xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 96df60364dc329f5de9b74494f1625916349ce62)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 /**
1282  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1283  * @grp:		Read/Write group
1284  * @num_tries:		Number of retries of the test
1285  * @all_correct:	All bits must be correct in the mask
1286  * @all_groups:		Test all R/W groups
1287  *
1288  * Perform a READ test across all memory ranks.
1289  */
1290 static int
1291 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1292 					 const u32 all_correct,
1293 					 const u32 all_groups)
1294 {
1295 	u32 bit_chk;
1296 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1297 					      &bit_chk, all_groups, 1);
1298 }
1299 
1300 /**
1301  * rw_mgr_incr_vfifo() - Increase VFIFO value
1302  * @grp:	Read/Write group
1303  *
1304  * Increase VFIFO value.
1305  */
1306 static void rw_mgr_incr_vfifo(const u32 grp)
1307 {
1308 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1309 }
1310 
1311 /**
1312  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1313  * @grp:	Read/Write group
1314  *
1315  * Decrease VFIFO value.
1316  */
1317 static void rw_mgr_decr_vfifo(const u32 grp)
1318 {
1319 	u32 i;
1320 
1321 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1322 		rw_mgr_incr_vfifo(grp);
1323 }
1324 
1325 /**
1326  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1327  * @grp:	Read/Write group
1328  *
1329  * Push VFIFO until a failing read happens.
1330  */
1331 static int find_vfifo_failing_read(const u32 grp)
1332 {
1333 	u32 v, ret, fail_cnt = 0;
1334 
1335 	for (v = 0; v < VFIFO_SIZE; v++) {
1336 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1337 			   __func__, __LINE__, v);
1338 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1339 						PASS_ONE_BIT, 0);
1340 		if (!ret) {
1341 			fail_cnt++;
1342 
1343 			if (fail_cnt == 2)
1344 				return v;
1345 		}
1346 
1347 		/* Fiddle with FIFO. */
1348 		rw_mgr_incr_vfifo(grp);
1349 	}
1350 
1351 	/* No failing read found! Something must have gone wrong. */
1352 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1353 	return 0;
1354 }
1355 
1356 /**
1357  * sdr_find_phase_delay() - Find DQS enable phase or delay
1358  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1359  * @delay:	If 1, look for delay, if 0, look for phase
1360  * @grp:	Read/Write group
1361  * @work:	Working window position
1362  * @work_inc:	Working window increment
1363  * @pd:		DQS Phase/Delay Iterator
1364  *
1365  * Find working or non-working DQS enable phase setting.
1366  */
1367 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1368 				u32 *work, const u32 work_inc, u32 *pd)
1369 {
1370 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1371 	u32 ret;
1372 
1373 	for (; *pd <= max; (*pd)++) {
1374 		if (delay)
1375 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1376 		else
1377 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1378 
1379 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1380 					PASS_ONE_BIT, 0);
1381 		if (!working)
1382 			ret = !ret;
1383 
1384 		if (ret)
1385 			return 0;
1386 
1387 		if (work)
1388 			*work += work_inc;
1389 	}
1390 
1391 	return -EINVAL;
1392 }
1393 /**
1394  * sdr_find_phase() - Find DQS enable phase
1395  * @working:	If 1, look for working phase, if 0, look for non-working phase
1396  * @grp:	Read/Write group
1397  * @work:	Working window position
1398  * @i:		Iterator
1399  * @p:		DQS Phase Iterator
1400  *
1401  * Find working or non-working DQS enable phase setting.
1402  */
1403 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1404 			  u32 *i, u32 *p)
1405 {
1406 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1407 	int ret;
1408 
1409 	for (; *i < end; (*i)++) {
1410 		if (working)
1411 			*p = 0;
1412 
1413 		ret = sdr_find_phase_delay(working, 0, grp, work,
1414 					   IO_DELAY_PER_OPA_TAP, p);
1415 		if (!ret)
1416 			return 0;
1417 
1418 		if (*p > IO_DQS_EN_PHASE_MAX) {
1419 			/* Fiddle with FIFO. */
1420 			rw_mgr_incr_vfifo(grp);
1421 			if (!working)
1422 				*p = 0;
1423 		}
1424 	}
1425 
1426 	return -EINVAL;
1427 }
1428 
1429 /**
1430  * sdr_working_phase() - Find working DQS enable phase
1431  * @grp:	Read/Write group
1432  * @work_bgn:	Working window start position
1433  * @d:		dtaps output value
1434  * @p:		DQS Phase Iterator
1435  * @i:		Iterator
1436  *
1437  * Find working DQS enable phase setting.
1438  */
1439 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1440 			     u32 *p, u32 *i)
1441 {
1442 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1443 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1444 	int ret;
1445 
1446 	*work_bgn = 0;
1447 
1448 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1449 		*i = 0;
1450 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1451 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1452 		if (!ret)
1453 			return 0;
1454 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1455 	}
1456 
1457 	/* Cannot find working solution */
1458 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1459 		   __func__, __LINE__);
1460 	return -EINVAL;
1461 }
1462 
1463 /**
1464  * sdr_backup_phase() - Find DQS enable backup phase
1465  * @grp:	Read/Write group
1466  * @work_bgn:	Working window start position
1467  * @p:		DQS Phase Iterator
1468  *
1469  * Find DQS enable backup phase setting.
1470  */
1471 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1472 {
1473 	u32 tmp_delay, d;
1474 	int ret;
1475 
1476 	/* Special case code for backing up a phase */
1477 	if (*p == 0) {
1478 		*p = IO_DQS_EN_PHASE_MAX;
1479 		rw_mgr_decr_vfifo(grp);
1480 	} else {
1481 		(*p)--;
1482 	}
1483 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1484 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1485 
1486 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1487 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1488 
1489 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1490 					PASS_ONE_BIT, 0);
1491 		if (ret) {
1492 			*work_bgn = tmp_delay;
1493 			break;
1494 		}
1495 
1496 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1497 	}
1498 
1499 	/* Restore VFIFO to old state before we decremented it (if needed). */
1500 	(*p)++;
1501 	if (*p > IO_DQS_EN_PHASE_MAX) {
1502 		*p = 0;
1503 		rw_mgr_incr_vfifo(grp);
1504 	}
1505 
1506 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1507 }
1508 
1509 /**
1510  * sdr_nonworking_phase() - Find non-working DQS enable phase
1511  * @grp:	Read/Write group
1512  * @work_end:	Working window end position
1513  * @p:		DQS Phase Iterator
1514  * @i:		Iterator
1515  *
1516  * Find non-working DQS enable phase setting.
1517  */
1518 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1519 {
1520 	int ret;
1521 
1522 	(*p)++;
1523 	*work_end += IO_DELAY_PER_OPA_TAP;
1524 	if (*p > IO_DQS_EN_PHASE_MAX) {
1525 		/* Fiddle with FIFO. */
1526 		*p = 0;
1527 		rw_mgr_incr_vfifo(grp);
1528 	}
1529 
1530 	ret = sdr_find_phase(0, grp, work_end, i, p);
1531 	if (ret) {
1532 		/* Cannot see edge of failing read. */
1533 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1534 			   __func__, __LINE__);
1535 	}
1536 
1537 	return ret;
1538 }
1539 
1540 /**
1541  * sdr_find_window_center() - Find center of the working DQS window.
1542  * @grp:	Read/Write group
1543  * @work_bgn:	First working settings
1544  * @work_end:	Last working settings
1545  *
1546  * Find center of the working DQS enable window.
1547  */
1548 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1549 				  const u32 work_end)
1550 {
1551 	u32 work_mid;
1552 	int tmp_delay = 0;
1553 	int i, p, d;
1554 
1555 	work_mid = (work_bgn + work_end) / 2;
1556 
1557 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1558 		   work_bgn, work_end, work_mid);
1559 	/* Get the middle delay to be less than a VFIFO delay */
1560 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1561 
1562 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1563 	work_mid %= tmp_delay;
1564 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1565 
1566 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1567 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1568 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1569 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1570 
1571 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1572 
1573 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1574 	if (d > IO_DQS_EN_DELAY_MAX)
1575 		d = IO_DQS_EN_DELAY_MAX;
1576 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1577 
1578 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1579 
1580 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1581 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1582 
1583 	/*
1584 	 * push vfifo until we can successfully calibrate. We can do this
1585 	 * because the largest possible margin in 1 VFIFO cycle.
1586 	 */
1587 	for (i = 0; i < VFIFO_SIZE; i++) {
1588 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1589 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1590 							     PASS_ONE_BIT,
1591 							     0)) {
1592 			debug_cond(DLEVEL == 2,
1593 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1594 				   __func__, __LINE__, p, d);
1595 			return 0;
1596 		}
1597 
1598 		/* Fiddle with FIFO. */
1599 		rw_mgr_incr_vfifo(grp);
1600 	}
1601 
1602 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1603 		   __func__, __LINE__);
1604 	return -EINVAL;
1605 }
1606 
1607 /**
1608  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1609  * @grp:	Read/Write Group
1610  *
1611  * Find a good DQS enable to use.
