xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 9059009185319445fc9931091c2ed64ac199e356)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1336 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1337 			      uint32_t *v, uint32_t *d, uint32_t *p,
1338 			      uint32_t *i, uint32_t *max_working_cnt)
1339 {
1340 	uint32_t found_begin = 0;
1341 	uint32_t tmp_delay = 0;
1342 	uint32_t test_status;
1343 
1344 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1345 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1346 		*work_bgn = tmp_delay;
1347 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1348 
1349 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1350 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1351 				IO_DELAY_PER_OPA_TAP) {
1352 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1353 
1354 				test_status =
1355 				rw_mgr_mem_calibrate_read_test_all_ranks
1356 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1357 
1358 				if (test_status) {
1359 					*max_working_cnt = 1;
1360 					found_begin = 1;
1361 					break;
1362 				}
1363 			}
1364 
1365 			if (found_begin)
1366 				break;
1367 
1368 			if (*p > IO_DQS_EN_PHASE_MAX)
1369 				/* fiddle with FIFO */
1370 				rw_mgr_incr_vfifo(*grp, v);
1371 		}
1372 
1373 		if (found_begin)
1374 			break;
1375 	}
1376 
1377 	if (*i >= VFIFO_SIZE) {
1378 		/* cannot find working solution */
1379 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1380 			   ptap/dtap\n", __func__, __LINE__);
1381 		return 0;
1382 	} else {
1383 		return 1;
1384 	}
1385 }
1386 
1387 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1388 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1389 			     uint32_t *p, uint32_t *max_working_cnt)
1390 {
1391 	uint32_t found_begin = 0;
1392 	uint32_t tmp_delay;
1393 
1394 	/* Special case code for backing up a phase */
1395 	if (*p == 0) {
1396 		*p = IO_DQS_EN_PHASE_MAX;
1397 		rw_mgr_decr_vfifo(*grp, v);
1398 	} else {
1399 		(*p)--;
1400 	}
1401 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1402 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1403 
1404 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1405 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1406 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1407 
1408 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1409 							     PASS_ONE_BIT,
1410 							     bit_chk, 0)) {
1411 			found_begin = 1;
1412 			*work_bgn = tmp_delay;
1413 			break;
1414 		}
1415 	}
1416 
1417 	/* We have found a working dtap before the ptap found above */
1418 	if (found_begin == 1)
1419 		(*max_working_cnt)++;
1420 
1421 	/*
1422 	 * Restore VFIFO to old state before we decremented it
1423 	 * (if needed).
1424 	 */
1425 	(*p)++;
1426 	if (*p > IO_DQS_EN_PHASE_MAX) {
1427 		*p = 0;
1428 		rw_mgr_incr_vfifo(*grp, v);
1429 	}
1430 
1431 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1432 }
1433 
1434 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1435 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1436 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1437 			     uint32_t *work_end)
1438 {
1439 	uint32_t found_end = 0;
1440 
1441 	(*p)++;
1442 	*work_end += IO_DELAY_PER_OPA_TAP;
1443 	if (*p > IO_DQS_EN_PHASE_MAX) {
1444 		/* fiddle with FIFO */
1445 		*p = 0;
1446 		rw_mgr_incr_vfifo(*grp, v);
1447 	}
1448 
1449 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1450 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1451 			+= IO_DELAY_PER_OPA_TAP) {
1452 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1453 
1454 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1455 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1456 				found_end = 1;
1457 				break;
1458 			} else {
1459 				(*max_working_cnt)++;
1460 			}
1461 		}
1462 
1463 		if (found_end)
1464 			break;
1465 
1466 		if (*p > IO_DQS_EN_PHASE_MAX) {
1467 			/* fiddle with FIFO */
1468 			rw_mgr_incr_vfifo(*grp, v);
1469 			*p = 0;
1470 		}
1471 	}
1472 
1473 	if (*i >= VFIFO_SIZE + 1) {
1474 		/* cannot see edge of failing read */
1475 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1476 			   failed\n", __func__, __LINE__);
1477 		return 0;
1478 	} else {
1479 		return 1;
1480 	}
1481 }
1482 
1483 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1484 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1485 				  uint32_t *p, uint32_t *work_mid,
1486 				  uint32_t *work_end)
1487 {
1488 	int i;
1489 	int tmp_delay = 0;
1490 
1491 	*work_mid = (*work_bgn + *work_end) / 2;
1492 
1493 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1494 		   *work_bgn, *work_end, *work_mid);
1495 	/* Get the middle delay to be less than a VFIFO delay */
1496 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1497 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1498 		;
1499 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1500 	while (*work_mid > tmp_delay)
1501 		*work_mid -= tmp_delay;
1502 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1503 
1504 	tmp_delay = 0;
1505 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1506 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1507 		;
1508 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1509 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1510 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1511 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1512 		;
1513 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1514 
1515 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1516 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1517 
1518 	/*
1519 	 * push vfifo until we can successfully calibrate. We can do this
1520 	 * because the largest possible margin in 1 VFIFO cycle.
1521 	 */
1522 	for (i = 0; i < VFIFO_SIZE; i++) {
1523 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1524 			   *v);
1525 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1526 							     PASS_ONE_BIT,
1527 							     bit_chk, 0)) {
1528 			break;
1529 		}
1530 
1531 		/* fiddle with FIFO */
1532 		rw_mgr_incr_vfifo(*grp, v);
1533 	}
1534 
1535 	if (i >= VFIFO_SIZE) {
1536 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1537 			   failed\n", __func__, __LINE__);
1538 		return 0;
1539 	} else {
1540 		return 1;
1541 	}
1542 }
1543 
1544 /* find a good dqs enable to use */
1545 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1546 {
1547 	uint32_t v, d, p, i;
1548 	uint32_t max_working_cnt;
1549 	uint32_t bit_chk;
1550 	uint32_t dtaps_per_ptap;
1551 	uint32_t work_bgn, work_mid, work_end;
1552 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1553 
1554 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1555 
1556 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1557 
1558 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1559 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1560 
1561 	/* ************************************************************** */
1562 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1563 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1564 
1565 	/* ********************************************************* */
1566 	/* * Step 1 : First push vfifo until we get a failing read * */
1567 	v = find_vfifo_read(grp, &bit_chk);
1568 
1569 	max_working_cnt = 0;
1570 
1571 	/* ******************************************************** */
1572 	/* * step 2: find first working phase, increment in ptaps * */
1573 	work_bgn = 0;
1574 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1575 				&p, &i, &max_working_cnt) == 0)
1576 		return 0;
1577 
1578 	work_end = work_bgn;
1579 
1580 	/*
1581 	 * If d is 0 then the working window covers a phase tap and
1582 	 * we can follow the old procedure otherwise, we've found the beginning,
1583 	 * and we need to increment the dtaps until we find the end.
