_t test_bgn)
2380 {
2381 	uint32_t p, d, rank_bgn, sr;
2382 	uint32_t dtaps_per_ptap;
2383 	uint32_t tmp_delay;
2384 	uint32_t bit_chk;
2385 	uint32_t grp_calibrated;
2386 	uint32_t write_group, write_test_bgn;
2387 	uint32_t failed_substage;
2388 
2389 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2390 
2391 	/* update info for sims */
2392 	reg_file_set_stage(CAL_STAGE_VFIFO);
2393 
2394 	write_group = read_group;
2395 	write_test_bgn = test_bgn;
2396 
2397 	/* USER Determine number of delay taps for each phase tap */
2398 	dtaps_per_ptap = 0;
2399 	tmp_delay = 0;
2400 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2401 		dtaps_per_ptap++;
2402 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2403 	}
2404 	dtaps_per_ptap--;
2405 	tmp_delay = 0;
2406 
2407 	/* update info for sims */
2408 	reg_file_set_group(read_group);
2409 
2410 	grp_calibrated = 0;
2411 
2412 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2413 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2414 
2415 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2416 		/*
2417 		 * In RLDRAMX we may be messing the delay of pins in
2418 		 * the same write group but outside of the current read
2419 		 * the group, but that's ok because we haven't
2420 		 * calibrated output side yet.
2421 		 */
2422 		if (d > 0) {
2423 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2424 			(write_group, write_test_bgn, d);
2425 		}
2426 
2427 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2428 			p++) {
2429 			/* set a particular dqdqs phase */
2430 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2431 
2432 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2433 				   p=%u d=%u\n", __func__, __LINE__,
2434 				   read_group, p, d);
2435 
2436 			/*
2437 			 * Load up the patterns used by read calibration
2438 			 * using current DQDQS phase.
2439 			 */
2440 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2441 			if (!(gbl->phy_debug_mode_flags &
2442 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2443 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2444 				    (read_group, 1, &bit_chk)) {
2445 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2446 						   __func__, __LINE__);
2447 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2448 						   read_group, p, d);
2449 					break;
2450 				}
2451 			}
2452 
2453 /* case:56390 */
2454 			grp_calibrated = 1;
2455 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2456 		    (write_group, read_group, test_bgn)) {
2457 				/*
2458 				 * USER Read per-bit deskew can be done on a
2459 				 * per shadow register basis.
2460 				 */
2461 				for (rank_bgn = 0, sr = 0;
2462 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2463 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2464 					++sr) {
2465 					/*
2466 					 * Determine if this set of ranks
2467 					 * should be skipped entirely.
2468 					 */
2469 					if (!param->skip_shadow_regs[sr]) {
2470 						/*
2471 						 * If doing read after write
2472 						 * calibration, do not update
2473 						 * FOM, now - do it then.
2474 						 */
2475 					if (!rw_mgr_mem_calibrate_vfifo_center
2476 						(rank_bgn, write_group,
2477 						read_group, test_bgn, 1, 0)) {
2478 							grp_calibrated = 0;
2479 							failed_substage =
2480 						CAL_SUBSTAGE_VFIFO_CENTER;
2481 						}
2482 					}
2483 				}
2484 			} else {
2485 				grp_calibrated = 0;
2486 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2487 			}
2488 		}
2489 	}
2490 
2491 	if (grp_calibrated == 0) {
2492 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2493 					failed_substage);
2494 		return 0;
2495 	}
2496 
2497 	/*
2498 	 * Reset the delay chains back to zero if they have moved > 1
2499 	 * (check for > 1 because loop will increase d even when pass in
2500 	 * first case).
2501 	 */
2502 	if (d > 2)
2503 		scc_mgr_zero_group(write_group, write_test_bgn, 1);
2504 
2505 	return 1;
2506 }
2507 
2508 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2509 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2510 					       uint32_t test_bgn)
2511 {
2512 	uint32_t rank_bgn, sr;
2513 	uint32_t grp_calibrated;
2514 	uint32_t write_group;
2515 
2516 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2517 
2518 	/* update info for sims */
2519 
2520 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2521 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2522 
2523 	write_group = read_group;
2524 
2525 	/* update info for sims */
2526 	reg_file_set_group(read_group);
2527 
2528 	grp_calibrated = 1;
2529 	/* Read per-bit deskew can be done on a per shadow register basis */
2530 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2531 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2532 		/* Determine if this set of ranks should be skipped entirely */
2533 		if (!param->skip_shadow_regs[sr]) {
2534 		/* This is the last calibration round, update FOM here */
2535 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2536 								write_group,
2537 								read_group,
2538 								test_bgn, 0,
2539 								1)) {
2540 				grp_calibrated = 0;
2541 			}
2542 		}
2543 	}
2544 
2545 
2546 	if (grp_calibrated == 0) {
2547 		set_failing_group_stage(write_group,
2548 					CAL_STAGE_VFIFO_AFTER_WRITES,
2549 					CAL_SUBSTAGE_VFIFO_CENTER);
2550 		return 0;
2551 	}
2552 
2553 	return 1;
2554 }
2555 
2556 /* Calibrate LFIFO to find smallest read latency */
2557 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2558 {
2559 	uint32_t found_one;
2560 	uint32_t bit_chk;
2561 	uint32_t addr;
2562 
2563 	debug("%s:%d\n", __func__, __LINE__);
2564 
2565 	/* update info for sims */
2566 	reg_file_set_stage(CAL_STAGE_LFIFO);
2567 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2568 
2569 	/* Load up the patterns used by read calibration for all ranks */
2570 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2571 	found_one = 0;
2572 
2573 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2574 	do {
2575 		writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2576 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2577 			   __func__, __LINE__, gbl->curr_read_lat);
2578 
2579 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2580 							      NUM_READ_TESTS,
2581 							      PASS_ALL_BITS,
2582 							      &bit_chk, 1)) {
2583 			break;
2584 		}
2585 
2586 		found_one = 1;
2587 		/* reduce read latency and see if things are working */
2588 		/* correctly */
2589 		gbl->curr_read_lat--;
2590 	} while (gbl->curr_read_lat > 0);
2591 
2592 	/* reset the fifos to get pointers to known state */
2593 
2594 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2595 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2596 
2597 	if (found_one) {
2598 		/* add a fudge factor to the read latency that was determined */
2599 		gbl->curr_read_lat += 2;
2600 		addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2601 		writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2602 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2603 			   read_lat=%u\n", __func__, __LINE__,
2604 			   gbl->curr_read_lat);
2605 		return 1;
2606 	} else {
2607 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2608 					CAL_SUBSTAGE_READ_LATENCY);
2609 
2610 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2611 			   read_lat=%u\n", __func__, __LINE__,
2612 			   gbl->curr_read_lat);
2613 		return 0;
2614 	}
2615 }
2616 
2617 /*
2618  * issue write test command.
