xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 9866824794713dc303f6dd7b8469502ba448d3b3)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /**
1173  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1174  * @rank_bgn:		Rank number
1175  * @group:		Read/Write group
1176  * @num_tries:		Number of retries of the test
1177  * @all_correct:	All bits must be correct in the mask
1178  * @bit_chk:		Resulting bit mask after the test
1179  * @all_groups:		Test all R/W groups
1180  * @all_ranks:		Test all ranks
1181  *
1182  * Try a read and see if it returns correct data back. Test has dummy reads
1183  * inserted into the mix used to align DQS enable. Test has more thorough
1184  * checks than the regular read test.
1185  */
1186 static int
1187 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1188 			       const u32 num_tries, const u32 all_correct,
1189 			       u32 *bit_chk,
1190 			       const u32 all_groups, const u32 all_ranks)
1191 {
1192 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1193 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1194 	const u32 quick_read_mode =
1195 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1196 		 ENABLE_SUPER_QUICK_CALIBRATION);
1197 	u32 correct_mask_vg = param->read_correct_mask_vg;
1198 	u32 tmp_bit_chk;
1199 	u32 base_rw_mgr;
1200 	u32 addr;
1201 
1202 	int r, vg, ret;
1203 
1204 	*bit_chk = param->read_correct_mask;
1205 
1206 	for (r = rank_bgn; r < rank_end; r++) {
1207 		if (param->skip_ranks[r])
1208 			/* request to skip the rank */
1209 			continue;
1210 
1211 		/* set rank */
1212 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1213 
1214 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1215 
1216 		writel(RW_MGR_READ_B2B_WAIT1,
1217 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1218 
1219 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1220 		writel(RW_MGR_READ_B2B_WAIT2,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1222 
1223 		if (quick_read_mode)
1224 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1225 			/* need at least two (1+1) reads to capture failures */
1226 		else if (all_groups)
1227 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1228 		else
1229 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1230 
1231 		writel(RW_MGR_READ_B2B,
1232 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1233 		if (all_groups)
1234 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1235 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1236 			       &sdr_rw_load_mgr_regs->load_cntr3);
1237 		else
1238 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1239 
1240 		writel(RW_MGR_READ_B2B,
1241 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1242 
1243 		tmp_bit_chk = 0;
1244 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1245 		     vg--) {
1246 			/* Reset the FIFOs to get pointers to known state. */
1247 			writel(0, &phy_mgr_cmd->fifo_reset);
1248 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1249 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1250 
1251 			if (all_groups) {
1252 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1253 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1254 			} else {
1255 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1256 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1257 			}
1258 
1259 			writel(RW_MGR_READ_B2B, addr +
1260 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1261 			       vg) << 2));
1262 
1263 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1264 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1265 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1266 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1267 		}
1268 
1269 		*bit_chk &= tmp_bit_chk;
1270 	}
1271 
1272 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1273 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1274 
1275 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1276 
1277 	if (all_correct) {
1278 		ret = (*bit_chk == param->read_correct_mask);
1279 		debug_cond(DLEVEL == 2,
1280 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1281 			   __func__, __LINE__, group, all_groups, *bit_chk,
1282 			   param->read_correct_mask, ret);
1283 	} else	{
1284 		ret = (*bit_chk != 0x00);
1285 		debug_cond(DLEVEL == 2,
1286 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1287 			   __func__, __LINE__, group, all_groups, *bit_chk,
1288 			   0, ret);
1289 	}
1290 
1291 	return ret;
1292 }
1293 
1294 /**
1295  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1296  * @grp:		Read/Write group
1297  * @num_tries:		Number of retries of the test
1298  * @all_correct:	All bits must be correct in the mask
1299  * @all_groups:		Test all R/W groups
1300  *
1301  * Perform a READ test across all memory ranks.
1302  */
1303 static int
1304 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1305 					 const u32 all_correct,
1306 					 const u32 all_groups)
1307 {
1308 	u32 bit_chk;
1309 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1310 					      &bit_chk, all_groups, 1);
1311 }
1312 
1313 /**
1314  * rw_mgr_incr_vfifo() - Increase VFIFO value
1315  * @grp:	Read/Write group
1316  *
1317  * Increase VFIFO value.
1318  */
1319 static void rw_mgr_incr_vfifo(const u32 grp)
1320 {
1321 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1322 }
1323 
1324 /**
1325  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1326  * @grp:	Read/Write group
1327  *
1328  * Decrease VFIFO value.
1329  */
1330 static void rw_mgr_decr_vfifo(const u32 grp)
1331 {
1332 	u32 i;
1333 
1334 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1335 		rw_mgr_incr_vfifo(grp);
1336 }
1337 
1338 /**
1339  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1340  * @grp:	Read/Write group
1341  *
1342  * Push VFIFO until a failing read happens.
1343  */
1344 static int find_vfifo_failing_read(const u32 grp)
1345 {
1346 	u32 v, ret, fail_cnt = 0;
1347 
1348 	for (v = 0; v < VFIFO_SIZE; v++) {
1349 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1350 			   __func__, __LINE__, v);
1351 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1352 						PASS_ONE_BIT, 0);
1353 		if (!ret) {
1354 			fail_cnt++;
1355 
1356 			if (fail_cnt == 2)
1357 				return v;
1358 		}
1359 
1360 		/* Fiddle with FIFO. */
1361 		rw_mgr_incr_vfifo(grp);
1362 	}
1363 
1364 	/* No failing read found! Something must have gone wrong. */
1365 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1366 	return 0;
1367 }
1368 
1369 /**
1370  * sdr_find_phase_delay() - Find DQS enable phase or delay
1371  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1372  * @delay:	If 1, look for delay, if 0, look for phase
1373  * @grp:	Read/Write group
1374  * @work:	Working window position
1375  * @work_inc:	Working window increment
1376  * @pd:		DQS Phase/Delay Iterator
1377  *
1378  * Find working or non-working DQS enable phase setting.
1379  */
1380 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1381 				u32 *work, const u32 work_inc, u32 *pd)
1382 {
1383 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1384 	u32 ret;
1385 
1386 	for (; *pd <= max; (*pd)++) {
1387 		if (delay)
1388 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1389 		else
1390 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1391 
1392 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1393 					PASS_ONE_BIT, 0);
1394 		if (!working)
1395 			ret = !ret;
1396 
1397 		if (ret)
1398 			return 0;
1399 
1400 		if (work)
1401 			*work += work_inc;
1402 	}
1403 
1404 	return -EINVAL;
1405 }
1406 /**
1407  * sdr_find_phase() - Find DQS enable phase
1408  * @working:	If 1, look for working phase, if 0, look for non-working phase
1409  * @grp:	Read/Write group
1410  * @work:	Working window position
1411  * @i:		Iterator
1412  * @p:		DQS Phase Iterator
1413  *
1414  * Find working or non-working DQS enable phase setting.
1415  */
1416 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1417 			  u32 *i, u32 *p)
1418 {
1419 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1420 	int ret;
1421 
1422 	for (; *i < end; (*i)++) {
1423 		if (working)
1424 			*p = 0;
1425 
1426 		ret = sdr_find_phase_delay(working, 0, grp, work,
1427 					   IO_DELAY_PER_OPA_TAP, p);
1428 		if (!ret)
1429 			return 0;
1430 
1431 		if (*p > IO_DQS_EN_PHASE_MAX) {
1432 			/* Fiddle with FIFO. */
1433 			rw_mgr_incr_vfifo(grp);
1434 			if (!working)
1435 				*p = 0;
1436 		}
1437 	}
1438 
1439 	return -EINVAL;
1440 }
1441 
1442 /**
1443  * sdr_working_phase() - Find working DQS enable phase
1444  * @grp:	Read/Write group
1445  * @work_bgn:	Working window start position
1446  * @d:		dtaps output value
1447  * @p:		DQS Phase Iterator
1448  * @i:		Iterator
1449  *
1450  * Find working DQS enable phase setting.
1451  */
1452 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1453 			     u32 *p, u32 *i)
1454 {
1455 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1456 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1457 	int ret;
1458 
1459 	*work_bgn = 0;
1460 
1461 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1462 		*i = 0;
1463 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1464 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1465 		if (!ret)
1466 			return 0;
1467 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1468 	}
1469 
1470 	/* Cannot find working solution */
1471 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1472 		   __func__, __LINE__);
1473 	return -EINVAL;
1474 }
1475 
1476 /**
1477  * sdr_backup_phase() - Find DQS enable backup phase
1478  * @grp:	Read/Write group
1479  * @work_bgn:	Working window start position
1480  * @p:		DQS Phase Iterator
1481  *
1482  * Find DQS enable backup phase setting.
1483  */
1484 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1485 {
1486 	u32 tmp_delay, d;
1487 	int ret;
1488 
1489 	/* Special case code for backing up a phase */
1490 	if (*p == 0) {
1491 		*p = IO_DQS_EN_PHASE_MAX;
1492 		rw_mgr_decr_vfifo(grp);
1493 	} else {
1494 		(*p)--;
1495 	}
1496 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1497 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1498 
1499 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1500 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1501 
1502 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1503 					PASS_ONE_BIT, 0);
1504 		if (ret) {
1505 			*work_bgn = tmp_delay;
1506 			break;
1507 		}
1508 
1509 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1510 	}
1511 
1512 	/* Restore VFIFO to old state before we decremented it (if needed). */
1513 	(*p)++;
1514 	if (*p > IO_DQS_EN_PHASE_MAX) {
1515 		*p = 0;
1516 		rw_mgr_incr_vfifo(grp);
1517 	}
1518 
1519 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1520 }
1521 
1522 /**
1523  * sdr_nonworking_phase() - Find non-working DQS enable phase
1524  * @grp:	Read/Write group
1525  * @work_end:	Working window end position
1526  * @p:		DQS Phase Iterator
1527  * @i:		Iterator
1528  *
1529  * Find non-working DQS enable phase setting.