1584 	 */
1585 	if (d == 0) {
1586 		/* ********************************************************* */
1587 		/* * step 3a: if we have room, back off by one and
1588 		increment in dtaps * */
1589 
1590 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1591 				 &max_working_cnt);
1592 
1593 		/* ********************************************************* */
1594 		/* * step 4a: go forward from working phase to non working
1595 		phase, increment in ptaps * */
1596 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1597 					 &i, &max_working_cnt, &work_end) == 0)
1598 			return 0;
1599 
1600 		/* ********************************************************* */
1601 		/* * step 5a:  back off one from last, increment in dtaps  * */
1602 
1603 		/* Special case code for backing up a phase */
1604 		if (p == 0) {
1605 			p = IO_DQS_EN_PHASE_MAX;
1606 			rw_mgr_decr_vfifo(grp, &v);
1607 		} else {
1608 			p = p - 1;
1609 		}
1610 
1611 		work_end -= IO_DELAY_PER_OPA_TAP;
1612 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1613 
1614 		/* * The actual increment of dtaps is done outside of
1615 		the if/else loop to share code */
1616 		d = 0;
1617 
1618 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1619 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1620 			   v, p);
1621 	} else {
1622 		/* ******************************************************* */
1623 		/* * step 3-5b:  Find the right edge of the window using
1624 		delay taps   * */
1625 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1626 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1627 			   v, p, d, work_bgn);
1628 
1629 		work_end = work_bgn;
1630 
1631 		/* * The actual increment of dtaps is done outside of the
1632 		if/else loop to share code */
1633 
1634 		/* Only here to counterbalance a subtract later on which is
1635 		not needed if this branch of the algorithm is taken */
1636 		max_working_cnt++;
1637 	}
1638 
1639 	/* The dtap increment to find the failing edge is done here */
1640 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1641 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1642 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1643 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1644 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1645 
1646 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1647 								      PASS_ONE_BIT,
1648 								      &bit_chk, 0)) {
1649 				break;
1650 			}
1651 	}
1652 
1653 	/* Go back to working dtap */
1654 	if (d != 0)
1655 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656 
1657 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1658 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1659 		   v, p, d-1, work_end);
1660 
1661 	if (work_end < work_bgn) {
1662 		/* nil range */
1663 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1664 			   failed\n", __func__, __LINE__);
1665 		return 0;
1666 	}
1667 
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1669 		   __func__, __LINE__, work_bgn, work_end);
1670 
1671 	/* *************************************************************** */
1672 	/*
1673 	 * * We need to calculate the number of dtaps that equal a ptap
1674 	 * * To do that we'll back up a ptap and re-find the edge of the
1675 	 * * window using dtaps
1676 	 */
1677 
1678 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1679 		   for tracking\n", __func__, __LINE__);
1680 
1681 	/* Special case code for backing up a phase */
1682 	if (p == 0) {
1683 		p = IO_DQS_EN_PHASE_MAX;
1684 		rw_mgr_decr_vfifo(grp, &v);
1685 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1686 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1687 			   v, p);
1688 	} else {
1689 		p = p - 1;
1690 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1691 			   phase only: v=%u p=%u", __func__, __LINE__,
1692 			   v, p);
1693 	}
1694 
1695 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1696 
1697 	/*
1698 	 * Increase dtap until we first see a passing read (in case the
1699 	 * window is smaller than a ptap),
1700 	 * and then a failing read to mark the edge of the window again
1701 	 */
1702 
1703 	/* Find a passing read */
1704 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1705 		   __func__, __LINE__);
1706 	found_passing_read = 0;
1707 	found_failing_read = 0;
1708 	initial_failing_dtap = d;
1709 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1710 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1711 			   read d=%u\n", __func__, __LINE__, d);
1712 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1713 
1714 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1715 							     PASS_ONE_BIT,
1716 							     &bit_chk, 0)) {
1717 			found_passing_read = 1;
1718 			break;
1719 		}
1720 	}
1721 
1722 	if (found_passing_read) {
1723 		/* Find a failing read */
1724 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1725 			   read\n", __func__, __LINE__);
1726 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1727 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1728 				   testing read d=%u\n", __func__, __LINE__, d);
1729 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1730 
1731 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1732 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1733 				found_failing_read = 1;
1734 				break;
1735 			}
1736 		}
1737 	} else {
1738 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1739 			   calculate dtaps", __func__, __LINE__);
1740 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1741 	}
1742 
1743 	/*
1744 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1745 	 * found a passing/failing read. If we didn't, it means d hit the max
1746 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1747 	 * statically calculated value.
1748 	 */
1749 	if (found_passing_read && found_failing_read)
1750 		dtaps_per_ptap = d - initial_failing_dtap;
1751 
1752 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1753 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1754 		   - %u = %u",  __func__, __LINE__, d,
1755 		   initial_failing_dtap, dtaps_per_ptap);
1756 
1757 	/* ******************************************** */
1758 	/* * step 6:  Find the centre of the window   * */
1759 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1760 				   &work_mid, &work_end) == 0)
1761 		return 0;
1762 
1763 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1764 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1765 		   v, p-1, d);
1766 	return 1;
1767 }
1768 
1769 /*
1770  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1771  * dq_in_delay values
1772  */
1773 static int
1774 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1775 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1776 {
1777 	/* We start at zero, so have one less dq to devide among */
1778 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
1779 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
1780 	int found;
1781 	u32 i, p, d, r;
1782 
1783 	debug("%s:%d (%u,%u,%u)\n", __func__, __LINE__,
1784 	      write_group, read_group, test_bgn);
1785 
1786 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
1787 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1788 	     r += NUM_RANKS_PER_SHADOW_REG) {
1789 		for (i = 0, p = test_bgn, d = 0;
1790 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
1791 		     i++, p++, d += delay_step) {
1792 			debug_cond(DLEVEL == 1,
1793 				   "%s:%d: g=%u/%u r=%u i=%u p=%u d=%u\n",
1794 				   __func__, __LINE__, write_group, read_group,
1795 				   r, i, p, d);
1796 
1797 			scc_mgr_set_dq_in_delay(p, d);
1798 			scc_mgr_load_dq(p);
1799 		}
1800 
1801 		writel(0, &sdr_scc_mgr->update);
1802 	}
1803 
1804 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1805 
1806 	debug_cond(DLEVEL == 1,
1807 		   "%s:%d: g=%u/%u found=%u; Reseting delay chain to zero\n",
1808 		   __func__, __LINE__, write_group, read_group, found);
1809 
1810 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1811 	     r += NUM_RANKS_PER_SHADOW_REG) {
1812 		for (i = 0, p = test_bgn;
1813 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
1814 		     i++, p++) {
1815 			scc_mgr_set_dq_in_delay(p, 0);
1816 			scc_mgr_load_dq(p);
1817 		}
1818 
1819 		writel(0, &sdr_scc_mgr->update);
1820 	}
1821 
1822 	if (!found)
1823 		return -EINVAL;
1824 
1825 	return 0;
1826 }
1827 
1828 /* per-bit deskew DQ and center */
1829 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1830 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1831 	uint32_t use_read_test, uint32_t update_fom)
1832 {
1833 	uint32_t i, p, d, min_index;
1834 	/*
1835 	 * Store these as signed since there are comparisons with
1836 	 * signed numbers.
1837 	 */
1838 	uint32_t bit_chk;
1839 	uint32_t sticky_bit_chk;
1840 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1841 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1842 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1843 	int32_t mid;
1844 	int32_t orig_mid_min, mid_min;
1845 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1846 		final_dqs_en;
1847 	int32_t dq_margin, dqs_margin;
1848 	uint32_t stop;
1849 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1850 	uint32_t addr;
1851 
1852 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1853 
1854 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1855 	start_dqs = readl(addr + (read_group << 2));
1856 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1857 		start_dqs_en = readl(addr + ((read_group << 2)
1858 				     - IO_DQS_EN_DELAY_OFFSET));
1859 
1860 	/* set the left and right edge of each bit to an illegal value */
1861 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1862 	sticky_bit_chk = 0;
1863 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1864 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1865 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1866 	}
1867 
1868 	/* Search for the left edge of the window for each bit */
1869 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1870 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1871 
1872 		writel(0, &sdr_scc_mgr->update);
1873 
1874 		/*
1875 		 * Stop searching when the read test doesn't pass AND when
1876 		 * we've seen a passing read on every bit.
1877 		 */
1878 		if (use_read_test) {
1879 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1880 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1881 				&bit_chk, 0, 0);
1882 		} else {
1883 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1884 							0, PASS_ONE_BIT,
1885 							&bit_chk, 0);
1886 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1887 				(read_group - (write_group *
1888 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1889 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1890 			stop = (bit_chk == 0);
1891 		}
1892 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1893 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1894 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1895 			   && %u", __func__, __LINE__, d,
1896 			   sticky_bit_chk,
1897 			param->read_correct_mask, stop);
1898 
1899 		if (stop == 1) {
1900 			break;
1901 		} else {
1902 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1903 				if (bit_chk & 1) {
1904 					/* Remember a passing test as the
1905 					left_edge */
1906 					left_edge[i] = d;
1907 				} else {
1908 					/* If a left edge has not been seen yet,
1909 					then a future passing test will mark
1910 					this edge as the right edge */
1911 					if (left_edge[i] ==
1912 						IO_IO_IN_DELAY_MAX + 1) {
1913 						right_edge[i] = -(d + 1);
1914 					}
1915 				}
1916 				bit_chk = bit_chk >> 1;
1917 			}
1918 		}
1919 	}
1920 
1921 	/* Reset DQ delay chains to 0 */
1922 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1923 	sticky_bit_chk = 0;
1924 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1925 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1926 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1927 			   i, left_edge[i], i, right_edge[i]);
1928 
1929 		/*
1930 		 * Check for cases where we haven't found the left edge,
1931 		 * which makes our assignment of the the right edge invalid.
1932 		 * Reset it to the illegal value.
1933 		 */
1934 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1935 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1936 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1937 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1938 				   right_edge[%u]: %d\n", __func__, __LINE__,
1939 				   i, right_edge[i]);
1940 		}
1941 
1942 		/*
1943 		 * Reset sticky bit (except for bits where we have seen
1944 		 * both the left and right edge).
1945 		 */
1946 		sticky_bit_chk = sticky_bit_chk << 1;
1947 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1948 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1949 			sticky_bit_chk = sticky_bit_chk | 1;
1950 		}
1951 
1952 		if (i == 0)
1953 			break;
1954 	}
1955 
1956 	/* Search for the right edge of the window for each bit */
1957 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1958 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1959 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1960 			uint32_t delay = d + start_dqs_en;
1961 			if (delay > IO_DQS_EN_DELAY_MAX)
1962 				delay = IO_DQS_EN_DELAY_MAX;
1963 			scc_mgr_set_dqs_en_delay(read_group, delay);
1964 		}
1965 		scc_mgr_load_dqs(read_group);
1966 
1967 		writel(0, &sdr_scc_mgr->update);
1968 
1969 		/*
1970 		 * Stop searching when the read test doesn't pass AND when
1971 		 * we've seen a passing read on every bit.
