1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 /** 1282 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1283 * @grp: Read/Write group 1284 * @num_tries: Number of retries of the test 1285 * @all_correct: All bits must be correct in the mask 1286 * @all_groups: Test all R/W groups 1287 * 1288 * Perform a READ test across all memory ranks. 1289 */ 1290 static int 1291 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1292 const u32 all_correct, 1293 const u32 all_groups) 1294 { 1295 u32 bit_chk; 1296 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1297 &bit_chk, all_groups, 1); 1298 } 1299 1300 /** 1301 * rw_mgr_incr_vfifo() - Increase VFIFO value 1302 * @grp: Read/Write group 1303 * 1304 * Increase VFIFO value. 1305 */ 1306 static void rw_mgr_incr_vfifo(const u32 grp) 1307 { 1308 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1309 } 1310 1311 /** 1312 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1313 * @grp: Read/Write group 1314 * 1315 * Decrease VFIFO value. 1316 */ 1317 static void rw_mgr_decr_vfifo(const u32 grp) 1318 { 1319 u32 i; 1320 1321 for (i = 0; i < VFIFO_SIZE - 1; i++) 1322 rw_mgr_incr_vfifo(grp); 1323 } 1324 1325 /** 1326 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1327 * @grp: Read/Write group 1328 * 1329 * Push VFIFO until a failing read happens. 1330 */ 1331 static int find_vfifo_failing_read(const u32 grp) 1332 { 1333 u32 v, ret, fail_cnt = 0; 1334 1335 for (v = 0; v < VFIFO_SIZE; v++) { 1336 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1337 __func__, __LINE__, v); 1338 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1339 PASS_ONE_BIT, 0); 1340 if (!ret) { 1341 fail_cnt++; 1342 1343 if (fail_cnt == 2) 1344 return v; 1345 } 1346 1347 /* Fiddle with FIFO. */ 1348 rw_mgr_incr_vfifo(grp); 1349 } 1350 1351 /* No failing read found! Something must have gone wrong. */ 1352 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1353 return 0; 1354 } 1355 1356 /** 1357 * sdr_find_phase_delay() - Find DQS enable phase or delay 1358 * @working: If 1, look for working phase/delay, if 0, look for non-working 1359 * @delay: If 1, look for delay, if 0, look for phase 1360 * @grp: Read/Write group 1361 * @work: Working window position 1362 * @work_inc: Working window increment 1363 * @pd: DQS Phase/Delay Iterator 1364 * 1365 * Find working or non-working DQS enable phase setting. 1366 */ 1367 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1368 u32 *work, const u32 work_inc, u32 *pd) 1369 { 1370 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1371 u32 ret; 1372 1373 for (; *pd <= max; (*pd)++) { 1374 if (delay) 1375 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1376 else 1377 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1378 1379 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1380 PASS_ONE_BIT, 0); 1381 if (!working) 1382 ret = !ret; 1383 1384 if (ret) 1385 return 0; 1386 1387 if (work) 1388 *work += work_inc; 1389 } 1390 1391 return -EINVAL; 1392 } 1393 /** 1394 * sdr_find_phase() - Find DQS enable phase 1395 * @working: If 1, look for working phase, if 0, look for non-working phase 1396 * @grp: Read/Write group 1397 * @work: Working window position 1398 * @i: Iterator 1399 * @p: DQS Phase Iterator 1400 * 1401 * Find working or non-working DQS enable phase setting. 1402 */ 1403 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1404 u32 *i, u32 *p) 1405 { 1406 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1407 int ret; 1408 1409 for (; *i < end; (*i)++) { 1410 if (working) 1411 *p = 0; 1412 1413 ret = sdr_find_phase_delay(working, 0, grp, work, 1414 IO_DELAY_PER_OPA_TAP, p); 1415 if (!ret) 1416 return 0; 1417 1418 if (*p > IO_DQS_EN_PHASE_MAX) { 1419 /* Fiddle with FIFO. */ 1420 rw_mgr_incr_vfifo(grp); 1421 if (!working) 1422 *p = 0; 1423 } 1424 } 1425 1426 return -EINVAL; 1427 } 1428 1429 /** 1430 * sdr_working_phase() - Find working DQS enable phase 1431 * @grp: Read/Write group 1432 * @work_bgn: Working window start position 1433 * @d: dtaps output value 1434 * @p: DQS Phase Iterator 1435 * @i: Iterator 1436 * 1437 * Find working DQS enable phase setting. 1438 */ 1439 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1440 u32 *p, u32 *i) 1441 { 1442 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1443 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1444 int ret; 1445 1446 *work_bgn = 0; 1447 1448 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1449 *i = 0; 1450 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1451 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1452 if (!ret) 1453 return 0; 1454 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1455 } 1456 1457 /* Cannot find working solution */ 1458 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1459 __func__, __LINE__); 1460 return -EINVAL; 1461 } 1462 1463 /** 1464 * sdr_backup_phase() - Find DQS enable backup phase 1465 * @grp: Read/Write group 1466 * @work_bgn: Working window start position 1467 * @p: DQS Phase Iterator 1468 * 1469 * Find DQS enable backup phase setting. 1470 */ 1471 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1472 { 1473 u32 tmp_delay, d; 1474 int ret; 1475 1476 /* Special case code for backing up a phase */ 1477 if (*p == 0) { 1478 *p = IO_DQS_EN_PHASE_MAX; 1479 rw_mgr_decr_vfifo(grp); 1480 } else { 1481 (*p)--; 1482 } 1483 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1484 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1485 1486 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1487 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1488 1489 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1490 PASS_ONE_BIT, 0); 1491 if (ret) { 1492 *work_bgn = tmp_delay; 1493 break; 1494 } 1495 1496 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1497 } 1498 1499 /* Restore VFIFO to old state before we decremented it (if needed). */ 1500 (*p)++; 1501 if (*p > IO_DQS_EN_PHASE_MAX) { 1502 *p = 0; 1503 rw_mgr_incr_vfifo(grp); 1504 } 1505 1506 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1507 } 1508 1509 /** 1510 * sdr_nonworking_phase() - Find non-working DQS enable phase 1511 * @grp: Read/Write group 1512 * @work_end: Working window end position 1513 * @p: DQS Phase Iterator 1514 * @i: Iterator 1515 * 1516 * Find non-working DQS enable phase setting. 1517 */ 1518 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1519 { 1520 int ret; 1521 1522 (*p)++; 1523 *work_end += IO_DELAY_PER_OPA_TAP; 1524 if (*p > IO_DQS_EN_PHASE_MAX) { 1525 /* Fiddle with FIFO. */ 1526 *p = 0; 1527 rw_mgr_incr_vfifo(grp); 1528 } 1529 1530 ret = sdr_find_phase(0, grp, work_end, i, p); 1531 if (ret) { 1532 /* Cannot see edge of failing read. */ 1533 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1534 __func__, __LINE__); 1535 } 1536 1537 return ret; 1538 } 1539 1540 /** 1541 * sdr_find_window_center() - Find center of the working DQS window. 1542 * @grp: Read/Write group 1543 * @work_bgn: First working settings 1544 * @work_end: Last working settings 1545 * 1546 * Find center of the working DQS enable window. 1547 */ 1548 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1549 const u32 work_end) 1550 { 1551 u32 work_mid; 1552 int tmp_delay = 0; 1553 int i, p, d; 1554 1555 work_mid = (work_bgn + work_end) / 2; 1556 1557 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1558 work_bgn, work_end, work_mid); 1559 /* Get the middle delay to be less than a VFIFO delay */ 1560 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1561 1562 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1563 work_mid %= tmp_delay; 1564 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1565 1566 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1567 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1568 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1569 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1570 1571 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1572 1573 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1574 if (d > IO_DQS_EN_DELAY_MAX) 1575 d = IO_DQS_EN_DELAY_MAX; 1576 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1577 1578 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1579 1580 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1581 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1582 1583 /* 1584 * push vfifo until we can successfully calibrate. We can do this 1585 * because the largest possible margin in 1 VFIFO cycle. 1586 */ 1587 for (i = 0; i < VFIFO_SIZE; i++) { 1588 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1589 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1590 PASS_ONE_BIT, 1591 0)) { 1592 debug_cond(DLEVEL == 2, 1593 "%s:%d center: found: ptap=%u dtap=%u\n", 1594 __func__, __LINE__, p, d); 1595 return 0; 1596 } 1597 1598 /* Fiddle with FIFO. */ 1599 rw_mgr_incr_vfifo(grp); 1600 } 1601 1602 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1603 __func__, __LINE__); 1604 return -EINVAL; 1605 } 1606 1607 /** 1608 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1609 * @grp: Read/Write Group 1610 * 1611 * Find a good DQS enable to use. 1612 */ 1613 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1614 { 1615 u32 d, p, i; 1616 u32 dtaps_per_ptap; 1617 u32 work_bgn, work_end; 1618 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1619 int ret; 1620 1621 debug("%s:%d %u\n", __func__, __LINE__, grp); 1622 1623 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1624 1625 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1626 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1627 1628 /* Step 0: Determine number of delay taps for each phase tap. */ 1629 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1630 1631 /* Step 1: First push vfifo until we get a failing read. */ 1632 find_vfifo_failing_read(grp); 1633 1634 /* Step 2: Find first working phase, increment in ptaps. */ 1635 work_bgn = 0; 1636 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1637 if (ret) 1638 return ret; 1639 1640 work_end = work_bgn; 1641 1642 /* 1643 * If d is 0 then the working window covers a phase tap and we can 1644 * follow the old procedure. Otherwise, we've found the beginning 1645 * and we need to increment the dtaps until we find the end. 1646 */ 1647 if (d == 0) { 1648 /* 1649 * Step 3a: If we have room, back off by one and 1650 * increment in dtaps. 