1530  */
1531 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1532 {
1533 	int ret;
1534 
1535 	(*p)++;
1536 	*work_end += IO_DELAY_PER_OPA_TAP;
1537 	if (*p > IO_DQS_EN_PHASE_MAX) {
1538 		/* Fiddle with FIFO. */
1539 		*p = 0;
1540 		rw_mgr_incr_vfifo(grp);
1541 	}
1542 
1543 	ret = sdr_find_phase(0, grp, work_end, i, p);
1544 	if (ret) {
1545 		/* Cannot see edge of failing read. */
1546 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1547 			   __func__, __LINE__);
1548 	}
1549 
1550 	return ret;
1551 }
1552 
1553 /**
1554  * sdr_find_window_center() - Find center of the working DQS window.
1555  * @grp:	Read/Write group
1556  * @work_bgn:	First working settings
1557  * @work_end:	Last working settings
1558  *
1559  * Find center of the working DQS enable window.
1560  */
1561 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1562 				  const u32 work_end)
1563 {
1564 	u32 work_mid;
1565 	int tmp_delay = 0;
1566 	int i, p, d;
1567 
1568 	work_mid = (work_bgn + work_end) / 2;
1569 
1570 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1571 		   work_bgn, work_end, work_mid);
1572 	/* Get the middle delay to be less than a VFIFO delay */
1573 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1574 
1575 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1576 	work_mid %= tmp_delay;
1577 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1578 
1579 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1580 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1581 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1582 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1583 
1584 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1585 
1586 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1587 	if (d > IO_DQS_EN_DELAY_MAX)
1588 		d = IO_DQS_EN_DELAY_MAX;
1589 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1590 
1591 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1592 
1593 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1594 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1595 
1596 	/*
1597 	 * push vfifo until we can successfully calibrate. We can do this
1598 	 * because the largest possible margin in 1 VFIFO cycle.
1599 	 */
1600 	for (i = 0; i < VFIFO_SIZE; i++) {
1601 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1602 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1603 							     PASS_ONE_BIT,
1604 							     0)) {
1605 			debug_cond(DLEVEL == 2,
1606 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1607 				   __func__, __LINE__, p, d);
1608 			return 0;
1609 		}
1610 
1611 		/* Fiddle with FIFO. */
1612 		rw_mgr_incr_vfifo(grp);
1613 	}
1614 
1615 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1616 		   __func__, __LINE__);
1617 	return -EINVAL;
1618 }
1619 
1620 /**
1621  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1622  * @grp:	Read/Write Group
1623  *
1624  * Find a good DQS enable to use.
1625  */
1626 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1627 {
1628 	u32 d, p, i;
1629 	u32 dtaps_per_ptap;
1630 	u32 work_bgn, work_end;
1631 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1632 	int ret;
1633 
1634 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1635 
1636 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1637 
1638 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1639 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1640 
1641 	/* Step 0: Determine number of delay taps for each phase tap. */
1642 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1643 
1644 	/* Step 1: First push vfifo until we get a failing read. */
1645 	find_vfifo_failing_read(grp);
1646 
1647 	/* Step 2: Find first working phase, increment in ptaps. */
1648 	work_bgn = 0;
1649 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1650 	if (ret)
1651 		return ret;
1652 
1653 	work_end = work_bgn;
1654 
1655 	/*
1656 	 * If d is 0 then the working window covers a phase tap and we can
1657 	 * follow the old procedure. Otherwise, we've found the beginning
1658 	 * and we need to increment the dtaps until we find the end.
1659 	 */
1660 	if (d == 0) {
1661 		/*
1662 		 * Step 3a: If we have room, back off by one and
1663 		 *          increment in dtaps.
1664 		 */
1665 		sdr_backup_phase(grp, &work_bgn, &p);
1666 
1667 		/*
1668 		 * Step 4a: go forward from working phase to non working
1669 		 * phase, increment in ptaps.
1670 		 */
1671 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1672 		if (ret)
1673 			return ret;
1674 
1675 		/* Step 5a: Back off one from last, increment in dtaps. */
1676 
1677 		/* Special case code for backing up a phase */
1678 		if (p == 0) {
1679 			p = IO_DQS_EN_PHASE_MAX;
1680 			rw_mgr_decr_vfifo(grp);
1681 		} else {
1682 			p = p - 1;
1683 		}
1684 
1685 		work_end -= IO_DELAY_PER_OPA_TAP;
1686 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1687 
1688 		d = 0;
1689 
1690 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1691 			   __func__, __LINE__, p);
1692 	}
1693 
1694 	/* The dtap increment to find the failing edge is done here. */
1695 	sdr_find_phase_delay(0, 1, grp, &work_end,
1696 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1697 
1698 	/* Go back to working dtap */
1699 	if (d != 0)
1700 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1701 
1702 	debug_cond(DLEVEL == 2,
1703 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1704 		   __func__, __LINE__, p, d - 1, work_end);
1705 
1706 	if (work_end < work_bgn) {
1707 		/* nil range */
1708 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1709 			   __func__, __LINE__);
1710 		return -EINVAL;
1711 	}
1712 
1713 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1714 		   __func__, __LINE__, work_bgn, work_end);
1715 
1716 	/*
1717 	 * We need to calculate the number of dtaps that equal a ptap.
1718 	 * To do that we'll back up a ptap and re-find the edge of the
1719 	 * window using dtaps
1720 	 */
1721 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1722 		   __func__, __LINE__);
1723 
1724 	/* Special case code for backing up a phase */
1725 	if (p == 0) {
1726 		p = IO_DQS_EN_PHASE_MAX;
1727 		rw_mgr_decr_vfifo(grp);
1728 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1729 			   __func__, __LINE__, p);
1730 	} else {
1731 		p = p - 1;
1732 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1733 			   __func__, __LINE__, p);
1734 	}
1735 
1736 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1737 
1738 	/*
1739 	 * Increase dtap until we first see a passing read (in case the
1740 	 * window is smaller than a ptap), and then a failing read to
1741 	 * mark the edge of the window again.
1742 	 */
1743 
1744 	/* Find a passing read. */
1745 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1746 		   __func__, __LINE__);
1747 
1748 	initial_failing_dtap = d;
1749 
1750 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1751 	if (found_passing_read) {
1752 		/* Find a failing read. */
1753 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1754 			   __func__, __LINE__);
1755 		d++;
1756 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1757 							   &d);
1758 	} else {
1759 		debug_cond(DLEVEL == 1,
1760 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1761 			   __func__, __LINE__);
1762 	}
1763 
1764 	/*
1765 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1766 	 * found a passing/failing read. If we didn't, it means d hit the max
1767 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1768 	 * statically calculated value.
1769 	 */
1770 	if (found_passing_read && found_failing_read)
1771 		dtaps_per_ptap = d - initial_failing_dtap;
1772 
1773 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1774 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1775 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1776 
1777 	/* Step 6: Find the centre of the window. */
1778 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1779 
1780 	return ret;
1781 }
1782 
1783 /**
1784  * search_stop_check() - Check if the detected edge is valid
1785  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1786  * @d:			DQS delay
1787  * @rank_bgn:		Rank number
1788  * @write_group:	Write Group
1789  * @read_group:		Read Group
1790  * @bit_chk:		Resulting bit mask after the test
1791  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1792  * @use_read_test:	Perform read test
1793  *
1794  * Test if the found edge is valid.
1795  */
1796 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1797 			     const u32 write_group, const u32 read_group,
1798 			     u32 *bit_chk, u32 *sticky_bit_chk,
1799 			     const u32 use_read_test)
1800 {
1801 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1802 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1803 	const u32 correct_mask = write ? param->write_correct_mask :
1804 					 param->read_correct_mask;
1805 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1806 				    RW_MGR_MEM_DQ_PER_READ_DQS;
1807 	u32 ret;
1808 	/*
1809 	 * Stop searching when the read test doesn't pass AND when
1810 	 * we've seen a passing read on every bit.
1811 	 */
1812 	if (write) {			/* WRITE-ONLY */
1813 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1814 							 0, PASS_ONE_BIT,
1815 							 bit_chk, 0);
1816 	} else if (use_read_test) {	/* READ-ONLY */
1817 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1818 							NUM_READ_PB_TESTS,
1819 							PASS_ONE_BIT, bit_chk,
1820 							0, 0);
1821 	} else {			/* READ-ONLY */
1822 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
1823 						PASS_ONE_BIT, bit_chk, 0);
1824 		*bit_chk = *bit_chk >> (per_dqs *
1825 			(read_group - (write_group * ratio)));
1826 		ret = (*bit_chk == 0);
1827 	}
1828 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
1829 	ret = ret && (*sticky_bit_chk == correct_mask);
1830 	debug_cond(DLEVEL == 2,
1831 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
1832 		   __func__, __LINE__, d,
1833 		   *sticky_bit_chk, correct_mask, ret);
1834 	return ret;
1835 }
1836 
1837 /**
1838  * search_left_edge() - Find left edge of DQ/DQS working phase
1839  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1840  * @rank_bgn:		Rank number
1841  * @write_group:	Write Group
1842  * @read_group:		Read Group
1843  * @test_bgn:		Rank number to begin the test
1844  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1845  * @left_edge:		Left edge of the DQ/DQS phase
1846  * @right_edge:		Right edge of the DQ/DQS phase
1847  * @use_read_test:	Perform read test
1848  *
1849  * Find left edge of DQ/DQS working phase.
