1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /* 1040 * performs a guaranteed read on the patterns we are going to use during a 1041 * read test to ensure memory works 1042 */ 1043 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1044 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1045 uint32_t all_ranks) 1046 { 1047 uint32_t r, vg; 1048 uint32_t correct_mask_vg; 1049 uint32_t tmp_bit_chk; 1050 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1051 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1052 uint32_t addr; 1053 uint32_t base_rw_mgr; 1054 1055 *bit_chk = param->read_correct_mask; 1056 correct_mask_vg = param->read_correct_mask_vg; 1057 1058 for (r = rank_bgn; r < rank_end; r++) { 1059 if (param->skip_ranks[r]) 1060 /* request to skip the rank */ 1061 continue; 1062 1063 /* set rank */ 1064 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1065 1066 /* Load up a constant bursts of read commands */ 1067 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1068 writel(RW_MGR_GUARANTEED_READ, 1069 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1070 1071 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1072 writel(RW_MGR_GUARANTEED_READ_CONT, 1073 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1074 1075 tmp_bit_chk = 0; 1076 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1077 /* reset the fifos to get pointers to known state */ 1078 1079 writel(0, &phy_mgr_cmd->fifo_reset); 1080 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1081 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1082 1083 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1084 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1085 1086 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1087 writel(RW_MGR_GUARANTEED_READ, addr + 1088 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1089 vg) << 2)); 1090 1091 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1092 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1093 1094 if (vg == 0) 1095 break; 1096 } 1097 *bit_chk &= tmp_bit_chk; 1098 } 1099 1100 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1101 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1102 1103 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1104 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1105 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1106 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1107 return *bit_chk == param->read_correct_mask; 1108 } 1109 1110 /** 1111 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1112 * @rank_bgn: Rank number 1113 * @all_ranks: Test all ranks 1114 * 1115 * Load up the patterns we are going to use during a read test. 1116 */ 1117 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1118 const int all_ranks) 1119 { 1120 const u32 rank_end = all_ranks ? 1121 RW_MGR_MEM_NUMBER_OF_RANKS : 1122 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1123 u32 r; 1124 1125 debug("%s:%d\n", __func__, __LINE__); 1126 1127 for (r = rank_bgn; r < rank_end; r++) { 1128 if (param->skip_ranks[r]) 1129 /* request to skip the rank */ 1130 continue; 1131 1132 /* set rank */ 1133 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1134 1135 /* Load up a constant bursts */ 1136 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1137 1138 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1140 1141 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1142 1143 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1144 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1145 1146 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1147 1148 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1149 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1150 1151 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1152 1153 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1154 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1155 1156 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1157 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1158 } 1159 1160 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1161 } 1162 1163 /* 1164 * try a read and see if it returns correct data back. has dummy reads 1165 * inserted into the mix used to align dqs enable. has more thorough checks 1166 * than the regular read test. 1167 */ 1168 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1169 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1170 uint32_t all_groups, uint32_t all_ranks) 1171 { 1172 uint32_t r, vg; 1173 uint32_t correct_mask_vg; 1174 uint32_t tmp_bit_chk; 1175 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1176 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1177 uint32_t addr; 1178 uint32_t base_rw_mgr; 1179 1180 *bit_chk = param->read_correct_mask; 1181 correct_mask_vg = param->read_correct_mask_vg; 1182 1183 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1184 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1185 1186 for (r = rank_bgn; r < rank_end; r++) { 1187 if (param->skip_ranks[r]) 1188 /* request to skip the rank */ 1189 continue; 1190 1191 /* set rank */ 1192 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1193 1194 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1195 1196 writel(RW_MGR_READ_B2B_WAIT1, 1197 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1198 1199 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1200 writel(RW_MGR_READ_B2B_WAIT2, 1201 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1202 1203 if (quick_read_mode) 1204 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1205 /* need at least two (1+1) reads to capture failures */ 1206 else if (all_groups) 1207 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1208 else 1209 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1210 1211 writel(RW_MGR_READ_B2B, 1212 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1213 if (all_groups) 1214 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1215 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1216 &sdr_rw_load_mgr_regs->load_cntr3); 1217 else 1218 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1222 1223 tmp_bit_chk = 0; 1224 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1225 /* reset the fifos to get pointers to known state */ 1226 writel(0, &phy_mgr_cmd->fifo_reset); 1227 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1228 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1229 1230 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1231 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1232 1233 if (all_groups) 1234 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1235 else 1236 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1237 1238 writel(RW_MGR_READ_B2B, addr + 1239 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1240 vg) << 2)); 1241 1242 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1243 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1244 1245 if (vg == 0) 1246 break; 1247 } 1248 *bit_chk &= tmp_bit_chk; 1249 } 1250 1251 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1252 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1253 1254 if (all_correct) { 1255 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1256 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1257 (%u == %u) => %lu", __func__, __LINE__, group, 1258 all_groups, *bit_chk, param->read_correct_mask, 1259 (long unsigned int)(*bit_chk == 1260 param->read_correct_mask)); 1261 return *bit_chk == param->read_correct_mask; 1262 } else { 1263 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1264 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1265 (%u != %lu) => %lu\n", __func__, __LINE__, 1266 group, all_groups, *bit_chk, (long unsigned int)0, 1267 (long unsigned int)(*bit_chk != 0x00)); 1268 return *bit_chk != 0x00; 1269 } 1270 } 1271 1272 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1273 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1274 uint32_t all_groups) 1275 { 1276 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1277 bit_chk, all_groups, 1); 1278 } 1279 1280 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1281 { 1282 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1283 (*v)++; 1284 } 1285 1286 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1287 { 1288 uint32_t i; 1289 1290 for (i = 0; i < VFIFO_SIZE-1; i++) 1291 rw_mgr_incr_vfifo(grp, v); 1292 } 1293 1294 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1295 { 1296 uint32_t v; 1297 uint32_t fail_cnt = 0; 1298 uint32_t test_status; 1299 1300 for (v = 0; v < VFIFO_SIZE; ) { 1301 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1302 __func__, __LINE__, v); 1303 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1304 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1305 if (!test_status) { 1306 fail_cnt++; 1307 1308 if (fail_cnt == 2) 1309 break; 1310 } 1311 1312 /* fiddle with FIFO */ 1313 rw_mgr_incr_vfifo(grp, &v); 1314 } 1315 1316 if (v >= VFIFO_SIZE) { 1317 /* no failing read found!! Something must have gone wrong */ 1318 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1319 __func__, __LINE__); 1320 return 0; 1321 } else { 1322 return v; 1323 } 1324 } 1325 1326 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1327 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1328 uint32_t *v, uint32_t *d, uint32_t *p, 1329 uint32_t *i, uint32_t *max_working_cnt) 1330 { 1331 uint32_t found_begin = 0; 1332 uint32_t tmp_delay = 0; 1333 uint32_t test_status; 1334 1335 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1336 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1337 *work_bgn = tmp_delay; 1338 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1339 1340 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1341 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1342 IO_DELAY_PER_OPA_TAP) { 1343 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1344 1345 test_status = 1346 rw_mgr_mem_calibrate_read_test_all_ranks 1347 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1348 1349 if (test_status) { 1350 *max_working_cnt = 1; 1351 found_begin = 1; 1352 break; 1353 } 1354 } 1355 1356 if (found_begin) 1357 break; 1358 1359 if (*p > IO_DQS_EN_PHASE_MAX) 1360 /* fiddle with FIFO */ 1361 rw_mgr_incr_vfifo(*grp, v); 1362 } 1363 1364 if (found_begin) 1365 break; 1366 } 1367 1368 if (*i >= VFIFO_SIZE) { 1369 /* cannot find working solution */ 1370 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1371 ptap/dtap\n", __func__, __LINE__); 1372 return 0; 1373 } else { 1374 return 1; 1375 } 1376 } 1377 1378 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1379 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1380 uint32_t *p, uint32_t *max_working_cnt) 1381 { 1382 uint32_t found_begin = 0; 1383 uint32_t tmp_delay; 1384 1385 /* Special case code for backing up a phase */ 1386 if (*p == 0) { 1387 *p = IO_DQS_EN_PHASE_MAX; 1388 rw_mgr_decr_vfifo(*grp, v); 1389 } else { 1390 (*p)--; 1391 } 1392 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1393 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1394 1395 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1396 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1397 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1398 1399 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1400 PASS_ONE_BIT, 1401 bit_chk, 0)) { 1402 found_begin = 1; 1403 *work_bgn = tmp_delay; 1404 break; 1405 } 1406 } 1407 1408 /* We have found a working dtap before the ptap found above */ 1409 if (found_begin == 1) 1410 (*max_working_cnt)++; 1411 1412 /* 1413 * Restore VFIFO to old state before we decremented it 1414 * (if needed). 