1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 327 delay); 328 } 329 330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 331 { 332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 333 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 334 delay); 335 } 336 337 /* load up dqs config settings */ 338 static void scc_mgr_load_dqs(uint32_t dqs) 339 { 340 writel(dqs, &sdr_scc_mgr->dqs_ena); 341 } 342 343 /* load up dqs io config settings */ 344 static void scc_mgr_load_dqs_io(void) 345 { 346 writel(0, &sdr_scc_mgr->dqs_io_ena); 347 } 348 349 /* load up dq config settings */ 350 static void scc_mgr_load_dq(uint32_t dq_in_group) 351 { 352 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 353 } 354 355 /* load up dm config settings */ 356 static void scc_mgr_load_dm(uint32_t dm) 357 { 358 writel(dm, &sdr_scc_mgr->dm_ena); 359 } 360 361 /** 362 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 363 * @off: Base offset in SCC Manager space 364 * @grp: Read/Write group 365 * @val: Value to be set 366 * @update: If non-zero, trigger SCC Manager update for all ranks 367 * 368 * This function sets the SCC Manager (Scan Chain Control Manager) register 369 * and optionally triggers the SCC update for all ranks. 370 */ 371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 372 const int update) 373 { 374 u32 r; 375 376 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 377 r += NUM_RANKS_PER_SHADOW_REG) { 378 scc_mgr_set(off, grp, val); 379 380 if (update || (r == 0)) { 381 writel(grp, &sdr_scc_mgr->dqs_ena); 382 writel(0, &sdr_scc_mgr->update); 383 } 384 } 385 } 386 387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 388 { 389 /* 390 * USER although the h/w doesn't support different phases per 391 * shadow register, for simplicity our scc manager modeling 392 * keeps different phase settings per shadow reg, and it's 393 * important for us to keep them in sync to match h/w. 394 * for efficiency, the scan chain update should occur only 395 * once to sr0. 396 */ 397 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 398 read_group, phase, 0); 399 } 400 401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 402 uint32_t phase) 403 { 404 /* 405 * USER although the h/w doesn't support different phases per 406 * shadow register, for simplicity our scc manager modeling 407 * keeps different phase settings per shadow reg, and it's 408 * important for us to keep them in sync to match h/w. 409 * for efficiency, the scan chain update should occur only 410 * once to sr0. 411 */ 412 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 413 write_group, phase, 0); 414 } 415 416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 417 uint32_t delay) 418 { 419 /* 420 * In shadow register mode, the T11 settings are stored in 421 * registers in the core, which are updated by the DQS_ENA 422 * signals. Not issuing the SCC_MGR_UPD command allows us to 423 * save lots of rank switching overhead, by calling 424 * select_shadow_regs_for_update with update_scan_chains 425 * set to 0. 426 */ 427 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 428 read_group, delay, 1); 429 writel(0, &sdr_scc_mgr->update); 430 } 431 432 /** 433 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 434 * @write_group: Write group 435 * @delay: Delay value 436 * 437 * This function sets the OCT output delay in SCC manager. 438 */ 439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 440 { 441 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 443 const int base = write_group * ratio; 444 int i; 445 /* 446 * Load the setting in the SCC manager 447 * Although OCT affects only write data, the OCT delay is controlled 448 * by the DQS logic block which is instantiated once per read group. 449 * For protocols where a write group consists of multiple read groups, 450 * the setting must be set multiple times. 451 */ 452 for (i = 0; i < ratio; i++) 453 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 454 } 455 456 /** 457 * scc_mgr_set_hhp_extras() - Set HHP extras. 458 * 459 * Load the fixed setting in the SCC manager HHP extras. 460 */ 461 static void scc_mgr_set_hhp_extras(void) 462 { 463 /* 464 * Load the fixed setting in the SCC manager 465 * bits: 0:0 = 1'b1 - DQS bypass 466 * bits: 1:1 = 1'b1 - DQ bypass 467 * bits: 4:2 = 3'b001 - rfifo_mode 468 * bits: 6:5 = 2'b01 - rfifo clock_select 469 * bits: 7:7 = 1'b0 - separate gating from ungating setting 470 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 471 */ 472 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 473 (1 << 2) | (1 << 1) | (1 << 0); 474 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 475 SCC_MGR_HHP_GLOBALS_OFFSET | 476 SCC_MGR_HHP_EXTRAS_OFFSET; 477 478 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 479 __func__, __LINE__); 480 writel(value, addr); 481 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 482 __func__, __LINE__); 483 } 484 485 /** 486 * scc_mgr_zero_all() - Zero all DQS config 487 * 488 * Zero all DQS config. 489 */ 490 static void scc_mgr_zero_all(void) 491 { 492 int i, r; 493 494 /* 495 * USER Zero all DQS config settings, across all groups and all 496 * shadow registers 497 */ 498 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 499 r += NUM_RANKS_PER_SHADOW_REG) { 500 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 501 /* 502 * The phases actually don't exist on a per-rank basis, 503 * but there's no harm updating them several times, so 504 * let's keep the code simple. 505 */ 506 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 507 scc_mgr_set_dqs_en_phase(i, 0); 508 scc_mgr_set_dqs_en_delay(i, 0); 509 } 510 511 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 512 scc_mgr_set_dqdqs_output_phase(i, 0); 513 /* Arria V/Cyclone V don't have out2. */ 514 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 515 } 516 } 517 518 /* Multicast to all DQS group enables. */ 519 writel(0xff, &sdr_scc_mgr->dqs_ena); 520 writel(0, &sdr_scc_mgr->update); 521 } 522 523 /** 524 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 525 * @write_group: Write group 526 * 527 * Set bypass mode and trigger SCC update. 528 */ 529 static void scc_set_bypass_mode(const u32 write_group) 530 { 531 /* Multicast to all DQ enables. */ 532 writel(0xff, &sdr_scc_mgr->dq_ena); 533 writel(0xff, &sdr_scc_mgr->dm_ena); 534 535 /* Update current DQS IO enable. */ 536 writel(0, &sdr_scc_mgr->dqs_io_ena); 537 538 /* Update the DQS logic. */ 539 writel(write_group, &sdr_scc_mgr->dqs_ena); 540 541 /* Hit update. */ 542 writel(0, &sdr_scc_mgr->update); 543 } 544 545 /** 546 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 547 * @write_group: Write group 548 * 549 * Load DQS settings for Write Group, do not trigger SCC update. 550 */ 551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 552 { 553 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 554 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 555 const int base = write_group * ratio; 556 int i; 557 /* 558 * Load the setting in the SCC manager 559 * Although OCT affects only write data, the OCT delay is controlled 560 * by the DQS logic block which is instantiated once per read group. 561 * For protocols where a write group consists of multiple read groups, 562 * the setting must be set multiple times. 563 */ 564 for (i = 0; i < ratio; i++) 565 writel(base + i, &sdr_scc_mgr->dqs_ena); 566 } 567 568 /** 569 * scc_mgr_zero_group() - Zero all configs for a group 570 * 571 * Zero DQ, DM, DQS and OCT configs for a group. 572 */ 573 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 574 { 575 int i, r; 576 577 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 578 r += NUM_RANKS_PER_SHADOW_REG) { 579 /* Zero all DQ config settings. */ 580 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 581 scc_mgr_set_dq_out1_delay(i, 0); 582 if (!out_only) 583 scc_mgr_set_dq_in_delay(i, 0); 584 } 585 586 /* Multicast to all DQ enables. */ 587 writel(0xff, &sdr_scc_mgr->dq_ena); 588 589 /* Zero all DM config settings. */ 590 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 591 scc_mgr_set_dm_out1_delay(i, 0); 592 593 /* Multicast to all DM enables. */ 594 writel(0xff, &sdr_scc_mgr->dm_ena); 595 596 /* Zero all DQS IO settings. */ 597 if (!out_only) 598 scc_mgr_set_dqs_io_in_delay(0); 599 600 /* Arria V/Cyclone V don't have out2. */ 601 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 602 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 603 scc_mgr_load_dqs_for_write_group(write_group); 604 605 /* Multicast to all DQS IO enables (only 1 in total). */ 606 writel(0, &sdr_scc_mgr->dqs_io_ena); 607 608 /* Hit update to zero everything. */ 609 writel(0, &sdr_scc_mgr->update); 610 } 611 } 612 613 /* 614 * apply and load a particular input delay for the DQ pins in a group 615 * group_bgn is the index of the first dq pin (in the write group) 616 */ 617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 618 { 619 uint32_t i, p; 620 621 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 622 scc_mgr_set_dq_in_delay(p, delay); 623 scc_mgr_load_dq(p); 624 } 625 } 626 627 /** 628 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 629 * @delay: Delay value 630 * 631 * Apply and load a particular output delay for the DQ pins in a group. 632 */ 633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 634 { 635 int i; 636 637 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 638 scc_mgr_set_dq_out1_delay(i, delay); 639 scc_mgr_load_dq(i); 640 } 641 } 642 643 /* apply and load a particular output delay for the DM pins in a group */ 644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 645 { 646 uint32_t i; 647 648 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 649 scc_mgr_set_dm_out1_delay(i, delay1); 650 scc_mgr_load_dm(i); 651 } 652 } 653 654 655 /* apply and load delay on both DQS and OCT out1 */ 656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 657 uint32_t delay) 658 { 659 scc_mgr_set_dqs_out1_delay(delay); 660 scc_mgr_load_dqs_io(); 661 662 scc_mgr_set_oct_out1_delay(write_group, delay); 663 scc_mgr_load_dqs_for_write_group(write_group); 664 } 665 666 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 667 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 668 const u32 group_bgn, 669 const u32 delay) 670 { 671 u32 i, new_delay; 672 673 /* DQ shift */ 674 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 675 scc_mgr_load_dq(i); 676 677 /* DM shift */ 678 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 679 scc_mgr_load_dm(i); 680 681 /* dqs shift */ 682 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 683 new_delay += delay; 684 685 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 686 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 687 " adding %u to OUT1\n", __func__, __LINE__, 688 write_group, group_bgn, delay, new_delay, 689 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 690 new_delay - IO_IO_OUT2_DELAY_MAX); 691 scc_mgr_set_dqs_out1_delay(new_delay - 692 IO_IO_OUT2_DELAY_MAX); 693 new_delay = IO_IO_OUT2_DELAY_MAX; 694 } 695 696 scc_mgr_load_dqs_io(); 697 698 /* oct shift */ 699 new_delay = READ_SCC_OCT_OUT2_DELAY; 700 new_delay += delay; 701 702 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 703 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 704 " adding %u to OUT1\n", __func__, __LINE__, 705 write_group, group_bgn, delay, new_delay, 706 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 707 new_delay - IO_IO_OUT2_DELAY_MAX); 708 scc_mgr_set_oct_out1_delay(write_group, new_delay - 709 IO_IO_OUT2_DELAY_MAX); 710 new_delay = IO_IO_OUT2_DELAY_MAX; 711 } 712 713 scc_mgr_load_dqs_for_write_group(write_group); 714 } 715 716 /* 717 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 718 * and to all ranks 719 */ 720 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 721 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 722 { 723 uint32_t r; 724 725 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 726 r += NUM_RANKS_PER_SHADOW_REG) { 727 scc_mgr_apply_group_all_out_delay_add(write_group, 728 group_bgn, delay); 729 writel(0, &sdr_scc_mgr->update); 730 } 731 } 732 733 /* optimization used to recover some slots in ddr3 inst_rom */ 734 /* could be applied to other protocols if we wanted to */ 735 static void set_jump_as_return(void) 736 { 737 /* 738 * to save space, we replace return with jump to special shared 739 * RETURN instruction so we set the counter to large value so that 740 * we always jump 741 */ 742 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 743 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 744 } 745 746 /* 747 * should always use constants as argument to ensure all computations are 748 * performed at compile time 749 */ 750 static void delay_for_n_mem_clocks(const uint32_t clocks) 751 { 752 uint32_t afi_clocks; 753 uint8_t inner = 0; 754 uint8_t outer = 0; 755 uint16_t c_loop = 0; 756 757 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 758 759 760 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 761 /* scale (rounding up) to get afi clocks */ 762 763 /* 764 * Note, we don't bother accounting for being off a little bit 765 * because of a few extra instructions in outer loops 766 * Note, the loops have a test at the end, and do the test before 767 * the decrement, and so always perform the loop 768 * 1 time more than the counter value 769 */ 770 if (afi_clocks == 0) { 771 ; 772 } else if (afi_clocks <= 0x100) { 773 inner = afi_clocks-1; 774 outer = 0; 775 c_loop = 0; 776 } else if (afi_clocks <= 0x10000) { 777 inner = 0xff; 778 outer = (afi_clocks-1) >> 8; 779 c_loop = 0; 780 } else { 781 inner = 0xff; 782 outer = 0xff; 