1651 */ 1652 sdr_backup_phase(grp, &work_bgn, &p); 1653 1654 /* 1655 * Step 4a: go forward from working phase to non working 1656 * phase, increment in ptaps. 1657 */ 1658 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1659 if (ret) 1660 return ret; 1661 1662 /* Step 5a: Back off one from last, increment in dtaps. */ 1663 1664 /* Special case code for backing up a phase */ 1665 if (p == 0) { 1666 p = IO_DQS_EN_PHASE_MAX; 1667 rw_mgr_decr_vfifo(grp); 1668 } else { 1669 p = p - 1; 1670 } 1671 1672 work_end -= IO_DELAY_PER_OPA_TAP; 1673 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1674 1675 d = 0; 1676 1677 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1678 __func__, __LINE__, p); 1679 } 1680 1681 /* The dtap increment to find the failing edge is done here. */ 1682 sdr_find_phase_delay(0, 1, grp, &work_end, 1683 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1684 1685 /* Go back to working dtap */ 1686 if (d != 0) 1687 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1688 1689 debug_cond(DLEVEL == 2, 1690 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1691 __func__, __LINE__, p, d - 1, work_end); 1692 1693 if (work_end < work_bgn) { 1694 /* nil range */ 1695 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1696 __func__, __LINE__); 1697 return -EINVAL; 1698 } 1699 1700 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1701 __func__, __LINE__, work_bgn, work_end); 1702 1703 /* 1704 * We need to calculate the number of dtaps that equal a ptap. 1705 * To do that we'll back up a ptap and re-find the edge of the 1706 * window using dtaps 1707 */ 1708 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1709 __func__, __LINE__); 1710 1711 /* Special case code for backing up a phase */ 1712 if (p == 0) { 1713 p = IO_DQS_EN_PHASE_MAX; 1714 rw_mgr_decr_vfifo(grp); 1715 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1716 __func__, __LINE__, p); 1717 } else { 1718 p = p - 1; 1719 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1720 __func__, __LINE__, p); 1721 } 1722 1723 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1724 1725 /* 1726 * Increase dtap until we first see a passing read (in case the 1727 * window is smaller than a ptap), and then a failing read to 1728 * mark the edge of the window again. 1729 */ 1730 1731 /* Find a passing read. */ 1732 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1733 __func__, __LINE__); 1734 1735 initial_failing_dtap = d; 1736 1737 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1738 if (found_passing_read) { 1739 /* Find a failing read. */ 1740 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1741 __func__, __LINE__); 1742 d++; 1743 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1744 &d); 1745 } else { 1746 debug_cond(DLEVEL == 1, 1747 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1748 __func__, __LINE__); 1749 } 1750 1751 /* 1752 * The dynamically calculated dtaps_per_ptap is only valid if we 1753 * found a passing/failing read. If we didn't, it means d hit the max 1754 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1755 * statically calculated value. 1756 */ 1757 if (found_passing_read && found_failing_read) 1758 dtaps_per_ptap = d - initial_failing_dtap; 1759 1760 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1761 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1762 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1763 1764 /* Step 6: Find the centre of the window. */ 1765 ret = sdr_find_window_center(grp, work_bgn, work_end); 1766 1767 return ret; 1768 } 1769 1770 /* per-bit deskew DQ and center */ 1771 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1772 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1773 uint32_t use_read_test, uint32_t update_fom) 1774 { 1775 uint32_t i, p, d, min_index; 1776 /* 1777 * Store these as signed since there are comparisons with 1778 * signed numbers. 1779 */ 1780 uint32_t bit_chk; 1781 uint32_t sticky_bit_chk; 1782 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1783 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1784 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1785 int32_t mid; 1786 int32_t orig_mid_min, mid_min; 1787 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1788 final_dqs_en; 1789 int32_t dq_margin, dqs_margin; 1790 uint32_t stop; 1791 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1792 uint32_t addr; 1793 1794 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1795 1796 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1797 start_dqs = readl(addr + (read_group << 2)); 1798 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1799 start_dqs_en = readl(addr + ((read_group << 2) 1800 - IO_DQS_EN_DELAY_OFFSET)); 1801 1802 /* set the left and right edge of each bit to an illegal value */ 1803 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1804 sticky_bit_chk = 0; 1805 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1806 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1807 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1808 } 1809 1810 /* Search for the left edge of the window for each bit */ 1811 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1812 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1813 1814 writel(0, &sdr_scc_mgr->update); 1815 1816 /* 1817 * Stop searching when the read test doesn't pass AND when 1818 * we've seen a passing read on every bit. 1819 */ 1820 if (use_read_test) { 1821 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1822 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1823 &bit_chk, 0, 0); 1824 } else { 1825 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1826 0, PASS_ONE_BIT, 1827 &bit_chk, 0); 1828 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1829 (read_group - (write_group * 1830 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1831 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1832 stop = (bit_chk == 0); 1833 } 1834 sticky_bit_chk = sticky_bit_chk | bit_chk; 1835 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1836 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1837 && %u", __func__, __LINE__, d, 1838 sticky_bit_chk, 1839 param->read_correct_mask, stop); 1840 1841 if (stop == 1) { 1842 break; 1843 } else { 1844 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1845 if (bit_chk & 1) { 1846 /* Remember a passing test as the 1847 left_edge */ 1848 left_edge[i] = d; 1849 } else { 1850 /* If a left edge has not been seen yet, 1851 then a future passing test will mark 1852 this edge as the right edge */ 1853 if (left_edge[i] == 1854 IO_IO_IN_DELAY_MAX + 1) { 1855 right_edge[i] = -(d + 1); 1856 } 1857 } 1858 bit_chk = bit_chk >> 1; 1859 } 1860 } 1861 } 1862 1863 /* Reset DQ delay chains to 0 */ 1864 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1865 sticky_bit_chk = 0; 1866 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1867 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1868 %d right_edge[%u]: %d\n", __func__, __LINE__, 1869 i, left_edge[i], i, right_edge[i]); 1870 1871 /* 1872 * Check for cases where we haven't found the left edge, 1873 * which makes our assignment of the the right edge invalid. 1874 * Reset it to the illegal value. 1875 */ 1876 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1877 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1878 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1879 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1880 right_edge[%u]: %d\n", __func__, __LINE__, 1881 i, right_edge[i]); 1882 } 1883 1884 /* 1885 * Reset sticky bit (except for bits where we have seen 1886 * both the left and right edge). 1887 */ 1888 sticky_bit_chk = sticky_bit_chk << 1; 1889 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1890 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1891 sticky_bit_chk = sticky_bit_chk | 1; 1892 } 1893 1894 if (i == 0) 1895 break; 1896 } 1897 1898 /* Search for the right edge of the window for each bit */ 1899 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1900 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1901 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1902 uint32_t delay = d + start_dqs_en; 1903 if (delay > IO_DQS_EN_DELAY_MAX) 1904 delay = IO_DQS_EN_DELAY_MAX; 1905 scc_mgr_set_dqs_en_delay(read_group, delay); 1906 } 1907 scc_mgr_load_dqs(read_group); 1908 1909 writel(0, &sdr_scc_mgr->update); 1910 1911 /* 1912 * Stop searching when the read test doesn't pass AND when 1913 * we've seen a passing read on every bit. 1914 */ 1915 if (use_read_test) { 1916 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1917 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1918 &bit_chk, 0, 0); 1919 } else { 1920 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1921 0, PASS_ONE_BIT, 1922 &bit_chk, 0); 1923 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1924 (read_group - (write_group * 1925 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1926 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1927 stop = (bit_chk == 0); 1928 } 1929 sticky_bit_chk = sticky_bit_chk | bit_chk; 1930 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1931 1932 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1933 %u && %u", __func__, __LINE__, d, 1934 sticky_bit_chk, param->read_correct_mask, stop); 1935 1936 if (stop == 1) { 1937 break; 1938 } else { 1939 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1940 if (bit_chk & 1) { 1941 /* Remember a passing test as 1942 the right_edge */ 1943 right_edge[i] = d; 1944 } else { 1945 if (d != 0) { 1946 /* If a right edge has not been 1947 seen yet, then a future passing 1948 test will mark this edge as the 1949 left edge */ 1950 if (right_edge[i] == 1951 IO_IO_IN_DELAY_MAX + 1) { 1952 left_edge[i] = -(d + 1); 1953 } 1954 } else { 1955 /* d = 0 failed, but it passed 1956 when testing the left edge, 1957 so it must be marginal, 1958 set it to -1 */ 1959 if (right_edge[i] == 1960 IO_IO_IN_DELAY_MAX + 1 && 1961 left_edge[i] != 1962 IO_IO_IN_DELAY_MAX 1963 + 1) { 1964 right_edge[i] = -1; 1965 } 1966 /* If a right edge has not been 1967 seen yet, then a future passing 1968 test will mark this edge as the 1969 left edge */ 1970 else if (right_edge[i] == 1971 IO_IO_IN_DELAY_MAX + 1972 1) { 1973 left_edge[i] = -(d + 1); 1974 } 1975 } 1976 } 1977 1978 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1979 d=%u]: ", __func__, __LINE__, d); 1980 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1981 (int)(bit_chk & 1), i, left_edge[i]); 1982 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1983 right_edge[i]); 1984 bit_chk = bit_chk >> 1; 1985 } 1986 } 1987 } 1988 1989 /* Check that all bits have a window */ 1990 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1991 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1992 %d right_edge[%u]: %d", __func__, __LINE__, 1993 i, left_edge[i], i, right_edge[i]); 1994 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1995 == IO_IO_IN_DELAY_MAX + 1)) { 1996 /* 1997 * Restore delay chain settings before letting the loop 1998 * in rw_mgr_mem_calibrate_vfifo to retry different 1999 * dqs/ck relationships. 2000 */ 2001 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2002 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2003 scc_mgr_set_dqs_en_delay(read_group, 2004 start_dqs_en); 2005 } 2006 scc_mgr_load_dqs(read_group); 2007 writel(0, &sdr_scc_mgr->update); 2008 2009 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2010 find edge [%u]: %d %d", __func__, __LINE__, 2011 i, left_edge[i], right_edge[i]); 2012 if (use_read_test) { 2013 set_failing_group_stage(read_group * 2014 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2015 CAL_STAGE_VFIFO, 2016 CAL_SUBSTAGE_VFIFO_CENTER); 2017 } else { 2018 set_failing_group_stage(read_group * 2019 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2020 CAL_STAGE_VFIFO_AFTER_WRITES, 2021 CAL_SUBSTAGE_VFIFO_CENTER); 2022 } 2023 return 0; 2024 } 2025 } 2026 2027 /* Find middle of window for each DQ bit */ 2028 mid_min = left_edge[0] - right_edge[0]; 2029 min_index = 0; 2030 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2031 mid = left_edge[i] - right_edge[i]; 2032 if (mid < mid_min) { 2033 mid_min = mid; 2034 min_index = i; 2035 } 2036 } 2037 2038 /* 2039 * -mid_min/2 represents the amount that we need to move DQS. 2040 * If mid_min is odd and positive we'll need to add one to 2041 * make sure the rounding in further calculations is correct 2042 * (always bias to the right), so just add 1 for all positive values. 2043 */ 2044 if (mid_min > 0) 2045 mid_min++; 2046 2047 mid_min = mid_min / 2; 2048 2049 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2050 __func__, __LINE__, mid_min, min_index); 2051 2052 /* Determine the amount we can change DQS (which is -mid_min) */ 2053 orig_mid_min = mid_min; 2054 new_dqs = start_dqs - mid_min; 2055 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2056 new_dqs = IO_DQS_IN_DELAY_MAX; 2057 else if (new_dqs < 0) 2058 new_dqs = 0; 2059 2060 mid_min = start_dqs - new_dqs; 2061 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2062 mid_min, new_dqs); 2063 2064 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2065 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2066 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2067 else if (start_dqs_en - mid_min < 0) 2068 mid_min += start_dqs_en - mid_min; 2069 } 2070 new_dqs = start_dqs - mid_min; 2071 2072 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2073 new_dqs=%d mid_min=%d\n", start_dqs, 2074 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2075 new_dqs, mid_min); 2076 2077 /* Initialize data for export structures */ 2078 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2079 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2080 2081 /* add delay to bring centre of all DQ windows to the same "level" */ 2082 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2083 /* Use values before divide by 2 to reduce round off error */ 2084 shift_dq = (left_edge[i] - right_edge[i] - 2085 (left_edge[min_index] - right_edge[min_index]))/2 + 2086 (orig_mid_min - mid_min); 2087 2088 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2089 shift_dq[%u]=%d\n", i, shift_dq); 2090 2091 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2092 temp_dq_in_delay1 = readl(addr + (p << 2)); 2093 temp_dq_in_delay2 = readl(addr + (i << 2)); 2094 2095 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2096 (int32_t)IO_IO_IN_DELAY_MAX) { 2097 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2098 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2099 shift_dq = -(int32_t)temp_dq_in_delay1; 2100 } 2101 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2102 shift_dq[%u]=%d\n", i, shift_dq); 2103 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2104 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2105 scc_mgr_load_dq(p); 2106 2107 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2108 left_edge[i] - shift_dq + (-mid_min), 2109 right_edge[i] + shift_dq - (-mid_min)); 2110 /* To determine values for export structures */ 2111 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2112 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2113 2114 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2115 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2116 } 2117 2118 final_dqs = new_dqs; 2119 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2120 final_dqs_en = start_dqs_en - mid_min; 2121 2122 /* Move DQS-en */ 2123 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2124 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2125 scc_mgr_load_dqs(read_group); 2126 } 2127 2128 /* Move DQS */ 2129 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2130 scc_mgr_load_dqs(read_group); 2131 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2132 dqs_margin=%d", __func__, __LINE__, 2133 dq_margin, dqs_margin); 2134 2135 /* 2136 * Do not remove this line as it makes sure all of our decisions 2137 * have been applied. Apply the update bit. 2138 */ 2139 writel(0, &sdr_scc_mgr->update); 2140 2141 return (dq_margin >= 0) && (dqs_margin >= 0); 2142 } 2143 2144 /** 2145 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2146 * @rw_group: Read/Write Group 2147 * @phase: DQ/DQS phase 2148 * 2149 * Because initially no communication ca be reliably performed with the memory 2150 * device, the sequencer uses a guaranteed write mechanism to write data into 2151 * the memory device. 2152 */ 2153 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2154 const u32 phase) 2155 { 2156 int ret; 2157 2158 /* Set a particular DQ/DQS phase. */ 2159 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2160 2161 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2162 __func__, __LINE__, rw_group, phase); 2163 2164 /* 2165 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2166 * Load up the patterns used by read calibration using the 2167 * current DQDQS phase. 2168 */ 2169 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2170 2171 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2172 return 0; 2173 2174 /* 2175 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2176 * Back-to-Back reads of the patterns used for calibration. 2177 */ 2178 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2179 if (ret) 2180 debug_cond(DLEVEL == 1, 2181 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2182 __func__, __LINE__, rw_group, phase); 2183 return ret; 2184 } 2185 2186 /** 2187 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2188 * @rw_group: Read/Write Group 2189 * @test_bgn: Rank at which the test begins 2190 * 2191 * DQS enable calibration ensures reliable capture of the DQ signal without 2192 * glitches on the DQS line. 2193 */ 2194 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2195 const u32 test_bgn) 2196 { 2197 /* 2198 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2199 * DQS and DQS Eanble Signal Relationships. 2200 */ 2201 2202 /* We start at zero, so have one less dq to devide among */ 2203 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2204 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2205 int ret; 2206 u32 i, p, d, r; 2207 2208 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2209 2210 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2211 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2212 r += NUM_RANKS_PER_SHADOW_REG) { 2213 for (i = 0, p = test_bgn, d = 0; 2214 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2215 i++, p++, d += delay_step) { 2216 debug_cond(DLEVEL == 1, 2217 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2218 __func__, __LINE__, rw_group, r, i, p, d); 2219 2220 scc_mgr_set_dq_in_delay(p, d); 2221 scc_mgr_load_dq(p); 2222 } 2223 2224 writel(0, &sdr_scc_mgr->update); 2225 } 2226 2227 /* 2228 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2229 * dq_in_delay values 2230 */ 2231 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2232 2233 debug_cond(DLEVEL == 1, 2234 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2235 __func__, __LINE__, rw_group, !ret); 2236 2237 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2238 r += NUM_RANKS_PER_SHADOW_REG) { 2239 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2240 writel(0, &sdr_scc_mgr->update); 2241 } 2242 2243 return ret; 2244 } 2245 2246 /** 2247 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2248 * @rw_group: Read/Write Group 2249 * @test_bgn: Rank at which the test begins 2250 * @use_read_test: Perform a read test 2251 * @update_fom: Update FOM 2252 * 2253 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2254 * within a group. 