1415 */ 1416 (*p)++; 1417 if (*p > IO_DQS_EN_PHASE_MAX) { 1418 *p = 0; 1419 rw_mgr_incr_vfifo(*grp, v); 1420 } 1421 1422 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1423 } 1424 1425 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1426 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1427 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1428 uint32_t *work_end) 1429 { 1430 uint32_t found_end = 0; 1431 1432 (*p)++; 1433 *work_end += IO_DELAY_PER_OPA_TAP; 1434 if (*p > IO_DQS_EN_PHASE_MAX) { 1435 /* fiddle with FIFO */ 1436 *p = 0; 1437 rw_mgr_incr_vfifo(*grp, v); 1438 } 1439 1440 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1441 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1442 += IO_DELAY_PER_OPA_TAP) { 1443 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1444 1445 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1446 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1447 found_end = 1; 1448 break; 1449 } else { 1450 (*max_working_cnt)++; 1451 } 1452 } 1453 1454 if (found_end) 1455 break; 1456 1457 if (*p > IO_DQS_EN_PHASE_MAX) { 1458 /* fiddle with FIFO */ 1459 rw_mgr_incr_vfifo(*grp, v); 1460 *p = 0; 1461 } 1462 } 1463 1464 if (*i >= VFIFO_SIZE + 1) { 1465 /* cannot see edge of failing read */ 1466 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1467 failed\n", __func__, __LINE__); 1468 return 0; 1469 } else { 1470 return 1; 1471 } 1472 } 1473 1474 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1475 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1476 uint32_t *p, uint32_t *work_mid, 1477 uint32_t *work_end) 1478 { 1479 int i; 1480 int tmp_delay = 0; 1481 1482 *work_mid = (*work_bgn + *work_end) / 2; 1483 1484 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1485 *work_bgn, *work_end, *work_mid); 1486 /* Get the middle delay to be less than a VFIFO delay */ 1487 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1488 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1489 ; 1490 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1491 while (*work_mid > tmp_delay) 1492 *work_mid -= tmp_delay; 1493 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1494 1495 tmp_delay = 0; 1496 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1497 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1498 ; 1499 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1500 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1501 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1502 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1503 ; 1504 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1505 1506 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1507 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1508 1509 /* 1510 * push vfifo until we can successfully calibrate. We can do this 1511 * because the largest possible margin in 1 VFIFO cycle. 1512 */ 1513 for (i = 0; i < VFIFO_SIZE; i++) { 1514 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1515 *v); 1516 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1517 PASS_ONE_BIT, 1518 bit_chk, 0)) { 1519 break; 1520 } 1521 1522 /* fiddle with FIFO */ 1523 rw_mgr_incr_vfifo(*grp, v); 1524 } 1525 1526 if (i >= VFIFO_SIZE) { 1527 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1528 failed\n", __func__, __LINE__); 1529 return 0; 1530 } else { 1531 return 1; 1532 } 1533 } 1534 1535 /* find a good dqs enable to use */ 1536 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1537 { 1538 uint32_t v, d, p, i; 1539 uint32_t max_working_cnt; 1540 uint32_t bit_chk; 1541 uint32_t dtaps_per_ptap; 1542 uint32_t work_bgn, work_mid, work_end; 1543 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1544 1545 debug("%s:%d %u\n", __func__, __LINE__, grp); 1546 1547 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1548 1549 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1550 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1551 1552 /* ************************************************************** */ 1553 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1554 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1555 1556 /* ********************************************************* */ 1557 /* * Step 1 : First push vfifo until we get a failing read * */ 1558 v = find_vfifo_read(grp, &bit_chk); 1559 1560 max_working_cnt = 0; 1561 1562 /* ******************************************************** */ 1563 /* * step 2: find first working phase, increment in ptaps * */ 1564 work_bgn = 0; 1565 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1566 &p, &i, &max_working_cnt) == 0) 1567 return 0; 1568 1569 work_end = work_bgn; 1570 1571 /* 1572 * If d is 0 then the working window covers a phase tap and 1573 * we can follow the old procedure otherwise, we've found the beginning, 1574 * and we need to increment the dtaps until we find the end. 1575 */ 1576 if (d == 0) { 1577 /* ********************************************************* */ 1578 /* * step 3a: if we have room, back off by one and 1579 increment in dtaps * */ 1580 1581 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1582 &max_working_cnt); 1583 1584 /* ********************************************************* */ 1585 /* * step 4a: go forward from working phase to non working 1586 phase, increment in ptaps * */ 1587 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1588 &i, &max_working_cnt, &work_end) == 0) 1589 return 0; 1590 1591 /* ********************************************************* */ 1592 /* * step 5a: back off one from last, increment in dtaps * */ 1593 1594 /* Special case code for backing up a phase */ 1595 if (p == 0) { 1596 p = IO_DQS_EN_PHASE_MAX; 1597 rw_mgr_decr_vfifo(grp, &v); 1598 } else { 1599 p = p - 1; 1600 } 1601 1602 work_end -= IO_DELAY_PER_OPA_TAP; 1603 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1604 1605 /* * The actual increment of dtaps is done outside of 1606 the if/else loop to share code */ 1607 d = 0; 1608 1609 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1610 vfifo=%u ptap=%u\n", __func__, __LINE__, 1611 v, p); 1612 } else { 1613 /* ******************************************************* */ 1614 /* * step 3-5b: Find the right edge of the window using 1615 delay taps * */ 1616 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1617 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1618 v, p, d, work_bgn); 1619 1620 work_end = work_bgn; 1621 1622 /* * The actual increment of dtaps is done outside of the 1623 if/else loop to share code */ 1624 1625 /* Only here to counterbalance a subtract later on which is 1626 not needed if this branch of the algorithm is taken */ 1627 max_working_cnt++; 1628 } 1629 1630 /* The dtap increment to find the failing edge is done here */ 1631 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1632 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1633 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1634 end-2: dtap=%u\n", __func__, __LINE__, d); 1635 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1636 1637 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1638 PASS_ONE_BIT, 1639 &bit_chk, 0)) { 1640 break; 1641 } 1642 } 1643 1644 /* Go back to working dtap */ 1645 if (d != 0) 1646 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1647 1648 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1649 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1650 v, p, d-1, work_end); 1651 1652 if (work_end < work_bgn) { 1653 /* nil range */ 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1655 failed\n", __func__, __LINE__); 1656 return 0; 1657 } 1658 1659 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1660 __func__, __LINE__, work_bgn, work_end); 1661 1662 /* *************************************************************** */ 1663 /* 1664 * * We need to calculate the number of dtaps that equal a ptap 1665 * * To do that we'll back up a ptap and re-find the edge of the 1666 * * window using dtaps 1667 */ 1668 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1670 for tracking\n", __func__, __LINE__); 1671 1672 /* Special case code for backing up a phase */ 1673 if (p == 0) { 1674 p = IO_DQS_EN_PHASE_MAX; 1675 rw_mgr_decr_vfifo(grp, &v); 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1677 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1678 v, p); 1679 } else { 1680 p = p - 1; 1681 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1682 phase only: v=%u p=%u", __func__, __LINE__, 1683 v, p); 1684 } 1685 1686 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1687 1688 /* 1689 * Increase dtap until we first see a passing read (in case the 1690 * window is smaller than a ptap), 1691 * and then a failing read to mark the edge of the window again 1692 */ 1693 1694 /* Find a passing read */ 1695 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1696 __func__, __LINE__); 1697 found_passing_read = 0; 1698 found_failing_read = 0; 1699 initial_failing_dtap = d; 1700 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1701 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1702 read d=%u\n", __func__, __LINE__, d); 1703 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1704 1705 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1706 PASS_ONE_BIT, 1707 &bit_chk, 0)) { 1708 found_passing_read = 1; 1709 break; 1710 } 1711 } 1712 1713 if (found_passing_read) { 1714 /* Find a failing read */ 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1716 read\n", __func__, __LINE__); 1717 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1718 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1719 testing read d=%u\n", __func__, __LINE__, d); 1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1721 1722 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1723 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1724 found_failing_read = 1; 1725 break; 1726 } 1727 } 1728 } else { 1729 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1730 calculate dtaps", __func__, __LINE__); 1731 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1732 } 1733 1734 /* 1735 * The dynamically calculated dtaps_per_ptap is only valid if we 1736 * found a passing/failing read. If we didn't, it means d hit the max 1737 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1738 * statically calculated value. 