1612  */
1613 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1614 {
1615 	u32 d, p, i;
1616 	u32 dtaps_per_ptap;
1617 	u32 work_bgn, work_end;
1618 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1619 	int ret;
1620 
1621 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1622 
1623 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1624 
1625 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1626 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1627 
1628 	/* Step 0: Determine number of delay taps for each phase tap. */
1629 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1630 
1631 	/* Step 1: First push vfifo until we get a failing read. */
1632 	find_vfifo_failing_read(grp);
1633 
1634 	/* Step 2: Find first working phase, increment in ptaps. */
1635 	work_bgn = 0;
1636 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1637 	if (ret)
1638 		return ret;
1639 
1640 	work_end = work_bgn;
1641 
1642 	/*
1643 	 * If d is 0 then the working window covers a phase tap and we can
1644 	 * follow the old procedure. Otherwise, we've found the beginning
1645 	 * and we need to increment the dtaps until we find the end.
1646 	 */
1647 	if (d == 0) {
1648 		/*
1649 		 * Step 3a: If we have room, back off by one and
1650 		 *          increment in dtaps.
1651 		 */
1652 		sdr_backup_phase(grp, &work_bgn, &p);
1653 
1654 		/*
1655 		 * Step 4a: go forward from working phase to non working
1656 		 * phase, increment in ptaps.
1657 		 */
1658 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1659 		if (ret)
1660 			return ret;
1661 
1662 		/* Step 5a: Back off one from last, increment in dtaps. */
1663 
1664 		/* Special case code for backing up a phase */
1665 		if (p == 0) {
1666 			p = IO_DQS_EN_PHASE_MAX;
1667 			rw_mgr_decr_vfifo(grp);
1668 		} else {
1669 			p = p - 1;
1670 		}
1671 
1672 		work_end -= IO_DELAY_PER_OPA_TAP;
1673 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1674 
1675 		d = 0;
1676 
1677 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1678 			   __func__, __LINE__, p);
1679 	}
1680 
1681 	/* The dtap increment to find the failing edge is done here. */
1682 	sdr_find_phase_delay(0, 1, grp, &work_end,
1683 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1684 
1685 	/* Go back to working dtap */
1686 	if (d != 0)
1687 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1688 
1689 	debug_cond(DLEVEL == 2,
1690 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1691 		   __func__, __LINE__, p, d - 1, work_end);
1692 
1693 	if (work_end < work_bgn) {
1694 		/* nil range */
1695 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1696 			   __func__, __LINE__);
1697 		return -EINVAL;
1698 	}
1699 
1700 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1701 		   __func__, __LINE__, work_bgn, work_end);
1702 
1703 	/*
1704 	 * We need to calculate the number of dtaps that equal a ptap.
1705 	 * To do that we'll back up a ptap and re-find the edge of the
1706 	 * window using dtaps
1707 	 */
1708 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1709 		   __func__, __LINE__);
1710 
1711 	/* Special case code for backing up a phase */
1712 	if (p == 0) {
1713 		p = IO_DQS_EN_PHASE_MAX;
1714 		rw_mgr_decr_vfifo(grp);
1715 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1716 			   __func__, __LINE__, p);
1717 	} else {
1718 		p = p - 1;
1719 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1720 			   __func__, __LINE__, p);
1721 	}
1722 
1723 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1724 
1725 	/*
1726 	 * Increase dtap until we first see a passing read (in case the
1727 	 * window is smaller than a ptap), and then a failing read to
1728 	 * mark the edge of the window again.
1729 	 */
1730 
1731 	/* Find a passing read. */
1732 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1733 		   __func__, __LINE__);
1734 
1735 	initial_failing_dtap = d;
1736 
1737 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1738 	if (found_passing_read) {
1739 		/* Find a failing read. */
1740 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1741 			   __func__, __LINE__);
1742 		d++;
1743 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1744 							   &d);
1745 	} else {
1746 		debug_cond(DLEVEL == 1,
1747 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1748 			   __func__, __LINE__);
1749 	}
1750 
1751 	/*
1752 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1753 	 * found a passing/failing read. If we didn't, it means d hit the max
1754 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1755 	 * statically calculated value.
1756 	 */
1757 	if (found_passing_read && found_failing_read)
1758 		dtaps_per_ptap = d - initial_failing_dtap;
1759 
1760 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1761 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1762 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1763 
1764 	/* Step 6: Find the centre of the window. */
1765 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1766 
1767 	return ret;
1768 }
1769 
1770 /* per-bit deskew DQ and center */
1771 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1772 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1773 	uint32_t use_read_test, uint32_t update_fom)
1774 {
1775 	uint32_t i, p, d, min_index;
1776 	/*
1777 	 * Store these as signed since there are comparisons with
1778 	 * signed numbers.
1779 	 */
1780 	uint32_t bit_chk;
1781 	uint32_t sticky_bit_chk;
1782 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1783 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1784 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1785 	int32_t mid;
1786 	int32_t orig_mid_min, mid_min;
1787 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1788 		final_dqs_en;
1789 	int32_t dq_margin, dqs_margin;
1790 	uint32_t stop;
1791 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1792 	uint32_t addr;
1793 
1794 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1795 
1796 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1797 	start_dqs = readl(addr + (read_group << 2));
1798 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1799 		start_dqs_en = readl(addr + ((read_group << 2)
1800 				     - IO_DQS_EN_DELAY_OFFSET));
1801 
1802 	/* set the left and right edge of each bit to an illegal value */
1803 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1804 	sticky_bit_chk = 0;
1805 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1806 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1807 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1808 	}
1809 
1810 	/* Search for the left edge of the window for each bit */
1811 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1812 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1813 
1814 		writel(0, &sdr_scc_mgr->update);
1815 
1816 		/*
1817 		 * Stop searching when the read test doesn't pass AND when
1818 		 * we've seen a passing read on every bit.
1819 		 */
1820 		if (use_read_test) {
1821 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1822 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1823 				&bit_chk, 0, 0);
1824 		} else {
1825 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1826 							0, PASS_ONE_BIT,
1827 							&bit_chk, 0);
1828 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1829 				(read_group - (write_group *
1830 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1831 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1832 			stop = (bit_chk == 0);
1833 		}
1834 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1835 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1836 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1837 			   && %u", __func__, __LINE__, d,
1838 			   sticky_bit_chk,
1839 			param->read_correct_mask, stop);
1840 
1841 		if (stop == 1) {
1842 			break;
1843 		} else {
1844 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1845 				if (bit_chk & 1) {
1846 					/* Remember a passing test as the
1847 					left_edge */
1848 					left_edge[i] = d;
1849 				} else {
1850 					/* If a left edge has not been seen yet,
1851 					then a future passing test will mark
1852 					this edge as the right edge */
1853 					if (left_edge[i] ==
1854 						IO_IO_IN_DELAY_MAX + 1) {
1855 						right_edge[i] = -(d + 1);
1856 					}
1857 				}
1858 				bit_chk = bit_chk >> 1;
1859 			}
1860 		}
1861 	}
1862 
1863 	/* Reset DQ delay chains to 0 */
1864 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1865 	sticky_bit_chk = 0;
1866 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1867 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1868 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1869 			   i, left_edge[i], i, right_edge[i]);
1870 
1871 		/*
1872 		 * Check for cases where we haven't found the left edge,
1873 		 * which makes our assignment of the the right edge invalid.
1874 		 * Reset it to the illegal value.
1875 		 */
1876 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1877 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1878 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1879 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1880 				   right_edge[%u]: %d\n", __func__, __LINE__,
1881 				   i, right_edge[i]);
1882 		}
1883 
1884 		/*
1885 		 * Reset sticky bit (except for bits where we have seen
1886 		 * both the left and right edge).
1887 		 */
1888 		sticky_bit_chk = sticky_bit_chk << 1;
1889 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1890 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1891 			sticky_bit_chk = sticky_bit_chk | 1;
1892 		}
1893 
1894 		if (i == 0)
1895 			break;
1896 	}
1897 
1898 	/* Search for the right edge of the window for each bit */
1899 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1900 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1901 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1902 			uint32_t delay = d + start_dqs_en;
1903 			if (delay > IO_DQS_EN_DELAY_MAX)
1904 				delay = IO_DQS_EN_DELAY_MAX;
1905 			scc_mgr_set_dqs_en_delay(read_group, delay);
1906 		}
1907 		scc_mgr_load_dqs(read_group);
1908 
1909 		writel(0, &sdr_scc_mgr->update);
1910 
1911 		/*
1912 		 * Stop searching when the read test doesn't pass AND when
1913 		 * we've seen a passing read on every bit.
