1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t found_begin = 0; 1341 uint32_t tmp_delay = 0; 1342 uint32_t test_status; 1343 1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1346 *work_bgn = tmp_delay; 1347 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1348 1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1351 IO_DELAY_PER_OPA_TAP) { 1352 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1353 1354 test_status = 1355 rw_mgr_mem_calibrate_read_test_all_ranks 1356 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1357 1358 if (test_status) { 1359 *max_working_cnt = 1; 1360 found_begin = 1; 1361 break; 1362 } 1363 } 1364 1365 if (found_begin) 1366 break; 1367 1368 if (*p > IO_DQS_EN_PHASE_MAX) 1369 /* fiddle with FIFO */ 1370 rw_mgr_incr_vfifo(*grp, v); 1371 } 1372 1373 if (found_begin) 1374 break; 1375 } 1376 1377 if (*i >= VFIFO_SIZE) { 1378 /* cannot find working solution */ 1379 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1380 ptap/dtap\n", __func__, __LINE__); 1381 return 0; 1382 } else { 1383 return 1; 1384 } 1385 } 1386 1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1388 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1389 uint32_t *p, uint32_t *max_working_cnt) 1390 { 1391 uint32_t found_begin = 0; 1392 uint32_t tmp_delay; 1393 1394 /* Special case code for backing up a phase */ 1395 if (*p == 0) { 1396 *p = IO_DQS_EN_PHASE_MAX; 1397 rw_mgr_decr_vfifo(*grp, v); 1398 } else { 1399 (*p)--; 1400 } 1401 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1402 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1403 1404 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1405 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1406 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1407 1408 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1409 PASS_ONE_BIT, 1410 bit_chk, 0)) { 1411 found_begin = 1; 1412 *work_bgn = tmp_delay; 1413 break; 1414 } 1415 } 1416 1417 /* We have found a working dtap before the ptap found above */ 1418 if (found_begin == 1) 1419 (*max_working_cnt)++; 1420 1421 /* 1422 * Restore VFIFO to old state before we decremented it 1423 * (if needed). 1424 */ 1425 (*p)++; 1426 if (*p > IO_DQS_EN_PHASE_MAX) { 1427 *p = 0; 1428 rw_mgr_incr_vfifo(*grp, v); 1429 } 1430 1431 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1432 } 1433 1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1435 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1436 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1437 uint32_t *work_end) 1438 { 1439 uint32_t found_end = 0; 1440 1441 (*p)++; 1442 *work_end += IO_DELAY_PER_OPA_TAP; 1443 if (*p > IO_DQS_EN_PHASE_MAX) { 1444 /* fiddle with FIFO */ 1445 *p = 0; 1446 rw_mgr_incr_vfifo(*grp, v); 1447 } 1448 1449 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1450 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1451 += IO_DELAY_PER_OPA_TAP) { 1452 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1453 1454 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1455 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1456 found_end = 1; 1457 break; 1458 } else { 1459 (*max_working_cnt)++; 1460 } 1461 } 1462 1463 if (found_end) 1464 break; 1465 1466 if (*p > IO_DQS_EN_PHASE_MAX) { 1467 /* fiddle with FIFO */ 1468 rw_mgr_incr_vfifo(*grp, v); 1469 *p = 0; 1470 } 1471 } 1472 1473 if (*i >= VFIFO_SIZE + 1) { 1474 /* cannot see edge of failing read */ 1475 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1476 failed\n", __func__, __LINE__); 1477 return 0; 1478 } else { 1479 return 1; 1480 } 1481 } 1482 1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1484 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1485 uint32_t *p, uint32_t *work_mid, 1486 uint32_t *work_end) 1487 { 1488 int i; 1489 int tmp_delay = 0; 1490 1491 *work_mid = (*work_bgn + *work_end) / 2; 1492 1493 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1494 *work_bgn, *work_end, *work_mid); 1495 /* Get the middle delay to be less than a VFIFO delay */ 1496 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1497 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1498 ; 1499 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1500 while (*work_mid > tmp_delay) 1501 *work_mid -= tmp_delay; 1502 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1503 1504 tmp_delay = 0; 1505 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1506 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1507 ; 1508 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1509 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1510 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1511 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1512 ; 1513 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1514 1515 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1516 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1517 1518 /* 1519 * push vfifo until we can successfully calibrate. We can do this 1520 * because the largest possible margin in 1 VFIFO cycle. 1521 */ 1522 for (i = 0; i < VFIFO_SIZE; i++) { 1523 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1524 *v); 1525 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1526 PASS_ONE_BIT, 1527 bit_chk, 0)) { 1528 break; 1529 } 1530 1531 /* fiddle with FIFO */ 1532 rw_mgr_incr_vfifo(*grp, v); 1533 } 1534 1535 if (i >= VFIFO_SIZE) { 1536 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1537 failed\n", __func__, __LINE__); 1538 return 0; 1539 } else { 1540 return 1; 1541 } 1542 } 1543 1544 /* find a good dqs enable to use */ 1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1546 { 1547 uint32_t v, d, p, i; 1548 uint32_t max_working_cnt; 1549 uint32_t bit_chk; 1550 uint32_t dtaps_per_ptap; 1551 uint32_t work_bgn, work_mid, work_end; 1552 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1553 1554 debug("%s:%d %u\n", __func__, __LINE__, grp); 1555 1556 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1557 1558 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1559 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1560 1561 /* ************************************************************** */ 1562 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1563 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1564 1565 /* ********************************************************* */ 1566 /* * Step 1 : First push vfifo until we get a failing read * */ 1567 v = find_vfifo_read(grp, &bit_chk); 1568 1569 max_working_cnt = 0; 1570 1571 /* ******************************************************** */ 1572 /* * step 2: find first working phase, increment in ptaps * */ 1573 work_bgn = 0; 1574 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1575 &p, &i, &max_working_cnt) == 0) 1576 return 0; 1577 1578 work_end = work_bgn; 1579 1580 /* 1581 * If d is 0 then the working window covers a phase tap and 1582 * we can follow the old procedure otherwise, we've found the beginning, 1583 * and we need to increment the dtaps until we find the end. 1584 */ 1585 if (d == 0) { 1586 /* ********************************************************* */ 1587 /* * step 3a: if we have room, back off by one and 1588 increment in dtaps * */ 1589 1590 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1591 &max_working_cnt); 1592 1593 /* ********************************************************* */ 1594 /* * step 4a: go forward from working phase to non working 1595 phase, increment in ptaps * */ 1596 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1597 &i, &max_working_cnt, &work_end) == 0) 1598 return 0; 1599 1600 /* ********************************************************* */ 1601 /* * step 5a: back off one from last, increment in dtaps * */ 1602 1603 /* Special case code for backing up a phase */ 1604 if (p == 0) { 1605 p = IO_DQS_EN_PHASE_MAX; 1606 rw_mgr_decr_vfifo(grp, &v); 1607 } else { 1608 p = p - 1; 1609 } 1610 1611 work_end -= IO_DELAY_PER_OPA_TAP; 1612 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1613 1614 /* * The actual increment of dtaps is done outside of 1615 the if/else loop to share code */ 1616 d = 0; 1617 1618 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1619 vfifo=%u ptap=%u\n", __func__, __LINE__, 1620 v, p); 1621 } else { 1622 /* ******************************************************* */ 1623 /* * step 3-5b: Find the right edge of the window using 1624 delay taps * */ 1625 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1626 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1627 v, p, d, work_bgn); 1628 1629 work_end = work_bgn; 1630 1631 /* * The actual increment of dtaps is done outside of the 1632 if/else loop to share code */ 1633 1634 /* Only here to counterbalance a subtract later on which is 1635 not needed if this branch of the algorithm is taken */ 1636 max_working_cnt++; 1637 } 1638 1639 /* The dtap increment to find the failing edge is done here */ 1640 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1641 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1642 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1643 end-2: dtap=%u\n", __func__, __LINE__, d); 1644 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1645 1646 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1647 PASS_ONE_BIT, 1648 &bit_chk, 0)) { 1649 break; 1650 } 1651 } 1652 1653 /* Go back to working dtap */ 1654 if (d != 0) 1655 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1656 1657 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1658 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1659 v, p, d-1, work_end); 1660 1661 if (work_end < work_bgn) { 1662 /* nil range */ 1663 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1664 failed\n", __func__, __LINE__); 1665 return 0; 1666 } 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1669 __func__, __LINE__, work_bgn, work_end); 1670 1671 /* *************************************************************** */ 1672 /* 1673 * * We need to calculate the number of dtaps that equal a ptap 1674 * * To do that we'll back up a ptap and re-find the edge of the 1675 * * window using dtaps 1676 */ 1677 1678 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1679 for tracking\n", __func__, __LINE__); 1680 1681 /* Special case code for backing up a phase */ 1682 if (p == 0) { 1683 p = IO_DQS_EN_PHASE_MAX; 1684 rw_mgr_decr_vfifo(grp, &v); 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1686 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1687 v, p); 1688 } else { 1689 p = p - 1; 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1691 phase only: v=%u p=%u", __func__, __LINE__, 1692 v, p); 1693 } 1694 1695 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1696 1697 /* 1698 * Increase dtap until we first see a passing read (in case the 1699 * window is smaller than a ptap), 1700 * and then a failing read to mark the edge of the window again 1701 */ 1702 1703 /* Find a passing read */ 1704 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1705 __func__, __LINE__); 1706 found_passing_read = 0; 1707 found_failing_read = 0; 1708 initial_failing_dtap = d; 1709 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1710 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1711 read d=%u\n", __func__, __LINE__, d); 1712 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1713 1714 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1715 PASS_ONE_BIT, 1716 &bit_chk, 0)) { 1717 found_passing_read = 1; 1718 break; 1719 } 1720 } 1721 1722 if (found_passing_read) { 1723 /* Find a failing read */ 1724 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1725 read\n", __func__, __LINE__); 1726 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1727 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1728 testing read d=%u\n", __func__, __LINE__, d); 1729 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1730 1731 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1732 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1733 found_failing_read = 1; 1734 break; 1735 } 1736 } 1737 } else { 1738 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1739 calculate dtaps", __func__, __LINE__); 1740 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1741 } 1742 1743 /* 1744 * The dynamically calculated dtaps_per_ptap is only valid if we 1745 * found a passing/failing read. If we didn't, it means d hit the max 1746 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1747 * statically calculated value. 1748 */ 1749 if (found_passing_read && found_failing_read) 1750 dtaps_per_ptap = d - initial_failing_dtap; 1751 1752 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1753 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1754 - %u = %u", __func__, __LINE__, d, 1755 initial_failing_dtap, dtaps_per_ptap); 1756 1757 /* ******************************************** */ 1758 /* * step 6: Find the centre of the window * */ 1759 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1760 &work_mid, &work_end) == 0) 1761 return 0; 1762 1763 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1764 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1765 v, p-1, d); 1766 return 1; 1767 } 1768 1769 /* 1770 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1771 * dq_in_delay values 1772 */ 1773 static int 1774 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1775 (const u32 rw_group, const u32 test_bgn) 1776 { 1777 /* We start at zero, so have one less dq to devide among */ 1778 const u32 delay_step = IO_IO_IN_DELAY_MAX / 1779 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 1780 int found; 1781 u32 i, p, d, r; 1782 1783 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 1784 1785 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 1786 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1787 r += NUM_RANKS_PER_SHADOW_REG) { 1788 for (i = 0, p = test_bgn, d = 0; 1789 i < RW_MGR_MEM_DQ_PER_READ_DQS; 1790 i++, p++, d += delay_step) { 1791 debug_cond(DLEVEL == 1, 1792 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 1793 __func__, __LINE__, rw_group, r, i, p, d); 1794 1795 scc_mgr_set_dq_in_delay(p, d); 1796 scc_mgr_load_dq(p); 1797 } 1798 1799 writel(0, &sdr_scc_mgr->update); 1800 } 1801 1802 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 1803 1804 debug_cond(DLEVEL == 1, 1805 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 1806 __func__, __LINE__, rw_group, found); 1807 1808 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1809 r += NUM_RANKS_PER_SHADOW_REG) { 1810 for (i = 0, p = test_bgn; 1811 i < RW_MGR_MEM_DQ_PER_READ_DQS; 1812 i++, p++) { 1813 scc_mgr_set_dq_in_delay(p, 0); 1814 scc_mgr_load_dq(p); 1815 } 1816 1817 writel(0, &sdr_scc_mgr->update); 1818 } 1819 1820 if (!found) 1821 return -EINVAL; 1822 1823 return 0; 1824 } 1825 1826 /* per-bit deskew DQ and center */ 1827 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1828 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1829 uint32_t use_read_test, uint32_t update_fom) 1830 { 1831 uint32_t i, p, d, min_index; 1832 /* 1833 * Store these as signed since there are comparisons with 1834 * signed numbers. 1835 */ 1836 uint32_t bit_chk; 1837 uint32_t sticky_bit_chk; 1838 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1839 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1840 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1841 int32_t mid; 1842 int32_t orig_mid_min, mid_min; 1843 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1844 final_dqs_en; 1845 int32_t dq_margin, dqs_margin; 1846 uint32_t stop; 1847 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1848 uint32_t addr; 1849 1850 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1851 1852 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1853 start_dqs = readl(addr + (read_group << 2)); 1854 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1855 start_dqs_en = readl(addr + ((read_group << 2) 1856 - IO_DQS_EN_DELAY_OFFSET)); 1857 1858 /* set the left and right edge of each bit to an illegal value */ 1859 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1860 sticky_bit_chk = 0; 1861 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1862 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1863 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1864 } 1865 1866 /* Search for the left edge of the window for each bit */ 1867 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1868 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1869 1870 writel(0, &sdr_scc_mgr->update); 1871 1872 /* 1873 * Stop searching when the read test doesn't pass AND when 1874 * we've seen a passing read on every bit. 1875 */ 1876 if (use_read_test) { 1877 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1878 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1879 &bit_chk, 0, 0); 1880 } else { 1881 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1882 0, PASS_ONE_BIT, 1883 &bit_chk, 0); 1884 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1885 (read_group - (write_group * 1886 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1887 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1888 stop = (bit_chk == 0); 1889 } 1890 sticky_bit_chk = sticky_bit_chk | bit_chk; 1891 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1892 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1893 && %u", __func__, __LINE__, d, 1894 sticky_bit_chk, 1895 param->read_correct_mask, stop); 1896 1897 if (stop == 1) { 1898 break; 1899 } else { 1900 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1901 if (bit_chk & 1) { 1902 /* Remember a passing test as the 1903 left_edge */ 1904 left_edge[i] = d; 1905 } else { 1906 /* If a left edge has not been seen yet, 1907 then a future passing test will mark 1908 this edge as the right edge */ 1909 if (left_edge[i] == 1910 IO_IO_IN_DELAY_MAX + 1) { 1911 right_edge[i] = -(d + 1); 1912 } 1913 } 1914 bit_chk = bit_chk >> 1; 1915 } 1916 } 1917 } 1918 1919 /* Reset DQ delay chains to 0 */ 1920 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1921 sticky_bit_chk = 0; 1922 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1923 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1924 %d right_edge[%u]: %d\n", __func__, __LINE__, 1925 i, left_edge[i], i, right_edge[i]); 1926 1927 /* 1928 * Check for cases where we haven't found the left edge, 1929 * which makes our assignment of the the right edge invalid. 1930 * Reset it to the illegal value. 1931 */ 1932 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1933 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1934 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1935 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1936 right_edge[%u]: %d\n", __func__, __LINE__, 1937 i, right_edge[i]); 1938 } 1939 1940 /* 1941 * Reset sticky bit (except for bits where we have seen 1942 * both the left and right edge). 