1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(BASE_RW_MGR + 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(BASE_RW_MGR + 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)(BASE_REG_FILE); 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(BASE_SCC_MGR + 0x0E00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR); 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)(BASE_DATA_MGR); 38 39 #define DELTA_D 1 40 #define MGR_SELECT_MASK 0xf8000 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static u32 sdr_get_addr(u32 *base) 87 { 88 u32 addr = (u32)base & MGR_SELECT_MASK; 89 90 switch (addr) { 91 case BASE_PHY_MGR: 92 addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) | 93 SDR_PHYGRP_PHYMGRGRP_ADDRESS; 94 break; 95 case BASE_RW_MGR: 96 addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS; 97 break; 98 case BASE_DATA_MGR: 99 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS; 100 break; 101 case BASE_SCC_MGR: 102 addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS; 103 break; 104 case BASE_REG_FILE: 105 addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS; 106 break; 107 case BASE_MMR: 108 addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS; 109 break; 110 default: 111 return -1; 112 } 113 114 return addr; 115 } 116 117 static void set_failing_group_stage(uint32_t group, uint32_t stage, 118 uint32_t substage) 119 { 120 /* 121 * Only set the global stage if there was not been any other 122 * failing group 123 */ 124 if (gbl->error_stage == CAL_STAGE_NIL) { 125 gbl->error_substage = substage; 126 gbl->error_stage = stage; 127 gbl->error_group = group; 128 } 129 } 130 131 static void reg_file_set_group(uint32_t set_group) 132 { 133 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage); 134 135 /* Read the current group and stage */ 136 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr); 137 138 /* Clear the group */ 139 cur_stage_group &= 0x0000FFFF; 140 141 /* Set the group */ 142 cur_stage_group |= (set_group << 16); 143 144 /* Write the data back */ 145 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr); 146 } 147 148 static void reg_file_set_stage(uint32_t set_stage) 149 { 150 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage); 151 /* Read the current group and stage */ 152 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr); 153 154 /* Clear the stage and substage */ 155 cur_stage_group &= 0xFFFF0000; 156 157 /* Set the stage */ 158 cur_stage_group |= (set_stage & 0x000000FF); 159 160 /* Write the data back */ 161 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr); 162 } 163 164 static void reg_file_set_sub_stage(uint32_t set_sub_stage) 165 { 166 u32 addr = sdr_get_addr(&sdr_reg_file->cur_stage); 167 /* Read the current group and stage */ 168 uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr); 169 170 /* Clear the substage */ 171 cur_stage_group &= 0xFFFF00FF; 172 173 /* Set the sub stage */ 174 cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00); 175 176 /* Write the data back */ 177 writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr); 178 } 179 180 static void initialize(void) 181 { 182 u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel); 183 184 debug("%s:%d\n", __func__, __LINE__); 185 /* USER calibration has control over path to memory */ 186 /* 187 * In Hard PHY this is a 2-bit control: 188 * 0: AFI Mux Select 189 * 1: DDIO Mux Select 190 */ 191 writel(0x3, SOCFPGA_SDR_ADDRESS + addr); 192 193 /* USER memory clock is not stable we begin initialization */ 194 addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl); 195 writel(0, SOCFPGA_SDR_ADDRESS + addr); 196 197 /* USER calibration status all set to zero */ 198 addr = sdr_get_addr(&phy_mgr_cfg->cal_status); 199 writel(0, SOCFPGA_SDR_ADDRESS + addr); 200 201 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info); 202 writel(0, SOCFPGA_SDR_ADDRESS + addr); 203 204 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 205 param->read_correct_mask_vg = ((uint32_t)1 << 206 (RW_MGR_MEM_DQ_PER_READ_DQS / 207 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 208 param->write_correct_mask_vg = ((uint32_t)1 << 209 (RW_MGR_MEM_DQ_PER_READ_DQS / 210 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 211 param->read_correct_mask = ((uint32_t)1 << 212 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 213 param->write_correct_mask = ((uint32_t)1 << 214 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 215 param->dm_correct_mask = ((uint32_t)1 << 216 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 217 - 1; 218 } 219 } 220 221 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 222 { 223 uint32_t odt_mask_0 = 0; 224 uint32_t odt_mask_1 = 0; 225 uint32_t cs_and_odt_mask; 226 uint32_t addr; 227 228 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 229 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 230 /* 231 * 1 Rank 232 * Read: ODT = 0 233 * Write: ODT = 1 234 */ 235 odt_mask_0 = 0x0; 236 odt_mask_1 = 0x1; 237 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 238 /* 2 Ranks */ 239 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 240 /* - Dual-Slot , Single-Rank 241 * (1 chip-select per DIMM) 242 * OR 243 * - RDIMM, 4 total CS (2 CS per DIMM) 244 * means 2 DIMM 245 * Since MEM_NUMBER_OF_RANKS is 2 they are 246 * both single rank 247 * with 2 CS each (special for RDIMM) 248 * Read: Turn on ODT on the opposite rank 249 * Write: Turn on ODT on all ranks 250 */ 251 odt_mask_0 = 0x3 & ~(1 << rank); 252 odt_mask_1 = 0x3; 253 } else { 254 /* 255 * USER - Single-Slot , Dual-rank DIMMs 256 * (2 chip-selects per DIMM) 257 * USER Read: Turn on ODT off on all ranks 258 * USER Write: Turn on ODT on active rank 259 */ 260 odt_mask_0 = 0x0; 261 odt_mask_1 = 0x3 & (1 << rank); 262 } 263 } else { 264 /* 4 Ranks 265 * Read: 266 * ----------+-----------------------+ 267 * | | 268 * | ODT | 269 * Read From +-----------------------+ 270 * Rank | 3 | 2 | 1 | 0 | 271 * ----------+-----+-----+-----+-----+ 272 * 0 | 0 | 1 | 0 | 0 | 273 * 1 | 1 | 0 | 0 | 0 | 274 * 2 | 0 | 0 | 0 | 1 | 275 * 3 | 0 | 0 | 1 | 0 | 276 * ----------+-----+-----+-----+-----+ 277 * 278 * Write: 279 * ----------+-----------------------+ 280 * | | 281 * | ODT | 282 * Write To +-----------------------+ 283 * Rank | 3 | 2 | 1 | 0 | 284 * ----------+-----+-----+-----+-----+ 285 * 0 | 0 | 1 | 0 | 1 | 286 * 1 | 1 | 0 | 1 | 0 | 287 * 2 | 0 | 1 | 0 | 1 | 288 * 3 | 1 | 0 | 1 | 0 | 289 * ----------+-----+-----+-----+-----+ 290 */ 291 switch (rank) { 292 case 0: 293 odt_mask_0 = 0x4; 294 odt_mask_1 = 0x5; 295 break; 296 case 1: 297 odt_mask_0 = 0x8; 298 odt_mask_1 = 0xA; 299 break; 300 case 2: 301 odt_mask_0 = 0x1; 302 odt_mask_1 = 0x5; 303 break; 304 case 3: 305 odt_mask_0 = 0x2; 306 odt_mask_1 = 0xA; 307 break; 308 } 309 } 310 } else { 311 odt_mask_0 = 0x0; 312 odt_mask_1 = 0x0; 313 } 314 315 cs_and_odt_mask = 316 (0xFF & ~(1 << rank)) | 317 ((0xFF & odt_mask_0) << 8) | 318 ((0xFF & odt_mask_1) << 16); 319 addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK); 320 writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr); 321 } 322 323 static void scc_mgr_initialize(void) 324 { 325 u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE); 326 327 /* 328 * Clear register file for HPS 329 * 16 (2^4) is the size of the full register file in the scc mgr: 330 * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 331 * MEM_IF_READ_DQS_WIDTH - 1) + 1; 332 */ 333 uint32_t i; 334 for (i = 0; i < 16; i++) { 335 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 336 __func__, __LINE__, i); 337 writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2)); 338 } 339 } 340 341 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, 342 uint32_t delay) 343 { 344 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY); 345 346 /* Load the setting in the SCC manager */ 347 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2)); 348 } 349 350 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, 351 uint32_t delay) 352 { 353 u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY); 354 355 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 356 } 357 358 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 359 { 360 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE); 361 362 /* Load the setting in the SCC manager */ 363 writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2)); 364 } 365 366 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 367 uint32_t phase) 368 { 369 uint32_t r; 370 uint32_t update_scan_chains; 371 uint32_t addr; 372 373 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 374 r += NUM_RANKS_PER_SHADOW_REG) { 375 /* 376 * USER although the h/w doesn't support different phases per 377 * shadow register, for simplicity our scc manager modeling 378 * keeps different phase settings per shadow reg, and it's 379 * important for us to keep them in sync to match h/w. 380 * for efficiency, the scan chain update should occur only 381 * once to sr0. 382 */ 383 update_scan_chains = (r == 0) ? 1 : 0; 384 385 scc_mgr_set_dqs_en_phase(read_group, phase); 386 387 if (update_scan_chains) { 388 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 389 writel(read_group, SOCFPGA_SDR_ADDRESS + addr); 390 391 addr = sdr_get_addr(&sdr_scc_mgr->update); 392 writel(0, SOCFPGA_SDR_ADDRESS + addr); 393 } 394 } 395 } 396 397 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, 398 uint32_t phase) 399 { 400 u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE); 401 402 /* Load the setting in the SCC manager */ 403 writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2)); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 uint32_t r; 410 uint32_t update_scan_chains; 411 uint32_t addr; 412 413 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 414 r += NUM_RANKS_PER_SHADOW_REG) { 415 /* 416 * USER although the h/w doesn't support different phases per 417 * shadow register, for simplicity our scc manager modeling 418 * keeps different phase settings per shadow reg, and it's 419 * important for us to keep them in sync to match h/w. 420 * for efficiency, the scan chain update should occur only 421 * once to sr0. 422 */ 423 update_scan_chains = (r == 0) ? 1 : 0; 424 425 scc_mgr_set_dqdqs_output_phase(write_group, phase); 426 427 if (update_scan_chains) { 428 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 429 writel(write_group, SOCFPGA_SDR_ADDRESS + addr); 430 431 addr = sdr_get_addr(&sdr_scc_mgr->update); 432 writel(0, SOCFPGA_SDR_ADDRESS + addr); 433 } 434 } 435 } 436 437 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 438 { 439 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY); 440 441 /* Load the setting in the SCC manager */ 442 writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr + 443 (read_group << 2)); 444 } 445 446 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 447 uint32_t delay) 448 { 449 uint32_t r; 450 uint32_t addr; 451 452 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 453 r += NUM_RANKS_PER_SHADOW_REG) { 454 scc_mgr_set_dqs_en_delay(read_group, delay); 455 456 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 457 writel(read_group, SOCFPGA_SDR_ADDRESS + addr); 458 /* 459 * In shadow register mode, the T11 settings are stored in 460 * registers in the core, which are updated by the DQS_ENA 461 * signals. Not issuing the SCC_MGR_UPD command allows us to 462 * save lots of rank switching overhead, by calling 463 * select_shadow_regs_for_update with update_scan_chains 464 * set to 0. 465 */ 466 addr = sdr_get_addr(&sdr_scc_mgr->update); 467 writel(0, SOCFPGA_SDR_ADDRESS + addr); 468 } 469 /* 470 * In shadow register mode, the T11 settings are stored in 471 * registers in the core, which are updated by the DQS_ENA 472 * signals. Not issuing the SCC_MGR_UPD command allows us to 473 * save lots of rank switching overhead, by calling 474 * select_shadow_regs_for_update with update_scan_chains 475 * set to 0. 476 */ 477 addr = sdr_get_addr(&sdr_scc_mgr->update); 478 writel(0, SOCFPGA_SDR_ADDRESS + addr); 479 } 480 481 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 482 { 483 uint32_t read_group; 484 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY); 485 486 /* 487 * Load the setting in the SCC manager 488 * Although OCT affects only write data, the OCT delay is controlled 489 * by the DQS logic block which is instantiated once per read group. 490 * For protocols where a write group consists of multiple read groups, 491 * the setting must be set multiple times. 492 */ 493 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 494 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 495 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 496 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 497 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2)); 498 } 499 500 static void scc_mgr_set_dq_out1_delay(uint32_t write_group, 501 uint32_t dq_in_group, uint32_t delay) 502 { 503 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY); 504 505 /* Load the setting in the SCC manager */ 506 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2)); 507 } 508 509 static void scc_mgr_set_dq_in_delay(uint32_t write_group, 510 uint32_t dq_in_group, uint32_t delay) 511 { 512 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY); 513 514 /* Load the setting in the SCC manager */ 515 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2)); 516 } 517 518 static void scc_mgr_set_hhp_extras(void) 519 { 520 /* 521 * Load the fixed setting in the SCC manager 522 * bits: 0:0 = 1'b1 - dqs bypass 523 * bits: 1:1 = 1'b1 - dq bypass 524 * bits: 4:2 = 3'b001 - rfifo_mode 525 * bits: 6:5 = 2'b01 - rfifo clock_select 526 * bits: 7:7 = 1'b0 - separate gating from ungating setting 527 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 528 */ 529 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 530 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS); 531 532 writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET); 533 } 534 535 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 536 uint32_t delay) 537 { 538 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY); 539 540 /* Load the setting in the SCC manager */ 541 writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 542 } 543 544 static void scc_mgr_set_dm_out1_delay(uint32_t write_group, 545 uint32_t dm, uint32_t delay) 546 { 547 uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY); 548 549 /* Load the setting in the SCC manager */ 550 writel(delay, SOCFPGA_SDR_ADDRESS + addr + 551 ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2)); 552 } 553 554 /* 555 * USER Zero all DQS config 556 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 557 */ 558 static void scc_mgr_zero_all(void) 559 { 560 uint32_t i, r; 561 uint32_t addr; 562 563 /* 564 * USER Zero all DQS config settings, across all groups and all 565 * shadow registers 566 */ 567 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 568 NUM_RANKS_PER_SHADOW_REG) { 569 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 570 /* 571 * The phases actually don't exist on a per-rank basis, 572 * but there's no harm updating them several times, so 573 * let's keep the code simple. 