1739 */ 1740 if (found_passing_read && found_failing_read) 1741 dtaps_per_ptap = d - initial_failing_dtap; 1742 1743 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1744 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1745 - %u = %u", __func__, __LINE__, d, 1746 initial_failing_dtap, dtaps_per_ptap); 1747 1748 /* ******************************************** */ 1749 /* * step 6: Find the centre of the window * */ 1750 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1751 &work_mid, &work_end) == 0) 1752 return 0; 1753 1754 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1755 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1756 v, p-1, d); 1757 return 1; 1758 } 1759 1760 /* 1761 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1762 * dq_in_delay values 1763 */ 1764 static uint32_t 1765 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1766 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1767 { 1768 uint32_t found; 1769 uint32_t i; 1770 uint32_t p; 1771 uint32_t d; 1772 uint32_t r; 1773 1774 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1775 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1776 /* we start at zero, so have one less dq to devide among */ 1777 1778 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1779 test_bgn); 1780 1781 /* try different dq_in_delays since the dq path is shorter than dqs */ 1782 1783 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1784 r += NUM_RANKS_PER_SHADOW_REG) { 1785 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1786 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1787 vfifo_find_dqs_", __func__, __LINE__); 1788 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1789 write_group, read_group); 1790 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1791 scc_mgr_set_dq_in_delay(p, d); 1792 scc_mgr_load_dq(p); 1793 } 1794 writel(0, &sdr_scc_mgr->update); 1795 } 1796 1797 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1798 1799 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1800 en_phase_sweep_dq", __func__, __LINE__); 1801 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1802 chain to zero\n", write_group, read_group, found); 1803 1804 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1805 r += NUM_RANKS_PER_SHADOW_REG) { 1806 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1807 i++, p++) { 1808 scc_mgr_set_dq_in_delay(p, 0); 1809 scc_mgr_load_dq(p); 1810 } 1811 writel(0, &sdr_scc_mgr->update); 1812 } 1813 1814 return found; 1815 } 1816 1817 /* per-bit deskew DQ and center */ 1818 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1819 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1820 uint32_t use_read_test, uint32_t update_fom) 1821 { 1822 uint32_t i, p, d, min_index; 1823 /* 1824 * Store these as signed since there are comparisons with 1825 * signed numbers. 1826 */ 1827 uint32_t bit_chk; 1828 uint32_t sticky_bit_chk; 1829 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1830 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1831 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1832 int32_t mid; 1833 int32_t orig_mid_min, mid_min; 1834 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1835 final_dqs_en; 1836 int32_t dq_margin, dqs_margin; 1837 uint32_t stop; 1838 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1839 uint32_t addr; 1840 1841 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1842 1843 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1844 start_dqs = readl(addr + (read_group << 2)); 1845 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1846 start_dqs_en = readl(addr + ((read_group << 2) 1847 - IO_DQS_EN_DELAY_OFFSET)); 1848 1849 /* set the left and right edge of each bit to an illegal value */ 1850 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1851 sticky_bit_chk = 0; 1852 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1853 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1854 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1855 } 1856 1857 /* Search for the left edge of the window for each bit */ 1858 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1859 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1860 1861 writel(0, &sdr_scc_mgr->update); 1862 1863 /* 1864 * Stop searching when the read test doesn't pass AND when 1865 * we've seen a passing read on every bit. 1866 */ 1867 if (use_read_test) { 1868 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1869 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1870 &bit_chk, 0, 0); 1871 } else { 1872 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1873 0, PASS_ONE_BIT, 1874 &bit_chk, 0); 1875 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1876 (read_group - (write_group * 1877 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1878 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1879 stop = (bit_chk == 0); 1880 } 1881 sticky_bit_chk = sticky_bit_chk | bit_chk; 1882 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1883 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1884 && %u", __func__, __LINE__, d, 1885 sticky_bit_chk, 1886 param->read_correct_mask, stop); 1887 1888 if (stop == 1) { 1889 break; 1890 } else { 1891 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1892 if (bit_chk & 1) { 1893 /* Remember a passing test as the 1894 left_edge */ 1895 left_edge[i] = d; 1896 } else { 1897 /* If a left edge has not been seen yet, 1898 then a future passing test will mark 1899 this edge as the right edge */ 1900 if (left_edge[i] == 1901 IO_IO_IN_DELAY_MAX + 1) { 1902 right_edge[i] = -(d + 1); 1903 } 1904 } 1905 bit_chk = bit_chk >> 1; 1906 } 1907 } 1908 } 1909 1910 /* Reset DQ delay chains to 0 */ 1911 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1912 sticky_bit_chk = 0; 1913 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1914 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1915 %d right_edge[%u]: %d\n", __func__, __LINE__, 1916 i, left_edge[i], i, right_edge[i]); 1917 1918 /* 1919 * Check for cases where we haven't found the left edge, 1920 * which makes our assignment of the the right edge invalid. 1921 * Reset it to the illegal value. 1922 */ 1923 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1924 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1925 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1926 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1927 right_edge[%u]: %d\n", __func__, __LINE__, 1928 i, right_edge[i]); 1929 } 1930 1931 /* 1932 * Reset sticky bit (except for bits where we have seen 1933 * both the left and right edge). 1934 */ 1935 sticky_bit_chk = sticky_bit_chk << 1; 1936 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1937 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1938 sticky_bit_chk = sticky_bit_chk | 1; 1939 } 1940 1941 if (i == 0) 1942 break; 1943 } 1944 1945 /* Search for the right edge of the window for each bit */ 1946 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1947 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1948 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1949 uint32_t delay = d + start_dqs_en; 1950 if (delay > IO_DQS_EN_DELAY_MAX) 1951 delay = IO_DQS_EN_DELAY_MAX; 1952 scc_mgr_set_dqs_en_delay(read_group, delay); 1953 } 1954 scc_mgr_load_dqs(read_group); 1955 1956 writel(0, &sdr_scc_mgr->update); 1957 1958 /* 1959 * Stop searching when the read test doesn't pass AND when 1960 * we've seen a passing read on every bit. 1961 */ 1962 if (use_read_test) { 1963 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1964 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1965 &bit_chk, 0, 0); 1966 } else { 1967 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1968 0, PASS_ONE_BIT, 1969 &bit_chk, 0); 1970 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1971 (read_group - (write_group * 1972 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1973 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1974 stop = (bit_chk == 0); 1975 } 1976 sticky_bit_chk = sticky_bit_chk | bit_chk; 1977 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1978 1979 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1980 %u && %u", __func__, __LINE__, d, 1981 sticky_bit_chk, param->read_correct_mask, stop); 1982 1983 if (stop == 1) { 1984 break; 1985 } else { 1986 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1987 if (bit_chk & 1) { 1988 /* Remember a passing test as 1989 the right_edge */ 1990 right_edge[i] = d; 1991 } else { 1992 if (d != 0) { 1993 /* If a right edge has not been 1994 seen yet, then a future passing 1995 test will mark this edge as the 1996 left edge */ 1997 if (right_edge[i] == 1998 IO_IO_IN_DELAY_MAX + 1) { 1999 left_edge[i] = -(d + 1); 2000 } 2001 } else { 2002 /* d = 0 failed, but it passed 2003 when testing the left edge, 2004 so it must be marginal, 2005 set it to -1 */ 2006 if (right_edge[i] == 2007 IO_IO_IN_DELAY_MAX + 1 && 2008 left_edge[i] != 2009 IO_IO_IN_DELAY_MAX 2010 + 1) { 2011 right_edge[i] = -1; 2012 } 2013 /* If a right edge has not been 2014 seen yet, then a future passing 2015 test will mark this edge as the 2016 left edge */ 2017 else if (right_edge[i] == 2018 IO_IO_IN_DELAY_MAX + 2019 1) { 2020 left_edge[i] = -(d + 1); 2021 } 2022 } 2023 } 2024 2025 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2026 d=%u]: ", __func__, __LINE__, d); 2027 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2028 (int)(bit_chk & 1), i, left_edge[i]); 2029 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2030 right_edge[i]); 2031 bit_chk = bit_chk >> 1; 2032 } 2033 } 2034 } 2035 2036 /* Check that all bits have a window */ 2037 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2038 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2039 %d right_edge[%u]: %d", __func__, __LINE__, 2040 i, left_edge[i], i, right_edge[i]); 2041 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2042 == IO_IO_IN_DELAY_MAX + 1)) { 2043 /* 2044 * Restore delay chain settings before letting the loop 2045 * in rw_mgr_mem_calibrate_vfifo to retry different 2046 * dqs/ck relationships. 2047 */ 2048 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2049 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2050 scc_mgr_set_dqs_en_delay(read_group, 2051 start_dqs_en); 2052 } 2053 scc_mgr_load_dqs(read_group); 2054 writel(0, &sdr_scc_mgr->update); 2055 2056 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2057 find edge [%u]: %d %d", __func__, __LINE__, 2058 i, left_edge[i], right_edge[i]); 2059 if (use_read_test) { 2060 set_failing_group_stage(read_group * 2061 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2062 CAL_STAGE_VFIFO, 2063 CAL_SUBSTAGE_VFIFO_CENTER); 2064 } else { 2065 set_failing_group_stage(read_group * 2066 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2067 CAL_STAGE_VFIFO_AFTER_WRITES, 2068 CAL_SUBSTAGE_VFIFO_CENTER); 2069 } 2070 return 0; 2071 } 2072 } 2073 2074 /* Find middle of window for each DQ bit */ 2075 mid_min = left_edge[0] - right_edge[0]; 2076 min_index = 0; 2077 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2078 mid = left_edge[i] - right_edge[i]; 2079 if (mid < mid_min) { 2080 mid_min = mid; 2081 min_index = i; 2082 } 2083 } 2084 2085 /* 2086 * -mid_min/2 represents the amount that we need to move DQS. 2087 * If mid_min is odd and positive we'll need to add one to 2088 * make sure the rounding in further calculations is correct 2089 * (always bias to the right), so just add 1 for all positive values. 