783 c_loop = (afi_clocks-1) >> 16; 784 } 785 786 /* 787 * rom instructions are structured as follows: 788 * 789 * IDLE_LOOP2: jnz cntr0, TARGET_A 790 * IDLE_LOOP1: jnz cntr1, TARGET_B 791 * return 792 * 793 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 794 * TARGET_B is set to IDLE_LOOP2 as well 795 * 796 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 797 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 798 * 799 * a little confusing, but it helps save precious space in the inst_rom 800 * and sequencer rom and keeps the delays more accurate and reduces 801 * overhead 802 */ 803 if (afi_clocks <= 0x100) { 804 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 805 &sdr_rw_load_mgr_regs->load_cntr1); 806 807 writel(RW_MGR_IDLE_LOOP1, 808 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 809 810 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 811 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 812 } else { 813 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 814 &sdr_rw_load_mgr_regs->load_cntr0); 815 816 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 817 &sdr_rw_load_mgr_regs->load_cntr1); 818 819 writel(RW_MGR_IDLE_LOOP2, 820 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 821 822 writel(RW_MGR_IDLE_LOOP2, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 /* hack to get around compiler not being smart enough */ 826 if (afi_clocks <= 0x10000) { 827 /* only need to run once */ 828 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 829 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 830 } else { 831 do { 832 writel(RW_MGR_IDLE_LOOP2, 833 SDR_PHYGRP_RWMGRGRP_ADDRESS | 834 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 835 } while (c_loop-- != 0); 836 } 837 } 838 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 839 } 840 841 static void rw_mgr_mem_initialize(void) 842 { 843 uint32_t r; 844 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 846 847 debug("%s:%d\n", __func__, __LINE__); 848 849 /* The reset / cke part of initialization is broadcasted to all ranks */ 850 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 851 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 852 853 /* 854 * Here's how you load register for a loop 855 * Counters are located @ 0x800 856 * Jump address are located @ 0xC00 857 * For both, registers 0 to 3 are selected using bits 3 and 2, like 858 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 859 * I know this ain't pretty, but Avalon bus throws away the 2 least 860 * significant bits 861 */ 862 863 /* start with memory RESET activated */ 864 865 /* tINIT = 200us */ 866 867 /* 868 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 869 * If a and b are the number of iteration in 2 nested loops 870 * it takes the following number of cycles to complete the operation: 871 * number_of_cycles = ((2 + n) * a + 2) * b 872 * where n is the number of instruction in the inner loop 873 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 874 * b = 6A 875 */ 876 877 /* Load counters */ 878 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 879 &sdr_rw_load_mgr_regs->load_cntr0); 880 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 881 &sdr_rw_load_mgr_regs->load_cntr1); 882 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 883 &sdr_rw_load_mgr_regs->load_cntr2); 884 885 /* Load jump address */ 886 writel(RW_MGR_INIT_RESET_0_CKE_0, 887 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 888 writel(RW_MGR_INIT_RESET_0_CKE_0, 889 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 890 writel(RW_MGR_INIT_RESET_0_CKE_0, 891 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 892 893 /* Execute count instruction */ 894 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 895 896 /* indicate that memory is stable */ 897 writel(1, &phy_mgr_cfg->reset_mem_stbl); 898 899 /* 900 * transition the RESET to high 901 * Wait for 500us 902 */ 903 904 /* 905 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 906 * If a and b are the number of iteration in 2 nested loops 907 * it takes the following number of cycles to complete the operation 908 * number_of_cycles = ((2 + n) * a + 2) * b 909 * where n is the number of instruction in the inner loop 910 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 911 * b = FF 912 */ 913 914 /* Load counters */ 915 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 916 &sdr_rw_load_mgr_regs->load_cntr0); 917 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 918 &sdr_rw_load_mgr_regs->load_cntr1); 919 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 920 &sdr_rw_load_mgr_regs->load_cntr2); 921 922 /* Load jump address */ 923 writel(RW_MGR_INIT_RESET_1_CKE_0, 924 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 925 writel(RW_MGR_INIT_RESET_1_CKE_0, 926 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 927 writel(RW_MGR_INIT_RESET_1_CKE_0, 928 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 929 930 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 931 932 /* bring up clock enable */ 933 934 /* tXRP < 250 ck cycles */ 935 delay_for_n_mem_clocks(250); 936 937 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 938 if (param->skip_ranks[r]) { 939 /* request to skip the rank */ 940 continue; 941 } 942 943 /* set rank */ 944 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 945 946 /* 947 * USER Use Mirror-ed commands for odd ranks if address 948 * mirrorring is on 949 */ 950 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 951 set_jump_as_return(); 952 writel(RW_MGR_MRS2_MIRR, grpaddr); 953 delay_for_n_mem_clocks(4); 954 set_jump_as_return(); 955 writel(RW_MGR_MRS3_MIRR, grpaddr); 956 delay_for_n_mem_clocks(4); 957 set_jump_as_return(); 958 writel(RW_MGR_MRS1_MIRR, grpaddr); 959 delay_for_n_mem_clocks(4); 960 set_jump_as_return(); 961 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 962 } else { 963 set_jump_as_return(); 964 writel(RW_MGR_MRS2, grpaddr); 965 delay_for_n_mem_clocks(4); 966 set_jump_as_return(); 967 writel(RW_MGR_MRS3, grpaddr); 968 delay_for_n_mem_clocks(4); 969 set_jump_as_return(); 970 writel(RW_MGR_MRS1, grpaddr); 971 set_jump_as_return(); 972 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 973 } 974 set_jump_as_return(); 975 writel(RW_MGR_ZQCL, grpaddr); 976 977 /* tZQinit = tDLLK = 512 ck cycles */ 978 delay_for_n_mem_clocks(512); 979 } 980 } 981 982 /* 983 * At the end of calibration we have to program the user settings in, and 984 * USER hand off the memory to the user. 985 */ 986 static void rw_mgr_mem_handoff(void) 987 { 988 uint32_t r; 989 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 990 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 991 992 debug("%s:%d\n", __func__, __LINE__); 993 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 994 if (param->skip_ranks[r]) 995 /* request to skip the rank */ 996 continue; 997 /* set rank */ 998 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 999 1000 /* precharge all banks ... */ 1001 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1002 1003 /* load up MR settings specified by user */ 1004 1005 /* 1006 * Use Mirror-ed commands for odd ranks if address 1007 * mirrorring is on 1008 */ 1009 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1010 set_jump_as_return(); 1011 writel(RW_MGR_MRS2_MIRR, grpaddr); 1012 delay_for_n_mem_clocks(4); 1013 set_jump_as_return(); 1014 writel(RW_MGR_MRS3_MIRR, grpaddr); 1015 delay_for_n_mem_clocks(4); 1016 set_jump_as_return(); 1017 writel(RW_MGR_MRS1_MIRR, grpaddr); 1018 delay_for_n_mem_clocks(4); 1019 set_jump_as_return(); 1020 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1021 } else { 1022 set_jump_as_return(); 1023 writel(RW_MGR_MRS2, grpaddr); 1024 delay_for_n_mem_clocks(4); 1025 set_jump_as_return(); 1026 writel(RW_MGR_MRS3, grpaddr); 1027 delay_for_n_mem_clocks(4); 1028 set_jump_as_return(); 1029 writel(RW_MGR_MRS1, grpaddr); 1030 delay_for_n_mem_clocks(4); 1031 set_jump_as_return(); 1032 writel(RW_MGR_MRS0_USER, grpaddr); 1033 } 1034 /* 1035 * USER need to wait tMOD (12CK or 15ns) time before issuing 1036 * other commands, but we will have plenty of NIOS cycles before 1037 * actual handoff so its okay. 1038 */ 1039 } 1040 } 1041 1042 /* 1043 * performs a guaranteed read on the patterns we are going to use during a 1044 * read test to ensure memory works 1045 */ 1046 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1047 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1048 uint32_t all_ranks) 1049 { 1050 uint32_t r, vg; 1051 uint32_t correct_mask_vg; 1052 uint32_t tmp_bit_chk; 1053 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1054 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1055 uint32_t addr; 1056 uint32_t base_rw_mgr; 1057 1058 *bit_chk = param->read_correct_mask; 1059 correct_mask_vg = param->read_correct_mask_vg; 1060 1061 for (r = rank_bgn; r < rank_end; r++) { 1062 if (param->skip_ranks[r]) 1063 /* request to skip the rank */ 1064 continue; 1065 1066 /* set rank */ 1067 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1068 1069 /* Load up a constant bursts of read commands */ 1070 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1071 writel(RW_MGR_GUARANTEED_READ, 1072 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1073 1074 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1075 writel(RW_MGR_GUARANTEED_READ_CONT, 1076 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1077 1078 tmp_bit_chk = 0; 1079 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1080 /* reset the fifos to get pointers to known state */ 1081 1082 writel(0, &phy_mgr_cmd->fifo_reset); 1083 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1084 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1085 1086 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1087 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1088 1089 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1090 writel(RW_MGR_GUARANTEED_READ, addr + 1091 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1092 vg) << 2)); 1093 1094 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1095 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1096 1097 if (vg == 0) 1098 break; 1099 } 1100 *bit_chk &= tmp_bit_chk; 1101 } 1102 1103 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1108 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1109 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1110 return *bit_chk == param->read_correct_mask; 1111 } 1112 1113 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1114 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1115 { 1116 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1117 num_tries, bit_chk, 1); 1118 } 1119 1120 /* load up the patterns we are going to use during a read test */ 1121 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1122 uint32_t all_ranks) 1123 { 1124 uint32_t r; 1125 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1126 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1127 1128 debug("%s:%d\n", __func__, __LINE__); 1129 for (r = rank_bgn; r < rank_end; r++) { 1130 if (param->skip_ranks[r]) 1131 /* request to skip the rank */ 1132 continue; 1133 1134 /* set rank */ 1135 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1136 1137 /* Load up a constant bursts */ 1138 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1139 1140 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1141 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1142 1143 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1144 1145 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1146 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1147 1148 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1149 1150 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1151 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1152 1153 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1154 1155 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1156 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1157 1158 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1159 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1160 } 1161 1162 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1163 } 1164 1165 /* 1166 * try a read and see if it returns correct data back. has dummy reads 1167 * inserted into the mix used to align dqs enable. has more thorough checks 1168 * than the regular read test. 1169 */ 1170 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1171 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1172 uint32_t all_groups, uint32_t all_ranks) 1173 { 1174 uint32_t r, vg; 1175 uint32_t correct_mask_vg; 1176 uint32_t tmp_bit_chk; 1177 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1178 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1179 uint32_t addr; 1180 uint32_t base_rw_mgr; 1181 1182 *bit_chk = param->read_correct_mask; 1183 correct_mask_vg = param->read_correct_mask_vg; 1184 1185 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1186 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1187 1188 for (r = rank_bgn; r < rank_end; r++) { 1189 if (param->skip_ranks[r]) 1190 /* request to skip the rank */ 1191 continue; 1192 1193 /* set rank */ 1194 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1195 1196 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1197 1198 writel(RW_MGR_READ_B2B_WAIT1, 1199 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1200 1201 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1202 writel(RW_MGR_READ_B2B_WAIT2, 1203 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1204 1205 if (quick_read_mode) 1206 