574 */ 575 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 576 scc_mgr_set_dqs_en_phase(i, 0); 577 scc_mgr_set_dqs_en_delay(i, 0); 578 } 579 580 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 581 scc_mgr_set_dqdqs_output_phase(i, 0); 582 /* av/cv don't have out2 */ 583 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 584 } 585 } 586 587 /* multicast to all DQS group enables */ 588 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 589 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 590 591 addr = sdr_get_addr(&sdr_scc_mgr->update); 592 writel(0, SOCFPGA_SDR_ADDRESS + addr); 593 } 594 595 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 596 { 597 uint32_t addr; 598 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 599 /* mode = 1 : Bypass - Full Rate Mode */ 600 601 /* only need to set once for all groups, pins, dq, dqs, dm */ 602 if (write_group == 0) { 603 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 604 __LINE__); 605 scc_mgr_set_hhp_extras(); 606 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 607 __func__, __LINE__); 608 } 609 /* multicast to all DQ enables */ 610 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena); 611 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 612 613 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena); 614 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 615 616 /* update current DQS IO enable */ 617 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena); 618 writel(0, SOCFPGA_SDR_ADDRESS + addr); 619 620 /* update the DQS logic */ 621 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 622 writel(write_group, SOCFPGA_SDR_ADDRESS + addr); 623 624 /* hit update */ 625 addr = sdr_get_addr(&sdr_scc_mgr->update); 626 writel(0, SOCFPGA_SDR_ADDRESS + addr); 627 } 628 629 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 630 int32_t out_only) 631 { 632 uint32_t i, r; 633 uint32_t addr; 634 635 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 636 NUM_RANKS_PER_SHADOW_REG) { 637 /* Zero all DQ config settings */ 638 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 639 scc_mgr_set_dq_out1_delay(write_group, i, 0); 640 if (!out_only) 641 scc_mgr_set_dq_in_delay(write_group, i, 0); 642 } 643 644 /* multicast to all DQ enables */ 645 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena); 646 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 647 648 /* Zero all DM config settings */ 649 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 650 scc_mgr_set_dm_out1_delay(write_group, i, 0); 651 } 652 653 /* multicast to all DM enables */ 654 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena); 655 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 656 657 /* zero all DQS io settings */ 658 if (!out_only) 659 scc_mgr_set_dqs_io_in_delay(write_group, 0); 660 /* av/cv don't have out2 */ 661 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 662 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 663 scc_mgr_load_dqs_for_write_group(write_group); 664 665 /* multicast to all DQS IO enables (only 1) */ 666 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena); 667 writel(0, SOCFPGA_SDR_ADDRESS + addr); 668 669 /* hit update to zero everything */ 670 addr = sdr_get_addr(&sdr_scc_mgr->update); 671 writel(0, SOCFPGA_SDR_ADDRESS + addr); 672 } 673 } 674 675 /* load up dqs config settings */ 676 static void scc_mgr_load_dqs(uint32_t dqs) 677 { 678 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 679 680 writel(dqs, SOCFPGA_SDR_ADDRESS + addr); 681 } 682 683 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 684 { 685 uint32_t read_group; 686 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 687 /* 688 * Although OCT affects only write data, the OCT delay is controlled 689 * by the DQS logic block which is instantiated once per read group. 690 * For protocols where a write group consists of multiple read groups, 691 * the setting must be scanned multiple times. 692 */ 693 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 694 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 695 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 696 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 697 writel(read_group, SOCFPGA_SDR_ADDRESS + addr); 698 } 699 700 /* load up dqs io config settings */ 701 static void scc_mgr_load_dqs_io(void) 702 { 703 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena); 704 705 writel(0, SOCFPGA_SDR_ADDRESS + addr); 706 } 707 708 /* load up dq config settings */ 709 static void scc_mgr_load_dq(uint32_t dq_in_group) 710 { 711 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dq_ena); 712 713 writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr); 714 } 715 716 /* load up dm config settings */ 717 static void scc_mgr_load_dm(uint32_t dm) 718 { 719 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->dm_ena); 720 721 writel(dm, SOCFPGA_SDR_ADDRESS + addr); 722 } 723 724 /* 725 * apply and load a particular input delay for the DQ pins in a group 726 * group_bgn is the index of the first dq pin (in the write group) 727 */ 728 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 729 uint32_t group_bgn, uint32_t delay) 730 { 731 uint32_t i, p; 732 733 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 734 scc_mgr_set_dq_in_delay(write_group, p, delay); 735 scc_mgr_load_dq(p); 736 } 737 } 738 739 /* apply and load a particular output delay for the DQ pins in a group */ 740 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 741 uint32_t group_bgn, 742 uint32_t delay1) 743 { 744 uint32_t i, p; 745 746 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 747 scc_mgr_set_dq_out1_delay(write_group, i, delay1); 748 scc_mgr_load_dq(i); 749 } 750 } 751 752 /* apply and load a particular output delay for the DM pins in a group */ 753 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 754 uint32_t delay1) 755 { 756 uint32_t i; 757 758 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 759 scc_mgr_set_dm_out1_delay(write_group, i, delay1); 760 scc_mgr_load_dm(i); 761 } 762 } 763 764 765 /* apply and load delay on both DQS and OCT out1 */ 766 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 767 uint32_t delay) 768 { 769 scc_mgr_set_dqs_out1_delay(write_group, delay); 770 scc_mgr_load_dqs_io(); 771 772 scc_mgr_set_oct_out1_delay(write_group, delay); 773 scc_mgr_load_dqs_for_write_group(write_group); 774 } 775 776 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 777 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 778 uint32_t group_bgn, 779 uint32_t delay) 780 { 781 uint32_t i, p, new_delay; 782 783 /* dq shift */ 784 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 785 new_delay = READ_SCC_DQ_OUT2_DELAY; 786 new_delay += delay; 787 788 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 789 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 790 %u > %lu => %lu", __func__, __LINE__, 791 write_group, group_bgn, delay, i, p, new_delay, 792 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 793 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 794 new_delay = IO_IO_OUT2_DELAY_MAX; 795 } 796 797 scc_mgr_load_dq(i); 798 } 799 800 /* dm shift */ 801 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 802 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 803 new_delay += delay; 804 805 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 806 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 807 %u > %lu => %lu\n", __func__, __LINE__, 808 write_group, group_bgn, delay, i, new_delay, 809 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 810 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 811 new_delay = IO_IO_OUT2_DELAY_MAX; 812 } 813 814 scc_mgr_load_dm(i); 815 } 816 817 /* dqs shift */ 818 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 819 new_delay += delay; 820 821 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 822 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 823 " adding %u to OUT1\n", __func__, __LINE__, 824 write_group, group_bgn, delay, new_delay, 825 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 826 new_delay - IO_IO_OUT2_DELAY_MAX); 827 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 828 IO_IO_OUT2_DELAY_MAX); 829 new_delay = IO_IO_OUT2_DELAY_MAX; 830 } 831 832 scc_mgr_load_dqs_io(); 833 834 /* oct shift */ 835 new_delay = READ_SCC_OCT_OUT2_DELAY; 836 new_delay += delay; 837 838 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 839 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 840 " adding %u to OUT1\n", __func__, __LINE__, 841 write_group, group_bgn, delay, new_delay, 842 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 843 new_delay - IO_IO_OUT2_DELAY_MAX); 844 scc_mgr_set_oct_out1_delay(write_group, new_delay - 845 IO_IO_OUT2_DELAY_MAX); 846 new_delay = IO_IO_OUT2_DELAY_MAX; 847 } 848 849 scc_mgr_load_dqs_for_write_group(write_group); 850 } 851 852 /* 853 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 854 * and to all ranks 855 */ 856 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 857 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 858 { 859 uint32_t r; 860 uint32_t addr = sdr_get_addr(&sdr_scc_mgr->update); 861 862 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 863 r += NUM_RANKS_PER_SHADOW_REG) { 864 scc_mgr_apply_group_all_out_delay_add(write_group, 865 group_bgn, delay); 866 writel(0, SOCFPGA_SDR_ADDRESS + addr); 867 } 868 } 869 870 /* optimization used to recover some slots in ddr3 inst_rom */ 871 /* could be applied to other protocols if we wanted to */ 872 static void set_jump_as_return(void) 873 { 874 uint32_t addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 875 876 /* 877 * to save space, we replace return with jump to special shared 878 * RETURN instruction so we set the counter to large value so that 879 * we always jump 880 */ 881 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 882 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 883 writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr); 884 } 885 886 /* 887 * should always use constants as argument to ensure all computations are 888 * performed at compile time 889 */ 890 static void delay_for_n_mem_clocks(const uint32_t clocks) 891 { 892 uint32_t afi_clocks; 893 uint8_t inner = 0; 894 uint8_t outer = 0; 895 uint16_t c_loop = 0; 896 uint32_t addr; 897 898 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 899 900 901 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 902 /* scale (rounding up) to get afi clocks */ 903 904 /* 905 * Note, we don't bother accounting for being off a little bit 906 * because of a few extra instructions in outer loops 907 * Note, the loops have a test at the end, and do the test before 908 * the decrement, and so always perform the loop 909 * 1 time more than the counter value 910 */ 911 if (afi_clocks == 0) { 912 ; 913 } else if (afi_clocks <= 0x100) { 914 inner = afi_clocks-1; 915 outer = 0; 916 c_loop = 0; 917 } else if (afi_clocks <= 0x10000) { 918 inner = 0xff; 919 outer = (afi_clocks-1) >> 8; 920 c_loop = 0; 921 } else { 922 inner = 0xff; 923 outer = 0xff; 924 c_loop = (afi_clocks-1) >> 16; 925 } 926 927 /* 928 * rom instructions are structured as follows: 929 * 930 * IDLE_LOOP2: jnz cntr0, TARGET_A 931 * IDLE_LOOP1: jnz cntr1, TARGET_B 932 * return 933 * 934 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 935 * TARGET_B is set to IDLE_LOOP2 as well 936 * 937 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 938 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 939 * 940 * a little confusing, but it helps save precious space in the inst_rom 941 * and sequencer rom and keeps the delays more accurate and reduces 942 * overhead 943 */ 944 if (afi_clocks <= 0x100) { 945 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 946 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr); 947 948 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 949 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr); 950 951 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 952 writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr); 953 } else { 954 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 955 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr); 956 957 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 958 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr); 959 960 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 961 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr); 962 963 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 964 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr); 965 966 /* hack to get around compiler not being smart enough */ 967 if (afi_clocks <= 0x10000) { 968 /* only need to run once */ 969 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 970 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr); 971 } else { 972 do { 973 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 974 writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr); 975 } while (c_loop-- != 0); 976 } 977 } 978 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 979 } 980 981 static void rw_mgr_mem_initialize(void) 982 { 983 uint32_t r; 984 uint32_t addr; 985 986 debug("%s:%d\n", __func__, __LINE__); 987 988 /* The reset / cke part of initialization is broadcasted to all ranks */ 989 addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK); 990 writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr); 991 992 /* 993 * Here's how you load register for a loop 994 * Counters are located @ 0x800 995 * Jump address are located @ 0xC00 996 * For both, registers 0 to 3 are selected using bits 3 and 2, like 997 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 998 * I know this ain't pretty, but Avalon bus throws away the 2 least 999 * significant bits 1000 */ 1001 1002 /* start with memory RESET activated */ 1003 1004 /* tINIT = 200us */ 1005 1006 /* 1007 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 1008 * If a and b are the number of iteration in 2 nested loops 1009 * it takes the following number of cycles to complete the operation: 1010 * number_of_cycles = ((2 + n) * a + 2) * b 1011 * where n is the number of instruction in the inner loop 1012 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 1013 * b = 6A 1014 */ 1015 1016 /* Load counters */ 1017 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 1018 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 1019 SOCFPGA_SDR_ADDRESS + addr); 1020 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 1021 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 1022 SOCFPGA_SDR_ADDRESS + addr); 1023 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 1024 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 1025 SOCFPGA_SDR_ADDRESS + addr); 1026 1027 /* Load jump address */ 1028 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 1029 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1030 1031 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 1032 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1033 1034 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 1035 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1036 1037 /* Execute count instruction */ 1038 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1039 writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1040 1041 /* indicate that memory is stable */ 1042 addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl); 1043 writel(1, SOCFPGA_SDR_ADDRESS + addr); 1044 1045 /* 1046 * transition the RESET to high 1047 * Wait for 500us 1048 */ 1049 1050 /* 1051 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1052 * If a and b are the number of iteration in 2 nested loops 1053 * it takes the following number of cycles to complete the operation 1054 * number_of_cycles = ((2 + n) * a + 2) * b 1055 * where n is the number of instruction in the inner loop 1056 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1057 * b = FF 1058 */ 1059 1060 /* Load counters */ 1061 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 1062 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 1063 SOCFPGA_SDR_ADDRESS + addr); 1064 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 1065 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 1066 SOCFPGA_SDR_ADDRESS + addr); 1067 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 1068 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 1069 SOCFPGA_SDR_ADDRESS + addr); 1070 1071 /* Load jump address */ 1072 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 1073 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1074 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 1075 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1076 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 1077 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1078 1079 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1080 writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr); 1081 1082 /* bring up clock enable */ 1083 1084 /* tXRP < 250 ck cycles */ 1085 delay_for_n_mem_clocks(250); 1086 1087 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1088 if (param->skip_ranks[r]) { 1089 /* request to skip the rank */ 1090 continue; 1091 } 1092 1093 /* set rank */ 1094 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1095 1096 /* 1097 * USER Use Mirror-ed commands for odd ranks if