2090 */ 2091 if (mid_min > 0) 2092 mid_min++; 2093 2094 mid_min = mid_min / 2; 2095 2096 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2097 __func__, __LINE__, mid_min, min_index); 2098 2099 /* Determine the amount we can change DQS (which is -mid_min) */ 2100 orig_mid_min = mid_min; 2101 new_dqs = start_dqs - mid_min; 2102 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2103 new_dqs = IO_DQS_IN_DELAY_MAX; 2104 else if (new_dqs < 0) 2105 new_dqs = 0; 2106 2107 mid_min = start_dqs - new_dqs; 2108 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2109 mid_min, new_dqs); 2110 2111 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2112 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2113 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2114 else if (start_dqs_en - mid_min < 0) 2115 mid_min += start_dqs_en - mid_min; 2116 } 2117 new_dqs = start_dqs - mid_min; 2118 2119 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2120 new_dqs=%d mid_min=%d\n", start_dqs, 2121 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2122 new_dqs, mid_min); 2123 2124 /* Initialize data for export structures */ 2125 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2126 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2127 2128 /* add delay to bring centre of all DQ windows to the same "level" */ 2129 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2130 /* Use values before divide by 2 to reduce round off error */ 2131 shift_dq = (left_edge[i] - right_edge[i] - 2132 (left_edge[min_index] - right_edge[min_index]))/2 + 2133 (orig_mid_min - mid_min); 2134 2135 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2136 shift_dq[%u]=%d\n", i, shift_dq); 2137 2138 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2139 temp_dq_in_delay1 = readl(addr + (p << 2)); 2140 temp_dq_in_delay2 = readl(addr + (i << 2)); 2141 2142 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2143 (int32_t)IO_IO_IN_DELAY_MAX) { 2144 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2145 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2146 shift_dq = -(int32_t)temp_dq_in_delay1; 2147 } 2148 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2149 shift_dq[%u]=%d\n", i, shift_dq); 2150 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2151 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2152 scc_mgr_load_dq(p); 2153 2154 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2155 left_edge[i] - shift_dq + (-mid_min), 2156 right_edge[i] + shift_dq - (-mid_min)); 2157 /* To determine values for export structures */ 2158 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2159 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2160 2161 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2162 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2163 } 2164 2165 final_dqs = new_dqs; 2166 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2167 final_dqs_en = start_dqs_en - mid_min; 2168 2169 /* Move DQS-en */ 2170 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2171 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2172 scc_mgr_load_dqs(read_group); 2173 } 2174 2175 /* Move DQS */ 2176 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2177 scc_mgr_load_dqs(read_group); 2178 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2179 dqs_margin=%d", __func__, __LINE__, 2180 dq_margin, dqs_margin); 2181 2182 /* 2183 * Do not remove this line as it makes sure all of our decisions 2184 * have been applied. Apply the update bit. 2185 */ 2186 writel(0, &sdr_scc_mgr->update); 2187 2188 return (dq_margin >= 0) && (dqs_margin >= 0); 2189 } 2190 2191 /** 2192 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2193 * @rw_group: Read/Write Group 2194 * @phase: DQ/DQS phase 2195 * 2196 * Because initially no communication ca be reliably performed with the memory 2197 * device, the sequencer uses a guaranteed write mechanism to write data into 2198 * the memory device. 2199 */ 2200 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2201 const u32 phase) 2202 { 2203 u32 bit_chk; 2204 int ret; 2205 2206 /* Set a particular DQ/DQS phase. */ 2207 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2208 2209 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2210 __func__, __LINE__, rw_group, phase); 2211 2212 /* 2213 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2214 * Load up the patterns used by read calibration using the 2215 * current DQDQS phase. 2216 */ 2217 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2218 2219 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2220 return 0; 2221 2222 /* 2223 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2224 * Back-to-Back reads of the patterns used for calibration. 2225 */ 2226 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1, 2227 &bit_chk, 1); 2228 if (!ret) { /* FIXME: 0 means failure in this old code :-( */ 2229 debug_cond(DLEVEL == 1, 2230 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2231 __func__, __LINE__, rw_group, phase); 2232 return -EIO; 2233 } 2234 2235 return 0; 2236 } 2237 2238 /** 2239 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2240 * @rw_group: Read/Write Group 2241 * @test_bgn: Rank at which the test begins 2242 * 2243 * DQS enable calibration ensures reliable capture of the DQ signal without 2244 * glitches on the DQS line. 2245 */ 2246 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2247 const u32 test_bgn) 2248 { 2249 int ret; 2250 2251 /* 2252 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2253 * DQS and DQS Eanble Signal Relationships. 2254 */ 2255 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay( 2256 rw_group, rw_group, test_bgn); 2257 if (!ret) /* FIXME: 0 means failure in this old code :-( */ 2258 return -EIO; 2259 2260 return 0; 2261 } 2262 2263 /** 2264 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2265 * @rw_group: Read/Write Group 2266 * @test_bgn: Rank at which the test begins 2267 * @use_read_test: Perform a read test 2268 * @update_fom: Update FOM 2269 * 2270 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2271 * within a group. 2272 */ 2273 static int 2274 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2275 const int use_read_test, 2276 const int update_fom) 2277 2278 { 2279 int ret, grp_calibrated; 2280 u32 rank_bgn, sr; 2281 2282 /* 2283 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2284 * Read per-bit deskew can be done on a per shadow register basis. 2285 */ 2286 grp_calibrated = 1; 2287 for (rank_bgn = 0, sr = 0; 2288 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2289 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2290 /* Check if this set of ranks should be skipped entirely. */ 2291 if (param->skip_shadow_regs[sr]) 2292 continue; 2293 2294 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2295 rw_group, test_bgn, 2296 use_read_test, 2297 update_fom); 2298 if (ret) 2299 continue; 2300 2301 grp_calibrated = 0; 2302 } 2303 2304 if (!grp_calibrated) 2305 return -EIO; 2306 2307 return 0; 2308 } 2309 2310 /** 2311 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2312 * @rw_group: Read/Write Group 2313 * @test_bgn: Rank at which the test begins 2314 * 2315 * Stage 1: Calibrate the read valid prediction FIFO. 2316 * 2317 * This function implements UniPHY calibration Stage 1, as explained in 2318 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2319 * 2320 * - read valid prediction will consist of finding: 2321 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2322 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2323 * - we also do a per-bit deskew on the DQ lines. 2324 */ 2325 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2326 { 2327 uint32_t p, d; 2328 uint32_t dtaps_per_ptap; 2329 uint32_t failed_substage; 2330 2331 int ret; 2332 2333 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2334 2335 /* Update info for sims */ 2336 reg_file_set_group(rw_group); 2337 reg_file_set_stage(CAL_STAGE_VFIFO); 2338 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2339 2340 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2341 2342 /* USER Determine number of delay taps for each phase tap. */ 2343 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2344 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2345 2346 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2347 /* 2348 * In RLDRAMX we may be messing the delay of pins in 2349 * the same write rw_group but outside of the current read 2350 * the rw_group, but that's ok because we haven't calibrated 2351 * output side yet. 2352 */ 2353 if (d > 0) { 2354 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2355 rw_group, d); 2356 } 2357 2358 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2359 /* 1) Guaranteed Write */ 2360 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2361 if (ret) 2362 break; 2363 2364 /* 2) DQS Enable Calibration */ 2365 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2366 test_bgn); 2367 if (ret) { 2368 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2369 continue; 2370 } 2371 2372 /* 3) Centering DQ/DQS */ 2373 /* 2374 * If doing read after write calibration, do not update 2375 * FOM now. Do it then. 2376 */ 2377 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2378 test_bgn, 1, 0); 2379 if (ret) { 2380 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2381 continue; 2382 } 2383 2384 /* All done. */ 2385 goto cal_done_ok; 2386 } 2387 } 2388 2389 /* Calibration Stage 1 failed. */ 2390 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2391 return 0; 2392 2393 /* Calibration Stage 1 completed OK. */ 2394 cal_done_ok: 2395 /* 2396 * Reset the delay chains back to zero if they have moved > 1 2397 * (check for > 1 because loop will increase d even when pass in 2398 * first case). 