1972 		 */
1973 		if (use_read_test) {
1974 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1975 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1976 				&bit_chk, 0, 0);
1977 		} else {
1978 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1979 							0, PASS_ONE_BIT,
1980 							&bit_chk, 0);
1981 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1982 				(read_group - (write_group *
1983 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1984 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1985 			stop = (bit_chk == 0);
1986 		}
1987 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1988 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1989 
1990 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1991 			   %u && %u", __func__, __LINE__, d,
1992 			   sticky_bit_chk, param->read_correct_mask, stop);
1993 
1994 		if (stop == 1) {
1995 			break;
1996 		} else {
1997 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1998 				if (bit_chk & 1) {
1999 					/* Remember a passing test as
2000 					the right_edge */
2001 					right_edge[i] = d;
2002 				} else {
2003 					if (d != 0) {
2004 						/* If a right edge has not been
2005 						seen yet, then a future passing
2006 						test will mark this edge as the
2007 						left edge */
2008 						if (right_edge[i] ==
2009 						IO_IO_IN_DELAY_MAX + 1) {
2010 							left_edge[i] = -(d + 1);
2011 						}
2012 					} else {
2013 						/* d = 0 failed, but it passed
2014 						when testing the left edge,
2015 						so it must be marginal,
2016 						set it to -1 */
2017 						if (right_edge[i] ==
2018 							IO_IO_IN_DELAY_MAX + 1 &&
2019 							left_edge[i] !=
2020 							IO_IO_IN_DELAY_MAX
2021 							+ 1) {
2022 							right_edge[i] = -1;
2023 						}
2024 						/* If a right edge has not been
2025 						seen yet, then a future passing
2026 						test will mark this edge as the
2027 						left edge */
2028 						else if (right_edge[i] ==
2029 							IO_IO_IN_DELAY_MAX +
2030 							1) {
2031 							left_edge[i] = -(d + 1);
2032 						}
2033 					}
2034 				}
2035 
2036 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2037 					   d=%u]: ", __func__, __LINE__, d);
2038 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2039 					   (int)(bit_chk & 1), i, left_edge[i]);
2040 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2041 					   right_edge[i]);
2042 				bit_chk = bit_chk >> 1;
2043 			}
2044 		}
2045 	}
2046 
2047 	/* Check that all bits have a window */
2048 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2049 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2050 			   %d right_edge[%u]: %d", __func__, __LINE__,
2051 			   i, left_edge[i], i, right_edge[i]);
2052 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2053 			== IO_IO_IN_DELAY_MAX + 1)) {
2054 			/*
2055 			 * Restore delay chain settings before letting the loop
2056 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2057 			 * dqs/ck relationships.
2058 			 */
2059 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2060 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2061 				scc_mgr_set_dqs_en_delay(read_group,
2062 							 start_dqs_en);
2063 			}
2064 			scc_mgr_load_dqs(read_group);
2065 			writel(0, &sdr_scc_mgr->update);
2066 
2067 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2068 				   find edge [%u]: %d %d", __func__, __LINE__,
2069 				   i, left_edge[i], right_edge[i]);
2070 			if (use_read_test) {
2071 				set_failing_group_stage(read_group *
2072 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2073 					CAL_STAGE_VFIFO,
2074 					CAL_SUBSTAGE_VFIFO_CENTER);
2075 			} else {
2076 				set_failing_group_stage(read_group *
2077 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2078 					CAL_STAGE_VFIFO_AFTER_WRITES,
2079 					CAL_SUBSTAGE_VFIFO_CENTER);
2080 			}
2081 			return 0;
2082 		}
2083 	}
2084 
2085 	/* Find middle of window for each DQ bit */
2086 	mid_min = left_edge[0] - right_edge[0];
2087 	min_index = 0;
2088 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2089 		mid = left_edge[i] - right_edge[i];
2090 		if (mid < mid_min) {
2091 			mid_min = mid;
2092 			min_index = i;
2093 		}
2094 	}
2095 
2096 	/*
2097 	 * -mid_min/2 represents the amount that we need to move DQS.
2098 	 * If mid_min is odd and positive we'll need to add one to
2099 	 * make sure the rounding in further calculations is correct
2100 	 * (always bias to the right), so just add 1 for all positive values.
2101 	 */
2102 	if (mid_min > 0)
2103 		mid_min++;
2104 
2105 	mid_min = mid_min / 2;
2106 
2107 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2108 		   __func__, __LINE__, mid_min, min_index);
2109 
2110 	/* Determine the amount we can change DQS (which is -mid_min) */
2111 	orig_mid_min = mid_min;
2112 	new_dqs = start_dqs - mid_min;
2113 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2114 		new_dqs = IO_DQS_IN_DELAY_MAX;
2115 	else if (new_dqs < 0)
2116 		new_dqs = 0;
2117 
2118 	mid_min = start_dqs - new_dqs;
2119 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2120 		   mid_min, new_dqs);
2121 
2122 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2123 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2124 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2125 		else if (start_dqs_en - mid_min < 0)
2126 			mid_min += start_dqs_en - mid_min;
2127 	}
2128 	new_dqs = start_dqs - mid_min;
2129 
2130 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2131 		   new_dqs=%d mid_min=%d\n", start_dqs,
2132 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2133 		   new_dqs, mid_min);
2134 
2135 	/* Initialize data for export structures */
2136 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2137 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2138 
2139 	/* add delay to bring centre of all DQ windows to the same "level" */
2140 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2141 		/* Use values before divide by 2 to reduce round off error */
2142 		shift_dq = (left_edge[i] - right_edge[i] -
2143 			(left_edge[min_index] - right_edge[min_index]))/2  +
2144 			(orig_mid_min - mid_min);
2145 
2146 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2147 			   shift_dq[%u]=%d\n", i, shift_dq);
2148 
2149 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2150 		temp_dq_in_delay1 = readl(addr + (p << 2));
2151 		temp_dq_in_delay2 = readl(addr + (i << 2));
2152 
2153 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2154 			(int32_t)IO_IO_IN_DELAY_MAX) {
2155 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2156 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2157 			shift_dq = -(int32_t)temp_dq_in_delay1;
2158 		}
2159 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2160 			   shift_dq[%u]=%d\n", i, shift_dq);
2161 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2162 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2163 		scc_mgr_load_dq(p);
2164 
2165 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2166 			   left_edge[i] - shift_dq + (-mid_min),
2167 			   right_edge[i] + shift_dq - (-mid_min));
2168 		/* To determine values for export structures */
2169 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2170 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2171 
2172 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2173 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2174 	}
2175 
2176 	final_dqs = new_dqs;
2177 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2178 		final_dqs_en = start_dqs_en - mid_min;
2179 
2180 	/* Move DQS-en */
2181 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2182 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2183 		scc_mgr_load_dqs(read_group);
2184 	}
2185 
2186 	/* Move DQS */
2187 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2188 	scc_mgr_load_dqs(read_group);
2189 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2190 		   dqs_margin=%d", __func__, __LINE__,
2191 		   dq_margin, dqs_margin);
2192 
2193 	/*
2194 	 * Do not remove this line as it makes sure all of our decisions
2195 	 * have been applied. Apply the update bit.
2196 	 */
2197 	writel(0, &sdr_scc_mgr->update);
2198 
2199 	return (dq_margin >= 0) && (dqs_margin >= 0);
2200 }
2201 
2202 /**
2203  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2204  * @rw_group:	Read/Write Group
2205  * @phase:	DQ/DQS phase
2206  *
2207  * Because initially no communication ca be reliably performed with the memory
2208  * device, the sequencer uses a guaranteed write mechanism to write data into
2209  * the memory device.
2210  */
2211 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2212 						 const u32 phase)
2213 {
2214 	int ret;
2215 
2216 	/* Set a particular DQ/DQS phase. */
2217 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2218 
2219 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2220 		   __func__, __LINE__, rw_group, phase);
2221 
2222 	/*
2223 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2224 	 * Load up the patterns used by read calibration using the
2225 	 * current DQDQS phase.
2226 	 */
2227 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2228 
2229 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2230 		return 0;
2231 
2232 	/*
2233 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2234 	 * Back-to-Back reads of the patterns used for calibration.
2235 	 */
2236 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2237 	if (ret)
2238 		debug_cond(DLEVEL == 1,
2239 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2240 			   __func__, __LINE__, rw_group, phase);
2241 	return ret;
2242 }
2243 
2244 /**
2245  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2246  * @rw_group:	Read/Write Group
2247  * @test_bgn:	Rank at which the test begins
2248  *
2249  * DQS enable calibration ensures reliable capture of the DQ signal without
2250  * glitches on the DQS line.
2251  */
2252 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2253 						       const u32 test_bgn)
2254 {
2255 	int ret;
2256 
2257 	/*
2258 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2259 	 * DQS and DQS Eanble Signal Relationships.
2260 	 */
2261 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(
2262 						rw_group, rw_group, test_bgn);
2263 	return ret;
2264 }
2265 
2266 /**
2267  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2268  * @rw_group:		Read/Write Group
2269  * @test_bgn:		Rank at which the test begins
2270  * @use_read_test:	Perform a read test
2271  * @update_fom:		Update FOM
2272  *
2273  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2274  * within a group.