address 1098 * mirrorring is on 1099 */ 1100 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1101 set_jump_as_return(); 1102 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1103 writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1104 delay_for_n_mem_clocks(4); 1105 set_jump_as_return(); 1106 writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1107 delay_for_n_mem_clocks(4); 1108 set_jump_as_return(); 1109 writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1110 delay_for_n_mem_clocks(4); 1111 set_jump_as_return(); 1112 writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1113 } else { 1114 set_jump_as_return(); 1115 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1116 writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr); 1117 delay_for_n_mem_clocks(4); 1118 set_jump_as_return(); 1119 writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr); 1120 delay_for_n_mem_clocks(4); 1121 set_jump_as_return(); 1122 writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr); 1123 set_jump_as_return(); 1124 writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr); 1125 } 1126 set_jump_as_return(); 1127 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1128 writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr); 1129 1130 /* tZQinit = tDLLK = 512 ck cycles */ 1131 delay_for_n_mem_clocks(512); 1132 } 1133 } 1134 1135 /* 1136 * At the end of calibration we have to program the user settings in, and 1137 * USER hand off the memory to the user. 1138 */ 1139 static void rw_mgr_mem_handoff(void) 1140 { 1141 uint32_t r; 1142 uint32_t addr; 1143 1144 debug("%s:%d\n", __func__, __LINE__); 1145 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1146 if (param->skip_ranks[r]) 1147 /* request to skip the rank */ 1148 continue; 1149 /* set rank */ 1150 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1151 1152 /* precharge all banks ... */ 1153 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1154 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr); 1155 1156 /* load up MR settings specified by user */ 1157 1158 /* 1159 * Use Mirror-ed commands for odd ranks if address 1160 * mirrorring is on 1161 */ 1162 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1163 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1164 set_jump_as_return(); 1165 writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1166 delay_for_n_mem_clocks(4); 1167 set_jump_as_return(); 1168 writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1169 delay_for_n_mem_clocks(4); 1170 set_jump_as_return(); 1171 writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1172 delay_for_n_mem_clocks(4); 1173 set_jump_as_return(); 1174 writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr); 1175 } else { 1176 set_jump_as_return(); 1177 writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr); 1178 delay_for_n_mem_clocks(4); 1179 set_jump_as_return(); 1180 writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr); 1181 delay_for_n_mem_clocks(4); 1182 set_jump_as_return(); 1183 writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr); 1184 delay_for_n_mem_clocks(4); 1185 set_jump_as_return(); 1186 writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr); 1187 } 1188 /* 1189 * USER need to wait tMOD (12CK or 15ns) time before issuing 1190 * other commands, but we will have plenty of NIOS cycles before 1191 * actual handoff so its okay. 1192 */ 1193 } 1194 } 1195 1196 /* 1197 * performs a guaranteed read on the patterns we are going to use during a 1198 * read test to ensure memory works 1199 */ 1200 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1201 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1202 uint32_t all_ranks) 1203 { 1204 uint32_t r, vg; 1205 uint32_t correct_mask_vg; 1206 uint32_t tmp_bit_chk; 1207 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1208 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1209 uint32_t addr; 1210 uint32_t base_rw_mgr; 1211 1212 *bit_chk = param->read_correct_mask; 1213 correct_mask_vg = param->read_correct_mask_vg; 1214 1215 for (r = rank_bgn; r < rank_end; r++) { 1216 if (param->skip_ranks[r]) 1217 /* request to skip the rank */ 1218 continue; 1219 1220 /* set rank */ 1221 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1222 1223 /* Load up a constant bursts of read commands */ 1224 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 1225 writel(0x20, SOCFPGA_SDR_ADDRESS + addr); 1226 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 1227 writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr); 1228 1229 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 1230 writel(0x20, SOCFPGA_SDR_ADDRESS + addr); 1231 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 1232 writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr); 1233 1234 tmp_bit_chk = 0; 1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1236 /* reset the fifos to get pointers to known state */ 1237 1238 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 1239 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1240 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH); 1241 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1242 1243 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1244 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1245 1246 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1247 writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 addr = sdr_get_addr((u32 *)BASE_RW_MGR); 1252 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr); 1253 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1254 1255 if (vg == 0) 1256 break; 1257 } 1258 *bit_chk &= tmp_bit_chk; 1259 } 1260 1261 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1262 writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2)); 1263 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1266 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1267 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1268 return *bit_chk == param->read_correct_mask; 1269 } 1270 1271 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1272 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1273 { 1274 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1275 num_tries, bit_chk, 1); 1276 } 1277 1278 /* load up the patterns we are going to use during a read test */ 1279 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1280 uint32_t all_ranks) 1281 { 1282 uint32_t r; 1283 uint32_t addr; 1284 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1285 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1286 1287 debug("%s:%d\n", __func__, __LINE__); 1288 for (r = rank_bgn; r < rank_end; r++) { 1289 if (param->skip_ranks[r]) 1290 /* request to skip the rank */ 1291 continue; 1292 1293 /* set rank */ 1294 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1295 1296 /* Load up a constant bursts */ 1297 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 1298 writel(0x20, SOCFPGA_SDR_ADDRESS + addr); 1299 1300 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 1301 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr); 1302 1303 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 1304 writel(0x20, SOCFPGA_SDR_ADDRESS + addr); 1305 1306 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 1307 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr); 1308 1309 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 1310 writel(0x04, SOCFPGA_SDR_ADDRESS + addr); 1311 1312 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 1313 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr); 1314 1315 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3); 1316 writel(0x04, SOCFPGA_SDR_ADDRESS + addr); 1317 1318 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 1319 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr); 1320 1321 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1322 writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr); 1323 } 1324 1325 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1326 } 1327 1328 /* 1329 * try a read and see if it returns correct data back. has dummy reads 1330 * inserted into the mix used to align dqs enable. has more thorough checks 1331 * than the regular read test. 1332 */ 1333 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1334 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1335 uint32_t all_groups, uint32_t all_ranks) 1336 { 1337 uint32_t r, vg; 1338 uint32_t correct_mask_vg; 1339 uint32_t tmp_bit_chk; 1340 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1341 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1342 uint32_t addr; 1343 uint32_t base_rw_mgr; 1344 1345 *bit_chk = param->read_correct_mask; 1346 correct_mask_vg = param->read_correct_mask_vg; 1347 1348 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1349 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1350 1351 for (r = rank_bgn; r < rank_end; r++) { 1352 if (param->skip_ranks[r]) 1353 /* request to skip the rank */ 1354 continue; 1355 1356 /* set rank */ 1357 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1358 1359 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 1360 writel(0x10, SOCFPGA_SDR_ADDRESS + addr); 1361 1362 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 1363 writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr); 1364 1365 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 1366 writel(0x10, SOCFPGA_SDR_ADDRESS + addr); 1367 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 1368 writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr); 1369 1370 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 1371 if (quick_read_mode) 1372 writel(0x1, SOCFPGA_SDR_ADDRESS + addr); 1373 /* need at least two (1+1) reads to capture failures */ 1374 else if (all_groups) 1375 writel(0x06, SOCFPGA_SDR_ADDRESS + addr); 1376 else 1377 writel(0x32, SOCFPGA_SDR_ADDRESS + addr); 1378 1379 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 1380 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr); 1381 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3); 1382 if (all_groups) 1383 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1384 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1385 SOCFPGA_SDR_ADDRESS + addr); 1386 else 1387 writel(0x0, SOCFPGA_SDR_ADDRESS + addr); 1388 1389 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 1390 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr); 1391 1392 tmp_bit_chk = 0; 1393 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1394 /* reset the fifos to get pointers to known state */ 1395 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 1396 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1397 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH); 1398 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1399 1400 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1401 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1402 1403 addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS : 1404 RW_MGR_RUN_SINGLE_GROUP)); 1405 writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr + 1406 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1407 vg) << 2)); 1408 1409 addr = sdr_get_addr((u32 *)BASE_RW_MGR); 1410 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr); 1411 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1412 1413 if (vg == 0) 1414 break; 1415 } 1416 *bit_chk &= tmp_bit_chk; 1417 } 1418 1419 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 1420 writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2)); 1421 1422 if (all_correct) { 1423 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1424 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1425 (%u == %u) => %lu", __func__, __LINE__, group, 1426 all_groups, *bit_chk, param->read_correct_mask, 1427 (long unsigned int)(*bit_chk == 1428 param->read_correct_mask)); 1429 return *bit_chk == param->read_correct_mask; 1430 } else { 1431 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1432 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1433 (%u != %lu) => %lu\n", __func__, __LINE__, 1434 group, all_groups, *bit_chk, (long unsigned int)0, 1435 (long unsigned int)(*bit_chk != 0x00)); 1436 return *bit_chk != 0x00; 1437 } 1438 } 1439 1440 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1441 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1442 uint32_t all_groups) 1443 { 1444 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1445 bit_chk, all_groups, 1); 1446 } 1447 1448 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1449 { 1450 uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy); 1451 1452 writel(grp, SOCFPGA_SDR_ADDRESS + addr); 1453 (*v)++; 1454 } 1455 1456 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1457 { 1458 uint32_t i; 1459 1460 for (i = 0; i < VFIFO_SIZE-1; i++) 1461 rw_mgr_incr_vfifo(grp, v); 1462 } 1463 1464 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1465 { 1466 uint32_t v; 1467 uint32_t fail_cnt = 0; 1468 uint32_t test_status; 1469 1470 for (v = 0; v < VFIFO_SIZE; ) { 1471 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1472 __func__, __LINE__, v); 1473 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1474 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1475 if (!test_status) { 1476 fail_cnt++; 1477 1478 if (fail_cnt == 2) 1479 break; 1480 } 1481 1482 /* fiddle with FIFO */ 1483 rw_mgr_incr_vfifo(grp, &v); 1484 } 1485 1486 if (v >= VFIFO_SIZE) { 1487 /* no failing read found!! Something must have gone wrong */ 1488 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1489 __func__, __LINE__); 1490 return 0; 1491 } else { 1492 return v; 1493 } 1494 } 1495 1496 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1497 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1498 uint32_t *v, uint32_t *d, uint32_t *p, 1499 uint32_t *i, uint32_t *max_working_cnt) 1500 { 1501 uint32_t found_begin = 0; 1502 uint32_t tmp_delay = 0; 1503 uint32_t test_status; 1504 1505 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1506 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1507 *work_bgn = tmp_delay; 1508 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1509 1510 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1511 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1512 IO_DELAY_PER_OPA_TAP) { 1513 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1514 1515 test_status = 1516 rw_mgr_mem_calibrate_read_test_all_ranks 1517 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1518 1519 if (test_status) { 1520 *max_working_cnt = 1; 1521 found_begin = 1; 1522 break; 1523 } 1524 } 1525 1526 if (found_begin) 1527 break; 1528 1529 if (*p > IO_DQS_EN_PHASE_MAX) 1530 /* fiddle with FIFO */ 1531 rw_mgr_incr_vfifo(*grp, v); 1532 } 1533 1534 if (found_begin) 1535 break; 1536 } 1537 1538 if (*i >= VFIFO_SIZE) { 1539 /* cannot find working solution */ 1540 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1541 ptap/dtap\n", __func__, __LINE__); 1542 return 0; 1543 } else { 1544 return 1; 1545 } 1546 } 1547 1548 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1549 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1550 uint32_t *p, uint32_t *max_working_cnt) 1551 { 1552 uint32_t found_begin = 0; 1553 uint32_t tmp_delay; 1554 1555 /* Special case code for backing up a phase */ 1556 if (*p == 0) { 1557 *p = IO_DQS_EN_PHASE_MAX; 1558 rw_mgr_decr_vfifo(*grp, v); 1559 } else { 1560 (*p)--; 1561 } 1562 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1563 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1564 1565 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1566 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1567 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1568 1569 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1570 PASS_ONE_BIT, 1571 bit_chk, 0)) { 1572 found_begin = 1; 1573 *work_bgn = tmp_delay; 1574 break; 1575 } 1576 } 1577 1578 /* We have found a working dtap before the ptap found above */ 1579 if (found_begin == 1) 1580 (*max_working_cnt)++; 1581 1582 /* 1583 * Restore VFIFO to old state before we decremented it 1584 * (if needed). 