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1207 /* need at least two (1+1) reads to capture failures */ 1208 else if (all_groups) 1209 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1210 else 1211 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1212 1213 writel(RW_MGR_READ_B2B, 1214 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1215 if (all_groups) 1216 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1217 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1218 &sdr_rw_load_mgr_regs->load_cntr3); 1219 else 1220 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1221 1222 writel(RW_MGR_READ_B2B, 1223 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1224 1225 tmp_bit_chk = 0; 1226 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1227 /* reset the fifos to get pointers to known state */ 1228 writel(0, &phy_mgr_cmd->fifo_reset); 1229 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1230 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1231 1232 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1233 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1234 1235 if (all_groups) 1236 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1237 else 1238 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1239 1240 writel(RW_MGR_READ_B2B, addr + 1241 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1242 vg) << 2)); 1243 1244 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1245 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1246 1247 if (vg == 0) 1248 break; 1249 } 1250 *bit_chk &= tmp_bit_chk; 1251 } 1252 1253 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1254 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1255 1256 if (all_correct) { 1257 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1258 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1259 (%u == %u) => %lu", __func__, __LINE__, group, 1260 all_groups, *bit_chk, param->read_correct_mask, 1261 (long unsigned int)(*bit_chk == 1262 param->read_correct_mask)); 1263 return *bit_chk == param->read_correct_mask; 1264 } else { 1265 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1266 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1267 (%u != %lu) => %lu\n", __func__, __LINE__, 1268 group, all_groups, *bit_chk, (long unsigned int)0, 1269 (long unsigned int)(*bit_chk != 0x00)); 1270 return *bit_chk != 0x00; 1271 } 1272 } 1273 1274 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1275 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1276 uint32_t all_groups) 1277 { 1278 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1279 bit_chk, all_groups, 1); 1280 } 1281 1282 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1283 { 1284 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1285 (*v)++; 1286 } 1287 1288 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1289 { 1290 uint32_t i; 1291 1292 for (i = 0; i < VFIFO_SIZE-1; i++) 1293 rw_mgr_incr_vfifo(grp, v); 1294 } 1295 1296 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1297 { 1298 uint32_t v; 1299 uint32_t fail_cnt = 0; 1300 uint32_t test_status; 1301 1302 for (v = 0; v < VFIFO_SIZE; ) { 1303 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1304 __func__, __LINE__, v); 1305 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1306 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1307 if (!test_status) { 1308 fail_cnt++; 1309 1310 if (fail_cnt == 2) 1311 break; 1312 } 1313 1314 /* fiddle with FIFO */ 1315 rw_mgr_incr_vfifo(grp, &v); 1316 } 1317 1318 if (v >= VFIFO_SIZE) { 1319 /* no failing read found!! Something must have gone wrong */ 1320 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1321 __func__, __LINE__); 1322 return 0; 1323 } else { 1324 return v; 1325 } 1326 } 1327 1328 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1329 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1330 uint32_t *v, uint32_t *d, uint32_t *p, 1331 uint32_t *i, uint32_t *max_working_cnt) 1332 { 1333 uint32_t found_begin = 0; 1334 uint32_t tmp_delay = 0; 1335 uint32_t test_status; 1336 1337 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1338 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1339 *work_bgn = tmp_delay; 1340 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1341 1342 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1343 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1344 IO_DELAY_PER_OPA_TAP) { 1345 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1346 1347 test_status = 1348 rw_mgr_mem_calibrate_read_test_all_ranks 1349 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1350 1351 if (test_status) { 1352 *max_working_cnt = 1; 1353 found_begin = 1; 1354 break; 1355 } 1356 } 1357 1358 if (found_begin) 1359 break; 1360 1361 if (*p > IO_DQS_EN_PHASE_MAX) 1362 /* fiddle with FIFO */ 1363 rw_mgr_incr_vfifo(*grp, v); 1364 } 1365 1366 if (found_begin) 1367 break; 1368 } 1369 1370 if (*i >= VFIFO_SIZE) { 1371 /* cannot find working solution */ 1372 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1373 ptap/dtap\n", __func__, __LINE__); 1374 return 0; 1375 } else { 1376 return 1; 1377 } 1378 } 1379 1380 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1381 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1382 uint32_t *p, uint32_t *max_working_cnt) 1383 { 1384 uint32_t found_begin = 0; 1385 uint32_t tmp_delay; 1386 1387 /* Special case code for backing up a phase */ 1388 if (*p == 0) { 1389 *p = IO_DQS_EN_PHASE_MAX; 1390 rw_mgr_decr_vfifo(*grp, v); 1391 } else { 1392 (*p)--; 1393 } 1394 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1395 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1396 1397 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1398 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1399 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1400 1401 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1402 PASS_ONE_BIT, 1403 bit_chk, 0)) { 1404 found_begin = 1; 1405 *work_bgn = tmp_delay; 1406 break; 1407 } 1408 } 1409 1410 /* We have found a working dtap before the ptap found above */ 1411 if (found_begin == 1) 1412 (*max_working_cnt)++; 1413 1414 /* 1415 * Restore VFIFO to old state before we decremented it 1416 * (if needed). 1417 */ 1418 (*p)++; 1419 if (*p > IO_DQS_EN_PHASE_MAX) { 1420 *p = 0; 1421 rw_mgr_incr_vfifo(*grp, v); 1422 } 1423 1424 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1425 } 1426 1427 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1428 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1429 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1430 uint32_t *work_end) 1431 { 1432 uint32_t found_end = 0; 1433 1434 (*p)++; 1435 *work_end += IO_DELAY_PER_OPA_TAP; 1436 if (*p > IO_DQS_EN_PHASE_MAX) { 1437 /* fiddle with FIFO */ 1438 *p = 0; 1439 rw_mgr_incr_vfifo(*grp, v); 1440 } 1441 1442 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1443 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1444 += IO_DELAY_PER_OPA_TAP) { 1445 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1446 1447 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1448 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1449 found_end = 1; 1450 break; 1451 } else { 1452 (*max_working_cnt)++; 1453 } 1454 } 1455 1456 if (found_end) 1457 break; 1458 1459 if (*p > IO_DQS_EN_PHASE_MAX) { 1460 /* fiddle with FIFO */ 1461 rw_mgr_incr_vfifo(*grp, v); 1462 *p = 0; 1463 } 1464 } 1465 1466 if (*i >= VFIFO_SIZE + 1) { 1467 /* cannot see edge of failing read */ 1468 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1469 failed\n", __func__, __LINE__); 1470 return 0; 1471 } else { 1472 return 1; 1473 } 1474 } 1475 1476 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1477 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1478 uint32_t *p, uint32_t *work_mid, 1479 uint32_t *work_end) 1480 { 1481 int i; 1482 int tmp_delay = 0; 1483 1484 *work_mid = (*work_bgn + *work_end) / 2; 1485 1486 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1487 *work_bgn, *work_end, *work_mid); 1488 /* Get the middle delay to be less than a VFIFO delay */ 1489 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1490 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1491 ; 1492 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1493 while (*work_mid > tmp_delay) 1494 *work_mid -= tmp_delay; 1495 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1496 1497 tmp_delay = 0; 1498 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1499 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1500 ; 1501 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1502 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1503 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1504 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1505 ; 1506 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1507 1508 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1509 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1510 1511 /* 1512 * push vfifo until we can successfully calibrate. We can do this 1513 * because the largest possible margin in 1 VFIFO cycle. 1514 */ 1515 for (i = 0; i < VFIFO_SIZE; i++) { 1516 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1517 *v); 1518 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1519 PASS_ONE_BIT, 1520 bit_chk, 0)) { 1521 break; 1522 } 1523 1524 /* fiddle with FIFO */ 1525 rw_mgr_incr_vfifo(*grp, v); 1526 } 1527 1528 if (i >= VFIFO_SIZE) { 1529 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1530 failed\n", __func__, __LINE__); 1531 return 0; 1532 } else { 1533 return 1; 1534 } 1535 } 1536 1537 /* find a good dqs enable to use */ 1538 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1539 { 1540 uint32_t v, d, p, i; 1541 uint32_t max_working_cnt; 1542 uint32_t bit_chk; 1543 uint32_t dtaps_per_ptap; 1544 uint32_t work_bgn, work_mid, work_end; 1545 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1546 1547 debug("%s:%d %u\n", __func__, __LINE__, grp); 1548 1549 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1550 1551 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1552 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1553 1554 /* ************************************************************** */ 1555 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1556 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1557 1558 /* ********************************************************* */ 1559 /* * Step 1 : First push vfifo until we get a failing read * */ 1560 v = find_vfifo_read(grp, &bit_chk); 1561 1562 max_working_cnt = 0; 1563 1564 /* ******************************************************** */ 1565 /* * step 2: find first working phase, increment in ptaps * */ 1566 work_bgn = 0; 1567 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1568 &p, &i, &max_working_cnt) == 0) 1569 return 0; 1570 1571 work_end = work_bgn; 1572 1573 /* 1574 * If d is 0 then the working window covers a phase tap and 1575 * we can follow the old procedure otherwise, we've found the beginning, 1576 * and we need to increment the dtaps until we find the end. 1577 */ 1578 if (d == 0) { 1579 /* ********************************************************* */ 1580 /* * step 3a: if we have room, back off by one and 1581 increment in dtaps * */ 1582 1583 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1584 &max_working_cnt); 1585 1586 /* ********************************************************* */ 1587 /* * step 4a: go forward from working phase to non working 1588 phase, increment in ptaps * */ 1589 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1590 &i, &max_working_cnt, &work_end) == 0) 1591 return 0; 1592 1593 /* ********************************************************* */ 1594 /* * step 5a: back off one from last, increment in dtaps * */ 1595 1596 /* Special case code for backing up a phase */ 1597 if (p == 0) { 1598 p = IO_DQS_EN_PHASE_MAX; 1599 rw_mgr_decr_vfifo(grp, &v); 1600 } else { 1601 p = p - 1; 1602 } 1603 1604 work_end -= IO_DELAY_PER_OPA_TAP; 1605 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1606 1607 /* * The actual increment of dtaps is done outside of 1608 the if/else loop to share code */ 1609 d = 0; 1610 1611 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1612 vfifo=%u ptap=%u\n", __func__, __LINE__, 1613 v, p); 1614 } else { 1615 /* ******************************************************* */ 1616 /* * step 3-5b: Find the right edge of the window using 1617 delay taps * */ 1618 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1619 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1620 v, p, d, work_bgn); 1621 1622 work_end = work_bgn; 1623 1624 /* * The actual increment of dtaps is done outside of the 1625 if/else loop to share code */ 1626 1627 /* Only here to counterbalance a subtract later on which is 1628 not needed if this branch of the algorithm is taken */ 1629 max_working_cnt++; 1630 } 1631 1632 /* The dtap increment to find the failing edge is done here */ 1633 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1634 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1635 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1636 end-2: dtap=%u\n", __func__, __LINE__, d); 1637 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1638 1639 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1640 PASS_ONE_BIT, 1641 &bit_chk, 0)) { 1642 break; 1643 } 1644 } 1645 1646 /* Go back to working dtap */ 1647 if (d != 0) 1648 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1649 1650 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1651 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1652 v, p, d-1, work_end); 1653 1654 if (work_end < work_bgn) { 1655 /* nil range */ 1656 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1657 failed\n", __func__, __LINE__); 1658 return 0; 1659 } 1660 1661 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1662 __func__, __LINE__, work_bgn, work_end); 1663 1664 /* *************************************************************** */ 1665 /* 1666 * * We need to calculate the number of dtaps that equal a ptap 1667 * * To do that we'll back up a ptap and re-find the edge of the 1668 * * window using dtaps 1669 */ 1670 1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1672 for tracking\n", __func__, __LINE__); 1673 1674 /* Special case code for backing up a phase */ 1675 if (p == 0) { 1676 p = IO_DQS_EN_PHASE_MAX; 1677 rw_mgr_decr_vfifo(grp, &v); 1678 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1679 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1680 v, p); 1681 } else { 1682 p = p - 1; 1683 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1684 phase only: v=%u p=%u", __func__, __LINE__, 1685 v, p); 1686 } 1687 1688 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1689 1690 /* 1691 * Increase dtap until we first see a passing read (in case the 1692 * window is smaller than a ptap), 1693 * and then a failing read to mark the edge of the window again 1694 */ 1695 1696 /* Find a passing read */ 1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1698 __func__, __LINE__); 1699 found_passing_read = 0; 1700 found_failing_read = 0; 1701 initial_failing_dtap = d; 1702 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1703 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1704 read d=%u\n", __func__, __LINE__, d); 1705 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1706 1707 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1708 PASS_ONE_BIT, 1709 &bit_chk, 0)) { 1710 found_passing_read = 1; 1711 break; 1712 } 1713 } 1714 1715 if (found_passing_read) { 1716 /* Find a failing read */ 1717 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1718 read\n", __func__, __LINE__); 1719 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1720 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1721 testing read d=%u\n", __func__, __LINE__, d); 1722 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1723 1724 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1725 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1726 found_failing_read = 1; 1727 break; 1728 } 1729 } 1730 } else { 1731 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1732 calculate dtaps", __func__, __LINE__); 1733 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1734 } 1735 1736 /* 1737 * The dynamically calculated dtaps_per_ptap is only valid if we 1738 * found a passing/failing read. If we didn't, it means d hit the max 1739 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1740 * statically calculated value. 1741 */ 1742 if (found_passing_read && found_failing_read) 1743 dtaps_per_ptap = d - initial_failing_dtap; 1744 1745 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1746 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1747 - %u = %u", __func__, __LINE__, d, 1748 initial_failing_dtap, dtaps_per_ptap); 1749 1750 /* ******************************************** */ 1751 /* * step 6: Find the centre of the window * */ 1752 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1753 &work_mid, &work_end) == 0) 1754 return 0; 1755 1756 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1757 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1758 v, p-1, d); 1759 return 1; 1760 } 1761 1762 /* 1763 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1764 * dq_in_delay values 1765 */ 1766 static uint32_t 1767 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1768 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1769 { 1770 uint32_t found; 1771 uint32_t i; 1772 uint32_t p; 1773 uint32_t d; 1774 uint32_t r; 1775 1776 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1777 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1778 /* we start at zero, so have one less dq to devide among */ 1779 1780 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1781 test_bgn); 1782 1783 /* try different dq_in_delays since the dq path is shorter than dqs */ 1784 1785 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1786 r += NUM_RANKS_PER_SHADOW_REG) { 1787 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1788 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1789 vfifo_find_dqs_", __func__, __LINE__); 1790 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1791 write_group, read_group); 1792 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1793 scc_mgr_set_dq_in_delay(p, d); 1794 scc_mgr_load_dq(p); 1795 } 1796 writel(0, &sdr_scc_mgr->update); 1797 } 1798 1799 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1800 1801 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1802 en_phase_sweep_dq", __func__, __LINE__); 1803 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1804 chain to zero\n", write_group, read_group, found); 1805 1806 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1807 r += NUM_RANKS_PER_SHADOW_REG) { 1808 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1809 i++, p++) { 1810 scc_mgr_set_dq_in_delay(p, 0); 1811 scc_mgr_load_dq(p); 1812 } 1813 writel(0, &sdr_scc_mgr->update); 1814 } 1815 1816 return found; 1817 } 1818 1819 /* per-bit deskew DQ and center */ 1820 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1821 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1822 uint32_t use_read_test, uint32_t update_fom) 1823 { 1824 uint32_t i, p, d, min_index; 1825 /* 1826 * Store these as signed since there are comparisons with 1827 * signed numbers. 1828 */ 1829 uint32_t bit_chk; 1830 uint32_t sticky_bit_chk; 1831 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1832 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1833 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1834 int32_t mid; 1835 int32_t orig_mid_min, mid_min; 1836 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1837 final_dqs_en; 1838 int32_t dq_margin, dqs_margin; 1839 uint32_t stop; 1840 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1841 uint32_t addr; 1842 1843 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1844 1845 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1846 start_dqs = readl(addr + (read_group << 2)); 1847 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1848 start_dqs_en = readl(addr + ((read_group << 2) 1849 - IO_DQS_EN_DELAY_OFFSET)); 1850 1851 /* set the left and right edge of each bit to an illegal value */ 1852 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1853 sticky_bit_chk = 0; 1854 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1855 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1856 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1857 } 1858 1859 /* Search for the left edge of the window for each bit */ 1860 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1861 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1862 1863 writel(0, &sdr_scc_mgr->update); 1864 1865 /* 1866 * Stop searching when the read test doesn't pass AND when 1867 * we've seen a passing read on every bit. 1868 */ 1869 if (use_read_test) { 1870 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1871 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1872 &bit_chk, 0, 0); 1873 } else { 1874 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1875 0, PASS_ONE_BIT, 1876 &bit_chk, 0); 1877 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1878 (read_group - (write_group * 1879 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1880 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1881 stop = (bit_chk == 0); 1882 } 1883 sticky_bit_chk = sticky_bit_chk | bit_chk; 1884 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1885 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1886 && %u", __func__, __LINE__, d, 1887 sticky_bit_chk, 1888 param->read_correct_mask, stop); 1889 1890 if (stop == 1) { 1891 break; 1892 } else { 1893 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1894 if (bit_chk & 1) { 1895 /* Remember a passing test as the 1896 left_edge */ 1897 left_edge[i] = d; 1898 } else { 1899 /* If a left edge has not been seen yet, 1900 then a future passing test will mark 1901 this edge as the right edge */ 1902 if (left_edge[i] == 1903 IO_IO_IN_DELAY_MAX + 1) { 1904 right_edge[i] = -(d + 1); 1905 } 1906 } 1907 bit_chk = bit_chk >> 1; 1908 } 1909 } 1910 } 1911 1912 /* Reset DQ delay chains to 0 */ 1913 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1914 sticky_bit_chk = 0; 1915 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1916 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1917 %d right_edge[%u]: %d\n", __func__, __LINE__, 1918 i, left_edge[i], i, right_edge[i]); 1919 1920 /* 1921 * Check for cases where we haven't found the left edge, 1922 * which makes our assignment of the the right edge invalid. 1923 * Reset it to the illegal value. 1924 */ 1925 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1926 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1927 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1928 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1929 right_edge[%u]: %d\n", __func__, __LINE__, 1930 i, right_edge[i]); 1931 } 1932 1933 /* 1934 * Reset sticky bit (except for bits where we have seen 1935 * both the left and right edge). 1936 */ 1937 sticky_bit_chk = sticky_bit_chk << 1; 1938 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1939 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1940 sticky_bit_chk = sticky_bit_chk | 1; 1941 } 1942 1943 if (i == 0) 1944 break; 1945 } 1946 1947 /* Search for the right edge of the window for each bit */ 1948 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1949 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1950 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1951 uint32_t delay = d + start_dqs_en; 1952 if (delay > IO_DQS_EN_DELAY_MAX) 1953 delay = IO_DQS_EN_DELAY_MAX; 1954 scc_mgr_set_dqs_en_delay(read_group, delay); 1955 } 1956 scc_mgr_load_dqs(read_group); 1957 1958 writel(0, &sdr_scc_mgr->update); 1959 1960 /* 1961 * Stop searching when the read test doesn't pass AND when 1962 * we've seen a passing read on every bit. 1963 */ 1964 if (use_read_test) { 1965 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1966 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1967 &bit_chk, 0, 0); 1968 } else { 1969 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1970 0, PASS_ONE_BIT, 1971 &bit_chk, 0); 1972 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1973 (read_group - (write_group * 1974 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1975 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1976 stop = (bit_chk == 0); 1977 } 1978 sticky_bit_chk = sticky_bit_chk | bit_chk; 1979 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1980 1981 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1982 %u && %u", __func__, __LINE__, d, 1983 sticky_bit_chk, param->read_correct_mask, stop); 1984 1985 if (stop == 1) { 1986 break; 1987 } else { 1988 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1989 if (bit_chk & 1) { 1990 /* Remember a passing test as 1991 the right_edge */ 1992 right_edge[i] = d; 1993 } else { 1994 if (d != 0) { 1995 /* If a right edge has not been 1996 seen yet, then a future passing 1997 test will mark this edge as the 1998 left edge */ 1999 if (right_edge[i] == 2000 IO_IO_IN_DELAY_MAX + 1) { 2001 left_edge[i] = -(d + 1); 2002 } 2003 } else { 2004 /* d = 0 failed, but it passed 2005 when testing the left edge, 2006 so it must be marginal, 2007 set it to -1 */ 2008 if (right_edge[i] == 2009 IO_IO_IN_DELAY_MAX + 1 && 2010 left_edge[i] != 2011 IO_IO_IN_DELAY_MAX 2012 + 1) { 2013 right_edge[i] = -1; 2014 } 2015 /* If a right edge has not been 2016 seen yet, then a future passing 2017 test will mark this edge as the 2018 left edge */ 2019 else if (right_edge[i] == 2020 IO_IO_IN_DELAY_MAX + 2021 1) { 2022 left_edge[i] = -(d + 1); 2023 } 2024 } 2025 } 2026 2027 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2028 d=%u]: ", __func__, __LINE__, d); 2029 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2030 (int)(bit_chk & 1), i, left_edge[i]); 2031 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2032 right_edge[i]); 2033 bit_chk = bit_chk >> 1; 2034 } 2035 } 2036 } 2037 2038 /* Check that all bits have a window */ 2039 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2040 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2041 %d right_edge[%u]: %d", __func__, __LINE__, 2042 i, left_edge[i], i, right_edge[i]); 2043 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2044 == IO_IO_IN_DELAY_MAX + 1)) { 2045 /* 2046 * Restore delay chain settings before letting the loop 2047 * in rw_mgr_mem_calibrate_vfifo to retry different 2048 * dqs/ck relationships. 