2255 */ 2256 static int 2257 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2258 const int use_read_test, 2259 const int update_fom) 2260 2261 { 2262 int ret, grp_calibrated; 2263 u32 rank_bgn, sr; 2264 2265 /* 2266 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2267 * Read per-bit deskew can be done on a per shadow register basis. 2268 */ 2269 grp_calibrated = 1; 2270 for (rank_bgn = 0, sr = 0; 2271 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2272 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2273 /* Check if this set of ranks should be skipped entirely. */ 2274 if (param->skip_shadow_regs[sr]) 2275 continue; 2276 2277 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2278 rw_group, test_bgn, 2279 use_read_test, 2280 update_fom); 2281 if (ret) 2282 continue; 2283 2284 grp_calibrated = 0; 2285 } 2286 2287 if (!grp_calibrated) 2288 return -EIO; 2289 2290 return 0; 2291 } 2292 2293 /** 2294 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2295 * @rw_group: Read/Write Group 2296 * @test_bgn: Rank at which the test begins 2297 * 2298 * Stage 1: Calibrate the read valid prediction FIFO. 2299 * 2300 * This function implements UniPHY calibration Stage 1, as explained in 2301 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2302 * 2303 * - read valid prediction will consist of finding: 2304 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2305 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2306 * - we also do a per-bit deskew on the DQ lines. 2307 */ 2308 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2309 { 2310 uint32_t p, d; 2311 uint32_t dtaps_per_ptap; 2312 uint32_t failed_substage; 2313 2314 int ret; 2315 2316 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2317 2318 /* Update info for sims */ 2319 reg_file_set_group(rw_group); 2320 reg_file_set_stage(CAL_STAGE_VFIFO); 2321 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2322 2323 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2324 2325 /* USER Determine number of delay taps for each phase tap. */ 2326 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2327 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2328 2329 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2330 /* 2331 * In RLDRAMX we may be messing the delay of pins in 2332 * the same write rw_group but outside of the current read 2333 * the rw_group, but that's ok because we haven't calibrated 2334 * output side yet. 2335 */ 2336 if (d > 0) { 2337 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2338 rw_group, d); 2339 } 2340 2341 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2342 /* 1) Guaranteed Write */ 2343 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2344 if (ret) 2345 break; 2346 2347 /* 2) DQS Enable Calibration */ 2348 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2349 test_bgn); 2350 if (ret) { 2351 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2352 continue; 2353 } 2354 2355 /* 3) Centering DQ/DQS */ 2356 /* 2357 * If doing read after write calibration, do not update 2358 * FOM now. Do it then. 2359 */ 2360 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2361 test_bgn, 1, 0); 2362 if (ret) { 2363 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2364 continue; 2365 } 2366 2367 /* All done. */ 2368 goto cal_done_ok; 2369 } 2370 } 2371 2372 /* Calibration Stage 1 failed. */ 2373 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2374 return 0; 2375 2376 /* Calibration Stage 1 completed OK. */ 2377 cal_done_ok: 2378 /* 2379 * Reset the delay chains back to zero if they have moved > 1 2380 * (check for > 1 because loop will increase d even when pass in 2381 * first case). 2382 */ 2383 if (d > 2) 2384 scc_mgr_zero_group(rw_group, 1); 2385 2386 return 1; 2387 } 2388 2389 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2390 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2391 uint32_t test_bgn) 2392 { 2393 uint32_t rank_bgn, sr; 2394 uint32_t grp_calibrated; 2395 uint32_t write_group; 2396 2397 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2398 2399 /* update info for sims */ 2400 2401 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2402 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2403 2404 write_group = read_group; 2405 2406 /* update info for sims */ 2407 reg_file_set_group(read_group); 2408 2409 grp_calibrated = 1; 2410 /* Read per-bit deskew can be done on a per shadow register basis */ 2411 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2412 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2413 /* Determine if this set of ranks should be skipped entirely */ 2414 if (!param->skip_shadow_regs[sr]) { 2415 /* This is the last calibration round, update FOM here */ 2416 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2417 write_group, 2418 read_group, 2419 test_bgn, 0, 2420 1)) { 2421 grp_calibrated = 0; 2422 } 2423 } 2424 } 2425 2426 2427 if (grp_calibrated == 0) { 2428 set_failing_group_stage(write_group, 2429 CAL_STAGE_VFIFO_AFTER_WRITES, 2430 CAL_SUBSTAGE_VFIFO_CENTER); 2431 return 0; 2432 } 2433 2434 return 1; 2435 } 2436 2437 /* Calibrate LFIFO to find smallest read latency */ 2438 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2439 { 2440 uint32_t found_one; 2441 2442 debug("%s:%d\n", __func__, __LINE__); 2443 2444 /* update info for sims */ 2445 reg_file_set_stage(CAL_STAGE_LFIFO); 2446 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2447 2448 /* Load up the patterns used by read calibration for all ranks */ 2449 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2450 found_one = 0; 2451 2452 do { 2453 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2454 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2455 __func__, __LINE__, gbl->curr_read_lat); 2456 2457 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2458 NUM_READ_TESTS, 2459 PASS_ALL_BITS, 2460 1)) { 2461 break; 2462 } 2463 2464 found_one = 1; 2465 /* reduce read latency and see if things are working */ 2466 /* correctly */ 2467 gbl->curr_read_lat--; 2468 } while (gbl->curr_read_lat > 0); 2469 2470 /* reset the fifos to get pointers to known state */ 2471 2472 writel(0, &phy_mgr_cmd->fifo_reset); 2473 2474 if (found_one) { 2475 /* add a fudge factor to the read latency that was determined */ 2476 gbl->curr_read_lat += 2; 2477 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2478 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2479 read_lat=%u\n", __func__, __LINE__, 2480 gbl->curr_read_lat); 2481 return 1; 2482 } else { 2483 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2484 CAL_SUBSTAGE_READ_LATENCY); 2485 2486 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2487 read_lat=%u\n", __func__, __LINE__, 2488 gbl->curr_read_lat); 2489 return 0; 2490 } 2491 } 2492 2493 /* 2494 * issue write test command. 2495 * two variants are provided. one that just tests a write pattern and 2496 * another that tests datamask functionality. 2497 */ 2498 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2499 uint32_t test_dm) 2500 { 2501 uint32_t mcc_instruction; 2502 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2503 ENABLE_SUPER_QUICK_CALIBRATION); 2504 uint32_t rw_wl_nop_cycles; 2505 uint32_t addr; 2506 2507 /* 2508 * Set counter and jump addresses for the right 2509 * number of NOP cycles. 2510 * The number of supported NOP cycles can range from -1 to infinity 2511 * Three different cases are handled: 2512 * 2513 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2514 * mechanism will be used to insert the right number of NOPs 2515 * 2516 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2517 * issuing the write command will jump straight to the 2518 * micro-instruction that turns on DQS (for DDRx), or outputs write 2519 * data (for RLD), skipping 2520 * the NOP micro-instruction all together 2521 * 2522 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2523 * turned on in the same micro-instruction that issues the write 2524 * command. Then we need 2525 * to directly jump to the micro-instruction that sends out the data 2526 * 2527 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2528 * (2 and 3). One jump-counter (0) is used to perform multiple 2529 * write-read operations. 2530 * one counter left to issue this command in "multiple-group" mode 2531 */ 2532 2533 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2534 2535 if (rw_wl_nop_cycles == -1) { 2536 /* 2537 * CNTR 2 - We want to execute the special write operation that 2538 * turns on DQS right away and then skip directly to the 2539 * instruction that sends out the data. We set the counter to a 2540 * large number so that the jump is always taken. 2541 */ 2542 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2543 2544 /* CNTR 3 - Not used */ 2545 if (test_dm) { 2546 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2547 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2548 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2549 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2550 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2551 } else { 2552 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2553 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2554 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2555 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2556 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2557 } 2558 } else if (rw_wl_nop_cycles == 0) { 2559 /* 2560 * CNTR 2 - We want to skip the NOP operation and go straight 2561 * to the DQS enable instruction. We set the counter to a large 2562 * number so that the jump is always taken. 