1943 */ 1944 sticky_bit_chk = sticky_bit_chk << 1; 1945 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1946 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1947 sticky_bit_chk = sticky_bit_chk | 1; 1948 } 1949 1950 if (i == 0) 1951 break; 1952 } 1953 1954 /* Search for the right edge of the window for each bit */ 1955 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1956 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1957 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1958 uint32_t delay = d + start_dqs_en; 1959 if (delay > IO_DQS_EN_DELAY_MAX) 1960 delay = IO_DQS_EN_DELAY_MAX; 1961 scc_mgr_set_dqs_en_delay(read_group, delay); 1962 } 1963 scc_mgr_load_dqs(read_group); 1964 1965 writel(0, &sdr_scc_mgr->update); 1966 1967 /* 1968 * Stop searching when the read test doesn't pass AND when 1969 * we've seen a passing read on every bit. 1970 */ 1971 if (use_read_test) { 1972 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1973 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1974 &bit_chk, 0, 0); 1975 } else { 1976 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1977 0, PASS_ONE_BIT, 1978 &bit_chk, 0); 1979 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1980 (read_group - (write_group * 1981 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1982 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1983 stop = (bit_chk == 0); 1984 } 1985 sticky_bit_chk = sticky_bit_chk | bit_chk; 1986 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1987 1988 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1989 %u && %u", __func__, __LINE__, d, 1990 sticky_bit_chk, param->read_correct_mask, stop); 1991 1992 if (stop == 1) { 1993 break; 1994 } else { 1995 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1996 if (bit_chk & 1) { 1997 /* Remember a passing test as 1998 the right_edge */ 1999 right_edge[i] = d; 2000 } else { 2001 if (d != 0) { 2002 /* If a right edge has not been 2003 seen yet, then a future passing 2004 test will mark this edge as the 2005 left edge */ 2006 if (right_edge[i] == 2007 IO_IO_IN_DELAY_MAX + 1) { 2008 left_edge[i] = -(d + 1); 2009 } 2010 } else { 2011 /* d = 0 failed, but it passed 2012 when testing the left edge, 2013 so it must be marginal, 2014 set it to -1 */ 2015 if (right_edge[i] == 2016 IO_IO_IN_DELAY_MAX + 1 && 2017 left_edge[i] != 2018 IO_IO_IN_DELAY_MAX 2019 + 1) { 2020 right_edge[i] = -1; 2021 } 2022 /* If a right edge has not been 2023 seen yet, then a future passing 2024 test will mark this edge as the 2025 left edge */ 2026 else if (right_edge[i] == 2027 IO_IO_IN_DELAY_MAX + 2028 1) { 2029 left_edge[i] = -(d + 1); 2030 } 2031 } 2032 } 2033 2034 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2035 d=%u]: ", __func__, __LINE__, d); 2036 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2037 (int)(bit_chk & 1), i, left_edge[i]); 2038 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2039 right_edge[i]); 2040 bit_chk = bit_chk >> 1; 2041 } 2042 } 2043 } 2044 2045 /* Check that all bits have a window */ 2046 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2047 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2048 %d right_edge[%u]: %d", __func__, __LINE__, 2049 i, left_edge[i], i, right_edge[i]); 2050 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2051 == IO_IO_IN_DELAY_MAX + 1)) { 2052 /* 2053 * Restore delay chain settings before letting the loop 2054 * in rw_mgr_mem_calibrate_vfifo to retry different 2055 * dqs/ck relationships. 2056 */ 2057 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2058 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2059 scc_mgr_set_dqs_en_delay(read_group, 2060 start_dqs_en); 2061 } 2062 scc_mgr_load_dqs(read_group); 2063 writel(0, &sdr_scc_mgr->update); 2064 2065 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2066 find edge [%u]: %d %d", __func__, __LINE__, 2067 i, left_edge[i], right_edge[i]); 2068 if (use_read_test) { 2069 set_failing_group_stage(read_group * 2070 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2071 CAL_STAGE_VFIFO, 2072 CAL_SUBSTAGE_VFIFO_CENTER); 2073 } else { 2074 set_failing_group_stage(read_group * 2075 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2076 CAL_STAGE_VFIFO_AFTER_WRITES, 2077 CAL_SUBSTAGE_VFIFO_CENTER); 2078 } 2079 return 0; 2080 } 2081 } 2082 2083 /* Find middle of window for each DQ bit */ 2084 mid_min = left_edge[0] - right_edge[0]; 2085 min_index = 0; 2086 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2087 mid = left_edge[i] - right_edge[i]; 2088 if (mid < mid_min) { 2089 mid_min = mid; 2090 min_index = i; 2091 } 2092 } 2093 2094 /* 2095 * -mid_min/2 represents the amount that we need to move DQS. 2096 * If mid_min is odd and positive we'll need to add one to 2097 * make sure the rounding in further calculations is correct 2098 * (always bias to the right), so just add 1 for all positive values. 2099 */ 2100 if (mid_min > 0) 2101 mid_min++; 2102 2103 mid_min = mid_min / 2; 2104 2105 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2106 __func__, __LINE__, mid_min, min_index); 2107 2108 /* Determine the amount we can change DQS (which is -mid_min) */ 2109 orig_mid_min = mid_min; 2110 new_dqs = start_dqs - mid_min; 2111 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2112 new_dqs = IO_DQS_IN_DELAY_MAX; 2113 else if (new_dqs < 0) 2114 new_dqs = 0; 2115 2116 mid_min = start_dqs - new_dqs; 2117 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2118 mid_min, new_dqs); 2119 2120 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2121 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2122 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2123 else if (start_dqs_en - mid_min < 0) 2124 mid_min += start_dqs_en - mid_min; 2125 } 2126 new_dqs = start_dqs - mid_min; 2127 2128 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2129 new_dqs=%d mid_min=%d\n", start_dqs, 2130 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2131 new_dqs, mid_min); 2132 2133 /* Initialize data for export structures */ 2134 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2135 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2136 2137 /* add delay to bring centre of all DQ windows to the same "level" */ 2138 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2139 /* Use values before divide by 2 to reduce round off error */ 2140 shift_dq = (left_edge[i] - right_edge[i] - 2141 (left_edge[min_index] - right_edge[min_index]))/2 + 2142 (orig_mid_min - mid_min); 2143 2144 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2145 shift_dq[%u]=%d\n", i, shift_dq); 2146 2147 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2148 temp_dq_in_delay1 = readl(addr + (p << 2)); 2149 temp_dq_in_delay2 = readl(addr + (i << 2)); 2150 2151 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2152 (int32_t)IO_IO_IN_DELAY_MAX) { 2153 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2154 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2155 shift_dq = -(int32_t)temp_dq_in_delay1; 2156 } 2157 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2158 shift_dq[%u]=%d\n", i, shift_dq); 2159 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2160 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2161 scc_mgr_load_dq(p); 2162 2163 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2164 left_edge[i] - shift_dq + (-mid_min), 2165 right_edge[i] + shift_dq - (-mid_min)); 2166 /* To determine values for export structures */ 2167 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2168 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2169 2170 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2171 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2172 } 2173 2174 final_dqs = new_dqs; 2175 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2176 final_dqs_en = start_dqs_en - mid_min; 2177 2178 /* Move DQS-en */ 2179 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2180 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2181 scc_mgr_load_dqs(read_group); 2182 } 2183 2184 /* Move DQS */ 2185 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2186 scc_mgr_load_dqs(read_group); 2187 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2188 dqs_margin=%d", __func__, __LINE__, 2189 dq_margin, dqs_margin); 2190 2191 /* 2192 * Do not remove this line as it makes sure all of our decisions 2193 * have been applied. Apply the update bit. 2194 */ 2195 writel(0, &sdr_scc_mgr->update); 2196 2197 return (dq_margin >= 0) && (dqs_margin >= 0); 2198 } 2199 2200 /** 2201 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2202 * @rw_group: Read/Write Group 2203 * @phase: DQ/DQS phase 2204 * 2205 * Because initially no communication ca be reliably performed with the memory 2206 * device, the sequencer uses a guaranteed write mechanism to write data into 2207 * the memory device. 2208 */ 2209 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2210 const u32 phase) 2211 { 2212 int ret; 2213 2214 /* Set a particular DQ/DQS phase. */ 2215 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2216 2217 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2218 __func__, __LINE__, rw_group, phase); 2219 2220 /* 2221 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2222 * Load up the patterns used by read calibration using the 2223 * current DQDQS phase. 2224 */ 2225 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2226 2227 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2228 return 0; 2229 2230 /* 2231 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2232 * Back-to-Back reads of the patterns used for calibration. 2233 */ 2234 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2235 if (ret) 2236 debug_cond(DLEVEL == 1, 2237 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2238 __func__, __LINE__, rw_group, phase); 2239 return ret; 2240 } 2241 2242 /** 2243 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2244 * @rw_group: Read/Write Group 2245 * @test_bgn: Rank at which the test begins 2246 * 2247 * DQS enable calibration ensures reliable capture of the DQ signal without 2248 * glitches on the DQS line. 2249 */ 2250 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2251 const u32 test_bgn) 2252 { 2253 int ret; 2254 2255 /* 2256 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2257 * DQS and DQS Eanble Signal Relationships. 2258 */ 2259 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay( 2260 rw_group, test_bgn); 2261 return ret; 2262 } 2263 2264 /** 2265 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2266 * @rw_group: Read/Write Group 2267 * @test_bgn: Rank at which the test begins 2268 * @use_read_test: Perform a read test 2269 * @update_fom: Update FOM 2270 * 2271 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2272 * within a group. 