1585 */ 1586 (*p)++; 1587 if (*p > IO_DQS_EN_PHASE_MAX) { 1588 *p = 0; 1589 rw_mgr_incr_vfifo(*grp, v); 1590 } 1591 1592 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1593 } 1594 1595 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1596 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1597 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1598 uint32_t *work_end) 1599 { 1600 uint32_t found_end = 0; 1601 1602 (*p)++; 1603 *work_end += IO_DELAY_PER_OPA_TAP; 1604 if (*p > IO_DQS_EN_PHASE_MAX) { 1605 /* fiddle with FIFO */ 1606 *p = 0; 1607 rw_mgr_incr_vfifo(*grp, v); 1608 } 1609 1610 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1611 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1612 += IO_DELAY_PER_OPA_TAP) { 1613 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1614 1615 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1616 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1617 found_end = 1; 1618 break; 1619 } else { 1620 (*max_working_cnt)++; 1621 } 1622 } 1623 1624 if (found_end) 1625 break; 1626 1627 if (*p > IO_DQS_EN_PHASE_MAX) { 1628 /* fiddle with FIFO */ 1629 rw_mgr_incr_vfifo(*grp, v); 1630 *p = 0; 1631 } 1632 } 1633 1634 if (*i >= VFIFO_SIZE + 1) { 1635 /* cannot see edge of failing read */ 1636 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1637 failed\n", __func__, __LINE__); 1638 return 0; 1639 } else { 1640 return 1; 1641 } 1642 } 1643 1644 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1645 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1646 uint32_t *p, uint32_t *work_mid, 1647 uint32_t *work_end) 1648 { 1649 int i; 1650 int tmp_delay = 0; 1651 1652 *work_mid = (*work_bgn + *work_end) / 2; 1653 1654 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1655 *work_bgn, *work_end, *work_mid); 1656 /* Get the middle delay to be less than a VFIFO delay */ 1657 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1658 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1659 ; 1660 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1661 while (*work_mid > tmp_delay) 1662 *work_mid -= tmp_delay; 1663 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1664 1665 tmp_delay = 0; 1666 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1667 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1668 ; 1669 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1670 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1671 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1672 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1673 ; 1674 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1675 1676 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1677 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1678 1679 /* 1680 * push vfifo until we can successfully calibrate. We can do this 1681 * because the largest possible margin in 1 VFIFO cycle. 1682 */ 1683 for (i = 0; i < VFIFO_SIZE; i++) { 1684 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1685 *v); 1686 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1687 PASS_ONE_BIT, 1688 bit_chk, 0)) { 1689 break; 1690 } 1691 1692 /* fiddle with FIFO */ 1693 rw_mgr_incr_vfifo(*grp, v); 1694 } 1695 1696 if (i >= VFIFO_SIZE) { 1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1698 failed\n", __func__, __LINE__); 1699 return 0; 1700 } else { 1701 return 1; 1702 } 1703 } 1704 1705 /* find a good dqs enable to use */ 1706 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1707 { 1708 uint32_t v, d, p, i; 1709 uint32_t max_working_cnt; 1710 uint32_t bit_chk; 1711 uint32_t dtaps_per_ptap; 1712 uint32_t work_bgn, work_mid, work_end; 1713 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1714 uint32_t addr; 1715 1716 debug("%s:%d %u\n", __func__, __LINE__, grp); 1717 1718 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1719 1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1721 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1722 1723 /* ************************************************************** */ 1724 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1725 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1726 1727 /* ********************************************************* */ 1728 /* * Step 1 : First push vfifo until we get a failing read * */ 1729 v = find_vfifo_read(grp, &bit_chk); 1730 1731 max_working_cnt = 0; 1732 1733 /* ******************************************************** */ 1734 /* * step 2: find first working phase, increment in ptaps * */ 1735 work_bgn = 0; 1736 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1737 &p, &i, &max_working_cnt) == 0) 1738 return 0; 1739 1740 work_end = work_bgn; 1741 1742 /* 1743 * If d is 0 then the working window covers a phase tap and 1744 * we can follow the old procedure otherwise, we've found the beginning, 1745 * and we need to increment the dtaps until we find the end. 1746 */ 1747 if (d == 0) { 1748 /* ********************************************************* */ 1749 /* * step 3a: if we have room, back off by one and 1750 increment in dtaps * */ 1751 1752 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1753 &max_working_cnt); 1754 1755 /* ********************************************************* */ 1756 /* * step 4a: go forward from working phase to non working 1757 phase, increment in ptaps * */ 1758 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1759 &i, &max_working_cnt, &work_end) == 0) 1760 return 0; 1761 1762 /* ********************************************************* */ 1763 /* * step 5a: back off one from last, increment in dtaps * */ 1764 1765 /* Special case code for backing up a phase */ 1766 if (p == 0) { 1767 p = IO_DQS_EN_PHASE_MAX; 1768 rw_mgr_decr_vfifo(grp, &v); 1769 } else { 1770 p = p - 1; 1771 } 1772 1773 work_end -= IO_DELAY_PER_OPA_TAP; 1774 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1775 1776 /* * The actual increment of dtaps is done outside of 1777 the if/else loop to share code */ 1778 d = 0; 1779 1780 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1781 vfifo=%u ptap=%u\n", __func__, __LINE__, 1782 v, p); 1783 } else { 1784 /* ******************************************************* */ 1785 /* * step 3-5b: Find the right edge of the window using 1786 delay taps * */ 1787 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1788 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1789 v, p, d, work_bgn); 1790 1791 work_end = work_bgn; 1792 1793 /* * The actual increment of dtaps is done outside of the 1794 if/else loop to share code */ 1795 1796 /* Only here to counterbalance a subtract later on which is 1797 not needed if this branch of the algorithm is taken */ 1798 max_working_cnt++; 1799 } 1800 1801 /* The dtap increment to find the failing edge is done here */ 1802 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1803 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1804 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1805 end-2: dtap=%u\n", __func__, __LINE__, d); 1806 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1807 1808 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1809 PASS_ONE_BIT, 1810 &bit_chk, 0)) { 1811 break; 1812 } 1813 } 1814 1815 /* Go back to working dtap */ 1816 if (d != 0) 1817 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1818 1819 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1820 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1821 v, p, d-1, work_end); 1822 1823 if (work_end < work_bgn) { 1824 /* nil range */ 1825 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1826 failed\n", __func__, __LINE__); 1827 return 0; 1828 } 1829 1830 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1831 __func__, __LINE__, work_bgn, work_end); 1832 1833 /* *************************************************************** */ 1834 /* 1835 * * We need to calculate the number of dtaps that equal a ptap 1836 * * To do that we'll back up a ptap and re-find the edge of the 1837 * * window using dtaps 1838 */ 1839 1840 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1841 for tracking\n", __func__, __LINE__); 1842 1843 /* Special case code for backing up a phase */ 1844 if (p == 0) { 1845 p = IO_DQS_EN_PHASE_MAX; 1846 rw_mgr_decr_vfifo(grp, &v); 1847 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1848 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1849 v, p); 1850 } else { 1851 p = p - 1; 1852 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1853 phase only: v=%u p=%u", __func__, __LINE__, 1854 v, p); 1855 } 1856 1857 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1858 1859 /* 1860 * Increase dtap until we first see a passing read (in case the 1861 * window is smaller than a ptap), 1862 * and then a failing read to mark the edge of the window again 1863 */ 1864 1865 /* Find a passing read */ 1866 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1867 __func__, __LINE__); 1868 found_passing_read = 0; 1869 found_failing_read = 0; 1870 initial_failing_dtap = d; 1871 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1872 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1873 read d=%u\n", __func__, __LINE__, d); 1874 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1875 1876 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1877 PASS_ONE_BIT, 1878 &bit_chk, 0)) { 1879 found_passing_read = 1; 1880 break; 1881 } 1882 } 1883 1884 if (found_passing_read) { 1885 /* Find a failing read */ 1886 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1887 read\n", __func__, __LINE__); 1888 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1889 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1890 testing read d=%u\n", __func__, __LINE__, d); 1891 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1892 1893 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1894 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1895 found_failing_read = 1; 1896 break; 1897 } 1898 } 1899 } else { 1900 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1901 calculate dtaps", __func__, __LINE__); 1902 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1903 } 1904 1905 /* 1906 * The dynamically calculated dtaps_per_ptap is only valid if we 1907 * found a passing/failing read. If we didn't, it means d hit the max 1908 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1909 * statically calculated value. 1910 */ 1911 if (found_passing_read && found_failing_read) 1912 dtaps_per_ptap = d - initial_failing_dtap; 1913 1914 addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap); 1915 writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr); 1916 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1917 - %u = %u", __func__, __LINE__, d, 1918 initial_failing_dtap, dtaps_per_ptap); 1919 1920 /* ******************************************** */ 1921 /* * step 6: Find the centre of the window * */ 1922 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1923 &work_mid, &work_end) == 0) 1924 return 0; 1925 1926 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1927 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1928 v, p-1, d); 1929 return 1; 1930 } 1931 1932 /* 1933 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1934 * dq_in_delay values 1935 */ 1936 static uint32_t 1937 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1938 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1939 { 1940 uint32_t found; 1941 uint32_t i; 1942 uint32_t p; 1943 uint32_t d; 1944 uint32_t r; 1945 uint32_t addr; 1946 1947 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1948 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1949 /* we start at zero, so have one less dq to devide among */ 1950 1951 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1952 test_bgn); 1953 1954 /* try different dq_in_delays since the dq path is shorter than dqs */ 1955 1956 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1957 r += NUM_RANKS_PER_SHADOW_REG) { 1958 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1959 i++, p++, d += delay_step) { 1960 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1961 vfifo_find_dqs_", __func__, __LINE__); 1962 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1963 write_group, read_group); 1964 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1965 scc_mgr_set_dq_in_delay(write_group, p, d); 1966 scc_mgr_load_dq(p); 1967 } 1968 addr = sdr_get_addr(&sdr_scc_mgr->update); 1969 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1970 } 1971 1972 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1973 1974 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1975 en_phase_sweep_dq", __func__, __LINE__); 1976 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1977 chain to zero\n", write_group, read_group, found); 1978 1979 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1980 r += NUM_RANKS_PER_SHADOW_REG) { 1981 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1982 i++, p++) { 1983 scc_mgr_set_dq_in_delay(write_group, p, 0); 1984 scc_mgr_load_dq(p); 1985 } 1986 addr = sdr_get_addr(&sdr_scc_mgr->update); 1987 writel(0, SOCFPGA_SDR_ADDRESS + addr); 1988 } 1989 1990 return found; 1991 } 1992 1993 /* per-bit deskew DQ and center */ 1994 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1995 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1996 uint32_t use_read_test, uint32_t update_fom) 1997 { 1998 uint32_t i, p, d, min_index; 1999 /* 2000 * Store these as signed since there are comparisons with 2001 * signed numbers. 2002 */ 2003 uint32_t bit_chk; 2004 uint32_t sticky_bit_chk; 2005 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2006 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2007 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 2008 int32_t mid; 2009 int32_t orig_mid_min, mid_min; 2010 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 2011 final_dqs_en; 2012 int32_t dq_margin, dqs_margin; 2013 uint32_t stop; 2014 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 2015 uint32_t addr; 2016 2017 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 2018 2019 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY); 2020 start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2)); 2021 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2022 start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2) 2023 - IO_DQS_EN_DELAY_OFFSET)); 2024 2025 /* set the left and right edge of each bit to an illegal value */ 2026 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2027 sticky_bit_chk = 0; 2028 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2029 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2030 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2031 } 2032 2033 addr = sdr_get_addr(&sdr_scc_mgr->update); 2034 /* Search for the left edge of the window for each bit */ 2035 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 2036 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 2037 2038 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2039 2040 /* 2041 * Stop searching when the read test doesn't pass AND when 2042 * we've seen a passing read on every bit. 2043 */ 2044 if (use_read_test) { 2045 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 2046 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 2047 &bit_chk, 0, 0); 2048 } else { 2049 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2050 0, PASS_ONE_BIT, 2051 &bit_chk, 0); 2052 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 2053 (read_group - (write_group * 2054 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2055 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2056 stop = (bit_chk == 0); 2057 } 2058 sticky_bit_chk = sticky_bit_chk | bit_chk; 2059 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2060 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 2061 && %u", __func__, __LINE__, d, 2062 sticky_bit_chk, 2063 param->read_correct_mask, stop); 2064 2065 if (stop == 1) { 2066 break; 2067 } else { 2068 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2069 if (bit_chk & 1) { 2070 /* Remember a passing test as the 2071 left_edge */ 2072 left_edge[i] = d; 2073 } else { 2074 /* If a left edge has not been seen yet, 2075 then a future passing test will mark 2076 this edge as the right edge */ 2077 if (left_edge[i] == 2078 IO_IO_IN_DELAY_MAX + 1) { 2079 right_edge[i] = -(d + 1); 2080 } 2081 } 2082 bit_chk = bit_chk >> 1; 2083 } 2084 } 2085 } 2086 2087 /* Reset DQ delay chains to 0 */ 2088 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 2089 sticky_bit_chk = 0; 2090 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 2091 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2092 %d right_edge[%u]: %d\n", __func__, __LINE__, 2093 i, left_edge[i], i, right_edge[i]); 2094 2095 /* 2096 * Check for cases where we haven't found the left edge, 2097 * which makes our assignment of the the right edge invalid. 