2563 */ 2564 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2565 2566 /* CNTR 3 - Not used */ 2567 if (test_dm) { 2568 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2569 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2570 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2571 } else { 2572 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2573 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2574 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2575 } 2576 } else { 2577 /* 2578 * CNTR 2 - In this case we want to execute the next instruction 2579 * and NOT take the jump. So we set the counter to 0. The jump 2580 * address doesn't count. 2581 */ 2582 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2583 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2584 2585 /* 2586 * CNTR 3 - Set the nop counter to the number of cycles we 2587 * need to loop for, minus 1. 2588 */ 2589 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2590 if (test_dm) { 2591 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2592 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2593 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2594 } else { 2595 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2596 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2597 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2598 } 2599 } 2600 2601 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2602 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2603 2604 if (quick_write_mode) 2605 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2606 else 2607 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2608 2609 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2610 2611 /* 2612 * CNTR 1 - This is used to ensure enough time elapses 2613 * for read data to come back. 2614 */ 2615 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2616 2617 if (test_dm) { 2618 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2619 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2620 } else { 2621 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2622 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2623 } 2624 2625 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2626 writel(mcc_instruction, addr + (group << 2)); 2627 } 2628 2629 /* Test writes, can check for a single bit pass or multiple bit pass */ 2630 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2631 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2632 uint32_t *bit_chk, uint32_t all_ranks) 2633 { 2634 uint32_t r; 2635 uint32_t correct_mask_vg; 2636 uint32_t tmp_bit_chk; 2637 uint32_t vg; 2638 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2639 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2640 uint32_t addr_rw_mgr; 2641 uint32_t base_rw_mgr; 2642 2643 *bit_chk = param->write_correct_mask; 2644 correct_mask_vg = param->write_correct_mask_vg; 2645 2646 for (r = rank_bgn; r < rank_end; r++) { 2647 if (param->skip_ranks[r]) { 2648 /* request to skip the rank */ 2649 continue; 2650 } 2651 2652 /* set rank */ 2653 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2654 2655 tmp_bit_chk = 0; 2656 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2657 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2658 /* reset the fifos to get pointers to known state */ 2659 writel(0, &phy_mgr_cmd->fifo_reset); 2660 2661 tmp_bit_chk = tmp_bit_chk << 2662 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2663 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2664 rw_mgr_mem_calibrate_write_test_issue(write_group * 2665 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2666 use_dm); 2667 2668 base_rw_mgr = readl(addr_rw_mgr); 2669 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2670 if (vg == 0) 2671 break; 2672 } 2673 *bit_chk &= tmp_bit_chk; 2674 } 2675 2676 if (all_correct) { 2677 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2678 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2679 %u => %lu", write_group, use_dm, 2680 *bit_chk, param->write_correct_mask, 2681 (long unsigned int)(*bit_chk == 2682 param->write_correct_mask)); 2683 return *bit_chk == param->write_correct_mask; 2684 } else { 2685 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2686 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2687 write_group, use_dm, *bit_chk); 2688 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2689 (long unsigned int)(*bit_chk != 0)); 2690 return *bit_chk != 0x00; 2691 } 2692 } 2693 2694 /* 2695 * center all windows. do per-bit-deskew to possibly increase size of 2696 * certain windows. 2697 */ 2698 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2699 uint32_t write_group, uint32_t test_bgn) 2700 { 2701 uint32_t i, p, min_index; 2702 int32_t d; 2703 /* 2704 * Store these as signed since there are comparisons with 2705 * signed numbers. 2706 */ 2707 uint32_t bit_chk; 2708 uint32_t sticky_bit_chk; 2709 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2710 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2711 int32_t mid; 2712 int32_t mid_min, orig_mid_min; 2713 int32_t new_dqs, start_dqs, shift_dq; 2714 int32_t dq_margin, dqs_margin, dm_margin; 2715 uint32_t stop; 2716 uint32_t temp_dq_out1_delay; 2717 uint32_t addr; 2718 2719 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2720 2721 dm_margin = 0; 2722 2723 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2724 start_dqs = readl(addr + 2725 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2726 2727 /* per-bit deskew */ 2728 2729 /* 2730 * set the left and right edge of each bit to an illegal value 2731 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2732 */ 2733 sticky_bit_chk = 0; 2734 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2735 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2736 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2737 } 2738 2739 /* Search for the left edge of the window for each bit */ 2740 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2741 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2742 2743 writel(0, &sdr_scc_mgr->update); 2744 2745 /* 2746 * Stop searching when the read test doesn't pass AND when 2747 * we've seen a passing read on every bit. 2748 */ 2749 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2750 0, PASS_ONE_BIT, &bit_chk, 0); 2751 sticky_bit_chk = sticky_bit_chk | bit_chk; 2752 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2753 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2754 == %u && %u [bit_chk= %u ]\n", 2755 d, sticky_bit_chk, param->write_correct_mask, 2756 stop, bit_chk); 2757 2758 if (stop == 1) { 2759 break; 2760 } else { 2761 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2762 if (bit_chk & 1) { 2763 /* 2764 * Remember a passing test as the 2765 * left_edge. 2766 */ 2767 left_edge[i] = d; 2768 } else { 2769 /* 2770 * If a left edge has not been seen 2771 * yet, then a future passing test will 2772 * mark this edge as the right edge. 2773 */ 2774 if (left_edge[i] == 2775 IO_IO_OUT1_DELAY_MAX + 1) { 2776 right_edge[i] = -(d + 1); 2777 } 2778 } 2779 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2780 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2781 (int)(bit_chk & 1), i, left_edge[i]); 2782 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2783 right_edge[i]); 2784 bit_chk = bit_chk >> 1; 2785 } 2786 } 2787 } 2788 2789 /* Reset DQ delay chains to 0 */ 2790 scc_mgr_apply_group_dq_out1_delay(0); 2791 sticky_bit_chk = 0; 2792 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2793 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2794 %d right_edge[%u]: %d\n", __func__, __LINE__, 2795 i, left_edge[i], i, right_edge[i]); 2796 2797 /* 2798 * Check for cases where we haven't found the left edge, 2799 * which makes our assignment of the the right edge invalid. 2800 * Reset it to the illegal value. 2801 */ 2802 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2803 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2804 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2805 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2806 right_edge[%u]: %d\n", __func__, __LINE__, 2807 i, right_edge[i]); 2808 } 2809 2810 /* 2811 * Reset sticky bit (except for bits where we have 2812 * seen the left edge). 2813 */ 2814 sticky_bit_chk = sticky_bit_chk << 1; 2815 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2816 sticky_bit_chk = sticky_bit_chk | 1; 2817 2818 if (i == 0) 2819 break; 2820 } 2821 2822 /* Search for the right edge of the window for each bit */ 2823 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2824 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2825 d + start_dqs); 2826 2827 writel(0, &sdr_scc_mgr->update); 2828 2829 /* 2830 * Stop searching when the read test doesn't pass AND when 2831 * we've seen a passing read on every bit. 2832 */ 2833 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2834 0, PASS_ONE_BIT, &bit_chk, 0); 2835 2836 sticky_bit_chk = sticky_bit_chk | bit_chk; 2837 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2838 2839 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2840 %u && %u\n", d, sticky_bit_chk, 2841 param->write_correct_mask, stop); 2842 2843 if (stop == 1) { 2844 if (d == 0) { 2845 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2846 i++) { 2847 /* d = 0 failed, but it passed when 2848 testing the left edge, so it must be 2849 marginal, set it to -1 */ 2850 if (right_edge[i] == 2851 IO_IO_OUT1_DELAY_MAX + 1 && 2852 left_edge[i] != 2853 IO_IO_OUT1_DELAY_MAX + 1) { 2854 right_edge[i] = -1; 2855 } 2856 } 2857 } 2858 break; 2859 } else { 2860 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2861 if (bit_chk & 1) { 2862 /* 2863 * Remember a passing test as 2864 * the right_edge. 2865 */ 2866 right_edge[i] = d; 2867 } else { 2868 if (d != 0) { 2869 /* 2870 * If a right edge has not 2871 * been seen yet, then a future 2872 * passing test will mark this 2873 * edge as the left edge. 2874 */ 2875 if (right_edge[i] == 2876 IO_IO_OUT1_DELAY_MAX + 1) 2877 left_edge[i] = -(d + 1); 2878 } else { 2879 /* 2880 * d = 0 failed, but it passed 2881 * when testing the left edge, 2882 * so it must be marginal, set 2883 * it to -1. 