xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 944fe7193e5514cf6233e11ac4b2d9e448da6988)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 static void initialize(void)
117 {
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* USER calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136 		param->read_correct_mask_vg  = ((uint32_t)1 <<
137 			(RW_MGR_MEM_DQ_PER_READ_DQS /
138 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139 		param->write_correct_mask_vg = ((uint32_t)1 <<
140 			(RW_MGR_MEM_DQ_PER_READ_DQS /
141 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142 		param->read_correct_mask     = ((uint32_t)1 <<
143 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144 		param->write_correct_mask    = ((uint32_t)1 <<
145 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146 		param->dm_correct_mask       = ((uint32_t)1 <<
147 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148 			- 1;
149 	}
150 }
151 
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154 	uint32_t odt_mask_0 = 0;
155 	uint32_t odt_mask_1 = 0;
156 	uint32_t cs_and_odt_mask;
157 
158 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160 			/*
161 			 * 1 Rank
162 			 * Read: ODT = 0
163 			 * Write: ODT = 1
164 			 */
165 			odt_mask_0 = 0x0;
166 			odt_mask_1 = 0x1;
167 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168 			/* 2 Ranks */
169 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170 				/* - Dual-Slot , Single-Rank
171 				 * (1 chip-select per DIMM)
172 				 * OR
173 				 * - RDIMM, 4 total CS (2 CS per DIMM)
174 				 * means 2 DIMM
175 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
176 				 * both single rank
177 				 * with 2 CS each (special for RDIMM)
178 				 * Read: Turn on ODT on the opposite rank
179 				 * Write: Turn on ODT on all ranks
180 				 */
181 				odt_mask_0 = 0x3 & ~(1 << rank);
182 				odt_mask_1 = 0x3;
183 			} else {
184 				/*
185 				 * USER - Single-Slot , Dual-rank DIMMs
186 				 * (2 chip-selects per DIMM)
187 				 * USER Read: Turn on ODT off on all ranks
188 				 * USER Write: Turn on ODT on active rank
189 				 */
190 				odt_mask_0 = 0x0;
191 				odt_mask_1 = 0x3 & (1 << rank);
192 			}
193 		} else {
194 			/* 4 Ranks
195 			 * Read:
196 			 * ----------+-----------------------+
197 			 *           |                       |
198 			 *           |         ODT           |
199 			 * Read From +-----------------------+
200 			 *   Rank    |  3  |  2  |  1  |  0  |
201 			 * ----------+-----+-----+-----+-----+
202 			 *     0     |  0  |  1  |  0  |  0  |
203 			 *     1     |  1  |  0  |  0  |  0  |
204 			 *     2     |  0  |  0  |  0  |  1  |
205 			 *     3     |  0  |  0  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *
208 			 * Write:
209 			 * ----------+-----------------------+
210 			 *           |                       |
211 			 *           |         ODT           |
212 			 * Write To  +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  1  |
216 			 *     1     |  1  |  0  |  1  |  0  |
217 			 *     2     |  0  |  1  |  0  |  1  |
218 			 *     3     |  1  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 */
221 			switch (rank) {
222 			case 0:
223 				odt_mask_0 = 0x4;
224 				odt_mask_1 = 0x5;
225 				break;
226 			case 1:
227 				odt_mask_0 = 0x8;
228 				odt_mask_1 = 0xA;
229 				break;
230 			case 2:
231 				odt_mask_0 = 0x1;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 3:
235 				odt_mask_0 = 0x2;
236 				odt_mask_1 = 0xA;
237 				break;
238 			}
239 		}
240 	} else {
241 		odt_mask_0 = 0x0;
242 		odt_mask_1 = 0x0;
243 	}
244 
245 	cs_and_odt_mask =
246 		(0xFF & ~(1 << rank)) |
247 		((0xFF & odt_mask_0) << 8) |
248 		((0xFF & odt_mask_1) << 16);
249 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252 
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:	Base offset in SCC Manager space
256  * @grp:	Read/Write group
257  * @val:	Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265 
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273 	/*
274 	 * Clear register file for HPS. 16 (2^4) is the size of the
275 	 * full register file in the scc mgr:
276 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
278 	 */
279 	int i;
280 
281 	for (i = 0; i < 16; i++) {
282 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283 			   __func__, __LINE__, i);
284 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285 	}
286 }
287 
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292 
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297 
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302 
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307 
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311 		    delay);
312 }
313 
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318 
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327 		    delay);
328 }
329 
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334 		    delay);
335 }
336 
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340 	writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342 
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346 	writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348 
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354 
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358 	writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360 
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:	Base offset in SCC Manager space
364  * @grp:	Read/Write group
365  * @val:	Value to be set
366  * @update:	If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372 				  const int update)
373 {
374 	u32 r;
375 
376 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377 	     r += NUM_RANKS_PER_SHADOW_REG) {
378 		scc_mgr_set(off, grp, val);
379 
380 		if (update || (r == 0)) {
381 			writel(grp, &sdr_scc_mgr->dqs_ena);
382 			writel(0, &sdr_scc_mgr->update);
383 		}
384 	}
385 }
386 
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389 	/*
390 	 * USER although the h/w doesn't support different phases per
391 	 * shadow register, for simplicity our scc manager modeling
392 	 * keeps different phase settings per shadow reg, and it's
393 	 * important for us to keep them in sync to match h/w.
394 	 * for efficiency, the scan chain update should occur only
395 	 * once to sr0.
396 	 */
397 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398 			      read_group, phase, 0);
399 }
400 
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402 						     uint32_t phase)
403 {
404 	/*
405 	 * USER although the h/w doesn't support different phases per
406 	 * shadow register, for simplicity our scc manager modeling
407 	 * keeps different phase settings per shadow reg, and it's
408 	 * important for us to keep them in sync to match h/w.
409 	 * for efficiency, the scan chain update should occur only
410 	 * once to sr0.
411 	 */
412 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413 			      write_group, phase, 0);
414 }
415 
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417 					       uint32_t delay)
418 {
419 	/*
420 	 * In shadow register mode, the T11 settings are stored in
421 	 * registers in the core, which are updated by the DQS_ENA
422 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 	 * save lots of rank switching overhead, by calling
424 	 * select_shadow_regs_for_update with update_scan_chains
425 	 * set to 0.
426 	 */
427 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428 			      read_group, delay, 1);
429 	writel(0, &sdr_scc_mgr->update);
430 }
431 
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:	Write group
435  * @delay:		Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443 	const int base = write_group * ratio;
444 	int i;
445 	/*
446 	 * Load the setting in the SCC manager
447 	 * Although OCT affects only write data, the OCT delay is controlled
448 	 * by the DQS logic block which is instantiated once per read group.
449 	 * For protocols where a write group consists of multiple read groups,
450 	 * the setting must be set multiple times.
451 	 */
452 	for (i = 0; i < ratio; i++)
453 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455 
456 /**
457  * scc_mgr_set_hhp_extras() - Set HHP extras.
458  *
459  * Load the fixed setting in the SCC manager HHP extras.
460  */
461 static void scc_mgr_set_hhp_extras(void)
462 {
463 	/*
464 	 * Load the fixed setting in the SCC manager
465 	 * bits: 0:0 = 1'b1	- DQS bypass
466 	 * bits: 1:1 = 1'b1	- DQ bypass
467 	 * bits: 4:2 = 3'b001	- rfifo_mode
468 	 * bits: 6:5 = 2'b01	- rfifo clock_select
469 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
470 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
471 	 */
472 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473 			  (1 << 2) | (1 << 1) | (1 << 0);
474 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475 			 SCC_MGR_HHP_GLOBALS_OFFSET |
476 			 SCC_MGR_HHP_EXTRAS_OFFSET;
477 
478 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479 		   __func__, __LINE__);
480 	writel(value, addr);
481 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482 		   __func__, __LINE__);
483 }
484 
485 /**
486  * scc_mgr_zero_all() - Zero all DQS config
487  *
488  * Zero all DQS config.
489  */
490 static void scc_mgr_zero_all(void)
491 {
492 	int i, r;
493 
494 	/*
495 	 * USER Zero all DQS config settings, across all groups and all
496 	 * shadow registers
497 	 */
498 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
499 	     r += NUM_RANKS_PER_SHADOW_REG) {
500 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
501 			/*
502 			 * The phases actually don't exist on a per-rank basis,
503 			 * but there's no harm updating them several times, so
504 			 * let's keep the code simple.
505 			 */
506 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
507 			scc_mgr_set_dqs_en_phase(i, 0);
508 			scc_mgr_set_dqs_en_delay(i, 0);
509 		}
510 
511 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
512 			scc_mgr_set_dqdqs_output_phase(i, 0);
513 			/* Arria V/Cyclone V don't have out2. */
514 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
515 		}
516 	}
517 
518 	/* Multicast to all DQS group enables. */
519 	writel(0xff, &sdr_scc_mgr->dqs_ena);
520 	writel(0, &sdr_scc_mgr->update);
521 }
522 
523 /**
524  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
525  * @write_group:	Write group
526  *
527  * Set bypass mode and trigger SCC update.
528  */
529 static void scc_set_bypass_mode(const u32 write_group)
530 {
531 	/* Multicast to all DQ enables. */
532 	writel(0xff, &sdr_scc_mgr->dq_ena);
533 	writel(0xff, &sdr_scc_mgr->dm_ena);
534 
535 	/* Update current DQS IO enable. */
536 	writel(0, &sdr_scc_mgr->dqs_io_ena);
537 
538 	/* Update the DQS logic. */
539 	writel(write_group, &sdr_scc_mgr->dqs_ena);
540 
541 	/* Hit update. */
542 	writel(0, &sdr_scc_mgr->update);
543 }
544 
545 /**
546  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
547  * @write_group:	Write group
548  *
549  * Load DQS settings for Write Group, do not trigger SCC update.
550  */
551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
552 {
553 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
554 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
555 	const int base = write_group * ratio;
556 	int i;
557 	/*
558 	 * Load the setting in the SCC manager
559 	 * Although OCT affects only write data, the OCT delay is controlled
560 	 * by the DQS logic block which is instantiated once per read group.
561 	 * For protocols where a write group consists of multiple read groups,
562 	 * the setting must be set multiple times.
563 	 */
564 	for (i = 0; i < ratio; i++)
565 		writel(base + i, &sdr_scc_mgr->dqs_ena);
566 }
567 
568 /**
569  * scc_mgr_zero_group() - Zero all configs for a group
570  *
571  * Zero DQ, DM, DQS and OCT configs for a group.
572  */
573 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
574 {
575 	int i, r;
576 
577 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
578 	     r += NUM_RANKS_PER_SHADOW_REG) {
579 		/* Zero all DQ config settings. */
580 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
581 			scc_mgr_set_dq_out1_delay(i, 0);
582 			if (!out_only)
583 				scc_mgr_set_dq_in_delay(i, 0);
584 		}
585 
586 		/* Multicast to all DQ enables. */
587 		writel(0xff, &sdr_scc_mgr->dq_ena);
588 
589 		/* Zero all DM config settings. */
590 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
591 			scc_mgr_set_dm_out1_delay(i, 0);
592 
593 		/* Multicast to all DM enables. */
594 		writel(0xff, &sdr_scc_mgr->dm_ena);
595 
596 		/* Zero all DQS IO settings. */
597 		if (!out_only)
598 			scc_mgr_set_dqs_io_in_delay(0);
599 
600 		/* Arria V/Cyclone V don't have out2. */
601 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
602 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
603 		scc_mgr_load_dqs_for_write_group(write_group);
604 
605 		/* Multicast to all DQS IO enables (only 1 in total). */
606 		writel(0, &sdr_scc_mgr->dqs_io_ena);
607 
608 		/* Hit update to zero everything. */
609 		writel(0, &sdr_scc_mgr->update);
610 	}
611 }
612 
613 /*
614  * apply and load a particular input delay for the DQ pins in a group
615  * group_bgn is the index of the first dq pin (in the write group)
616  */
617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
618 {
619 	uint32_t i, p;
620 
621 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
622 		scc_mgr_set_dq_in_delay(p, delay);
623 		scc_mgr_load_dq(p);
624 	}
625 }
626 
627 /**
628  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
629  * @delay:		Delay value
630  *
631  * Apply and load a particular output delay for the DQ pins in a group.