1850  */
1851 static void search_left_edge(const int write, const int rank_bgn,
1852 	const u32 write_group, const u32 read_group, const u32 test_bgn,
1853 	u32 *sticky_bit_chk,
1854 	int *left_edge, int *right_edge, const u32 use_read_test)
1855 {
1856 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
1857 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
1858 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1859 				    RW_MGR_MEM_DQ_PER_READ_DQS;
1860 	u32 stop, bit_chk;
1861 	int i, d;
1862 
1863 	for (d = 0; d <= dqs_max; d++) {
1864 		if (write)
1865 			scc_mgr_apply_group_dq_out1_delay(d);
1866 		else
1867 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
1868 
1869 		writel(0, &sdr_scc_mgr->update);
1870 
1871 		stop = search_stop_check(write, d, rank_bgn, write_group,
1872 					 read_group, &bit_chk, sticky_bit_chk,
1873 					 use_read_test);
1874 		if (stop == 1)
1875 			break;
1876 
1877 		/* stop != 1 */
1878 		for (i = 0; i < per_dqs; i++) {
1879 			if (bit_chk & 1) {
1880 				/*
1881 				 * Remember a passing test as
1882 				 * the left_edge.
1883 				 */
1884 				left_edge[i] = d;
1885 			} else {
1886 				/*
1887 				 * If a left edge has not been seen
1888 				 * yet, then a future passing test
1889 				 * will mark this edge as the right
1890 				 * edge.
1891 				 */
1892 				if (left_edge[i] == delay_max + 1)
1893 					right_edge[i] = -(d + 1);
1894 			}
1895 			bit_chk >>= 1;
1896 		}
1897 	}
1898 
1899 	/* Reset DQ delay chains to 0 */
1900 	if (write)
1901 		scc_mgr_apply_group_dq_out1_delay(0);
1902 	else
1903 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1904 
1905 	*sticky_bit_chk = 0;
1906 	for (i = per_dqs - 1; i >= 0; i--) {
1907 		debug_cond(DLEVEL == 2,
1908 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
1909 			   __func__, __LINE__, i, left_edge[i],
1910 			   i, right_edge[i]);
1911 
1912 		/*
1913 		 * Check for cases where we haven't found the left edge,
1914 		 * which makes our assignment of the the right edge invalid.
1915 		 * Reset it to the illegal value.
1916 		 */
1917 		if ((left_edge[i] == delay_max + 1) &&
1918 		    (right_edge[i] != delay_max + 1)) {
1919 			right_edge[i] = delay_max + 1;
1920 			debug_cond(DLEVEL == 2,
1921 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
1922 				   __func__, __LINE__, i, right_edge[i]);
1923 		}
1924 
1925 		/*
1926 		 * Reset sticky bit
1927 		 * READ: except for bits where we have seen both
1928 		 *       the left and right edge.
1929 		 * WRITE: except for bits where we have seen the
1930 		 *        left edge.
1931 		 */
1932 		*sticky_bit_chk <<= 1;
1933 		if (write) {
1934 			if (left_edge[i] != delay_max + 1)
1935 				*sticky_bit_chk |= 1;
1936 		} else {
1937 			if ((left_edge[i] != delay_max + 1) &&
1938 			    (right_edge[i] != delay_max + 1))
1939 				*sticky_bit_chk |= 1;
1940 		}
1941 	}
1942 
1943 
1944 }
1945 
1946 /**
1947  * search_right_edge() - Find right edge of DQ/DQS working phase
1948  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1949  * @rank_bgn:		Rank number
1950  * @write_group:	Write Group
1951  * @read_group:		Read Group
1952  * @start_dqs:		DQS start phase
1953  * @start_dqs_en:	DQS enable start phase
1954  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1955  * @left_edge:		Left edge of the DQ/DQS phase
1956  * @right_edge:		Right edge of the DQ/DQS phase
1957  * @use_read_test:	Perform read test
1958  *
1959  * Find right edge of DQ/DQS working phase.
1960  */
1961 static int search_right_edge(const int write, const int rank_bgn,
1962 	const u32 write_group, const u32 read_group,
1963 	const int start_dqs, const int start_dqs_en,
1964 	u32 *sticky_bit_chk,
1965 	int *left_edge, int *right_edge, const u32 use_read_test)
1966 {
1967 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
1968 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
1969 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
1970 				    RW_MGR_MEM_DQ_PER_READ_DQS;
1971 	u32 stop, bit_chk;
1972 	int i, d;
1973 
1974 	for (d = 0; d <= dqs_max - start_dqs; d++) {
1975 		if (write) {	/* WRITE-ONLY */
1976 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
1977 								d + start_dqs);
1978 		} else {	/* READ-ONLY */
1979 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1980 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1981 				uint32_t delay = d + start_dqs_en;
1982 				if (delay > IO_DQS_EN_DELAY_MAX)
1983 					delay = IO_DQS_EN_DELAY_MAX;
1984 				scc_mgr_set_dqs_en_delay(read_group, delay);
1985 			}
1986 			scc_mgr_load_dqs(read_group);
1987 		}
1988 
1989 		writel(0, &sdr_scc_mgr->update);
1990 
1991 		stop = search_stop_check(write, d, rank_bgn, write_group,
1992 					 read_group, &bit_chk, sticky_bit_chk,
1993 					 use_read_test);
1994 		if (stop == 1) {
1995 			if (write && (d == 0)) {	/* WRITE-ONLY */
1996 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
1997 					/*
1998 					 * d = 0 failed, but it passed when
1999 					 * testing the left edge, so it must be
2000 					 * marginal, set it to -1
2001 					 */
2002 					if (right_edge[i] == delay_max + 1 &&
2003 					    left_edge[i] != delay_max + 1)
2004 						right_edge[i] = -1;
2005 				}
2006 			}
2007 			break;
2008 		}
2009 
2010 		/* stop != 1 */
2011 		for (i = 0; i < per_dqs; i++) {
2012 			if (bit_chk & 1) {
2013 				/*
2014 				 * Remember a passing test as
2015 				 * the right_edge.
2016 				 */
2017 				right_edge[i] = d;
2018 			} else {
2019 				if (d != 0) {
2020 					/*
2021 					 * If a right edge has not
2022 					 * been seen yet, then a future
2023 					 * passing test will mark this
2024 					 * edge as the left edge.
2025 					 */
2026 					if (right_edge[i] == delay_max + 1)
2027 						left_edge[i] = -(d + 1);
2028 				} else {
2029 					/*
2030 					 * d = 0 failed, but it passed
2031 					 * when testing the left edge,
2032 					 * so it must be marginal, set
2033 					 * it to -1
2034 					 */
2035 					if (right_edge[i] == delay_max + 1 &&
2036 					    left_edge[i] != delay_max + 1)
2037 						right_edge[i] = -1;
2038 					/*
2039 					 * If a right edge has not been
2040 					 * seen yet, then a future
2041 					 * passing test will mark this
2042 					 * edge as the left edge.
2043 					 */
2044 					else if (right_edge[i] == delay_max + 1)
2045 						left_edge[i] = -(d + 1);
2046 				}
2047 			}
2048 
2049 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2050 				   __func__, __LINE__, d);
2051 			debug_cond(DLEVEL == 2,
2052 				   "bit_chk_test=%i left_edge[%u]: %d ",
2053 				   bit_chk & 1, i, left_edge[i]);
2054 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2055 				   right_edge[i]);
2056 			bit_chk >>= 1;
2057 		}
2058 	}
2059 
2060 	/* Check that all bits have a window */
2061 	for (i = 0; i < per_dqs; i++) {
2062 		debug_cond(DLEVEL == 2,
2063 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2064 			   __func__, __LINE__, i, left_edge[i],
2065 			   i, right_edge[i]);
2066 		if ((left_edge[i] == dqs_max + 1) ||
2067 		    (right_edge[i] == dqs_max + 1))
2068 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2076  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2077  * @left_edge:		Left edge of the DQ/DQS phase
2078  * @right_edge:		Right edge of the DQ/DQS phase
2079  * @mid_min:		Best DQ/DQS phase middle setting
2080  *
2081  * Find index and value of the middle of the DQ/DQS working phase.
2082  */
2083 static int get_window_mid_index(const int write, int *left_edge,
2084 				int *right_edge, int *mid_min)
2085 {
2086 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2087 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2088 	int i, mid, min_index;
2089 
2090 	/* Find middle of window for each DQ bit */
2091 	*mid_min = left_edge[0] - right_edge[0];
2092 	min_index = 0;
2093 	for (i = 1; i < per_dqs; i++) {
2094 		mid = left_edge[i] - right_edge[i];
2095 		if (mid < *mid_min) {
2096 			*mid_min = mid;
2097 			min_index = i;
2098 		}
2099 	}
2100 
2101 	/*
2102 	 * -mid_min/2 represents the amount that we need to move DQS.
2103 	 * If mid_min is odd and positive we'll need to add one to make
2104 	 * sure the rounding in further calculations is correct (always
2105 	 * bias to the right), so just add 1 for all positive values.