2619  * two variants are provided. one that just tests a write pattern and
2620  * another that tests datamask functionality.
2621  */
2622 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2623 						  uint32_t test_dm)
2624 {
2625 	uint32_t mcc_instruction;
2626 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2627 		ENABLE_SUPER_QUICK_CALIBRATION);
2628 	uint32_t rw_wl_nop_cycles;
2629 	uint32_t addr;
2630 
2631 	/*
2632 	 * Set counter and jump addresses for the right
2633 	 * number of NOP cycles.
2634 	 * The number of supported NOP cycles can range from -1 to infinity
2635 	 * Three different cases are handled:
2636 	 *
2637 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2638 	 *    mechanism will be used to insert the right number of NOPs
2639 	 *
2640 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2641 	 *    issuing the write command will jump straight to the
2642 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2643 	 *    data (for RLD), skipping
2644 	 *    the NOP micro-instruction all together
2645 	 *
2646 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2647 	 *    turned on in the same micro-instruction that issues the write
2648 	 *    command. Then we need
2649 	 *    to directly jump to the micro-instruction that sends out the data
2650 	 *
2651 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2652 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2653 	 *       write-read operations.
2654 	 *       one counter left to issue this command in "multiple-group" mode
2655 	 */
2656 
2657 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2658 
2659 	if (rw_wl_nop_cycles == -1) {
2660 		/*
2661 		 * CNTR 2 - We want to execute the special write operation that
2662 		 * turns on DQS right away and then skip directly to the
2663 		 * instruction that sends out the data. We set the counter to a
2664 		 * large number so that the jump is always taken.
2665 		 */
2666 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2667 		writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2668 
2669 		/* CNTR 3 - Not used */
2670 		if (test_dm) {
2671 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2672 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2673 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2674 			       SOCFPGA_SDR_ADDRESS + addr);
2675 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2676 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2677 			       SOCFPGA_SDR_ADDRESS + addr);
2678 		} else {
2679 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2680 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2681 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr);
2682 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2683 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2684 		}
2685 	} else if (rw_wl_nop_cycles == 0) {
2686 		/*
2687 		 * CNTR 2 - We want to skip the NOP operation and go straight
2688 		 * to the DQS enable instruction. We set the counter to a large
2689 		 * number so that the jump is always taken.
2690 		 */
2691 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2692 		writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2693 
2694 		/* CNTR 3 - Not used */
2695 		if (test_dm) {
2696 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2697 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2698 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2699 			       SOCFPGA_SDR_ADDRESS + addr);
2700 		} else {
2701 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2702 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2703 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr);
2704 		}
2705 	} else {
2706 		/*
2707 		 * CNTR 2 - In this case we want to execute the next instruction
2708 		 * and NOT take the jump. So we set the counter to 0. The jump
2709 		 * address doesn't count.
2710 		 */
2711 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2);
2712 		writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2713 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2714 		writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2715 
2716 		/*
2717 		 * CNTR 3 - Set the nop counter to the number of cycles we
2718 		 * need to loop for, minus 1.
2719 		 */
2720 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3);
2721 		writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr);
2722 		if (test_dm) {
2723 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2724 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2725 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2726 		} else {
2727 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2728 			addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2729 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2730 		}
2731 	}
2732 
2733 	addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
2734 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2735 
2736 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
2737 	if (quick_write_mode)
2738 		writel(0x08, SOCFPGA_SDR_ADDRESS + addr);
2739 	else
2740 		writel(0x40, SOCFPGA_SDR_ADDRESS + addr);
2741 
2742 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
2743 	writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr);
2744 
2745 	/*
2746 	 * CNTR 1 - This is used to ensure enough time elapses
2747 	 * for read data to come back.
2748 	 */
2749 	addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
2750 	writel(0x30, SOCFPGA_SDR_ADDRESS + addr);
2751 
2752 	addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2753 	if (test_dm) {
2754 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2755 	} else {
2756 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2757 	}
2758 
2759 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
2760 	writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
2761 }
2762 
2763 /* Test writes, can check for a single bit pass or multiple bit pass */
2764 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2765 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2766 	uint32_t *bit_chk, uint32_t all_ranks)
2767 {
2768 	uint32_t addr;
2769 	uint32_t r;
2770 	uint32_t correct_mask_vg;
2771 	uint32_t tmp_bit_chk;
2772 	uint32_t vg;
2773 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2774 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2775 	uint32_t addr_rw_mgr;
2776 	uint32_t base_rw_mgr;
2777 
2778 	*bit_chk = param->write_correct_mask;
2779 	correct_mask_vg = param->write_correct_mask_vg;
2780 
2781 	for (r = rank_bgn; r < rank_end; r++) {
2782 		if (param->skip_ranks[r]) {
2783 			/* request to skip the rank */
2784 			continue;
2785 		}
2786 
2787 		/* set rank */
2788 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2789 
2790 		tmp_bit_chk = 0;
2791 		addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2792 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2793 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2794 			/* reset the fifos to get pointers to known state */
2795 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
2796 
2797 			tmp_bit_chk = tmp_bit_chk <<
2798 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2799 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2800 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2801 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2802 				use_dm);
2803 
2804 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr);
2805 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2806 			if (vg == 0)
2807 				break;
2808 		}
2809 		*bit_chk &= tmp_bit_chk;
2810 	}
2811 
2812 	if (all_correct) {
2813 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2814 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2815 			   %u => %lu", write_group, use_dm,
2816 			   *bit_chk, param->write_correct_mask,
2817 			   (long unsigned int)(*bit_chk ==
2818 			   param->write_correct_mask));
2819 		return *bit_chk == param->write_correct_mask;
2820 	} else {
2821 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2822 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2823 		       write_group, use_dm, *bit_chk);
2824 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2825 			(long unsigned int)(*bit_chk != 0));
2826 		return *bit_chk != 0x00;
2827 	}
2828 }
2829 
2830 /*
2831  * center all windows. do per-bit-deskew to possibly increase size of
2832  * certain windows.