632  */
633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
634 {
635 	int i;
636 
637 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
638 		scc_mgr_set_dq_out1_delay(i, delay);
639 		scc_mgr_load_dq(i);
640 	}
641 }
642 
643 /* apply and load a particular output delay for the DM pins in a group */
644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
645 {
646 	uint32_t i;
647 
648 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
649 		scc_mgr_set_dm_out1_delay(i, delay1);
650 		scc_mgr_load_dm(i);
651 	}
652 }
653 
654 
655 /* apply and load delay on both DQS and OCT out1 */
656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
657 						    uint32_t delay)
658 {
659 	scc_mgr_set_dqs_out1_delay(delay);
660 	scc_mgr_load_dqs_io();
661 
662 	scc_mgr_set_oct_out1_delay(write_group, delay);
663 	scc_mgr_load_dqs_for_write_group(write_group);
664 }
665 
666 /**
667  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
668  * @write_group:	Write group
669  * @delay:		Delay value
670  *
671  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
672  */
673 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
674 						  const u32 delay)
675 {
676 	u32 i, new_delay;
677 
678 	/* DQ shift */
679 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
680 		scc_mgr_load_dq(i);
681 
682 	/* DM shift */
683 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
684 		scc_mgr_load_dm(i);
685 
686 	/* DQS shift */
687 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
688 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
689 		debug_cond(DLEVEL == 1,
690 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
691 			   __func__, __LINE__, write_group, delay, new_delay,
692 			   IO_IO_OUT2_DELAY_MAX,
693 			   new_delay - IO_IO_OUT2_DELAY_MAX);
694 		new_delay -= IO_IO_OUT2_DELAY_MAX;
695 		scc_mgr_set_dqs_out1_delay(new_delay);
696 	}
697 
698 	scc_mgr_load_dqs_io();
699 
700 	/* OCT shift */
701 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
702 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
703 		debug_cond(DLEVEL == 1,
704 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
705 			   __func__, __LINE__, write_group, delay,
706 			   new_delay, IO_IO_OUT2_DELAY_MAX,
707 			   new_delay - IO_IO_OUT2_DELAY_MAX);
708 		new_delay -= IO_IO_OUT2_DELAY_MAX;
709 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
710 	}
711 
712 	scc_mgr_load_dqs_for_write_group(write_group);
713 }
714 
715 /**
716  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
717  * @write_group:	Write group
718  * @delay:		Delay value
719  *
720  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
721  */
722 static void
723 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
724 						const u32 delay)
725 {
726 	int r;
727 
728 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
729 	     r += NUM_RANKS_PER_SHADOW_REG) {
730 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
731 		writel(0, &sdr_scc_mgr->update);
732 	}
733 }
734 
735 /* optimization used to recover some slots in ddr3 inst_rom */
736 /* could be applied to other protocols if we wanted to */
737 static void set_jump_as_return(void)
738 {
739 	/*
740 	 * to save space, we replace return with jump to special shared
741 	 * RETURN instruction so we set the counter to large value so that
742 	 * we always jump
743 	 */
744 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
745 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
746 }
747 
748 /*
749  * should always use constants as argument to ensure all computations are
750  * performed at compile time
751  */
752 static void delay_for_n_mem_clocks(const uint32_t clocks)
753 {
754 	uint32_t afi_clocks;
755 	uint8_t inner = 0;
756 	uint8_t outer = 0;
757 	uint16_t c_loop = 0;
758 
759 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
760 
761 
762 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
763 	/* scale (rounding up) to get afi clocks */
764 
765 	/*
766 	 * Note, we don't bother accounting for being off a little bit
767 	 * because of a few extra instructions in outer loops
768 	 * Note, the loops have a test at the end, and do the test before
769 	 * the decrement, and so always perform the loop
770 	 * 1 time more than the counter value
771 	 */
772 	if (afi_clocks == 0) {
773 		;
774 	} else if (afi_clocks <= 0x100) {
775 		inner = afi_clocks-1;
776 		outer = 0;
777 		c_loop = 0;
778 	} else if (afi_clocks <= 0x10000) {
779 		inner = 0xff;
780 		outer = (afi_clocks-1) >> 8;
781 		c_loop = 0;
782 	} else {
783 		inner = 0xff;
784 		outer = 0xff;
785 		c_loop = (afi_clocks-1) >> 16;
786 	}
787 
788 	/*
789 	 * rom instructions are structured as follows:
790 	 *
791 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
792 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
793 	 *                return
794 	 *
795 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
796 	 * TARGET_B is set to IDLE_LOOP2 as well
797 	 *
798 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
799 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
800 	 *
801 	 * a little confusing, but it helps save precious space in the inst_rom
802 	 * and sequencer rom and keeps the delays more accurate and reduces
803 	 * overhead
804 	 */
805 	if (afi_clocks <= 0x100) {
806 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
807 			&sdr_rw_load_mgr_regs->load_cntr1);
808 
809 		writel(RW_MGR_IDLE_LOOP1,
810 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
811 
812 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
813 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
814 	} else {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr0);
817 
818 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
819 			&sdr_rw_load_mgr_regs->load_cntr1);
820 
821 		writel(RW_MGR_IDLE_LOOP2,
822 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
823 
824 		writel(RW_MGR_IDLE_LOOP2,
825 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
826 
827 		/* hack to get around compiler not being smart enough */
828 		if (afi_clocks <= 0x10000) {
829 			/* only need to run once */
830 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
831 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832 		} else {
833 			do {
834 				writel(RW_MGR_IDLE_LOOP2,
835 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
836 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
837 			} while (c_loop-- != 0);
838 		}
839 	}
840 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
841 }
842 
843 /**
844  * rw_mgr_mem_init_load_regs() - Load instruction registers
845  * @cntr0:	Counter 0 value
846  * @cntr1:	Counter 1 value
847  * @cntr2:	Counter 2 value
848  * @jump:	Jump instruction value
849  *
850  * Load instruction registers.
851  */
852 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
853 {
854 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
855 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
856 
857 	/* Load counters */
858 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
859 	       &sdr_rw_load_mgr_regs->load_cntr0);
860 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
861 	       &sdr_rw_load_mgr_regs->load_cntr1);
862 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
863 	       &sdr_rw_load_mgr_regs->load_cntr2);
864 
865 	/* Load jump address */
866 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
867 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
868 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
869 
870 	/* Execute count instruction */
871 	writel(jump, grpaddr);
872 }
873 
874 static void rw_mgr_mem_initialize(void)
875 {
876 	uint32_t r;
877 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
878 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
879 
880 	debug("%s:%d\n", __func__, __LINE__);
881 
882 	/* The reset / cke part of initialization is broadcasted to all ranks */
883 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
884 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
885 
886 	/*
887 	 * Here's how you load register for a loop
888 	 * Counters are located @ 0x800
889 	 * Jump address are located @ 0xC00
890 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
891 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
892 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
893 	 * significant bits
894 	 */
895 
896 	/* start with memory RESET activated */
897 
898 	/* tINIT = 200us */
899 
900 	/*
901 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
902 	 * If a and b are the number of iteration in 2 nested loops
903 	 * it takes the following number of cycles to complete the operation:
904 	 * number_of_cycles = ((2 + n) * a + 2) * b
905 	 * where n is the number of instruction in the inner loop
906 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
907 	 * b = 6A
908 	 */
909 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
910 				  SEQ_TINIT_CNTR2_VAL,
911 				  RW_MGR_INIT_RESET_0_CKE_0);
912 
913 	/* indicate that memory is stable */
914 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
915 
916 	/*
917 	 * transition the RESET to high
918 	 * Wait for 500us
919 	 */
920 
921 	/*
922 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
923 	 * If a and b are the number of iteration in 2 nested loops
924 	 * it takes the following number of cycles to complete the operation
925 	 * number_of_cycles = ((2 + n) * a + 2) * b
926 	 * where n is the number of instruction in the inner loop
927 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
928 	 * b = FF
929 	 */
930 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
931 				  SEQ_TRESET_CNTR2_VAL,
932 				  RW_MGR_INIT_RESET_1_CKE_0);
933 
934 	/* bring up clock enable */
935 
936 	/* tXRP < 250 ck cycles */
937 	delay_for_n_mem_clocks(250);
938 
939 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
940 		if (param->skip_ranks[r]) {
941 			/* request to skip the rank */
942 			continue;
943 		}
944 
945 		/* set rank */
946 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
947 
948 		/*
949 		 * USER Use Mirror-ed commands for odd ranks if address
950 		 * mirrorring is on
951 		 */
952 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
953 			set_jump_as_return();
954 			writel(RW_MGR_MRS2_MIRR, grpaddr);
955 			delay_for_n_mem_clocks(4);
956 			set_jump_as_return();
957 			writel(RW_MGR_MRS3_MIRR, grpaddr);
958 			delay_for_n_mem_clocks(4);
959 			set_jump_as_return();
960 			writel(RW_MGR_MRS1_MIRR, grpaddr);
961 			delay_for_n_mem_clocks(4);
962 			set_jump_as_return();
963 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
964 		} else {
965 			set_jump_as_return();
966 			writel(RW_MGR_MRS2, grpaddr);
967 			delay_for_n_mem_clocks(4);
968 			set_jump_as_return();
969 			writel(RW_MGR_MRS3, grpaddr);
970 			delay_for_n_mem_clocks(4);
971 			set_jump_as_return();
972 			writel(RW_MGR_MRS1, grpaddr);
973 			set_jump_as_return();
974 			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
975 		}
976 		set_jump_as_return();
977 		writel(RW_MGR_ZQCL, grpaddr);
978 
979 		/* tZQinit = tDLLK = 512 ck cycles */
980 		delay_for_n_mem_clocks(512);
981 	}
982 }
983 
984 /*
985  * At the end of calibration we have to program the user settings in, and
986  * USER  hand off the memory to the user.
987  */
988 static void rw_mgr_mem_handoff(void)
989 {
990 	uint32_t r;
991 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
992 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
993 
994 	debug("%s:%d\n", __func__, __LINE__);
995 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
996 		if (param->skip_ranks[r])
997 			/* request to skip the rank */
998 			continue;
999 		/* set rank */
1000 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1001 
1002 		/* precharge all banks ... */
1003 		writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1004 
1005 		/* load up MR settings specified by user */
1006 
1007 		/*
1008 		 * Use Mirror-ed commands for odd ranks if address
1009 		 * mirrorring is on
1010 		 */
1011 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1012 			set_jump_as_return();
1013 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1014 			delay_for_n_mem_clocks(4);
1015 			set_jump_as_return();
1016 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1017 			delay_for_n_mem_clocks(4);
1018 			set_jump_as_return();
1019 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1020 			delay_for_n_mem_clocks(4);
1021 			set_jump_as_return();
1022 			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1023 		} else {
1024 			set_jump_as_return();
1025 			writel(RW_MGR_MRS2, grpaddr);
1026 			delay_for_n_mem_clocks(4);
1027 			set_jump_as_return();
1028 			writel(RW_MGR_MRS3, grpaddr);
1029 			delay_for_n_mem_clocks(4);
1030 			set_jump_as_return();
1031 			writel(RW_MGR_MRS1, grpaddr);
1032 			delay_for_n_mem_clocks(4);
1033 			set_jump_as_return();
1034 			writel(RW_MGR_MRS0_USER, grpaddr);
1035 		}
1036 		/*
1037 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1038 		 * other commands, but we will have plenty of NIOS cycles before
1039 		 * actual handoff so its okay.
1040 		 */
1041 	}
1042 }
1043 
1044 /*
1045  * performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works
1047  */
1048 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1049 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1050 	uint32_t all_ranks)
1051 {
1052 	uint32_t r, vg;
1053 	uint32_t correct_mask_vg;
1054 	uint32_t tmp_bit_chk;
1055 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1056 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1057 	uint32_t addr;
1058 	uint32_t base_rw_mgr;
1059 
1060 	*bit_chk = param->read_correct_mask;
1061 	correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	for (r = rank_bgn; r < rank_end; r++) {
1064 		if (param->skip_ranks[r])
1065 			/* request to skip the rank */
1066 			continue;
1067 
1068 		/* set rank */
1069 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1070 
1071 		/* Load up a constant bursts of read commands */
1072 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1073 		writel(RW_MGR_GUARANTEED_READ,
1074 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1075 
1076 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1077 		writel(RW_MGR_GUARANTEED_READ_CONT,
1078 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1079 
1080 		tmp_bit_chk = 0;
1081 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1082 			/* reset the fifos to get pointers to known state */
1083 
1084 			writel(0, &phy_mgr_cmd->fifo_reset);
1085 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1086 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1087 
1088 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1089 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1090 
1091 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1092 			writel(RW_MGR_GUARANTEED_READ, addr +
1093 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1094 				vg) << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1098 
1099 			if (vg == 0)
1100 				break;
1101 		}
1102 		*bit_chk &= tmp_bit_chk;
1103 	}
1104 
1105 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1106 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1107 
1108 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1109 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1110 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1111 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1112 	return *bit_chk == param->read_correct_mask;
1113 }
1114 
1115 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1116 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1117 {
1118 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1119 		num_tries, bit_chk, 1);
1120 }
1121 
1122 /* load up the patterns we are going to use during a read test */
1123 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1124 	uint32_t all_ranks)
1125 {
1126 	uint32_t r;
1127 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1128 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1129 
1130 	debug("%s:%d\n", __func__, __LINE__);
1131 	for (r = rank_bgn; r < rank_end; r++) {
1132 		if (param->skip_ranks[r])
1133 			/* request to skip the rank */
1134 			continue;
1135 
1136 		/* set rank */
1137 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1138 
1139 		/* Load up a constant bursts */
1140 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1141 
1142 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1143 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1144 
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149 
1150 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1159 
1160 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1161 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1162 	}
1163 
1164 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1165 }
1166 
1167 /*
1168  * try a read and see if it returns correct data back. has dummy reads
1169  * inserted into the mix used to align dqs enable. has more thorough checks
1170  * than the regular read test.