2273 */ 2274 static int 2275 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2276 const int use_read_test, 2277 const int update_fom) 2278 2279 { 2280 int ret, grp_calibrated; 2281 u32 rank_bgn, sr; 2282 2283 /* 2284 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2285 * Read per-bit deskew can be done on a per shadow register basis. 2286 */ 2287 grp_calibrated = 1; 2288 for (rank_bgn = 0, sr = 0; 2289 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2290 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2291 /* Check if this set of ranks should be skipped entirely. */ 2292 if (param->skip_shadow_regs[sr]) 2293 continue; 2294 2295 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2296 rw_group, test_bgn, 2297 use_read_test, 2298 update_fom); 2299 if (ret) 2300 continue; 2301 2302 grp_calibrated = 0; 2303 } 2304 2305 if (!grp_calibrated) 2306 return -EIO; 2307 2308 return 0; 2309 } 2310 2311 /** 2312 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2313 * @rw_group: Read/Write Group 2314 * @test_bgn: Rank at which the test begins 2315 * 2316 * Stage 1: Calibrate the read valid prediction FIFO. 2317 * 2318 * This function implements UniPHY calibration Stage 1, as explained in 2319 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2320 * 2321 * - read valid prediction will consist of finding: 2322 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2323 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2324 * - we also do a per-bit deskew on the DQ lines. 2325 */ 2326 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2327 { 2328 uint32_t p, d; 2329 uint32_t dtaps_per_ptap; 2330 uint32_t failed_substage; 2331 2332 int ret; 2333 2334 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2335 2336 /* Update info for sims */ 2337 reg_file_set_group(rw_group); 2338 reg_file_set_stage(CAL_STAGE_VFIFO); 2339 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2340 2341 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2342 2343 /* USER Determine number of delay taps for each phase tap. */ 2344 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2346 2347 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2348 /* 2349 * In RLDRAMX we may be messing the delay of pins in 2350 * the same write rw_group but outside of the current read 2351 * the rw_group, but that's ok because we haven't calibrated 2352 * output side yet. 2353 */ 2354 if (d > 0) { 2355 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2356 rw_group, d); 2357 } 2358 2359 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2360 /* 1) Guaranteed Write */ 2361 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2362 if (ret) 2363 break; 2364 2365 /* 2) DQS Enable Calibration */ 2366 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2367 test_bgn); 2368 if (ret) { 2369 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2370 continue; 2371 } 2372 2373 /* 3) Centering DQ/DQS */ 2374 /* 2375 * If doing read after write calibration, do not update 2376 * FOM now. Do it then. 2377 */ 2378 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2379 test_bgn, 1, 0); 2380 if (ret) { 2381 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2382 continue; 2383 } 2384 2385 /* All done. */ 2386 goto cal_done_ok; 2387 } 2388 } 2389 2390 /* Calibration Stage 1 failed. */ 2391 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2392 return 0; 2393 2394 /* Calibration Stage 1 completed OK. */ 2395 cal_done_ok: 2396 /* 2397 * Reset the delay chains back to zero if they have moved > 1 2398 * (check for > 1 because loop will increase d even when pass in 2399 * first case). 2400 */ 2401 if (d > 2) 2402 scc_mgr_zero_group(rw_group, 1); 2403 2404 return 1; 2405 } 2406 2407 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2408 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2409 uint32_t test_bgn) 2410 { 2411 uint32_t rank_bgn, sr; 2412 uint32_t grp_calibrated; 2413 uint32_t write_group; 2414 2415 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2416 2417 /* update info for sims */ 2418 2419 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2420 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2421 2422 write_group = read_group; 2423 2424 /* update info for sims */ 2425 reg_file_set_group(read_group); 2426 2427 grp_calibrated = 1; 2428 /* Read per-bit deskew can be done on a per shadow register basis */ 2429 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2430 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2431 /* Determine if this set of ranks should be skipped entirely */ 2432 if (!param->skip_shadow_regs[sr]) { 2433 /* This is the last calibration round, update FOM here */ 2434 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2435 write_group, 2436 read_group, 2437 test_bgn, 0, 2438 1)) { 2439 grp_calibrated = 0; 2440 } 2441 } 2442 } 2443 2444 2445 if (grp_calibrated == 0) { 2446 set_failing_group_stage(write_group, 2447 CAL_STAGE_VFIFO_AFTER_WRITES, 2448 CAL_SUBSTAGE_VFIFO_CENTER); 2449 return 0; 2450 } 2451 2452 return 1; 2453 } 2454 2455 /* Calibrate LFIFO to find smallest read latency */ 2456 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2457 { 2458 uint32_t found_one; 2459 uint32_t bit_chk; 2460 2461 debug("%s:%d\n", __func__, __LINE__); 2462 2463 /* update info for sims */ 2464 reg_file_set_stage(CAL_STAGE_LFIFO); 2465 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2466 2467 /* Load up the patterns used by read calibration for all ranks */ 2468 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2469 found_one = 0; 2470 2471 do { 2472 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2473 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2474 __func__, __LINE__, gbl->curr_read_lat); 2475 2476 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2477 NUM_READ_TESTS, 2478 PASS_ALL_BITS, 2479 &bit_chk, 1)) { 2480 break; 2481 } 2482 2483 found_one = 1; 2484 /* reduce read latency and see if things are working */ 2485 /* correctly */ 2486 gbl->curr_read_lat--; 2487 } while (gbl->curr_read_lat > 0); 2488 2489 /* reset the fifos to get pointers to known state */ 2490 2491 writel(0, &phy_mgr_cmd->fifo_reset); 2492 2493 if (found_one) { 2494 /* add a fudge factor to the read latency that was determined */ 2495 gbl->curr_read_lat += 2; 2496 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2497 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2498 read_lat=%u\n", __func__, __LINE__, 2499 gbl->curr_read_lat); 2500 return 1; 2501 } else { 2502 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2503 CAL_SUBSTAGE_READ_LATENCY); 2504 2505 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2506 read_lat=%u\n", __func__, __LINE__, 2507 gbl->curr_read_lat); 2508 return 0; 2509 } 2510 } 2511 2512 /* 2513 * issue write test command. 2514 * two variants are provided. one that just tests a write pattern and 2515 * another that tests datamask functionality. 2516 */ 2517 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2518 uint32_t test_dm) 2519 { 2520 uint32_t mcc_instruction; 2521 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2522 ENABLE_SUPER_QUICK_CALIBRATION); 2523 uint32_t rw_wl_nop_cycles; 2524 uint32_t addr; 2525 2526 /* 2527 * Set counter and jump addresses for the right 2528 * number of NOP cycles. 2529 * The number of supported NOP cycles can range from -1 to infinity 2530 * Three different cases are handled: 2531 * 2532 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2533 * mechanism will be used to insert the right number of NOPs 2534 * 2535 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2536 * issuing the write command will jump straight to the 2537 * micro-instruction that turns on DQS (for DDRx), or outputs write 2538 * data (for RLD), skipping 2539 * the NOP micro-instruction all together 2540 * 2541 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2542 * turned on in the same micro-instruction that issues the write 2543 * command. Then we need 2544 * to directly jump to the micro-instruction that sends out the data 2545 * 2546 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2547 * (2 and 3). One jump-counter (0) is used to perform multiple 2548 * write-read operations. 2549 * one counter left to issue this command in "multiple-group" mode 2550 */ 2551 2552 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2553 2554 if (rw_wl_nop_cycles == -1) { 2555 /* 2556 * CNTR 2 - We want to execute the special write operation that 2557 * turns on DQS right away and then skip directly to the 2558 * instruction that sends out the data. We set the counter to a 2559 * large number so that the jump is always taken. 2560 */ 2561 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2562 2563 /* CNTR 3 - Not used */ 2564 if (test_dm) { 2565 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2566 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2567 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2568 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2569 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2570 } else { 2571 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2572 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2573 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2574 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2575 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2576 } 2577 } else if (rw_wl_nop_cycles == 0) { 2578 /* 2579 * CNTR 2 - We want to skip the NOP operation and go straight 2580 * to the DQS enable instruction. We set the counter to a large 2581 * number so that the jump is always taken. 