2833  */
2834 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2835 	uint32_t write_group, uint32_t test_bgn)
2836 {
2837 	uint32_t i, p, min_index;
2838 	int32_t d;
2839 	/*
2840 	 * Store these as signed since there are comparisons with
2841 	 * signed numbers.
2842 	 */
2843 	uint32_t bit_chk;
2844 	uint32_t sticky_bit_chk;
2845 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2846 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2847 	int32_t mid;
2848 	int32_t mid_min, orig_mid_min;
2849 	int32_t new_dqs, start_dqs, shift_dq;
2850 	int32_t dq_margin, dqs_margin, dm_margin;
2851 	uint32_t stop;
2852 	uint32_t temp_dq_out1_delay;
2853 	uint32_t addr;
2854 
2855 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2856 
2857 	dm_margin = 0;
2858 
2859 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
2860 	start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr +
2861 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2862 
2863 	/* per-bit deskew */
2864 
2865 	/*
2866 	 * set the left and right edge of each bit to an illegal value
2867 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2868 	 */
2869 	sticky_bit_chk = 0;
2870 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2871 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2872 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2873 	}
2874 
2875 	/* Search for the left edge of the window for each bit */
2876 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2877 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2878 		scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2879 
2880 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2881 
2882 		/*
2883 		 * Stop searching when the read test doesn't pass AND when
2884 		 * we've seen a passing read on every bit.
2885 		 */
2886 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2887 			0, PASS_ONE_BIT, &bit_chk, 0);
2888 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2889 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2890 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2891 			   == %u && %u [bit_chk= %u ]\n",
2892 			d, sticky_bit_chk, param->write_correct_mask,
2893 			stop, bit_chk);
2894 
2895 		if (stop == 1) {
2896 			break;
2897 		} else {
2898 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2899 				if (bit_chk & 1) {
2900 					/*
2901 					 * Remember a passing test as the
2902 					 * left_edge.
2903 					 */
2904 					left_edge[i] = d;
2905 				} else {
2906 					/*
2907 					 * If a left edge has not been seen
2908 					 * yet, then a future passing test will
2909 					 * mark this edge as the right edge.
2910 					 */
2911 					if (left_edge[i] ==
2912 						IO_IO_OUT1_DELAY_MAX + 1) {
2913 						right_edge[i] = -(d + 1);
2914 					}
2915 				}
2916 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2917 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2918 					   (int)(bit_chk & 1), i, left_edge[i]);
2919 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2920 				       right_edge[i]);
2921 				bit_chk = bit_chk >> 1;
2922 			}
2923 		}
2924 	}
2925 
2926 	/* Reset DQ delay chains to 0 */
2927 	scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2928 	sticky_bit_chk = 0;
2929 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2930 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2931 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2932 			   i, left_edge[i], i, right_edge[i]);
2933 
2934 		/*
2935 		 * Check for cases where we haven't found the left edge,
2936 		 * which makes our assignment of the the right edge invalid.
2937 		 * Reset it to the illegal value.
2938 		 */
2939 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2940 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2941 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2942 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2943 				   right_edge[%u]: %d\n", __func__, __LINE__,
2944 				   i, right_edge[i]);
2945 		}
2946 
2947 		/*
2948 		 * Reset sticky bit (except for bits where we have
2949 		 * seen the left edge).
2950 		 */
2951 		sticky_bit_chk = sticky_bit_chk << 1;
2952 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2953 			sticky_bit_chk = sticky_bit_chk | 1;
2954 
2955 		if (i == 0)
2956 			break;
2957 	}
2958 
2959 	/* Search for the right edge of the window for each bit */
2960 	addr = sdr_get_addr(&sdr_scc_mgr->update);
2961 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2962 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2963 							d + start_dqs);
2964 
2965 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2966 
2967 		/*
2968 		 * Stop searching when the read test doesn't pass AND when
2969 		 * we've seen a passing read on every bit.
2970 		 */
2971 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2972 			0, PASS_ONE_BIT, &bit_chk, 0);
2973 
2974 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2975 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2976 
2977 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2978 			   %u && %u\n", d, sticky_bit_chk,
2979 			   param->write_correct_mask, stop);
2980 
2981 		if (stop == 1) {
2982 			if (d == 0) {
2983 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2984 					i++) {
2985 					/* d = 0 failed, but it passed when
2986 					testing the left edge, so it must be
2987 					marginal, set it to -1 */
2988 					if (right_edge[i] ==
2989 						IO_IO_OUT1_DELAY_MAX + 1 &&
2990 						left_edge[i] !=
2991 						IO_IO_OUT1_DELAY_MAX + 1) {
2992 						right_edge[i] = -1;
2993 					}
2994 				}
2995 			}
2996 			break;
2997 		} else {
2998 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2999 				if (bit_chk & 1) {
3000 					/*
3001 					 * Remember a passing test as
3002 					 * the right_edge.
3003 					 */
3004 					right_edge[i] = d;
3005 				} else {
3006 					if (d != 0) {
3007 						/*
3008 						 * If a right edge has not
3009 						 * been seen yet, then a future
3010 						 * passing test will mark this
3011 						 * edge as the left edge.
3012 						 */
3013 						if (right_edge[i] ==
3014 						    IO_IO_OUT1_DELAY_MAX + 1)
3015 							left_edge[i] = -(d + 1);
3016 					} else {
3017 						/*
3018 						 * d = 0 failed, but it passed
3019 						 * when testing the left edge,
3020 						 * so it must be marginal, set
3021 						 * it to -1.