1914 		 */
1915 		if (use_read_test) {
1916 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1917 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1918 				&bit_chk, 0, 0);
1919 		} else {
1920 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1921 							0, PASS_ONE_BIT,
1922 							&bit_chk, 0);
1923 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1924 				(read_group - (write_group *
1925 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1926 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1927 			stop = (bit_chk == 0);
1928 		}
1929 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1930 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1931 
1932 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1933 			   %u && %u", __func__, __LINE__, d,
1934 			   sticky_bit_chk, param->read_correct_mask, stop);
1935 
1936 		if (stop == 1) {
1937 			break;
1938 		} else {
1939 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1940 				if (bit_chk & 1) {
1941 					/* Remember a passing test as
1942 					the right_edge */
1943 					right_edge[i] = d;
1944 				} else {
1945 					if (d != 0) {
1946 						/* If a right edge has not been
1947 						seen yet, then a future passing
1948 						test will mark this edge as the
1949 						left edge */
1950 						if (right_edge[i] ==
1951 						IO_IO_IN_DELAY_MAX + 1) {
1952 							left_edge[i] = -(d + 1);
1953 						}
1954 					} else {
1955 						/* d = 0 failed, but it passed
1956 						when testing the left edge,
1957 						so it must be marginal,
1958 						set it to -1 */
1959 						if (right_edge[i] ==
1960 							IO_IO_IN_DELAY_MAX + 1 &&
1961 							left_edge[i] !=
1962 							IO_IO_IN_DELAY_MAX
1963 							+ 1) {
1964 							right_edge[i] = -1;
1965 						}
1966 						/* If a right edge has not been
1967 						seen yet, then a future passing
1968 						test will mark this edge as the
1969 						left edge */
1970 						else if (right_edge[i] ==
1971 							IO_IO_IN_DELAY_MAX +
1972 							1) {
1973 							left_edge[i] = -(d + 1);
1974 						}
1975 					}
1976 				}
1977 
1978 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1979 					   d=%u]: ", __func__, __LINE__, d);
1980 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1981 					   (int)(bit_chk & 1), i, left_edge[i]);
1982 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1983 					   right_edge[i]);
1984 				bit_chk = bit_chk >> 1;
1985 			}
1986 		}
1987 	}
1988 
1989 	/* Check that all bits have a window */
1990 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1991 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1992 			   %d right_edge[%u]: %d", __func__, __LINE__,
1993 			   i, left_edge[i], i, right_edge[i]);
1994 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1995 			== IO_IO_IN_DELAY_MAX + 1)) {
1996 			/*
1997 			 * Restore delay chain settings before letting the loop
1998 			 * in rw_mgr_mem_calibrate_vfifo to retry different
1999 			 * dqs/ck relationships.
2000 			 */
2001 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2002 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2003 				scc_mgr_set_dqs_en_delay(read_group,
2004 							 start_dqs_en);
2005 			}
2006 			scc_mgr_load_dqs(read_group);
2007 			writel(0, &sdr_scc_mgr->update);
2008 
2009 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2010 				   find edge [%u]: %d %d", __func__, __LINE__,
2011 				   i, left_edge[i], right_edge[i]);
2012 			if (use_read_test) {
2013 				set_failing_group_stage(read_group *
2014 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2015 					CAL_STAGE_VFIFO,
2016 					CAL_SUBSTAGE_VFIFO_CENTER);
2017 			} else {
2018 				set_failing_group_stage(read_group *
2019 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2020 					CAL_STAGE_VFIFO_AFTER_WRITES,
2021 					CAL_SUBSTAGE_VFIFO_CENTER);
2022 			}
2023 			return 0;
2024 		}
2025 	}
2026 
2027 	/* Find middle of window for each DQ bit */
2028 	mid_min = left_edge[0] - right_edge[0];
2029 	min_index = 0;
2030 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2031 		mid = left_edge[i] - right_edge[i];
2032 		if (mid < mid_min) {
2033 			mid_min = mid;
2034 			min_index = i;
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * -mid_min/2 represents the amount that we need to move DQS.
2040 	 * If mid_min is odd and positive we'll need to add one to
2041 	 * make sure the rounding in further calculations is correct
2042 	 * (always bias to the right), so just add 1 for all positive values.
2043 	 */
2044 	if (mid_min > 0)
2045 		mid_min++;
2046 
2047 	mid_min = mid_min / 2;
2048 
2049 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2050 		   __func__, __LINE__, mid_min, min_index);
2051 
2052 	/* Determine the amount we can change DQS (which is -mid_min) */
2053 	orig_mid_min = mid_min;
2054 	new_dqs = start_dqs - mid_min;
2055 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2056 		new_dqs = IO_DQS_IN_DELAY_MAX;
2057 	else if (new_dqs < 0)
2058 		new_dqs = 0;
2059 
2060 	mid_min = start_dqs - new_dqs;
2061 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2062 		   mid_min, new_dqs);
2063 
2064 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2065 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2066 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2067 		else if (start_dqs_en - mid_min < 0)
2068 			mid_min += start_dqs_en - mid_min;
2069 	}
2070 	new_dqs = start_dqs - mid_min;
2071 
2072 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2073 		   new_dqs=%d mid_min=%d\n", start_dqs,
2074 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2075 		   new_dqs, mid_min);
2076 
2077 	/* Initialize data for export structures */
2078 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2079 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2080 
2081 	/* add delay to bring centre of all DQ windows to the same "level" */
2082 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2083 		/* Use values before divide by 2 to reduce round off error */
2084 		shift_dq = (left_edge[i] - right_edge[i] -
2085 			(left_edge[min_index] - right_edge[min_index]))/2  +
2086 			(orig_mid_min - mid_min);
2087 
2088 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2089 			   shift_dq[%u]=%d\n", i, shift_dq);
2090 
2091 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2092 		temp_dq_in_delay1 = readl(addr + (p << 2));
2093 		temp_dq_in_delay2 = readl(addr + (i << 2));
2094 
2095 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2096 			(int32_t)IO_IO_IN_DELAY_MAX) {
2097 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2098 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2099 			shift_dq = -(int32_t)temp_dq_in_delay1;
2100 		}
2101 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2102 			   shift_dq[%u]=%d\n", i, shift_dq);
2103 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2104 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2105 		scc_mgr_load_dq(p);
2106 
2107 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2108 			   left_edge[i] - shift_dq + (-mid_min),
2109 			   right_edge[i] + shift_dq - (-mid_min));
2110 		/* To determine values for export structures */
2111 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2112 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2113 
2114 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2115 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2116 	}
2117 
2118 	final_dqs = new_dqs;
2119 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2120 		final_dqs_en = start_dqs_en - mid_min;
2121 
2122 	/* Move DQS-en */
2123 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2124 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2125 		scc_mgr_load_dqs(read_group);
2126 	}
2127 
2128 	/* Move DQS */
2129 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2130 	scc_mgr_load_dqs(read_group);
2131 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2132 		   dqs_margin=%d", __func__, __LINE__,
2133 		   dq_margin, dqs_margin);
2134 
2135 	/*
2136 	 * Do not remove this line as it makes sure all of our decisions
2137 	 * have been applied. Apply the update bit.
2138 	 */
2139 	writel(0, &sdr_scc_mgr->update);
2140 
2141 	return (dq_margin >= 0) && (dqs_margin >= 0);
2142 }
2143 
2144 /**
2145  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2146  * @rw_group:	Read/Write Group
2147  * @phase:	DQ/DQS phase
2148  *
2149  * Because initially no communication ca be reliably performed with the memory
2150  * device, the sequencer uses a guaranteed write mechanism to write data into
2151  * the memory device.
2152  */
2153 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2154 						 const u32 phase)
2155 {
2156 	int ret;
2157 
2158 	/* Set a particular DQ/DQS phase. */
2159 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2160 
2161 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2162 		   __func__, __LINE__, rw_group, phase);
2163 
2164 	/*
2165 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2166 	 * Load up the patterns used by read calibration using the
2167 	 * current DQDQS phase.
2168 	 */
2169 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2170 
2171 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2172 		return 0;
2173 
2174 	/*
2175 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2176 	 * Back-to-Back reads of the patterns used for calibration.
2177 	 */
2178 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2179 	if (ret)
2180 		debug_cond(DLEVEL == 1,
2181 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2182 			   __func__, __LINE__, rw_group, phase);
2183 	return ret;
2184 }
2185 
2186 /**
2187  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2188  * @rw_group:	Read/Write Group
2189  * @test_bgn:	Rank at which the test begins
2190  *
2191  * DQS enable calibration ensures reliable capture of the DQ signal without
2192  * glitches on the DQS line.
2193  */
2194 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2195 						       const u32 test_bgn)
2196 {
2197 	/*
2198 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2199 	 * DQS and DQS Eanble Signal Relationships.
2200 	 */
2201 
2202 	/* We start at zero, so have one less dq to devide among */
2203 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2204 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2205 	int ret;
2206 	u32 i, p, d, r;
2207 
2208 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2209 
2210 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2211 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2212 	     r += NUM_RANKS_PER_SHADOW_REG) {
2213 		for (i = 0, p = test_bgn, d = 0;
2214 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2215 		     i++, p++, d += delay_step) {
2216 			debug_cond(DLEVEL == 1,
2217 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2218 				   __func__, __LINE__, rw_group, r, i, p, d);
2219 
2220 			scc_mgr_set_dq_in_delay(p, d);
2221 			scc_mgr_load_dq(p);
2222 		}
2223 
2224 		writel(0, &sdr_scc_mgr->update);
2225 	}
2226 
2227 	/*
2228 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2229 	 * dq_in_delay values
2230 	 */
2231 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2232 
2233 	debug_cond(DLEVEL == 1,
2234 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2235 		   __func__, __LINE__, rw_group, !ret);
2236 
2237 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2238 	     r += NUM_RANKS_PER_SHADOW_REG) {
2239 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2240 		writel(0, &sdr_scc_mgr->update);
2241 	}
2242 
2243 	return ret;
2244 }
2245 
2246 /**
2247  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2248  * @rw_group:		Read/Write Group
2249  * @test_bgn:		Rank at which the test begins
2250  * @use_read_test:	Perform a read test
2251  * @update_fom:		Update FOM
2252  *
2253  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2254  * within a group.