2399 */ 2400 if (d > 2) 2401 scc_mgr_zero_group(rw_group, 1); 2402 2403 return 1; 2404 } 2405 2406 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2407 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2408 uint32_t test_bgn) 2409 { 2410 uint32_t rank_bgn, sr; 2411 uint32_t grp_calibrated; 2412 uint32_t write_group; 2413 2414 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2415 2416 /* update info for sims */ 2417 2418 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2419 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2420 2421 write_group = read_group; 2422 2423 /* update info for sims */ 2424 reg_file_set_group(read_group); 2425 2426 grp_calibrated = 1; 2427 /* Read per-bit deskew can be done on a per shadow register basis */ 2428 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2429 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2430 /* Determine if this set of ranks should be skipped entirely */ 2431 if (!param->skip_shadow_regs[sr]) { 2432 /* This is the last calibration round, update FOM here */ 2433 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2434 write_group, 2435 read_group, 2436 test_bgn, 0, 2437 1)) { 2438 grp_calibrated = 0; 2439 } 2440 } 2441 } 2442 2443 2444 if (grp_calibrated == 0) { 2445 set_failing_group_stage(write_group, 2446 CAL_STAGE_VFIFO_AFTER_WRITES, 2447 CAL_SUBSTAGE_VFIFO_CENTER); 2448 return 0; 2449 } 2450 2451 return 1; 2452 } 2453 2454 /* Calibrate LFIFO to find smallest read latency */ 2455 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2456 { 2457 uint32_t found_one; 2458 uint32_t bit_chk; 2459 2460 debug("%s:%d\n", __func__, __LINE__); 2461 2462 /* update info for sims */ 2463 reg_file_set_stage(CAL_STAGE_LFIFO); 2464 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2465 2466 /* Load up the patterns used by read calibration for all ranks */ 2467 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2468 found_one = 0; 2469 2470 do { 2471 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2472 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2473 __func__, __LINE__, gbl->curr_read_lat); 2474 2475 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2476 NUM_READ_TESTS, 2477 PASS_ALL_BITS, 2478 &bit_chk, 1)) { 2479 break; 2480 } 2481 2482 found_one = 1; 2483 /* reduce read latency and see if things are working */ 2484 /* correctly */ 2485 gbl->curr_read_lat--; 2486 } while (gbl->curr_read_lat > 0); 2487 2488 /* reset the fifos to get pointers to known state */ 2489 2490 writel(0, &phy_mgr_cmd->fifo_reset); 2491 2492 if (found_one) { 2493 /* add a fudge factor to the read latency that was determined */ 2494 gbl->curr_read_lat += 2; 2495 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2496 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2497 read_lat=%u\n", __func__, __LINE__, 2498 gbl->curr_read_lat); 2499 return 1; 2500 } else { 2501 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2502 CAL_SUBSTAGE_READ_LATENCY); 2503 2504 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2505 read_lat=%u\n", __func__, __LINE__, 2506 gbl->curr_read_lat); 2507 return 0; 2508 } 2509 } 2510 2511 /* 2512 * issue write test command. 2513 * two variants are provided. one that just tests a write pattern and 2514 * another that tests datamask functionality. 2515 */ 2516 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2517 uint32_t test_dm) 2518 { 2519 uint32_t mcc_instruction; 2520 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2521 ENABLE_SUPER_QUICK_CALIBRATION); 2522 uint32_t rw_wl_nop_cycles; 2523 uint32_t addr; 2524 2525 /* 2526 * Set counter and jump addresses for the right 2527 * number of NOP cycles. 2528 * The number of supported NOP cycles can range from -1 to infinity 2529 * Three different cases are handled: 2530 * 2531 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2532 * mechanism will be used to insert the right number of NOPs 2533 * 2534 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2535 * issuing the write command will jump straight to the 2536 * micro-instruction that turns on DQS (for DDRx), or outputs write 2537 * data (for RLD), skipping 2538 * the NOP micro-instruction all together 2539 * 2540 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2541 * turned on in the same micro-instruction that issues the write 2542 * command. Then we need 2543 * to directly jump to the micro-instruction that sends out the data 2544 * 2545 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2546 * (2 and 3). One jump-counter (0) is used to perform multiple 2547 * write-read operations. 2548 * one counter left to issue this command in "multiple-group" mode 2549 */ 2550 2551 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2552 2553 if (rw_wl_nop_cycles == -1) { 2554 /* 2555 * CNTR 2 - We want to execute the special write operation that 2556 * turns on DQS right away and then skip directly to the 2557 * instruction that sends out the data. We set the counter to a 2558 * large number so that the jump is always taken. 2559 */ 2560 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2561 2562 /* CNTR 3 - Not used */ 2563 if (test_dm) { 2564 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2565 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2566 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2567 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2568 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2569 } else { 2570 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2571 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2573 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2574 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2575 } 2576 } else if (rw_wl_nop_cycles == 0) { 2577 /* 2578 * CNTR 2 - We want to skip the NOP operation and go straight 2579 * to the DQS enable instruction. We set the counter to a large 2580 * number so that the jump is always taken. 2581 */ 2582 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2583 2584 /* CNTR 3 - Not used */ 2585 if (test_dm) { 2586 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2587 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2588 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2589 } else { 2590 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2591 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2592 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2593 } 2594 } else { 2595 /* 2596 * CNTR 2 - In this case we want to execute the next instruction 2597 * and NOT take the jump. So we set the counter to 0. The jump 2598 * address doesn't count. 2599 */ 2600 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2601 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2602 2603 /* 2604 * CNTR 3 - Set the nop counter to the number of cycles we 2605 * need to loop for, minus 1. 2606 */ 2607 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2608 if (test_dm) { 2609 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2610 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2611 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2612 } else { 2613 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2614 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2615 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2616 } 2617 } 2618 2619 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2620 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2621 2622 if (quick_write_mode) 2623 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2624 else 2625 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2626 2627 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2628 2629 /* 2630 * CNTR 1 - This is used to ensure enough time elapses 2631 * for read data to come back. 2632 */ 2633 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2634 2635 if (test_dm) { 2636 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2637 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2638 } else { 2639 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2640 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2641 } 2642 2643 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2644 writel(mcc_instruction, addr + (group << 2)); 2645 } 2646 2647 /* Test writes, can check for a single bit pass or multiple bit pass */ 2648 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2649 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2650 uint32_t *bit_chk, uint32_t all_ranks) 2651 { 2652 uint32_t r; 2653 uint32_t correct_mask_vg; 2654 uint32_t tmp_bit_chk; 2655 uint32_t vg; 2656 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2657 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2658 uint32_t addr_rw_mgr; 2659 uint32_t base_rw_mgr; 2660 2661 *bit_chk = param->write_correct_mask; 2662 correct_mask_vg = param->write_correct_mask_vg; 2663 2664 for (r = rank_bgn; r < rank_end; r++) { 2665 if (param->skip_ranks[r]) { 2666 /* request to skip the rank */ 2667 continue; 2668 } 2669 2670 /* set rank */ 2671 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2672 2673 tmp_bit_chk = 0; 2674 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2675 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2676 /* reset the fifos to get pointers to known state */ 2677 writel(0, &phy_mgr_cmd->fifo_reset); 2678 2679 tmp_bit_chk = tmp_bit_chk << 2680 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2681 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2682 rw_mgr_mem_calibrate_write_test_issue(write_group * 2683 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2684 use_dm); 2685 2686 base_rw_mgr = readl(addr_rw_mgr); 2687 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2688 if (vg == 0) 2689 break; 2690 } 2691 *bit_chk &= tmp_bit_chk; 2692 } 2693 2694 if (all_correct) { 2695 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2696 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2697 %u => %lu", write_group, use_dm, 2698 *bit_chk, param->write_correct_mask, 2699 (long unsigned int)(*bit_chk == 2700 param->write_correct_mask)); 2701 return *bit_chk == param->write_correct_mask; 2702 } else { 2703 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2704 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2705 write_group, use_dm, *bit_chk); 2706 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2707 (long unsigned int)(*bit_chk != 0)); 2708 return *bit_chk != 0x00; 2709 } 2710 } 2711 2712 /* 2713 * center all windows. do per-bit-deskew to possibly increase size of 2714 * certain windows. 2715 */ 2716 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2717 uint32_t write_group, uint32_t test_bgn) 2718 { 2719 uint32_t i, p, min_index; 2720 int32_t d; 2721 /* 2722 * Store these as signed since there are comparisons with 2723 * signed numbers. 