3022 						 */
3023 						if (right_edge[i] ==
3024 						    IO_IO_OUT1_DELAY_MAX + 1 &&
3025 						    left_edge[i] !=
3026 						    IO_IO_OUT1_DELAY_MAX + 1)
3027 							right_edge[i] = -1;
3028 						/*
3029 						 * If a right edge has not been
3030 						 * seen yet, then a future
3031 						 * passing test will mark this
3032 						 * edge as the left edge.
3033 						 */
3034 						else if (right_edge[i] ==
3035 							IO_IO_OUT1_DELAY_MAX +
3036 							1)
3037 							left_edge[i] = -(d + 1);
3038 					}
3039 				}
3040 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
3041 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
3042 					   (int)(bit_chk & 1), i, left_edge[i]);
3043 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
3044 					   right_edge[i]);
3045 				bit_chk = bit_chk >> 1;
3046 			}
3047 		}
3048 	}
3049 
3050 	/* Check that all bits have a window */
3051 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3052 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
3053 			   %d right_edge[%u]: %d", __func__, __LINE__,
3054 			   i, left_edge[i], i, right_edge[i]);
3055 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
3056 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
3057 			set_failing_group_stage(test_bgn + i,
3058 						CAL_STAGE_WRITES,
3059 						CAL_SUBSTAGE_WRITES_CENTER);
3060 			return 0;
3061 		}
3062 	}
3063 
3064 	/* Find middle of window for each DQ bit */
3065 	mid_min = left_edge[0] - right_edge[0];
3066 	min_index = 0;
3067 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3068 		mid = left_edge[i] - right_edge[i];
3069 		if (mid < mid_min) {
3070 			mid_min = mid;
3071 			min_index = i;
3072 		}
3073 	}
3074 
3075 	/*
3076 	 * -mid_min/2 represents the amount that we need to move DQS.
3077 	 * If mid_min is odd and positive we'll need to add one to
3078 	 * make sure the rounding in further calculations is correct
3079 	 * (always bias to the right), so just add 1 for all positive values.
3080 	 */
3081 	if (mid_min > 0)
3082 		mid_min++;
3083 	mid_min = mid_min / 2;
3084 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
3085 		   __LINE__, mid_min);
3086 
3087 	/* Determine the amount we can change DQS (which is -mid_min) */
3088 	orig_mid_min = mid_min;
3089 	new_dqs = start_dqs;
3090 	mid_min = 0;
3091 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
3092 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
3093 	/* Initialize data for export structures */
3094 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
3095 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
3096 
3097 	/* add delay to bring centre of all DQ windows to the same "level" */
3098 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
3099 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
3100 		/* Use values before divide by 2 to reduce round off error */
3101 		shift_dq = (left_edge[i] - right_edge[i] -
3102 			(left_edge[min_index] - right_edge[min_index]))/2  +
3103 		(orig_mid_min - mid_min);
3104 
3105 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
3106 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
3107 
3108 		temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3109 		if (shift_dq + (int32_t)temp_dq_out1_delay >
3110 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
3111 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
3112 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
3113 			shift_dq = -(int32_t)temp_dq_out1_delay;
3114 		}
3115 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3116 			   i, shift_dq);
3117 		scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
3118 					  shift_dq);
3119 		scc_mgr_load_dq(i);
3120 
3121 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3122 			   left_edge[i] - shift_dq + (-mid_min),
3123 			   right_edge[i] + shift_dq - (-mid_min));
3124 		/* To determine values for export structures */
3125 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3126 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3127 
3128 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3129 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3130 	}
3131 
3132 	/* Move DQS */
3133 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3134 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3135 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3136 
3137 	/* Centre DM */
3138 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3139 
3140 	/*
3141 	 * set the left and right edge of each bit to an illegal value,
3142 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3143 	 */
3144 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3145 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3146 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3147 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3148 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3149 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3150 	int32_t win_best = 0;
3151 
3152 	/* Search for the/part of the window with DM shift */
3153 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3154 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3155 		scc_mgr_apply_group_dm_out1_delay(write_group, d);
3156 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3157 
3158 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3159 						    PASS_ALL_BITS, &bit_chk,
3160 						    0)) {
3161 			/* USE Set current end of the window */
3162 			end_curr = -d;
3163 			/*
3164 			 * If a starting edge of our window has not been seen
3165 			 * this is our current start of the DM window.
3166 			 */
3167 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3168 				bgn_curr = -d;
3169 
3170 			/*
3171 			 * If current window is bigger than best seen.
3172 			 * Set best seen to be current window.
3173 			 */
3174 			if ((end_curr-bgn_curr+1) > win_best) {
3175 				win_best = end_curr-bgn_curr+1;
3176 				bgn_best = bgn_curr;
3177 				end_best = end_curr;
3178 			}
3179 		} else {
3180 			/* We just saw a failing test. Reset temp edge */
3181 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3182 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3183 			}
3184 		}
3185 
3186 
3187 	/* Reset DM delay chains to 0 */
3188 	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3189 
3190 	/*
3191 	 * Check to see if the current window nudges up aganist 0 delay.
3192 	 * If so we need to continue the search by shifting DQS otherwise DQS
3193 	 * search begins as a new search. */
3194 	if (end_curr != 0) {
3195 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3196 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3197 	}
3198 
3199 	/* Search for the/part of the window with DQS shifts */
3200 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3201 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3202 		/*
3203 		 * Note: This only shifts DQS, so are we limiting ourselve to
3204 		 * width of DQ unnecessarily.
3205 		 */
3206 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3207 							d + new_dqs);
3208 
3209 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3210 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3211 						    PASS_ALL_BITS, &bit_chk,
3212 						    0)) {
3213 			/* USE Set current end of the window */
3214 			end_curr = d;
3215 			/*
3216 			 * If a beginning edge of our window has not been seen
3217 			 * this is our current begin of the DM window.
3218 			 */
3219 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3220 				bgn_curr = d;
3221 
3222 			/*
3223 			 * If current window is bigger than best seen. Set best
3224 			 * seen to be current window.