2255  */
2256 static int
2257 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2258 				      const int use_read_test,
2259 				      const int update_fom)
2260 
2261 {
2262 	int ret, grp_calibrated;
2263 	u32 rank_bgn, sr;
2264 
2265 	/*
2266 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2267 	 * Read per-bit deskew can be done on a per shadow register basis.
2268 	 */
2269 	grp_calibrated = 1;
2270 	for (rank_bgn = 0, sr = 0;
2271 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2272 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2273 		/* Check if this set of ranks should be skipped entirely. */
2274 		if (param->skip_shadow_regs[sr])
2275 			continue;
2276 
2277 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2278 							rw_group, test_bgn,
2279 							use_read_test,
2280 							update_fom);
2281 		if (ret)
2282 			continue;
2283 
2284 		grp_calibrated = 0;
2285 	}
2286 
2287 	if (!grp_calibrated)
2288 		return -EIO;
2289 
2290 	return 0;
2291 }
2292 
2293 /**
2294  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2295  * @rw_group:		Read/Write Group
2296  * @test_bgn:		Rank at which the test begins
2297  *
2298  * Stage 1: Calibrate the read valid prediction FIFO.
2299  *
2300  * This function implements UniPHY calibration Stage 1, as explained in
2301  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2302  *
2303  * - read valid prediction will consist of finding:
2304  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2305  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2306  *  - we also do a per-bit deskew on the DQ lines.
2307  */
2308 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2309 {
2310 	uint32_t p, d;
2311 	uint32_t dtaps_per_ptap;
2312 	uint32_t failed_substage;
2313 
2314 	int ret;
2315 
2316 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2317 
2318 	/* Update info for sims */
2319 	reg_file_set_group(rw_group);
2320 	reg_file_set_stage(CAL_STAGE_VFIFO);
2321 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2322 
2323 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2324 
2325 	/* USER Determine number of delay taps for each phase tap. */
2326 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2327 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2328 
2329 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2330 		/*
2331 		 * In RLDRAMX we may be messing the delay of pins in
2332 		 * the same write rw_group but outside of the current read
2333 		 * the rw_group, but that's ok because we haven't calibrated
2334 		 * output side yet.
2335 		 */
2336 		if (d > 0) {
2337 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2338 								rw_group, d);
2339 		}
2340 
2341 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2342 			/* 1) Guaranteed Write */
2343 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2344 			if (ret)
2345 				break;
2346 
2347 			/* 2) DQS Enable Calibration */
2348 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2349 									  test_bgn);
2350 			if (ret) {
2351 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2352 				continue;
2353 			}
2354 
2355 			/* 3) Centering DQ/DQS */
2356 			/*
2357 			 * If doing read after write calibration, do not update
2358 			 * FOM now. Do it then.
2359 			 */
2360 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2361 								test_bgn, 1, 0);
2362 			if (ret) {
2363 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2364 				continue;
2365 			}
2366 
2367 			/* All done. */
2368 			goto cal_done_ok;
2369 		}
2370 	}
2371 
2372 	/* Calibration Stage 1 failed. */
2373 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2374 	return 0;
2375 
2376 	/* Calibration Stage 1 completed OK. */
2377 cal_done_ok:
2378 	/*
2379 	 * Reset the delay chains back to zero if they have moved > 1
2380 	 * (check for > 1 because loop will increase d even when pass in
2381 	 * first case).
2382 	 */
2383 	if (d > 2)
2384 		scc_mgr_zero_group(rw_group, 1);
2385 
2386 	return 1;
2387 }
2388 
2389 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2390 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2391 					       uint32_t test_bgn)
2392 {
2393 	uint32_t rank_bgn, sr;
2394 	uint32_t grp_calibrated;
2395 	uint32_t write_group;
2396 
2397 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2398 
2399 	/* update info for sims */
2400 
2401 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2402 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2403 
2404 	write_group = read_group;
2405 
2406 	/* update info for sims */
2407 	reg_file_set_group(read_group);
2408 
2409 	grp_calibrated = 1;
2410 	/* Read per-bit deskew can be done on a per shadow register basis */
2411 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2412 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2413 		/* Determine if this set of ranks should be skipped entirely */
2414 		if (!param->skip_shadow_regs[sr]) {
2415 		/* This is the last calibration round, update FOM here */
2416 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2417 								write_group,
2418 								read_group,
2419 								test_bgn, 0,
2420 								1)) {
2421 				grp_calibrated = 0;
2422 			}
2423 		}
2424 	}
2425 
2426 
2427 	if (grp_calibrated == 0) {
2428 		set_failing_group_stage(write_group,
2429 					CAL_STAGE_VFIFO_AFTER_WRITES,
2430 					CAL_SUBSTAGE_VFIFO_CENTER);
2431 		return 0;
2432 	}
2433 
2434 	return 1;
2435 }
2436 
2437 /* Calibrate LFIFO to find smallest read latency */
2438 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2439 {
2440 	uint32_t found_one;
2441 
2442 	debug("%s:%d\n", __func__, __LINE__);
2443 
2444 	/* update info for sims */
2445 	reg_file_set_stage(CAL_STAGE_LFIFO);
2446 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2447 
2448 	/* Load up the patterns used by read calibration for all ranks */
2449 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2450 	found_one = 0;
2451 
2452 	do {
2453 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2454 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2455 			   __func__, __LINE__, gbl->curr_read_lat);
2456 
2457 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2458 							      NUM_READ_TESTS,
2459 							      PASS_ALL_BITS,
2460 							      1)) {
2461 			break;
2462 		}
2463 
2464 		found_one = 1;
2465 		/* reduce read latency and see if things are working */
2466 		/* correctly */
2467 		gbl->curr_read_lat--;
2468 	} while (gbl->curr_read_lat > 0);
2469 
2470 	/* reset the fifos to get pointers to known state */
2471 
2472 	writel(0, &phy_mgr_cmd->fifo_reset);
2473 
2474 	if (found_one) {
2475 		/* add a fudge factor to the read latency that was determined */
2476 		gbl->curr_read_lat += 2;
2477 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2478 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2479 			   read_lat=%u\n", __func__, __LINE__,
2480 			   gbl->curr_read_lat);
2481 		return 1;
2482 	} else {
2483 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2484 					CAL_SUBSTAGE_READ_LATENCY);
2485 
2486 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2487 			   read_lat=%u\n", __func__, __LINE__,
2488 			   gbl->curr_read_lat);
2489 		return 0;
2490 	}
2491 }
2492 
2493 /*
2494  * issue write test command.
2495  * two variants are provided. one that just tests a write pattern and
2496  * another that tests datamask functionality.
2497  */
2498 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2499 						  uint32_t test_dm)
2500 {
2501 	uint32_t mcc_instruction;
2502 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2503 		ENABLE_SUPER_QUICK_CALIBRATION);
2504 	uint32_t rw_wl_nop_cycles;
2505 	uint32_t addr;
2506 
2507 	/*
2508 	 * Set counter and jump addresses for the right
2509 	 * number of NOP cycles.
2510 	 * The number of supported NOP cycles can range from -1 to infinity
2511 	 * Three different cases are handled:
2512 	 *
2513 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2514 	 *    mechanism will be used to insert the right number of NOPs
2515 	 *
2516 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2517 	 *    issuing the write command will jump straight to the
2518 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2519 	 *    data (for RLD), skipping
2520 	 *    the NOP micro-instruction all together
2521 	 *
2522 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2523 	 *    turned on in the same micro-instruction that issues the write
2524 	 *    command. Then we need
2525 	 *    to directly jump to the micro-instruction that sends out the data
2526 	 *
2527 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2528 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2529 	 *       write-read operations.
2530 	 *       one counter left to issue this command in "multiple-group" mode
2531 	 */
2532 
2533 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2534 
2535 	if (rw_wl_nop_cycles == -1) {
2536 		/*
2537 		 * CNTR 2 - We want to execute the special write operation that
2538 		 * turns on DQS right away and then skip directly to the
2539 		 * instruction that sends out the data. We set the counter to a
2540 		 * large number so that the jump is always taken.
2541 		 */
2542 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2543 
2544 		/* CNTR 3 - Not used */
2545 		if (test_dm) {
2546 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2547 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2548 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2549 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2550 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2551 		} else {
2552 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2553 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2554 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2555 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2556 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2557 		}
2558 	} else if (rw_wl_nop_cycles == 0) {
2559 		/*
2560 		 * CNTR 2 - We want to skip the NOP operation and go straight
2561 		 * to the DQS enable instruction. We set the counter to a large
2562 		 * number so that the jump is always taken.