2106 	 */
2107 	if (*mid_min > 0)
2108 		(*mid_min)++;
2109 	*mid_min = *mid_min / 2;
2110 
2111 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2112 		   __func__, __LINE__, *mid_min, min_index);
2113 	return min_index;
2114 }
2115 
2116 /**
2117  * center_dq_windows() - Center the DQ/DQS windows
2118  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2119  * @left_edge:		Left edge of the DQ/DQS phase
2120  * @right_edge:		Right edge of the DQ/DQS phase
2121  * @mid_min:		Adjusted DQ/DQS phase middle setting
2122  * @orig_mid_min:	Original DQ/DQS phase middle setting
2123  * @min_index:		DQ/DQS phase middle setting index
2124  * @test_bgn:		Rank number to begin the test
2125  * @dq_margin:		Amount of shift for the DQ
2126  * @dqs_margin:		Amount of shift for the DQS
2127  *
2128  * Align the DQ/DQS windows in each group.
2129  */
2130 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2131 			      const int mid_min, const int orig_mid_min,
2132 			      const int min_index, const int test_bgn,
2133 			      int *dq_margin, int *dqs_margin)
2134 {
2135 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2136 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2137 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2138 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2139 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2140 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2141 
2142 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2143 	int shift_dq, i, p;
2144 
2145 	/* Initialize data for export structures */
2146 	*dqs_margin = delay_max + 1;
2147 	*dq_margin  = delay_max + 1;
2148 
2149 	/* add delay to bring centre of all DQ windows to the same "level" */
2150 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2151 		/* Use values before divide by 2 to reduce round off error */
2152 		shift_dq = (left_edge[i] - right_edge[i] -
2153 			(left_edge[min_index] - right_edge[min_index]))/2  +
2154 			(orig_mid_min - mid_min);
2155 
2156 		debug_cond(DLEVEL == 2,
2157 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2158 			   i, shift_dq);
2159 
2160 		temp_dq_io_delay1 = readl(addr + (p << 2));
2161 		temp_dq_io_delay2 = readl(addr + (i << 2));
2162 
2163 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2164 			shift_dq = delay_max - temp_dq_io_delay2;
2165 		else if (shift_dq + temp_dq_io_delay1 < 0)
2166 			shift_dq = -temp_dq_io_delay1;
2167 
2168 		debug_cond(DLEVEL == 2,
2169 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2170 			   i, shift_dq);
2171 
2172 		if (write)
2173 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2174 		else
2175 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2176 
2177 		scc_mgr_load_dq(p);
2178 
2179 		debug_cond(DLEVEL == 2,
2180 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2181 			   left_edge[i] - shift_dq + (-mid_min),
2182 			   right_edge[i] + shift_dq - (-mid_min));
2183 
2184 		/* To determine values for export structures */
2185 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2186 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2187 
2188 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2189 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2190 	}
2191 
2192 }
2193 
2194 /* per-bit deskew DQ and center */
2195 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2196 			const u32 rw_group, const u32 test_bgn,
2197 			const int use_read_test, const int update_fom)
2198 {
2199 	const u32 addr =
2200 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2201 		(rw_group << 2);
2202 	/*
2203 	 * Store these as signed since there are comparisons with
2204 	 * signed numbers.
2205 	 */
2206 	uint32_t sticky_bit_chk;
2207 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2208 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2209 	int32_t orig_mid_min, mid_min;
2210 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2211 	int32_t dq_margin, dqs_margin;
2212 	int i, min_index;
2213 	int ret;
2214 
2215 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2216 
2217 	start_dqs = readl(addr);
2218 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2219 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2220 
2221 	/* set the left and right edge of each bit to an illegal value */
2222 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2223 	sticky_bit_chk = 0;
2224 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2225 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2226 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2227 	}
2228 
2229 	/* Search for the left edge of the window for each bit */
2230 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2231 			 &sticky_bit_chk,
2232 			 left_edge, right_edge, use_read_test);
2233 
2234 
2235 	/* Search for the right edge of the window for each bit */
2236 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2237 				start_dqs, start_dqs_en,
2238 				&sticky_bit_chk,
2239 				left_edge, right_edge, use_read_test);
2240 	if (ret) {
2241 		/*
2242 		 * Restore delay chain settings before letting the loop
2243 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2244 		 * dqs/ck relationships.
2245 		 */
2246 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2247 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2248 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2249 
2250 		scc_mgr_load_dqs(rw_group);
2251 		writel(0, &sdr_scc_mgr->update);
2252 
2253 		debug_cond(DLEVEL == 1,
2254 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2255 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2256 		if (use_read_test) {
2257 			set_failing_group_stage(rw_group *
2258 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2259 				CAL_STAGE_VFIFO,
2260 				CAL_SUBSTAGE_VFIFO_CENTER);
2261 		} else {
2262 			set_failing_group_stage(rw_group *
2263 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2264 				CAL_STAGE_VFIFO_AFTER_WRITES,
2265 				CAL_SUBSTAGE_VFIFO_CENTER);
2266 		}
2267 		return -EIO;
2268 	}
2269 
2270 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2271 
2272 	/* Determine the amount we can change DQS (which is -mid_min) */
2273 	orig_mid_min = mid_min;
2274 	new_dqs = start_dqs - mid_min;
2275 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2276 		new_dqs = IO_DQS_IN_DELAY_MAX;
2277 	else if (new_dqs < 0)
2278 		new_dqs = 0;
2279 
2280 	mid_min = start_dqs - new_dqs;
2281 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2282 		   mid_min, new_dqs);
2283 
2284 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2285 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2286 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2287 		else if (start_dqs_en - mid_min < 0)
2288 			mid_min += start_dqs_en - mid_min;
2289 	}
2290 	new_dqs = start_dqs - mid_min;
2291 
2292 	debug_cond(DLEVEL == 1,
2293 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2294 		   start_dqs,
2295 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2296 		   new_dqs, mid_min);
2297 
2298 	/* Add delay to bring centre of all DQ windows to the same "level". */
2299 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2300 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2301 
2302 	/* Move DQS-en */
2303 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2304 		final_dqs_en = start_dqs_en - mid_min;
2305 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2306 		scc_mgr_load_dqs(rw_group);
2307 	}
2308 
2309 	/* Move DQS */
2310 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2311 	scc_mgr_load_dqs(rw_group);
2312 	debug_cond(DLEVEL == 2,
2313 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2314 		   __func__, __LINE__, dq_margin, dqs_margin);
2315 
2316 	/*
2317 	 * Do not remove this line as it makes sure all of our decisions
2318 	 * have been applied. Apply the update bit.
2319 	 */
2320 	writel(0, &sdr_scc_mgr->update);
2321 
2322 	if ((dq_margin < 0) || (dqs_margin < 0))
2323 		return -EINVAL;
2324 
2325 	return 0;
2326 }
2327 
2328 /**
2329  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2330  * @rw_group:	Read/Write Group
2331  * @phase:	DQ/DQS phase
2332  *
2333  * Because initially no communication ca be reliably performed with the memory
2334  * device, the sequencer uses a guaranteed write mechanism to write data into
2335  * the memory device.
2336  */
2337 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2338 						 const u32 phase)
2339 {
2340 	int ret;
2341 
2342 	/* Set a particular DQ/DQS phase. */
2343 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2344 
2345 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2346 		   __func__, __LINE__, rw_group, phase);
2347 
2348 	/*
2349 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2350 	 * Load up the patterns used by read calibration using the
2351 	 * current DQDQS phase.
2352 	 */
2353 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2354 
2355 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2356 		return 0;
2357 
2358 	/*
2359 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2360 	 * Back-to-Back reads of the patterns used for calibration.
2361 	 */
2362 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2363 	if (ret)
2364 		debug_cond(DLEVEL == 1,
2365 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2366 			   __func__, __LINE__, rw_group, phase);
2367 	return ret;
2368 }
2369 
2370 /**
2371  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2372  * @rw_group:	Read/Write Group
2373  * @test_bgn:	Rank at which the test begins
2374  *
2375  * DQS enable calibration ensures reliable capture of the DQ signal without
2376  * glitches on the DQS line.
2377  */
2378 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2379 						       const u32 test_bgn)
2380 {
2381 	/*
2382 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2383 	 * DQS and DQS Eanble Signal Relationships.
2384 	 */
2385 
2386 	/* We start at zero, so have one less dq to devide among */
2387 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2388 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2389 	int ret;
2390 	u32 i, p, d, r;
2391 
2392 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2393 
2394 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2395 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2396 	     r += NUM_RANKS_PER_SHADOW_REG) {
2397 		for (i = 0, p = test_bgn, d = 0;
2398 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2399 		     i++, p++, d += delay_step) {
2400 			debug_cond(DLEVEL == 1,
2401 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2402 				   __func__, __LINE__, rw_group, r, i, p, d);
2403 
2404 			scc_mgr_set_dq_in_delay(p, d);
2405 			scc_mgr_load_dq(p);
2406 		}
2407 
2408 		writel(0, &sdr_scc_mgr->update);
2409 	}
2410 
2411 	/*
2412 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2413 	 * dq_in_delay values
2414 	 */
2415 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2416 
2417 	debug_cond(DLEVEL == 1,
2418 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2419 		   __func__, __LINE__, rw_group, !ret);
2420 
2421 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2422 	     r += NUM_RANKS_PER_SHADOW_REG) {
2423 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2424 		writel(0, &sdr_scc_mgr->update);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
2430 /**
2431  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2432  * @rw_group:		Read/Write Group
2433  * @test_bgn:		Rank at which the test begins
2434  * @use_read_test:	Perform a read test
2435  * @update_fom:		Update FOM
2436  *
2437  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2438  * within a group.