2724 */ 2725 uint32_t bit_chk; 2726 uint32_t sticky_bit_chk; 2727 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2728 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2729 int32_t mid; 2730 int32_t mid_min, orig_mid_min; 2731 int32_t new_dqs, start_dqs, shift_dq; 2732 int32_t dq_margin, dqs_margin, dm_margin; 2733 uint32_t stop; 2734 uint32_t temp_dq_out1_delay; 2735 uint32_t addr; 2736 2737 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2738 2739 dm_margin = 0; 2740 2741 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2742 start_dqs = readl(addr + 2743 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2744 2745 /* per-bit deskew */ 2746 2747 /* 2748 * set the left and right edge of each bit to an illegal value 2749 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2750 */ 2751 sticky_bit_chk = 0; 2752 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2753 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2754 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2755 } 2756 2757 /* Search for the left edge of the window for each bit */ 2758 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2759 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2760 2761 writel(0, &sdr_scc_mgr->update); 2762 2763 /* 2764 * Stop searching when the read test doesn't pass AND when 2765 * we've seen a passing read on every bit. 2766 */ 2767 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2768 0, PASS_ONE_BIT, &bit_chk, 0); 2769 sticky_bit_chk = sticky_bit_chk | bit_chk; 2770 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2771 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2772 == %u && %u [bit_chk= %u ]\n", 2773 d, sticky_bit_chk, param->write_correct_mask, 2774 stop, bit_chk); 2775 2776 if (stop == 1) { 2777 break; 2778 } else { 2779 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2780 if (bit_chk & 1) { 2781 /* 2782 * Remember a passing test as the 2783 * left_edge. 2784 */ 2785 left_edge[i] = d; 2786 } else { 2787 /* 2788 * If a left edge has not been seen 2789 * yet, then a future passing test will 2790 * mark this edge as the right edge. 2791 */ 2792 if (left_edge[i] == 2793 IO_IO_OUT1_DELAY_MAX + 1) { 2794 right_edge[i] = -(d + 1); 2795 } 2796 } 2797 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2798 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2799 (int)(bit_chk & 1), i, left_edge[i]); 2800 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2801 right_edge[i]); 2802 bit_chk = bit_chk >> 1; 2803 } 2804 } 2805 } 2806 2807 /* Reset DQ delay chains to 0 */ 2808 scc_mgr_apply_group_dq_out1_delay(0); 2809 sticky_bit_chk = 0; 2810 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2811 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2812 %d right_edge[%u]: %d\n", __func__, __LINE__, 2813 i, left_edge[i], i, right_edge[i]); 2814 2815 /* 2816 * Check for cases where we haven't found the left edge, 2817 * which makes our assignment of the the right edge invalid. 2818 * Reset it to the illegal value. 2819 */ 2820 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2821 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2822 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2823 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2824 right_edge[%u]: %d\n", __func__, __LINE__, 2825 i, right_edge[i]); 2826 } 2827 2828 /* 2829 * Reset sticky bit (except for bits where we have 2830 * seen the left edge). 2831 */ 2832 sticky_bit_chk = sticky_bit_chk << 1; 2833 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2834 sticky_bit_chk = sticky_bit_chk | 1; 2835 2836 if (i == 0) 2837 break; 2838 } 2839 2840 /* Search for the right edge of the window for each bit */ 2841 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2842 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2843 d + start_dqs); 2844 2845 writel(0, &sdr_scc_mgr->update); 2846 2847 /* 2848 * Stop searching when the read test doesn't pass AND when 2849 * we've seen a passing read on every bit. 2850 */ 2851 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2852 0, PASS_ONE_BIT, &bit_chk, 0); 2853 2854 sticky_bit_chk = sticky_bit_chk | bit_chk; 2855 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2856 2857 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2858 %u && %u\n", d, sticky_bit_chk, 2859 param->write_correct_mask, stop); 2860 2861 if (stop == 1) { 2862 if (d == 0) { 2863 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2864 i++) { 2865 /* d = 0 failed, but it passed when 2866 testing the left edge, so it must be 2867 marginal, set it to -1 */ 2868 if (right_edge[i] == 2869 IO_IO_OUT1_DELAY_MAX + 1 && 2870 left_edge[i] != 2871 IO_IO_OUT1_DELAY_MAX + 1) { 2872 right_edge[i] = -1; 2873 } 2874 } 2875 } 2876 break; 2877 } else { 2878 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2879 if (bit_chk & 1) { 2880 /* 2881 * Remember a passing test as 2882 * the right_edge. 2883 */ 2884 right_edge[i] = d; 2885 } else { 2886 if (d != 0) { 2887 /* 2888 * If a right edge has not 2889 * been seen yet, then a future 2890 * passing test will mark this 2891 * edge as the left edge. 2892 */ 2893 if (right_edge[i] == 2894 IO_IO_OUT1_DELAY_MAX + 1) 2895 left_edge[i] = -(d + 1); 2896 } else { 2897 /* 2898 * d = 0 failed, but it passed 2899 * when testing the left edge, 2900 * so it must be marginal, set 2901 * it to -1. 2902 */ 2903 if (right_edge[i] == 2904 IO_IO_OUT1_DELAY_MAX + 1 && 2905 left_edge[i] != 2906 IO_IO_OUT1_DELAY_MAX + 1) 2907 right_edge[i] = -1; 2908 /* 2909 * If a right edge has not been 2910 * seen yet, then a future 2911 * passing test will mark this 2912 * edge as the left edge. 2913 */ 2914 else if (right_edge[i] == 2915 IO_IO_OUT1_DELAY_MAX + 2916 1) 2917 left_edge[i] = -(d + 1); 2918 } 2919 } 2920 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2921 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2922 (int)(bit_chk & 1), i, left_edge[i]); 2923 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2924 right_edge[i]); 2925 bit_chk = bit_chk >> 1; 2926 } 2927 } 2928 } 2929 2930 /* Check that all bits have a window */ 2931 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2932 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2933 %d right_edge[%u]: %d", __func__, __LINE__, 2934 i, left_edge[i], i, right_edge[i]); 2935 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2936 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2937 set_failing_group_stage(test_bgn + i, 2938 CAL_STAGE_WRITES, 2939 CAL_SUBSTAGE_WRITES_CENTER); 2940 return 0; 2941 } 2942 } 2943 2944 /* Find middle of window for each DQ bit */ 2945 mid_min = left_edge[0] - right_edge[0]; 2946 min_index = 0; 2947 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2948 mid = left_edge[i] - right_edge[i]; 2949 if (mid < mid_min) { 2950 mid_min = mid; 2951 min_index = i; 2952 } 2953 } 2954 2955 /* 2956 * -mid_min/2 represents the amount that we need to move DQS. 2957 * If mid_min is odd and positive we'll need to add one to 2958 * make sure the rounding in further calculations is correct 2959 * (always bias to the right), so just add 1 for all positive values. 2960 */ 2961 if (mid_min > 0) 2962 mid_min++; 2963 mid_min = mid_min / 2; 2964 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2965 __LINE__, mid_min); 2966 2967 /* Determine the amount we can change DQS (which is -mid_min) */ 2968 orig_mid_min = mid_min; 2969 new_dqs = start_dqs; 2970 mid_min = 0; 2971 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2972 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2973 /* Initialize data for export structures */ 2974 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2975 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2976 2977 /* add delay to bring centre of all DQ windows to the same "level" */ 2978 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2979 /* Use values before divide by 2 to reduce round off error */ 2980 shift_dq = (left_edge[i] - right_edge[i] - 2981 (left_edge[min_index] - right_edge[min_index]))/2 + 2982 (orig_mid_min - mid_min); 2983 2984 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2985 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2986 2987 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2988 temp_dq_out1_delay = readl(addr + (i << 2)); 2989 if (shift_dq + (int32_t)temp_dq_out1_delay > 2990 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2991 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2992 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2993 shift_dq = -(int32_t)temp_dq_out1_delay; 2994 } 2995 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2996 i, shift_dq); 2997 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2998 scc_mgr_load_dq(i); 2999 3000 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 3001 left_edge[i] - shift_dq + (-mid_min), 3002 right_edge[i] + shift_dq - (-mid_min)); 3003 /* To determine values for export structures */ 3004 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3005 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3006 3007 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3008 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3009 } 3010 3011 /* Move DQS */ 3012 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3013 writel(0, &sdr_scc_mgr->update); 3014 3015 /* Centre DM */ 3016 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3017 3018 /* 3019 * set the left and right edge of each bit to an illegal value, 3020 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3021 */ 3022 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3023 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3024 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3025 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3026 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3027 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3028 int32_t win_best = 0; 3029 3030 /* Search for the/part of the window with DM shift */ 3031 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3032 scc_mgr_apply_group_dm_out1_delay(d); 3033 writel(0, &sdr_scc_mgr->update); 3034 3035 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3036 PASS_ALL_BITS, &bit_chk, 3037 0)) { 3038 /* USE Set current end of the window */ 3039 end_curr = -d; 3040 /* 3041 * If a starting edge of our window has not been seen 3042 * this is our current start of the DM window. 3043 */ 3044 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3045 bgn_curr = -d; 3046 3047 /* 3048 * If current window is bigger than best seen. 3049 * Set best seen to be current window. 3050 */ 3051 if ((end_curr-bgn_curr+1) > win_best) { 3052 win_best = end_curr-bgn_curr+1; 3053 bgn_best = bgn_curr; 3054 end_best = end_curr; 3055 } 3056 } else { 3057 /* We just saw a failing test. Reset temp edge */ 3058 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3059 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3060 } 3061 } 3062 3063 3064 /* Reset DM delay chains to 0 */ 3065 scc_mgr_apply_group_dm_out1_delay(0); 3066 3067 /* 3068 * Check to see if the current window nudges up aganist 0 delay. 3069 * If so we need to continue the search by shifting DQS otherwise DQS 3070 * search begins as a new search. */ 3071 if (end_curr != 0) { 3072 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3073 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3074 } 3075 3076 /* Search for the/part of the window with DQS shifts */ 3077 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3078 /* 3079 * Note: This only shifts DQS, so are we limiting ourselve to 3080 * width of DQ unnecessarily. 3081 */ 3082 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3083 d + new_dqs); 3084 3085 writel(0, &sdr_scc_mgr->update); 3086 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3087 PASS_ALL_BITS, &bit_chk, 3088 0)) { 3089 /* USE Set current end of the window */ 3090 end_curr = d; 3091 /* 3092 * If a beginning edge of our window has not been seen 3093 * this is our current begin of the DM window. 3094 */ 3095 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3096 bgn_curr = d; 3097 3098 /* 3099 * If current window is bigger than best seen. Set best 3100 * seen to be current window. 