2098 * Reset it to the illegal value. 2099 */ 2100 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 2101 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 2102 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2103 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 2104 right_edge[%u]: %d\n", __func__, __LINE__, 2105 i, right_edge[i]); 2106 } 2107 2108 /* 2109 * Reset sticky bit (except for bits where we have seen 2110 * both the left and right edge). 2111 */ 2112 sticky_bit_chk = sticky_bit_chk << 1; 2113 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 2114 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 2115 sticky_bit_chk = sticky_bit_chk | 1; 2116 } 2117 2118 if (i == 0) 2119 break; 2120 } 2121 2122 addr = sdr_get_addr(&sdr_scc_mgr->update); 2123 /* Search for the right edge of the window for each bit */ 2124 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 2125 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2127 uint32_t delay = d + start_dqs_en; 2128 if (delay > IO_DQS_EN_DELAY_MAX) 2129 delay = IO_DQS_EN_DELAY_MAX; 2130 scc_mgr_set_dqs_en_delay(read_group, delay); 2131 } 2132 scc_mgr_load_dqs(read_group); 2133 2134 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2135 2136 /* 2137 * Stop searching when the read test doesn't pass AND when 2138 * we've seen a passing read on every bit. 2139 */ 2140 if (use_read_test) { 2141 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 2142 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 2143 &bit_chk, 0, 0); 2144 } else { 2145 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2146 0, PASS_ONE_BIT, 2147 &bit_chk, 0); 2148 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 2149 (read_group - (write_group * 2150 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2151 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2152 stop = (bit_chk == 0); 2153 } 2154 sticky_bit_chk = sticky_bit_chk | bit_chk; 2155 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2156 2157 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2158 %u && %u", __func__, __LINE__, d, 2159 sticky_bit_chk, param->read_correct_mask, stop); 2160 2161 if (stop == 1) { 2162 break; 2163 } else { 2164 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2165 if (bit_chk & 1) { 2166 /* Remember a passing test as 2167 the right_edge */ 2168 right_edge[i] = d; 2169 } else { 2170 if (d != 0) { 2171 /* If a right edge has not been 2172 seen yet, then a future passing 2173 test will mark this edge as the 2174 left edge */ 2175 if (right_edge[i] == 2176 IO_IO_IN_DELAY_MAX + 1) { 2177 left_edge[i] = -(d + 1); 2178 } 2179 } else { 2180 /* d = 0 failed, but it passed 2181 when testing the left edge, 2182 so it must be marginal, 2183 set it to -1 */ 2184 if (right_edge[i] == 2185 IO_IO_IN_DELAY_MAX + 1 && 2186 left_edge[i] != 2187 IO_IO_IN_DELAY_MAX 2188 + 1) { 2189 right_edge[i] = -1; 2190 } 2191 /* If a right edge has not been 2192 seen yet, then a future passing 2193 test will mark this edge as the 2194 left edge */ 2195 else if (right_edge[i] == 2196 IO_IO_IN_DELAY_MAX + 2197 1) { 2198 left_edge[i] = -(d + 1); 2199 } 2200 } 2201 } 2202 2203 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2204 d=%u]: ", __func__, __LINE__, d); 2205 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2206 (int)(bit_chk & 1), i, left_edge[i]); 2207 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2208 right_edge[i]); 2209 bit_chk = bit_chk >> 1; 2210 } 2211 } 2212 } 2213 2214 /* Check that all bits have a window */ 2215 addr = sdr_get_addr(&sdr_scc_mgr->update); 2216 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2217 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2218 %d right_edge[%u]: %d", __func__, __LINE__, 2219 i, left_edge[i], i, right_edge[i]); 2220 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2221 == IO_IO_IN_DELAY_MAX + 1)) { 2222 /* 2223 * Restore delay chain settings before letting the loop 2224 * in rw_mgr_mem_calibrate_vfifo to retry different 2225 * dqs/ck relationships. 2226 */ 2227 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2228 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2229 scc_mgr_set_dqs_en_delay(read_group, 2230 start_dqs_en); 2231 } 2232 scc_mgr_load_dqs(read_group); 2233 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2234 2235 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2236 find edge [%u]: %d %d", __func__, __LINE__, 2237 i, left_edge[i], right_edge[i]); 2238 if (use_read_test) { 2239 set_failing_group_stage(read_group * 2240 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2241 CAL_STAGE_VFIFO, 2242 CAL_SUBSTAGE_VFIFO_CENTER); 2243 } else { 2244 set_failing_group_stage(read_group * 2245 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2246 CAL_STAGE_VFIFO_AFTER_WRITES, 2247 CAL_SUBSTAGE_VFIFO_CENTER); 2248 } 2249 return 0; 2250 } 2251 } 2252 2253 /* Find middle of window for each DQ bit */ 2254 mid_min = left_edge[0] - right_edge[0]; 2255 min_index = 0; 2256 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2257 mid = left_edge[i] - right_edge[i]; 2258 if (mid < mid_min) { 2259 mid_min = mid; 2260 min_index = i; 2261 } 2262 } 2263 2264 /* 2265 * -mid_min/2 represents the amount that we need to move DQS. 2266 * If mid_min is odd and positive we'll need to add one to 2267 * make sure the rounding in further calculations is correct 2268 * (always bias to the right), so just add 1 for all positive values. 2269 */ 2270 if (mid_min > 0) 2271 mid_min++; 2272 2273 mid_min = mid_min / 2; 2274 2275 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2276 __func__, __LINE__, mid_min, min_index); 2277 2278 /* Determine the amount we can change DQS (which is -mid_min) */ 2279 orig_mid_min = mid_min; 2280 new_dqs = start_dqs - mid_min; 2281 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2282 new_dqs = IO_DQS_IN_DELAY_MAX; 2283 else if (new_dqs < 0) 2284 new_dqs = 0; 2285 2286 mid_min = start_dqs - new_dqs; 2287 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2288 mid_min, new_dqs); 2289 2290 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2291 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2292 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2293 else if (start_dqs_en - mid_min < 0) 2294 mid_min += start_dqs_en - mid_min; 2295 } 2296 new_dqs = start_dqs - mid_min; 2297 2298 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2299 new_dqs=%d mid_min=%d\n", start_dqs, 2300 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2301 new_dqs, mid_min); 2302 2303 /* Initialize data for export structures */ 2304 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2305 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2306 2307 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY); 2308 /* add delay to bring centre of all DQ windows to the same "level" */ 2309 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2310 /* Use values before divide by 2 to reduce round off error */ 2311 shift_dq = (left_edge[i] - right_edge[i] - 2312 (left_edge[min_index] - right_edge[min_index]))/2 + 2313 (orig_mid_min - mid_min); 2314 2315 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2316 shift_dq[%u]=%d\n", i, shift_dq); 2317 2318 temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2)); 2319 temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2)); 2320 2321 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2322 (int32_t)IO_IO_IN_DELAY_MAX) { 2323 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2324 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2325 shift_dq = -(int32_t)temp_dq_in_delay1; 2326 } 2327 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2328 shift_dq[%u]=%d\n", i, shift_dq); 2329 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2330 scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]); 2331 scc_mgr_load_dq(p); 2332 2333 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2334 left_edge[i] - shift_dq + (-mid_min), 2335 right_edge[i] + shift_dq - (-mid_min)); 2336 /* To determine values for export structures */ 2337 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2338 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2339 2340 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2341 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2342 } 2343 2344 final_dqs = new_dqs; 2345 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2346 final_dqs_en = start_dqs_en - mid_min; 2347 2348 /* Move DQS-en */ 2349 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2350 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2351 scc_mgr_load_dqs(read_group); 2352 } 2353 2354 /* Move DQS */ 2355 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2356 scc_mgr_load_dqs(read_group); 2357 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2358 dqs_margin=%d", __func__, __LINE__, 2359 dq_margin, dqs_margin); 2360 2361 /* 2362 * Do not remove this line as it makes sure all of our decisions 2363 * have been applied. Apply the update bit. 2364 */ 2365 addr = sdr_get_addr(&sdr_scc_mgr->update); 2366 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2367 2368 return (dq_margin >= 0) && (dqs_margin >= 0); 2369 } 2370 2371 /* 2372 * calibrate the read valid prediction FIFO. 2373 * 2374 * - read valid prediction will consist of finding a good DQS enable phase, 2375 * DQS enable delay, DQS input phase, and DQS input delay. 2376 * - we also do a per-bit deskew on the DQ lines. 2377 */ 2378 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2379 uint32_t test_bgn) 2380 { 2381 uint32_t p, d, rank_bgn, sr; 2382 uint32_t dtaps_per_ptap; 2383 uint32_t tmp_delay; 2384 uint32_t bit_chk; 2385 uint32_t grp_calibrated; 2386 uint32_t write_group, write_test_bgn; 2387 uint32_t failed_substage; 2388 2389 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2390 2391 /* update info for sims */ 2392 reg_file_set_stage(CAL_STAGE_VFIFO); 2393 2394 write_group = read_group; 2395 write_test_bgn = test_bgn; 2396 2397 /* USER Determine number of delay taps for each phase tap */ 2398 dtaps_per_ptap = 0; 2399 tmp_delay = 0; 2400 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2401 dtaps_per_ptap++; 2402 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2403 } 2404 dtaps_per_ptap--; 2405 tmp_delay = 0; 2406 2407 /* update info for sims */ 2408 reg_file_set_group(read_group); 2409 2410 grp_calibrated = 0; 2411 2412 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2413 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2414 2415 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2416 /* 2417 * In RLDRAMX we may be messing the delay of pins in 2418 * the same write group but outside of the current read 2419 * the group, but that's ok because we haven't 2420 * calibrated output side yet. 2421 */ 2422 if (d > 0) { 2423 scc_mgr_apply_group_all_out_delay_add_all_ranks 2424 (write_group, write_test_bgn, d); 2425 } 2426 2427 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2428 p++) { 2429 /* set a particular dqdqs phase */ 2430 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2431 2432 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2433 p=%u d=%u\n", __func__, __LINE__, 2434 read_group, p, d); 2435 2436 /* 2437 * Load up the patterns used by read calibration 2438 * using current DQDQS phase. 2439 */ 2440 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2441 if (!(gbl->phy_debug_mode_flags & 2442 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2443 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2444 (read_group, 1, &bit_chk)) { 2445 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2446 __func__, __LINE__); 2447 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2448 read_group, p, d); 2449 break; 2450 } 2451 } 2452 2453 /* case:56390 */ 2454 grp_calibrated = 1; 2455 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2456 (write_group, read_group, test_bgn)) { 2457 /* 2458 * USER Read per-bit deskew can be done on a 2459 * per shadow register basis. 2460 */ 2461 for (rank_bgn = 0, sr = 0; 2462 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2463 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2464 ++sr) { 2465 /* 2466 * Determine if this set of ranks 2467 * should be skipped entirely. 2468 */ 2469 if (!param->skip_shadow_regs[sr]) { 2470 /* 2471 * If doing read after write 2472 * calibration, do not update 2473 * FOM, now - do it then. 2474 */ 2475 if (!rw_mgr_mem_calibrate_vfifo_center 2476 (rank_bgn, write_group, 2477 read_group, test_bgn, 1, 0)) { 2478 grp_calibrated = 0; 2479 failed_substage = 2480 CAL_SUBSTAGE_VFIFO_CENTER; 2481 } 2482 } 2483 } 2484 } else { 2485 grp_calibrated = 0; 2486 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2487 } 2488 } 2489 } 2490 2491 if (grp_calibrated == 0) { 2492 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2493 failed_substage); 2494 return 0; 2495 } 2496 2497 /* 2498 * Reset the delay chains back to zero if they have moved > 1 2499 * (check for > 1 because loop will increase d even when pass in 2500 * first case). 2501 */ 2502 if (d > 2) 2503 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2504 2505 return 1; 2506 } 2507 2508 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2509 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2510 uint32_t test_bgn) 2511 { 2512 uint32_t rank_bgn, sr; 2513 uint32_t grp_calibrated; 2514 uint32_t write_group; 2515 2516 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2517 2518 /* update info for sims */ 2519 2520 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2521 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2522 2523 write_group = read_group; 2524 2525 /* update info for sims */ 2526 reg_file_set_group(read_group); 2527 2528 grp_calibrated = 1; 2529 /* Read per-bit deskew can be done on a per shadow register basis */ 2530 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2531 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2532 /* Determine if this set of ranks should be skipped entirely */ 2533 if (!param->skip_shadow_regs[sr]) { 2534 /* This is the last calibration round, update FOM here */ 2535 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2536 write_group, 2537 read_group, 2538 test_bgn, 0, 2539 1)) { 2540 grp_calibrated = 0; 2541 } 2542 } 2543 } 2544 2545 2546 if (grp_calibrated == 0) { 2547 set_failing_group_stage(write_group, 2548 CAL_STAGE_VFIFO_AFTER_WRITES, 2549 CAL_SUBSTAGE_VFIFO_CENTER); 2550 return 0; 2551 } 2552 2553 return 1; 2554 } 2555 2556 /* Calibrate LFIFO to find smallest read latency */ 2557 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2558 { 2559 uint32_t found_one; 2560 uint32_t bit_chk; 2561 uint32_t addr; 2562 2563 debug("%s:%d\n", __func__, __LINE__); 2564 2565 /* update info for sims */ 2566 reg_file_set_stage(CAL_STAGE_LFIFO); 2567 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2568 2569 /* Load up the patterns used by read calibration for all ranks */ 2570 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2571 found_one = 0; 2572 2573 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat); 2574 do { 2575 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr); 2576 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2577 __func__, __LINE__, gbl->curr_read_lat); 2578 2579 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2580 NUM_READ_TESTS, 2581 PASS_ALL_BITS, 2582 &bit_chk, 1)) { 2583 break; 2584 } 2585 2586 found_one = 1; 2587 /* reduce read latency and see if things are working */ 2588 /* correctly */ 2589 gbl->curr_read_lat--; 2590 } while (gbl->curr_read_lat > 0); 2591 2592 /* reset the fifos to get pointers to known state */ 2593 2594 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 2595 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2596 2597 if (found_one) { 2598 /* add a fudge factor to the read latency that was determined */ 2599 gbl->curr_read_lat += 2; 2600 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat); 2601 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr); 2602 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2603 read_lat=%u\n", __func__, __LINE__, 2604 gbl->curr_read_lat); 2605 return 1; 2606 } else { 2607 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2608 CAL_SUBSTAGE_READ_LATENCY); 2609 2610 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2611 read_lat=%u\n", __func__, __LINE__, 2612 gbl->curr_read_lat); 2613 return 0; 2614 } 2615 } 2616 2617 /* 2618 * issue write test command. 