2275  */
2276 static int
2277 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2278 				      const int use_read_test,
2279 				      const int update_fom)
2280 
2281 {
2282 	int ret, grp_calibrated;
2283 	u32 rank_bgn, sr;
2284 
2285 	/*
2286 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2287 	 * Read per-bit deskew can be done on a per shadow register basis.
2288 	 */
2289 	grp_calibrated = 1;
2290 	for (rank_bgn = 0, sr = 0;
2291 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2292 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2293 		/* Check if this set of ranks should be skipped entirely. */
2294 		if (param->skip_shadow_regs[sr])
2295 			continue;
2296 
2297 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2298 							rw_group, test_bgn,
2299 							use_read_test,
2300 							update_fom);
2301 		if (ret)
2302 			continue;
2303 
2304 		grp_calibrated = 0;
2305 	}
2306 
2307 	if (!grp_calibrated)
2308 		return -EIO;
2309 
2310 	return 0;
2311 }
2312 
2313 /**
2314  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2315  * @rw_group:		Read/Write Group
2316  * @test_bgn:		Rank at which the test begins
2317  *
2318  * Stage 1: Calibrate the read valid prediction FIFO.
2319  *
2320  * This function implements UniPHY calibration Stage 1, as explained in
2321  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2322  *
2323  * - read valid prediction will consist of finding:
2324  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2325  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2326  *  - we also do a per-bit deskew on the DQ lines.
2327  */
2328 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2329 {
2330 	uint32_t p, d;
2331 	uint32_t dtaps_per_ptap;
2332 	uint32_t failed_substage;
2333 
2334 	int ret;
2335 
2336 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2337 
2338 	/* Update info for sims */
2339 	reg_file_set_group(rw_group);
2340 	reg_file_set_stage(CAL_STAGE_VFIFO);
2341 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2342 
2343 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2344 
2345 	/* USER Determine number of delay taps for each phase tap. */
2346 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2347 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2348 
2349 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2350 		/*
2351 		 * In RLDRAMX we may be messing the delay of pins in
2352 		 * the same write rw_group but outside of the current read
2353 		 * the rw_group, but that's ok because we haven't calibrated
2354 		 * output side yet.
2355 		 */
2356 		if (d > 0) {
2357 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2358 								rw_group, d);
2359 		}
2360 
2361 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2362 			/* 1) Guaranteed Write */
2363 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2364 			if (ret)
2365 				break;
2366 
2367 			/* 2) DQS Enable Calibration */
2368 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2369 									  test_bgn);
2370 			if (ret) {
2371 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2372 				continue;
2373 			}
2374 
2375 			/* 3) Centering DQ/DQS */
2376 			/*
2377 			 * If doing read after write calibration, do not update
2378 			 * FOM now. Do it then.
2379 			 */
2380 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2381 								test_bgn, 1, 0);
2382 			if (ret) {
2383 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2384 				continue;
2385 			}
2386 
2387 			/* All done. */
2388 			goto cal_done_ok;
2389 		}
2390 	}
2391 
2392 	/* Calibration Stage 1 failed. */
2393 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2394 	return 0;
2395 
2396 	/* Calibration Stage 1 completed OK. */
2397 cal_done_ok:
2398 	/*
2399 	 * Reset the delay chains back to zero if they have moved > 1
2400 	 * (check for > 1 because loop will increase d even when pass in
2401 	 * first case).
2402 	 */
2403 	if (d > 2)
2404 		scc_mgr_zero_group(rw_group, 1);
2405 
2406 	return 1;
2407 }
2408 
2409 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2410 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2411 					       uint32_t test_bgn)
2412 {
2413 	uint32_t rank_bgn, sr;
2414 	uint32_t grp_calibrated;
2415 	uint32_t write_group;
2416 
2417 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2418 
2419 	/* update info for sims */
2420 
2421 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2422 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2423 
2424 	write_group = read_group;
2425 
2426 	/* update info for sims */
2427 	reg_file_set_group(read_group);
2428 
2429 	grp_calibrated = 1;
2430 	/* Read per-bit deskew can be done on a per shadow register basis */
2431 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2432 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2433 		/* Determine if this set of ranks should be skipped entirely */
2434 		if (!param->skip_shadow_regs[sr]) {
2435 		/* This is the last calibration round, update FOM here */
2436 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2437 								write_group,
2438 								read_group,
2439 								test_bgn, 0,
2440 								1)) {
2441 				grp_calibrated = 0;
2442 			}
2443 		}
2444 	}
2445 
2446 
2447 	if (grp_calibrated == 0) {
2448 		set_failing_group_stage(write_group,
2449 					CAL_STAGE_VFIFO_AFTER_WRITES,
2450 					CAL_SUBSTAGE_VFIFO_CENTER);
2451 		return 0;
2452 	}
2453 
2454 	return 1;
2455 }
2456 
2457 /* Calibrate LFIFO to find smallest read latency */
2458 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2459 {
2460 	uint32_t found_one;
2461 	uint32_t bit_chk;
2462 
2463 	debug("%s:%d\n", __func__, __LINE__);
2464 
2465 	/* update info for sims */
2466 	reg_file_set_stage(CAL_STAGE_LFIFO);
2467 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2468 
2469 	/* Load up the patterns used by read calibration for all ranks */
2470 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2471 	found_one = 0;
2472 
2473 	do {
2474 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2475 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2476 			   __func__, __LINE__, gbl->curr_read_lat);
2477 
2478 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2479 							      NUM_READ_TESTS,
2480 							      PASS_ALL_BITS,
2481 							      &bit_chk, 1)) {
2482 			break;
2483 		}
2484 
2485 		found_one = 1;
2486 		/* reduce read latency and see if things are working */
2487 		/* correctly */
2488 		gbl->curr_read_lat--;
2489 	} while (gbl->curr_read_lat > 0);
2490 
2491 	/* reset the fifos to get pointers to known state */
2492 
2493 	writel(0, &phy_mgr_cmd->fifo_reset);
2494 
2495 	if (found_one) {
2496 		/* add a fudge factor to the read latency that was determined */
2497 		gbl->curr_read_lat += 2;
2498 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2499 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2500 			   read_lat=%u\n", __func__, __LINE__,
2501 			   gbl->curr_read_lat);
2502 		return 1;
2503 	} else {
2504 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2505 					CAL_SUBSTAGE_READ_LATENCY);
2506 
2507 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2508 			   read_lat=%u\n", __func__, __LINE__,
2509 			   gbl->curr_read_lat);
2510 		return 0;
2511 	}
2512 }
2513 
2514 /*
2515  * issue write test command.
2516  * two variants are provided. one that just tests a write pattern and
2517  * another that tests datamask functionality.
2518  */
2519 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2520 						  uint32_t test_dm)
2521 {
2522 	uint32_t mcc_instruction;
2523 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2524 		ENABLE_SUPER_QUICK_CALIBRATION);
2525 	uint32_t rw_wl_nop_cycles;
2526 	uint32_t addr;
2527 
2528 	/*
2529 	 * Set counter and jump addresses for the right
2530 	 * number of NOP cycles.
2531 	 * The number of supported NOP cycles can range from -1 to infinity
2532 	 * Three different cases are handled:
2533 	 *
2534 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2535 	 *    mechanism will be used to insert the right number of NOPs
2536 	 *
2537 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2538 	 *    issuing the write command will jump straight to the
2539 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2540 	 *    data (for RLD), skipping
2541 	 *    the NOP micro-instruction all together
2542 	 *
2543 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2544 	 *    turned on in the same micro-instruction that issues the write
2545 	 *    command. Then we need
2546 	 *    to directly jump to the micro-instruction that sends out the data
2547 	 *
2548 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2549 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2550 	 *       write-read operations.
2551 	 *       one counter left to issue this command in "multiple-group" mode
2552 	 */
2553 
2554 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2555 
2556 	if (rw_wl_nop_cycles == -1) {
2557 		/*
2558 		 * CNTR 2 - We want to execute the special write operation that
2559 		 * turns on DQS right away and then skip directly to the
2560 		 * instruction that sends out the data. We set the counter to a
2561 		 * large number so that the jump is always taken.
2562 		 */
2563 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2564 
2565 		/* CNTR 3 - Not used */
2566 		if (test_dm) {
2567 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2568 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2569 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2570 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2571 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2572 		} else {
2573 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2574 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2575 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2576 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2577 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2578 		}
2579 	} else if (rw_wl_nop_cycles == 0) {
2580 		/*
2581 		 * CNTR 2 - We want to skip the NOP operation and go straight
2582 		 * to the DQS enable instruction. We set the counter to a large
2583 		 * number so that the jump is always taken.