2582 */ 2583 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2584 2585 /* CNTR 3 - Not used */ 2586 if (test_dm) { 2587 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2588 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2589 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2590 } else { 2591 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2592 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2593 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2594 } 2595 } else { 2596 /* 2597 * CNTR 2 - In this case we want to execute the next instruction 2598 * and NOT take the jump. So we set the counter to 0. The jump 2599 * address doesn't count. 2600 */ 2601 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2602 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2603 2604 /* 2605 * CNTR 3 - Set the nop counter to the number of cycles we 2606 * need to loop for, minus 1. 2607 */ 2608 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2609 if (test_dm) { 2610 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2611 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2612 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2613 } else { 2614 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2615 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2616 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2617 } 2618 } 2619 2620 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2621 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2622 2623 if (quick_write_mode) 2624 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2625 else 2626 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2627 2628 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2629 2630 /* 2631 * CNTR 1 - This is used to ensure enough time elapses 2632 * for read data to come back. 2633 */ 2634 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2635 2636 if (test_dm) { 2637 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2638 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2639 } else { 2640 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2641 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2642 } 2643 2644 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2645 writel(mcc_instruction, addr + (group << 2)); 2646 } 2647 2648 /* Test writes, can check for a single bit pass or multiple bit pass */ 2649 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2650 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2651 uint32_t *bit_chk, uint32_t all_ranks) 2652 { 2653 uint32_t r; 2654 uint32_t correct_mask_vg; 2655 uint32_t tmp_bit_chk; 2656 uint32_t vg; 2657 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2658 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2659 uint32_t addr_rw_mgr; 2660 uint32_t base_rw_mgr; 2661 2662 *bit_chk = param->write_correct_mask; 2663 correct_mask_vg = param->write_correct_mask_vg; 2664 2665 for (r = rank_bgn; r < rank_end; r++) { 2666 if (param->skip_ranks[r]) { 2667 /* request to skip the rank */ 2668 continue; 2669 } 2670 2671 /* set rank */ 2672 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2673 2674 tmp_bit_chk = 0; 2675 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2676 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2677 /* reset the fifos to get pointers to known state */ 2678 writel(0, &phy_mgr_cmd->fifo_reset); 2679 2680 tmp_bit_chk = tmp_bit_chk << 2681 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2682 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2683 rw_mgr_mem_calibrate_write_test_issue(write_group * 2684 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2685 use_dm); 2686 2687 base_rw_mgr = readl(addr_rw_mgr); 2688 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2689 if (vg == 0) 2690 break; 2691 } 2692 *bit_chk &= tmp_bit_chk; 2693 } 2694 2695 if (all_correct) { 2696 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2697 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2698 %u => %lu", write_group, use_dm, 2699 *bit_chk, param->write_correct_mask, 2700 (long unsigned int)(*bit_chk == 2701 param->write_correct_mask)); 2702 return *bit_chk == param->write_correct_mask; 2703 } else { 2704 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2705 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2706 write_group, use_dm, *bit_chk); 2707 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2708 (long unsigned int)(*bit_chk != 0)); 2709 return *bit_chk != 0x00; 2710 } 2711 } 2712 2713 /* 2714 * center all windows. do per-bit-deskew to possibly increase size of 2715 * certain windows. 2716 */ 2717 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2718 uint32_t write_group, uint32_t test_bgn) 2719 { 2720 uint32_t i, p, min_index; 2721 int32_t d; 2722 /* 2723 * Store these as signed since there are comparisons with 2724 * signed numbers. 2725 */ 2726 uint32_t bit_chk; 2727 uint32_t sticky_bit_chk; 2728 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2729 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2730 int32_t mid; 2731 int32_t mid_min, orig_mid_min; 2732 int32_t new_dqs, start_dqs, shift_dq; 2733 int32_t dq_margin, dqs_margin, dm_margin; 2734 uint32_t stop; 2735 uint32_t temp_dq_out1_delay; 2736 uint32_t addr; 2737 2738 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2739 2740 dm_margin = 0; 2741 2742 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2743 start_dqs = readl(addr + 2744 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2745 2746 /* per-bit deskew */ 2747 2748 /* 2749 * set the left and right edge of each bit to an illegal value 2750 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2751 */ 2752 sticky_bit_chk = 0; 2753 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2754 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2755 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2756 } 2757 2758 /* Search for the left edge of the window for each bit */ 2759 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2760 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2761 2762 writel(0, &sdr_scc_mgr->update); 2763 2764 /* 2765 * Stop searching when the read test doesn't pass AND when 2766 * we've seen a passing read on every bit. 2767 */ 2768 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2769 0, PASS_ONE_BIT, &bit_chk, 0); 2770 sticky_bit_chk = sticky_bit_chk | bit_chk; 2771 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2772 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2773 == %u && %u [bit_chk= %u ]\n", 2774 d, sticky_bit_chk, param->write_correct_mask, 2775 stop, bit_chk); 2776 2777 if (stop == 1) { 2778 break; 2779 } else { 2780 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2781 if (bit_chk & 1) { 2782 /* 2783 * Remember a passing test as the 2784 * left_edge. 2785 */ 2786 left_edge[i] = d; 2787 } else { 2788 /* 2789 * If a left edge has not been seen 2790 * yet, then a future passing test will 2791 * mark this edge as the right edge. 2792 */ 2793 if (left_edge[i] == 2794 IO_IO_OUT1_DELAY_MAX + 1) { 2795 right_edge[i] = -(d + 1); 2796 } 2797 } 2798 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2799 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2800 (int)(bit_chk & 1), i, left_edge[i]); 2801 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2802 right_edge[i]); 2803 bit_chk = bit_chk >> 1; 2804 } 2805 } 2806 } 2807 2808 /* Reset DQ delay chains to 0 */ 2809 scc_mgr_apply_group_dq_out1_delay(0); 2810 sticky_bit_chk = 0; 2811 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2812 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2813 %d right_edge[%u]: %d\n", __func__, __LINE__, 2814 i, left_edge[i], i, right_edge[i]); 2815 2816 /* 2817 * Check for cases where we haven't found the left edge, 2818 * which makes our assignment of the the right edge invalid. 2819 * Reset it to the illegal value. 2820 */ 2821 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2822 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2823 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2824 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2825 right_edge[%u]: %d\n", __func__, __LINE__, 2826 i, right_edge[i]); 2827 } 2828 2829 /* 2830 * Reset sticky bit (except for bits where we have 2831 * seen the left edge). 2832 */ 2833 sticky_bit_chk = sticky_bit_chk << 1; 2834 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2835 sticky_bit_chk = sticky_bit_chk | 1; 2836 2837 if (i == 0) 2838 break; 2839 } 2840 2841 /* Search for the right edge of the window for each bit */ 2842 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2843 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2844 d + start_dqs); 2845 2846 writel(0, &sdr_scc_mgr->update); 2847 2848 /* 2849 * Stop searching when the read test doesn't pass AND when 2850 * we've seen a passing read on every bit. 2851 */ 2852 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2853 0, PASS_ONE_BIT, &bit_chk, 0); 2854 2855 sticky_bit_chk = sticky_bit_chk | bit_chk; 2856 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2857 2858 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2859 %u && %u\n", d, sticky_bit_chk, 2860 param->write_correct_mask, stop); 2861 2862 if (stop == 1) { 2863 if (d == 0) { 2864 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2865 i++) { 2866 /* d = 0 failed, but it passed when 2867 testing the left edge, so it must be 2868 marginal, set it to -1 */ 2869 if (right_edge[i] == 2870 IO_IO_OUT1_DELAY_MAX + 1 && 2871 left_edge[i] != 2872 IO_IO_OUT1_DELAY_MAX + 1) { 2873 right_edge[i] = -1; 2874 } 2875 } 2876 } 2877 break; 2878 } else { 2879 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2880 if (bit_chk & 1) { 2881 /* 2882 * Remember a passing test as 2883 * the right_edge. 2884 */ 2885 right_edge[i] = d; 2886 } else { 2887 if (d != 0) { 2888 /* 2889 * If a right edge has not 2890 * been seen yet, then a future 2891 * passing test will mark this 2892 * edge as the left edge. 2893 */ 2894 if (right_edge[i] == 2895 IO_IO_OUT1_DELAY_MAX + 1) 2896 left_edge[i] = -(d + 1); 2897 } else { 2898 /* 2899 * d = 0 failed, but it passed 2900 * when testing the left edge, 2901 * so it must be marginal, set 2902 * it to -1. 