2049 */ 2050 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2051 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2052 scc_mgr_set_dqs_en_delay(read_group, 2053 start_dqs_en); 2054 } 2055 scc_mgr_load_dqs(read_group); 2056 writel(0, &sdr_scc_mgr->update); 2057 2058 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2059 find edge [%u]: %d %d", __func__, __LINE__, 2060 i, left_edge[i], right_edge[i]); 2061 if (use_read_test) { 2062 set_failing_group_stage(read_group * 2063 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2064 CAL_STAGE_VFIFO, 2065 CAL_SUBSTAGE_VFIFO_CENTER); 2066 } else { 2067 set_failing_group_stage(read_group * 2068 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2069 CAL_STAGE_VFIFO_AFTER_WRITES, 2070 CAL_SUBSTAGE_VFIFO_CENTER); 2071 } 2072 return 0; 2073 } 2074 } 2075 2076 /* Find middle of window for each DQ bit */ 2077 mid_min = left_edge[0] - right_edge[0]; 2078 min_index = 0; 2079 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2080 mid = left_edge[i] - right_edge[i]; 2081 if (mid < mid_min) { 2082 mid_min = mid; 2083 min_index = i; 2084 } 2085 } 2086 2087 /* 2088 * -mid_min/2 represents the amount that we need to move DQS. 2089 * If mid_min is odd and positive we'll need to add one to 2090 * make sure the rounding in further calculations is correct 2091 * (always bias to the right), so just add 1 for all positive values. 2092 */ 2093 if (mid_min > 0) 2094 mid_min++; 2095 2096 mid_min = mid_min / 2; 2097 2098 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2099 __func__, __LINE__, mid_min, min_index); 2100 2101 /* Determine the amount we can change DQS (which is -mid_min) */ 2102 orig_mid_min = mid_min; 2103 new_dqs = start_dqs - mid_min; 2104 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2105 new_dqs = IO_DQS_IN_DELAY_MAX; 2106 else if (new_dqs < 0) 2107 new_dqs = 0; 2108 2109 mid_min = start_dqs - new_dqs; 2110 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2111 mid_min, new_dqs); 2112 2113 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2114 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2115 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2116 else if (start_dqs_en - mid_min < 0) 2117 mid_min += start_dqs_en - mid_min; 2118 } 2119 new_dqs = start_dqs - mid_min; 2120 2121 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2122 new_dqs=%d mid_min=%d\n", start_dqs, 2123 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2124 new_dqs, mid_min); 2125 2126 /* Initialize data for export structures */ 2127 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2128 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2129 2130 /* add delay to bring centre of all DQ windows to the same "level" */ 2131 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2132 /* Use values before divide by 2 to reduce round off error */ 2133 shift_dq = (left_edge[i] - right_edge[i] - 2134 (left_edge[min_index] - right_edge[min_index]))/2 + 2135 (orig_mid_min - mid_min); 2136 2137 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2138 shift_dq[%u]=%d\n", i, shift_dq); 2139 2140 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2141 temp_dq_in_delay1 = readl(addr + (p << 2)); 2142 temp_dq_in_delay2 = readl(addr + (i << 2)); 2143 2144 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2145 (int32_t)IO_IO_IN_DELAY_MAX) { 2146 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2147 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2148 shift_dq = -(int32_t)temp_dq_in_delay1; 2149 } 2150 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2151 shift_dq[%u]=%d\n", i, shift_dq); 2152 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2153 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2154 scc_mgr_load_dq(p); 2155 2156 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2157 left_edge[i] - shift_dq + (-mid_min), 2158 right_edge[i] + shift_dq - (-mid_min)); 2159 /* To determine values for export structures */ 2160 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2161 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2162 2163 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2164 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2165 } 2166 2167 final_dqs = new_dqs; 2168 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2169 final_dqs_en = start_dqs_en - mid_min; 2170 2171 /* Move DQS-en */ 2172 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2173 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2174 scc_mgr_load_dqs(read_group); 2175 } 2176 2177 /* Move DQS */ 2178 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2179 scc_mgr_load_dqs(read_group); 2180 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2181 dqs_margin=%d", __func__, __LINE__, 2182 dq_margin, dqs_margin); 2183 2184 /* 2185 * Do not remove this line as it makes sure all of our decisions 2186 * have been applied. Apply the update bit. 2187 */ 2188 writel(0, &sdr_scc_mgr->update); 2189 2190 return (dq_margin >= 0) && (dqs_margin >= 0); 2191 } 2192 2193 /* 2194 * calibrate the read valid prediction FIFO. 2195 * 2196 * - read valid prediction will consist of finding a good DQS enable phase, 2197 * DQS enable delay, DQS input phase, and DQS input delay. 2198 * - we also do a per-bit deskew on the DQ lines. 2199 */ 2200 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2201 uint32_t test_bgn) 2202 { 2203 uint32_t p, d, rank_bgn, sr; 2204 uint32_t dtaps_per_ptap; 2205 uint32_t tmp_delay; 2206 uint32_t bit_chk; 2207 uint32_t grp_calibrated; 2208 uint32_t write_group, write_test_bgn; 2209 uint32_t failed_substage; 2210 2211 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2212 2213 /* update info for sims */ 2214 reg_file_set_stage(CAL_STAGE_VFIFO); 2215 2216 write_group = read_group; 2217 write_test_bgn = test_bgn; 2218 2219 /* USER Determine number of delay taps for each phase tap */ 2220 dtaps_per_ptap = 0; 2221 tmp_delay = 0; 2222 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2223 dtaps_per_ptap++; 2224 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2225 } 2226 dtaps_per_ptap--; 2227 tmp_delay = 0; 2228 2229 /* update info for sims */ 2230 reg_file_set_group(read_group); 2231 2232 grp_calibrated = 0; 2233 2234 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2235 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2236 2237 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2238 /* 2239 * In RLDRAMX we may be messing the delay of pins in 2240 * the same write group but outside of the current read 2241 * the group, but that's ok because we haven't 2242 * calibrated output side yet. 2243 */ 2244 if (d > 0) { 2245 scc_mgr_apply_group_all_out_delay_add_all_ranks 2246 (write_group, write_test_bgn, d); 2247 } 2248 2249 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2250 p++) { 2251 /* set a particular dqdqs phase */ 2252 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2253 2254 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2255 p=%u d=%u\n", __func__, __LINE__, 2256 read_group, p, d); 2257 2258 /* 2259 * Load up the patterns used by read calibration 2260 * using current DQDQS phase. 2261 */ 2262 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2263 if (!(gbl->phy_debug_mode_flags & 2264 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2265 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2266 (read_group, 1, &bit_chk)) { 2267 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2268 __func__, __LINE__); 2269 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2270 read_group, p, d); 2271 break; 2272 } 2273 } 2274 2275 /* case:56390 */ 2276 grp_calibrated = 1; 2277 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2278 (write_group, read_group, test_bgn)) { 2279 /* 2280 * USER Read per-bit deskew can be done on a 2281 * per shadow register basis. 2282 */ 2283 for (rank_bgn = 0, sr = 0; 2284 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2285 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2286 ++sr) { 2287 /* 2288 * Determine if this set of ranks 2289 * should be skipped entirely. 2290 */ 2291 if (!param->skip_shadow_regs[sr]) { 2292 /* 2293 * If doing read after write 2294 * calibration, do not update 2295 * FOM, now - do it then. 2296 */ 2297 if (!rw_mgr_mem_calibrate_vfifo_center 2298 (rank_bgn, write_group, 2299 read_group, test_bgn, 1, 0)) { 2300 grp_calibrated = 0; 2301 failed_substage = 2302 CAL_SUBSTAGE_VFIFO_CENTER; 2303 } 2304 } 2305 } 2306 } else { 2307 grp_calibrated = 0; 2308 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2309 } 2310 } 2311 } 2312 2313 if (grp_calibrated == 0) { 2314 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2315 failed_substage); 2316 return 0; 2317 } 2318 2319 /* 2320 * Reset the delay chains back to zero if they have moved > 1 2321 * (check for > 1 because loop will increase d even when pass in 2322 * first case). 2323 */ 2324 if (d > 2) 2325 scc_mgr_zero_group(write_group, 1); 2326 2327 return 1; 2328 } 2329 2330 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2331 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2332 uint32_t test_bgn) 2333 { 2334 uint32_t rank_bgn, sr; 2335 uint32_t grp_calibrated; 2336 uint32_t write_group; 2337 2338 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2339 2340 /* update info for sims */ 2341 2342 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2343 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2344 2345 write_group = read_group; 2346 2347 /* update info for sims */ 2348 reg_file_set_group(read_group); 2349 2350 grp_calibrated = 1; 2351 /* Read per-bit deskew can be done on a per shadow register basis */ 2352 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2353 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2354 /* Determine if this set of ranks should be skipped entirely */ 2355 if (!param->skip_shadow_regs[sr]) { 2356 /* This is the last calibration round, update FOM here */ 2357 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2358 write_group, 2359 read_group, 2360 test_bgn, 0, 2361 1)) { 2362 grp_calibrated = 0; 2363 } 2364 } 2365 } 2366 2367 2368 if (grp_calibrated == 0) { 2369 set_failing_group_stage(write_group, 2370 CAL_STAGE_VFIFO_AFTER_WRITES, 2371 CAL_SUBSTAGE_VFIFO_CENTER); 2372 return 0; 2373 } 2374 2375 return 1; 2376 } 2377 2378 /* Calibrate LFIFO to find smallest read latency */ 2379 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2380 { 2381 uint32_t found_one; 2382 uint32_t bit_chk; 2383 2384 debug("%s:%d\n", __func__, __LINE__); 2385 2386 /* update info for sims */ 2387 reg_file_set_stage(CAL_STAGE_LFIFO); 2388 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2389 2390 /* Load up the patterns used by read calibration for all ranks */ 2391 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2392 found_one = 0; 2393 2394 do { 2395 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2396 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2397 __func__, __LINE__, gbl->curr_read_lat); 2398 2399 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2400 NUM_READ_TESTS, 2401 PASS_ALL_BITS, 2402 &bit_chk, 1)) { 2403 break; 2404 } 2405 2406 found_one = 1; 2407 /* reduce read latency and see if things are working */ 2408 /* correctly */ 2409 gbl->curr_read_lat--; 2410 } while (gbl->curr_read_lat > 0); 2411 2412 /* reset the fifos to get pointers to known state */ 2413 2414 writel(0, &phy_mgr_cmd->fifo_reset); 2415 2416 if (found_one) { 2417 /* add a fudge factor to the read latency that was determined */ 2418 gbl->curr_read_lat += 2; 2419 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2420 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2421 read_lat=%u\n", __func__, __LINE__, 2422 gbl->curr_read_lat); 2423 return 1; 2424 } else { 2425 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2426 CAL_SUBSTAGE_READ_LATENCY); 2427 2428 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2429 read_lat=%u\n", __func__, __LINE__, 2430 gbl->curr_read_lat); 2431 return 0; 2432 } 2433 } 2434 2435 /* 2436 * issue write test command. 2437 * two variants are provided. one that just tests a write pattern and 2438 * another that tests datamask functionality. 2439 */ 2440 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2441 uint32_t test_dm) 2442 { 2443 uint32_t mcc_instruction; 2444 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2445 ENABLE_SUPER_QUICK_CALIBRATION); 2446 uint32_t rw_wl_nop_cycles; 2447 uint32_t addr; 2448 2449 /* 2450 * Set counter and jump addresses for the right 2451 * number of NOP cycles. 2452 * The number of supported NOP cycles can range from -1 to infinity 2453 * Three different cases are handled: 2454 * 2455 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2456 * mechanism will be used to insert the right number of NOPs 2457 * 2458 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2459 * issuing the write command will jump straight to the 2460 * micro-instruction that turns on DQS (for DDRx), or outputs write 2461 * data (for RLD), skipping 2462 * the NOP micro-instruction all together 2463 * 2464 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2465 * turned on in the same micro-instruction that issues the write 2466 * command. Then we need 2467 * to directly jump to the micro-instruction that sends out the data 2468 * 2469 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2470 * (2 and 3). One jump-counter (0) is used to perform multiple 2471 * write-read operations. 2472 * one counter left to issue this command in "multiple-group" mode 2473 */ 2474 2475 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2476 2477 if (rw_wl_nop_cycles == -1) { 2478 /* 2479 * CNTR 2 - We want to execute the special write operation that 2480 * turns on DQS right away and then skip directly to the 2481 * instruction that sends out the data. We set the counter to a 2482 * large number so that the jump is always taken. 