2584 		 */
2585 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2586 
2587 		/* CNTR 3 - Not used */
2588 		if (test_dm) {
2589 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2590 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2591 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2592 		} else {
2593 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2594 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2595 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2596 		}
2597 	} else {
2598 		/*
2599 		 * CNTR 2 - In this case we want to execute the next instruction
2600 		 * and NOT take the jump. So we set the counter to 0. The jump
2601 		 * address doesn't count.
2602 		 */
2603 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2604 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2605 
2606 		/*
2607 		 * CNTR 3 - Set the nop counter to the number of cycles we
2608 		 * need to loop for, minus 1.
2609 		 */
2610 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2611 		if (test_dm) {
2612 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2613 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2614 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2615 		} else {
2616 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2617 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2618 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2619 		}
2620 	}
2621 
2622 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2623 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2624 
2625 	if (quick_write_mode)
2626 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2627 	else
2628 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2629 
2630 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2631 
2632 	/*
2633 	 * CNTR 1 - This is used to ensure enough time elapses
2634 	 * for read data to come back.
2635 	 */
2636 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2637 
2638 	if (test_dm) {
2639 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2640 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2641 	} else {
2642 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2643 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2644 	}
2645 
2646 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2647 	writel(mcc_instruction, addr + (group << 2));
2648 }
2649 
2650 /* Test writes, can check for a single bit pass or multiple bit pass */
2651 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2652 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2653 	uint32_t *bit_chk, uint32_t all_ranks)
2654 {
2655 	uint32_t r;
2656 	uint32_t correct_mask_vg;
2657 	uint32_t tmp_bit_chk;
2658 	uint32_t vg;
2659 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2660 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2661 	uint32_t addr_rw_mgr;
2662 	uint32_t base_rw_mgr;
2663 
2664 	*bit_chk = param->write_correct_mask;
2665 	correct_mask_vg = param->write_correct_mask_vg;
2666 
2667 	for (r = rank_bgn; r < rank_end; r++) {
2668 		if (param->skip_ranks[r]) {
2669 			/* request to skip the rank */
2670 			continue;
2671 		}
2672 
2673 		/* set rank */
2674 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2675 
2676 		tmp_bit_chk = 0;
2677 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2678 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2679 			/* reset the fifos to get pointers to known state */
2680 			writel(0, &phy_mgr_cmd->fifo_reset);
2681 
2682 			tmp_bit_chk = tmp_bit_chk <<
2683 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2684 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2685 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2686 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2687 				use_dm);
2688 
2689 			base_rw_mgr = readl(addr_rw_mgr);
2690 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2691 			if (vg == 0)
2692 				break;
2693 		}
2694 		*bit_chk &= tmp_bit_chk;
2695 	}
2696 
2697 	if (all_correct) {
2698 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2699 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2700 			   %u => %lu", write_group, use_dm,
2701 			   *bit_chk, param->write_correct_mask,
2702 			   (long unsigned int)(*bit_chk ==
2703 			   param->write_correct_mask));
2704 		return *bit_chk == param->write_correct_mask;
2705 	} else {
2706 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2707 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2708 		       write_group, use_dm, *bit_chk);
2709 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2710 			(long unsigned int)(*bit_chk != 0));
2711 		return *bit_chk != 0x00;
2712 	}
2713 }
2714 
2715 /*
2716  * center all windows. do per-bit-deskew to possibly increase size of
2717  * certain windows.
2718  */
2719 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2720 	uint32_t write_group, uint32_t test_bgn)
2721 {
2722 	uint32_t i, p, min_index;
2723 	int32_t d;
2724 	/*
2725 	 * Store these as signed since there are comparisons with
2726 	 * signed numbers.
2727 	 */
2728 	uint32_t bit_chk;
2729 	uint32_t sticky_bit_chk;
2730 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2731 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2732 	int32_t mid;
2733 	int32_t mid_min, orig_mid_min;
2734 	int32_t new_dqs, start_dqs, shift_dq;
2735 	int32_t dq_margin, dqs_margin, dm_margin;
2736 	uint32_t stop;
2737 	uint32_t temp_dq_out1_delay;
2738 	uint32_t addr;
2739 
2740 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2741 
2742 	dm_margin = 0;
2743 
2744 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2745 	start_dqs = readl(addr +
2746 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2747 
2748 	/* per-bit deskew */
2749 
2750 	/*
2751 	 * set the left and right edge of each bit to an illegal value
2752 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2753 	 */
2754 	sticky_bit_chk = 0;
2755 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2756 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2757 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2758 	}
2759 
2760 	/* Search for the left edge of the window for each bit */
2761 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2762 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2763 
2764 		writel(0, &sdr_scc_mgr->update);
2765 
2766 		/*
2767 		 * Stop searching when the read test doesn't pass AND when
2768 		 * we've seen a passing read on every bit.
2769 		 */
2770 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2771 			0, PASS_ONE_BIT, &bit_chk, 0);
2772 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2773 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2774 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2775 			   == %u && %u [bit_chk= %u ]\n",
2776 			d, sticky_bit_chk, param->write_correct_mask,
2777 			stop, bit_chk);
2778 
2779 		if (stop == 1) {
2780 			break;
2781 		} else {
2782 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2783 				if (bit_chk & 1) {
2784 					/*
2785 					 * Remember a passing test as the
2786 					 * left_edge.
2787 					 */
2788 					left_edge[i] = d;
2789 				} else {
2790 					/*
2791 					 * If a left edge has not been seen
2792 					 * yet, then a future passing test will
2793 					 * mark this edge as the right edge.
2794 					 */
2795 					if (left_edge[i] ==
2796 						IO_IO_OUT1_DELAY_MAX + 1) {
2797 						right_edge[i] = -(d + 1);
2798 					}
2799 				}
2800 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2801 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2802 					   (int)(bit_chk & 1), i, left_edge[i]);
2803 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2804 				       right_edge[i]);
2805 				bit_chk = bit_chk >> 1;
2806 			}
2807 		}
2808 	}
2809 
2810 	/* Reset DQ delay chains to 0 */
2811 	scc_mgr_apply_group_dq_out1_delay(0);
2812 	sticky_bit_chk = 0;
2813 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2814 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2815 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2816 			   i, left_edge[i], i, right_edge[i]);
2817 
2818 		/*
2819 		 * Check for cases where we haven't found the left edge,
2820 		 * which makes our assignment of the the right edge invalid.
2821 		 * Reset it to the illegal value.
2822 		 */
2823 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2824 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2825 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2826 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2827 				   right_edge[%u]: %d\n", __func__, __LINE__,
2828 				   i, right_edge[i]);
2829 		}
2830 
2831 		/*
2832 		 * Reset sticky bit (except for bits where we have
2833 		 * seen the left edge).
2834 		 */
2835 		sticky_bit_chk = sticky_bit_chk << 1;
2836 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2837 			sticky_bit_chk = sticky_bit_chk | 1;
2838 
2839 		if (i == 0)
2840 			break;
2841 	}
2842 
2843 	/* Search for the right edge of the window for each bit */
2844 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2845 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2846 							d + start_dqs);
2847 
2848 		writel(0, &sdr_scc_mgr->update);
2849 
2850 		/*
2851 		 * Stop searching when the read test doesn't pass AND when
2852 		 * we've seen a passing read on every bit.
2853 		 */
2854 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2855 			0, PASS_ONE_BIT, &bit_chk, 0);
2856 
2857 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2858 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2859 
2860 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2861 			   %u && %u\n", d, sticky_bit_chk,
2862 			   param->write_correct_mask, stop);
2863 
2864 		if (stop == 1) {
2865 			if (d == 0) {
2866 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2867 					i++) {
2868 					/* d = 0 failed, but it passed when
2869 					testing the left edge, so it must be
2870 					marginal, set it to -1 */
2871 					if (right_edge[i] ==
2872 						IO_IO_OUT1_DELAY_MAX + 1 &&
2873 						left_edge[i] !=
2874 						IO_IO_OUT1_DELAY_MAX + 1) {
2875 						right_edge[i] = -1;
2876 					}
2877 				}
2878 			}
2879 			break;
2880 		} else {
2881 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2882 				if (bit_chk & 1) {
2883 					/*
2884 					 * Remember a passing test as
2885 					 * the right_edge.
2886 					 */
2887 					right_edge[i] = d;
2888 				} else {
2889 					if (d != 0) {
2890 						/*
2891 						 * If a right edge has not
2892 						 * been seen yet, then a future
2893 						 * passing test will mark this
2894 						 * edge as the left edge.
2895 						 */
2896 						if (right_edge[i] ==
2897 						    IO_IO_OUT1_DELAY_MAX + 1)
2898 							left_edge[i] = -(d + 1);
2899 					} else {
2900 						/*
2901 						 * d = 0 failed, but it passed
2902 						 * when testing the left edge,
2903 						 * so it must be marginal, set
2904 						 * it to -1.
2905 						 */
2906 						if (right_edge[i] ==
2907 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2908 						    left_edge[i] !=
2909 						    IO_IO_OUT1_DELAY_MAX + 1)
2910 							right_edge[i] = -1;
2911 						/*
2912 						 * If a right edge has not been
2913 						 * seen yet, then a future
2914 						 * passing test will mark this
2915 						 * edge as the left edge.