2903 */ 2904 if (right_edge[i] == 2905 IO_IO_OUT1_DELAY_MAX + 1 && 2906 left_edge[i] != 2907 IO_IO_OUT1_DELAY_MAX + 1) 2908 right_edge[i] = -1; 2909 /* 2910 * If a right edge has not been 2911 * seen yet, then a future 2912 * passing test will mark this 2913 * edge as the left edge. 2914 */ 2915 else if (right_edge[i] == 2916 IO_IO_OUT1_DELAY_MAX + 2917 1) 2918 left_edge[i] = -(d + 1); 2919 } 2920 } 2921 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2922 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2923 (int)(bit_chk & 1), i, left_edge[i]); 2924 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2925 right_edge[i]); 2926 bit_chk = bit_chk >> 1; 2927 } 2928 } 2929 } 2930 2931 /* Check that all bits have a window */ 2932 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2933 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2934 %d right_edge[%u]: %d", __func__, __LINE__, 2935 i, left_edge[i], i, right_edge[i]); 2936 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2937 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2938 set_failing_group_stage(test_bgn + i, 2939 CAL_STAGE_WRITES, 2940 CAL_SUBSTAGE_WRITES_CENTER); 2941 return 0; 2942 } 2943 } 2944 2945 /* Find middle of window for each DQ bit */ 2946 mid_min = left_edge[0] - right_edge[0]; 2947 min_index = 0; 2948 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2949 mid = left_edge[i] - right_edge[i]; 2950 if (mid < mid_min) { 2951 mid_min = mid; 2952 min_index = i; 2953 } 2954 } 2955 2956 /* 2957 * -mid_min/2 represents the amount that we need to move DQS. 2958 * If mid_min is odd and positive we'll need to add one to 2959 * make sure the rounding in further calculations is correct 2960 * (always bias to the right), so just add 1 for all positive values. 2961 */ 2962 if (mid_min > 0) 2963 mid_min++; 2964 mid_min = mid_min / 2; 2965 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2966 __LINE__, mid_min); 2967 2968 /* Determine the amount we can change DQS (which is -mid_min) */ 2969 orig_mid_min = mid_min; 2970 new_dqs = start_dqs; 2971 mid_min = 0; 2972 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2973 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2974 /* Initialize data for export structures */ 2975 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2976 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2977 2978 /* add delay to bring centre of all DQ windows to the same "level" */ 2979 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2980 /* Use values before divide by 2 to reduce round off error */ 2981 shift_dq = (left_edge[i] - right_edge[i] - 2982 (left_edge[min_index] - right_edge[min_index]))/2 + 2983 (orig_mid_min - mid_min); 2984 2985 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2986 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2987 2988 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2989 temp_dq_out1_delay = readl(addr + (i << 2)); 2990 if (shift_dq + (int32_t)temp_dq_out1_delay > 2991 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2992 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2993 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2994 shift_dq = -(int32_t)temp_dq_out1_delay; 2995 } 2996 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2997 i, shift_dq); 2998 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2999 scc_mgr_load_dq(i); 3000 3001 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 3002 left_edge[i] - shift_dq + (-mid_min), 3003 right_edge[i] + shift_dq - (-mid_min)); 3004 /* To determine values for export structures */ 3005 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3006 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3007 3008 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3009 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3010 } 3011 3012 /* Move DQS */ 3013 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3014 writel(0, &sdr_scc_mgr->update); 3015 3016 /* Centre DM */ 3017 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3018 3019 /* 3020 * set the left and right edge of each bit to an illegal value, 3021 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3022 */ 3023 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3024 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3025 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3026 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3027 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3028 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3029 int32_t win_best = 0; 3030 3031 /* Search for the/part of the window with DM shift */ 3032 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3033 scc_mgr_apply_group_dm_out1_delay(d); 3034 writel(0, &sdr_scc_mgr->update); 3035 3036 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3037 PASS_ALL_BITS, &bit_chk, 3038 0)) { 3039 /* USE Set current end of the window */ 3040 end_curr = -d; 3041 /* 3042 * If a starting edge of our window has not been seen 3043 * this is our current start of the DM window. 3044 */ 3045 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3046 bgn_curr = -d; 3047 3048 /* 3049 * If current window is bigger than best seen. 3050 * Set best seen to be current window. 3051 */ 3052 if ((end_curr-bgn_curr+1) > win_best) { 3053 win_best = end_curr-bgn_curr+1; 3054 bgn_best = bgn_curr; 3055 end_best = end_curr; 3056 } 3057 } else { 3058 /* We just saw a failing test. Reset temp edge */ 3059 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3060 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3061 } 3062 } 3063 3064 3065 /* Reset DM delay chains to 0 */ 3066 scc_mgr_apply_group_dm_out1_delay(0); 3067 3068 /* 3069 * Check to see if the current window nudges up aganist 0 delay. 3070 * If so we need to continue the search by shifting DQS otherwise DQS 3071 * search begins as a new search. */ 3072 if (end_curr != 0) { 3073 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3074 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3075 } 3076 3077 /* Search for the/part of the window with DQS shifts */ 3078 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3079 /* 3080 * Note: This only shifts DQS, so are we limiting ourselve to 3081 * width of DQ unnecessarily. 3082 */ 3083 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3084 d + new_dqs); 3085 3086 writel(0, &sdr_scc_mgr->update); 3087 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3088 PASS_ALL_BITS, &bit_chk, 3089 0)) { 3090 /* USE Set current end of the window */ 3091 end_curr = d; 3092 /* 3093 * If a beginning edge of our window has not been seen 3094 * this is our current begin of the DM window. 3095 */ 3096 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3097 bgn_curr = d; 3098 3099 /* 3100 * If current window is bigger than best seen. Set best 3101 * seen to be current window. 3102 */ 3103 if ((end_curr-bgn_curr+1) > win_best) { 3104 win_best = end_curr-bgn_curr+1; 3105 bgn_best = bgn_curr; 3106 end_best = end_curr; 3107 } 3108 } else { 3109 /* We just saw a failing test. Reset temp edge */ 3110 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3111 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3112 3113 /* Early exit optimization: if ther remaining delay 3114 chain space is less than already seen largest window 3115 we can exit */ 3116 if ((win_best-1) > 3117 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3118 break; 3119 } 3120 } 3121 } 3122 3123 /* assign left and right edge for cal and reporting; */ 3124 left_edge[0] = -1*bgn_best; 3125 right_edge[0] = end_best; 3126 3127 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3128 __LINE__, left_edge[0], right_edge[0]); 3129 3130 /* Move DQS (back to orig) */ 3131 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3132 3133 /* Move DM */ 3134 3135 /* Find middle of window for the DM bit */ 3136 mid = (left_edge[0] - right_edge[0]) / 2; 3137 3138 /* only move right, since we are not moving DQS/DQ */ 3139 if (mid < 0) 3140 mid = 0; 3141 3142 /* dm_marign should fail if we never find a window */ 3143 if (win_best == 0) 3144 dm_margin = -1; 3145 else 3146 dm_margin = left_edge[0] - mid; 3147 3148 scc_mgr_apply_group_dm_out1_delay(mid); 3149 writel(0, &sdr_scc_mgr->update); 3150 3151 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3152 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3153 right_edge[0], mid, dm_margin); 3154 /* Export values */ 3155 gbl->fom_out += dq_margin + dqs_margin; 3156 3157 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3158 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3159 dq_margin, dqs_margin, dm_margin); 3160 3161 /* 3162 * Do not remove this line as it makes sure all of our 3163 * decisions have been applied. 