2884 */ 2885 if (right_edge[i] == 2886 IO_IO_OUT1_DELAY_MAX + 1 && 2887 left_edge[i] != 2888 IO_IO_OUT1_DELAY_MAX + 1) 2889 right_edge[i] = -1; 2890 /* 2891 * If a right edge has not been 2892 * seen yet, then a future 2893 * passing test will mark this 2894 * edge as the left edge. 2895 */ 2896 else if (right_edge[i] == 2897 IO_IO_OUT1_DELAY_MAX + 2898 1) 2899 left_edge[i] = -(d + 1); 2900 } 2901 } 2902 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2903 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2904 (int)(bit_chk & 1), i, left_edge[i]); 2905 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2906 right_edge[i]); 2907 bit_chk = bit_chk >> 1; 2908 } 2909 } 2910 } 2911 2912 /* Check that all bits have a window */ 2913 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2914 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2915 %d right_edge[%u]: %d", __func__, __LINE__, 2916 i, left_edge[i], i, right_edge[i]); 2917 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2918 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2919 set_failing_group_stage(test_bgn + i, 2920 CAL_STAGE_WRITES, 2921 CAL_SUBSTAGE_WRITES_CENTER); 2922 return 0; 2923 } 2924 } 2925 2926 /* Find middle of window for each DQ bit */ 2927 mid_min = left_edge[0] - right_edge[0]; 2928 min_index = 0; 2929 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2930 mid = left_edge[i] - right_edge[i]; 2931 if (mid < mid_min) { 2932 mid_min = mid; 2933 min_index = i; 2934 } 2935 } 2936 2937 /* 2938 * -mid_min/2 represents the amount that we need to move DQS. 2939 * If mid_min is odd and positive we'll need to add one to 2940 * make sure the rounding in further calculations is correct 2941 * (always bias to the right), so just add 1 for all positive values. 2942 */ 2943 if (mid_min > 0) 2944 mid_min++; 2945 mid_min = mid_min / 2; 2946 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2947 __LINE__, mid_min); 2948 2949 /* Determine the amount we can change DQS (which is -mid_min) */ 2950 orig_mid_min = mid_min; 2951 new_dqs = start_dqs; 2952 mid_min = 0; 2953 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2954 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2955 /* Initialize data for export structures */ 2956 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2957 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2958 2959 /* add delay to bring centre of all DQ windows to the same "level" */ 2960 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2961 /* Use values before divide by 2 to reduce round off error */ 2962 shift_dq = (left_edge[i] - right_edge[i] - 2963 (left_edge[min_index] - right_edge[min_index]))/2 + 2964 (orig_mid_min - mid_min); 2965 2966 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2967 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2968 2969 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2970 temp_dq_out1_delay = readl(addr + (i << 2)); 2971 if (shift_dq + (int32_t)temp_dq_out1_delay > 2972 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2973 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2974 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2975 shift_dq = -(int32_t)temp_dq_out1_delay; 2976 } 2977 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2978 i, shift_dq); 2979 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2980 scc_mgr_load_dq(i); 2981 2982 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2983 left_edge[i] - shift_dq + (-mid_min), 2984 right_edge[i] + shift_dq - (-mid_min)); 2985 /* To determine values for export structures */ 2986 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2987 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2988 2989 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2990 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2991 } 2992 2993 /* Move DQS */ 2994 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2995 writel(0, &sdr_scc_mgr->update); 2996 2997 /* Centre DM */ 2998 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2999 3000 /* 3001 * set the left and right edge of each bit to an illegal value, 3002 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3003 */ 3004 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3005 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3006 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3007 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3008 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3009 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3010 int32_t win_best = 0; 3011 3012 /* Search for the/part of the window with DM shift */ 3013 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3014 scc_mgr_apply_group_dm_out1_delay(d); 3015 writel(0, &sdr_scc_mgr->update); 3016 3017 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3018 PASS_ALL_BITS, &bit_chk, 3019 0)) { 3020 /* USE Set current end of the window */ 3021 end_curr = -d; 3022 /* 3023 * If a starting edge of our window has not been seen 3024 * this is our current start of the DM window. 3025 */ 3026 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3027 bgn_curr = -d; 3028 3029 /* 3030 * If current window is bigger than best seen. 3031 * Set best seen to be current window. 3032 */ 3033 if ((end_curr-bgn_curr+1) > win_best) { 3034 win_best = end_curr-bgn_curr+1; 3035 bgn_best = bgn_curr; 3036 end_best = end_curr; 3037 } 3038 } else { 3039 /* We just saw a failing test. Reset temp edge */ 3040 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3041 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3042 } 3043 } 3044 3045 3046 /* Reset DM delay chains to 0 */ 3047 scc_mgr_apply_group_dm_out1_delay(0); 3048 3049 /* 3050 * Check to see if the current window nudges up aganist 0 delay. 3051 * If so we need to continue the search by shifting DQS otherwise DQS 3052 * search begins as a new search. */ 3053 if (end_curr != 0) { 3054 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3055 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3056 } 3057 3058 /* Search for the/part of the window with DQS shifts */ 3059 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3060 /* 3061 * Note: This only shifts DQS, so are we limiting ourselve to 3062 * width of DQ unnecessarily. 3063 */ 3064 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3065 d + new_dqs); 3066 3067 writel(0, &sdr_scc_mgr->update); 3068 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3069 PASS_ALL_BITS, &bit_chk, 3070 0)) { 3071 /* USE Set current end of the window */ 3072 end_curr = d; 3073 /* 3074 * If a beginning edge of our window has not been seen 3075 * this is our current begin of the DM window. 3076 */ 3077 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3078 bgn_curr = d; 3079 3080 /* 3081 * If current window is bigger than best seen. Set best 3082 * seen to be current window. 3083 */ 3084 if ((end_curr-bgn_curr+1) > win_best) { 3085 win_best = end_curr-bgn_curr+1; 3086 bgn_best = bgn_curr; 3087 end_best = end_curr; 3088 } 3089 } else { 3090 /* We just saw a failing test. Reset temp edge */ 3091 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3092 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3093 3094 /* Early exit optimization: if ther remaining delay 3095 chain space is less than already seen largest window 3096 we can exit */ 3097 if ((win_best-1) > 3098 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3099 break; 3100 } 3101 } 3102 } 3103 3104 /* assign left and right edge for cal and reporting; */ 3105 left_edge[0] = -1*bgn_best; 3106 right_edge[0] = end_best; 3107 3108 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3109 __LINE__, left_edge[0], right_edge[0]); 3110 3111 /* Move DQS (back to orig) */ 3112 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3113 3114 /* Move DM */ 3115 3116 /* Find middle of window for the DM bit */ 3117 mid = (left_edge[0] - right_edge[0]) / 2; 3118 3119 /* only move right, since we are not moving DQS/DQ */ 3120 if (mid < 0) 3121 mid = 0; 3122 3123 /* dm_marign should fail if we never find a window */ 3124 if (win_best == 0) 3125 dm_margin = -1; 3126 else 3127 dm_margin = left_edge[0] - mid; 3128 3129 scc_mgr_apply_group_dm_out1_delay(mid); 3130 writel(0, &sdr_scc_mgr->update); 3131 3132 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3133 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3134 right_edge[0], mid, dm_margin); 3135 /* Export values */ 3136 gbl->fom_out += dq_margin + dqs_margin; 3137 3138 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3139 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3140 dq_margin, dqs_margin, dm_margin); 3141 3142 /* 3143 * Do not remove this line as it makes sure all of our 3144 * decisions have been applied. 