2563 		 */
2564 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2565 
2566 		/* CNTR 3 - Not used */
2567 		if (test_dm) {
2568 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2569 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2570 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2571 		} else {
2572 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2573 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2574 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575 		}
2576 	} else {
2577 		/*
2578 		 * CNTR 2 - In this case we want to execute the next instruction
2579 		 * and NOT take the jump. So we set the counter to 0. The jump
2580 		 * address doesn't count.
2581 		 */
2582 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2583 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2584 
2585 		/*
2586 		 * CNTR 3 - Set the nop counter to the number of cycles we
2587 		 * need to loop for, minus 1.
2588 		 */
2589 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2590 		if (test_dm) {
2591 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2592 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2593 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2594 		} else {
2595 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2596 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2597 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2598 		}
2599 	}
2600 
2601 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2602 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2603 
2604 	if (quick_write_mode)
2605 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2606 	else
2607 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2608 
2609 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2610 
2611 	/*
2612 	 * CNTR 1 - This is used to ensure enough time elapses
2613 	 * for read data to come back.
2614 	 */
2615 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2616 
2617 	if (test_dm) {
2618 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2619 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2620 	} else {
2621 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2622 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2623 	}
2624 
2625 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2626 	writel(mcc_instruction, addr + (group << 2));
2627 }
2628 
2629 /* Test writes, can check for a single bit pass or multiple bit pass */
2630 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2631 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2632 	uint32_t *bit_chk, uint32_t all_ranks)
2633 {
2634 	uint32_t r;
2635 	uint32_t correct_mask_vg;
2636 	uint32_t tmp_bit_chk;
2637 	uint32_t vg;
2638 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2639 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2640 	uint32_t addr_rw_mgr;
2641 	uint32_t base_rw_mgr;
2642 
2643 	*bit_chk = param->write_correct_mask;
2644 	correct_mask_vg = param->write_correct_mask_vg;
2645 
2646 	for (r = rank_bgn; r < rank_end; r++) {
2647 		if (param->skip_ranks[r]) {
2648 			/* request to skip the rank */
2649 			continue;
2650 		}
2651 
2652 		/* set rank */
2653 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2654 
2655 		tmp_bit_chk = 0;
2656 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2657 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2658 			/* reset the fifos to get pointers to known state */
2659 			writel(0, &phy_mgr_cmd->fifo_reset);
2660 
2661 			tmp_bit_chk = tmp_bit_chk <<
2662 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2663 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2664 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2665 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2666 				use_dm);
2667 
2668 			base_rw_mgr = readl(addr_rw_mgr);
2669 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2670 			if (vg == 0)
2671 				break;
2672 		}
2673 		*bit_chk &= tmp_bit_chk;
2674 	}
2675 
2676 	if (all_correct) {
2677 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2678 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2679 			   %u => %lu", write_group, use_dm,
2680 			   *bit_chk, param->write_correct_mask,
2681 			   (long unsigned int)(*bit_chk ==
2682 			   param->write_correct_mask));
2683 		return *bit_chk == param->write_correct_mask;
2684 	} else {
2685 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2686 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2687 		       write_group, use_dm, *bit_chk);
2688 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2689 			(long unsigned int)(*bit_chk != 0));
2690 		return *bit_chk != 0x00;
2691 	}
2692 }
2693 
2694 /*
2695  * center all windows. do per-bit-deskew to possibly increase size of
2696  * certain windows.
2697  */
2698 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2699 	uint32_t write_group, uint32_t test_bgn)
2700 {
2701 	uint32_t i, p, min_index;
2702 	int32_t d;
2703 	/*
2704 	 * Store these as signed since there are comparisons with
2705 	 * signed numbers.
2706 	 */
2707 	uint32_t bit_chk;
2708 	uint32_t sticky_bit_chk;
2709 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2710 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2711 	int32_t mid;
2712 	int32_t mid_min, orig_mid_min;
2713 	int32_t new_dqs, start_dqs, shift_dq;
2714 	int32_t dq_margin, dqs_margin, dm_margin;
2715 	uint32_t stop;
2716 	uint32_t temp_dq_out1_delay;
2717 	uint32_t addr;
2718 
2719 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2720 
2721 	dm_margin = 0;
2722 
2723 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2724 	start_dqs = readl(addr +
2725 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2726 
2727 	/* per-bit deskew */
2728 
2729 	/*
2730 	 * set the left and right edge of each bit to an illegal value
2731 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2732 	 */
2733 	sticky_bit_chk = 0;
2734 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2735 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2736 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2737 	}
2738 
2739 	/* Search for the left edge of the window for each bit */
2740 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2741 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2742 
2743 		writel(0, &sdr_scc_mgr->update);
2744 
2745 		/*
2746 		 * Stop searching when the read test doesn't pass AND when
2747 		 * we've seen a passing read on every bit.
2748 		 */
2749 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2750 			0, PASS_ONE_BIT, &bit_chk, 0);
2751 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2752 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2753 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2754 			   == %u && %u [bit_chk= %u ]\n",
2755 			d, sticky_bit_chk, param->write_correct_mask,
2756 			stop, bit_chk);
2757 
2758 		if (stop == 1) {
2759 			break;
2760 		} else {
2761 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2762 				if (bit_chk & 1) {
2763 					/*
2764 					 * Remember a passing test as the
2765 					 * left_edge.
2766 					 */
2767 					left_edge[i] = d;
2768 				} else {
2769 					/*
2770 					 * If a left edge has not been seen
2771 					 * yet, then a future passing test will
2772 					 * mark this edge as the right edge.
2773 					 */
2774 					if (left_edge[i] ==
2775 						IO_IO_OUT1_DELAY_MAX + 1) {
2776 						right_edge[i] = -(d + 1);
2777 					}
2778 				}
2779 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2780 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2781 					   (int)(bit_chk & 1), i, left_edge[i]);
2782 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2783 				       right_edge[i]);
2784 				bit_chk = bit_chk >> 1;
2785 			}
2786 		}
2787 	}
2788 
2789 	/* Reset DQ delay chains to 0 */
2790 	scc_mgr_apply_group_dq_out1_delay(0);
2791 	sticky_bit_chk = 0;
2792 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2793 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2794 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2795 			   i, left_edge[i], i, right_edge[i]);
2796 
2797 		/*
2798 		 * Check for cases where we haven't found the left edge,
2799 		 * which makes our assignment of the the right edge invalid.
2800 		 * Reset it to the illegal value.
2801 		 */
2802 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2803 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2804 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2805 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2806 				   right_edge[%u]: %d\n", __func__, __LINE__,
2807 				   i, right_edge[i]);
2808 		}
2809 
2810 		/*
2811 		 * Reset sticky bit (except for bits where we have
2812 		 * seen the left edge).
2813 		 */
2814 		sticky_bit_chk = sticky_bit_chk << 1;
2815 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2816 			sticky_bit_chk = sticky_bit_chk | 1;
2817 
2818 		if (i == 0)
2819 			break;
2820 	}
2821 
2822 	/* Search for the right edge of the window for each bit */
2823 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2824 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2825 							d + start_dqs);
2826 
2827 		writel(0, &sdr_scc_mgr->update);
2828 
2829 		/*
2830 		 * Stop searching when the read test doesn't pass AND when
2831 		 * we've seen a passing read on every bit.
2832 		 */
2833 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2834 			0, PASS_ONE_BIT, &bit_chk, 0);
2835 
2836 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2837 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2838 
2839 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2840 			   %u && %u\n", d, sticky_bit_chk,
2841 			   param->write_correct_mask, stop);
2842 
2843 		if (stop == 1) {
2844 			if (d == 0) {
2845 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2846 					i++) {
2847 					/* d = 0 failed, but it passed when
2848 					testing the left edge, so it must be
2849 					marginal, set it to -1 */
2850 					if (right_edge[i] ==
2851 						IO_IO_OUT1_DELAY_MAX + 1 &&
2852 						left_edge[i] !=
2853 						IO_IO_OUT1_DELAY_MAX + 1) {
2854 						right_edge[i] = -1;
2855 					}
2856 				}
2857 			}
2858 			break;
2859 		} else {
2860 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2861 				if (bit_chk & 1) {
2862 					/*
2863 					 * Remember a passing test as
2864 					 * the right_edge.
2865 					 */
2866 					right_edge[i] = d;
2867 				} else {
2868 					if (d != 0) {
2869 						/*
2870 						 * If a right edge has not
2871 						 * been seen yet, then a future
2872 						 * passing test will mark this
2873 						 * edge as the left edge.
2874 						 */
2875 						if (right_edge[i] ==
2876 						    IO_IO_OUT1_DELAY_MAX + 1)
2877 							left_edge[i] = -(d + 1);
2878 					} else {
2879 						/*
2880 						 * d = 0 failed, but it passed
2881 						 * when testing the left edge,
2882 						 * so it must be marginal, set
2883 						 * it to -1.