3164 */ 3165 writel(0, &sdr_scc_mgr->update); 3166 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3167 } 3168 3169 /* calibrate the write operations */ 3170 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3171 uint32_t test_bgn) 3172 { 3173 /* update info for sims */ 3174 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3175 3176 reg_file_set_stage(CAL_STAGE_WRITES); 3177 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3178 3179 reg_file_set_group(g); 3180 3181 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3182 set_failing_group_stage(g, CAL_STAGE_WRITES, 3183 CAL_SUBSTAGE_WRITES_CENTER); 3184 return 0; 3185 } 3186 3187 return 1; 3188 } 3189 3190 /** 3191 * mem_precharge_and_activate() - Precharge all banks and activate 3192 * 3193 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3194 */ 3195 static void mem_precharge_and_activate(void) 3196 { 3197 int r; 3198 3199 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3200 /* Test if the rank should be skipped. */ 3201 if (param->skip_ranks[r]) 3202 continue; 3203 3204 /* Set rank. */ 3205 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3206 3207 /* Precharge all banks. */ 3208 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3209 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3210 3211 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3212 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3213 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3214 3215 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3216 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3217 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3218 3219 /* Activate rows. */ 3220 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3221 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3222 } 3223 } 3224 3225 /** 3226 * mem_init_latency() - Configure memory RLAT and WLAT settings 3227 * 3228 * Configure memory RLAT and WLAT parameters. 3229 */ 3230 static void mem_init_latency(void) 3231 { 3232 /* 3233 * For AV/CV, LFIFO is hardened and always runs at full rate 3234 * so max latency in AFI clocks, used here, is correspondingly 3235 * smaller. 3236 */ 3237 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3238 u32 rlat, wlat; 3239 3240 debug("%s:%d\n", __func__, __LINE__); 3241 3242 /* 3243 * Read in write latency. 3244 * WL for Hard PHY does not include additive latency. 3245 */ 3246 wlat = readl(&data_mgr->t_wl_add); 3247 wlat += readl(&data_mgr->mem_t_add); 3248 3249 gbl->rw_wl_nop_cycles = wlat - 1; 3250 3251 /* Read in readl latency. */ 3252 rlat = readl(&data_mgr->t_rl_add); 3253 3254 /* Set a pretty high read latency initially. */ 3255 gbl->curr_read_lat = rlat + 16; 3256 if (gbl->curr_read_lat > max_latency) 3257 gbl->curr_read_lat = max_latency; 3258 3259 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3260 3261 /* Advertise write latency. */ 3262 writel(wlat, &phy_mgr_cfg->afi_wlat); 3263 } 3264 3265 /** 3266 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3267 * 3268 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3269 */ 3270 static void mem_skip_calibrate(void) 3271 { 3272 uint32_t vfifo_offset; 3273 uint32_t i, j, r; 3274 3275 debug("%s:%d\n", __func__, __LINE__); 3276 /* Need to update every shadow register set used by the interface */ 3277 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3278 r += NUM_RANKS_PER_SHADOW_REG) { 3279 /* 3280 * Set output phase alignment settings appropriate for 3281 * skip calibration. 3282 */ 3283 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3284 scc_mgr_set_dqs_en_phase(i, 0); 3285 #if IO_DLL_CHAIN_LENGTH == 6 3286 scc_mgr_set_dqdqs_output_phase(i, 6); 3287 #else 3288 scc_mgr_set_dqdqs_output_phase(i, 7); 3289 #endif 3290 /* 3291 * Case:33398 3292 * 3293 * Write data arrives to the I/O two cycles before write 3294 * latency is reached (720 deg). 3295 * -> due to bit-slip in a/c bus 3296 * -> to allow board skew where dqs is longer than ck 3297 * -> how often can this happen!? 3298 * -> can claim back some ptaps for high freq 3299 * support if we can relax this, but i digress... 3300 * 3301 * The write_clk leads mem_ck by 90 deg 3302 * The minimum ptap of the OPA is 180 deg 3303 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3304 * The write_clk is always delayed by 2 ptaps 3305 * 3306 * Hence, to make DQS aligned to CK, we need to delay 3307 * DQS by: 3308 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3309 * 3310 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3311 * gives us the number of ptaps, which simplies to: 3312 * 3313 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3314 */ 3315 scc_mgr_set_dqdqs_output_phase(i, 3316 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3317 } 3318 writel(0xff, &sdr_scc_mgr->dqs_ena); 3319 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3320 3321 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3322 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3323 SCC_MGR_GROUP_COUNTER_OFFSET); 3324 } 3325 writel(0xff, &sdr_scc_mgr->dq_ena); 3326 writel(0xff, &sdr_scc_mgr->dm_ena); 3327 writel(0, &sdr_scc_mgr->update); 3328 } 3329 3330 /* Compensate for simulation model behaviour */ 3331 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3332 scc_mgr_set_dqs_bus_in_delay(i, 10); 3333 scc_mgr_load_dqs(i); 3334 } 3335 writel(0, &sdr_scc_mgr->update); 3336 3337 /* 3338 * ArriaV has hard FIFOs that can only be initialized by incrementing 3339 * in sequencer. 3340 */ 3341 vfifo_offset = CALIB_VFIFO_OFFSET; 3342 for (j = 0; j < vfifo_offset; j++) 3343 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3344 writel(0, &phy_mgr_cmd->fifo_reset); 3345 3346 /* 3347 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3348 * setting from generation-time constant. 3349 */ 3350 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3351 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3352 } 3353 3354 /** 3355 * mem_calibrate() - Memory calibration entry point. 3356 * 3357 * Perform memory calibration. 3358 */ 3359 static uint32_t mem_calibrate(void) 3360 { 3361 uint32_t i; 3362 uint32_t rank_bgn, sr; 3363 uint32_t write_group, write_test_bgn; 3364 uint32_t read_group, read_test_bgn; 3365 uint32_t run_groups, current_run; 3366 uint32_t failing_groups = 0; 3367 uint32_t group_failed = 0; 3368 3369 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3370 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3371 3372 debug("%s:%d\n", __func__, __LINE__); 3373 3374 /* Initialize the data settings */ 3375 gbl->error_substage = CAL_SUBSTAGE_NIL; 3376 gbl->error_stage = CAL_STAGE_NIL; 3377 gbl->error_group = 0xff; 3378 gbl->fom_in = 0; 3379 gbl->fom_out = 0; 3380 3381 /* Initialize WLAT and RLAT. */ 3382 mem_init_latency(); 3383 3384 /* Initialize bit slips. */ 3385 mem_precharge_and_activate(); 3386 3387 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3388 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3389 SCC_MGR_GROUP_COUNTER_OFFSET); 3390 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3391 if (i == 0) 3392 scc_mgr_set_hhp_extras(); 3393 3394 scc_set_bypass_mode(i); 3395 } 3396 3397 /* Calibration is skipped. */ 3398 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3399 /* 3400 * Set VFIFO and LFIFO to instant-on settings in skip 3401 * calibration mode. 3402 */ 3403 mem_skip_calibrate(); 3404 3405 /* 3406 * Do not remove this line as it makes sure all of our 3407 * decisions have been applied. 3408 */ 3409 writel(0, &sdr_scc_mgr->update); 3410 return 1; 3411 } 3412 3413 /* Calibration is not skipped. */ 3414 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3415 /* 3416 * Zero all delay chain/phase settings for all 3417 * groups and all shadow register sets. 3418 */ 3419 scc_mgr_zero_all(); 3420 3421 run_groups = ~param->skip_groups; 3422 3423 for (write_group = 0, write_test_bgn = 0; write_group 3424 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3425 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3426 3427 /* Initialize the group failure */ 3428 group_failed = 0; 3429 3430 current_run = run_groups & ((1 << 3431 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3432 run_groups = run_groups >> 3433 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3434 3435 if (current_run == 0) 3436 continue; 3437 3438 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3439 SCC_MGR_GROUP_COUNTER_OFFSET); 3440 scc_mgr_zero_group(write_group, 0); 3441 3442 for (read_group = write_group * rwdqs_ratio, 3443 read_test_bgn = 0; 3444 read_group < (write_group + 1) * rwdqs_ratio; 3445 read_group++, 3446 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3447 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3448 continue; 3449 3450 /* Calibrate the VFIFO */ 3451 if (rw_mgr_mem_calibrate_vfifo(read_group, 3452 read_test_bgn)) 3453 continue; 3454 3455 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3456 return 0; 3457 3458 /* The group failed, we're done. */ 3459 goto grp_failed; 3460 } 3461 3462 /* Calibrate the output side */ 3463 for (rank_bgn = 0, sr = 0; 3464 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3465 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3466 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3467 continue; 3468 3469 /* Not needed in quick mode! */ 3470 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3471 continue; 3472 3473 /* 3474 * Determine if this set of ranks 3475 * should be skipped entirely. 3476 */ 3477 if (param->skip_shadow_regs[sr]) 3478 continue; 3479 3480 /* Calibrate WRITEs */ 3481 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3482 write_group, write_test_bgn)) 3483 continue; 3484 3485 group_failed = 1; 3486 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3487 return 0; 3488 } 3489 3490 /* Some group failed, we're done. */ 3491 if (group_failed) 3492 goto grp_failed; 3493 3494 for (read_group = write_group * rwdqs_ratio, 3495 read_test_bgn = 0; 3496 read_group < (write_group + 1) * rwdqs_ratio; 3497 read_group++, 3498 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3499 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3500 continue; 3501 3502 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3503 read_test_bgn)) 3504 continue; 3505 3506 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3507 return 0; 3508 3509 /* The group failed, we're done. */ 3510 goto grp_failed; 3511 } 3512 3513 /* No group failed, continue as usual. */ 3514 continue; 3515 3516 grp_failed: /* A group failed, increment the counter. */ 3517 failing_groups++; 3518 } 3519 3520 /* 3521 * USER If there are any failing groups then report 3522 * the failure. 