3145 */ 3146 writel(0, &sdr_scc_mgr->update); 3147 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3148 } 3149 3150 /* calibrate the write operations */ 3151 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3152 uint32_t test_bgn) 3153 { 3154 /* update info for sims */ 3155 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3156 3157 reg_file_set_stage(CAL_STAGE_WRITES); 3158 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3159 3160 reg_file_set_group(g); 3161 3162 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3163 set_failing_group_stage(g, CAL_STAGE_WRITES, 3164 CAL_SUBSTAGE_WRITES_CENTER); 3165 return 0; 3166 } 3167 3168 return 1; 3169 } 3170 3171 /** 3172 * mem_precharge_and_activate() - Precharge all banks and activate 3173 * 3174 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3175 */ 3176 static void mem_precharge_and_activate(void) 3177 { 3178 int r; 3179 3180 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3181 /* Test if the rank should be skipped. */ 3182 if (param->skip_ranks[r]) 3183 continue; 3184 3185 /* Set rank. */ 3186 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3187 3188 /* Precharge all banks. */ 3189 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3190 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3191 3192 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3193 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3194 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3195 3196 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3197 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3198 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3199 3200 /* Activate rows. */ 3201 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3202 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3203 } 3204 } 3205 3206 /** 3207 * mem_init_latency() - Configure memory RLAT and WLAT settings 3208 * 3209 * Configure memory RLAT and WLAT parameters. 3210 */ 3211 static void mem_init_latency(void) 3212 { 3213 /* 3214 * For AV/CV, LFIFO is hardened and always runs at full rate 3215 * so max latency in AFI clocks, used here, is correspondingly 3216 * smaller. 3217 */ 3218 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3219 u32 rlat, wlat; 3220 3221 debug("%s:%d\n", __func__, __LINE__); 3222 3223 /* 3224 * Read in write latency. 3225 * WL for Hard PHY does not include additive latency. 3226 */ 3227 wlat = readl(&data_mgr->t_wl_add); 3228 wlat += readl(&data_mgr->mem_t_add); 3229 3230 gbl->rw_wl_nop_cycles = wlat - 1; 3231 3232 /* Read in readl latency. */ 3233 rlat = readl(&data_mgr->t_rl_add); 3234 3235 /* Set a pretty high read latency initially. */ 3236 gbl->curr_read_lat = rlat + 16; 3237 if (gbl->curr_read_lat > max_latency) 3238 gbl->curr_read_lat = max_latency; 3239 3240 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3241 3242 /* Advertise write latency. */ 3243 writel(wlat, &phy_mgr_cfg->afi_wlat); 3244 } 3245 3246 /** 3247 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3248 * 3249 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3250 */ 3251 static void mem_skip_calibrate(void) 3252 { 3253 uint32_t vfifo_offset; 3254 uint32_t i, j, r; 3255 3256 debug("%s:%d\n", __func__, __LINE__); 3257 /* Need to update every shadow register set used by the interface */ 3258 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3259 r += NUM_RANKS_PER_SHADOW_REG) { 3260 /* 3261 * Set output phase alignment settings appropriate for 3262 * skip calibration. 3263 */ 3264 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3265 scc_mgr_set_dqs_en_phase(i, 0); 3266 #if IO_DLL_CHAIN_LENGTH == 6 3267 scc_mgr_set_dqdqs_output_phase(i, 6); 3268 #else 3269 scc_mgr_set_dqdqs_output_phase(i, 7); 3270 #endif 3271 /* 3272 * Case:33398 3273 * 3274 * Write data arrives to the I/O two cycles before write 3275 * latency is reached (720 deg). 3276 * -> due to bit-slip in a/c bus 3277 * -> to allow board skew where dqs is longer than ck 3278 * -> how often can this happen!? 3279 * -> can claim back some ptaps for high freq 3280 * support if we can relax this, but i digress... 3281 * 3282 * The write_clk leads mem_ck by 90 deg 3283 * The minimum ptap of the OPA is 180 deg 3284 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3285 * The write_clk is always delayed by 2 ptaps 3286 * 3287 * Hence, to make DQS aligned to CK, we need to delay 3288 * DQS by: 3289 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3290 * 3291 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3292 * gives us the number of ptaps, which simplies to: 3293 * 3294 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3295 */ 3296 scc_mgr_set_dqdqs_output_phase(i, 3297 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3298 } 3299 writel(0xff, &sdr_scc_mgr->dqs_ena); 3300 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3301 3302 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3303 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3304 SCC_MGR_GROUP_COUNTER_OFFSET); 3305 } 3306 writel(0xff, &sdr_scc_mgr->dq_ena); 3307 writel(0xff, &sdr_scc_mgr->dm_ena); 3308 writel(0, &sdr_scc_mgr->update); 3309 } 3310 3311 /* Compensate for simulation model behaviour */ 3312 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3313 scc_mgr_set_dqs_bus_in_delay(i, 10); 3314 scc_mgr_load_dqs(i); 3315 } 3316 writel(0, &sdr_scc_mgr->update); 3317 3318 /* 3319 * ArriaV has hard FIFOs that can only be initialized by incrementing 3320 * in sequencer. 3321 */ 3322 vfifo_offset = CALIB_VFIFO_OFFSET; 3323 for (j = 0; j < vfifo_offset; j++) 3324 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3325 writel(0, &phy_mgr_cmd->fifo_reset); 3326 3327 /* 3328 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3329 * setting from generation-time constant. 3330 */ 3331 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3332 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3333 } 3334 3335 /** 3336 * mem_calibrate() - Memory calibration entry point. 3337 * 3338 * Perform memory calibration. 3339 */ 3340 static uint32_t mem_calibrate(void) 3341 { 3342 uint32_t i; 3343 uint32_t rank_bgn, sr; 3344 uint32_t write_group, write_test_bgn; 3345 uint32_t read_group, read_test_bgn; 3346 uint32_t run_groups, current_run; 3347 uint32_t failing_groups = 0; 3348 uint32_t group_failed = 0; 3349 3350 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3351 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3352 3353 debug("%s:%d\n", __func__, __LINE__); 3354 3355 /* Initialize the data settings */ 3356 gbl->error_substage = CAL_SUBSTAGE_NIL; 3357 gbl->error_stage = CAL_STAGE_NIL; 3358 gbl->error_group = 0xff; 3359 gbl->fom_in = 0; 3360 gbl->fom_out = 0; 3361 3362 /* Initialize WLAT and RLAT. */ 3363 mem_init_latency(); 3364 3365 /* Initialize bit slips. */ 3366 mem_precharge_and_activate(); 3367 3368 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3369 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3370 SCC_MGR_GROUP_COUNTER_OFFSET); 3371 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3372 if (i == 0) 3373 scc_mgr_set_hhp_extras(); 3374 3375 scc_set_bypass_mode(i); 3376 } 3377 3378 /* Calibration is skipped. */ 3379 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3380 /* 3381 * Set VFIFO and LFIFO to instant-on settings in skip 3382 * calibration mode. 3383 */ 3384 mem_skip_calibrate(); 3385 3386 /* 3387 * Do not remove this line as it makes sure all of our 3388 * decisions have been applied. 3389 */ 3390 writel(0, &sdr_scc_mgr->update); 3391 return 1; 3392 } 3393 3394 /* Calibration is not skipped. */ 3395 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3396 /* 3397 * Zero all delay chain/phase settings for all 3398 * groups and all shadow register sets. 3399 */ 3400 scc_mgr_zero_all(); 3401 3402 run_groups = ~param->skip_groups; 3403 3404 for (write_group = 0, write_test_bgn = 0; write_group 3405 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3406 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3407 3408 /* Initialize the group failure */ 3409 group_failed = 0; 3410 3411 current_run = run_groups & ((1 << 3412 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3413 run_groups = run_groups >> 3414 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3415 3416 if (current_run == 0) 3417 continue; 3418 3419 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3420 SCC_MGR_GROUP_COUNTER_OFFSET); 3421 scc_mgr_zero_group(write_group, 0); 3422 3423 for (read_group = write_group * rwdqs_ratio, 3424 read_test_bgn = 0; 3425 read_group < (write_group + 1) * rwdqs_ratio; 3426 read_group++, 3427 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3428 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3429 continue; 3430 3431 /* Calibrate the VFIFO */ 3432 if (rw_mgr_mem_calibrate_vfifo(read_group, 3433 read_test_bgn)) 3434 continue; 3435 3436 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3437 return 0; 3438 3439 /* The group failed, we're done. */ 3440 goto grp_failed; 3441 } 3442 3443 /* Calibrate the output side */ 3444 for (rank_bgn = 0, sr = 0; 3445 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3446 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3447 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3448 continue; 3449 3450 /* Not needed in quick mode! */ 3451 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3452 continue; 3453 3454 /* 3455 * Determine if this set of ranks 3456 * should be skipped entirely. 3457 */ 3458 if (param->skip_shadow_regs[sr]) 3459 continue; 3460 3461 /* Calibrate WRITEs */ 3462 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3463 write_group, write_test_bgn)) 3464 continue; 3465 3466 group_failed = 1; 3467 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3468 return 0; 3469 } 3470 3471 /* Some group failed, we're done. */ 3472 if (group_failed) 3473 goto grp_failed; 3474 3475 for (read_group = write_group * rwdqs_ratio, 3476 read_test_bgn = 0; 3477 read_group < (write_group + 1) * rwdqs_ratio; 3478 read_group++, 3479 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3480 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3481 continue; 3482 3483 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3484 read_test_bgn)) 3485 continue; 3486 3487 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3488 return 0; 3489 3490 /* The group failed, we're done. */ 3491 goto grp_failed; 3492 } 3493 3494 /* No group failed, continue as usual. */ 3495 continue; 3496 3497 grp_failed: /* A group failed, increment the counter. */ 3498 failing_groups++; 3499 } 3500 3501 /* 3502 * USER If there are any failing groups then report 3503 * the failure. 