2884 						 */
2885 						if (right_edge[i] ==
2886 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2887 						    left_edge[i] !=
2888 						    IO_IO_OUT1_DELAY_MAX + 1)
2889 							right_edge[i] = -1;
2890 						/*
2891 						 * If a right edge has not been
2892 						 * seen yet, then a future
2893 						 * passing test will mark this
2894 						 * edge as the left edge.
2895 						 */
2896 						else if (right_edge[i] ==
2897 							IO_IO_OUT1_DELAY_MAX +
2898 							1)
2899 							left_edge[i] = -(d + 1);
2900 					}
2901 				}
2902 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2903 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2904 					   (int)(bit_chk & 1), i, left_edge[i]);
2905 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2906 					   right_edge[i]);
2907 				bit_chk = bit_chk >> 1;
2908 			}
2909 		}
2910 	}
2911 
2912 	/* Check that all bits have a window */
2913 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2914 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2915 			   %d right_edge[%u]: %d", __func__, __LINE__,
2916 			   i, left_edge[i], i, right_edge[i]);
2917 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2918 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2919 			set_failing_group_stage(test_bgn + i,
2920 						CAL_STAGE_WRITES,
2921 						CAL_SUBSTAGE_WRITES_CENTER);
2922 			return 0;
2923 		}
2924 	}
2925 
2926 	/* Find middle of window for each DQ bit */
2927 	mid_min = left_edge[0] - right_edge[0];
2928 	min_index = 0;
2929 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2930 		mid = left_edge[i] - right_edge[i];
2931 		if (mid < mid_min) {
2932 			mid_min = mid;
2933 			min_index = i;
2934 		}
2935 	}
2936 
2937 	/*
2938 	 * -mid_min/2 represents the amount that we need to move DQS.
2939 	 * If mid_min is odd and positive we'll need to add one to
2940 	 * make sure the rounding in further calculations is correct
2941 	 * (always bias to the right), so just add 1 for all positive values.
2942 	 */
2943 	if (mid_min > 0)
2944 		mid_min++;
2945 	mid_min = mid_min / 2;
2946 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2947 		   __LINE__, mid_min);
2948 
2949 	/* Determine the amount we can change DQS (which is -mid_min) */
2950 	orig_mid_min = mid_min;
2951 	new_dqs = start_dqs;
2952 	mid_min = 0;
2953 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2954 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2955 	/* Initialize data for export structures */
2956 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2957 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2958 
2959 	/* add delay to bring centre of all DQ windows to the same "level" */
2960 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2961 		/* Use values before divide by 2 to reduce round off error */
2962 		shift_dq = (left_edge[i] - right_edge[i] -
2963 			(left_edge[min_index] - right_edge[min_index]))/2  +
2964 		(orig_mid_min - mid_min);
2965 
2966 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2967 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2968 
2969 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2970 		temp_dq_out1_delay = readl(addr + (i << 2));
2971 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2972 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2973 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2974 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2975 			shift_dq = -(int32_t)temp_dq_out1_delay;
2976 		}
2977 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2978 			   i, shift_dq);
2979 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2980 		scc_mgr_load_dq(i);
2981 
2982 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2983 			   left_edge[i] - shift_dq + (-mid_min),
2984 			   right_edge[i] + shift_dq - (-mid_min));
2985 		/* To determine values for export structures */
2986 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2987 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2988 
2989 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2990 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2991 	}
2992 
2993 	/* Move DQS */
2994 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2995 	writel(0, &sdr_scc_mgr->update);
2996 
2997 	/* Centre DM */
2998 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2999 
3000 	/*
3001 	 * set the left and right edge of each bit to an illegal value,
3002 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3003 	 */
3004 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3005 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3006 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3007 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3008 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3009 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3010 	int32_t win_best = 0;
3011 
3012 	/* Search for the/part of the window with DM shift */
3013 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3014 		scc_mgr_apply_group_dm_out1_delay(d);
3015 		writel(0, &sdr_scc_mgr->update);
3016 
3017 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3018 						    PASS_ALL_BITS, &bit_chk,
3019 						    0)) {
3020 			/* USE Set current end of the window */
3021 			end_curr = -d;
3022 			/*
3023 			 * If a starting edge of our window has not been seen
3024 			 * this is our current start of the DM window.
3025 			 */
3026 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3027 				bgn_curr = -d;
3028 
3029 			/*
3030 			 * If current window is bigger than best seen.
3031 			 * Set best seen to be current window.
3032 			 */
3033 			if ((end_curr-bgn_curr+1) > win_best) {
3034 				win_best = end_curr-bgn_curr+1;
3035 				bgn_best = bgn_curr;
3036 				end_best = end_curr;
3037 			}
3038 		} else {
3039 			/* We just saw a failing test. Reset temp edge */
3040 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3041 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3042 			}
3043 		}
3044 
3045 
3046 	/* Reset DM delay chains to 0 */
3047 	scc_mgr_apply_group_dm_out1_delay(0);
3048 
3049 	/*
3050 	 * Check to see if the current window nudges up aganist 0 delay.
3051 	 * If so we need to continue the search by shifting DQS otherwise DQS
3052 	 * search begins as a new search. */
3053 	if (end_curr != 0) {
3054 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3055 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3056 	}
3057 
3058 	/* Search for the/part of the window with DQS shifts */
3059 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3060 		/*
3061 		 * Note: This only shifts DQS, so are we limiting ourselve to
3062 		 * width of DQ unnecessarily.
3063 		 */
3064 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3065 							d + new_dqs);
3066 
3067 		writel(0, &sdr_scc_mgr->update);
3068 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3069 						    PASS_ALL_BITS, &bit_chk,
3070 						    0)) {
3071 			/* USE Set current end of the window */
3072 			end_curr = d;
3073 			/*
3074 			 * If a beginning edge of our window has not been seen
3075 			 * this is our current begin of the DM window.
3076 			 */
3077 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3078 				bgn_curr = d;
3079 
3080 			/*
3081 			 * If current window is bigger than best seen. Set best
3082 			 * seen to be current window.
3083 			 */
3084 			if ((end_curr-bgn_curr+1) > win_best) {
3085 				win_best = end_curr-bgn_curr+1;
3086 				bgn_best = bgn_curr;
3087 				end_best = end_curr;
3088 			}
3089 		} else {
3090 			/* We just saw a failing test. Reset temp edge */
3091 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3092 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3093 
3094 			/* Early exit optimization: if ther remaining delay
3095 			chain space is less than already seen largest window
3096 			we can exit */
3097 			if ((win_best-1) >
3098 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3099 					break;
3100 				}
3101 			}
3102 		}
3103 
3104 	/* assign left and right edge for cal and reporting; */
3105 	left_edge[0] = -1*bgn_best;
3106 	right_edge[0] = end_best;
3107 
3108 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3109 		   __LINE__, left_edge[0], right_edge[0]);
3110 
3111 	/* Move DQS (back to orig) */
3112 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3113 
3114 	/* Move DM */
3115 
3116 	/* Find middle of window for the DM bit */
3117 	mid = (left_edge[0] - right_edge[0]) / 2;
3118 
3119 	/* only move right, since we are not moving DQS/DQ */
3120 	if (mid < 0)
3121 		mid = 0;
3122 
3123 	/* dm_marign should fail if we never find a window */
3124 	if (win_best == 0)
3125 		dm_margin = -1;
3126 	else
3127 		dm_margin = left_edge[0] - mid;
3128 
3129 	scc_mgr_apply_group_dm_out1_delay(mid);
3130 	writel(0, &sdr_scc_mgr->update);
3131 
3132 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3133 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3134 		   right_edge[0], mid, dm_margin);
3135 	/* Export values */
3136 	gbl->fom_out += dq_margin + dqs_margin;
3137 
3138 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3139 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3140 		   dq_margin, dqs_margin, dm_margin);
3141 
3142 	/*
3143 	 * Do not remove this line as it makes sure all of our
3144 	 * decisions have been applied.
3145 	 */
3146 	writel(0, &sdr_scc_mgr->update);
3147 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3148 }
3149 
3150 /* calibrate the write operations */
3151 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3152 	uint32_t test_bgn)
3153 {
3154 	/* update info for sims */
3155 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3156 
3157 	reg_file_set_stage(CAL_STAGE_WRITES);
3158 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3159 
3160 	reg_file_set_group(g);
3161 
3162 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3163 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3164 					CAL_SUBSTAGE_WRITES_CENTER);
3165 		return 0;
3166 	}
3167 
3168 	return 1;
3169 }
3170 
3171 /**
3172  * mem_precharge_and_activate() - Precharge all banks and activate
3173  *
3174  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3175  */
3176 static void mem_precharge_and_activate(void)
3177 {
3178 	int r;
3179 
3180 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3181 		/* Test if the rank should be skipped. */
3182 		if (param->skip_ranks[r])
3183 			continue;
3184 
3185 		/* Set rank. */
3186 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3187 
3188 		/* Precharge all banks. */
3189 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3190 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3191 
3192 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3193 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3194 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3195 
3196 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3197 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3198 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3199 
3200 		/* Activate rows. */
3201 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3202 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3203 	}
3204 }
3205 
3206 /**
3207  * mem_init_latency() - Configure memory RLAT and WLAT settings
3208  *
3209  * Configure memory RLAT and WLAT parameters.