2439  */
2440 static int
2441 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2442 				      const int use_read_test,
2443 				      const int update_fom)
2444 
2445 {
2446 	int ret, grp_calibrated;
2447 	u32 rank_bgn, sr;
2448 
2449 	/*
2450 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2451 	 * Read per-bit deskew can be done on a per shadow register basis.
2452 	 */
2453 	grp_calibrated = 1;
2454 	for (rank_bgn = 0, sr = 0;
2455 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2456 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2457 		/* Check if this set of ranks should be skipped entirely. */
2458 		if (param->skip_shadow_regs[sr])
2459 			continue;
2460 
2461 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2462 							test_bgn,
2463 							use_read_test,
2464 							update_fom);
2465 		if (!ret)
2466 			continue;
2467 
2468 		grp_calibrated = 0;
2469 	}
2470 
2471 	if (!grp_calibrated)
2472 		return -EIO;
2473 
2474 	return 0;
2475 }
2476 
2477 /**
2478  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2479  * @rw_group:		Read/Write Group
2480  * @test_bgn:		Rank at which the test begins
2481  *
2482  * Stage 1: Calibrate the read valid prediction FIFO.
2483  *
2484  * This function implements UniPHY calibration Stage 1, as explained in
2485  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2486  *
2487  * - read valid prediction will consist of finding:
2488  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2489  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2490  *  - we also do a per-bit deskew on the DQ lines.
2491  */
2492 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2493 {
2494 	uint32_t p, d;
2495 	uint32_t dtaps_per_ptap;
2496 	uint32_t failed_substage;
2497 
2498 	int ret;
2499 
2500 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2501 
2502 	/* Update info for sims */
2503 	reg_file_set_group(rw_group);
2504 	reg_file_set_stage(CAL_STAGE_VFIFO);
2505 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2506 
2507 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2508 
2509 	/* USER Determine number of delay taps for each phase tap. */
2510 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2511 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2512 
2513 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2514 		/*
2515 		 * In RLDRAMX we may be messing the delay of pins in
2516 		 * the same write rw_group but outside of the current read
2517 		 * the rw_group, but that's ok because we haven't calibrated
2518 		 * output side yet.
2519 		 */
2520 		if (d > 0) {
2521 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2522 								rw_group, d);
2523 		}
2524 
2525 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2526 			/* 1) Guaranteed Write */
2527 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2528 			if (ret)
2529 				break;
2530 
2531 			/* 2) DQS Enable Calibration */
2532 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2533 									  test_bgn);
2534 			if (ret) {
2535 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2536 				continue;
2537 			}
2538 
2539 			/* 3) Centering DQ/DQS */
2540 			/*
2541 			 * If doing read after write calibration, do not update
2542 			 * FOM now. Do it then.
2543 			 */
2544 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2545 								test_bgn, 1, 0);
2546 			if (ret) {
2547 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2548 				continue;
2549 			}
2550 
2551 			/* All done. */
2552 			goto cal_done_ok;
2553 		}
2554 	}
2555 
2556 	/* Calibration Stage 1 failed. */
2557 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2558 	return 0;
2559 
2560 	/* Calibration Stage 1 completed OK. */
2561 cal_done_ok:
2562 	/*
2563 	 * Reset the delay chains back to zero if they have moved > 1
2564 	 * (check for > 1 because loop will increase d even when pass in
2565 	 * first case).
2566 	 */
2567 	if (d > 2)
2568 		scc_mgr_zero_group(rw_group, 1);
2569 
2570 	return 1;
2571 }
2572 
2573 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2574 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2575 					       uint32_t test_bgn)
2576 {
2577 	uint32_t rank_bgn, sr;
2578 	uint32_t grp_calibrated;
2579 	uint32_t write_group;
2580 
2581 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2582 
2583 	/* update info for sims */
2584 
2585 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2586 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2587 
2588 	write_group = read_group;
2589 
2590 	/* update info for sims */
2591 	reg_file_set_group(read_group);
2592 
2593 	grp_calibrated = 1;
2594 	/* Read per-bit deskew can be done on a per shadow register basis */
2595 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2596 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2597 		/* Determine if this set of ranks should be skipped entirely */
2598 		if (!param->skip_shadow_regs[sr]) {
2599 		/* This is the last calibration round, update FOM here */
2600 			if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2601 								read_group,
2602 								test_bgn, 0,
2603 								1)) {
2604 				grp_calibrated = 0;
2605 			}
2606 		}
2607 	}
2608 
2609 
2610 	if (grp_calibrated == 0) {
2611 		set_failing_group_stage(write_group,
2612 					CAL_STAGE_VFIFO_AFTER_WRITES,
2613 					CAL_SUBSTAGE_VFIFO_CENTER);
2614 		return 0;
2615 	}
2616 
2617 	return 1;
2618 }
2619 
2620 /* Calibrate LFIFO to find smallest read latency */
2621 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2622 {
2623 	uint32_t found_one;
2624 
2625 	debug("%s:%d\n", __func__, __LINE__);
2626 
2627 	/* update info for sims */
2628 	reg_file_set_stage(CAL_STAGE_LFIFO);
2629 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2630 
2631 	/* Load up the patterns used by read calibration for all ranks */
2632 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2633 	found_one = 0;
2634 
2635 	do {
2636 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2637 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2638 			   __func__, __LINE__, gbl->curr_read_lat);
2639 
2640 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2641 							      NUM_READ_TESTS,
2642 							      PASS_ALL_BITS,
2643 							      1)) {
2644 			break;
2645 		}
2646 
2647 		found_one = 1;
2648 		/* reduce read latency and see if things are working */
2649 		/* correctly */
2650 		gbl->curr_read_lat--;
2651 	} while (gbl->curr_read_lat > 0);
2652 
2653 	/* reset the fifos to get pointers to known state */
2654 
2655 	writel(0, &phy_mgr_cmd->fifo_reset);
2656 
2657 	if (found_one) {
2658 		/* add a fudge factor to the read latency that was determined */
2659 		gbl->curr_read_lat += 2;
2660 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2661 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2662 			   read_lat=%u\n", __func__, __LINE__,
2663 			   gbl->curr_read_lat);
2664 		return 1;
2665 	} else {
2666 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2667 					CAL_SUBSTAGE_READ_LATENCY);
2668 
2669 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2670 			   read_lat=%u\n", __func__, __LINE__,
2671 			   gbl->curr_read_lat);
2672 		return 0;
2673 	}
2674 }
2675 
2676 /*
2677  * issue write test command.
2678  * two variants are provided. one that just tests a write pattern and
2679  * another that tests datamask functionality.
2680  */
2681 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2682 						  uint32_t test_dm)
2683 {
2684 	uint32_t mcc_instruction;
2685 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2686 		ENABLE_SUPER_QUICK_CALIBRATION);
2687 	uint32_t rw_wl_nop_cycles;
2688 	uint32_t addr;
2689 
2690 	/*
2691 	 * Set counter and jump addresses for the right
2692 	 * number of NOP cycles.
2693 	 * The number of supported NOP cycles can range from -1 to infinity
2694 	 * Three different cases are handled:
2695 	 *
2696 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2697 	 *    mechanism will be used to insert the right number of NOPs
2698 	 *
2699 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2700 	 *    issuing the write command will jump straight to the
2701 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2702 	 *    data (for RLD), skipping
2703 	 *    the NOP micro-instruction all together
2704 	 *
2705 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2706 	 *    turned on in the same micro-instruction that issues the write
2707 	 *    command. Then we need
2708 	 *    to directly jump to the micro-instruction that sends out the data
2709 	 *
2710 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2711 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2712 	 *       write-read operations.
2713 	 *       one counter left to issue this command in "multiple-group" mode
2714 	 */
2715 
2716 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2717 
2718 	if (rw_wl_nop_cycles == -1) {
2719 		/*
2720 		 * CNTR 2 - We want to execute the special write operation that
2721 		 * turns on DQS right away and then skip directly to the
2722 		 * instruction that sends out the data. We set the counter to a
2723 		 * large number so that the jump is always taken.
2724 		 */
2725 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2726 
2727 		/* CNTR 3 - Not used */
2728 		if (test_dm) {
2729 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2730 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2731 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2732 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2733 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2734 		} else {
2735 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2736 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2737 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2738 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2739 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2740 		}
2741 	} else if (rw_wl_nop_cycles == 0) {
2742 		/*
2743 		 * CNTR 2 - We want to skip the NOP operation and go straight
2744 		 * to the DQS enable instruction. We set the counter to a large
2745 		 * number so that the jump is always taken.
2746 		 */
2747 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2748 
2749 		/* CNTR 3 - Not used */
2750 		if (test_dm) {
2751 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2752 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2753 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2754 		} else {
2755 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2756 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2757 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2758 		}
2759 	} else {
2760 		/*
2761 		 * CNTR 2 - In this case we want to execute the next instruction
2762 		 * and NOT take the jump. So we set the counter to 0. The jump
2763 		 * address doesn't count.
2764 		 */
2765 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2766 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2767 
2768 		/*
2769 		 * CNTR 3 - Set the nop counter to the number of cycles we
2770 		 * need to loop for, minus 1.
2771 		 */
2772 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2773 		if (test_dm) {
2774 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2775 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2776 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2777 		} else {
2778 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2779 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2780 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2781 		}
2782 	}
2783 
2784 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2785 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2786 
2787 	if (quick_write_mode)
2788 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2789 	else
2790 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2791 
2792 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2793 
2794 	/*
2795 	 * CNTR 1 - This is used to ensure enough time elapses
2796 	 * for read data to come back.