3504 */ 3505 if (failing_groups != 0) 3506 return 0; 3507 3508 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3509 continue; 3510 3511 /* 3512 * If we're skipping groups as part of debug, 3513 * don't calibrate LFIFO. 3514 */ 3515 if (param->skip_groups != 0) 3516 continue; 3517 3518 /* Calibrate the LFIFO */ 3519 if (!rw_mgr_mem_calibrate_lfifo()) 3520 return 0; 3521 } 3522 3523 /* 3524 * Do not remove this line as it makes sure all of our decisions 3525 * have been applied. 3526 */ 3527 writel(0, &sdr_scc_mgr->update); 3528 return 1; 3529 } 3530 3531 /** 3532 * run_mem_calibrate() - Perform memory calibration 3533 * 3534 * This function triggers the entire memory calibration procedure. 3535 */ 3536 static int run_mem_calibrate(void) 3537 { 3538 int pass; 3539 3540 debug("%s:%d\n", __func__, __LINE__); 3541 3542 /* Reset pass/fail status shown on afi_cal_success/fail */ 3543 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3544 3545 /* Stop tracking manager. */ 3546 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3547 3548 phy_mgr_initialize(); 3549 rw_mgr_mem_initialize(); 3550 3551 /* Perform the actual memory calibration. */ 3552 pass = mem_calibrate(); 3553 3554 mem_precharge_and_activate(); 3555 writel(0, &phy_mgr_cmd->fifo_reset); 3556 3557 /* Handoff. */ 3558 rw_mgr_mem_handoff(); 3559 /* 3560 * In Hard PHY this is a 2-bit control: 3561 * 0: AFI Mux Select 3562 * 1: DDIO Mux Select 3563 */ 3564 writel(0x2, &phy_mgr_cfg->mux_sel); 3565 3566 /* Start tracking manager. */ 3567 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3568 3569 return pass; 3570 } 3571 3572 /** 3573 * debug_mem_calibrate() - Report result of memory calibration 3574 * @pass: Value indicating whether calibration passed or failed 3575 * 3576 * This function reports the results of the memory calibration 3577 * and writes debug information into the register file. 3578 */ 3579 static void debug_mem_calibrate(int pass) 3580 { 3581 uint32_t debug_info; 3582 3583 if (pass) { 3584 printf("%s: CALIBRATION PASSED\n", __FILE__); 3585 3586 gbl->fom_in /= 2; 3587 gbl->fom_out /= 2; 3588 3589 if (gbl->fom_in > 0xff) 3590 gbl->fom_in = 0xff; 3591 3592 if (gbl->fom_out > 0xff) 3593 gbl->fom_out = 0xff; 3594 3595 /* Update the FOM in the register file */ 3596 debug_info = gbl->fom_in; 3597 debug_info |= gbl->fom_out << 8; 3598 writel(debug_info, &sdr_reg_file->fom); 3599 3600 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3601 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3602 } else { 3603 printf("%s: CALIBRATION FAILED\n", __FILE__); 3604 3605 debug_info = gbl->error_stage; 3606 debug_info |= gbl->error_substage << 8; 3607 debug_info |= gbl->error_group << 16; 3608 3609 writel(debug_info, &sdr_reg_file->failing_stage); 3610 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3611 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3612 3613 /* Update the failing group/stage in the register file */ 3614 debug_info = gbl->error_stage; 3615 debug_info |= gbl->error_substage << 8; 3616 debug_info |= gbl->error_group << 16; 3617 writel(debug_info, &sdr_reg_file->failing_stage); 3618 } 3619 3620 printf("%s: Calibration complete\n", __FILE__); 3621 } 3622 3623 /** 3624 * hc_initialize_rom_data() - Initialize ROM data 3625 * 3626 * Initialize ROM data. 3627 */ 3628 static void hc_initialize_rom_data(void) 3629 { 3630 u32 i, addr; 3631 3632 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3633 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3634 writel(inst_rom_init[i], addr + (i << 2)); 3635 3636 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3637 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3638 writel(ac_rom_init[i], addr + (i << 2)); 3639 } 3640 3641 /** 3642 * initialize_reg_file() - Initialize SDR register file 3643 * 3644 * Initialize SDR register file. 3645 */ 3646 static void initialize_reg_file(void) 3647 { 3648 /* Initialize the register file with the correct data */ 3649 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3650 writel(0, &sdr_reg_file->debug_data_addr); 3651 writel(0, &sdr_reg_file->cur_stage); 3652 writel(0, &sdr_reg_file->fom); 3653 writel(0, &sdr_reg_file->failing_stage); 3654 writel(0, &sdr_reg_file->debug1); 3655 writel(0, &sdr_reg_file->debug2); 3656 } 3657 3658 /** 3659 * initialize_hps_phy() - Initialize HPS PHY 3660 * 3661 * Initialize HPS PHY. 3662 */ 3663 static void initialize_hps_phy(void) 3664 { 3665 uint32_t reg; 3666 /* 3667 * Tracking also gets configured here because it's in the 3668 * same register. 3669 */ 3670 uint32_t trk_sample_count = 7500; 3671 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3672 /* 3673 * Format is number of outer loops in the 16 MSB, sample 3674 * count in 16 LSB. 3675 */ 3676 3677 reg = 0; 3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3679 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3684 /* 3685 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3686 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3687 */ 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3690 trk_sample_count); 3691 writel(reg, &sdr_ctrl->phy_ctrl0); 3692 3693 reg = 0; 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3695 trk_sample_count >> 3696 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3698 trk_long_idle_sample_count); 3699 writel(reg, &sdr_ctrl->phy_ctrl1); 3700 3701 reg = 0; 3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3703 trk_long_idle_sample_count >> 3704 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3705 writel(reg, &sdr_ctrl->phy_ctrl2); 3706 } 3707 3708 /** 3709 * initialize_tracking() - Initialize tracking 3710 * 3711 * Initialize the register file with usable initial data. 3712 */ 3713 static void initialize_tracking(void) 3714 { 3715 /* 3716 * Initialize the register file with the correct data. 3717 * Compute usable version of value in case we skip full 3718 * computation later. 3719 */ 3720 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3721 &sdr_reg_file->dtaps_per_ptap); 3722 3723 /* trk_sample_count */ 3724 writel(7500, &sdr_reg_file->trk_sample_count); 3725 3726 /* longidle outer loop [15:0] */ 3727 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3728 3729 /* 3730 * longidle sample count [31:24] 3731 * trfc, worst case of 933Mhz 4Gb [23:16] 3732 * trcd, worst case [15:8] 3733 * vfifo wait [7:0] 3734 */ 3735 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3736 &sdr_reg_file->delays); 3737 3738 /* mux delay */ 3739 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3740 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3741 &sdr_reg_file->trk_rw_mgr_addr); 3742 3743 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3744 &sdr_reg_file->trk_read_dqs_width); 3745 3746 /* trefi [7:0] */ 3747 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3748 &sdr_reg_file->trk_rfsh); 3749 } 3750 3751 int sdram_calibration_full(void) 3752 { 3753 struct param_type my_param; 3754 struct gbl_type my_gbl; 3755 uint32_t pass; 3756 3757 memset(&my_param, 0, sizeof(my_param)); 3758 memset(&my_gbl, 0, sizeof(my_gbl)); 3759 3760 param = &my_param; 3761 gbl = &my_gbl; 3762 3763 /* Set the calibration enabled by default */ 3764 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3765 /* 3766 * Only sweep all groups (regardless of fail state) by default 3767 * Set enabled read test by default. 3768 */ 3769 #if DISABLE_GUARANTEED_READ 3770 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3771 #endif 3772 /* Initialize the register file */ 3773 initialize_reg_file(); 3774 3775 /* Initialize any PHY CSR */ 3776 initialize_hps_phy(); 3777 3778 scc_mgr_initialize(); 3779 3780 initialize_tracking(); 3781 3782 printf("%s: Preparing to start memory calibration\n", __FILE__); 3783 3784 debug("%s:%d\n", __func__, __LINE__); 3785 debug_cond(DLEVEL == 1, 3786 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3787 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3788 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3789 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3790 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3791 debug_cond(DLEVEL == 1, 3792 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3793 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3794 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3795 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3796 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3797 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3798 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3799 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3800 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3801 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3802 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3803 IO_IO_OUT2_DELAY_MAX); 3804 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3805 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3806 3807 hc_initialize_rom_data(); 3808 3809 /* update info for sims */ 3810 reg_file_set_stage(CAL_STAGE_NIL); 3811 reg_file_set_group(0); 3812 3813 /* 3814 * Load global needed for those actions that require 3815 * some dynamic calibration support. 3816 */ 3817 dyn_calib_steps = STATIC_CALIB_STEPS; 3818 /* 3819 * Load global to allow dynamic selection of delay loop settings 3820 * based on calibration mode. 3821 */ 3822 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3823 skip_delay_mask = 0xff; 3824 else 3825 skip_delay_mask = 0x0; 3826 3827 pass = run_mem_calibrate(); 3828 debug_mem_calibrate(pass); 3829 return pass; 3830 } 3831