2916 						 */
2917 						else if (right_edge[i] ==
2918 							IO_IO_OUT1_DELAY_MAX +
2919 							1)
2920 							left_edge[i] = -(d + 1);
2921 					}
2922 				}
2923 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2924 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2925 					   (int)(bit_chk & 1), i, left_edge[i]);
2926 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2927 					   right_edge[i]);
2928 				bit_chk = bit_chk >> 1;
2929 			}
2930 		}
2931 	}
2932 
2933 	/* Check that all bits have a window */
2934 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2935 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2936 			   %d right_edge[%u]: %d", __func__, __LINE__,
2937 			   i, left_edge[i], i, right_edge[i]);
2938 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2939 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2940 			set_failing_group_stage(test_bgn + i,
2941 						CAL_STAGE_WRITES,
2942 						CAL_SUBSTAGE_WRITES_CENTER);
2943 			return 0;
2944 		}
2945 	}
2946 
2947 	/* Find middle of window for each DQ bit */
2948 	mid_min = left_edge[0] - right_edge[0];
2949 	min_index = 0;
2950 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2951 		mid = left_edge[i] - right_edge[i];
2952 		if (mid < mid_min) {
2953 			mid_min = mid;
2954 			min_index = i;
2955 		}
2956 	}
2957 
2958 	/*
2959 	 * -mid_min/2 represents the amount that we need to move DQS.
2960 	 * If mid_min is odd and positive we'll need to add one to
2961 	 * make sure the rounding in further calculations is correct
2962 	 * (always bias to the right), so just add 1 for all positive values.
2963 	 */
2964 	if (mid_min > 0)
2965 		mid_min++;
2966 	mid_min = mid_min / 2;
2967 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2968 		   __LINE__, mid_min);
2969 
2970 	/* Determine the amount we can change DQS (which is -mid_min) */
2971 	orig_mid_min = mid_min;
2972 	new_dqs = start_dqs;
2973 	mid_min = 0;
2974 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2975 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2976 	/* Initialize data for export structures */
2977 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2978 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2979 
2980 	/* add delay to bring centre of all DQ windows to the same "level" */
2981 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2982 		/* Use values before divide by 2 to reduce round off error */
2983 		shift_dq = (left_edge[i] - right_edge[i] -
2984 			(left_edge[min_index] - right_edge[min_index]))/2  +
2985 		(orig_mid_min - mid_min);
2986 
2987 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2988 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2989 
2990 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2991 		temp_dq_out1_delay = readl(addr + (i << 2));
2992 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2993 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2994 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2995 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2996 			shift_dq = -(int32_t)temp_dq_out1_delay;
2997 		}
2998 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2999 			   i, shift_dq);
3000 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
3001 		scc_mgr_load_dq(i);
3002 
3003 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3004 			   left_edge[i] - shift_dq + (-mid_min),
3005 			   right_edge[i] + shift_dq - (-mid_min));
3006 		/* To determine values for export structures */
3007 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3008 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3009 
3010 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3011 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3012 	}
3013 
3014 	/* Move DQS */
3015 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3016 	writel(0, &sdr_scc_mgr->update);
3017 
3018 	/* Centre DM */
3019 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3020 
3021 	/*
3022 	 * set the left and right edge of each bit to an illegal value,
3023 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3024 	 */
3025 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3026 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3027 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3028 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3029 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3030 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3031 	int32_t win_best = 0;
3032 
3033 	/* Search for the/part of the window with DM shift */
3034 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3035 		scc_mgr_apply_group_dm_out1_delay(d);
3036 		writel(0, &sdr_scc_mgr->update);
3037 
3038 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3039 						    PASS_ALL_BITS, &bit_chk,
3040 						    0)) {
3041 			/* USE Set current end of the window */
3042 			end_curr = -d;
3043 			/*
3044 			 * If a starting edge of our window has not been seen
3045 			 * this is our current start of the DM window.
3046 			 */
3047 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3048 				bgn_curr = -d;
3049 
3050 			/*
3051 			 * If current window is bigger than best seen.
3052 			 * Set best seen to be current window.
3053 			 */
3054 			if ((end_curr-bgn_curr+1) > win_best) {
3055 				win_best = end_curr-bgn_curr+1;
3056 				bgn_best = bgn_curr;
3057 				end_best = end_curr;
3058 			}
3059 		} else {
3060 			/* We just saw a failing test. Reset temp edge */
3061 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3062 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 			}
3064 		}
3065 
3066 
3067 	/* Reset DM delay chains to 0 */
3068 	scc_mgr_apply_group_dm_out1_delay(0);
3069 
3070 	/*
3071 	 * Check to see if the current window nudges up aganist 0 delay.
3072 	 * If so we need to continue the search by shifting DQS otherwise DQS
3073 	 * search begins as a new search. */
3074 	if (end_curr != 0) {
3075 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3076 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077 	}
3078 
3079 	/* Search for the/part of the window with DQS shifts */
3080 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3081 		/*
3082 		 * Note: This only shifts DQS, so are we limiting ourselve to
3083 		 * width of DQ unnecessarily.
3084 		 */
3085 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3086 							d + new_dqs);
3087 
3088 		writel(0, &sdr_scc_mgr->update);
3089 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3090 						    PASS_ALL_BITS, &bit_chk,
3091 						    0)) {
3092 			/* USE Set current end of the window */
3093 			end_curr = d;
3094 			/*
3095 			 * If a beginning edge of our window has not been seen
3096 			 * this is our current begin of the DM window.
3097 			 */
3098 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3099 				bgn_curr = d;
3100 
3101 			/*
3102 			 * If current window is bigger than best seen. Set best
3103 			 * seen to be current window.
3104 			 */
3105 			if ((end_curr-bgn_curr+1) > win_best) {
3106 				win_best = end_curr-bgn_curr+1;
3107 				bgn_best = bgn_curr;
3108 				end_best = end_curr;
3109 			}
3110 		} else {
3111 			/* We just saw a failing test. Reset temp edge */
3112 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3113 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3114 
3115 			/* Early exit optimization: if ther remaining delay
3116 			chain space is less than already seen largest window
3117 			we can exit */
3118 			if ((win_best-1) >
3119 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3120 					break;
3121 				}
3122 			}
3123 		}
3124 
3125 	/* assign left and right edge for cal and reporting; */
3126 	left_edge[0] = -1*bgn_best;
3127 	right_edge[0] = end_best;
3128 
3129 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3130 		   __LINE__, left_edge[0], right_edge[0]);
3131 
3132 	/* Move DQS (back to orig) */
3133 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3134 
3135 	/* Move DM */
3136 
3137 	/* Find middle of window for the DM bit */
3138 	mid = (left_edge[0] - right_edge[0]) / 2;
3139 
3140 	/* only move right, since we are not moving DQS/DQ */
3141 	if (mid < 0)
3142 		mid = 0;
3143 
3144 	/* dm_marign should fail if we never find a window */
3145 	if (win_best == 0)
3146 		dm_margin = -1;
3147 	else
3148 		dm_margin = left_edge[0] - mid;
3149 
3150 	scc_mgr_apply_group_dm_out1_delay(mid);
3151 	writel(0, &sdr_scc_mgr->update);
3152 
3153 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3154 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3155 		   right_edge[0], mid, dm_margin);
3156 	/* Export values */
3157 	gbl->fom_out += dq_margin + dqs_margin;
3158 
3159 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3160 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3161 		   dq_margin, dqs_margin, dm_margin);
3162 
3163 	/*
3164 	 * Do not remove this line as it makes sure all of our
3165 	 * decisions have been applied.
3166 	 */
3167 	writel(0, &sdr_scc_mgr->update);
3168 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3169 }
3170 
3171 /* calibrate the write operations */
3172 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3173 	uint32_t test_bgn)
3174 {
3175 	/* update info for sims */
3176 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3177 
3178 	reg_file_set_stage(CAL_STAGE_WRITES);
3179 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3180 
3181 	reg_file_set_group(g);
3182 
3183 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3184 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3185 					CAL_SUBSTAGE_WRITES_CENTER);
3186 		return 0;
3187 	}
3188 
3189 	return 1;
3190 }
3191 
3192 /**
3193  * mem_precharge_and_activate() - Precharge all banks and activate
3194  *
3195  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3196  */
3197 static void mem_precharge_and_activate(void)
3198 {
3199 	int r;
3200 
3201 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3202 		/* Test if the rank should be skipped. */
3203 		if (param->skip_ranks[r])
3204 			continue;
3205 
3206 		/* Set rank. */
3207 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3208 
3209 		/* Precharge all banks. */
3210 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3211 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3212 
3213 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3214 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3215 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3216 
3217 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3218 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3219 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3220 
3221 		/* Activate rows. */
3222 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3223 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3224 	}
3225 }
3226 
3227 /**
3228  * mem_init_latency() - Configure memory RLAT and WLAT settings
3229  *
3230  * Configure memory RLAT and WLAT parameters.