2483 */ 2484 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2485 2486 /* CNTR 3 - Not used */ 2487 if (test_dm) { 2488 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2489 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2490 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2491 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2492 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2493 } else { 2494 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2495 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2496 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2497 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2498 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2499 } 2500 } else if (rw_wl_nop_cycles == 0) { 2501 /* 2502 * CNTR 2 - We want to skip the NOP operation and go straight 2503 * to the DQS enable instruction. We set the counter to a large 2504 * number so that the jump is always taken. 2505 */ 2506 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2507 2508 /* CNTR 3 - Not used */ 2509 if (test_dm) { 2510 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2511 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2512 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2513 } else { 2514 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2515 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2516 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2517 } 2518 } else { 2519 /* 2520 * CNTR 2 - In this case we want to execute the next instruction 2521 * and NOT take the jump. So we set the counter to 0. The jump 2522 * address doesn't count. 2523 */ 2524 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2525 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2526 2527 /* 2528 * CNTR 3 - Set the nop counter to the number of cycles we 2529 * need to loop for, minus 1. 2530 */ 2531 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2532 if (test_dm) { 2533 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2534 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2535 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2536 } else { 2537 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2538 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2539 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2540 } 2541 } 2542 2543 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2544 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2545 2546 if (quick_write_mode) 2547 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2548 else 2549 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2550 2551 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2552 2553 /* 2554 * CNTR 1 - This is used to ensure enough time elapses 2555 * for read data to come back. 2556 */ 2557 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2558 2559 if (test_dm) { 2560 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2562 } else { 2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2564 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2565 } 2566 2567 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2568 writel(mcc_instruction, addr + (group << 2)); 2569 } 2570 2571 /* Test writes, can check for a single bit pass or multiple bit pass */ 2572 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2573 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2574 uint32_t *bit_chk, uint32_t all_ranks) 2575 { 2576 uint32_t r; 2577 uint32_t correct_mask_vg; 2578 uint32_t tmp_bit_chk; 2579 uint32_t vg; 2580 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2581 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2582 uint32_t addr_rw_mgr; 2583 uint32_t base_rw_mgr; 2584 2585 *bit_chk = param->write_correct_mask; 2586 correct_mask_vg = param->write_correct_mask_vg; 2587 2588 for (r = rank_bgn; r < rank_end; r++) { 2589 if (param->skip_ranks[r]) { 2590 /* request to skip the rank */ 2591 continue; 2592 } 2593 2594 /* set rank */ 2595 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2596 2597 tmp_bit_chk = 0; 2598 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2599 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2600 /* reset the fifos to get pointers to known state */ 2601 writel(0, &phy_mgr_cmd->fifo_reset); 2602 2603 tmp_bit_chk = tmp_bit_chk << 2604 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2605 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2606 rw_mgr_mem_calibrate_write_test_issue(write_group * 2607 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2608 use_dm); 2609 2610 base_rw_mgr = readl(addr_rw_mgr); 2611 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2612 if (vg == 0) 2613 break; 2614 } 2615 *bit_chk &= tmp_bit_chk; 2616 } 2617 2618 if (all_correct) { 2619 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2620 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2621 %u => %lu", write_group, use_dm, 2622 *bit_chk, param->write_correct_mask, 2623 (long unsigned int)(*bit_chk == 2624 param->write_correct_mask)); 2625 return *bit_chk == param->write_correct_mask; 2626 } else { 2627 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2628 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2629 write_group, use_dm, *bit_chk); 2630 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2631 (long unsigned int)(*bit_chk != 0)); 2632 return *bit_chk != 0x00; 2633 } 2634 } 2635 2636 /* 2637 * center all windows. do per-bit-deskew to possibly increase size of 2638 * certain windows. 2639 */ 2640 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2641 uint32_t write_group, uint32_t test_bgn) 2642 { 2643 uint32_t i, p, min_index; 2644 int32_t d; 2645 /* 2646 * Store these as signed since there are comparisons with 2647 * signed numbers. 2648 */ 2649 uint32_t bit_chk; 2650 uint32_t sticky_bit_chk; 2651 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2652 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2653 int32_t mid; 2654 int32_t mid_min, orig_mid_min; 2655 int32_t new_dqs, start_dqs, shift_dq; 2656 int32_t dq_margin, dqs_margin, dm_margin; 2657 uint32_t stop; 2658 uint32_t temp_dq_out1_delay; 2659 uint32_t addr; 2660 2661 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2662 2663 dm_margin = 0; 2664 2665 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2666 start_dqs = readl(addr + 2667 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2668 2669 /* per-bit deskew */ 2670 2671 /* 2672 * set the left and right edge of each bit to an illegal value 2673 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2674 */ 2675 sticky_bit_chk = 0; 2676 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2677 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2678 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2679 } 2680 2681 /* Search for the left edge of the window for each bit */ 2682 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2683 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2684 2685 writel(0, &sdr_scc_mgr->update); 2686 2687 /* 2688 * Stop searching when the read test doesn't pass AND when 2689 * we've seen a passing read on every bit. 2690 */ 2691 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2692 0, PASS_ONE_BIT, &bit_chk, 0); 2693 sticky_bit_chk = sticky_bit_chk | bit_chk; 2694 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2695 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2696 == %u && %u [bit_chk= %u ]\n", 2697 d, sticky_bit_chk, param->write_correct_mask, 2698 stop, bit_chk); 2699 2700 if (stop == 1) { 2701 break; 2702 } else { 2703 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2704 if (bit_chk & 1) { 2705 /* 2706 * Remember a passing test as the 2707 * left_edge. 2708 */ 2709 left_edge[i] = d; 2710 } else { 2711 /* 2712 * If a left edge has not been seen 2713 * yet, then a future passing test will 2714 * mark this edge as the right edge. 2715 */ 2716 if (left_edge[i] == 2717 IO_IO_OUT1_DELAY_MAX + 1) { 2718 right_edge[i] = -(d + 1); 2719 } 2720 } 2721 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2722 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2723 (int)(bit_chk & 1), i, left_edge[i]); 2724 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2725 right_edge[i]); 2726 bit_chk = bit_chk >> 1; 2727 } 2728 } 2729 } 2730 2731 /* Reset DQ delay chains to 0 */ 2732 scc_mgr_apply_group_dq_out1_delay(0); 2733 sticky_bit_chk = 0; 2734 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2735 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2736 %d right_edge[%u]: %d\n", __func__, __LINE__, 2737 i, left_edge[i], i, right_edge[i]); 2738 2739 /* 2740 * Check for cases where we haven't found the left edge, 2741 * which makes our assignment of the the right edge invalid. 2742 * Reset it to the illegal value. 2743 */ 2744 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2745 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2746 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2747 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2748 right_edge[%u]: %d\n", __func__, __LINE__, 2749 i, right_edge[i]); 2750 } 2751 2752 /* 2753 * Reset sticky bit (except for bits where we have 2754 * seen the left edge). 2755 */ 2756 sticky_bit_chk = sticky_bit_chk << 1; 2757 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2758 sticky_bit_chk = sticky_bit_chk | 1; 2759 2760 if (i == 0) 2761 break; 2762 } 2763 2764 /* Search for the right edge of the window for each bit */ 2765 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2766 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2767 d + start_dqs); 2768 2769 writel(0, &sdr_scc_mgr->update); 2770 2771 /* 2772 * Stop searching when the read test doesn't pass AND when 2773 * we've seen a passing read on every bit. 2774 */ 2775 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2776 0, PASS_ONE_BIT, &bit_chk, 0); 2777 2778 sticky_bit_chk = sticky_bit_chk | bit_chk; 2779 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2780 2781 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2782 %u && %u\n", d, sticky_bit_chk, 2783 param->write_correct_mask, stop); 2784 2785 if (stop == 1) { 2786 if (d == 0) { 2787 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2788 i++) { 2789 /* d = 0 failed, but it passed when 2790 testing the left edge, so it must be 2791 marginal, set it to -1 */ 2792 if (right_edge[i] == 2793 IO_IO_OUT1_DELAY_MAX + 1 && 2794 left_edge[i] != 2795 IO_IO_OUT1_DELAY_MAX + 1) { 2796 right_edge[i] = -1; 2797 } 2798 } 2799 } 2800 break; 2801 } else { 2802 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2803 if (bit_chk & 1) { 2804 /* 2805 * Remember a passing test as 2806 * the right_edge. 2807 */ 2808 right_edge[i] = d; 2809 } else { 2810 if (d != 0) { 2811 /* 2812 * If a right edge has not 2813 * been seen yet, then a future 2814 * passing test will mark this 2815 * edge as the left edge. 2816 */ 2817 if (right_edge[i] == 2818 IO_IO_OUT1_DELAY_MAX + 1) 2819 left_edge[i] = -(d + 1); 2820 } else { 2821 /* 2822 * d = 0 failed, but it passed 2823 * when testing the left edge, 2824 * so it must be marginal, set 2825 * it to -1. 2826 */ 2827 if (right_edge[i] == 2828 IO_IO_OUT1_DELAY_MAX + 1 && 2829 left_edge[i] != 2830 IO_IO_OUT1_DELAY_MAX + 1) 2831 right_edge[i] = -1; 2832 /* 2833 * If a right edge has not been 2834 * seen yet, then a future 2835 * passing test will mark this 2836 * edge as the left edge. 2837 */ 2838 else if (right_edge[i] == 2839 IO_IO_OUT1_DELAY_MAX + 2840 1) 2841 left_edge[i] = -(d + 1); 2842 } 2843 } 2844 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2845 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2846 (int)(bit_chk & 1), i, left_edge[i]); 2847 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2848 right_edge[i]); 2849 bit_chk = bit_chk >> 1; 2850 } 2851 } 2852 } 2853 2854 /* Check that all bits have a window */ 2855 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2856 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2857 %d right_edge[%u]: %d", __func__, __LINE__, 2858 i, left_edge[i], i, right_edge[i]); 2859 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2860 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2861 set_failing_group_stage(test_bgn + i, 2862 CAL_STAGE_WRITES, 2863 CAL_SUBSTAGE_WRITES_CENTER); 2864 return 0; 2865 } 2866 } 2867 2868 /* Find middle of window for each DQ bit */ 2869 mid_min = left_edge[0] - right_edge[0]; 2870 min_index = 0; 2871 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2872 mid = left_edge[i] - right_edge[i]; 2873 if (mid < mid_min) { 2874 mid_min = mid; 2875 min_index = i; 2876 } 2877 } 2878 2879 /* 2880 * -mid_min/2 represents the amount that we need to move DQS. 2881 * If mid_min is odd and positive we'll need to add one to 2882 * make sure the rounding in further calculations is correct 2883 * (always bias to the right), so just add 1 for all positive values. 