1171  */
1172 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1173 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1174 	uint32_t all_groups, uint32_t all_ranks)
1175 {
1176 	uint32_t r, vg;
1177 	uint32_t correct_mask_vg;
1178 	uint32_t tmp_bit_chk;
1179 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1180 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1181 	uint32_t addr;
1182 	uint32_t base_rw_mgr;
1183 
1184 	*bit_chk = param->read_correct_mask;
1185 	correct_mask_vg = param->read_correct_mask_vg;
1186 
1187 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1188 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1189 
1190 	for (r = rank_bgn; r < rank_end; r++) {
1191 		if (param->skip_ranks[r])
1192 			/* request to skip the rank */
1193 			continue;
1194 
1195 		/* set rank */
1196 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1197 
1198 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1199 
1200 		writel(RW_MGR_READ_B2B_WAIT1,
1201 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1204 		writel(RW_MGR_READ_B2B_WAIT2,
1205 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1206 
1207 		if (quick_read_mode)
1208 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1209 			/* need at least two (1+1) reads to capture failures */
1210 		else if (all_groups)
1211 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1212 		else
1213 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1214 
1215 		writel(RW_MGR_READ_B2B,
1216 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1217 		if (all_groups)
1218 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1219 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1220 			       &sdr_rw_load_mgr_regs->load_cntr3);
1221 		else
1222 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1223 
1224 		writel(RW_MGR_READ_B2B,
1225 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1226 
1227 		tmp_bit_chk = 0;
1228 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1229 			/* reset the fifos to get pointers to known state */
1230 			writel(0, &phy_mgr_cmd->fifo_reset);
1231 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1232 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1233 
1234 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1235 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1236 
1237 			if (all_groups)
1238 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1239 			else
1240 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241 
1242 			writel(RW_MGR_READ_B2B, addr +
1243 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1244 			       vg) << 2));
1245 
1246 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1247 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1248 
1249 			if (vg == 0)
1250 				break;
1251 		}
1252 		*bit_chk &= tmp_bit_chk;
1253 	}
1254 
1255 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1256 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1257 
1258 	if (all_correct) {
1259 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1260 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1261 			   (%u == %u) => %lu", __func__, __LINE__, group,
1262 			   all_groups, *bit_chk, param->read_correct_mask,
1263 			   (long unsigned int)(*bit_chk ==
1264 			   param->read_correct_mask));
1265 		return *bit_chk == param->read_correct_mask;
1266 	} else	{
1267 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1268 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1269 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1270 			   group, all_groups, *bit_chk, (long unsigned int)0,
1271 			   (long unsigned int)(*bit_chk != 0x00));
1272 		return *bit_chk != 0x00;
1273 	}
1274 }
1275 
1276 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1277 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1278 	uint32_t all_groups)
1279 {
1280 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1281 					      bit_chk, all_groups, 1);
1282 }
1283 
1284 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1285 {
1286 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1287 	(*v)++;
1288 }
1289 
1290 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1291 {
1292 	uint32_t i;
1293 
1294 	for (i = 0; i < VFIFO_SIZE-1; i++)
1295 		rw_mgr_incr_vfifo(grp, v);
1296 }
1297 
1298 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1299 {
1300 	uint32_t  v;
1301 	uint32_t fail_cnt = 0;
1302 	uint32_t test_status;
1303 
1304 	for (v = 0; v < VFIFO_SIZE; ) {
1305 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1306 			   __func__, __LINE__, v);
1307 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1308 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1309 		if (!test_status) {
1310 			fail_cnt++;
1311 
1312 			if (fail_cnt == 2)
1313 				break;
1314 		}
1315 
1316 		/* fiddle with FIFO */
1317 		rw_mgr_incr_vfifo(grp, &v);
1318 	}
1319 
1320 	if (v >= VFIFO_SIZE) {
1321 		/* no failing read found!! Something must have gone wrong */
1322 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1323 			   __func__, __LINE__);
1324 		return 0;
1325 	} else {
1326 		return v;
1327 	}
1328 }
1329 
1330 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1331 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1332 			      uint32_t *v, uint32_t *d, uint32_t *p,
1333 			      uint32_t *i, uint32_t *max_working_cnt)
1334 {
1335 	uint32_t found_begin = 0;
1336 	uint32_t tmp_delay = 0;
1337 	uint32_t test_status;
1338 
1339 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1340 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1341 		*work_bgn = tmp_delay;
1342 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1343 
1344 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1345 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1346 				IO_DELAY_PER_OPA_TAP) {
1347 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1348 
1349 				test_status =
1350 				rw_mgr_mem_calibrate_read_test_all_ranks
1351 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1352 
1353 				if (test_status) {
1354 					*max_working_cnt = 1;
1355 					found_begin = 1;
1356 					break;
1357 				}
1358 			}
1359 
1360 			if (found_begin)
1361 				break;
1362 
1363 			if (*p > IO_DQS_EN_PHASE_MAX)
1364 				/* fiddle with FIFO */
1365 				rw_mgr_incr_vfifo(*grp, v);
1366 		}
1367 
1368 		if (found_begin)
1369 			break;
1370 	}
1371 
1372 	if (*i >= VFIFO_SIZE) {
1373 		/* cannot find working solution */
1374 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1375 			   ptap/dtap\n", __func__, __LINE__);
1376 		return 0;
1377 	} else {
1378 		return 1;
1379 	}
1380 }
1381 
1382 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1383 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1384 			     uint32_t *p, uint32_t *max_working_cnt)
1385 {
1386 	uint32_t found_begin = 0;
1387 	uint32_t tmp_delay;
1388 
1389 	/* Special case code for backing up a phase */
1390 	if (*p == 0) {
1391 		*p = IO_DQS_EN_PHASE_MAX;
1392 		rw_mgr_decr_vfifo(*grp, v);
1393 	} else {
1394 		(*p)--;
1395 	}
1396 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1397 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1398 
1399 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1400 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1401 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1402 
1403 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1404 							     PASS_ONE_BIT,
1405 							     bit_chk, 0)) {
1406 			found_begin = 1;
1407 			*work_bgn = tmp_delay;
1408 			break;
1409 		}
1410 	}
1411 
1412 	/* We have found a working dtap before the ptap found above */
1413 	if (found_begin == 1)
1414 		(*max_working_cnt)++;
1415 
1416 	/*
1417 	 * Restore VFIFO to old state before we decremented it
1418 	 * (if needed).
1419 	 */
1420 	(*p)++;
1421 	if (*p > IO_DQS_EN_PHASE_MAX) {
1422 		*p = 0;
1423 		rw_mgr_incr_vfifo(*grp, v);
1424 	}
1425 
1426 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1427 }
1428 
1429 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1430 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1431 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1432 			     uint32_t *work_end)
1433 {
1434 	uint32_t found_end = 0;
1435 
1436 	(*p)++;
1437 	*work_end += IO_DELAY_PER_OPA_TAP;
1438 	if (*p > IO_DQS_EN_PHASE_MAX) {
1439 		/* fiddle with FIFO */
1440 		*p = 0;
1441 		rw_mgr_incr_vfifo(*grp, v);
1442 	}
1443 
1444 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1445 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1446 			+= IO_DELAY_PER_OPA_TAP) {
1447 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1448 
1449 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1450 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1451 				found_end = 1;
1452 				break;
1453 			} else {
1454 				(*max_working_cnt)++;
1455 			}
1456 		}
1457 
1458 		if (found_end)
1459 			break;
1460 
1461 		if (*p > IO_DQS_EN_PHASE_MAX) {
1462 			/* fiddle with FIFO */
1463 			rw_mgr_incr_vfifo(*grp, v);
1464 			*p = 0;
1465 		}
1466 	}
1467 
1468 	if (*i >= VFIFO_SIZE + 1) {
1469 		/* cannot see edge of failing read */
1470 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1471 			   failed\n", __func__, __LINE__);
1472 		return 0;
1473 	} else {
1474 		return 1;
1475 	}
1476 }
1477 
1478 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1479 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1480 				  uint32_t *p, uint32_t *work_mid,
1481 				  uint32_t *work_end)
1482 {
1483 	int i;
1484 	int tmp_delay = 0;
1485 
1486 	*work_mid = (*work_bgn + *work_end) / 2;
1487 
1488 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1489 		   *work_bgn, *work_end, *work_mid);
1490 	/* Get the middle delay to be less than a VFIFO delay */
1491 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1492 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1493 		;
1494 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1495 	while (*work_mid > tmp_delay)
1496 		*work_mid -= tmp_delay;
1497 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1498 
1499 	tmp_delay = 0;
1500 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1501 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1502 		;
1503 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1504 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1505 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1506 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1507 		;
1508 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1509 
1510 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1511 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1512 
1513 	/*
1514 	 * push vfifo until we can successfully calibrate. We can do this
1515 	 * because the largest possible margin in 1 VFIFO cycle.
1516 	 */
1517 	for (i = 0; i < VFIFO_SIZE; i++) {
1518 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1519 			   *v);
1520 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1521 							     PASS_ONE_BIT,
1522 							     bit_chk, 0)) {
1523 			break;
1524 		}
1525 
1526 		/* fiddle with FIFO */
1527 		rw_mgr_incr_vfifo(*grp, v);
1528 	}
1529 
1530 	if (i >= VFIFO_SIZE) {
1531 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1532 			   failed\n", __func__, __LINE__);
1533 		return 0;
1534 	} else {
1535 		return 1;
1536 	}
1537 }
1538 
1539 /* find a good dqs enable to use */
1540 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1541 {
1542 	uint32_t v, d, p, i;
1543 	uint32_t max_working_cnt;
1544 	uint32_t bit_chk;
1545 	uint32_t dtaps_per_ptap;
1546 	uint32_t work_bgn, work_mid, work_end;
1547 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1548 
1549 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1550 
1551 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1552 
1553 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1554 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1555 
1556 	/* ************************************************************** */
1557 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1558 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1559 
1560 	/* ********************************************************* */
1561 	/* * Step 1 : First push vfifo until we get a failing read * */
1562 	v = find_vfifo_read(grp, &bit_chk);
1563 
1564 	max_working_cnt = 0;
1565 
1566 	/* ******************************************************** */
1567 	/* * step 2: find first working phase, increment in ptaps * */
1568 	work_bgn = 0;
1569 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1570 				&p, &i, &max_working_cnt) == 0)
1571 		return 0;
1572 
1573 	work_end = work_bgn;
1574 
1575 	/*
1576 	 * If d is 0 then the working window covers a phase tap and
1577 	 * we can follow the old procedure otherwise, we've found the beginning,
1578 	 * and we need to increment the dtaps until we find the end.