3523 */ 3524 if (failing_groups != 0) 3525 return 0; 3526 3527 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3528 continue; 3529 3530 /* 3531 * If we're skipping groups as part of debug, 3532 * don't calibrate LFIFO. 3533 */ 3534 if (param->skip_groups != 0) 3535 continue; 3536 3537 /* Calibrate the LFIFO */ 3538 if (!rw_mgr_mem_calibrate_lfifo()) 3539 return 0; 3540 } 3541 3542 /* 3543 * Do not remove this line as it makes sure all of our decisions 3544 * have been applied. 3545 */ 3546 writel(0, &sdr_scc_mgr->update); 3547 return 1; 3548 } 3549 3550 /** 3551 * run_mem_calibrate() - Perform memory calibration 3552 * 3553 * This function triggers the entire memory calibration procedure. 3554 */ 3555 static int run_mem_calibrate(void) 3556 { 3557 int pass; 3558 3559 debug("%s:%d\n", __func__, __LINE__); 3560 3561 /* Reset pass/fail status shown on afi_cal_success/fail */ 3562 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3563 3564 /* Stop tracking manager. */ 3565 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3566 3567 phy_mgr_initialize(); 3568 rw_mgr_mem_initialize(); 3569 3570 /* Perform the actual memory calibration. */ 3571 pass = mem_calibrate(); 3572 3573 mem_precharge_and_activate(); 3574 writel(0, &phy_mgr_cmd->fifo_reset); 3575 3576 /* Handoff. */ 3577 rw_mgr_mem_handoff(); 3578 /* 3579 * In Hard PHY this is a 2-bit control: 3580 * 0: AFI Mux Select 3581 * 1: DDIO Mux Select 3582 */ 3583 writel(0x2, &phy_mgr_cfg->mux_sel); 3584 3585 /* Start tracking manager. */ 3586 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3587 3588 return pass; 3589 } 3590 3591 /** 3592 * debug_mem_calibrate() - Report result of memory calibration 3593 * @pass: Value indicating whether calibration passed or failed 3594 * 3595 * This function reports the results of the memory calibration 3596 * and writes debug information into the register file. 3597 */ 3598 static void debug_mem_calibrate(int pass) 3599 { 3600 uint32_t debug_info; 3601 3602 if (pass) { 3603 printf("%s: CALIBRATION PASSED\n", __FILE__); 3604 3605 gbl->fom_in /= 2; 3606 gbl->fom_out /= 2; 3607 3608 if (gbl->fom_in > 0xff) 3609 gbl->fom_in = 0xff; 3610 3611 if (gbl->fom_out > 0xff) 3612 gbl->fom_out = 0xff; 3613 3614 /* Update the FOM in the register file */ 3615 debug_info = gbl->fom_in; 3616 debug_info |= gbl->fom_out << 8; 3617 writel(debug_info, &sdr_reg_file->fom); 3618 3619 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3620 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3621 } else { 3622 printf("%s: CALIBRATION FAILED\n", __FILE__); 3623 3624 debug_info = gbl->error_stage; 3625 debug_info |= gbl->error_substage << 8; 3626 debug_info |= gbl->error_group << 16; 3627 3628 writel(debug_info, &sdr_reg_file->failing_stage); 3629 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3630 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3631 3632 /* Update the failing group/stage in the register file */ 3633 debug_info = gbl->error_stage; 3634 debug_info |= gbl->error_substage << 8; 3635 debug_info |= gbl->error_group << 16; 3636 writel(debug_info, &sdr_reg_file->failing_stage); 3637 } 3638 3639 printf("%s: Calibration complete\n", __FILE__); 3640 } 3641 3642 /** 3643 * hc_initialize_rom_data() - Initialize ROM data 3644 * 3645 * Initialize ROM data. 3646 */ 3647 static void hc_initialize_rom_data(void) 3648 { 3649 u32 i, addr; 3650 3651 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3652 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3653 writel(inst_rom_init[i], addr + (i << 2)); 3654 3655 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3656 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3657 writel(ac_rom_init[i], addr + (i << 2)); 3658 } 3659 3660 /** 3661 * initialize_reg_file() - Initialize SDR register file 3662 * 3663 * Initialize SDR register file. 3664 */ 3665 static void initialize_reg_file(void) 3666 { 3667 /* Initialize the register file with the correct data */ 3668 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3669 writel(0, &sdr_reg_file->debug_data_addr); 3670 writel(0, &sdr_reg_file->cur_stage); 3671 writel(0, &sdr_reg_file->fom); 3672 writel(0, &sdr_reg_file->failing_stage); 3673 writel(0, &sdr_reg_file->debug1); 3674 writel(0, &sdr_reg_file->debug2); 3675 } 3676 3677 /** 3678 * initialize_hps_phy() - Initialize HPS PHY 3679 * 3680 * Initialize HPS PHY. 3681 */ 3682 static void initialize_hps_phy(void) 3683 { 3684 uint32_t reg; 3685 /* 3686 * Tracking also gets configured here because it's in the 3687 * same register. 3688 */ 3689 uint32_t trk_sample_count = 7500; 3690 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3691 /* 3692 * Format is number of outer loops in the 16 MSB, sample 3693 * count in 16 LSB. 3694 */ 3695 3696 reg = 0; 3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3698 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3699 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3703 /* 3704 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3705 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3706 */ 3707 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3708 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3709 trk_sample_count); 3710 writel(reg, &sdr_ctrl->phy_ctrl0); 3711 3712 reg = 0; 3713 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3714 trk_sample_count >> 3715 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3716 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3717 trk_long_idle_sample_count); 3718 writel(reg, &sdr_ctrl->phy_ctrl1); 3719 3720 reg = 0; 3721 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3722 trk_long_idle_sample_count >> 3723 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3724 writel(reg, &sdr_ctrl->phy_ctrl2); 3725 } 3726 3727 /** 3728 * initialize_tracking() - Initialize tracking 3729 * 3730 * Initialize the register file with usable initial data. 3731 */ 3732 static void initialize_tracking(void) 3733 { 3734 /* 3735 * Initialize the register file with the correct data. 3736 * Compute usable version of value in case we skip full 3737 * computation later. 3738 */ 3739 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3740 &sdr_reg_file->dtaps_per_ptap); 3741 3742 /* trk_sample_count */ 3743 writel(7500, &sdr_reg_file->trk_sample_count); 3744 3745 /* longidle outer loop [15:0] */ 3746 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3747 3748 /* 3749 * longidle sample count [31:24] 3750 * trfc, worst case of 933Mhz 4Gb [23:16] 3751 * trcd, worst case [15:8] 3752 * vfifo wait [7:0] 3753 */ 3754 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3755 &sdr_reg_file->delays); 3756 3757 /* mux delay */ 3758 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3759 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3760 &sdr_reg_file->trk_rw_mgr_addr); 3761 3762 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3763 &sdr_reg_file->trk_read_dqs_width); 3764 3765 /* trefi [7:0] */ 3766 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3767 &sdr_reg_file->trk_rfsh); 3768 } 3769 3770 int sdram_calibration_full(void) 3771 { 3772 struct param_type my_param; 3773 struct gbl_type my_gbl; 3774 uint32_t pass; 3775 3776 memset(&my_param, 0, sizeof(my_param)); 3777 memset(&my_gbl, 0, sizeof(my_gbl)); 3778 3779 param = &my_param; 3780 gbl = &my_gbl; 3781 3782 /* Set the calibration enabled by default */ 3783 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3784 /* 3785 * Only sweep all groups (regardless of fail state) by default 3786 * Set enabled read test by default. 3787 */ 3788 #if DISABLE_GUARANTEED_READ 3789 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3790 #endif 3791 /* Initialize the register file */ 3792 initialize_reg_file(); 3793 3794 /* Initialize any PHY CSR */ 3795 initialize_hps_phy(); 3796 3797 scc_mgr_initialize(); 3798 3799 initialize_tracking(); 3800 3801 printf("%s: Preparing to start memory calibration\n", __FILE__); 3802 3803 debug("%s:%d\n", __func__, __LINE__); 3804 debug_cond(DLEVEL == 1, 3805 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3806 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3807 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3808 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3809 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3810 debug_cond(DLEVEL == 1, 3811 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3812 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3813 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3814 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3815 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3816 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3817 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3818 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3819 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3820 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3821 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3822 IO_IO_OUT2_DELAY_MAX); 3823 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3824 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3825 3826 hc_initialize_rom_data(); 3827 3828 /* update info for sims */ 3829 reg_file_set_stage(CAL_STAGE_NIL); 3830 reg_file_set_group(0); 3831 3832 /* 3833 * Load global needed for those actions that require 3834 * some dynamic calibration support. 3835 */ 3836 dyn_calib_steps = STATIC_CALIB_STEPS; 3837 /* 3838 * Load global to allow dynamic selection of delay loop settings 3839 * based on calibration mode. 3840 */ 3841 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3842 skip_delay_mask = 0xff; 3843 else 3844 skip_delay_mask = 0x0; 3845 3846 pass = run_mem_calibrate(); 3847 debug_mem_calibrate(pass); 3848 return pass; 3849 } 3850