2619 * two variants are provided. one that just tests a write pattern and 2620 * another that tests datamask functionality. 2621 */ 2622 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2623 uint32_t test_dm) 2624 { 2625 uint32_t mcc_instruction; 2626 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2627 ENABLE_SUPER_QUICK_CALIBRATION); 2628 uint32_t rw_wl_nop_cycles; 2629 uint32_t addr; 2630 2631 /* 2632 * Set counter and jump addresses for the right 2633 * number of NOP cycles. 2634 * The number of supported NOP cycles can range from -1 to infinity 2635 * Three different cases are handled: 2636 * 2637 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2638 * mechanism will be used to insert the right number of NOPs 2639 * 2640 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2641 * issuing the write command will jump straight to the 2642 * micro-instruction that turns on DQS (for DDRx), or outputs write 2643 * data (for RLD), skipping 2644 * the NOP micro-instruction all together 2645 * 2646 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2647 * turned on in the same micro-instruction that issues the write 2648 * command. Then we need 2649 * to directly jump to the micro-instruction that sends out the data 2650 * 2651 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2652 * (2 and 3). One jump-counter (0) is used to perform multiple 2653 * write-read operations. 2654 * one counter left to issue this command in "multiple-group" mode 2655 */ 2656 2657 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2658 2659 if (rw_wl_nop_cycles == -1) { 2660 /* 2661 * CNTR 2 - We want to execute the special write operation that 2662 * turns on DQS right away and then skip directly to the 2663 * instruction that sends out the data. We set the counter to a 2664 * large number so that the jump is always taken. 2665 */ 2666 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 2667 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr); 2668 2669 /* CNTR 3 - Not used */ 2670 if (test_dm) { 2671 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2672 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 2673 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2674 SOCFPGA_SDR_ADDRESS + addr); 2675 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 2676 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2677 SOCFPGA_SDR_ADDRESS + addr); 2678 } else { 2679 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2680 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 2681 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr); 2682 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 2683 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr); 2684 } 2685 } else if (rw_wl_nop_cycles == 0) { 2686 /* 2687 * CNTR 2 - We want to skip the NOP operation and go straight 2688 * to the DQS enable instruction. We set the counter to a large 2689 * number so that the jump is always taken. 2690 */ 2691 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 2692 writel(0xFF, SOCFPGA_SDR_ADDRESS + addr); 2693 2694 /* CNTR 3 - Not used */ 2695 if (test_dm) { 2696 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2697 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 2698 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2699 SOCFPGA_SDR_ADDRESS + addr); 2700 } else { 2701 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2702 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 2703 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr); 2704 } 2705 } else { 2706 /* 2707 * CNTR 2 - In this case we want to execute the next instruction 2708 * and NOT take the jump. So we set the counter to 0. The jump 2709 * address doesn't count. 2710 */ 2711 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr2); 2712 writel(0x0, SOCFPGA_SDR_ADDRESS + addr); 2713 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add2); 2714 writel(0x0, SOCFPGA_SDR_ADDRESS + addr); 2715 2716 /* 2717 * CNTR 3 - Set the nop counter to the number of cycles we 2718 * need to loop for, minus 1. 2719 */ 2720 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr3); 2721 writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr); 2722 if (test_dm) { 2723 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2724 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 2725 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr); 2726 } else { 2727 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2728 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add3); 2729 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr); 2730 } 2731 } 2732 2733 addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH); 2734 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2735 2736 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 2737 if (quick_write_mode) 2738 writel(0x08, SOCFPGA_SDR_ADDRESS + addr); 2739 else 2740 writel(0x40, SOCFPGA_SDR_ADDRESS + addr); 2741 2742 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 2743 writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr); 2744 2745 /* 2746 * CNTR 1 - This is used to ensure enough time elapses 2747 * for read data to come back. 2748 */ 2749 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 2750 writel(0x30, SOCFPGA_SDR_ADDRESS + addr); 2751 2752 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 2753 if (test_dm) { 2754 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr); 2755 } else { 2756 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr); 2757 } 2758 2759 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 2760 writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2)); 2761 } 2762 2763 /* Test writes, can check for a single bit pass or multiple bit pass */ 2764 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2765 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2766 uint32_t *bit_chk, uint32_t all_ranks) 2767 { 2768 uint32_t addr; 2769 uint32_t r; 2770 uint32_t correct_mask_vg; 2771 uint32_t tmp_bit_chk; 2772 uint32_t vg; 2773 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2774 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2775 uint32_t addr_rw_mgr; 2776 uint32_t base_rw_mgr; 2777 2778 *bit_chk = param->write_correct_mask; 2779 correct_mask_vg = param->write_correct_mask_vg; 2780 2781 for (r = rank_bgn; r < rank_end; r++) { 2782 if (param->skip_ranks[r]) { 2783 /* request to skip the rank */ 2784 continue; 2785 } 2786 2787 /* set rank */ 2788 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2789 2790 tmp_bit_chk = 0; 2791 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 2792 addr_rw_mgr = sdr_get_addr((u32 *)BASE_RW_MGR); 2793 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2794 /* reset the fifos to get pointers to known state */ 2795 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2796 2797 tmp_bit_chk = tmp_bit_chk << 2798 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2799 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2800 rw_mgr_mem_calibrate_write_test_issue(write_group * 2801 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2802 use_dm); 2803 2804 base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr); 2805 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2806 if (vg == 0) 2807 break; 2808 } 2809 *bit_chk &= tmp_bit_chk; 2810 } 2811 2812 if (all_correct) { 2813 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2814 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2815 %u => %lu", write_group, use_dm, 2816 *bit_chk, param->write_correct_mask, 2817 (long unsigned int)(*bit_chk == 2818 param->write_correct_mask)); 2819 return *bit_chk == param->write_correct_mask; 2820 } else { 2821 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2822 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2823 write_group, use_dm, *bit_chk); 2824 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2825 (long unsigned int)(*bit_chk != 0)); 2826 return *bit_chk != 0x00; 2827 } 2828 } 2829 2830 /* 2831 * center all windows. do per-bit-deskew to possibly increase size of 2832 * certain windows. 2833 */ 2834 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2835 uint32_t write_group, uint32_t test_bgn) 2836 { 2837 uint32_t i, p, min_index; 2838 int32_t d; 2839 /* 2840 * Store these as signed since there are comparisons with 2841 * signed numbers. 2842 */ 2843 uint32_t bit_chk; 2844 uint32_t sticky_bit_chk; 2845 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2846 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2847 int32_t mid; 2848 int32_t mid_min, orig_mid_min; 2849 int32_t new_dqs, start_dqs, shift_dq; 2850 int32_t dq_margin, dqs_margin, dm_margin; 2851 uint32_t stop; 2852 uint32_t temp_dq_out1_delay; 2853 uint32_t addr; 2854 2855 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2856 2857 dm_margin = 0; 2858 2859 addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY); 2860 start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + 2861 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2862 2863 /* per-bit deskew */ 2864 2865 /* 2866 * set the left and right edge of each bit to an illegal value 2867 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2868 */ 2869 sticky_bit_chk = 0; 2870 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2871 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2872 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2873 } 2874 2875 /* Search for the left edge of the window for each bit */ 2876 addr = sdr_get_addr(&sdr_scc_mgr->update); 2877 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2878 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2879 2880 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2881 2882 /* 2883 * Stop searching when the read test doesn't pass AND when 2884 * we've seen a passing read on every bit. 2885 */ 2886 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2887 0, PASS_ONE_BIT, &bit_chk, 0); 2888 sticky_bit_chk = sticky_bit_chk | bit_chk; 2889 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2890 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2891 == %u && %u [bit_chk= %u ]\n", 2892 d, sticky_bit_chk, param->write_correct_mask, 2893 stop, bit_chk); 2894 2895 if (stop == 1) { 2896 break; 2897 } else { 2898 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2899 if (bit_chk & 1) { 2900 /* 2901 * Remember a passing test as the 2902 * left_edge. 2903 */ 2904 left_edge[i] = d; 2905 } else { 2906 /* 2907 * If a left edge has not been seen 2908 * yet, then a future passing test will 2909 * mark this edge as the right edge. 2910 */ 2911 if (left_edge[i] == 2912 IO_IO_OUT1_DELAY_MAX + 1) { 2913 right_edge[i] = -(d + 1); 2914 } 2915 } 2916 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2917 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2918 (int)(bit_chk & 1), i, left_edge[i]); 2919 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2920 right_edge[i]); 2921 bit_chk = bit_chk >> 1; 2922 } 2923 } 2924 } 2925 2926 /* Reset DQ delay chains to 0 */ 2927 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2928 sticky_bit_chk = 0; 2929 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2930 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2931 %d right_edge[%u]: %d\n", __func__, __LINE__, 2932 i, left_edge[i], i, right_edge[i]); 2933 2934 /* 2935 * Check for cases where we haven't found the left edge, 2936 * which makes our assignment of the the right edge invalid. 2937 * Reset it to the illegal value. 2938 */ 2939 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2940 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2941 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2942 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2943 right_edge[%u]: %d\n", __func__, __LINE__, 2944 i, right_edge[i]); 2945 } 2946 2947 /* 2948 * Reset sticky bit (except for bits where we have 2949 * seen the left edge). 2950 */ 2951 sticky_bit_chk = sticky_bit_chk << 1; 2952 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2953 sticky_bit_chk = sticky_bit_chk | 1; 2954 2955 if (i == 0) 2956 break; 2957 } 2958 2959 /* Search for the right edge of the window for each bit */ 2960 addr = sdr_get_addr(&sdr_scc_mgr->update); 2961 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2962 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2963 d + start_dqs); 2964 2965 writel(0, SOCFPGA_SDR_ADDRESS + addr); 2966 2967 /* 2968 * Stop searching when the read test doesn't pass AND when 2969 * we've seen a passing read on every bit. 2970 */ 2971 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2972 0, PASS_ONE_BIT, &bit_chk, 0); 2973 2974 sticky_bit_chk = sticky_bit_chk | bit_chk; 2975 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2976 2977 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2978 %u && %u\n", d, sticky_bit_chk, 2979 param->write_correct_mask, stop); 2980 2981 if (stop == 1) { 2982 if (d == 0) { 2983 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2984 i++) { 2985 /* d = 0 failed, but it passed when 2986 testing the left edge, so it must be 2987 marginal, set it to -1 */ 2988 if (right_edge[i] == 2989 IO_IO_OUT1_DELAY_MAX + 1 && 2990 left_edge[i] != 2991 IO_IO_OUT1_DELAY_MAX + 1) { 2992 right_edge[i] = -1; 2993 } 2994 } 2995 } 2996 break; 2997 } else { 2998 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2999 if (bit_chk & 1) { 3000 /* 3001 * Remember a passing test as 3002 * the right_edge. 3003 */ 3004 right_edge[i] = d; 3005 } else { 3006 if (d != 0) { 3007 /* 3008 * If a right edge has not 3009 * been seen yet, then a future 3010 * passing test will mark this 3011 * edge as the left edge. 3012 */ 3013 if (right_edge[i] == 3014 IO_IO_OUT1_DELAY_MAX + 1) 3015 left_edge[i] = -(d + 1); 3016 } else { 3017 /* 3018 * d = 0 failed, but it passed 3019 * when testing the left edge, 3020 * so it must be marginal, set 3021 * it to -1. 3022 */ 3023 if (right_edge[i] == 3024 IO_IO_OUT1_DELAY_MAX + 1 && 3025 left_edge[i] != 3026 IO_IO_OUT1_DELAY_MAX + 1) 3027 right_edge[i] = -1; 3028 /* 3029 * If a right edge has not been 3030 * seen yet, then a future 3031 * passing test will mark this 3032 * edge as the left edge. 3033 */ 3034 else if (right_edge[i] == 3035 IO_IO_OUT1_DELAY_MAX + 3036 1) 3037 left_edge[i] = -(d + 1); 3038 } 3039 } 3040 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 3041 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 3042 (int)(bit_chk & 1), i, left_edge[i]); 3043 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 3044 right_edge[i]); 3045 bit_chk = bit_chk >> 1; 3046 } 3047 } 3048 } 3049 3050 /* Check that all bits have a window */ 3051 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3052 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 3053 %d right_edge[%u]: %d", __func__, __LINE__, 3054 i, left_edge[i], i, right_edge[i]); 3055 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 3056 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 3057 set_failing_group_stage(test_bgn + i, 3058 CAL_STAGE_WRITES, 3059 CAL_SUBSTAGE_WRITES_CENTER); 3060 return 0; 3061 } 3062 } 3063 3064 /* Find middle of window for each DQ bit */ 3065 mid_min = left_edge[0] - right_edge[0]; 3066 min_index = 0; 3067 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3068 mid = left_edge[i] - right_edge[i]; 3069 if (mid < mid_min) { 3070 mid_min = mid; 3071 min_index = i; 3072 } 3073 } 3074 3075 /* 3076 * -mid_min/2 represents the amount that we need to move DQS. 3077 * If mid_min is odd and positive we'll need to add one to 3078 * make sure the rounding in further calculations is correct 3079 * (always bias to the right), so just add 1 for all positive values. 