3225 			 */
3226 			if ((end_curr-bgn_curr+1) > win_best) {
3227 				win_best = end_curr-bgn_curr+1;
3228 				bgn_best = bgn_curr;
3229 				end_best = end_curr;
3230 			}
3231 		} else {
3232 			/* We just saw a failing test. Reset temp edge */
3233 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3234 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3235 
3236 			/* Early exit optimization: if ther remaining delay
3237 			chain space is less than already seen largest window
3238 			we can exit */
3239 			if ((win_best-1) >
3240 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3241 					break;
3242 				}
3243 			}
3244 		}
3245 
3246 	/* assign left and right edge for cal and reporting; */
3247 	left_edge[0] = -1*bgn_best;
3248 	right_edge[0] = end_best;
3249 
3250 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3251 		   __LINE__, left_edge[0], right_edge[0]);
3252 
3253 	/* Move DQS (back to orig) */
3254 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3255 
3256 	/* Move DM */
3257 
3258 	/* Find middle of window for the DM bit */
3259 	mid = (left_edge[0] - right_edge[0]) / 2;
3260 
3261 	/* only move right, since we are not moving DQS/DQ */
3262 	if (mid < 0)
3263 		mid = 0;
3264 
3265 	/* dm_marign should fail if we never find a window */
3266 	if (win_best == 0)
3267 		dm_margin = -1;
3268 	else
3269 		dm_margin = left_edge[0] - mid;
3270 
3271 	scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3272 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3273 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3274 
3275 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3276 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3277 		   right_edge[0], mid, dm_margin);
3278 	/* Export values */
3279 	gbl->fom_out += dq_margin + dqs_margin;
3280 
3281 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3282 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3283 		   dq_margin, dqs_margin, dm_margin);
3284 
3285 	/*
3286 	 * Do not remove this line as it makes sure all of our
3287 	 * decisions have been applied.
3288 	 */
3289 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3290 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3291 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3292 }
3293 
3294 /* calibrate the write operations */
3295 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3296 	uint32_t test_bgn)
3297 {
3298 	/* update info for sims */
3299 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3300 
3301 	reg_file_set_stage(CAL_STAGE_WRITES);
3302 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3303 
3304 	reg_file_set_group(g);
3305 
3306 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3307 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3308 					CAL_SUBSTAGE_WRITES_CENTER);
3309 		return 0;
3310 	}
3311 
3312 	return 1;
3313 }
3314 
3315 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3316 static void mem_precharge_and_activate(void)
3317 {
3318 	uint32_t r;
3319 	uint32_t addr;
3320 
3321 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3322 		if (param->skip_ranks[r]) {
3323 			/* request to skip the rank */
3324 			continue;
3325 		}
3326 
3327 		/* set rank */
3328 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3329 
3330 		/* precharge all banks ... */
3331 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3332 		writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
3333 
3334 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0);
3335 		writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3336 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3337 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
3338 
3339 		addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1);
3340 		writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3341 		addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3342 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
3343 
3344 		/* activate rows */
3345 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3346 		writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr);
3347 	}
3348 }
3349 
3350 /* Configure various memory related parameters. */
3351 static void mem_config(void)
3352 {
3353 	uint32_t rlat, wlat;
3354 	uint32_t rw_wl_nop_cycles;
3355 	uint32_t max_latency;
3356 	uint32_t addr;
3357 
3358 	debug("%s:%d\n", __func__, __LINE__);
3359 	/* read in write and read latency */
3360 	addr = sdr_get_addr(&data_mgr->t_wl_add);
3361 	wlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3362 
3363 	addr = sdr_get_addr(&data_mgr->mem_t_add);
3364 	wlat += readl(SOCFPGA_SDR_ADDRESS + addr);
3365 	/* WL for hard phy does not include additive latency */
3366 
3367 	/*
3368 	 * add addtional write latency to offset the address/command extra
3369 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3370 	 * by one mem clock cycle. Only do this for DDR3
3371 	 */
3372 	wlat = wlat + 1;
3373 
3374 	addr = sdr_get_addr(&data_mgr->t_rl_add);
3375 	rlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3376 
3377 	rw_wl_nop_cycles = wlat - 2;
3378 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3379 
3380 	/*
3381 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3382 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3383 	 */
3384 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3385 	/* configure for a burst length of 8 */
3386 
3387 	/* write latency */
3388 	/* Adjust Write Latency for Hard PHY */
3389 	wlat = wlat + 1;
3390 
3391 	/* set a pretty high read latency initially */
3392 	gbl->curr_read_lat = rlat + 16;
3393 
3394 	if (gbl->curr_read_lat > max_latency)
3395 		gbl->curr_read_lat = max_latency;
3396 
3397 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3398 	writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3399 
3400 	/* advertise write latency */
3401 	gbl->curr_write_lat = wlat;
3402 	addr = sdr_get_addr(&phy_mgr_cfg->afi_wlat);
3403 	writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr);
3404 
3405 	/* initialize bit slips */
3406 	mem_precharge_and_activate();
3407 }
3408 
3409 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3410 static void mem_skip_calibrate(void)
3411 {
3412 	uint32_t vfifo_offset;
3413 	uint32_t i, j, r;
3414 	uint32_t addr;
3415 
3416 	debug("%s:%d\n", __func__, __LINE__);
3417 	/* Need to update every shadow register set used by the interface */
3418 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3419 		r += NUM_RANKS_PER_SHADOW_REG) {
3420 		/*
3421 		 * Set output phase alignment settings appropriate for
3422 		 * skip calibration.
3423 		 */
3424 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3425 			scc_mgr_set_dqs_en_phase(i, 0);
3426 #if IO_DLL_CHAIN_LENGTH == 6
3427 			scc_mgr_set_dqdqs_output_phase(i, 6);
3428 #else
3429 			scc_mgr_set_dqdqs_output_phase(i, 7);
3430 #endif
3431 			/*
3432 			 * Case:33398
3433 			 *
3434 			 * Write data arrives to the I/O two cycles before write
3435 			 * latency is reached (720 deg).