1579 	 */
1580 	if (d == 0) {
1581 		/* ********************************************************* */
1582 		/* * step 3a: if we have room, back off by one and
1583 		increment in dtaps * */
1584 
1585 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1586 				 &max_working_cnt);
1587 
1588 		/* ********************************************************* */
1589 		/* * step 4a: go forward from working phase to non working
1590 		phase, increment in ptaps * */
1591 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1592 					 &i, &max_working_cnt, &work_end) == 0)
1593 			return 0;
1594 
1595 		/* ********************************************************* */
1596 		/* * step 5a:  back off one from last, increment in dtaps  * */
1597 
1598 		/* Special case code for backing up a phase */
1599 		if (p == 0) {
1600 			p = IO_DQS_EN_PHASE_MAX;
1601 			rw_mgr_decr_vfifo(grp, &v);
1602 		} else {
1603 			p = p - 1;
1604 		}
1605 
1606 		work_end -= IO_DELAY_PER_OPA_TAP;
1607 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1608 
1609 		/* * The actual increment of dtaps is done outside of
1610 		the if/else loop to share code */
1611 		d = 0;
1612 
1613 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1614 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1615 			   v, p);
1616 	} else {
1617 		/* ******************************************************* */
1618 		/* * step 3-5b:  Find the right edge of the window using
1619 		delay taps   * */
1620 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1621 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1622 			   v, p, d, work_bgn);
1623 
1624 		work_end = work_bgn;
1625 
1626 		/* * The actual increment of dtaps is done outside of the
1627 		if/else loop to share code */
1628 
1629 		/* Only here to counterbalance a subtract later on which is
1630 		not needed if this branch of the algorithm is taken */
1631 		max_working_cnt++;
1632 	}
1633 
1634 	/* The dtap increment to find the failing edge is done here */
1635 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1636 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1637 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1638 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1639 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1640 
1641 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1642 								      PASS_ONE_BIT,
1643 								      &bit_chk, 0)) {
1644 				break;
1645 			}
1646 	}
1647 
1648 	/* Go back to working dtap */
1649 	if (d != 0)
1650 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1651 
1652 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1653 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1654 		   v, p, d-1, work_end);
1655 
1656 	if (work_end < work_bgn) {
1657 		/* nil range */
1658 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1659 			   failed\n", __func__, __LINE__);
1660 		return 0;
1661 	}
1662 
1663 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1664 		   __func__, __LINE__, work_bgn, work_end);
1665 
1666 	/* *************************************************************** */
1667 	/*
1668 	 * * We need to calculate the number of dtaps that equal a ptap
1669 	 * * To do that we'll back up a ptap and re-find the edge of the
1670 	 * * window using dtaps
1671 	 */
1672 
1673 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1674 		   for tracking\n", __func__, __LINE__);
1675 
1676 	/* Special case code for backing up a phase */
1677 	if (p == 0) {
1678 		p = IO_DQS_EN_PHASE_MAX;
1679 		rw_mgr_decr_vfifo(grp, &v);
1680 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1681 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1682 			   v, p);
1683 	} else {
1684 		p = p - 1;
1685 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1686 			   phase only: v=%u p=%u", __func__, __LINE__,
1687 			   v, p);
1688 	}
1689 
1690 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1691 
1692 	/*
1693 	 * Increase dtap until we first see a passing read (in case the
1694 	 * window is smaller than a ptap),
1695 	 * and then a failing read to mark the edge of the window again
1696 	 */
1697 
1698 	/* Find a passing read */
1699 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1700 		   __func__, __LINE__);
1701 	found_passing_read = 0;
1702 	found_failing_read = 0;
1703 	initial_failing_dtap = d;
1704 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1705 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1706 			   read d=%u\n", __func__, __LINE__, d);
1707 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1708 
1709 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1710 							     PASS_ONE_BIT,
1711 							     &bit_chk, 0)) {
1712 			found_passing_read = 1;
1713 			break;
1714 		}
1715 	}
1716 
1717 	if (found_passing_read) {
1718 		/* Find a failing read */
1719 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1720 			   read\n", __func__, __LINE__);
1721 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1722 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1723 				   testing read d=%u\n", __func__, __LINE__, d);
1724 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1725 
1726 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1727 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1728 				found_failing_read = 1;
1729 				break;
1730 			}
1731 		}
1732 	} else {
1733 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1734 			   calculate dtaps", __func__, __LINE__);
1735 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1736 	}
1737 
1738 	/*
1739 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1740 	 * found a passing/failing read. If we didn't, it means d hit the max
1741 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1742 	 * statically calculated value.
1743 	 */
1744 	if (found_passing_read && found_failing_read)
1745 		dtaps_per_ptap = d - initial_failing_dtap;
1746 
1747 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1748 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1749 		   - %u = %u",  __func__, __LINE__, d,
1750 		   initial_failing_dtap, dtaps_per_ptap);
1751 
1752 	/* ******************************************** */
1753 	/* * step 6:  Find the centre of the window   * */
1754 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1755 				   &work_mid, &work_end) == 0)
1756 		return 0;
1757 
1758 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1759 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1760 		   v, p-1, d);
1761 	return 1;
1762 }
1763 
1764 /*
1765  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1766  * dq_in_delay values
1767  */
1768 static uint32_t
1769 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1770 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1771 {
1772 	uint32_t found;
1773 	uint32_t i;
1774 	uint32_t p;
1775 	uint32_t d;
1776 	uint32_t r;
1777 
1778 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1779 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1780 		/* we start at zero, so have one less dq to devide among */
1781 
1782 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1783 	      test_bgn);
1784 
1785 	/* try different dq_in_delays since the dq path is shorter than dqs */
1786 
1787 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1788 	     r += NUM_RANKS_PER_SHADOW_REG) {
1789 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1790 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1791 				   vfifo_find_dqs_", __func__, __LINE__);
1792 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1793 			       write_group, read_group);
1794 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1795 			scc_mgr_set_dq_in_delay(p, d);
1796 			scc_mgr_load_dq(p);
1797 		}
1798 		writel(0, &sdr_scc_mgr->update);
1799 	}
1800 
1801 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1802 
1803 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1804 		   en_phase_sweep_dq", __func__, __LINE__);
1805 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1806 		   chain to zero\n", write_group, read_group, found);
1807 
1808 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1809 	     r += NUM_RANKS_PER_SHADOW_REG) {
1810 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1811 			i++, p++) {
1812 			scc_mgr_set_dq_in_delay(p, 0);
1813 			scc_mgr_load_dq(p);
1814 		}
1815 		writel(0, &sdr_scc_mgr->update);
1816 	}
1817 
1818 	return found;
1819 }
1820 
1821 /* per-bit deskew DQ and center */
1822 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1823 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1824 	uint32_t use_read_test, uint32_t update_fom)
1825 {
1826 	uint32_t i, p, d, min_index;
1827 	/*
1828 	 * Store these as signed since there are comparisons with
1829 	 * signed numbers.
1830 	 */
1831 	uint32_t bit_chk;
1832 	uint32_t sticky_bit_chk;
1833 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1834 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1835 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1836 	int32_t mid;
1837 	int32_t orig_mid_min, mid_min;
1838 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1839 		final_dqs_en;
1840 	int32_t dq_margin, dqs_margin;
1841 	uint32_t stop;
1842 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1843 	uint32_t addr;
1844 
1845 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1846 
1847 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1848 	start_dqs = readl(addr + (read_group << 2));
1849 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1850 		start_dqs_en = readl(addr + ((read_group << 2)
1851 				     - IO_DQS_EN_DELAY_OFFSET));
1852 
1853 	/* set the left and right edge of each bit to an illegal value */
1854 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1855 	sticky_bit_chk = 0;
1856 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1857 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1858 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1859 	}
1860 
1861 	/* Search for the left edge of the window for each bit */
1862 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1863 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1864 
1865 		writel(0, &sdr_scc_mgr->update);
1866 
1867 		/*
1868 		 * Stop searching when the read test doesn't pass AND when
1869 		 * we've seen a passing read on every bit.
1870 		 */
1871 		if (use_read_test) {
1872 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1873 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1874 				&bit_chk, 0, 0);
1875 		} else {
1876 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1877 							0, PASS_ONE_BIT,
1878 							&bit_chk, 0);
1879 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1880 				(read_group - (write_group *
1881 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1882 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1883 			stop = (bit_chk == 0);
1884 		}
1885 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1886 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1887 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1888 			   && %u", __func__, __LINE__, d,
1889 			   sticky_bit_chk,
1890 			param->read_correct_mask, stop);
1891 
1892 		if (stop == 1) {
1893 			break;
1894 		} else {
1895 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1896 				if (bit_chk & 1) {
1897 					/* Remember a passing test as the
1898 					left_edge */
1899 					left_edge[i] = d;
1900 				} else {
1901 					/* If a left edge has not been seen yet,
1902 					then a future passing test will mark
1903 					this edge as the right edge */
1904 					if (left_edge[i] ==
1905 						IO_IO_IN_DELAY_MAX + 1) {
1906 						right_edge[i] = -(d + 1);
1907 					}
1908 				}
1909 				bit_chk = bit_chk >> 1;
1910 			}
1911 		}
1912 	}
1913 
1914 	/* Reset DQ delay chains to 0 */
1915 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1916 	sticky_bit_chk = 0;
1917 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1918 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1919 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1920 			   i, left_edge[i], i, right_edge[i]);
1921 
1922 		/*
1923 		 * Check for cases where we haven't found the left edge,
1924 		 * which makes our assignment of the the right edge invalid.
1925 		 * Reset it to the illegal value.
1926 		 */
1927 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1928 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1929 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1930 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1931 				   right_edge[%u]: %d\n", __func__, __LINE__,
1932 				   i, right_edge[i]);
1933 		}
1934 
1935 		/*
1936 		 * Reset sticky bit (except for bits where we have seen
1937 		 * both the left and right edge).
1938 		 */
1939 		sticky_bit_chk = sticky_bit_chk << 1;
1940 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1941 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1942 			sticky_bit_chk = sticky_bit_chk | 1;
1943 		}
1944 
1945 		if (i == 0)
1946 			break;
1947 	}
1948 
1949 	/* Search for the right edge of the window for each bit */
1950 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1951 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1952 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1953 			uint32_t delay = d + start_dqs_en;
1954 			if (delay > IO_DQS_EN_DELAY_MAX)
1955 				delay = IO_DQS_EN_DELAY_MAX;
1956 			scc_mgr_set_dqs_en_delay(read_group, delay);
1957 		}
1958 		scc_mgr_load_dqs(read_group);
1959 
1960 		writel(0, &sdr_scc_mgr->update);
1961 
1962 		/*
1963 		 * Stop searching when the read test doesn't pass AND when
1964 		 * we've seen a passing read on every bit.
1965 		 */
1966 		if (use_read_test) {
1967 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1968 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1969 				&bit_chk, 0, 0);
1970 		} else {
1971 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1972 							0, PASS_ONE_BIT,
1973 							&bit_chk, 0);
1974 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1975 				(read_group - (write_group *
1976 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1977 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1978 			stop = (bit_chk == 0);
1979 		}
1980 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1981 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1982 
1983 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1984 			   %u && %u", __func__, __LINE__, d,
1985 			   sticky_bit_chk, param->read_correct_mask, stop);
1986 
1987 		if (stop == 1) {
1988 			break;
1989 		} else {
1990 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1991 				if (bit_chk & 1) {
1992 					/* Remember a passing test as
1993 					the right_edge */
1994 					right_edge[i] = d;
1995 				} else {
1996 					if (d != 0) {
1997 						/* If a right edge has not been
1998 						seen yet, then a future passing
1999 						test will mark this edge as the
2000 						left edge */
2001 						if (right_edge[i] ==
2002 						IO_IO_IN_DELAY_MAX + 1) {
2003 							left_edge[i] = -(d + 1);
2004 						}
2005 					} else {
2006 						/* d = 0 failed, but it passed
2007 						when testing the left edge,
2008 						so it must be marginal,
2009 						set it to -1 */
2010 						if (right_edge[i] ==
2011 							IO_IO_IN_DELAY_MAX + 1 &&
2012 							left_edge[i] !=
2013 							IO_IO_IN_DELAY_MAX
2014 							+ 1) {
2015 							right_edge[i] = -1;
2016 						}
2017 						/* If a right edge has not been
2018 						seen yet, then a future passing
2019 						test will mark this edge as the
2020 						left edge */
2021 						else if (right_edge[i] ==
2022 							IO_IO_IN_DELAY_MAX +
2023 							1) {
2024 							left_edge[i] = -(d + 1);
2025 						}
2026 					}
2027 				}
2028 
2029 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2030 					   d=%u]: ", __func__, __LINE__, d);
2031 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2032 					   (int)(bit_chk & 1), i, left_edge[i]);
2033 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2034 					   right_edge[i]);
2035 				bit_chk = bit_chk >> 1;
2036 			}
2037 		}
2038 	}
2039 
2040 	/* Check that all bits have a window */
2041 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2042 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2043 			   %d right_edge[%u]: %d", __func__, __LINE__,
2044 			   i, left_edge[i], i, right_edge[i]);
2045 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2046 			== IO_IO_IN_DELAY_MAX + 1)) {
2047 			/*
2048 			 * Restore delay chain settings before letting the loop
2049 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2050 			 * dqs/ck relationships.