3080 */ 3081 if (mid_min > 0) 3082 mid_min++; 3083 mid_min = mid_min / 2; 3084 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 3085 __LINE__, mid_min); 3086 3087 /* Determine the amount we can change DQS (which is -mid_min) */ 3088 orig_mid_min = mid_min; 3089 new_dqs = start_dqs; 3090 mid_min = 0; 3091 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 3092 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 3093 /* Initialize data for export structures */ 3094 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 3095 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 3096 3097 /* add delay to bring centre of all DQ windows to the same "level" */ 3098 addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY); 3099 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 3100 /* Use values before divide by 2 to reduce round off error */ 3101 shift_dq = (left_edge[i] - right_edge[i] - 3102 (left_edge[min_index] - right_edge[min_index]))/2 + 3103 (orig_mid_min - mid_min); 3104 3105 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 3106 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 3107 3108 temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2)); 3109 if (shift_dq + (int32_t)temp_dq_out1_delay > 3110 (int32_t)IO_IO_OUT1_DELAY_MAX) { 3111 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 3112 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 3113 shift_dq = -(int32_t)temp_dq_out1_delay; 3114 } 3115 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 3116 i, shift_dq); 3117 scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay + 3118 shift_dq); 3119 scc_mgr_load_dq(i); 3120 3121 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 3122 left_edge[i] - shift_dq + (-mid_min), 3123 right_edge[i] + shift_dq - (-mid_min)); 3124 /* To determine values for export structures */ 3125 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3126 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3127 3128 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3129 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3130 } 3131 3132 /* Move DQS */ 3133 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3134 addr = sdr_get_addr(&sdr_scc_mgr->update); 3135 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3136 3137 /* Centre DM */ 3138 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3139 3140 /* 3141 * set the left and right edge of each bit to an illegal value, 3142 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3143 */ 3144 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3145 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3146 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3147 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3148 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3149 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3150 int32_t win_best = 0; 3151 3152 /* Search for the/part of the window with DM shift */ 3153 addr = sdr_get_addr(&sdr_scc_mgr->update); 3154 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3155 scc_mgr_apply_group_dm_out1_delay(write_group, d); 3156 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3157 3158 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3159 PASS_ALL_BITS, &bit_chk, 3160 0)) { 3161 /* USE Set current end of the window */ 3162 end_curr = -d; 3163 /* 3164 * If a starting edge of our window has not been seen 3165 * this is our current start of the DM window. 3166 */ 3167 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3168 bgn_curr = -d; 3169 3170 /* 3171 * If current window is bigger than best seen. 3172 * Set best seen to be current window. 3173 */ 3174 if ((end_curr-bgn_curr+1) > win_best) { 3175 win_best = end_curr-bgn_curr+1; 3176 bgn_best = bgn_curr; 3177 end_best = end_curr; 3178 } 3179 } else { 3180 /* We just saw a failing test. Reset temp edge */ 3181 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3182 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3183 } 3184 } 3185 3186 3187 /* Reset DM delay chains to 0 */ 3188 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3189 3190 /* 3191 * Check to see if the current window nudges up aganist 0 delay. 3192 * If so we need to continue the search by shifting DQS otherwise DQS 3193 * search begins as a new search. */ 3194 if (end_curr != 0) { 3195 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3196 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3197 } 3198 3199 /* Search for the/part of the window with DQS shifts */ 3200 addr = sdr_get_addr(&sdr_scc_mgr->update); 3201 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3202 /* 3203 * Note: This only shifts DQS, so are we limiting ourselve to 3204 * width of DQ unnecessarily. 3205 */ 3206 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3207 d + new_dqs); 3208 3209 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3210 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3211 PASS_ALL_BITS, &bit_chk, 3212 0)) { 3213 /* USE Set current end of the window */ 3214 end_curr = d; 3215 /* 3216 * If a beginning edge of our window has not been seen 3217 * this is our current begin of the DM window. 3218 */ 3219 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3220 bgn_curr = d; 3221 3222 /* 3223 * If current window is bigger than best seen. Set best 3224 * seen to be current window. 3225 */ 3226 if ((end_curr-bgn_curr+1) > win_best) { 3227 win_best = end_curr-bgn_curr+1; 3228 bgn_best = bgn_curr; 3229 end_best = end_curr; 3230 } 3231 } else { 3232 /* We just saw a failing test. Reset temp edge */ 3233 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3234 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3235 3236 /* Early exit optimization: if ther remaining delay 3237 chain space is less than already seen largest window 3238 we can exit */ 3239 if ((win_best-1) > 3240 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3241 break; 3242 } 3243 } 3244 } 3245 3246 /* assign left and right edge for cal and reporting; */ 3247 left_edge[0] = -1*bgn_best; 3248 right_edge[0] = end_best; 3249 3250 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3251 __LINE__, left_edge[0], right_edge[0]); 3252 3253 /* Move DQS (back to orig) */ 3254 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3255 3256 /* Move DM */ 3257 3258 /* Find middle of window for the DM bit */ 3259 mid = (left_edge[0] - right_edge[0]) / 2; 3260 3261 /* only move right, since we are not moving DQS/DQ */ 3262 if (mid < 0) 3263 mid = 0; 3264 3265 /* dm_marign should fail if we never find a window */ 3266 if (win_best == 0) 3267 dm_margin = -1; 3268 else 3269 dm_margin = left_edge[0] - mid; 3270 3271 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3272 addr = sdr_get_addr(&sdr_scc_mgr->update); 3273 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3274 3275 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3276 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3277 right_edge[0], mid, dm_margin); 3278 /* Export values */ 3279 gbl->fom_out += dq_margin + dqs_margin; 3280 3281 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3282 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3283 dq_margin, dqs_margin, dm_margin); 3284 3285 /* 3286 * Do not remove this line as it makes sure all of our 3287 * decisions have been applied. 3288 */ 3289 addr = sdr_get_addr(&sdr_scc_mgr->update); 3290 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3291 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3292 } 3293 3294 /* calibrate the write operations */ 3295 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3296 uint32_t test_bgn) 3297 { 3298 /* update info for sims */ 3299 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3300 3301 reg_file_set_stage(CAL_STAGE_WRITES); 3302 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3303 3304 reg_file_set_group(g); 3305 3306 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3307 set_failing_group_stage(g, CAL_STAGE_WRITES, 3308 CAL_SUBSTAGE_WRITES_CENTER); 3309 return 0; 3310 } 3311 3312 return 1; 3313 } 3314 3315 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3316 static void mem_precharge_and_activate(void) 3317 { 3318 uint32_t r; 3319 uint32_t addr; 3320 3321 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3322 if (param->skip_ranks[r]) { 3323 /* request to skip the rank */ 3324 continue; 3325 } 3326 3327 /* set rank */ 3328 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3329 3330 /* precharge all banks ... */ 3331 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 3332 writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr); 3333 3334 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr0); 3335 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr); 3336 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add0); 3337 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr); 3338 3339 addr = sdr_get_addr(&sdr_rw_load_mgr_regs->load_cntr1); 3340 writel(0x0F, SOCFPGA_SDR_ADDRESS + addr); 3341 addr = sdr_get_addr(&sdr_rw_load_jump_mgr_regs->load_jump_add1); 3342 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr); 3343 3344 /* activate rows */ 3345 addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP); 3346 writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr); 3347 } 3348 } 3349 3350 /* Configure various memory related parameters. */ 3351 static void mem_config(void) 3352 { 3353 uint32_t rlat, wlat; 3354 uint32_t rw_wl_nop_cycles; 3355 uint32_t max_latency; 3356 uint32_t addr; 3357 3358 debug("%s:%d\n", __func__, __LINE__); 3359 /* read in write and read latency */ 3360 addr = sdr_get_addr(&data_mgr->t_wl_add); 3361 wlat = readl(SOCFPGA_SDR_ADDRESS + addr); 3362 3363 addr = sdr_get_addr(&data_mgr->mem_t_add); 3364 wlat += readl(SOCFPGA_SDR_ADDRESS + addr); 3365 /* WL for hard phy does not include additive latency */ 3366 3367 /* 3368 * add addtional write latency to offset the address/command extra 3369 * clock cycle. We change the AC mux setting causing AC to be delayed 3370 * by one mem clock cycle. Only do this for DDR3 3371 */ 3372 wlat = wlat + 1; 3373 3374 addr = sdr_get_addr(&data_mgr->t_rl_add); 3375 rlat = readl(SOCFPGA_SDR_ADDRESS + addr); 3376 3377 rw_wl_nop_cycles = wlat - 2; 3378 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3379 3380 /* 3381 * For AV/CV, lfifo is hardened and always runs at full rate so 3382 * max latency in AFI clocks, used here, is correspondingly smaller. 3383 */ 3384 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3385 /* configure for a burst length of 8 */ 3386 3387 /* write latency */ 3388 /* Adjust Write Latency for Hard PHY */ 3389 wlat = wlat + 1; 3390 3391 /* set a pretty high read latency initially */ 3392 gbl->curr_read_lat = rlat + 16; 3393 3394 if (gbl->curr_read_lat > max_latency) 3395 gbl->curr_read_lat = max_latency; 3396 3397 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat); 3398 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr); 3399 3400 /* advertise write latency */ 3401 gbl->curr_write_lat = wlat; 3402 addr = sdr_get_addr(&phy_mgr_cfg->afi_wlat); 3403 writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr); 3404 3405 /* initialize bit slips */ 3406 mem_precharge_and_activate(); 3407 } 3408 3409 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3410 static void mem_skip_calibrate(void) 3411 { 3412 uint32_t vfifo_offset; 3413 uint32_t i, j, r; 3414 uint32_t addr; 3415 3416 debug("%s:%d\n", __func__, __LINE__); 3417 /* Need to update every shadow register set used by the interface */ 3418 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3419 r += NUM_RANKS_PER_SHADOW_REG) { 3420 /* 3421 * Set output phase alignment settings appropriate for 3422 * skip calibration. 3423 */ 3424 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3425 scc_mgr_set_dqs_en_phase(i, 0); 3426 #if IO_DLL_CHAIN_LENGTH == 6 3427 scc_mgr_set_dqdqs_output_phase(i, 6); 3428 #else 3429 scc_mgr_set_dqdqs_output_phase(i, 7); 3430 #endif 3431 /* 3432 * Case:33398 3433 * 3434 * Write data arrives to the I/O two cycles before write 3435 * latency is reached (720 deg). 3436 * -> due to bit-slip in a/c bus 3437 * -> to allow board skew where dqs is longer than ck 3438 * -> how often can this happen!? 3439 * -> can claim back some ptaps for high freq 3440 * support if we can relax this, but i digress... 3441 * 3442 * The write_clk leads mem_ck by 90 deg 3443 * The minimum ptap of the OPA is 180 deg 3444 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3445 * The write_clk is always delayed by 2 ptaps 3446 * 3447 * Hence, to make DQS aligned to CK, we need to delay 3448 * DQS by: 3449 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3450 * 3451 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3452 * gives us the number of ptaps, which simplies to: 3453 * 3454 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3455 */ 3456 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3457 IO_DLL_CHAIN_LENGTH - 2)); 3458 } 3459 addr = sdr_get_addr(&sdr_scc_mgr->dqs_ena); 3460 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 3461 addr = sdr_get_addr(&sdr_scc_mgr->dqs_io_ena); 3462 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 3463 3464 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER); 3465 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3466 writel(i, SOCFPGA_SDR_ADDRESS + addr); 3467 } 3468 addr = sdr_get_addr(&sdr_scc_mgr->dq_ena); 3469 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 3470 addr = sdr_get_addr(&sdr_scc_mgr->dm_ena); 3471 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 3472 addr = sdr_get_addr(&sdr_scc_mgr->update); 3473 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3474 } 3475 3476 /* Compensate for simulation model behaviour */ 3477 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3478 scc_mgr_set_dqs_bus_in_delay(i, 10); 3479 scc_mgr_load_dqs(i); 3480 } 3481 addr = sdr_get_addr(&sdr_scc_mgr->update); 3482 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3483 3484 /* 3485 * ArriaV has hard FIFOs that can only be initialized by incrementing 3486 * in sequencer. 3487 */ 3488 vfifo_offset = CALIB_VFIFO_OFFSET; 3489 addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy); 3490 for (j = 0; j < vfifo_offset; j++) { 3491 writel(0xff, SOCFPGA_SDR_ADDRESS + addr); 3492 } 3493 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 3494 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3495 3496 /* 3497 * For ACV with hard lfifo, we get the skip-cal setting from 3498 * generation-time constant. 3499 */ 3500 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3501 addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat); 3502 writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr); 3503 } 3504 3505 /* Memory calibration entry point */ 3506 static uint32_t mem_calibrate(void) 3507 { 3508 uint32_t i; 3509 uint32_t rank_bgn, sr; 3510 uint32_t write_group, write_test_bgn; 3511 uint32_t read_group, read_test_bgn; 3512 uint32_t run_groups, current_run; 3513 uint32_t failing_groups = 0; 3514 uint32_t group_failed = 0; 3515 uint32_t sr_failed = 0; 3516 uint32_t addr; 3517 3518 debug("%s:%d\n", __func__, __LINE__); 3519 /* Initialize the data settings */ 3520 3521 gbl->error_substage = CAL_SUBSTAGE_NIL; 3522 gbl->error_stage = CAL_STAGE_NIL; 3523 gbl->error_group = 0xff; 3524 gbl->fom_in = 0; 3525 gbl->fom_out = 0; 3526 3527 mem_config(); 3528 3529 uint32_t bypass_mode = 0x1; 3530 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER); 3531 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3532 writel(i, SOCFPGA_SDR_ADDRESS + addr); 3533 scc_set_bypass_mode(i, bypass_mode); 3534 } 3535 3536 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3537 /* 3538 * Set VFIFO and LFIFO to instant-on settings in skip 3539 * calibration mode. 3540 */ 3541 mem_skip_calibrate(); 3542 } else { 3543 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3544 /* 3545 * Zero all delay chain/phase settings for all 3546 * groups and all shadow register sets. 3547 */ 3548 scc_mgr_zero_all(); 3549 3550 run_groups = ~param->skip_groups; 3551 3552 for (write_group = 0, write_test_bgn = 0; write_group 3553 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3554 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3555 /* Initialized the group failure */ 3556 group_failed = 0; 3557 3558 current_run = run_groups & ((1 << 3559 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3560 run_groups = run_groups >> 3561 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3562 3563 if (current_run == 0) 3564 continue; 3565 3566 addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER); 3567 writel(write_group, SOCFPGA_SDR_ADDRESS + addr); 3568 scc_mgr_zero_group(write_group, write_test_bgn, 3569 0); 3570 3571 for (read_group = write_group * 3572 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3573 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3574 read_test_bgn = 0; 3575 read_group < (write_group + 1) * 3576 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3577 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3578 group_failed == 0; 3579 read_group++, read_test_bgn += 3580 RW_MGR_MEM_DQ_PER_READ_DQS) { 3581 /* Calibrate the VFIFO */ 3582 if (!