3436 			 *   -> due to bit-slip in a/c bus
3437 			 *   -> to allow board skew where dqs is longer than ck
3438 			 *      -> how often can this happen!?
3439 			 *      -> can claim back some ptaps for high freq
3440 			 *       support if we can relax this, but i digress...
3441 			 *
3442 			 * The write_clk leads mem_ck by 90 deg
3443 			 * The minimum ptap of the OPA is 180 deg
3444 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3445 			 * The write_clk is always delayed by 2 ptaps
3446 			 *
3447 			 * Hence, to make DQS aligned to CK, we need to delay
3448 			 * DQS by:
3449 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3450 			 *
3451 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3452 			 * gives us the number of ptaps, which simplies to:
3453 			 *
3454 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3455 			 */
3456 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3457 				IO_DLL_CHAIN_LENGTH - 2));
3458 		}
3459 		addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena);
3460 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3461 		addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena);
3462 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3463 
3464 		addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3465 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3466 			writel(i, SOCFPGA_SDR_ADDRESS + addr);
3467 		}
3468 		addr = sdr_get_addr(&sdr_scc_mgr->dq_ena);
3469 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3470 		addr = sdr_get_addr(&sdr_scc_mgr->dm_ena);
3471 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3472 		addr = sdr_get_addr(&sdr_scc_mgr->update);
3473 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3474 	}
3475 
3476 	/* Compensate for simulation model behaviour */
3477 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3478 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3479 		scc_mgr_load_dqs(i);
3480 	}
3481 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3482 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3483 
3484 	/*
3485 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3486 	 * in sequencer.
3487 	 */
3488 	vfifo_offset = CALIB_VFIFO_OFFSET;
3489 	addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
3490 	for (j = 0; j < vfifo_offset; j++) {
3491 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3492 	}
3493 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3494 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3495 
3496 	/*
3497 	 * For ACV with hard lfifo, we get the skip-cal setting from
3498 	 * generation-time constant.
3499 	 */
3500 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3501 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3502 	writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3503 }
3504 
3505 /* Memory calibration entry point */
3506 static uint32_t mem_calibrate(void)
3507 {
3508 	uint32_t i;
3509 	uint32_t rank_bgn, sr;
3510 	uint32_t write_group, write_test_bgn;
3511 	uint32_t read_group, read_test_bgn;
3512 	uint32_t run_groups, current_run;
3513 	uint32_t failing_groups = 0;
3514 	uint32_t group_failed = 0;
3515 	uint32_t sr_failed = 0;
3516 	uint32_t addr;
3517 
3518 	debug("%s:%d\n", __func__, __LINE__);
3519 	/* Initialize the data settings */
3520 
3521 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3522 	gbl->error_stage = CAL_STAGE_NIL;
3523 	gbl->error_group = 0xff;
3524 	gbl->fom_in = 0;
3525 	gbl->fom_out = 0;
3526 
3527 	mem_config();
3528 
3529 	uint32_t bypass_mode = 0x1;
3530 	addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3531 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3532 		writel(i, SOCFPGA_SDR_ADDRESS + addr);
3533 		scc_set_bypass_mode(i, bypass_mode);
3534 	}
3535 
3536 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3537 		/*
3538 		 * Set VFIFO and LFIFO to instant-on settings in skip
3539 		 * calibration mode.
3540 		 */
3541 		mem_skip_calibrate();
3542 	} else {
3543 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3544 			/*
3545 			 * Zero all delay chain/phase settings for all
3546 			 * groups and all shadow register sets.
3547 			 */
3548 			scc_mgr_zero_all();
3549 
3550 			run_groups = ~param->skip_groups;
3551 
3552 			for (write_group = 0, write_test_bgn = 0; write_group
3553 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3554 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3555 				/* Initialized the group failure */
3556 				group_failed = 0;
3557 
3558 				current_run = run_groups & ((1 <<
3559 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3560 				run_groups = run_groups >>
3561 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3562 
3563 				if (current_run == 0)
3564 					continue;
3565 
3566 				addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3567 				writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
3568 				scc_mgr_zero_group(write_group, write_test_bgn,
3569 						   0);
3570 
3571 				for (read_group = write_group *
3572 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3573 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3574 					read_test_bgn = 0;
3575 					read_group < (write_group + 1) *
3576 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3577 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3578 					group_failed == 0;
3579 					read_group++, read_test_bgn +=
3580 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3581 					/* Calibrate the VFIFO */
3582 					if (!((STATIC_CALIB_STEPS) &
3583 						CALIB_SKIP_VFIFO)) {
3584 						if (!rw_mgr_mem_calibrate_vfifo
3585 							(read_group,
3586 							read_test_bgn)) {
3587 							group_failed = 1;
3588 
3589 							if (!(gbl->
3590 							phy_debug_mode_flags &
3591 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3592 								return 0;
3593 							}
3594 						}
3595 					}
3596 				}
3597 
3598 				/* Calibrate the output side */
3599 				if (group_failed == 0)	{
3600 					for (rank_bgn = 0, sr = 0; rank_bgn
3601 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3602 						rank_bgn +=
3603 						NUM_RANKS_PER_SHADOW_REG,
3604 						++sr) {
3605 						sr_failed = 0;
3606 						if (!((STATIC_CALIB_STEPS) &
3607 						CALIB_SKIP_WRITES)) {
3608 							if ((STATIC_CALIB_STEPS)
3609 						& CALIB_SKIP_DELAY_SWEEPS) {
3610 						/* not needed in quick mode! */
3611 							} else {
3612 						/*
3613 						 * Determine if this set of
3614 						 * ranks should be skipped
3615 						 * entirely.