3231  */
3232 static void mem_init_latency(void)
3233 {
3234 	/*
3235 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3236 	 * so max latency in AFI clocks, used here, is correspondingly
3237 	 * smaller.
3238 	 */
3239 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3240 	u32 rlat, wlat;
3241 
3242 	debug("%s:%d\n", __func__, __LINE__);
3243 
3244 	/*
3245 	 * Read in write latency.
3246 	 * WL for Hard PHY does not include additive latency.
3247 	 */
3248 	wlat = readl(&data_mgr->t_wl_add);
3249 	wlat += readl(&data_mgr->mem_t_add);
3250 
3251 	gbl->rw_wl_nop_cycles = wlat - 1;
3252 
3253 	/* Read in readl latency. */
3254 	rlat = readl(&data_mgr->t_rl_add);
3255 
3256 	/* Set a pretty high read latency initially. */
3257 	gbl->curr_read_lat = rlat + 16;
3258 	if (gbl->curr_read_lat > max_latency)
3259 		gbl->curr_read_lat = max_latency;
3260 
3261 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3262 
3263 	/* Advertise write latency. */
3264 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3265 }
3266 
3267 /**
3268  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3269  *
3270  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3271  */
3272 static void mem_skip_calibrate(void)
3273 {
3274 	uint32_t vfifo_offset;
3275 	uint32_t i, j, r;
3276 
3277 	debug("%s:%d\n", __func__, __LINE__);
3278 	/* Need to update every shadow register set used by the interface */
3279 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3280 	     r += NUM_RANKS_PER_SHADOW_REG) {
3281 		/*
3282 		 * Set output phase alignment settings appropriate for
3283 		 * skip calibration.
3284 		 */
3285 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3286 			scc_mgr_set_dqs_en_phase(i, 0);
3287 #if IO_DLL_CHAIN_LENGTH == 6
3288 			scc_mgr_set_dqdqs_output_phase(i, 6);
3289 #else
3290 			scc_mgr_set_dqdqs_output_phase(i, 7);
3291 #endif
3292 			/*
3293 			 * Case:33398
3294 			 *
3295 			 * Write data arrives to the I/O two cycles before write
3296 			 * latency is reached (720 deg).
3297 			 *   -> due to bit-slip in a/c bus
3298 			 *   -> to allow board skew where dqs is longer than ck
3299 			 *      -> how often can this happen!?
3300 			 *      -> can claim back some ptaps for high freq
3301 			 *       support if we can relax this, but i digress...
3302 			 *
3303 			 * The write_clk leads mem_ck by 90 deg
3304 			 * The minimum ptap of the OPA is 180 deg
3305 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3306 			 * The write_clk is always delayed by 2 ptaps
3307 			 *
3308 			 * Hence, to make DQS aligned to CK, we need to delay
3309 			 * DQS by:
3310 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3311 			 *
3312 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3313 			 * gives us the number of ptaps, which simplies to:
3314 			 *
3315 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3316 			 */
3317 			scc_mgr_set_dqdqs_output_phase(i,
3318 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3319 		}
3320 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3321 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3322 
3323 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3324 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3325 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3326 		}
3327 		writel(0xff, &sdr_scc_mgr->dq_ena);
3328 		writel(0xff, &sdr_scc_mgr->dm_ena);
3329 		writel(0, &sdr_scc_mgr->update);
3330 	}
3331 
3332 	/* Compensate for simulation model behaviour */
3333 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3334 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3335 		scc_mgr_load_dqs(i);
3336 	}
3337 	writel(0, &sdr_scc_mgr->update);
3338 
3339 	/*
3340 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3341 	 * in sequencer.
3342 	 */
3343 	vfifo_offset = CALIB_VFIFO_OFFSET;
3344 	for (j = 0; j < vfifo_offset; j++)
3345 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3346 	writel(0, &phy_mgr_cmd->fifo_reset);
3347 
3348 	/*
3349 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3350 	 * setting from generation-time constant.
3351 	 */
3352 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3353 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3354 }
3355 
3356 /**
3357  * mem_calibrate() - Memory calibration entry point.
3358  *
3359  * Perform memory calibration.
3360  */
3361 static uint32_t mem_calibrate(void)
3362 {
3363 	uint32_t i;
3364 	uint32_t rank_bgn, sr;
3365 	uint32_t write_group, write_test_bgn;
3366 	uint32_t read_group, read_test_bgn;
3367 	uint32_t run_groups, current_run;
3368 	uint32_t failing_groups = 0;
3369 	uint32_t group_failed = 0;
3370 
3371 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3372 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3373 
3374 	debug("%s:%d\n", __func__, __LINE__);
3375 
3376 	/* Initialize the data settings */
3377 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3378 	gbl->error_stage = CAL_STAGE_NIL;
3379 	gbl->error_group = 0xff;
3380 	gbl->fom_in = 0;
3381 	gbl->fom_out = 0;
3382 
3383 	/* Initialize WLAT and RLAT. */
3384 	mem_init_latency();
3385 
3386 	/* Initialize bit slips. */
3387 	mem_precharge_and_activate();
3388 
3389 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3390 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3391 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3392 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3393 		if (i == 0)
3394 			scc_mgr_set_hhp_extras();
3395 
3396 		scc_set_bypass_mode(i);
3397 	}
3398 
3399 	/* Calibration is skipped. */
3400 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3401 		/*
3402 		 * Set VFIFO and LFIFO to instant-on settings in skip
3403 		 * calibration mode.
3404 		 */
3405 		mem_skip_calibrate();
3406 
3407 		/*
3408 		 * Do not remove this line as it makes sure all of our
3409 		 * decisions have been applied.
3410 		 */
3411 		writel(0, &sdr_scc_mgr->update);
3412 		return 1;
3413 	}
3414 
3415 	/* Calibration is not skipped. */
3416 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3417 		/*
3418 		 * Zero all delay chain/phase settings for all
3419 		 * groups and all shadow register sets.
3420 		 */
3421 		scc_mgr_zero_all();
3422 
3423 		run_groups = ~param->skip_groups;
3424 
3425 		for (write_group = 0, write_test_bgn = 0; write_group
3426 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3427 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3428 
3429 			/* Initialize the group failure */
3430 			group_failed = 0;
3431 
3432 			current_run = run_groups & ((1 <<
3433 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3434 			run_groups = run_groups >>
3435 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3436 
3437 			if (current_run == 0)
3438 				continue;
3439 
3440 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3441 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3442 			scc_mgr_zero_group(write_group, 0);
3443 
3444 			for (read_group = write_group * rwdqs_ratio,
3445 			     read_test_bgn = 0;
3446 			     read_group < (write_group + 1) * rwdqs_ratio;
3447 			     read_group++,
3448 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3449 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3450 					continue;
3451 
3452 				/* Calibrate the VFIFO */
3453 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3454 							       read_test_bgn))
3455 					continue;
3456 
3457 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3458 					return 0;
3459 
3460 				/* The group failed, we're done. */
3461 				goto grp_failed;
3462 			}
3463 
3464 			/* Calibrate the output side */
3465 			for (rank_bgn = 0, sr = 0;
3466 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3467 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3468 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3469 					continue;
3470 
3471 				/* Not needed in quick mode! */
3472 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3473 					continue;
3474 
3475 				/*
3476 				 * Determine if this set of ranks
3477 				 * should be skipped entirely.
3478 				 */
3479 				if (param->skip_shadow_regs[sr])
3480 					continue;
3481 
3482 				/* Calibrate WRITEs */
3483 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3484 						write_group, write_test_bgn))
3485 					continue;
3486 
3487 				group_failed = 1;
3488 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3489 					return 0;
3490 			}
3491 
3492 			/* Some group failed, we're done. */
3493 			if (group_failed)
3494 				goto grp_failed;
3495 
3496 			for (read_group = write_group * rwdqs_ratio,
3497 			     read_test_bgn = 0;
3498 			     read_group < (write_group + 1) * rwdqs_ratio;
3499 			     read_group++,
3500 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3501 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3502 					continue;
3503 
3504 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3505 								read_test_bgn))
3506 					continue;
3507 
3508 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3509 					return 0;
3510 
3511 				/* The group failed, we're done. */
3512 				goto grp_failed;
3513 			}
3514 
3515 			/* No group failed, continue as usual. */
3516 			continue;
3517 
3518 grp_failed:		/* A group failed, increment the counter. */
3519 			failing_groups++;
3520 		}
3521 
3522 		/*
3523 		 * USER If there are any failing groups then report
3524 		 * the failure.
3525 		 */
3526 		if (failing_groups != 0)
3527 			return 0;
3528 
3529 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3530 			continue;
3531 
3532 		/*
3533 		 * If we're skipping groups as part of debug,
3534 		 * don't calibrate LFIFO.