((STATIC_CALIB_STEPS) & 3583 CALIB_SKIP_VFIFO)) { 3584 if (!rw_mgr_mem_calibrate_vfifo 3585 (read_group, 3586 read_test_bgn)) { 3587 group_failed = 1; 3588 3589 if (!(gbl-> 3590 phy_debug_mode_flags & 3591 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3592 return 0; 3593 } 3594 } 3595 } 3596 } 3597 3598 /* Calibrate the output side */ 3599 if (group_failed == 0) { 3600 for (rank_bgn = 0, sr = 0; rank_bgn 3601 < RW_MGR_MEM_NUMBER_OF_RANKS; 3602 rank_bgn += 3603 NUM_RANKS_PER_SHADOW_REG, 3604 ++sr) { 3605 sr_failed = 0; 3606 if (!((STATIC_CALIB_STEPS) & 3607 CALIB_SKIP_WRITES)) { 3608 if ((STATIC_CALIB_STEPS) 3609 & CALIB_SKIP_DELAY_SWEEPS) { 3610 /* not needed in quick mode! */ 3611 } else { 3612 /* 3613 * Determine if this set of 3614 * ranks should be skipped 3615 * entirely. 3616 */ 3617 if (!param->skip_shadow_regs[sr]) { 3618 if (!rw_mgr_mem_calibrate_writes 3619 (rank_bgn, write_group, 3620 write_test_bgn)) { 3621 sr_failed = 1; 3622 if (!(gbl-> 3623 phy_debug_mode_flags & 3624 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3625 return 0; 3626 } 3627 } 3628 } 3629 } 3630 } 3631 if (sr_failed != 0) 3632 group_failed = 1; 3633 } 3634 } 3635 3636 if (group_failed == 0) { 3637 for (read_group = write_group * 3638 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3639 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3640 read_test_bgn = 0; 3641 read_group < (write_group + 1) 3642 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3643 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3644 group_failed == 0; 3645 read_group++, read_test_bgn += 3646 RW_MGR_MEM_DQ_PER_READ_DQS) { 3647 if (!((STATIC_CALIB_STEPS) & 3648 CALIB_SKIP_WRITES)) { 3649 if (!rw_mgr_mem_calibrate_vfifo_end 3650 (read_group, read_test_bgn)) { 3651 group_failed = 1; 3652 3653 if (!(gbl->phy_debug_mode_flags 3654 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3655 return 0; 3656 } 3657 } 3658 } 3659 } 3660 } 3661 3662 if (group_failed != 0) 3663 failing_groups++; 3664 } 3665 3666 /* 3667 * USER If there are any failing groups then report 3668 * the failure. 3669 */ 3670 if (failing_groups != 0) 3671 return 0; 3672 3673 /* Calibrate the LFIFO */ 3674 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3675 /* 3676 * If we're skipping groups as part of debug, 3677 * don't calibrate LFIFO. 3678 */ 3679 if (param->skip_groups == 0) { 3680 if (!rw_mgr_mem_calibrate_lfifo()) 3681 return 0; 3682 } 3683 } 3684 } 3685 } 3686 3687 /* 3688 * Do not remove this line as it makes sure all of our decisions 3689 * have been applied. 3690 */ 3691 addr = sdr_get_addr(&sdr_scc_mgr->update); 3692 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3693 return 1; 3694 } 3695 3696 static uint32_t run_mem_calibrate(void) 3697 { 3698 uint32_t pass; 3699 uint32_t debug_info; 3700 uint32_t addr; 3701 3702 debug("%s:%d\n", __func__, __LINE__); 3703 3704 /* Reset pass/fail status shown on afi_cal_success/fail */ 3705 addr = sdr_get_addr(&phy_mgr_cfg->cal_status); 3706 writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr); 3707 3708 addr = sdr_get_addr((u32 *)BASE_MMR); 3709 /* stop tracking manger */ 3710 uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr); 3711 3712 addr = sdr_get_addr((u32 *)BASE_MMR); 3713 writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr); 3714 3715 initialize(); 3716 rw_mgr_mem_initialize(); 3717 3718 pass = mem_calibrate(); 3719 3720 mem_precharge_and_activate(); 3721 addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset); 3722 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3723 3724 /* 3725 * Handoff: 3726 * Don't return control of the PHY back to AFI when in debug mode. 3727 */ 3728 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3729 rw_mgr_mem_handoff(); 3730 /* 3731 * In Hard PHY this is a 2-bit control: 3732 * 0: AFI Mux Select 3733 * 1: DDIO Mux Select 3734 */ 3735 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel); 3736 writel(0x2, SOCFPGA_SDR_ADDRESS + addr); 3737 } 3738 3739 addr = sdr_get_addr((u32 *)BASE_MMR); 3740 writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr); 3741 3742 if (pass) { 3743 printf("%s: CALIBRATION PASSED\n", __FILE__); 3744 3745 gbl->fom_in /= 2; 3746 gbl->fom_out /= 2; 3747 3748 if (gbl->fom_in > 0xff) 3749 gbl->fom_in = 0xff; 3750 3751 if (gbl->fom_out > 0xff) 3752 gbl->fom_out = 0xff; 3753 3754 /* Update the FOM in the register file */ 3755 debug_info = gbl->fom_in; 3756 debug_info |= gbl->fom_out << 8; 3757 addr = sdr_get_addr(&sdr_reg_file->fom); 3758 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr); 3759 3760 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info); 3761 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr); 3762 addr = sdr_get_addr(&phy_mgr_cfg->cal_status); 3763 writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr); 3764 } else { 3765 printf("%s: CALIBRATION FAILED\n", __FILE__); 3766 3767 debug_info = gbl->error_stage; 3768 debug_info |= gbl->error_substage << 8; 3769 debug_info |= gbl->error_group << 16; 3770 3771 addr = sdr_get_addr(&sdr_reg_file->failing_stage); 3772 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr); 3773 addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info); 3774 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr); 3775 addr = sdr_get_addr(&phy_mgr_cfg->cal_status); 3776 writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr); 3777 3778 /* Update the failing group/stage in the register file */ 3779 debug_info = gbl->error_stage; 3780 debug_info |= gbl->error_substage << 8; 3781 debug_info |= gbl->error_group << 16; 3782 addr = sdr_get_addr(&sdr_reg_file->failing_stage); 3783 writel(debug_info, SOCFPGA_SDR_ADDRESS + addr); 3784 } 3785 3786 return pass; 3787 } 3788 3789 static void hc_initialize_rom_data(void) 3790 { 3791 uint32_t i; 3792 uint32_t addr; 3793 3794 addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE)); 3795 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) { 3796 uint32_t data = inst_rom_init[i]; 3797 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2)); 3798 } 3799 3800 addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE)); 3801 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) { 3802 uint32_t data = ac_rom_init[i]; 3803 writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2)); 3804 } 3805 } 3806 3807 static void initialize_reg_file(void) 3808 { 3809 uint32_t addr; 3810 3811 /* Initialize the register file with the correct data */ 3812 addr = sdr_get_addr(&sdr_reg_file->signature); 3813 writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr); 3814 3815 addr = sdr_get_addr(&sdr_reg_file->debug_data_addr); 3816 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3817 3818 addr = sdr_get_addr(&sdr_reg_file->cur_stage); 3819 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3820 3821 addr = sdr_get_addr(&sdr_reg_file->fom); 3822 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3823 3824 addr = sdr_get_addr(&sdr_reg_file->failing_stage); 3825 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3826 3827 addr = sdr_get_addr(&sdr_reg_file->debug1); 3828 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3829 3830 addr = sdr_get_addr(&sdr_reg_file->debug2); 3831 writel(0, SOCFPGA_SDR_ADDRESS + addr); 3832 } 3833 3834 static void initialize_hps_phy(void) 3835 { 3836 uint32_t reg; 3837 uint32_t addr; 3838 /* 3839 * Tracking also gets configured here because it's in the 3840 * same register. 3841 */ 3842 uint32_t trk_sample_count = 7500; 3843 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3844 /* 3845 * Format is number of outer loops in the 16 MSB, sample 3846 * count in 16 LSB. 3847 */ 3848 3849 reg = 0; 3850 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3851 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3852 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3853 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3854 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3855 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3856 /* 3857 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3858 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3859 */ 3860 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3861 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3862 trk_sample_count); 3863 addr = sdr_get_addr((u32 *)BASE_MMR); 3864 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET); 3865 3866 reg = 0; 3867 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3868 trk_sample_count >> 3869 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3870 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3871 trk_long_idle_sample_count); 3872 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET); 3873 3874 reg = 0; 3875 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3876 trk_long_idle_sample_count >> 3877 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3878 writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET); 3879 } 3880 3881 static void initialize_tracking(void) 3882 { 3883 uint32_t concatenated_longidle = 0x0; 3884 uint32_t concatenated_delays = 0x0; 3885 uint32_t concatenated_rw_addr = 0x0; 3886 uint32_t concatenated_refresh = 0x0; 3887 uint32_t trk_sample_count = 7500; 3888 uint32_t dtaps_per_ptap; 3889 uint32_t tmp_delay; 3890 uint32_t addr; 3891 3892 /* 3893 * compute usable version of value in case we skip full 3894 * computation later 3895 */ 3896 dtaps_per_ptap = 0; 3897 tmp_delay = 0; 3898 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3899 dtaps_per_ptap++; 3900 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3901 } 3902 dtaps_per_ptap--; 3903 3904 concatenated_longidle = concatenated_longidle ^ 10; 3905 /*longidle outer loop */ 3906 concatenated_longidle = concatenated_longidle << 16; 3907 concatenated_longidle = concatenated_longidle ^ 100; 3908 /*longidle sample count */ 3909 concatenated_delays = concatenated_delays ^ 243; 3910 /* trfc, worst case of 933Mhz 4Gb */ 3911 concatenated_delays = concatenated_delays << 8; 3912 concatenated_delays = concatenated_delays ^ 14; 3913 /* trcd, worst case */ 3914 concatenated_delays = concatenated_delays << 8; 3915 concatenated_delays = concatenated_delays ^ 10; 3916 /* vfifo wait */ 3917 concatenated_delays = concatenated_delays << 8; 3918 concatenated_delays = concatenated_delays ^ 4; 3919 /* mux delay */ 3920 3921 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3922 concatenated_rw_addr = concatenated_rw_addr << 8; 3923 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3924 concatenated_rw_addr = concatenated_rw_addr << 8; 3925 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3926 concatenated_rw_addr = concatenated_rw_addr << 8; 3927 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3928 3929 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3930 concatenated_refresh = concatenated_refresh << 24; 3931 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3932 3933 /* Initialize the register file with the correct data */ 3934 addr = sdr_get_addr(&sdr_reg_file->dtaps_per_ptap); 3935 writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr); 3936 3937 addr = sdr_get_addr(&sdr_reg_file->trk_sample_count); 3938 writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr); 3939 3940 addr = sdr_get_addr(&sdr_reg_file->trk_longidle); 3941 writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr); 3942 3943 addr = sdr_get_addr(&sdr_reg_file->delays); 3944 writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr); 3945 3946 addr = sdr_get_addr(&sdr_reg_file->trk_rw_mgr_addr); 3947 writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr); 3948 3949 addr = sdr_get_addr(&sdr_reg_file->trk_read_dqs_width); 3950 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr); 3951 3952 addr = sdr_get_addr(&sdr_reg_file->trk_rfsh); 3953 writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr); 3954 } 3955 3956 int sdram_calibration_full(void) 3957 { 3958 struct param_type my_param; 3959 struct gbl_type my_gbl; 3960 uint32_t pass; 3961 uint32_t i; 3962 3963 param = &my_param; 3964 gbl = &my_gbl; 3965 3966 /* Initialize the debug mode flags */ 3967 gbl->phy_debug_mode_flags = 0; 3968 /* Set the calibration enabled by default */ 3969 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3970 /* 3971 * Only sweep all groups (regardless of fail state) by default 3972 * Set enabled read test by default. 3973 */ 3974 #if DISABLE_GUARANTEED_READ 3975 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3976 #endif 3977 /* Initialize the register file */ 3978 initialize_reg_file(); 3979 3980 /* Initialize any PHY CSR */ 3981 initialize_hps_phy(); 3982 3983 scc_mgr_initialize(); 3984 3985 initialize_tracking(); 3986 3987 /* USER Enable all ranks, groups */ 3988 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3989 param->skip_ranks[i] = 0; 3990 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3991 param->skip_shadow_regs[i] = 0; 3992 param->skip_groups = 0; 3993 3994 printf("%s: Preparing to start memory calibration\n", __FILE__); 3995 3996 debug("%s:%d\n", __func__, __LINE__); 3997 debug_cond(DLEVEL == 1, "DDR3 FULL_RATE ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu ", 3998 (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS, 3999 (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 4000 (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS, 4001 (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS, 4002 (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 4003 (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 4004 debug_cond(DLEVEL == 1, "dqs=%lu,%lu dq=%lu dm=%lu ptap_delay=%lu dtap_delay=%lu ", 4005 (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH, 4006 (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 4007 (long unsigned int)RW_MGR_MEM_DATA_WIDTH, 4008 (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH, 4009 (long unsigned int)IO_DELAY_PER_OPA_TAP, 4010 (long unsigned int)IO_DELAY_PER_DCHAIN_TAP); 4011 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%lu, dll=%lu", 4012 (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP, 4013 (long unsigned int)IO_DLL_CHAIN_LENGTH); 4014 debug_cond(DLEVEL == 1, "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu ", 4015 (long unsigned int)IO_DQS_EN_PHASE_MAX, 4016 (long unsigned int)IO_DQDQS_OUT_PHASE_MAX, 4017 (long unsigned int)IO_DQS_EN_DELAY_MAX, 4018 (long unsigned int)IO_DQS_IN_DELAY_MAX); 4019 debug_cond(DLEVEL == 1, "io_in_d=%lu io_out1_d=%lu io_out2_d=%lu ", 4020 (long unsigned int)IO_IO_IN_DELAY_MAX, 4021 (long unsigned int)IO_IO_OUT1_DELAY_MAX, 4022 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 4023 debug_cond(DLEVEL == 1, "dqs_in_reserve=%lu dqs_out_reserve=%lu\n", 4024 (long unsigned int)IO_DQS_IN_RESERVE, 4025 (long unsigned int)IO_DQS_OUT_RESERVE); 4026 4027 hc_initialize_rom_data(); 4028 4029 /* update info for sims */ 4030 reg_file_set_stage(CAL_STAGE_NIL); 4031 reg_file_set_group(0); 4032 4033 /* 4034 * Load global needed for those actions that require 4035 * some dynamic calibration support. 4036 */ 4037 dyn_calib_steps = STATIC_CALIB_STEPS; 4038 /* 4039 * Load global to allow dynamic selection of delay loop settings 4040 * based on calibration mode. 4041 */ 4042 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 4043 skip_delay_mask = 0xff; 4044 else 4045 skip_delay_mask = 0x0; 4046 4047 pass = run_mem_calibrate(); 4048 4049 printf("%s: Calibration complete\n", __FILE__); 4050 return pass; 4051 } 4052