3616 						 */
3617 					if (!param->skip_shadow_regs[sr]) {
3618 						if (!rw_mgr_mem_calibrate_writes
3619 						(rank_bgn, write_group,
3620 						write_test_bgn)) {
3621 							sr_failed = 1;
3622 							if (!(gbl->
3623 							phy_debug_mode_flags &
3624 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3625 								return 0;
3626 									}
3627 									}
3628 								}
3629 							}
3630 						}
3631 						if (sr_failed != 0)
3632 							group_failed = 1;
3633 					}
3634 				}
3635 
3636 				if (group_failed == 0) {
3637 					for (read_group = write_group *
3638 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3639 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3640 					read_test_bgn = 0;
3641 						read_group < (write_group + 1)
3642 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3643 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3644 						group_failed == 0;
3645 						read_group++, read_test_bgn +=
3646 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3647 						if (!((STATIC_CALIB_STEPS) &
3648 							CALIB_SKIP_WRITES)) {
3649 					if (!rw_mgr_mem_calibrate_vfifo_end
3650 						(read_group, read_test_bgn)) {
3651 							group_failed = 1;
3652 
3653 						if (!(gbl->phy_debug_mode_flags
3654 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3655 								return 0;
3656 								}
3657 							}
3658 						}
3659 					}
3660 				}
3661 
3662 				if (group_failed != 0)
3663 					failing_groups++;
3664 			}
3665 
3666 			/*
3667 			 * USER If there are any failing groups then report
3668 			 * the failure.
3669 			 */
3670 			if (failing_groups != 0)
3671 				return 0;
3672 
3673 			/* Calibrate the LFIFO */
3674 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3675 				/*
3676 				 * If we're skipping groups as part of debug,
3677 				 * don't calibrate LFIFO.
3678 				 */
3679 				if (param->skip_groups == 0) {
3680 					if (!rw_mgr_mem_calibrate_lfifo())
3681 						return 0;
3682 				}
3683 			}
3684 		}
3685 	}
3686 
3687 	/*
3688 	 * Do not remove this line as it makes sure all of our decisions
3689 	 * have been applied.
3690 	 */
3691 	addr = sdr_get_addr(&sdr_scc_mgr->update);
3692 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3693 	return 1;
3694 }
3695 
3696 static uint32_t run_mem_calibrate(void)
3697 {
3698 	uint32_t pass;
3699 	uint32_t debug_info;
3700 	uint32_t addr;
3701 
3702 	debug("%s:%d\n", __func__, __LINE__);
3703 
3704 	/* Reset pass/fail status shown on afi_cal_success/fail */
3705 	addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3706 	writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr);
3707 
3708 	addr = sdr_get_addr((u32 *)BASE_MMR);
3709 	/* stop tracking manger */
3710 	uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr);
3711 
3712 	addr = sdr_get_addr((u32 *)BASE_MMR);
3713 	writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr);
3714 
3715 	initialize();
3716 	rw_mgr_mem_initialize();
3717 
3718 	pass = mem_calibrate();
3719 
3720 	mem_precharge_and_activate();
3721 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3722 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3723 
3724 	/*
3725 	 * Handoff:
3726 	 * Don't return control of the PHY back to AFI when in debug mode.
3727 	 */
3728 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3729 		rw_mgr_mem_handoff();
3730 		/*
3731 		 * In Hard PHY this is a 2-bit control:
3732 		 * 0: AFI Mux Select
3733 		 * 1: DDIO Mux Select
3734 		 */
3735 		addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
3736 		writel(0x2, SOCFPGA_SDR_ADDRESS + addr);
3737 	}
3738 
3739 	addr = sdr_get_addr((u32 *)BASE_MMR);
3740 	writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr);
3741 
3742 	if (pass) {
3743 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3744 
3745 		gbl->fom_in /= 2;
3746 		gbl->fom_out /= 2;
3747 
3748 		if (gbl->fom_in > 0xff)
3749 			gbl->fom_in = 0xff;
3750 
3751 		if (gbl->fom_out > 0xff)
3752 			gbl->fom_out = 0xff;
3753 
3754 		/* Update the FOM in the register file */
3755 		debug_info = gbl->fom_in;
3756 		debug_info |= gbl->fom_out << 8;
3757 		addr = sdr_get_addr(&sdr_reg_file->fom);
3758 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3759 
3760 		addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3761 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3762 		addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3763 		writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr);
3764 	} else {
3765 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3766 
3767 		debug_info = gbl->error_stage;
3768 		debug_info |= gbl->error_substage << 8;
3769 		debug_info |= gbl->error_group << 16;
3770 
3771 		addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3772 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3773 		addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3774 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3775 		addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3776 		writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr);
3777 
3778 		/* Update the failing group/stage in the register file */
3779 		debug_info = gbl->error_stage;
3780 		debug_info |= gbl->error_substage << 8;
3781 		debug_info |= gbl->error_group << 16;
3782 		addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3783 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3784 	}
3785 
3786 	return pass;
3787 }
3788 
3789 static void hc_initialize_rom_data(void)
3790 {
3791 	uint32_t i;
3792 	uint32_t addr;
3793 
3794 	addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE));
3795 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) {
3796 		uint32_t data = inst_rom_init[i];
3797 		writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3798 	}
3799 
3800 	addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE));
3801 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) {
3802 		uint32_t data = ac_rom_init[i];
3803 		writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3804 	}
3805 }
3806 
3807 static void initialize_reg_file(void)
3808 {
3809 	uint32_t addr;
3810 
3811 	/* Initialize the register file with the correct data */
3812 	addr = sdr_get_addr(&sdr_reg_file->signature);
3813 	writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr);
3814 
3815 	addr = sdr_get_addr(&sdr_reg_file->debug_data_addr);
3816 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3817 
3818 	addr = sdr_get_addr(&sdr_reg_file->cur_stage);
3819 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3820 
3821 	addr = sdr_get_addr(&sdr_reg_file->fom);
3822 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3823 
3824 	addr = sdr_get_addr(&sdr_reg_file->failing_stage);
3825 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3826 
3827 	addr = sdr_get_addr(&sdr_reg_file->debug1);
3828 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3829 
3830 	addr = sdr_get_addr(&sdr_reg_file->debug2);
3831 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3832 }
3833 
3834 static void initialize_hps_phy(void)
3835 {
3836 	uint32_t reg;
3837 	uint32_t addr;
3838 	/*
3839 	 * Tracking also gets configured here because it's in the
3840 	 * same register.
3841 	 */
3842 	uint32_t trk_sample_count = 7500;
3843 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3844 	/*
3845 	 * Format is number of outer loops in the 16 MSB, sample
3846 	 * count in 16 LSB.