2797 	 */
2798 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2799 
2800 	if (test_dm) {
2801 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2802 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2803 	} else {
2804 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2805 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2806 	}
2807 
2808 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2809 	writel(mcc_instruction, addr + (group << 2));
2810 }
2811 
2812 /* Test writes, can check for a single bit pass or multiple bit pass */
2813 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2814 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2815 	uint32_t *bit_chk, uint32_t all_ranks)
2816 {
2817 	uint32_t r;
2818 	uint32_t correct_mask_vg;
2819 	uint32_t tmp_bit_chk;
2820 	uint32_t vg;
2821 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2822 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2823 	uint32_t addr_rw_mgr;
2824 	uint32_t base_rw_mgr;
2825 
2826 	*bit_chk = param->write_correct_mask;
2827 	correct_mask_vg = param->write_correct_mask_vg;
2828 
2829 	for (r = rank_bgn; r < rank_end; r++) {
2830 		if (param->skip_ranks[r]) {
2831 			/* request to skip the rank */
2832 			continue;
2833 		}
2834 
2835 		/* set rank */
2836 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2837 
2838 		tmp_bit_chk = 0;
2839 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2840 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2841 			/* reset the fifos to get pointers to known state */
2842 			writel(0, &phy_mgr_cmd->fifo_reset);
2843 
2844 			tmp_bit_chk = tmp_bit_chk <<
2845 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2846 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2847 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2848 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2849 				use_dm);
2850 
2851 			base_rw_mgr = readl(addr_rw_mgr);
2852 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2853 			if (vg == 0)
2854 				break;
2855 		}
2856 		*bit_chk &= tmp_bit_chk;
2857 	}
2858 
2859 	if (all_correct) {
2860 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2861 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2862 			   %u => %lu", write_group, use_dm,
2863 			   *bit_chk, param->write_correct_mask,
2864 			   (long unsigned int)(*bit_chk ==
2865 			   param->write_correct_mask));
2866 		return *bit_chk == param->write_correct_mask;
2867 	} else {
2868 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2869 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2870 		       write_group, use_dm, *bit_chk);
2871 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2872 			(long unsigned int)(*bit_chk != 0));
2873 		return *bit_chk != 0x00;
2874 	}
2875 }
2876 
2877 /*
2878  * center all windows. do per-bit-deskew to possibly increase size of
2879  * certain windows.
2880  */
2881 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2882 	uint32_t write_group, uint32_t test_bgn)
2883 {
2884 	uint32_t i, min_index;
2885 	int32_t d;
2886 	/*
2887 	 * Store these as signed since there are comparisons with
2888 	 * signed numbers.
2889 	 */
2890 	uint32_t bit_chk;
2891 	uint32_t sticky_bit_chk;
2892 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2893 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2894 	int32_t mid;
2895 	int32_t mid_min, orig_mid_min;
2896 	int32_t new_dqs, start_dqs;
2897 	int32_t dq_margin, dqs_margin, dm_margin;
2898 	uint32_t addr;
2899 
2900 	int ret;
2901 
2902 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2903 
2904 	dm_margin = 0;
2905 
2906 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2907 	start_dqs = readl(addr +
2908 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2909 
2910 	/* per-bit deskew */
2911 
2912 	/*
2913 	 * set the left and right edge of each bit to an illegal value
2914 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2915 	 */
2916 	sticky_bit_chk = 0;
2917 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2918 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2919 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2920 	}
2921 
2922 	/* Search for the left edge of the window for each bit */
2923 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2924 			 &sticky_bit_chk,
2925 			 left_edge, right_edge, 0);
2926 
2927 	/* Search for the right edge of the window for each bit */
2928 	ret = search_right_edge(1, rank_bgn, write_group, 0,
2929 				start_dqs, 0,
2930 				&sticky_bit_chk,
2931 				left_edge, right_edge, 0);
2932 	if (ret) {
2933 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2934 					CAL_SUBSTAGE_WRITES_CENTER);
2935 		return 0;
2936 	}
2937 
2938 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
2939 
2940 	/* Determine the amount we can change DQS (which is -mid_min) */
2941 	orig_mid_min = mid_min;
2942 	new_dqs = start_dqs;
2943 	mid_min = 0;
2944 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2945 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2946 
2947 	/* Add delay to bring centre of all DQ windows to the same "level". */
2948 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
2949 			  min_index, 0, &dq_margin, &dqs_margin);
2950 
2951 	/* Move DQS */
2952 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2953 	writel(0, &sdr_scc_mgr->update);
2954 
2955 	/* Centre DM */
2956 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2957 
2958 	/*
2959 	 * set the left and right edge of each bit to an illegal value,
2960 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2961 	 */
2962 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2963 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2964 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2965 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2966 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2967 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2968 	int32_t win_best = 0;
2969 
2970 	/* Search for the/part of the window with DM shift */
2971 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2972 		scc_mgr_apply_group_dm_out1_delay(d);
2973 		writel(0, &sdr_scc_mgr->update);
2974 
2975 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2976 						    PASS_ALL_BITS, &bit_chk,
2977 						    0)) {
2978 			/* USE Set current end of the window */
2979 			end_curr = -d;
2980 			/*
2981 			 * If a starting edge of our window has not been seen
2982 			 * this is our current start of the DM window.
2983 			 */
2984 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2985 				bgn_curr = -d;
2986 
2987 			/*
2988 			 * If current window is bigger than best seen.
2989 			 * Set best seen to be current window.
2990 			 */
2991 			if ((end_curr-bgn_curr+1) > win_best) {
2992 				win_best = end_curr-bgn_curr+1;
2993 				bgn_best = bgn_curr;
2994 				end_best = end_curr;
2995 			}
2996 		} else {
2997 			/* We just saw a failing test. Reset temp edge */
2998 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2999 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3000 			}
3001 		}
3002 
3003 
3004 	/* Reset DM delay chains to 0 */
3005 	scc_mgr_apply_group_dm_out1_delay(0);
3006 
3007 	/*
3008 	 * Check to see if the current window nudges up aganist 0 delay.
3009 	 * If so we need to continue the search by shifting DQS otherwise DQS
3010 	 * search begins as a new search. */
3011 	if (end_curr != 0) {
3012 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3014 	}
3015 
3016 	/* Search for the/part of the window with DQS shifts */
3017 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3018 		/*
3019 		 * Note: This only shifts DQS, so are we limiting ourselve to
3020 		 * width of DQ unnecessarily.
3021 		 */
3022 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3023 							d + new_dqs);
3024 
3025 		writel(0, &sdr_scc_mgr->update);
3026 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3027 						    PASS_ALL_BITS, &bit_chk,
3028 						    0)) {
3029 			/* USE Set current end of the window */
3030 			end_curr = d;
3031 			/*
3032 			 * If a beginning edge of our window has not been seen
3033 			 * this is our current begin of the DM window.
3034 			 */
3035 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3036 				bgn_curr = d;
3037 
3038 			/*
3039 			 * If current window is bigger than best seen. Set best
3040 			 * seen to be current window.
3041 			 */
3042 			if ((end_curr-bgn_curr+1) > win_best) {
3043 				win_best = end_curr-bgn_curr+1;
3044 				bgn_best = bgn_curr;
3045 				end_best = end_curr;
3046 			}
3047 		} else {
3048 			/* We just saw a failing test. Reset temp edge */
3049 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3050 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3051 
3052 			/* Early exit optimization: if ther remaining delay
3053 			chain space is less than already seen largest window
3054 			we can exit */
3055 			if ((win_best-1) >
3056 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3057 					break;
3058 				}
3059 			}
3060 		}
3061 
3062 	/* assign left and right edge for cal and reporting; */
3063 	left_edge[0] = -1*bgn_best;
3064 	right_edge[0] = end_best;
3065 
3066 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3067 		   __LINE__, left_edge[0], right_edge[0]);
3068 
3069 	/* Move DQS (back to orig) */
3070 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3071 
3072 	/* Move DM */
3073 
3074 	/* Find middle of window for the DM bit */
3075 	mid = (left_edge[0] - right_edge[0]) / 2;
3076 
3077 	/* only move right, since we are not moving DQS/DQ */
3078 	if (mid < 0)
3079 		mid = 0;
3080 
3081 	/* dm_marign should fail if we never find a window */
3082 	if (win_best == 0)
3083 		dm_margin = -1;
3084 	else
3085 		dm_margin = left_edge[0] - mid;
3086 
3087 	scc_mgr_apply_group_dm_out1_delay(mid);
3088 	writel(0, &sdr_scc_mgr->update);
3089 
3090 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3091 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3092 		   right_edge[0], mid, dm_margin);
3093 	/* Export values */
3094 	gbl->fom_out += dq_margin + dqs_margin;
3095 
3096 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3097 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3098 		   dq_margin, dqs_margin, dm_margin);
3099 
3100 	/*
3101 	 * Do not remove this line as it makes sure all of our
3102 	 * decisions have been applied.
3103 	 */
3104 	writel(0, &sdr_scc_mgr->update);
3105 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3106 }
3107 
3108 /**
3109  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3110  * @rank_bgn:		Rank number
3111  * @group:		Read/Write Group
3112  * @test_bgn:		Rank at which the test begins
3113  *
3114  * Stage 2: Write Calibration Part One.