3210  */
3211 static void mem_init_latency(void)
3212 {
3213 	/*
3214 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3215 	 * so max latency in AFI clocks, used here, is correspondingly
3216 	 * smaller.
3217 	 */
3218 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3219 	u32 rlat, wlat;
3220 
3221 	debug("%s:%d\n", __func__, __LINE__);
3222 
3223 	/*
3224 	 * Read in write latency.
3225 	 * WL for Hard PHY does not include additive latency.
3226 	 */
3227 	wlat = readl(&data_mgr->t_wl_add);
3228 	wlat += readl(&data_mgr->mem_t_add);
3229 
3230 	gbl->rw_wl_nop_cycles = wlat - 1;
3231 
3232 	/* Read in readl latency. */
3233 	rlat = readl(&data_mgr->t_rl_add);
3234 
3235 	/* Set a pretty high read latency initially. */
3236 	gbl->curr_read_lat = rlat + 16;
3237 	if (gbl->curr_read_lat > max_latency)
3238 		gbl->curr_read_lat = max_latency;
3239 
3240 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3241 
3242 	/* Advertise write latency. */
3243 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3244 }
3245 
3246 /**
3247  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3248  *
3249  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3250  */
3251 static void mem_skip_calibrate(void)
3252 {
3253 	uint32_t vfifo_offset;
3254 	uint32_t i, j, r;
3255 
3256 	debug("%s:%d\n", __func__, __LINE__);
3257 	/* Need to update every shadow register set used by the interface */
3258 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3259 	     r += NUM_RANKS_PER_SHADOW_REG) {
3260 		/*
3261 		 * Set output phase alignment settings appropriate for
3262 		 * skip calibration.
3263 		 */
3264 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3265 			scc_mgr_set_dqs_en_phase(i, 0);
3266 #if IO_DLL_CHAIN_LENGTH == 6
3267 			scc_mgr_set_dqdqs_output_phase(i, 6);
3268 #else
3269 			scc_mgr_set_dqdqs_output_phase(i, 7);
3270 #endif
3271 			/*
3272 			 * Case:33398
3273 			 *
3274 			 * Write data arrives to the I/O two cycles before write
3275 			 * latency is reached (720 deg).
3276 			 *   -> due to bit-slip in a/c bus
3277 			 *   -> to allow board skew where dqs is longer than ck
3278 			 *      -> how often can this happen!?
3279 			 *      -> can claim back some ptaps for high freq
3280 			 *       support if we can relax this, but i digress...
3281 			 *
3282 			 * The write_clk leads mem_ck by 90 deg
3283 			 * The minimum ptap of the OPA is 180 deg
3284 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3285 			 * The write_clk is always delayed by 2 ptaps
3286 			 *
3287 			 * Hence, to make DQS aligned to CK, we need to delay
3288 			 * DQS by:
3289 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3290 			 *
3291 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3292 			 * gives us the number of ptaps, which simplies to:
3293 			 *
3294 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3295 			 */
3296 			scc_mgr_set_dqdqs_output_phase(i,
3297 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3298 		}
3299 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3300 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3301 
3302 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3303 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3304 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3305 		}
3306 		writel(0xff, &sdr_scc_mgr->dq_ena);
3307 		writel(0xff, &sdr_scc_mgr->dm_ena);
3308 		writel(0, &sdr_scc_mgr->update);
3309 	}
3310 
3311 	/* Compensate for simulation model behaviour */
3312 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3313 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3314 		scc_mgr_load_dqs(i);
3315 	}
3316 	writel(0, &sdr_scc_mgr->update);
3317 
3318 	/*
3319 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3320 	 * in sequencer.
3321 	 */
3322 	vfifo_offset = CALIB_VFIFO_OFFSET;
3323 	for (j = 0; j < vfifo_offset; j++)
3324 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3325 	writel(0, &phy_mgr_cmd->fifo_reset);
3326 
3327 	/*
3328 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3329 	 * setting from generation-time constant.
3330 	 */
3331 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3332 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3333 }
3334 
3335 /**
3336  * mem_calibrate() - Memory calibration entry point.
3337  *
3338  * Perform memory calibration.
3339  */
3340 static uint32_t mem_calibrate(void)
3341 {
3342 	uint32_t i;
3343 	uint32_t rank_bgn, sr;
3344 	uint32_t write_group, write_test_bgn;
3345 	uint32_t read_group, read_test_bgn;
3346 	uint32_t run_groups, current_run;
3347 	uint32_t failing_groups = 0;
3348 	uint32_t group_failed = 0;
3349 
3350 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3351 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3352 
3353 	debug("%s:%d\n", __func__, __LINE__);
3354 
3355 	/* Initialize the data settings */
3356 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3357 	gbl->error_stage = CAL_STAGE_NIL;
3358 	gbl->error_group = 0xff;
3359 	gbl->fom_in = 0;
3360 	gbl->fom_out = 0;
3361 
3362 	/* Initialize WLAT and RLAT. */
3363 	mem_init_latency();
3364 
3365 	/* Initialize bit slips. */
3366 	mem_precharge_and_activate();
3367 
3368 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3369 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3370 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3371 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3372 		if (i == 0)
3373 			scc_mgr_set_hhp_extras();
3374 
3375 		scc_set_bypass_mode(i);
3376 	}
3377 
3378 	/* Calibration is skipped. */
3379 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3380 		/*
3381 		 * Set VFIFO and LFIFO to instant-on settings in skip
3382 		 * calibration mode.
3383 		 */
3384 		mem_skip_calibrate();
3385 
3386 		/*
3387 		 * Do not remove this line as it makes sure all of our
3388 		 * decisions have been applied.
3389 		 */
3390 		writel(0, &sdr_scc_mgr->update);
3391 		return 1;
3392 	}
3393 
3394 	/* Calibration is not skipped. */
3395 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3396 		/*
3397 		 * Zero all delay chain/phase settings for all
3398 		 * groups and all shadow register sets.
3399 		 */
3400 		scc_mgr_zero_all();
3401 
3402 		run_groups = ~param->skip_groups;
3403 
3404 		for (write_group = 0, write_test_bgn = 0; write_group
3405 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3406 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3407 
3408 			/* Initialize the group failure */
3409 			group_failed = 0;
3410 
3411 			current_run = run_groups & ((1 <<
3412 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3413 			run_groups = run_groups >>
3414 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3415 
3416 			if (current_run == 0)
3417 				continue;
3418 
3419 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3420 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3421 			scc_mgr_zero_group(write_group, 0);
3422 
3423 			for (read_group = write_group * rwdqs_ratio,
3424 			     read_test_bgn = 0;
3425 			     read_group < (write_group + 1) * rwdqs_ratio;
3426 			     read_group++,
3427 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3428 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3429 					continue;
3430 
3431 				/* Calibrate the VFIFO */
3432 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3433 							       read_test_bgn))
3434 					continue;
3435 
3436 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3437 					return 0;
3438 
3439 				/* The group failed, we're done. */
3440 				goto grp_failed;
3441 			}
3442 
3443 			/* Calibrate the output side */
3444 			for (rank_bgn = 0, sr = 0;
3445 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3446 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3447 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3448 					continue;
3449 
3450 				/* Not needed in quick mode! */
3451 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3452 					continue;
3453 
3454 				/*
3455 				 * Determine if this set of ranks
3456 				 * should be skipped entirely.
3457 				 */
3458 				if (param->skip_shadow_regs[sr])
3459 					continue;
3460 
3461 				/* Calibrate WRITEs */
3462 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3463 						write_group, write_test_bgn))
3464 					continue;
3465 
3466 				group_failed = 1;
3467 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3468 					return 0;
3469 			}
3470 
3471 			/* Some group failed, we're done. */
3472 			if (group_failed)
3473 				goto grp_failed;
3474 
3475 			for (read_group = write_group * rwdqs_ratio,
3476 			     read_test_bgn = 0;
3477 			     read_group < (write_group + 1) * rwdqs_ratio;
3478 			     read_group++,
3479 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3480 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3481 					continue;
3482 
3483 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3484 								read_test_bgn))
3485 					continue;
3486 
3487 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3488 					return 0;
3489 
3490 				/* The group failed, we're done. */
3491 				goto grp_failed;
3492 			}
3493 
3494 			/* No group failed, continue as usual. */
3495 			continue;
3496 
3497 grp_failed:		/* A group failed, increment the counter. */
3498 			failing_groups++;
3499 		}
3500 
3501 		/*
3502 		 * USER If there are any failing groups then report
3503 		 * the failure.
3504 		 */
3505 		if (failing_groups != 0)
3506 			return 0;
3507 
3508 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3509 			continue;
3510 
3511 		/*
3512 		 * If we're skipping groups as part of debug,
3513 		 * don't calibrate LFIFO.