2051 			 */
2052 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2053 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2054 				scc_mgr_set_dqs_en_delay(read_group,
2055 							 start_dqs_en);
2056 			}
2057 			scc_mgr_load_dqs(read_group);
2058 			writel(0, &sdr_scc_mgr->update);
2059 
2060 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2061 				   find edge [%u]: %d %d", __func__, __LINE__,
2062 				   i, left_edge[i], right_edge[i]);
2063 			if (use_read_test) {
2064 				set_failing_group_stage(read_group *
2065 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2066 					CAL_STAGE_VFIFO,
2067 					CAL_SUBSTAGE_VFIFO_CENTER);
2068 			} else {
2069 				set_failing_group_stage(read_group *
2070 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2071 					CAL_STAGE_VFIFO_AFTER_WRITES,
2072 					CAL_SUBSTAGE_VFIFO_CENTER);
2073 			}
2074 			return 0;
2075 		}
2076 	}
2077 
2078 	/* Find middle of window for each DQ bit */
2079 	mid_min = left_edge[0] - right_edge[0];
2080 	min_index = 0;
2081 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2082 		mid = left_edge[i] - right_edge[i];
2083 		if (mid < mid_min) {
2084 			mid_min = mid;
2085 			min_index = i;
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * -mid_min/2 represents the amount that we need to move DQS.
2091 	 * If mid_min is odd and positive we'll need to add one to
2092 	 * make sure the rounding in further calculations is correct
2093 	 * (always bias to the right), so just add 1 for all positive values.
2094 	 */
2095 	if (mid_min > 0)
2096 		mid_min++;
2097 
2098 	mid_min = mid_min / 2;
2099 
2100 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2101 		   __func__, __LINE__, mid_min, min_index);
2102 
2103 	/* Determine the amount we can change DQS (which is -mid_min) */
2104 	orig_mid_min = mid_min;
2105 	new_dqs = start_dqs - mid_min;
2106 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2107 		new_dqs = IO_DQS_IN_DELAY_MAX;
2108 	else if (new_dqs < 0)
2109 		new_dqs = 0;
2110 
2111 	mid_min = start_dqs - new_dqs;
2112 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2113 		   mid_min, new_dqs);
2114 
2115 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2116 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2117 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2118 		else if (start_dqs_en - mid_min < 0)
2119 			mid_min += start_dqs_en - mid_min;
2120 	}
2121 	new_dqs = start_dqs - mid_min;
2122 
2123 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2124 		   new_dqs=%d mid_min=%d\n", start_dqs,
2125 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2126 		   new_dqs, mid_min);
2127 
2128 	/* Initialize data for export structures */
2129 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2130 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2131 
2132 	/* add delay to bring centre of all DQ windows to the same "level" */
2133 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2134 		/* Use values before divide by 2 to reduce round off error */
2135 		shift_dq = (left_edge[i] - right_edge[i] -
2136 			(left_edge[min_index] - right_edge[min_index]))/2  +
2137 			(orig_mid_min - mid_min);
2138 
2139 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2140 			   shift_dq[%u]=%d\n", i, shift_dq);
2141 
2142 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2143 		temp_dq_in_delay1 = readl(addr + (p << 2));
2144 		temp_dq_in_delay2 = readl(addr + (i << 2));
2145 
2146 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2147 			(int32_t)IO_IO_IN_DELAY_MAX) {
2148 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2149 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2150 			shift_dq = -(int32_t)temp_dq_in_delay1;
2151 		}
2152 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2153 			   shift_dq[%u]=%d\n", i, shift_dq);
2154 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2155 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2156 		scc_mgr_load_dq(p);
2157 
2158 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2159 			   left_edge[i] - shift_dq + (-mid_min),
2160 			   right_edge[i] + shift_dq - (-mid_min));
2161 		/* To determine values for export structures */
2162 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2163 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2164 
2165 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2166 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2167 	}
2168 
2169 	final_dqs = new_dqs;
2170 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2171 		final_dqs_en = start_dqs_en - mid_min;
2172 
2173 	/* Move DQS-en */
2174 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2175 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2176 		scc_mgr_load_dqs(read_group);
2177 	}
2178 
2179 	/* Move DQS */
2180 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2181 	scc_mgr_load_dqs(read_group);
2182 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2183 		   dqs_margin=%d", __func__, __LINE__,
2184 		   dq_margin, dqs_margin);
2185 
2186 	/*
2187 	 * Do not remove this line as it makes sure all of our decisions
2188 	 * have been applied. Apply the update bit.
2189 	 */
2190 	writel(0, &sdr_scc_mgr->update);
2191 
2192 	return (dq_margin >= 0) && (dqs_margin >= 0);
2193 }
2194 
2195 /*
2196  * calibrate the read valid prediction FIFO.
2197  *
2198  *  - read valid prediction will consist of finding a good DQS enable phase,
2199  * DQS enable delay, DQS input phase, and DQS input delay.
2200  *  - we also do a per-bit deskew on the DQ lines.
2201  */
2202 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2203 					   uint32_t test_bgn)
2204 {
2205 	uint32_t p, d, rank_bgn, sr;
2206 	uint32_t dtaps_per_ptap;
2207 	uint32_t tmp_delay;
2208 	uint32_t bit_chk;
2209 	uint32_t grp_calibrated;
2210 	uint32_t write_group, write_test_bgn;
2211 	uint32_t failed_substage;
2212 
2213 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2214 
2215 	/* update info for sims */
2216 	reg_file_set_stage(CAL_STAGE_VFIFO);
2217 
2218 	write_group = read_group;
2219 	write_test_bgn = test_bgn;
2220 
2221 	/* USER Determine number of delay taps for each phase tap */
2222 	dtaps_per_ptap = 0;
2223 	tmp_delay = 0;
2224 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2225 		dtaps_per_ptap++;
2226 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2227 	}
2228 	dtaps_per_ptap--;
2229 	tmp_delay = 0;
2230 
2231 	/* update info for sims */
2232 	reg_file_set_group(read_group);
2233 
2234 	grp_calibrated = 0;
2235 
2236 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2237 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2238 
2239 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2240 		/*
2241 		 * In RLDRAMX we may be messing the delay of pins in
2242 		 * the same write group but outside of the current read
2243 		 * the group, but that's ok because we haven't
2244 		 * calibrated output side yet.
2245 		 */
2246 		if (d > 0) {
2247 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2248 								write_group, d);
2249 		}
2250 
2251 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2252 			p++) {
2253 			/* set a particular dqdqs phase */
2254 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2255 
2256 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2257 				   p=%u d=%u\n", __func__, __LINE__,
2258 				   read_group, p, d);
2259 
2260 			/*
2261 			 * Load up the patterns used by read calibration
2262 			 * using current DQDQS phase.
2263 			 */
2264 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2265 			if (!(gbl->phy_debug_mode_flags &
2266 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2267 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2268 				    (read_group, 1, &bit_chk)) {
2269 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2270 						   __func__, __LINE__);
2271 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2272 						   read_group, p, d);
2273 					break;
2274 				}
2275 			}
2276 
2277 /* case:56390 */
2278 			grp_calibrated = 1;
2279 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2280 		    (write_group, read_group, test_bgn)) {
2281 				/*
2282 				 * USER Read per-bit deskew can be done on a
2283 				 * per shadow register basis.
2284 				 */
2285 				for (rank_bgn = 0, sr = 0;
2286 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2287 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2288 					++sr) {
2289 					/*
2290 					 * Determine if this set of ranks
2291 					 * should be skipped entirely.
2292 					 */
2293 					if (!param->skip_shadow_regs[sr]) {
2294 						/*
2295 						 * If doing read after write
2296 						 * calibration, do not update
2297 						 * FOM, now - do it then.
2298 						 */
2299 					if (!rw_mgr_mem_calibrate_vfifo_center
2300 						(rank_bgn, write_group,
2301 						read_group, test_bgn, 1, 0)) {
2302 							grp_calibrated = 0;
2303 							failed_substage =
2304 						CAL_SUBSTAGE_VFIFO_CENTER;
2305 						}
2306 					}
2307 				}
2308 			} else {
2309 				grp_calibrated = 0;
2310 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2311 			}
2312 		}
2313 	}
2314 
2315 	if (grp_calibrated == 0) {
2316 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2317 					failed_substage);
2318 		return 0;
2319 	}
2320 
2321 	/*
2322 	 * Reset the delay chains back to zero if they have moved > 1
2323 	 * (check for > 1 because loop will increase d even when pass in
2324 	 * first case).
2325 	 */
2326 	if (d > 2)
2327 		scc_mgr_zero_group(write_group, 1);
2328 
2329 	return 1;
2330 }
2331 
2332 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2333 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2334 					       uint32_t test_bgn)
2335 {
2336 	uint32_t rank_bgn, sr;
2337 	uint32_t grp_calibrated;
2338 	uint32_t write_group;
2339 
2340 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2341 
2342 	/* update info for sims */
2343 
2344 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2345 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2346 
2347 	write_group = read_group;
2348 
2349 	/* update info for sims */
2350 	reg_file_set_group(read_group);
2351 
2352 	grp_calibrated = 1;
2353 	/* Read per-bit deskew can be done on a per shadow register basis */
2354 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2355 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2356 		/* Determine if this set of ranks should be skipped entirely */
2357 		if (!param->skip_shadow_regs[sr]) {
2358 		/* This is the last calibration round, update FOM here */
2359 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2360 								write_group,
2361 								read_group,
2362 								test_bgn, 0,
2363 								1)) {
2364 				grp_calibrated = 0;
2365 			}
2366 		}
2367 	}
2368 
2369 
2370 	if (grp_calibrated == 0) {
2371 		set_failing_group_stage(write_group,
2372 					CAL_STAGE_VFIFO_AFTER_WRITES,
2373 					CAL_SUBSTAGE_VFIFO_CENTER);
2374 		return 0;
2375 	}
2376 
2377 	return 1;
2378 }
2379 
2380 /* Calibrate LFIFO to find smallest read latency */
2381 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2382 {
2383 	uint32_t found_one;
2384 	uint32_t bit_chk;
2385 
2386 	debug("%s:%d\n", __func__, __LINE__);
2387 
2388 	/* update info for sims */
2389 	reg_file_set_stage(CAL_STAGE_LFIFO);
2390 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2391 
2392 	/* Load up the patterns used by read calibration for all ranks */
2393 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2394 	found_one = 0;
2395 
2396 	do {
2397 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2398 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2399 			   __func__, __LINE__, gbl->curr_read_lat);
2400 
2401 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2402 							      NUM_READ_TESTS,
2403 							      PASS_ALL_BITS,
2404 							      &bit_chk, 1)) {
2405 			break;
2406 		}
2407 
2408 		found_one = 1;
2409 		/* reduce read latency and see if things are working */
2410 		/* correctly */
2411 		gbl->curr_read_lat--;
2412 	} while (gbl->curr_read_lat > 0);
2413 
2414 	/* reset the fifos to get pointers to known state */
2415 
2416 	writel(0, &phy_mgr_cmd->fifo_reset);
2417 
2418 	if (found_one) {
2419 		/* add a fudge factor to the read latency that was determined */
2420 		gbl->curr_read_lat += 2;
2421 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2422 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2423 			   read_lat=%u\n", __func__, __LINE__,
2424 			   gbl->curr_read_lat);
2425 		return 1;
2426 	} else {
2427 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2428 					CAL_SUBSTAGE_READ_LATENCY);
2429 
2430 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2431 			   read_lat=%u\n", __func__, __LINE__,
2432 			   gbl->curr_read_lat);
2433 		return 0;
2434 	}
2435 }
2436 
2437 /*
2438  * issue write test command.
2439  * two variants are provided. one that just tests a write pattern and
2440  * another that tests datamask functionality.
2441  */
2442 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2443 						  uint32_t test_dm)
2444 {
2445 	uint32_t mcc_instruction;
2446 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2447 		ENABLE_SUPER_QUICK_CALIBRATION);
2448 	uint32_t rw_wl_nop_cycles;
2449 	uint32_t addr;
2450 
2451 	/*
2452 	 * Set counter and jump addresses for the right
2453 	 * number of NOP cycles.
2454 	 * The number of supported NOP cycles can range from -1 to infinity
2455 	 * Three different cases are handled:
2456 	 *
2457 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2458 	 *    mechanism will be used to insert the right number of NOPs
2459 	 *
2460 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2461 	 *    issuing the write command will jump straight to the
2462 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2463 	 *    data (for RLD), skipping
2464 	 *    the NOP micro-instruction all together
2465 	 *
2466 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2467 	 *    turned on in the same micro-instruction that issues the write
2468 	 *    command. Then we need
2469 	 *    to directly jump to the micro-instruction that sends out the data
2470 	 *
2471 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2472 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2473 	 *       write-read operations.
2474 	 *       one counter left to issue this command in "multiple-group" mode
2475 	 */
2476 
2477 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2478 
2479 	if (rw_wl_nop_cycles == -1) {
2480 		/*
2481 		 * CNTR 2 - We want to execute the special write operation that
2482 		 * turns on DQS right away and then skip directly to the
2483 		 * instruction that sends out the data. We set the counter to a
2484 		 * large number so that the jump is always taken.