3115  *
3116  * This function implements UniPHY calibration Stage 2, as explained in
3117  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3118  */
3119 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3120 				       const u32 test_bgn)
3121 {
3122 	int ret;
3123 
3124 	/* Update info for sims */
3125 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3126 
3127 	reg_file_set_group(group);
3128 	reg_file_set_stage(CAL_STAGE_WRITES);
3129 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3130 
3131 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3132 	if (!ret) {
3133 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3134 					CAL_SUBSTAGE_WRITES_CENTER);
3135 		return -EIO;
3136 	}
3137 
3138 	return 0;
3139 }
3140 
3141 /**
3142  * mem_precharge_and_activate() - Precharge all banks and activate
3143  *
3144  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3145  */
3146 static void mem_precharge_and_activate(void)
3147 {
3148 	int r;
3149 
3150 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3151 		/* Test if the rank should be skipped. */
3152 		if (param->skip_ranks[r])
3153 			continue;
3154 
3155 		/* Set rank. */
3156 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3157 
3158 		/* Precharge all banks. */
3159 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3160 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3161 
3162 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3163 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3164 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3165 
3166 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3167 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3168 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3169 
3170 		/* Activate rows. */
3171 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3172 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3173 	}
3174 }
3175 
3176 /**
3177  * mem_init_latency() - Configure memory RLAT and WLAT settings
3178  *
3179  * Configure memory RLAT and WLAT parameters.
3180  */
3181 static void mem_init_latency(void)
3182 {
3183 	/*
3184 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3185 	 * so max latency in AFI clocks, used here, is correspondingly
3186 	 * smaller.
3187 	 */
3188 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3189 	u32 rlat, wlat;
3190 
3191 	debug("%s:%d\n", __func__, __LINE__);
3192 
3193 	/*
3194 	 * Read in write latency.
3195 	 * WL for Hard PHY does not include additive latency.
3196 	 */
3197 	wlat = readl(&data_mgr->t_wl_add);
3198 	wlat += readl(&data_mgr->mem_t_add);
3199 
3200 	gbl->rw_wl_nop_cycles = wlat - 1;
3201 
3202 	/* Read in readl latency. */
3203 	rlat = readl(&data_mgr->t_rl_add);
3204 
3205 	/* Set a pretty high read latency initially. */
3206 	gbl->curr_read_lat = rlat + 16;
3207 	if (gbl->curr_read_lat > max_latency)
3208 		gbl->curr_read_lat = max_latency;
3209 
3210 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3211 
3212 	/* Advertise write latency. */
3213 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3214 }
3215 
3216 /**
3217  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3218  *
3219  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3220  */
3221 static void mem_skip_calibrate(void)
3222 {
3223 	uint32_t vfifo_offset;
3224 	uint32_t i, j, r;
3225 
3226 	debug("%s:%d\n", __func__, __LINE__);
3227 	/* Need to update every shadow register set used by the interface */
3228 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3229 	     r += NUM_RANKS_PER_SHADOW_REG) {
3230 		/*
3231 		 * Set output phase alignment settings appropriate for
3232 		 * skip calibration.
3233 		 */
3234 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3235 			scc_mgr_set_dqs_en_phase(i, 0);
3236 #if IO_DLL_CHAIN_LENGTH == 6
3237 			scc_mgr_set_dqdqs_output_phase(i, 6);
3238 #else
3239 			scc_mgr_set_dqdqs_output_phase(i, 7);
3240 #endif
3241 			/*
3242 			 * Case:33398
3243 			 *
3244 			 * Write data arrives to the I/O two cycles before write
3245 			 * latency is reached (720 deg).
3246 			 *   -> due to bit-slip in a/c bus
3247 			 *   -> to allow board skew where dqs is longer than ck
3248 			 *      -> how often can this happen!?
3249 			 *      -> can claim back some ptaps for high freq
3250 			 *       support if we can relax this, but i digress...
3251 			 *
3252 			 * The write_clk leads mem_ck by 90 deg
3253 			 * The minimum ptap of the OPA is 180 deg
3254 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3255 			 * The write_clk is always delayed by 2 ptaps
3256 			 *
3257 			 * Hence, to make DQS aligned to CK, we need to delay
3258 			 * DQS by:
3259 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3260 			 *
3261 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3262 			 * gives us the number of ptaps, which simplies to:
3263 			 *
3264 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3265 			 */
3266 			scc_mgr_set_dqdqs_output_phase(i,
3267 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3268 		}
3269 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3270 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3271 
3272 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3273 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3274 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3275 		}
3276 		writel(0xff, &sdr_scc_mgr->dq_ena);
3277 		writel(0xff, &sdr_scc_mgr->dm_ena);
3278 		writel(0, &sdr_scc_mgr->update);
3279 	}
3280 
3281 	/* Compensate for simulation model behaviour */
3282 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3283 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3284 		scc_mgr_load_dqs(i);
3285 	}
3286 	writel(0, &sdr_scc_mgr->update);
3287 
3288 	/*
3289 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3290 	 * in sequencer.
3291 	 */
3292 	vfifo_offset = CALIB_VFIFO_OFFSET;
3293 	for (j = 0; j < vfifo_offset; j++)
3294 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3295 	writel(0, &phy_mgr_cmd->fifo_reset);
3296 
3297 	/*
3298 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3299 	 * setting from generation-time constant.
3300 	 */
3301 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3302 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3303 }
3304 
3305 /**
3306  * mem_calibrate() - Memory calibration entry point.
3307  *
3308  * Perform memory calibration.
3309  */
3310 static uint32_t mem_calibrate(void)
3311 {
3312 	uint32_t i;
3313 	uint32_t rank_bgn, sr;
3314 	uint32_t write_group, write_test_bgn;
3315 	uint32_t read_group, read_test_bgn;
3316 	uint32_t run_groups, current_run;
3317 	uint32_t failing_groups = 0;
3318 	uint32_t group_failed = 0;
3319 
3320 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3321 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3322 
3323 	debug("%s:%d\n", __func__, __LINE__);
3324 
3325 	/* Initialize the data settings */
3326 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3327 	gbl->error_stage = CAL_STAGE_NIL;
3328 	gbl->error_group = 0xff;
3329 	gbl->fom_in = 0;
3330 	gbl->fom_out = 0;
3331 
3332 	/* Initialize WLAT and RLAT. */
3333 	mem_init_latency();
3334 
3335 	/* Initialize bit slips. */
3336 	mem_precharge_and_activate();
3337 
3338 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3339 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3340 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3341 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3342 		if (i == 0)
3343 			scc_mgr_set_hhp_extras();
3344 
3345 		scc_set_bypass_mode(i);
3346 	}
3347 
3348 	/* Calibration is skipped. */
3349 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3350 		/*
3351 		 * Set VFIFO and LFIFO to instant-on settings in skip
3352 		 * calibration mode.
3353 		 */
3354 		mem_skip_calibrate();
3355 
3356 		/*
3357 		 * Do not remove this line as it makes sure all of our
3358 		 * decisions have been applied.
3359 		 */
3360 		writel(0, &sdr_scc_mgr->update);
3361 		return 1;
3362 	}
3363 
3364 	/* Calibration is not skipped. */
3365 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3366 		/*
3367 		 * Zero all delay chain/phase settings for all
3368 		 * groups and all shadow register sets.
3369 		 */
3370 		scc_mgr_zero_all();
3371 
3372 		run_groups = ~param->skip_groups;
3373 
3374 		for (write_group = 0, write_test_bgn = 0; write_group
3375 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3376 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3377 
3378 			/* Initialize the group failure */
3379 			group_failed = 0;
3380 
3381 			current_run = run_groups & ((1 <<
3382 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3383 			run_groups = run_groups >>
3384 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3385 
3386 			if (current_run == 0)
3387 				continue;
3388 
3389 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3390 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3391 			scc_mgr_zero_group(write_group, 0);
3392 
3393 			for (read_group = write_group * rwdqs_ratio,
3394 			     read_test_bgn = 0;
3395 			     read_group < (write_group + 1) * rwdqs_ratio;
3396 			     read_group++,
3397 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3398 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3399 					continue;
3400 
3401 				/* Calibrate the VFIFO */
3402 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3403 							       read_test_bgn))
3404 					continue;
3405 
3406 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3407 					return 0;
3408 
3409 				/* The group failed, we're done. */
3410 				goto grp_failed;
3411 			}
3412 
3413 			/* Calibrate the output side */
3414 			for (rank_bgn = 0, sr = 0;
3415 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3416 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3417 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3418 					continue;
3419 
3420 				/* Not needed in quick mode! */
3421 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3422 					continue;
3423 
3424 				/*
3425 				 * Determine if this set of ranks
3426 				 * should be skipped entirely.
3427 				 */
3428 				if (param->skip_shadow_regs[sr])
3429 					continue;
3430 
3431 				/* Calibrate WRITEs */
3432 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3433 						write_group, write_test_bgn))
3434 					continue;
3435 
3436 				group_failed = 1;
3437 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3438 					return 0;
3439 			}
3440 
3441 			/* Some group failed, we're done. */
3442 			if (group_failed)
3443 				goto grp_failed;
3444 
3445 			for (read_group = write_group * rwdqs_ratio,
3446 			     read_test_bgn = 0;
3447 			     read_group < (write_group + 1) * rwdqs_ratio;
3448 			     read_group++,
3449 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3450 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3451 					continue;
3452 
3453 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3454 								read_test_bgn))
3455 					continue;
3456 
3457 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3458 					return 0;
3459 
3460 				/* The group failed, we're done. */
3461 				goto grp_failed;
3462 			}
3463 
3464 			/* No group failed, continue as usual. */
3465 			continue;
3466 
3467 grp_failed:		/* A group failed, increment the counter. */
3468 			failing_groups++;
3469 		}
3470 
3471 		/*
3472 		 * USER If there are any failing groups then report
3473 		 * the failure.