2884 */ 2885 if (mid_min > 0) 2886 mid_min++; 2887 mid_min = mid_min / 2; 2888 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2889 __LINE__, mid_min); 2890 2891 /* Determine the amount we can change DQS (which is -mid_min) */ 2892 orig_mid_min = mid_min; 2893 new_dqs = start_dqs; 2894 mid_min = 0; 2895 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2896 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2897 /* Initialize data for export structures */ 2898 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2899 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2900 2901 /* add delay to bring centre of all DQ windows to the same "level" */ 2902 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2903 /* Use values before divide by 2 to reduce round off error */ 2904 shift_dq = (left_edge[i] - right_edge[i] - 2905 (left_edge[min_index] - right_edge[min_index]))/2 + 2906 (orig_mid_min - mid_min); 2907 2908 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2909 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2910 2911 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2912 temp_dq_out1_delay = readl(addr + (i << 2)); 2913 if (shift_dq + (int32_t)temp_dq_out1_delay > 2914 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2915 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2916 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2917 shift_dq = -(int32_t)temp_dq_out1_delay; 2918 } 2919 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2920 i, shift_dq); 2921 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2922 scc_mgr_load_dq(i); 2923 2924 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2925 left_edge[i] - shift_dq + (-mid_min), 2926 right_edge[i] + shift_dq - (-mid_min)); 2927 /* To determine values for export structures */ 2928 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2929 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2930 2931 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2932 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2933 } 2934 2935 /* Move DQS */ 2936 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2937 writel(0, &sdr_scc_mgr->update); 2938 2939 /* Centre DM */ 2940 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2941 2942 /* 2943 * set the left and right edge of each bit to an illegal value, 2944 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2945 */ 2946 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2947 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2948 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2949 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2950 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2951 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2952 int32_t win_best = 0; 2953 2954 /* Search for the/part of the window with DM shift */ 2955 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2956 scc_mgr_apply_group_dm_out1_delay(d); 2957 writel(0, &sdr_scc_mgr->update); 2958 2959 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2960 PASS_ALL_BITS, &bit_chk, 2961 0)) { 2962 /* USE Set current end of the window */ 2963 end_curr = -d; 2964 /* 2965 * If a starting edge of our window has not been seen 2966 * this is our current start of the DM window. 2967 */ 2968 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2969 bgn_curr = -d; 2970 2971 /* 2972 * If current window is bigger than best seen. 2973 * Set best seen to be current window. 2974 */ 2975 if ((end_curr-bgn_curr+1) > win_best) { 2976 win_best = end_curr-bgn_curr+1; 2977 bgn_best = bgn_curr; 2978 end_best = end_curr; 2979 } 2980 } else { 2981 /* We just saw a failing test. Reset temp edge */ 2982 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2983 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2984 } 2985 } 2986 2987 2988 /* Reset DM delay chains to 0 */ 2989 scc_mgr_apply_group_dm_out1_delay(0); 2990 2991 /* 2992 * Check to see if the current window nudges up aganist 0 delay. 2993 * If so we need to continue the search by shifting DQS otherwise DQS 2994 * search begins as a new search. */ 2995 if (end_curr != 0) { 2996 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2997 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2998 } 2999 3000 /* Search for the/part of the window with DQS shifts */ 3001 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3002 /* 3003 * Note: This only shifts DQS, so are we limiting ourselve to 3004 * width of DQ unnecessarily. 3005 */ 3006 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3007 d + new_dqs); 3008 3009 writel(0, &sdr_scc_mgr->update); 3010 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3011 PASS_ALL_BITS, &bit_chk, 3012 0)) { 3013 /* USE Set current end of the window */ 3014 end_curr = d; 3015 /* 3016 * If a beginning edge of our window has not been seen 3017 * this is our current begin of the DM window. 3018 */ 3019 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3020 bgn_curr = d; 3021 3022 /* 3023 * If current window is bigger than best seen. Set best 3024 * seen to be current window. 3025 */ 3026 if ((end_curr-bgn_curr+1) > win_best) { 3027 win_best = end_curr-bgn_curr+1; 3028 bgn_best = bgn_curr; 3029 end_best = end_curr; 3030 } 3031 } else { 3032 /* We just saw a failing test. Reset temp edge */ 3033 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3034 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3035 3036 /* Early exit optimization: if ther remaining delay 3037 chain space is less than already seen largest window 3038 we can exit */ 3039 if ((win_best-1) > 3040 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3041 break; 3042 } 3043 } 3044 } 3045 3046 /* assign left and right edge for cal and reporting; */ 3047 left_edge[0] = -1*bgn_best; 3048 right_edge[0] = end_best; 3049 3050 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3051 __LINE__, left_edge[0], right_edge[0]); 3052 3053 /* Move DQS (back to orig) */ 3054 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3055 3056 /* Move DM */ 3057 3058 /* Find middle of window for the DM bit */ 3059 mid = (left_edge[0] - right_edge[0]) / 2; 3060 3061 /* only move right, since we are not moving DQS/DQ */ 3062 if (mid < 0) 3063 mid = 0; 3064 3065 /* dm_marign should fail if we never find a window */ 3066 if (win_best == 0) 3067 dm_margin = -1; 3068 else 3069 dm_margin = left_edge[0] - mid; 3070 3071 scc_mgr_apply_group_dm_out1_delay(mid); 3072 writel(0, &sdr_scc_mgr->update); 3073 3074 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3075 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3076 right_edge[0], mid, dm_margin); 3077 /* Export values */ 3078 gbl->fom_out += dq_margin + dqs_margin; 3079 3080 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3081 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3082 dq_margin, dqs_margin, dm_margin); 3083 3084 /* 3085 * Do not remove this line as it makes sure all of our 3086 * decisions have been applied. 3087 */ 3088 writel(0, &sdr_scc_mgr->update); 3089 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3090 } 3091 3092 /* calibrate the write operations */ 3093 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3094 uint32_t test_bgn) 3095 { 3096 /* update info for sims */ 3097 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3098 3099 reg_file_set_stage(CAL_STAGE_WRITES); 3100 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3101 3102 reg_file_set_group(g); 3103 3104 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3105 set_failing_group_stage(g, CAL_STAGE_WRITES, 3106 CAL_SUBSTAGE_WRITES_CENTER); 3107 return 0; 3108 } 3109 3110 return 1; 3111 } 3112 3113 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3114 static void mem_precharge_and_activate(void) 3115 { 3116 uint32_t r; 3117 3118 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3119 if (param->skip_ranks[r]) { 3120 /* request to skip the rank */ 3121 continue; 3122 } 3123 3124 /* set rank */ 3125 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3126 3127 /* precharge all banks ... */ 3128 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3129 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3130 3131 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3132 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3133 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3134 3135 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3136 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3137 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3138 3139 /* activate rows */ 3140 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3141 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3142 } 3143 } 3144 3145 /* Configure various memory related parameters. */ 3146 static void mem_config(void) 3147 { 3148 uint32_t rlat, wlat; 3149 uint32_t rw_wl_nop_cycles; 3150 uint32_t max_latency; 3151 3152 debug("%s:%d\n", __func__, __LINE__); 3153 /* read in write and read latency */ 3154 wlat = readl(&data_mgr->t_wl_add); 3155 wlat += readl(&data_mgr->mem_t_add); 3156 3157 /* WL for hard phy does not include additive latency */ 3158 3159 /* 3160 * add addtional write latency to offset the address/command extra 3161 * clock cycle. We change the AC mux setting causing AC to be delayed 3162 * by one mem clock cycle. Only do this for DDR3 3163 */ 3164 wlat = wlat + 1; 3165 3166 rlat = readl(&data_mgr->t_rl_add); 3167 3168 rw_wl_nop_cycles = wlat - 2; 3169 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3170 3171 /* 3172 * For AV/CV, lfifo is hardened and always runs at full rate so 3173 * max latency in AFI clocks, used here, is correspondingly smaller. 3174 */ 3175 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3176 /* configure for a burst length of 8 */ 3177 3178 /* write latency */ 3179 /* Adjust Write Latency for Hard PHY */ 3180 wlat = wlat + 1; 3181 3182 /* set a pretty high read latency initially */ 3183 gbl->curr_read_lat = rlat + 16; 3184 3185 if (gbl->curr_read_lat > max_latency) 3186 gbl->curr_read_lat = max_latency; 3187 3188 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3189 3190 /* advertise write latency */ 3191 gbl->curr_write_lat = wlat; 3192 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3193 3194 /* initialize bit slips */ 3195 mem_precharge_and_activate(); 3196 } 3197 3198 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3199 static void mem_skip_calibrate(void) 3200 { 3201 uint32_t vfifo_offset; 3202 uint32_t i, j, r; 3203 3204 debug("%s:%d\n", __func__, __LINE__); 3205 /* Need to update every shadow register set used by the interface */ 3206 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3207 r += NUM_RANKS_PER_SHADOW_REG) { 3208 /* 3209 * Set output phase alignment settings appropriate for 3210 * skip calibration. 3211 */ 3212 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3213 scc_mgr_set_dqs_en_phase(i, 0); 3214 #if IO_DLL_CHAIN_LENGTH == 6 3215 scc_mgr_set_dqdqs_output_phase(i, 6); 3216 #else 3217 scc_mgr_set_dqdqs_output_phase(i, 7); 3218 #endif 3219 /* 3220 * Case:33398 3221 * 3222 * Write data arrives to the I/O two cycles before write 3223 * latency is reached (720 deg). 3224 * -> due to bit-slip in a/c bus 3225 * -> to allow board skew where dqs is longer than ck 3226 * -> how often can this happen!? 3227 * -> can claim back some ptaps for high freq 3228 * support if we can relax this, but i digress... 3229 * 3230 * The write_clk leads mem_ck by 90 deg 3231 * The minimum ptap of the OPA is 180 deg 3232 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3233 * The write_clk is always delayed by 2 ptaps 3234 * 3235 * Hence, to make DQS aligned to CK, we need to delay 3236 * DQS by: 3237 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3238 * 3239 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3240 * gives us the number of ptaps, which simplies to: 3241 * 3242 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3243 */ 3244 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3245 IO_DLL_CHAIN_LENGTH - 2)); 3246 } 3247 writel(0xff, &sdr_scc_mgr->dqs_ena); 3248 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3249 3250 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3251 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3252 SCC_MGR_GROUP_COUNTER_OFFSET); 3253 } 3254 writel(0xff, &sdr_scc_mgr->dq_ena); 3255 writel(0xff, &sdr_scc_mgr->dm_ena); 3256 writel(0, &sdr_scc_mgr->update); 3257 } 3258 3259 /* Compensate for simulation model behaviour */ 3260 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3261 scc_mgr_set_dqs_bus_in_delay(i, 10); 3262 scc_mgr_load_dqs(i); 3263 } 3264 writel(0, &sdr_scc_mgr->update); 3265 3266 /* 3267 * ArriaV has hard FIFOs that can only be initialized by incrementing 3268 * in sequencer. 3269 */ 3270 vfifo_offset = CALIB_VFIFO_OFFSET; 3271 for (j = 0; j < vfifo_offset; j++) { 3272 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3273 } 3274 writel(0, &phy_mgr_cmd->fifo_reset); 3275 3276 /* 3277 * For ACV with hard lfifo, we get the skip-cal setting from 3278 * generation-time constant. 3279 */ 3280 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3281 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3282 } 3283 3284 /* Memory calibration entry point */ 3285 static uint32_t mem_calibrate(void) 3286 { 3287 uint32_t i; 3288 uint32_t rank_bgn, sr; 3289 uint32_t write_group, write_test_bgn; 3290 uint32_t read_group, read_test_bgn; 3291 uint32_t run_groups, current_run; 3292 uint32_t failing_groups = 0; 3293 uint32_t group_failed = 0; 3294 uint32_t sr_failed = 0; 3295 3296 debug("%s:%d\n", __func__, __LINE__); 3297 /* Initialize the data settings */ 3298 3299 gbl->error_substage = CAL_SUBSTAGE_NIL; 3300 gbl->error_stage = CAL_STAGE_NIL; 3301 gbl->error_group = 0xff; 3302 gbl->fom_in = 0; 3303 gbl->fom_out = 0; 3304 3305 mem_config(); 3306 3307 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3308 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3309 SCC_MGR_GROUP_COUNTER_OFFSET); 3310 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3311 if (i == 0) 3312 scc_mgr_set_hhp_extras(); 3313 3314 scc_set_bypass_mode(i); 3315 } 3316 3317 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3318 /* 3319 * Set VFIFO and LFIFO to instant-on settings in skip 3320 * calibration mode. 3321 */ 3322 mem_skip_calibrate(); 3323 } else { 3324 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3325 /* 3326 * Zero all delay chain/phase settings for all 3327 * groups and all shadow register sets. 3328 */ 3329 scc_mgr_zero_all(); 3330 3331 run_groups = ~param->skip_groups; 3332 3333 for (write_group = 0, write_test_bgn = 0; write_group 3334 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3335 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3336 /* Initialized the group failure */ 3337 group_failed = 0; 3338 3339 current_run = run_groups & ((1 << 3340 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3341 run_groups = run_groups >> 3342 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3343 3344 if (current_run == 0) 3345 continue; 3346 3347 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3348 SCC_MGR_GROUP_COUNTER_OFFSET); 3349 scc_mgr_zero_group(write_group, 0); 3350 3351 for (read_group = write_group * 3352 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3353 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3354 read_test_bgn = 0; 3355 read_group < (write_group + 1) * 3356 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3357 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3358 group_failed == 0; 3359 read_group++, read_test_bgn += 3360 RW_MGR_MEM_DQ_PER_READ_DQS) { 3361 /* Calibrate the VFIFO */ 3362 if (!