2485 		 */
2486 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2487 
2488 		/* CNTR 3 - Not used */
2489 		if (test_dm) {
2490 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2491 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2492 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2493 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2494 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2495 		} else {
2496 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2497 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2498 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2499 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2500 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2501 		}
2502 	} else if (rw_wl_nop_cycles == 0) {
2503 		/*
2504 		 * CNTR 2 - We want to skip the NOP operation and go straight
2505 		 * to the DQS enable instruction. We set the counter to a large
2506 		 * number so that the jump is always taken.
2507 		 */
2508 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2509 
2510 		/* CNTR 3 - Not used */
2511 		if (test_dm) {
2512 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2513 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2514 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2515 		} else {
2516 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2517 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2518 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2519 		}
2520 	} else {
2521 		/*
2522 		 * CNTR 2 - In this case we want to execute the next instruction
2523 		 * and NOT take the jump. So we set the counter to 0. The jump
2524 		 * address doesn't count.
2525 		 */
2526 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2527 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2528 
2529 		/*
2530 		 * CNTR 3 - Set the nop counter to the number of cycles we
2531 		 * need to loop for, minus 1.
2532 		 */
2533 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2534 		if (test_dm) {
2535 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2536 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2537 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2538 		} else {
2539 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2540 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2541 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2542 		}
2543 	}
2544 
2545 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2546 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2547 
2548 	if (quick_write_mode)
2549 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2550 	else
2551 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2552 
2553 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2554 
2555 	/*
2556 	 * CNTR 1 - This is used to ensure enough time elapses
2557 	 * for read data to come back.
2558 	 */
2559 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2560 
2561 	if (test_dm) {
2562 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2563 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2564 	} else {
2565 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2566 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2567 	}
2568 
2569 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2570 	writel(mcc_instruction, addr + (group << 2));
2571 }
2572 
2573 /* Test writes, can check for a single bit pass or multiple bit pass */
2574 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2575 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2576 	uint32_t *bit_chk, uint32_t all_ranks)
2577 {
2578 	uint32_t r;
2579 	uint32_t correct_mask_vg;
2580 	uint32_t tmp_bit_chk;
2581 	uint32_t vg;
2582 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2583 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2584 	uint32_t addr_rw_mgr;
2585 	uint32_t base_rw_mgr;
2586 
2587 	*bit_chk = param->write_correct_mask;
2588 	correct_mask_vg = param->write_correct_mask_vg;
2589 
2590 	for (r = rank_bgn; r < rank_end; r++) {
2591 		if (param->skip_ranks[r]) {
2592 			/* request to skip the rank */
2593 			continue;
2594 		}
2595 
2596 		/* set rank */
2597 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2598 
2599 		tmp_bit_chk = 0;
2600 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2601 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2602 			/* reset the fifos to get pointers to known state */
2603 			writel(0, &phy_mgr_cmd->fifo_reset);
2604 
2605 			tmp_bit_chk = tmp_bit_chk <<
2606 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2607 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2608 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2609 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2610 				use_dm);
2611 
2612 			base_rw_mgr = readl(addr_rw_mgr);
2613 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2614 			if (vg == 0)
2615 				break;
2616 		}
2617 		*bit_chk &= tmp_bit_chk;
2618 	}
2619 
2620 	if (all_correct) {
2621 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2622 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2623 			   %u => %lu", write_group, use_dm,
2624 			   *bit_chk, param->write_correct_mask,
2625 			   (long unsigned int)(*bit_chk ==
2626 			   param->write_correct_mask));
2627 		return *bit_chk == param->write_correct_mask;
2628 	} else {
2629 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2630 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2631 		       write_group, use_dm, *bit_chk);
2632 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2633 			(long unsigned int)(*bit_chk != 0));
2634 		return *bit_chk != 0x00;
2635 	}
2636 }
2637 
2638 /*
2639  * center all windows. do per-bit-deskew to possibly increase size of
2640  * certain windows.
2641  */
2642 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2643 	uint32_t write_group, uint32_t test_bgn)
2644 {
2645 	uint32_t i, p, min_index;
2646 	int32_t d;
2647 	/*
2648 	 * Store these as signed since there are comparisons with
2649 	 * signed numbers.
2650 	 */
2651 	uint32_t bit_chk;
2652 	uint32_t sticky_bit_chk;
2653 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2654 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2655 	int32_t mid;
2656 	int32_t mid_min, orig_mid_min;
2657 	int32_t new_dqs, start_dqs, shift_dq;
2658 	int32_t dq_margin, dqs_margin, dm_margin;
2659 	uint32_t stop;
2660 	uint32_t temp_dq_out1_delay;
2661 	uint32_t addr;
2662 
2663 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2664 
2665 	dm_margin = 0;
2666 
2667 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2668 	start_dqs = readl(addr +
2669 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2670 
2671 	/* per-bit deskew */
2672 
2673 	/*
2674 	 * set the left and right edge of each bit to an illegal value
2675 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2676 	 */
2677 	sticky_bit_chk = 0;
2678 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2679 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2680 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2681 	}
2682 
2683 	/* Search for the left edge of the window for each bit */
2684 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2685 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2686 
2687 		writel(0, &sdr_scc_mgr->update);
2688 
2689 		/*
2690 		 * Stop searching when the read test doesn't pass AND when
2691 		 * we've seen a passing read on every bit.
2692 		 */
2693 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2694 			0, PASS_ONE_BIT, &bit_chk, 0);
2695 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2696 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2697 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2698 			   == %u && %u [bit_chk= %u ]\n",
2699 			d, sticky_bit_chk, param->write_correct_mask,
2700 			stop, bit_chk);
2701 
2702 		if (stop == 1) {
2703 			break;
2704 		} else {
2705 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2706 				if (bit_chk & 1) {
2707 					/*
2708 					 * Remember a passing test as the
2709 					 * left_edge.
2710 					 */
2711 					left_edge[i] = d;
2712 				} else {
2713 					/*
2714 					 * If a left edge has not been seen
2715 					 * yet, then a future passing test will
2716 					 * mark this edge as the right edge.
2717 					 */
2718 					if (left_edge[i] ==
2719 						IO_IO_OUT1_DELAY_MAX + 1) {
2720 						right_edge[i] = -(d + 1);
2721 					}
2722 				}
2723 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2724 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2725 					   (int)(bit_chk & 1), i, left_edge[i]);
2726 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2727 				       right_edge[i]);
2728 				bit_chk = bit_chk >> 1;
2729 			}
2730 		}
2731 	}
2732 
2733 	/* Reset DQ delay chains to 0 */
2734 	scc_mgr_apply_group_dq_out1_delay(0);
2735 	sticky_bit_chk = 0;
2736 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2737 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2738 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2739 			   i, left_edge[i], i, right_edge[i]);
2740 
2741 		/*
2742 		 * Check for cases where we haven't found the left edge,
2743 		 * which makes our assignment of the the right edge invalid.
2744 		 * Reset it to the illegal value.
2745 		 */
2746 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2747 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2748 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2749 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2750 				   right_edge[%u]: %d\n", __func__, __LINE__,
2751 				   i, right_edge[i]);
2752 		}
2753 
2754 		/*
2755 		 * Reset sticky bit (except for bits where we have
2756 		 * seen the left edge).
2757 		 */
2758 		sticky_bit_chk = sticky_bit_chk << 1;
2759 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2760 			sticky_bit_chk = sticky_bit_chk | 1;
2761 
2762 		if (i == 0)
2763 			break;
2764 	}
2765 
2766 	/* Search for the right edge of the window for each bit */
2767 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2768 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2769 							d + start_dqs);
2770 
2771 		writel(0, &sdr_scc_mgr->update);
2772 
2773 		/*
2774 		 * Stop searching when the read test doesn't pass AND when
2775 		 * we've seen a passing read on every bit.
2776 		 */
2777 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2778 			0, PASS_ONE_BIT, &bit_chk, 0);
2779 
2780 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2781 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2782 
2783 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2784 			   %u && %u\n", d, sticky_bit_chk,
2785 			   param->write_correct_mask, stop);
2786 
2787 		if (stop == 1) {
2788 			if (d == 0) {
2789 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2790 					i++) {
2791 					/* d = 0 failed, but it passed when
2792 					testing the left edge, so it must be
2793 					marginal, set it to -1 */
2794 					if (right_edge[i] ==
2795 						IO_IO_OUT1_DELAY_MAX + 1 &&
2796 						left_edge[i] !=
2797 						IO_IO_OUT1_DELAY_MAX + 1) {
2798 						right_edge[i] = -1;
2799 					}
2800 				}
2801 			}
2802 			break;
2803 		} else {
2804 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2805 				if (bit_chk & 1) {
2806 					/*
2807 					 * Remember a passing test as
2808 					 * the right_edge.
2809 					 */
2810 					right_edge[i] = d;
2811 				} else {
2812 					if (d != 0) {
2813 						/*
2814 						 * If a right edge has not
2815 						 * been seen yet, then a future
2816 						 * passing test will mark this
2817 						 * edge as the left edge.
2818 						 */
2819 						if (right_edge[i] ==
2820 						    IO_IO_OUT1_DELAY_MAX + 1)
2821 							left_edge[i] = -(d + 1);
2822 					} else {
2823 						/*
2824 						 * d = 0 failed, but it passed
2825 						 * when testing the left edge,
2826 						 * so it must be marginal, set
2827 						 * it to -1.
2828 						 */
2829 						if (right_edge[i] ==
2830 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2831 						    left_edge[i] !=
2832 						    IO_IO_OUT1_DELAY_MAX + 1)
2833 							right_edge[i] = -1;
2834 						/*
2835 						 * If a right edge has not been
2836 						 * seen yet, then a future
2837 						 * passing test will mark this
2838 						 * edge as the left edge.
2839 						 */
2840 						else if (right_edge[i] ==
2841 							IO_IO_OUT1_DELAY_MAX +
2842 							1)
2843 							left_edge[i] = -(d + 1);
2844 					}
2845 				}
2846 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2847 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2848 					   (int)(bit_chk & 1), i, left_edge[i]);
2849 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2850 					   right_edge[i]);
2851 				bit_chk = bit_chk >> 1;
2852 			}
2853 		}
2854 	}
2855 
2856 	/* Check that all bits have a window */
2857 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2858 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2859 			   %d right_edge[%u]: %d", __func__, __LINE__,
2860 			   i, left_edge[i], i, right_edge[i]);
2861 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2862 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2863 			set_failing_group_stage(test_bgn + i,
2864 						CAL_STAGE_WRITES,
2865 						CAL_SUBSTAGE_WRITES_CENTER);
2866 			return 0;
2867 		}
2868 	}
2869 
2870 	/* Find middle of window for each DQ bit */
2871 	mid_min = left_edge[0] - right_edge[0];
2872 	min_index = 0;
2873 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2874 		mid = left_edge[i] - right_edge[i];
2875 		if (mid < mid_min) {
2876 			mid_min = mid;
2877 			min_index = i;
2878 		}
2879 	}
2880 
2881 	/*
2882 	 * -mid_min/2 represents the amount that we need to move DQS.
2883 	 * If mid_min is odd and positive we'll need to add one to
2884 	 * make sure the rounding in further calculations is correct
2885 	 * (always bias to the right), so just add 1 for all positive values.
2886 	 */
2887 	if (mid_min > 0)
2888 		mid_min++;
2889 	mid_min = mid_min / 2;
2890 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2891 		   __LINE__, mid_min);
2892 
2893 	/* Determine the amount we can change DQS (which is -mid_min) */
2894 	orig_mid_min = mid_min;
2895 	new_dqs = start_dqs;
2896 	mid_min = 0;
2897 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2898 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2899 	/* Initialize data for export structures */
2900 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2901 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2902 
2903 	/* add delay to bring centre of all DQ windows to the same "level" */
2904 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2905 		/* Use values before divide by 2 to reduce round off error */
2906 		shift_dq = (left_edge[i] - right_edge[i] -
2907 			(left_edge[min_index] - right_edge[min_index]))/2  +
2908 		(orig_mid_min - mid_min);
2909 
2910 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2911 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2912 
2913 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2914 		temp_dq_out1_delay = readl(addr + (i << 2));
2915 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2916 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2917 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2918 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2919 			shift_dq = -(int32_t)temp_dq_out1_delay;
2920 		}
2921 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2922 			   i, shift_dq);
2923 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2924 		scc_mgr_load_dq(i);
2925 
2926 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2927 			   left_edge[i] - shift_dq + (-mid_min),
2928 			   right_edge[i] + shift_dq - (-mid_min));
2929 		/* To determine values for export structures */
2930 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2931 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2932 
2933 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2934 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2935 	}
2936 
2937 	/* Move DQS */
2938 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2939 	writel(0, &sdr_scc_mgr->update);
2940 
2941 	/* Centre DM */
2942 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2943 
2944 	/*
2945 	 * set the left and right edge of each bit to an illegal value,
2946 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2947 	 */
2948 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2949 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2950 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2951 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2952 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2953 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2954 	int32_t win_best = 0;
2955 
2956 	/* Search for the/part of the window with DM shift */
2957 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2958 		scc_mgr_apply_group_dm_out1_delay(d);
2959 		writel(0, &sdr_scc_mgr->update);
2960 
2961 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2962 						    PASS_ALL_BITS, &bit_chk,
2963 						    0)) {
2964 			/* USE Set current end of the window */
2965 			end_curr = -d;
2966 			/*
2967 			 * If a starting edge of our window has not been seen
2968 			 * this is our current start of the DM window.