3847 	 */
3848 
3849 	reg = 0;
3850 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3851 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3852 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3853 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3854 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3855 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3856 	/*
3857 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3858 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3859 	 */
3860 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3861 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3862 		trk_sample_count);
3863 	addr = sdr_get_addr((u32 *)BASE_MMR);
3864 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET);
3865 
3866 	reg = 0;
3867 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3868 		trk_sample_count >>
3869 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3870 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3871 		trk_long_idle_sample_count);
3872 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET);
3873 
3874 	reg = 0;
3875 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3876 		trk_long_idle_sample_count >>
3877 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3878 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET);
3879 }
3880 
3881 static void initialize_tracking(void)
3882 {
3883 	uint32_t concatenated_longidle = 0x0;
3884 	uint32_t concatenated_delays = 0x0;
3885 	uint32_t concatenated_rw_addr = 0x0;
3886 	uint32_t concatenated_refresh = 0x0;
3887 	uint32_t trk_sample_count = 7500;
3888 	uint32_t dtaps_per_ptap;
3889 	uint32_t tmp_delay;
3890 	uint32_t addr;
3891 
3892 	/*
3893 	 * compute usable version of value in case we skip full
3894 	 * computation later
3895 	 */
3896 	dtaps_per_ptap = 0;
3897 	tmp_delay = 0;
3898 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3899 		dtaps_per_ptap++;
3900 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3901 	}
3902 	dtaps_per_ptap--;
3903 
3904 	concatenated_longidle = concatenated_longidle ^ 10;
3905 		/*longidle outer loop */
3906 	concatenated_longidle = concatenated_longidle << 16;
3907 	concatenated_longidle = concatenated_longidle ^ 100;
3908 		/*longidle sample count */
3909 	concatenated_delays = concatenated_delays ^ 243;
3910 		/* trfc, worst case of 933Mhz 4Gb */
3911 	concatenated_delays = concatenated_delays << 8;
3912 	concatenated_delays = concatenated_delays ^ 14;
3913 		/* trcd, worst case */
3914 	concatenated_delays = concatenated_delays << 8;
3915 	concatenated_delays = concatenated_delays ^ 10;
3916 		/* vfifo wait */
3917 	concatenated_delays = concatenated_delays << 8;
3918 	concatenated_delays = concatenated_delays ^ 4;
3919 		/* mux delay */
3920 
3921 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3922 	concatenated_rw_addr = concatenated_rw_addr << 8;
3923 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3924 	concatenated_rw_addr = concatenated_rw_addr << 8;
3925 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3926 	concatenated_rw_addr = concatenated_rw_addr << 8;
3927 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3928 
3929 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3930 	concatenated_refresh = concatenated_refresh << 24;
3931 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3932 
3933 	/* Initialize the register file with the correct data */
3934 	addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap);
3935 	writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
3936 
3937 	addr = sdr_get_addr(&sdr_reg_file->trk_sample_count);
3938 	writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr);
3939 
3940 	addr = sdr_get_addr(&sdr_reg_file->trk_longidle);
3941 	writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr);
3942 
3943 	addr = sdr_get_addr(&sdr_reg_file->delays);
3944 	writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr);
3945 
3946 	addr = sdr_get_addr(&sdr_reg_file->trk_rw_mgr_addr);
3947 	writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr);
3948 
3949 	addr = sdr_get_addr(&sdr_reg_file->trk_read_dqs_width);
3950 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr);
3951 
3952 	addr = sdr_get_addr(&sdr_reg_file->trk_rfsh);
3953 	writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr);
3954 }
3955 
3956 int sdram_calibration_full(void)
3957 {
3958 	struct param_type my_param;
3959 	struct gbl_type my_gbl;
3960 	uint32_t pass;
3961 	uint32_t i;
3962 
3963 	param = &my_param;
3964 	gbl = &my_gbl;
3965 
3966 	/* Initialize the debug mode flags */
3967 	gbl->phy_debug_mode_flags = 0;
3968 	/* Set the calibration enabled by default */
3969 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3970 	/*
3971 	 * Only sweep all groups (regardless of fail state) by default
3972 	 * Set enabled read test by default.
3973 	 */
3974 #if DISABLE_GUARANTEED_READ
3975 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3976 #endif
3977 	/* Initialize the register file */
3978 	initialize_reg_file();
3979 
3980 	/* Initialize any PHY CSR */
3981 	initialize_hps_phy();
3982 
3983 	scc_mgr_initialize();
3984 
3985 	initialize_tracking();
3986 
3987 	/* USER Enable all ranks, groups */
3988 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3989 		param->skip_ranks[i] = 0;
3990 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3991 		param->skip_shadow_regs[i] = 0;
3992 	param->skip_groups = 0;
3993 
3994 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3995 
3996 	debug("%s:%d\n", __func__, __LINE__);
3997 	debug_cond(DLEVEL == 1,
3998 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3999 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
4000 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
4001 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
4002 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
4003 	debug_cond(DLEVEL == 1,
4004 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
4005 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
4006 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
4007 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
4008 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
4009 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
4010 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
4011 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
4012 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
4013 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
4014 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
4015 		   IO_IO_OUT2_DELAY_MAX);
4016 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
4017 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
4018 
4019 	hc_initialize_rom_data();
4020 
4021 	/* update info for sims */
4022 	reg_file_set_stage(CAL_STAGE_NIL);
4023 	reg_file_set_group(0);
4024 
4025 	/*
4026 	 * Load global needed for those actions that require
4027 	 * some dynamic calibration support.
4028 	 */
4029 	dyn_calib_steps = STATIC_CALIB_STEPS;
4030 	/*
4031 	 * Load global to allow dynamic selection of delay loop settings
4032 	 * based on calibration mode.
4033 	 */
4034 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
4035 		skip_delay_mask = 0xff;
4036 	else
4037 		skip_delay_mask = 0x0;
4038 
4039 	pass = run_mem_calibrate();
4040 
4041 	printf("%s: Calibration complete\n", __FILE__);
4042 	return pass;
4043 }
4044