3101 */ 3102 if ((end_curr-bgn_curr+1) > win_best) { 3103 win_best = end_curr-bgn_curr+1; 3104 bgn_best = bgn_curr; 3105 end_best = end_curr; 3106 } 3107 } else { 3108 /* We just saw a failing test. Reset temp edge */ 3109 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3110 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3111 3112 /* Early exit optimization: if ther remaining delay 3113 chain space is less than already seen largest window 3114 we can exit */ 3115 if ((win_best-1) > 3116 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3117 break; 3118 } 3119 } 3120 } 3121 3122 /* assign left and right edge for cal and reporting; */ 3123 left_edge[0] = -1*bgn_best; 3124 right_edge[0] = end_best; 3125 3126 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3127 __LINE__, left_edge[0], right_edge[0]); 3128 3129 /* Move DQS (back to orig) */ 3130 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3131 3132 /* Move DM */ 3133 3134 /* Find middle of window for the DM bit */ 3135 mid = (left_edge[0] - right_edge[0]) / 2; 3136 3137 /* only move right, since we are not moving DQS/DQ */ 3138 if (mid < 0) 3139 mid = 0; 3140 3141 /* dm_marign should fail if we never find a window */ 3142 if (win_best == 0) 3143 dm_margin = -1; 3144 else 3145 dm_margin = left_edge[0] - mid; 3146 3147 scc_mgr_apply_group_dm_out1_delay(mid); 3148 writel(0, &sdr_scc_mgr->update); 3149 3150 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3151 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3152 right_edge[0], mid, dm_margin); 3153 /* Export values */ 3154 gbl->fom_out += dq_margin + dqs_margin; 3155 3156 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3157 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3158 dq_margin, dqs_margin, dm_margin); 3159 3160 /* 3161 * Do not remove this line as it makes sure all of our 3162 * decisions have been applied. 3163 */ 3164 writel(0, &sdr_scc_mgr->update); 3165 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3166 } 3167 3168 /* calibrate the write operations */ 3169 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3170 uint32_t test_bgn) 3171 { 3172 /* update info for sims */ 3173 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3174 3175 reg_file_set_stage(CAL_STAGE_WRITES); 3176 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3177 3178 reg_file_set_group(g); 3179 3180 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3181 set_failing_group_stage(g, CAL_STAGE_WRITES, 3182 CAL_SUBSTAGE_WRITES_CENTER); 3183 return 0; 3184 } 3185 3186 return 1; 3187 } 3188 3189 /** 3190 * mem_precharge_and_activate() - Precharge all banks and activate 3191 * 3192 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3193 */ 3194 static void mem_precharge_and_activate(void) 3195 { 3196 int r; 3197 3198 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3199 /* Test if the rank should be skipped. */ 3200 if (param->skip_ranks[r]) 3201 continue; 3202 3203 /* Set rank. */ 3204 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3205 3206 /* Precharge all banks. */ 3207 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3208 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3209 3210 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3211 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3212 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3213 3214 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3215 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3216 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3217 3218 /* Activate rows. */ 3219 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3220 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3221 } 3222 } 3223 3224 /** 3225 * mem_init_latency() - Configure memory RLAT and WLAT settings 3226 * 3227 * Configure memory RLAT and WLAT parameters. 3228 */ 3229 static void mem_init_latency(void) 3230 { 3231 /* 3232 * For AV/CV, LFIFO is hardened and always runs at full rate 3233 * so max latency in AFI clocks, used here, is correspondingly 3234 * smaller. 3235 */ 3236 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3237 u32 rlat, wlat; 3238 3239 debug("%s:%d\n", __func__, __LINE__); 3240 3241 /* 3242 * Read in write latency. 3243 * WL for Hard PHY does not include additive latency. 3244 */ 3245 wlat = readl(&data_mgr->t_wl_add); 3246 wlat += readl(&data_mgr->mem_t_add); 3247 3248 gbl->rw_wl_nop_cycles = wlat - 1; 3249 3250 /* Read in readl latency. */ 3251 rlat = readl(&data_mgr->t_rl_add); 3252 3253 /* Set a pretty high read latency initially. */ 3254 gbl->curr_read_lat = rlat + 16; 3255 if (gbl->curr_read_lat > max_latency) 3256 gbl->curr_read_lat = max_latency; 3257 3258 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3259 3260 /* Advertise write latency. */ 3261 writel(wlat, &phy_mgr_cfg->afi_wlat); 3262 } 3263 3264 /** 3265 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3266 * 3267 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3268 */ 3269 static void mem_skip_calibrate(void) 3270 { 3271 uint32_t vfifo_offset; 3272 uint32_t i, j, r; 3273 3274 debug("%s:%d\n", __func__, __LINE__); 3275 /* Need to update every shadow register set used by the interface */ 3276 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3277 r += NUM_RANKS_PER_SHADOW_REG) { 3278 /* 3279 * Set output phase alignment settings appropriate for 3280 * skip calibration. 3281 */ 3282 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3283 scc_mgr_set_dqs_en_phase(i, 0); 3284 #if IO_DLL_CHAIN_LENGTH == 6 3285 scc_mgr_set_dqdqs_output_phase(i, 6); 3286 #else 3287 scc_mgr_set_dqdqs_output_phase(i, 7); 3288 #endif 3289 /* 3290 * Case:33398 3291 * 3292 * Write data arrives to the I/O two cycles before write 3293 * latency is reached (720 deg). 3294 * -> due to bit-slip in a/c bus 3295 * -> to allow board skew where dqs is longer than ck 3296 * -> how often can this happen!? 3297 * -> can claim back some ptaps for high freq 3298 * support if we can relax this, but i digress... 3299 * 3300 * The write_clk leads mem_ck by 90 deg 3301 * The minimum ptap of the OPA is 180 deg 3302 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3303 * The write_clk is always delayed by 2 ptaps 3304 * 3305 * Hence, to make DQS aligned to CK, we need to delay 3306 * DQS by: 3307 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3308 * 3309 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3310 * gives us the number of ptaps, which simplies to: 3311 * 3312 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3313 */ 3314 scc_mgr_set_dqdqs_output_phase(i, 3315 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3316 } 3317 writel(0xff, &sdr_scc_mgr->dqs_ena); 3318 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3319 3320 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3321 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3322 SCC_MGR_GROUP_COUNTER_OFFSET); 3323 } 3324 writel(0xff, &sdr_scc_mgr->dq_ena); 3325 writel(0xff, &sdr_scc_mgr->dm_ena); 3326 writel(0, &sdr_scc_mgr->update); 3327 } 3328 3329 /* Compensate for simulation model behaviour */ 3330 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3331 scc_mgr_set_dqs_bus_in_delay(i, 10); 3332 scc_mgr_load_dqs(i); 3333 } 3334 writel(0, &sdr_scc_mgr->update); 3335 3336 /* 3337 * ArriaV has hard FIFOs that can only be initialized by incrementing 3338 * in sequencer. 3339 */ 3340 vfifo_offset = CALIB_VFIFO_OFFSET; 3341 for (j = 0; j < vfifo_offset; j++) 3342 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3343 writel(0, &phy_mgr_cmd->fifo_reset); 3344 3345 /* 3346 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3347 * setting from generation-time constant. 3348 */ 3349 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3350 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3351 } 3352 3353 /** 3354 * mem_calibrate() - Memory calibration entry point. 3355 * 3356 * Perform memory calibration. 3357 */ 3358 static uint32_t mem_calibrate(void) 3359 { 3360 uint32_t i; 3361 uint32_t rank_bgn, sr; 3362 uint32_t write_group, write_test_bgn; 3363 uint32_t read_group, read_test_bgn; 3364 uint32_t run_groups, current_run; 3365 uint32_t failing_groups = 0; 3366 uint32_t group_failed = 0; 3367 3368 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3369 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3370 3371 debug("%s:%d\n", __func__, __LINE__); 3372 3373 /* Initialize the data settings */ 3374 gbl->error_substage = CAL_SUBSTAGE_NIL; 3375 gbl->error_stage = CAL_STAGE_NIL; 3376 gbl->error_group = 0xff; 3377 gbl->fom_in = 0; 3378 gbl->fom_out = 0; 3379 3380 /* Initialize WLAT and RLAT. */ 3381 mem_init_latency(); 3382 3383 /* Initialize bit slips. */ 3384 mem_precharge_and_activate(); 3385 3386 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3387 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3388 SCC_MGR_GROUP_COUNTER_OFFSET); 3389 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3390 if (i == 0) 3391 scc_mgr_set_hhp_extras(); 3392 3393 scc_set_bypass_mode(i); 3394 } 3395 3396 /* Calibration is skipped. */ 3397 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3398 /* 3399 * Set VFIFO and LFIFO to instant-on settings in skip 3400 * calibration mode. 3401 */ 3402 mem_skip_calibrate(); 3403 3404 /* 3405 * Do not remove this line as it makes sure all of our 3406 * decisions have been applied. 3407 */ 3408 writel(0, &sdr_scc_mgr->update); 3409 return 1; 3410 } 3411 3412 /* Calibration is not skipped. */ 3413 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3414 /* 3415 * Zero all delay chain/phase settings for all 3416 * groups and all shadow register sets. 3417 */ 3418 scc_mgr_zero_all(); 3419 3420 run_groups = ~param->skip_groups; 3421 3422 for (write_group = 0, write_test_bgn = 0; write_group 3423 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3424 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3425 3426 /* Initialize the group failure */ 3427 group_failed = 0; 3428 3429 current_run = run_groups & ((1 << 3430 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3431 run_groups = run_groups >> 3432 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3433 3434 if (current_run == 0) 3435 continue; 3436 3437 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3438 SCC_MGR_GROUP_COUNTER_OFFSET); 3439 scc_mgr_zero_group(write_group, 0); 3440 3441 for (read_group = write_group * rwdqs_ratio, 3442 read_test_bgn = 0; 3443 read_group < (write_group + 1) * rwdqs_ratio; 3444 read_group++, 3445 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3446 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3447 continue; 3448 3449 /* Calibrate the VFIFO */ 3450 if (rw_mgr_mem_calibrate_vfifo(read_group, 3451 read_test_bgn)) 3452 continue; 3453 3454 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3455 return 0; 3456 3457 /* The group failed, we're done. */ 3458 goto grp_failed; 3459 } 3460 3461 /* Calibrate the output side */ 3462 for (rank_bgn = 0, sr = 0; 3463 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3464 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3465 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3466 continue; 3467 3468 /* Not needed in quick mode! */ 3469 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3470 continue; 3471 3472 /* 3473 * Determine if this set of ranks 3474 * should be skipped entirely. 