3514 		 */
3515 		if (param->skip_groups != 0)
3516 			continue;
3517 
3518 		/* Calibrate the LFIFO */
3519 		if (!rw_mgr_mem_calibrate_lfifo())
3520 			return 0;
3521 	}
3522 
3523 	/*
3524 	 * Do not remove this line as it makes sure all of our decisions
3525 	 * have been applied.
3526 	 */
3527 	writel(0, &sdr_scc_mgr->update);
3528 	return 1;
3529 }
3530 
3531 /**
3532  * run_mem_calibrate() - Perform memory calibration
3533  *
3534  * This function triggers the entire memory calibration procedure.
3535  */
3536 static int run_mem_calibrate(void)
3537 {
3538 	int pass;
3539 
3540 	debug("%s:%d\n", __func__, __LINE__);
3541 
3542 	/* Reset pass/fail status shown on afi_cal_success/fail */
3543 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3544 
3545 	/* Stop tracking manager. */
3546 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3547 
3548 	phy_mgr_initialize();
3549 	rw_mgr_mem_initialize();
3550 
3551 	/* Perform the actual memory calibration. */
3552 	pass = mem_calibrate();
3553 
3554 	mem_precharge_and_activate();
3555 	writel(0, &phy_mgr_cmd->fifo_reset);
3556 
3557 	/* Handoff. */
3558 	rw_mgr_mem_handoff();
3559 	/*
3560 	 * In Hard PHY this is a 2-bit control:
3561 	 * 0: AFI Mux Select
3562 	 * 1: DDIO Mux Select
3563 	 */
3564 	writel(0x2, &phy_mgr_cfg->mux_sel);
3565 
3566 	/* Start tracking manager. */
3567 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3568 
3569 	return pass;
3570 }
3571 
3572 /**
3573  * debug_mem_calibrate() - Report result of memory calibration
3574  * @pass:	Value indicating whether calibration passed or failed
3575  *
3576  * This function reports the results of the memory calibration
3577  * and writes debug information into the register file.
3578  */
3579 static void debug_mem_calibrate(int pass)
3580 {
3581 	uint32_t debug_info;
3582 
3583 	if (pass) {
3584 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3585 
3586 		gbl->fom_in /= 2;
3587 		gbl->fom_out /= 2;
3588 
3589 		if (gbl->fom_in > 0xff)
3590 			gbl->fom_in = 0xff;
3591 
3592 		if (gbl->fom_out > 0xff)
3593 			gbl->fom_out = 0xff;
3594 
3595 		/* Update the FOM in the register file */
3596 		debug_info = gbl->fom_in;
3597 		debug_info |= gbl->fom_out << 8;
3598 		writel(debug_info, &sdr_reg_file->fom);
3599 
3600 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3601 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3602 	} else {
3603 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3604 
3605 		debug_info = gbl->error_stage;
3606 		debug_info |= gbl->error_substage << 8;
3607 		debug_info |= gbl->error_group << 16;
3608 
3609 		writel(debug_info, &sdr_reg_file->failing_stage);
3610 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3611 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3612 
3613 		/* Update the failing group/stage in the register file */
3614 		debug_info = gbl->error_stage;
3615 		debug_info |= gbl->error_substage << 8;
3616 		debug_info |= gbl->error_group << 16;
3617 		writel(debug_info, &sdr_reg_file->failing_stage);
3618 	}
3619 
3620 	printf("%s: Calibration complete\n", __FILE__);
3621 }
3622 
3623 /**
3624  * hc_initialize_rom_data() - Initialize ROM data
3625  *
3626  * Initialize ROM data.
3627  */
3628 static void hc_initialize_rom_data(void)
3629 {
3630 	u32 i, addr;
3631 
3632 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3633 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3634 		writel(inst_rom_init[i], addr + (i << 2));
3635 
3636 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3637 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3638 		writel(ac_rom_init[i], addr + (i << 2));
3639 }
3640 
3641 /**
3642  * initialize_reg_file() - Initialize SDR register file
3643  *
3644  * Initialize SDR register file.
3645  */
3646 static void initialize_reg_file(void)
3647 {
3648 	/* Initialize the register file with the correct data */
3649 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3650 	writel(0, &sdr_reg_file->debug_data_addr);
3651 	writel(0, &sdr_reg_file->cur_stage);
3652 	writel(0, &sdr_reg_file->fom);
3653 	writel(0, &sdr_reg_file->failing_stage);
3654 	writel(0, &sdr_reg_file->debug1);
3655 	writel(0, &sdr_reg_file->debug2);
3656 }
3657 
3658 /**
3659  * initialize_hps_phy() - Initialize HPS PHY
3660  *
3661  * Initialize HPS PHY.
3662  */
3663 static void initialize_hps_phy(void)
3664 {
3665 	uint32_t reg;
3666 	/*
3667 	 * Tracking also gets configured here because it's in the
3668 	 * same register.
3669 	 */
3670 	uint32_t trk_sample_count = 7500;
3671 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3672 	/*
3673 	 * Format is number of outer loops in the 16 MSB, sample
3674 	 * count in 16 LSB.
3675 	 */
3676 
3677 	reg = 0;
3678 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3679 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3681 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3682 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3683 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3684 	/*
3685 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3686 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3687 	 */
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3690 		trk_sample_count);
3691 	writel(reg, &sdr_ctrl->phy_ctrl0);
3692 
3693 	reg = 0;
3694 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3695 		trk_sample_count >>
3696 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3697 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3698 		trk_long_idle_sample_count);
3699 	writel(reg, &sdr_ctrl->phy_ctrl1);
3700 
3701 	reg = 0;
3702 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3703 		trk_long_idle_sample_count >>
3704 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3705 	writel(reg, &sdr_ctrl->phy_ctrl2);
3706 }
3707 
3708 /**
3709  * initialize_tracking() - Initialize tracking
3710  *
3711  * Initialize the register file with usable initial data.
3712  */
3713 static void initialize_tracking(void)
3714 {
3715 	/*
3716 	 * Initialize the register file with the correct data.
3717 	 * Compute usable version of value in case we skip full
3718 	 * computation later.
3719 	 */
3720 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3721 	       &sdr_reg_file->dtaps_per_ptap);
3722 
3723 	/* trk_sample_count */
3724 	writel(7500, &sdr_reg_file->trk_sample_count);
3725 
3726 	/* longidle outer loop [15:0] */
3727 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3728 
3729 	/*
3730 	 * longidle sample count [31:24]
3731 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3732 	 * trcd, worst case [15:8]
3733 	 * vfifo wait [7:0]
3734 	 */
3735 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3736 	       &sdr_reg_file->delays);
3737 
3738 	/* mux delay */
3739 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3740 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3741 	       &sdr_reg_file->trk_rw_mgr_addr);
3742 
3743 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3744 	       &sdr_reg_file->trk_read_dqs_width);
3745 
3746 	/* trefi [7:0] */
3747 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3748 	       &sdr_reg_file->trk_rfsh);
3749 }
3750 
3751 int sdram_calibration_full(void)
3752 {
3753 	struct param_type my_param;
3754 	struct gbl_type my_gbl;
3755 	uint32_t pass;
3756 
3757 	memset(&my_param, 0, sizeof(my_param));
3758 	memset(&my_gbl, 0, sizeof(my_gbl));
3759 
3760 	param = &my_param;
3761 	gbl = &my_gbl;
3762 
3763 	/* Set the calibration enabled by default */
3764 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3765 	/*
3766 	 * Only sweep all groups (regardless of fail state) by default
3767 	 * Set enabled read test by default.
3768 	 */
3769 #if DISABLE_GUARANTEED_READ
3770 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3771 #endif
3772 	/* Initialize the register file */
3773 	initialize_reg_file();
3774 
3775 	/* Initialize any PHY CSR */
3776 	initialize_hps_phy();
3777 
3778 	scc_mgr_initialize();
3779 
3780 	initialize_tracking();
3781 
3782 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3783 
3784 	debug("%s:%d\n", __func__, __LINE__);
3785 	debug_cond(DLEVEL == 1,
3786 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3787 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3788 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3789 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3790 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3791 	debug_cond(DLEVEL == 1,
3792 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3793 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3794 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3795 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3796 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3797 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3798 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3799 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3800 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3801 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3802 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3803 		   IO_IO_OUT2_DELAY_MAX);
3804 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3805 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3806 
3807 	hc_initialize_rom_data();
3808 
3809 	/* update info for sims */
3810 	reg_file_set_stage(CAL_STAGE_NIL);
3811 	reg_file_set_group(0);
3812 
3813 	/*
3814 	 * Load global needed for those actions that require
3815 	 * some dynamic calibration support.
3816 	 */
3817 	dyn_calib_steps = STATIC_CALIB_STEPS;
3818 	/*
3819 	 * Load global to allow dynamic selection of delay loop settings
3820 	 * based on calibration mode.
3821 	 */
3822 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3823 		skip_delay_mask = 0xff;
3824 	else
3825 		skip_delay_mask = 0x0;
3826 
3827 	pass = run_mem_calibrate();
3828 	debug_mem_calibrate(pass);
3829 	return pass;
3830 }
3831