((STATIC_CALIB_STEPS) & 3363 CALIB_SKIP_VFIFO)) { 3364 if (!rw_mgr_mem_calibrate_vfifo 3365 (read_group, 3366 read_test_bgn)) { 3367 group_failed = 1; 3368 3369 if (!(gbl-> 3370 phy_debug_mode_flags & 3371 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3372 return 0; 3373 } 3374 } 3375 } 3376 } 3377 3378 /* Calibrate the output side */ 3379 if (group_failed == 0) { 3380 for (rank_bgn = 0, sr = 0; rank_bgn 3381 < RW_MGR_MEM_NUMBER_OF_RANKS; 3382 rank_bgn += 3383 NUM_RANKS_PER_SHADOW_REG, 3384 ++sr) { 3385 sr_failed = 0; 3386 if (!((STATIC_CALIB_STEPS) & 3387 CALIB_SKIP_WRITES)) { 3388 if ((STATIC_CALIB_STEPS) 3389 & CALIB_SKIP_DELAY_SWEEPS) { 3390 /* not needed in quick mode! */ 3391 } else { 3392 /* 3393 * Determine if this set of 3394 * ranks should be skipped 3395 * entirely. 3396 */ 3397 if (!param->skip_shadow_regs[sr]) { 3398 if (!rw_mgr_mem_calibrate_writes 3399 (rank_bgn, write_group, 3400 write_test_bgn)) { 3401 sr_failed = 1; 3402 if (!(gbl-> 3403 phy_debug_mode_flags & 3404 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3405 return 0; 3406 } 3407 } 3408 } 3409 } 3410 } 3411 if (sr_failed != 0) 3412 group_failed = 1; 3413 } 3414 } 3415 3416 if (group_failed == 0) { 3417 for (read_group = write_group * 3418 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3419 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3420 read_test_bgn = 0; 3421 read_group < (write_group + 1) 3422 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3423 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3424 group_failed == 0; 3425 read_group++, read_test_bgn += 3426 RW_MGR_MEM_DQ_PER_READ_DQS) { 3427 if (!((STATIC_CALIB_STEPS) & 3428 CALIB_SKIP_WRITES)) { 3429 if (!rw_mgr_mem_calibrate_vfifo_end 3430 (read_group, read_test_bgn)) { 3431 group_failed = 1; 3432 3433 if (!(gbl->phy_debug_mode_flags 3434 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3435 return 0; 3436 } 3437 } 3438 } 3439 } 3440 } 3441 3442 if (group_failed != 0) 3443 failing_groups++; 3444 } 3445 3446 /* 3447 * USER If there are any failing groups then report 3448 * the failure. 3449 */ 3450 if (failing_groups != 0) 3451 return 0; 3452 3453 /* Calibrate the LFIFO */ 3454 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3455 /* 3456 * If we're skipping groups as part of debug, 3457 * don't calibrate LFIFO. 3458 */ 3459 if (param->skip_groups == 0) { 3460 if (!rw_mgr_mem_calibrate_lfifo()) 3461 return 0; 3462 } 3463 } 3464 } 3465 } 3466 3467 /* 3468 * Do not remove this line as it makes sure all of our decisions 3469 * have been applied. 3470 */ 3471 writel(0, &sdr_scc_mgr->update); 3472 return 1; 3473 } 3474 3475 static uint32_t run_mem_calibrate(void) 3476 { 3477 uint32_t pass; 3478 uint32_t debug_info; 3479 3480 debug("%s:%d\n", __func__, __LINE__); 3481 3482 /* Reset pass/fail status shown on afi_cal_success/fail */ 3483 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3484 3485 /* stop tracking manger */ 3486 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3487 3488 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3489 3490 initialize(); 3491 rw_mgr_mem_initialize(); 3492 3493 pass = mem_calibrate(); 3494 3495 mem_precharge_and_activate(); 3496 writel(0, &phy_mgr_cmd->fifo_reset); 3497 3498 /* 3499 * Handoff: 3500 * Don't return control of the PHY back to AFI when in debug mode. 3501 */ 3502 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3503 rw_mgr_mem_handoff(); 3504 /* 3505 * In Hard PHY this is a 2-bit control: 3506 * 0: AFI Mux Select 3507 * 1: DDIO Mux Select 3508 */ 3509 writel(0x2, &phy_mgr_cfg->mux_sel); 3510 } 3511 3512 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3513 3514 if (pass) { 3515 printf("%s: CALIBRATION PASSED\n", __FILE__); 3516 3517 gbl->fom_in /= 2; 3518 gbl->fom_out /= 2; 3519 3520 if (gbl->fom_in > 0xff) 3521 gbl->fom_in = 0xff; 3522 3523 if (gbl->fom_out > 0xff) 3524 gbl->fom_out = 0xff; 3525 3526 /* Update the FOM in the register file */ 3527 debug_info = gbl->fom_in; 3528 debug_info |= gbl->fom_out << 8; 3529 writel(debug_info, &sdr_reg_file->fom); 3530 3531 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3532 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3533 } else { 3534 printf("%s: CALIBRATION FAILED\n", __FILE__); 3535 3536 debug_info = gbl->error_stage; 3537 debug_info |= gbl->error_substage << 8; 3538 debug_info |= gbl->error_group << 16; 3539 3540 writel(debug_info, &sdr_reg_file->failing_stage); 3541 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3542 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3543 3544 /* Update the failing group/stage in the register file */ 3545 debug_info = gbl->error_stage; 3546 debug_info |= gbl->error_substage << 8; 3547 debug_info |= gbl->error_group << 16; 3548 writel(debug_info, &sdr_reg_file->failing_stage); 3549 } 3550 3551 return pass; 3552 } 3553 3554 /** 3555 * hc_initialize_rom_data() - Initialize ROM data 3556 * 3557 * Initialize ROM data. 3558 */ 3559 static void hc_initialize_rom_data(void) 3560 { 3561 u32 i, addr; 3562 3563 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3564 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3565 writel(inst_rom_init[i], addr + (i << 2)); 3566 3567 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3568 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3569 writel(ac_rom_init[i], addr + (i << 2)); 3570 } 3571 3572 /** 3573 * initialize_reg_file() - Initialize SDR register file 3574 * 3575 * Initialize SDR register file. 3576 */ 3577 static void initialize_reg_file(void) 3578 { 3579 /* Initialize the register file with the correct data */ 3580 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3581 writel(0, &sdr_reg_file->debug_data_addr); 3582 writel(0, &sdr_reg_file->cur_stage); 3583 writel(0, &sdr_reg_file->fom); 3584 writel(0, &sdr_reg_file->failing_stage); 3585 writel(0, &sdr_reg_file->debug1); 3586 writel(0, &sdr_reg_file->debug2); 3587 } 3588 3589 /** 3590 * initialize_hps_phy() - Initialize HPS PHY 3591 * 3592 * Initialize HPS PHY. 3593 */ 3594 static void initialize_hps_phy(void) 3595 { 3596 uint32_t reg; 3597 /* 3598 * Tracking also gets configured here because it's in the 3599 * same register. 3600 */ 3601 uint32_t trk_sample_count = 7500; 3602 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3603 /* 3604 * Format is number of outer loops in the 16 MSB, sample 3605 * count in 16 LSB. 3606 */ 3607 3608 reg = 0; 3609 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3610 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3611 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3612 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3613 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3614 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3615 /* 3616 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3617 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3618 */ 3619 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3621 trk_sample_count); 3622 writel(reg, &sdr_ctrl->phy_ctrl0); 3623 3624 reg = 0; 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3626 trk_sample_count >> 3627 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3629 trk_long_idle_sample_count); 3630 writel(reg, &sdr_ctrl->phy_ctrl1); 3631 3632 reg = 0; 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3634 trk_long_idle_sample_count >> 3635 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3636 writel(reg, &sdr_ctrl->phy_ctrl2); 3637 } 3638 3639 static void initialize_tracking(void) 3640 { 3641 uint32_t concatenated_longidle = 0x0; 3642 uint32_t concatenated_delays = 0x0; 3643 uint32_t concatenated_rw_addr = 0x0; 3644 uint32_t concatenated_refresh = 0x0; 3645 uint32_t trk_sample_count = 7500; 3646 uint32_t dtaps_per_ptap; 3647 uint32_t tmp_delay; 3648 3649 /* 3650 * compute usable version of value in case we skip full 3651 * computation later 3652 */ 3653 dtaps_per_ptap = 0; 3654 tmp_delay = 0; 3655 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3656 dtaps_per_ptap++; 3657 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3658 } 3659 dtaps_per_ptap--; 3660 3661 concatenated_longidle = concatenated_longidle ^ 10; 3662 /*longidle outer loop */ 3663 concatenated_longidle = concatenated_longidle << 16; 3664 concatenated_longidle = concatenated_longidle ^ 100; 3665 /*longidle sample count */ 3666 concatenated_delays = concatenated_delays ^ 243; 3667 /* trfc, worst case of 933Mhz 4Gb */ 3668 concatenated_delays = concatenated_delays << 8; 3669 concatenated_delays = concatenated_delays ^ 14; 3670 /* trcd, worst case */ 3671 concatenated_delays = concatenated_delays << 8; 3672 concatenated_delays = concatenated_delays ^ 10; 3673 /* vfifo wait */ 3674 concatenated_delays = concatenated_delays << 8; 3675 concatenated_delays = concatenated_delays ^ 4; 3676 /* mux delay */ 3677 3678 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3679 concatenated_rw_addr = concatenated_rw_addr << 8; 3680 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3681 concatenated_rw_addr = concatenated_rw_addr << 8; 3682 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3683 concatenated_rw_addr = concatenated_rw_addr << 8; 3684 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3685 3686 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3687 concatenated_refresh = concatenated_refresh << 24; 3688 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3689 3690 /* Initialize the register file with the correct data */ 3691 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3692 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3693 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3694 writel(concatenated_delays, &sdr_reg_file->delays); 3695 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3696 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3697 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3698 } 3699 3700 int sdram_calibration_full(void) 3701 { 3702 struct param_type my_param; 3703 struct gbl_type my_gbl; 3704 uint32_t pass; 3705 uint32_t i; 3706 3707 param = &my_param; 3708 gbl = &my_gbl; 3709 3710 /* Initialize the debug mode flags */ 3711 gbl->phy_debug_mode_flags = 0; 3712 /* Set the calibration enabled by default */ 3713 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3714 /* 3715 * Only sweep all groups (regardless of fail state) by default 3716 * Set enabled read test by default. 3717 */ 3718 #if DISABLE_GUARANTEED_READ 3719 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3720 #endif 3721 /* Initialize the register file */ 3722 initialize_reg_file(); 3723 3724 /* Initialize any PHY CSR */ 3725 initialize_hps_phy(); 3726 3727 scc_mgr_initialize(); 3728 3729 initialize_tracking(); 3730 3731 /* USER Enable all ranks, groups */ 3732 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3733 param->skip_ranks[i] = 0; 3734 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3735 param->skip_shadow_regs[i] = 0; 3736 param->skip_groups = 0; 3737 3738 printf("%s: Preparing to start memory calibration\n", __FILE__); 3739 3740 debug("%s:%d\n", __func__, __LINE__); 3741 debug_cond(DLEVEL == 1, 3742 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3743 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3744 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3745 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3746 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3747 debug_cond(DLEVEL == 1, 3748 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3749 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3750 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3751 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3752 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3753 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3754 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3755 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3756 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3757 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3758 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3759 IO_IO_OUT2_DELAY_MAX); 3760 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3761 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3762 3763 hc_initialize_rom_data(); 3764 3765 /* update info for sims */ 3766 reg_file_set_stage(CAL_STAGE_NIL); 3767 reg_file_set_group(0); 3768 3769 /* 3770 * Load global needed for those actions that require 3771 * some dynamic calibration support. 3772 */ 3773 dyn_calib_steps = STATIC_CALIB_STEPS; 3774 /* 3775 * Load global to allow dynamic selection of delay loop settings 3776 * based on calibration mode. 3777 */ 3778 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3779 skip_delay_mask = 0xff; 3780 else 3781 skip_delay_mask = 0x0; 3782 3783 pass = run_mem_calibrate(); 3784 3785 printf("%s: Calibration complete\n", __FILE__); 3786 return pass; 3787 } 3788