3475 */ 3476 if (param->skip_shadow_regs[sr]) 3477 continue; 3478 3479 /* Calibrate WRITEs */ 3480 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3481 write_group, write_test_bgn)) 3482 continue; 3483 3484 group_failed = 1; 3485 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3486 return 0; 3487 } 3488 3489 /* Some group failed, we're done. */ 3490 if (group_failed) 3491 goto grp_failed; 3492 3493 for (read_group = write_group * rwdqs_ratio, 3494 read_test_bgn = 0; 3495 read_group < (write_group + 1) * rwdqs_ratio; 3496 read_group++, 3497 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3498 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3499 continue; 3500 3501 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3502 read_test_bgn)) 3503 continue; 3504 3505 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3506 return 0; 3507 3508 /* The group failed, we're done. */ 3509 goto grp_failed; 3510 } 3511 3512 /* No group failed, continue as usual. */ 3513 continue; 3514 3515 grp_failed: /* A group failed, increment the counter. */ 3516 failing_groups++; 3517 } 3518 3519 /* 3520 * USER If there are any failing groups then report 3521 * the failure. 3522 */ 3523 if (failing_groups != 0) 3524 return 0; 3525 3526 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3527 continue; 3528 3529 /* 3530 * If we're skipping groups as part of debug, 3531 * don't calibrate LFIFO. 3532 */ 3533 if (param->skip_groups != 0) 3534 continue; 3535 3536 /* Calibrate the LFIFO */ 3537 if (!rw_mgr_mem_calibrate_lfifo()) 3538 return 0; 3539 } 3540 3541 /* 3542 * Do not remove this line as it makes sure all of our decisions 3543 * have been applied. 3544 */ 3545 writel(0, &sdr_scc_mgr->update); 3546 return 1; 3547 } 3548 3549 /** 3550 * run_mem_calibrate() - Perform memory calibration 3551 * 3552 * This function triggers the entire memory calibration procedure. 3553 */ 3554 static int run_mem_calibrate(void) 3555 { 3556 int pass; 3557 3558 debug("%s:%d\n", __func__, __LINE__); 3559 3560 /* Reset pass/fail status shown on afi_cal_success/fail */ 3561 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3562 3563 /* Stop tracking manager. */ 3564 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3565 3566 phy_mgr_initialize(); 3567 rw_mgr_mem_initialize(); 3568 3569 /* Perform the actual memory calibration. */ 3570 pass = mem_calibrate(); 3571 3572 mem_precharge_and_activate(); 3573 writel(0, &phy_mgr_cmd->fifo_reset); 3574 3575 /* Handoff. */ 3576 rw_mgr_mem_handoff(); 3577 /* 3578 * In Hard PHY this is a 2-bit control: 3579 * 0: AFI Mux Select 3580 * 1: DDIO Mux Select 3581 */ 3582 writel(0x2, &phy_mgr_cfg->mux_sel); 3583 3584 /* Start tracking manager. */ 3585 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3586 3587 return pass; 3588 } 3589 3590 /** 3591 * debug_mem_calibrate() - Report result of memory calibration 3592 * @pass: Value indicating whether calibration passed or failed 3593 * 3594 * This function reports the results of the memory calibration 3595 * and writes debug information into the register file. 3596 */ 3597 static void debug_mem_calibrate(int pass) 3598 { 3599 uint32_t debug_info; 3600 3601 if (pass) { 3602 printf("%s: CALIBRATION PASSED\n", __FILE__); 3603 3604 gbl->fom_in /= 2; 3605 gbl->fom_out /= 2; 3606 3607 if (gbl->fom_in > 0xff) 3608 gbl->fom_in = 0xff; 3609 3610 if (gbl->fom_out > 0xff) 3611 gbl->fom_out = 0xff; 3612 3613 /* Update the FOM in the register file */ 3614 debug_info = gbl->fom_in; 3615 debug_info |= gbl->fom_out << 8; 3616 writel(debug_info, &sdr_reg_file->fom); 3617 3618 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3619 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3620 } else { 3621 printf("%s: CALIBRATION FAILED\n", __FILE__); 3622 3623 debug_info = gbl->error_stage; 3624 debug_info |= gbl->error_substage << 8; 3625 debug_info |= gbl->error_group << 16; 3626 3627 writel(debug_info, &sdr_reg_file->failing_stage); 3628 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3629 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3630 3631 /* Update the failing group/stage in the register file */ 3632 debug_info = gbl->error_stage; 3633 debug_info |= gbl->error_substage << 8; 3634 debug_info |= gbl->error_group << 16; 3635 writel(debug_info, &sdr_reg_file->failing_stage); 3636 } 3637 3638 printf("%s: Calibration complete\n", __FILE__); 3639 } 3640 3641 /** 3642 * hc_initialize_rom_data() - Initialize ROM data 3643 * 3644 * Initialize ROM data. 3645 */ 3646 static void hc_initialize_rom_data(void) 3647 { 3648 u32 i, addr; 3649 3650 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3651 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3652 writel(inst_rom_init[i], addr + (i << 2)); 3653 3654 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3655 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3656 writel(ac_rom_init[i], addr + (i << 2)); 3657 } 3658 3659 /** 3660 * initialize_reg_file() - Initialize SDR register file 3661 * 3662 * Initialize SDR register file. 3663 */ 3664 static void initialize_reg_file(void) 3665 { 3666 /* Initialize the register file with the correct data */ 3667 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3668 writel(0, &sdr_reg_file->debug_data_addr); 3669 writel(0, &sdr_reg_file->cur_stage); 3670 writel(0, &sdr_reg_file->fom); 3671 writel(0, &sdr_reg_file->failing_stage); 3672 writel(0, &sdr_reg_file->debug1); 3673 writel(0, &sdr_reg_file->debug2); 3674 } 3675 3676 /** 3677 * initialize_hps_phy() - Initialize HPS PHY 3678 * 3679 * Initialize HPS PHY. 3680 */ 3681 static void initialize_hps_phy(void) 3682 { 3683 uint32_t reg; 3684 /* 3685 * Tracking also gets configured here because it's in the 3686 * same register. 3687 */ 3688 uint32_t trk_sample_count = 7500; 3689 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3690 /* 3691 * Format is number of outer loops in the 16 MSB, sample 3692 * count in 16 LSB. 3693 */ 3694 3695 reg = 0; 3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3697 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3698 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3699 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3702 /* 3703 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3704 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3705 */ 3706 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3707 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3708 trk_sample_count); 3709 writel(reg, &sdr_ctrl->phy_ctrl0); 3710 3711 reg = 0; 3712 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3713 trk_sample_count >> 3714 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3715 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3716 trk_long_idle_sample_count); 3717 writel(reg, &sdr_ctrl->phy_ctrl1); 3718 3719 reg = 0; 3720 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3721 trk_long_idle_sample_count >> 3722 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3723 writel(reg, &sdr_ctrl->phy_ctrl2); 3724 } 3725 3726 /** 3727 * initialize_tracking() - Initialize tracking 3728 * 3729 * Initialize the register file with usable initial data. 3730 */ 3731 static void initialize_tracking(void) 3732 { 3733 /* 3734 * Initialize the register file with the correct data. 3735 * Compute usable version of value in case we skip full 3736 * computation later. 3737 */ 3738 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3739 &sdr_reg_file->dtaps_per_ptap); 3740 3741 /* trk_sample_count */ 3742 writel(7500, &sdr_reg_file->trk_sample_count); 3743 3744 /* longidle outer loop [15:0] */ 3745 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3746 3747 /* 3748 * longidle sample count [31:24] 3749 * trfc, worst case of 933Mhz 4Gb [23:16] 3750 * trcd, worst case [15:8] 3751 * vfifo wait [7:0] 3752 */ 3753 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3754 &sdr_reg_file->delays); 3755 3756 /* mux delay */ 3757 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3758 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3759 &sdr_reg_file->trk_rw_mgr_addr); 3760 3761 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3762 &sdr_reg_file->trk_read_dqs_width); 3763 3764 /* trefi [7:0] */ 3765 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3766 &sdr_reg_file->trk_rfsh); 3767 } 3768 3769 int sdram_calibration_full(void) 3770 { 3771 struct param_type my_param; 3772 struct gbl_type my_gbl; 3773 uint32_t pass; 3774 3775 memset(&my_param, 0, sizeof(my_param)); 3776 memset(&my_gbl, 0, sizeof(my_gbl)); 3777 3778 param = &my_param; 3779 gbl = &my_gbl; 3780 3781 /* Set the calibration enabled by default */ 3782 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3783 /* 3784 * Only sweep all groups (regardless of fail state) by default 3785 * Set enabled read test by default. 3786 */ 3787 #if DISABLE_GUARANTEED_READ 3788 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3789 #endif 3790 /* Initialize the register file */ 3791 initialize_reg_file(); 3792 3793 /* Initialize any PHY CSR */ 3794 initialize_hps_phy(); 3795 3796 scc_mgr_initialize(); 3797 3798 initialize_tracking(); 3799 3800 printf("%s: Preparing to start memory calibration\n", __FILE__); 3801 3802 debug("%s:%d\n", __func__, __LINE__); 3803 debug_cond(DLEVEL == 1, 3804 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3805 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3806 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3807 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3808 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3809 debug_cond(DLEVEL == 1, 3810 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3811 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3812 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3813 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3814 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3815 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3816 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3817 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3818 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3819 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3820 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3821 IO_IO_OUT2_DELAY_MAX); 3822 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3823 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3824 3825 hc_initialize_rom_data(); 3826 3827 /* update info for sims */ 3828 reg_file_set_stage(CAL_STAGE_NIL); 3829 reg_file_set_group(0); 3830 3831 /* 3832 * Load global needed for those actions that require 3833 * some dynamic calibration support. 3834 */ 3835 dyn_calib_steps = STATIC_CALIB_STEPS; 3836 /* 3837 * Load global to allow dynamic selection of delay loop settings 3838 * based on calibration mode. 3839 */ 3840 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3841 skip_delay_mask = 0xff; 3842 else 3843 skip_delay_mask = 0x0; 3844 3845 pass = run_mem_calibrate(); 3846 debug_mem_calibrate(pass); 3847 return pass; 3848 } 3849