3535 		 */
3536 		if (param->skip_groups != 0)
3537 			continue;
3538 
3539 		/* Calibrate the LFIFO */
3540 		if (!rw_mgr_mem_calibrate_lfifo())
3541 			return 0;
3542 	}
3543 
3544 	/*
3545 	 * Do not remove this line as it makes sure all of our decisions
3546 	 * have been applied.
3547 	 */
3548 	writel(0, &sdr_scc_mgr->update);
3549 	return 1;
3550 }
3551 
3552 /**
3553  * run_mem_calibrate() - Perform memory calibration
3554  *
3555  * This function triggers the entire memory calibration procedure.
3556  */
3557 static int run_mem_calibrate(void)
3558 {
3559 	int pass;
3560 
3561 	debug("%s:%d\n", __func__, __LINE__);
3562 
3563 	/* Reset pass/fail status shown on afi_cal_success/fail */
3564 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3565 
3566 	/* Stop tracking manager. */
3567 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3568 
3569 	phy_mgr_initialize();
3570 	rw_mgr_mem_initialize();
3571 
3572 	/* Perform the actual memory calibration. */
3573 	pass = mem_calibrate();
3574 
3575 	mem_precharge_and_activate();
3576 	writel(0, &phy_mgr_cmd->fifo_reset);
3577 
3578 	/* Handoff. */
3579 	rw_mgr_mem_handoff();
3580 	/*
3581 	 * In Hard PHY this is a 2-bit control:
3582 	 * 0: AFI Mux Select
3583 	 * 1: DDIO Mux Select
3584 	 */
3585 	writel(0x2, &phy_mgr_cfg->mux_sel);
3586 
3587 	/* Start tracking manager. */
3588 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3589 
3590 	return pass;
3591 }
3592 
3593 /**
3594  * debug_mem_calibrate() - Report result of memory calibration
3595  * @pass:	Value indicating whether calibration passed or failed
3596  *
3597  * This function reports the results of the memory calibration
3598  * and writes debug information into the register file.
3599  */
3600 static void debug_mem_calibrate(int pass)
3601 {
3602 	uint32_t debug_info;
3603 
3604 	if (pass) {
3605 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3606 
3607 		gbl->fom_in /= 2;
3608 		gbl->fom_out /= 2;
3609 
3610 		if (gbl->fom_in > 0xff)
3611 			gbl->fom_in = 0xff;
3612 
3613 		if (gbl->fom_out > 0xff)
3614 			gbl->fom_out = 0xff;
3615 
3616 		/* Update the FOM in the register file */
3617 		debug_info = gbl->fom_in;
3618 		debug_info |= gbl->fom_out << 8;
3619 		writel(debug_info, &sdr_reg_file->fom);
3620 
3621 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3622 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3623 	} else {
3624 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3625 
3626 		debug_info = gbl->error_stage;
3627 		debug_info |= gbl->error_substage << 8;
3628 		debug_info |= gbl->error_group << 16;
3629 
3630 		writel(debug_info, &sdr_reg_file->failing_stage);
3631 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3632 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3633 
3634 		/* Update the failing group/stage in the register file */
3635 		debug_info = gbl->error_stage;
3636 		debug_info |= gbl->error_substage << 8;
3637 		debug_info |= gbl->error_group << 16;
3638 		writel(debug_info, &sdr_reg_file->failing_stage);
3639 	}
3640 
3641 	printf("%s: Calibration complete\n", __FILE__);
3642 }
3643 
3644 /**
3645  * hc_initialize_rom_data() - Initialize ROM data
3646  *
3647  * Initialize ROM data.
3648  */
3649 static void hc_initialize_rom_data(void)
3650 {
3651 	u32 i, addr;
3652 
3653 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3654 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3655 		writel(inst_rom_init[i], addr + (i << 2));
3656 
3657 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3658 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3659 		writel(ac_rom_init[i], addr + (i << 2));
3660 }
3661 
3662 /**
3663  * initialize_reg_file() - Initialize SDR register file
3664  *
3665  * Initialize SDR register file.
3666  */
3667 static void initialize_reg_file(void)
3668 {
3669 	/* Initialize the register file with the correct data */
3670 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3671 	writel(0, &sdr_reg_file->debug_data_addr);
3672 	writel(0, &sdr_reg_file->cur_stage);
3673 	writel(0, &sdr_reg_file->fom);
3674 	writel(0, &sdr_reg_file->failing_stage);
3675 	writel(0, &sdr_reg_file->debug1);
3676 	writel(0, &sdr_reg_file->debug2);
3677 }
3678 
3679 /**
3680  * initialize_hps_phy() - Initialize HPS PHY
3681  *
3682  * Initialize HPS PHY.
3683  */
3684 static void initialize_hps_phy(void)
3685 {
3686 	uint32_t reg;
3687 	/*
3688 	 * Tracking also gets configured here because it's in the
3689 	 * same register.
3690 	 */
3691 	uint32_t trk_sample_count = 7500;
3692 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3693 	/*
3694 	 * Format is number of outer loops in the 16 MSB, sample
3695 	 * count in 16 LSB.
3696 	 */
3697 
3698 	reg = 0;
3699 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3700 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3701 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3702 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3703 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3704 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3705 	/*
3706 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3707 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3708 	 */
3709 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3710 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3711 		trk_sample_count);
3712 	writel(reg, &sdr_ctrl->phy_ctrl0);
3713 
3714 	reg = 0;
3715 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3716 		trk_sample_count >>
3717 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3718 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3719 		trk_long_idle_sample_count);
3720 	writel(reg, &sdr_ctrl->phy_ctrl1);
3721 
3722 	reg = 0;
3723 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3724 		trk_long_idle_sample_count >>
3725 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3726 	writel(reg, &sdr_ctrl->phy_ctrl2);
3727 }
3728 
3729 /**
3730  * initialize_tracking() - Initialize tracking
3731  *
3732  * Initialize the register file with usable initial data.
3733  */
3734 static void initialize_tracking(void)
3735 {
3736 	/*
3737 	 * Initialize the register file with the correct data.
3738 	 * Compute usable version of value in case we skip full
3739 	 * computation later.
3740 	 */
3741 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3742 	       &sdr_reg_file->dtaps_per_ptap);
3743 
3744 	/* trk_sample_count */
3745 	writel(7500, &sdr_reg_file->trk_sample_count);
3746 
3747 	/* longidle outer loop [15:0] */
3748 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3749 
3750 	/*
3751 	 * longidle sample count [31:24]
3752 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3753 	 * trcd, worst case [15:8]
3754 	 * vfifo wait [7:0]
3755 	 */
3756 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3757 	       &sdr_reg_file->delays);
3758 
3759 	/* mux delay */
3760 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3761 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3762 	       &sdr_reg_file->trk_rw_mgr_addr);
3763 
3764 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3765 	       &sdr_reg_file->trk_read_dqs_width);
3766 
3767 	/* trefi [7:0] */
3768 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3769 	       &sdr_reg_file->trk_rfsh);
3770 }
3771 
3772 int sdram_calibration_full(void)
3773 {
3774 	struct param_type my_param;
3775 	struct gbl_type my_gbl;
3776 	uint32_t pass;
3777 
3778 	memset(&my_param, 0, sizeof(my_param));
3779 	memset(&my_gbl, 0, sizeof(my_gbl));
3780 
3781 	param = &my_param;
3782 	gbl = &my_gbl;
3783 
3784 	/* Set the calibration enabled by default */
3785 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3786 	/*
3787 	 * Only sweep all groups (regardless of fail state) by default
3788 	 * Set enabled read test by default.
3789 	 */
3790 #if DISABLE_GUARANTEED_READ
3791 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3792 #endif
3793 	/* Initialize the register file */
3794 	initialize_reg_file();
3795 
3796 	/* Initialize any PHY CSR */
3797 	initialize_hps_phy();
3798 
3799 	scc_mgr_initialize();
3800 
3801 	initialize_tracking();
3802 
3803 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3804 
3805 	debug("%s:%d\n", __func__, __LINE__);
3806 	debug_cond(DLEVEL == 1,
3807 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3808 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3809 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3810 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3811 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3812 	debug_cond(DLEVEL == 1,
3813 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3814 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3815 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3816 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3817 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3818 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3819 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3820 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3821 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3822 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3823 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3824 		   IO_IO_OUT2_DELAY_MAX);
3825 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3826 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3827 
3828 	hc_initialize_rom_data();
3829 
3830 	/* update info for sims */
3831 	reg_file_set_stage(CAL_STAGE_NIL);
3832 	reg_file_set_group(0);
3833 
3834 	/*
3835 	 * Load global needed for those actions that require
3836 	 * some dynamic calibration support.
3837 	 */
3838 	dyn_calib_steps = STATIC_CALIB_STEPS;
3839 	/*
3840 	 * Load global to allow dynamic selection of delay loop settings
3841 	 * based on calibration mode.
3842 	 */
3843 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3844 		skip_delay_mask = 0xff;
3845 	else
3846 		skip_delay_mask = 0x0;
3847 
3848 	pass = run_mem_calibrate();
3849 	debug_mem_calibrate(pass);
3850 	return pass;
3851 }
3852