2969 			 */
2970 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2971 				bgn_curr = -d;
2972 
2973 			/*
2974 			 * If current window is bigger than best seen.
2975 			 * Set best seen to be current window.
2976 			 */
2977 			if ((end_curr-bgn_curr+1) > win_best) {
2978 				win_best = end_curr-bgn_curr+1;
2979 				bgn_best = bgn_curr;
2980 				end_best = end_curr;
2981 			}
2982 		} else {
2983 			/* We just saw a failing test. Reset temp edge */
2984 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2985 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2986 			}
2987 		}
2988 
2989 
2990 	/* Reset DM delay chains to 0 */
2991 	scc_mgr_apply_group_dm_out1_delay(0);
2992 
2993 	/*
2994 	 * Check to see if the current window nudges up aganist 0 delay.
2995 	 * If so we need to continue the search by shifting DQS otherwise DQS
2996 	 * search begins as a new search. */
2997 	if (end_curr != 0) {
2998 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2999 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3000 	}
3001 
3002 	/* Search for the/part of the window with DQS shifts */
3003 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3004 		/*
3005 		 * Note: This only shifts DQS, so are we limiting ourselve to
3006 		 * width of DQ unnecessarily.
3007 		 */
3008 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3009 							d + new_dqs);
3010 
3011 		writel(0, &sdr_scc_mgr->update);
3012 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3013 						    PASS_ALL_BITS, &bit_chk,
3014 						    0)) {
3015 			/* USE Set current end of the window */
3016 			end_curr = d;
3017 			/*
3018 			 * If a beginning edge of our window has not been seen
3019 			 * this is our current begin of the DM window.
3020 			 */
3021 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3022 				bgn_curr = d;
3023 
3024 			/*
3025 			 * If current window is bigger than best seen. Set best
3026 			 * seen to be current window.
3027 			 */
3028 			if ((end_curr-bgn_curr+1) > win_best) {
3029 				win_best = end_curr-bgn_curr+1;
3030 				bgn_best = bgn_curr;
3031 				end_best = end_curr;
3032 			}
3033 		} else {
3034 			/* We just saw a failing test. Reset temp edge */
3035 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3036 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3037 
3038 			/* Early exit optimization: if ther remaining delay
3039 			chain space is less than already seen largest window
3040 			we can exit */
3041 			if ((win_best-1) >
3042 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3043 					break;
3044 				}
3045 			}
3046 		}
3047 
3048 	/* assign left and right edge for cal and reporting; */
3049 	left_edge[0] = -1*bgn_best;
3050 	right_edge[0] = end_best;
3051 
3052 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3053 		   __LINE__, left_edge[0], right_edge[0]);
3054 
3055 	/* Move DQS (back to orig) */
3056 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3057 
3058 	/* Move DM */
3059 
3060 	/* Find middle of window for the DM bit */
3061 	mid = (left_edge[0] - right_edge[0]) / 2;
3062 
3063 	/* only move right, since we are not moving DQS/DQ */
3064 	if (mid < 0)
3065 		mid = 0;
3066 
3067 	/* dm_marign should fail if we never find a window */
3068 	if (win_best == 0)
3069 		dm_margin = -1;
3070 	else
3071 		dm_margin = left_edge[0] - mid;
3072 
3073 	scc_mgr_apply_group_dm_out1_delay(mid);
3074 	writel(0, &sdr_scc_mgr->update);
3075 
3076 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3077 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3078 		   right_edge[0], mid, dm_margin);
3079 	/* Export values */
3080 	gbl->fom_out += dq_margin + dqs_margin;
3081 
3082 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3083 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3084 		   dq_margin, dqs_margin, dm_margin);
3085 
3086 	/*
3087 	 * Do not remove this line as it makes sure all of our
3088 	 * decisions have been applied.
3089 	 */
3090 	writel(0, &sdr_scc_mgr->update);
3091 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3092 }
3093 
3094 /* calibrate the write operations */
3095 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3096 	uint32_t test_bgn)
3097 {
3098 	/* update info for sims */
3099 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3100 
3101 	reg_file_set_stage(CAL_STAGE_WRITES);
3102 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3103 
3104 	reg_file_set_group(g);
3105 
3106 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3107 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3108 					CAL_SUBSTAGE_WRITES_CENTER);
3109 		return 0;
3110 	}
3111 
3112 	return 1;
3113 }
3114 
3115 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3116 static void mem_precharge_and_activate(void)
3117 {
3118 	uint32_t r;
3119 
3120 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3121 		if (param->skip_ranks[r]) {
3122 			/* request to skip the rank */
3123 			continue;
3124 		}
3125 
3126 		/* set rank */
3127 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3128 
3129 		/* precharge all banks ... */
3130 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3131 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3132 
3133 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3134 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3135 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3136 
3137 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3138 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3139 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3140 
3141 		/* activate rows */
3142 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3143 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3144 	}
3145 }
3146 
3147 /* Configure various memory related parameters. */
3148 static void mem_config(void)
3149 {
3150 	uint32_t rlat, wlat;
3151 	uint32_t rw_wl_nop_cycles;
3152 	uint32_t max_latency;
3153 
3154 	debug("%s:%d\n", __func__, __LINE__);
3155 	/* read in write and read latency */
3156 	wlat = readl(&data_mgr->t_wl_add);
3157 	wlat += readl(&data_mgr->mem_t_add);
3158 
3159 	/* WL for hard phy does not include additive latency */
3160 
3161 	/*
3162 	 * add addtional write latency to offset the address/command extra
3163 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3164 	 * by one mem clock cycle. Only do this for DDR3
3165 	 */
3166 	wlat = wlat + 1;
3167 
3168 	rlat = readl(&data_mgr->t_rl_add);
3169 
3170 	rw_wl_nop_cycles = wlat - 2;
3171 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3172 
3173 	/*
3174 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3175 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3176 	 */
3177 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3178 	/* configure for a burst length of 8 */
3179 
3180 	/* write latency */
3181 	/* Adjust Write Latency for Hard PHY */
3182 	wlat = wlat + 1;
3183 
3184 	/* set a pretty high read latency initially */
3185 	gbl->curr_read_lat = rlat + 16;
3186 
3187 	if (gbl->curr_read_lat > max_latency)
3188 		gbl->curr_read_lat = max_latency;
3189 
3190 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3191 
3192 	/* advertise write latency */
3193 	gbl->curr_write_lat = wlat;
3194 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3195 
3196 	/* initialize bit slips */
3197 	mem_precharge_and_activate();
3198 }
3199 
3200 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3201 static void mem_skip_calibrate(void)
3202 {
3203 	uint32_t vfifo_offset;
3204 	uint32_t i, j, r;
3205 
3206 	debug("%s:%d\n", __func__, __LINE__);
3207 	/* Need to update every shadow register set used by the interface */
3208 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3209 		r += NUM_RANKS_PER_SHADOW_REG) {
3210 		/*
3211 		 * Set output phase alignment settings appropriate for
3212 		 * skip calibration.
3213 		 */
3214 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3215 			scc_mgr_set_dqs_en_phase(i, 0);
3216 #if IO_DLL_CHAIN_LENGTH == 6
3217 			scc_mgr_set_dqdqs_output_phase(i, 6);
3218 #else
3219 			scc_mgr_set_dqdqs_output_phase(i, 7);
3220 #endif
3221 			/*
3222 			 * Case:33398
3223 			 *
3224 			 * Write data arrives to the I/O two cycles before write
3225 			 * latency is reached (720 deg).
3226 			 *   -> due to bit-slip in a/c bus
3227 			 *   -> to allow board skew where dqs is longer than ck
3228 			 *      -> how often can this happen!?
3229 			 *      -> can claim back some ptaps for high freq
3230 			 *       support if we can relax this, but i digress...
3231 			 *
3232 			 * The write_clk leads mem_ck by 90 deg
3233 			 * The minimum ptap of the OPA is 180 deg
3234 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3235 			 * The write_clk is always delayed by 2 ptaps
3236 			 *
3237 			 * Hence, to make DQS aligned to CK, we need to delay
3238 			 * DQS by:
3239 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3240 			 *
3241 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3242 			 * gives us the number of ptaps, which simplies to:
3243 			 *
3244 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3245 			 */
3246 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3247 				IO_DLL_CHAIN_LENGTH - 2));
3248 		}
3249 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3250 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3251 
3252 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3253 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3254 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3255 		}
3256 		writel(0xff, &sdr_scc_mgr->dq_ena);
3257 		writel(0xff, &sdr_scc_mgr->dm_ena);
3258 		writel(0, &sdr_scc_mgr->update);
3259 	}
3260 
3261 	/* Compensate for simulation model behaviour */
3262 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3263 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3264 		scc_mgr_load_dqs(i);
3265 	}
3266 	writel(0, &sdr_scc_mgr->update);
3267 
3268 	/*
3269 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3270 	 * in sequencer.
3271 	 */
3272 	vfifo_offset = CALIB_VFIFO_OFFSET;
3273 	for (j = 0; j < vfifo_offset; j++) {
3274 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3275 	}
3276 	writel(0, &phy_mgr_cmd->fifo_reset);
3277 
3278 	/*
3279 	 * For ACV with hard lfifo, we get the skip-cal setting from
3280 	 * generation-time constant.
3281 	 */
3282 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3283 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3284 }
3285 
3286 /* Memory calibration entry point */
3287 static uint32_t mem_calibrate(void)
3288 {
3289 	uint32_t i;
3290 	uint32_t rank_bgn, sr;
3291 	uint32_t write_group, write_test_bgn;
3292 	uint32_t read_group, read_test_bgn;
3293 	uint32_t run_groups, current_run;
3294 	uint32_t failing_groups = 0;
3295 	uint32_t group_failed = 0;
3296 	uint32_t sr_failed = 0;
3297 
3298 	debug("%s:%d\n", __func__, __LINE__);
3299 	/* Initialize the data settings */
3300 
3301 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3302 	gbl->error_stage = CAL_STAGE_NIL;
3303 	gbl->error_group = 0xff;
3304 	gbl->fom_in = 0;
3305 	gbl->fom_out = 0;
3306 
3307 	mem_config();
3308 
3309 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3310 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3311 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3312 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3313 		if (i == 0)
3314 			scc_mgr_set_hhp_extras();
3315 
3316 		scc_set_bypass_mode(i);
3317 	}
3318 
3319 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3320 		/*
3321 		 * Set VFIFO and LFIFO to instant-on settings in skip
3322 		 * calibration mode.
3323 		 */
3324 		mem_skip_calibrate();
3325 	} else {
3326 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3327 			/*
3328 			 * Zero all delay chain/phase settings for all
3329 			 * groups and all shadow register sets.