3474 		 */
3475 		if (failing_groups != 0)
3476 			return 0;
3477 
3478 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3479 			continue;
3480 
3481 		/*
3482 		 * If we're skipping groups as part of debug,
3483 		 * don't calibrate LFIFO.
3484 		 */
3485 		if (param->skip_groups != 0)
3486 			continue;
3487 
3488 		/* Calibrate the LFIFO */
3489 		if (!rw_mgr_mem_calibrate_lfifo())
3490 			return 0;
3491 	}
3492 
3493 	/*
3494 	 * Do not remove this line as it makes sure all of our decisions
3495 	 * have been applied.
3496 	 */
3497 	writel(0, &sdr_scc_mgr->update);
3498 	return 1;
3499 }
3500 
3501 /**
3502  * run_mem_calibrate() - Perform memory calibration
3503  *
3504  * This function triggers the entire memory calibration procedure.
3505  */
3506 static int run_mem_calibrate(void)
3507 {
3508 	int pass;
3509 
3510 	debug("%s:%d\n", __func__, __LINE__);
3511 
3512 	/* Reset pass/fail status shown on afi_cal_success/fail */
3513 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3514 
3515 	/* Stop tracking manager. */
3516 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3517 
3518 	phy_mgr_initialize();
3519 	rw_mgr_mem_initialize();
3520 
3521 	/* Perform the actual memory calibration. */
3522 	pass = mem_calibrate();
3523 
3524 	mem_precharge_and_activate();
3525 	writel(0, &phy_mgr_cmd->fifo_reset);
3526 
3527 	/* Handoff. */
3528 	rw_mgr_mem_handoff();
3529 	/*
3530 	 * In Hard PHY this is a 2-bit control:
3531 	 * 0: AFI Mux Select
3532 	 * 1: DDIO Mux Select
3533 	 */
3534 	writel(0x2, &phy_mgr_cfg->mux_sel);
3535 
3536 	/* Start tracking manager. */
3537 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3538 
3539 	return pass;
3540 }
3541 
3542 /**
3543  * debug_mem_calibrate() - Report result of memory calibration
3544  * @pass:	Value indicating whether calibration passed or failed
3545  *
3546  * This function reports the results of the memory calibration
3547  * and writes debug information into the register file.
3548  */
3549 static void debug_mem_calibrate(int pass)
3550 {
3551 	uint32_t debug_info;
3552 
3553 	if (pass) {
3554 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3555 
3556 		gbl->fom_in /= 2;
3557 		gbl->fom_out /= 2;
3558 
3559 		if (gbl->fom_in > 0xff)
3560 			gbl->fom_in = 0xff;
3561 
3562 		if (gbl->fom_out > 0xff)
3563 			gbl->fom_out = 0xff;
3564 
3565 		/* Update the FOM in the register file */
3566 		debug_info = gbl->fom_in;
3567 		debug_info |= gbl->fom_out << 8;
3568 		writel(debug_info, &sdr_reg_file->fom);
3569 
3570 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3571 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3572 	} else {
3573 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3574 
3575 		debug_info = gbl->error_stage;
3576 		debug_info |= gbl->error_substage << 8;
3577 		debug_info |= gbl->error_group << 16;
3578 
3579 		writel(debug_info, &sdr_reg_file->failing_stage);
3580 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3581 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3582 
3583 		/* Update the failing group/stage in the register file */
3584 		debug_info = gbl->error_stage;
3585 		debug_info |= gbl->error_substage << 8;
3586 		debug_info |= gbl->error_group << 16;
3587 		writel(debug_info, &sdr_reg_file->failing_stage);
3588 	}
3589 
3590 	printf("%s: Calibration complete\n", __FILE__);
3591 }
3592 
3593 /**
3594  * hc_initialize_rom_data() - Initialize ROM data
3595  *
3596  * Initialize ROM data.
3597  */
3598 static void hc_initialize_rom_data(void)
3599 {
3600 	u32 i, addr;
3601 
3602 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3603 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3604 		writel(inst_rom_init[i], addr + (i << 2));
3605 
3606 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3607 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3608 		writel(ac_rom_init[i], addr + (i << 2));
3609 }
3610 
3611 /**
3612  * initialize_reg_file() - Initialize SDR register file
3613  *
3614  * Initialize SDR register file.
3615  */
3616 static void initialize_reg_file(void)
3617 {
3618 	/* Initialize the register file with the correct data */
3619 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3620 	writel(0, &sdr_reg_file->debug_data_addr);
3621 	writel(0, &sdr_reg_file->cur_stage);
3622 	writel(0, &sdr_reg_file->fom);
3623 	writel(0, &sdr_reg_file->failing_stage);
3624 	writel(0, &sdr_reg_file->debug1);
3625 	writel(0, &sdr_reg_file->debug2);
3626 }
3627 
3628 /**
3629  * initialize_hps_phy() - Initialize HPS PHY
3630  *
3631  * Initialize HPS PHY.
3632  */
3633 static void initialize_hps_phy(void)
3634 {
3635 	uint32_t reg;
3636 	/*
3637 	 * Tracking also gets configured here because it's in the
3638 	 * same register.
3639 	 */
3640 	uint32_t trk_sample_count = 7500;
3641 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3642 	/*
3643 	 * Format is number of outer loops in the 16 MSB, sample
3644 	 * count in 16 LSB.
3645 	 */
3646 
3647 	reg = 0;
3648 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3649 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3650 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3651 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3652 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3653 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3654 	/*
3655 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3656 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3657 	 */
3658 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3659 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3660 		trk_sample_count);
3661 	writel(reg, &sdr_ctrl->phy_ctrl0);
3662 
3663 	reg = 0;
3664 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3665 		trk_sample_count >>
3666 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3667 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3668 		trk_long_idle_sample_count);
3669 	writel(reg, &sdr_ctrl->phy_ctrl1);
3670 
3671 	reg = 0;
3672 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3673 		trk_long_idle_sample_count >>
3674 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3675 	writel(reg, &sdr_ctrl->phy_ctrl2);
3676 }
3677 
3678 /**
3679  * initialize_tracking() - Initialize tracking
3680  *
3681  * Initialize the register file with usable initial data.
3682  */
3683 static void initialize_tracking(void)
3684 {
3685 	/*
3686 	 * Initialize the register file with the correct data.
3687 	 * Compute usable version of value in case we skip full
3688 	 * computation later.
3689 	 */
3690 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3691 	       &sdr_reg_file->dtaps_per_ptap);
3692 
3693 	/* trk_sample_count */
3694 	writel(7500, &sdr_reg_file->trk_sample_count);
3695 
3696 	/* longidle outer loop [15:0] */
3697 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3698 
3699 	/*
3700 	 * longidle sample count [31:24]
3701 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3702 	 * trcd, worst case [15:8]
3703 	 * vfifo wait [7:0]
3704 	 */
3705 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3706 	       &sdr_reg_file->delays);
3707 
3708 	/* mux delay */
3709 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3710 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3711 	       &sdr_reg_file->trk_rw_mgr_addr);
3712 
3713 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3714 	       &sdr_reg_file->trk_read_dqs_width);
3715 
3716 	/* trefi [7:0] */
3717 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3718 	       &sdr_reg_file->trk_rfsh);
3719 }
3720 
3721 int sdram_calibration_full(void)
3722 {
3723 	struct param_type my_param;
3724 	struct gbl_type my_gbl;
3725 	uint32_t pass;
3726 
3727 	memset(&my_param, 0, sizeof(my_param));
3728 	memset(&my_gbl, 0, sizeof(my_gbl));
3729 
3730 	param = &my_param;
3731 	gbl = &my_gbl;
3732 
3733 	/* Set the calibration enabled by default */
3734 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3735 	/*
3736 	 * Only sweep all groups (regardless of fail state) by default
3737 	 * Set enabled read test by default.
3738 	 */
3739 #if DISABLE_GUARANTEED_READ
3740 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3741 #endif
3742 	/* Initialize the register file */
3743 	initialize_reg_file();
3744 
3745 	/* Initialize any PHY CSR */
3746 	initialize_hps_phy();
3747 
3748 	scc_mgr_initialize();
3749 
3750 	initialize_tracking();
3751 
3752 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3753 
3754 	debug("%s:%d\n", __func__, __LINE__);
3755 	debug_cond(DLEVEL == 1,
3756 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3757 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3758 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3759 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3760 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3761 	debug_cond(DLEVEL == 1,
3762 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3763 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3764 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3765 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3766 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3767 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3768 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3769 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3770 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3771 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3772 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3773 		   IO_IO_OUT2_DELAY_MAX);
3774 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3775 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3776 
3777 	hc_initialize_rom_data();
3778 
3779 	/* update info for sims */
3780 	reg_file_set_stage(CAL_STAGE_NIL);
3781 	reg_file_set_group(0);
3782 
3783 	/*
3784 	 * Load global needed for those actions that require
3785 	 * some dynamic calibration support.
3786 	 */
3787 	dyn_calib_steps = STATIC_CALIB_STEPS;
3788 	/*
3789 	 * Load global to allow dynamic selection of delay loop settings
3790 	 * based on calibration mode.
3791 	 */
3792 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3793 		skip_delay_mask = 0xff;
3794 	else
3795 		skip_delay_mask = 0x0;
3796 
3797 	pass = run_mem_calibrate();
3798 	debug_mem_calibrate(pass);
3799 	return pass;
3800 }
3801