3330 			 */
3331 			scc_mgr_zero_all();
3332 
3333 			run_groups = ~param->skip_groups;
3334 
3335 			for (write_group = 0, write_test_bgn = 0; write_group
3336 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3337 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3338 				/* Initialized the group failure */
3339 				group_failed = 0;
3340 
3341 				current_run = run_groups & ((1 <<
3342 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3343 				run_groups = run_groups >>
3344 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3345 
3346 				if (current_run == 0)
3347 					continue;
3348 
3349 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3350 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3351 				scc_mgr_zero_group(write_group, 0);
3352 
3353 				for (read_group = write_group *
3354 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3355 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3356 					read_test_bgn = 0;
3357 					read_group < (write_group + 1) *
3358 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3359 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3360 					group_failed == 0;
3361 					read_group++, read_test_bgn +=
3362 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3363 					/* Calibrate the VFIFO */
3364 					if (!((STATIC_CALIB_STEPS) &
3365 						CALIB_SKIP_VFIFO)) {
3366 						if (!rw_mgr_mem_calibrate_vfifo
3367 							(read_group,
3368 							read_test_bgn)) {
3369 							group_failed = 1;
3370 
3371 							if (!(gbl->
3372 							phy_debug_mode_flags &
3373 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3374 								return 0;
3375 							}
3376 						}
3377 					}
3378 				}
3379 
3380 				/* Calibrate the output side */
3381 				if (group_failed == 0)	{
3382 					for (rank_bgn = 0, sr = 0; rank_bgn
3383 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3384 						rank_bgn +=
3385 						NUM_RANKS_PER_SHADOW_REG,
3386 						++sr) {
3387 						sr_failed = 0;
3388 						if (!((STATIC_CALIB_STEPS) &
3389 						CALIB_SKIP_WRITES)) {
3390 							if ((STATIC_CALIB_STEPS)
3391 						& CALIB_SKIP_DELAY_SWEEPS) {
3392 						/* not needed in quick mode! */
3393 							} else {
3394 						/*
3395 						 * Determine if this set of
3396 						 * ranks should be skipped
3397 						 * entirely.
3398 						 */
3399 					if (!param->skip_shadow_regs[sr]) {
3400 						if (!rw_mgr_mem_calibrate_writes
3401 						(rank_bgn, write_group,
3402 						write_test_bgn)) {
3403 							sr_failed = 1;
3404 							if (!(gbl->
3405 							phy_debug_mode_flags &
3406 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3407 								return 0;
3408 									}
3409 									}
3410 								}
3411 							}
3412 						}
3413 						if (sr_failed != 0)
3414 							group_failed = 1;
3415 					}
3416 				}
3417 
3418 				if (group_failed == 0) {
3419 					for (read_group = write_group *
3420 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3421 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3422 					read_test_bgn = 0;
3423 						read_group < (write_group + 1)
3424 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3425 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3426 						group_failed == 0;
3427 						read_group++, read_test_bgn +=
3428 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3429 						if (!((STATIC_CALIB_STEPS) &
3430 							CALIB_SKIP_WRITES)) {
3431 					if (!rw_mgr_mem_calibrate_vfifo_end
3432 						(read_group, read_test_bgn)) {
3433 							group_failed = 1;
3434 
3435 						if (!(gbl->phy_debug_mode_flags
3436 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3437 								return 0;
3438 								}
3439 							}
3440 						}
3441 					}
3442 				}
3443 
3444 				if (group_failed != 0)
3445 					failing_groups++;
3446 			}
3447 
3448 			/*
3449 			 * USER If there are any failing groups then report
3450 			 * the failure.
3451 			 */
3452 			if (failing_groups != 0)
3453 				return 0;
3454 
3455 			/* Calibrate the LFIFO */
3456 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3457 				/*
3458 				 * If we're skipping groups as part of debug,
3459 				 * don't calibrate LFIFO.
3460 				 */
3461 				if (param->skip_groups == 0) {
3462 					if (!rw_mgr_mem_calibrate_lfifo())
3463 						return 0;
3464 				}
3465 			}
3466 		}
3467 	}
3468 
3469 	/*
3470 	 * Do not remove this line as it makes sure all of our decisions
3471 	 * have been applied.
3472 	 */
3473 	writel(0, &sdr_scc_mgr->update);
3474 	return 1;
3475 }
3476 
3477 static uint32_t run_mem_calibrate(void)
3478 {
3479 	uint32_t pass;
3480 	uint32_t debug_info;
3481 
3482 	debug("%s:%d\n", __func__, __LINE__);
3483 
3484 	/* Reset pass/fail status shown on afi_cal_success/fail */
3485 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3486 
3487 	/* stop tracking manger */
3488 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3489 
3490 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3491 
3492 	initialize();
3493 	rw_mgr_mem_initialize();
3494 
3495 	pass = mem_calibrate();
3496 
3497 	mem_precharge_and_activate();
3498 	writel(0, &phy_mgr_cmd->fifo_reset);
3499 
3500 	/*
3501 	 * Handoff:
3502 	 * Don't return control of the PHY back to AFI when in debug mode.
3503 	 */
3504 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3505 		rw_mgr_mem_handoff();
3506 		/*
3507 		 * In Hard PHY this is a 2-bit control:
3508 		 * 0: AFI Mux Select
3509 		 * 1: DDIO Mux Select
3510 		 */
3511 		writel(0x2, &phy_mgr_cfg->mux_sel);
3512 	}
3513 
3514 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3515 
3516 	if (pass) {
3517 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3518 
3519 		gbl->fom_in /= 2;
3520 		gbl->fom_out /= 2;
3521 
3522 		if (gbl->fom_in > 0xff)
3523 			gbl->fom_in = 0xff;
3524 
3525 		if (gbl->fom_out > 0xff)
3526 			gbl->fom_out = 0xff;
3527 
3528 		/* Update the FOM in the register file */
3529 		debug_info = gbl->fom_in;
3530 		debug_info |= gbl->fom_out << 8;
3531 		writel(debug_info, &sdr_reg_file->fom);
3532 
3533 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3534 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3535 	} else {
3536 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3537 
3538 		debug_info = gbl->error_stage;
3539 		debug_info |= gbl->error_substage << 8;
3540 		debug_info |= gbl->error_group << 16;
3541 
3542 		writel(debug_info, &sdr_reg_file->failing_stage);
3543 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3544 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3545 
3546 		/* Update the failing group/stage in the register file */
3547 		debug_info = gbl->error_stage;
3548 		debug_info |= gbl->error_substage << 8;
3549 		debug_info |= gbl->error_group << 16;
3550 		writel(debug_info, &sdr_reg_file->failing_stage);
3551 	}
3552 
3553 	return pass;
3554 }
3555 
3556 /**
3557  * hc_initialize_rom_data() - Initialize ROM data
3558  *
3559  * Initialize ROM data.
3560  */
3561 static void hc_initialize_rom_data(void)
3562 {
3563 	u32 i, addr;
3564 
3565 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3566 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3567 		writel(inst_rom_init[i], addr + (i << 2));
3568 
3569 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3570 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3571 		writel(ac_rom_init[i], addr + (i << 2));
3572 }
3573 
3574 /**
3575  * initialize_reg_file() - Initialize SDR register file
3576  *
3577  * Initialize SDR register file.
3578  */
3579 static void initialize_reg_file(void)
3580 {
3581 	/* Initialize the register file with the correct data */
3582 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3583 	writel(0, &sdr_reg_file->debug_data_addr);
3584 	writel(0, &sdr_reg_file->cur_stage);
3585 	writel(0, &sdr_reg_file->fom);
3586 	writel(0, &sdr_reg_file->failing_stage);
3587 	writel(0, &sdr_reg_file->debug1);
3588 	writel(0, &sdr_reg_file->debug2);
3589 }
3590 
3591 /**
3592  * initialize_hps_phy() - Initialize HPS PHY
3593  *
3594  * Initialize HPS PHY.
3595  */
3596 static void initialize_hps_phy(void)
3597 {
3598 	uint32_t reg;
3599 	/*
3600 	 * Tracking also gets configured here because it's in the
3601 	 * same register.
3602 	 */
3603 	uint32_t trk_sample_count = 7500;
3604 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3605 	/*
3606 	 * Format is number of outer loops in the 16 MSB, sample
3607 	 * count in 16 LSB.
3608 	 */
3609 
3610 	reg = 0;
3611 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3612 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3613 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3614 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3615 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3616 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3617 	/*
3618 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3619 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3620 	 */
3621 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3622 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3623 		trk_sample_count);
3624 	writel(reg, &sdr_ctrl->phy_ctrl0);
3625 
3626 	reg = 0;
3627 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3628 		trk_sample_count >>
3629 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3630 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3631 		trk_long_idle_sample_count);
3632 	writel(reg, &sdr_ctrl->phy_ctrl1);
3633 
3634 	reg = 0;
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3636 		trk_long_idle_sample_count >>
3637 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3638 	writel(reg, &sdr_ctrl->phy_ctrl2);
3639 }
3640 
3641 static void initialize_tracking(void)
3642 {
3643 	uint32_t concatenated_longidle = 0x0;
3644 	uint32_t concatenated_delays = 0x0;
3645 	uint32_t concatenated_rw_addr = 0x0;
3646 	uint32_t concatenated_refresh = 0x0;
3647 	uint32_t trk_sample_count = 7500;
3648 	uint32_t dtaps_per_ptap;
3649 	uint32_t tmp_delay;
3650 
3651 	/*
3652 	 * compute usable version of value in case we skip full
3653 	 * computation later
3654 	 */
3655 	dtaps_per_ptap = 0;
3656 	tmp_delay = 0;
3657 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3658 		dtaps_per_ptap++;
3659 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3660 	}
3661 	dtaps_per_ptap--;
3662 
3663 	concatenated_longidle = concatenated_longidle ^ 10;
3664 		/*longidle outer loop */
3665 	concatenated_longidle = concatenated_longidle << 16;
3666 	concatenated_longidle = concatenated_longidle ^ 100;
3667 		/*longidle sample count */
3668 	concatenated_delays = concatenated_delays ^ 243;
3669 		/* trfc, worst case of 933Mhz 4Gb */
3670 	concatenated_delays = concatenated_delays << 8;
3671 	concatenated_delays = concatenated_delays ^ 14;
3672 		/* trcd, worst case */
3673 	concatenated_delays = concatenated_delays << 8;
3674 	concatenated_delays = concatenated_delays ^ 10;
3675 		/* vfifo wait */
3676 	concatenated_delays = concatenated_delays << 8;
3677 	concatenated_delays = concatenated_delays ^ 4;
3678 		/* mux delay */
3679 
3680 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3681 	concatenated_rw_addr = concatenated_rw_addr << 8;
3682 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3683 	concatenated_rw_addr = concatenated_rw_addr << 8;
3684 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3685 	concatenated_rw_addr = concatenated_rw_addr << 8;
3686 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3687 
3688 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3689 	concatenated_refresh = concatenated_refresh << 24;
3690 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3691 
3692 	/* Initialize the register file with the correct data */
3693 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3694 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3695 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3696 	writel(concatenated_delays, &sdr_reg_file->delays);
3697 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3698 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3699 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3700 }
3701 
3702 int sdram_calibration_full(void)
3703 {
3704 	struct param_type my_param;
3705 	struct gbl_type my_gbl;
3706 	uint32_t pass;
3707 	uint32_t i;
3708 
3709 	param = &my_param;
3710 	gbl = &my_gbl;
3711 
3712 	/* Initialize the debug mode flags */
3713 	gbl->phy_debug_mode_flags = 0;
3714 	/* Set the calibration enabled by default */
3715 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3716 	/*
3717 	 * Only sweep all groups (regardless of fail state) by default
3718 	 * Set enabled read test by default.
3719 	 */
3720 #if DISABLE_GUARANTEED_READ
3721 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3722 #endif
3723 	/* Initialize the register file */
3724 	initialize_reg_file();
3725 
3726 	/* Initialize any PHY CSR */
3727 	initialize_hps_phy();
3728 
3729 	scc_mgr_initialize();
3730 
3731 	initialize_tracking();
3732 
3733 	/* USER Enable all ranks, groups */
3734 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3735 		param->skip_ranks[i] = 0;
3736 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3737 		param->skip_shadow_regs[i] = 0;
3738 	param->skip_groups = 0;
3739 
3740 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3741 
3742 	debug("%s:%d\n", __func__, __LINE__);
3743 	debug_cond(DLEVEL == 1,
3744 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3745 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3746 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3747 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3748 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3749 	debug_cond(DLEVEL == 1,
3750 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3751 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3752 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3753 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3754 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3755 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3756 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3757 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3758 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3759 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3760 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3761 		   IO_IO_OUT2_DELAY_MAX);
3762 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3763 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3764 
3765 	hc_initialize_rom_data();
3766 
3767 	/* update info for sims */
3768 	reg_file_set_stage(CAL_STAGE_NIL);
3769 	reg_file_set_group(0);
3770 
3771 	/*
3772 	 * Load global needed for those actions that require
3773 	 * some dynamic calibration support.
3774 	 */
3775 	dyn_calib_steps = STATIC_CALIB_STEPS;
3776 	/*
3777 	 * Load global to allow dynamic selection of delay loop settings
3778 	 * based on calibration mode.
3779 	 */
3780 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3781 		skip_delay_mask = 0xff;
3782 	else
3783 		skip_delay_mask = 0x0;
3784 
3785 	pass = run_mem_calibrate();
3786 
3787 	printf("%s: Calibration complete\n", __FILE__);
3788 	return pass;
3789 }
3790