xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 8c887b6ec3df03fc576eb8a88217cd7d329422ce)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 /**
1290  * rw_mgr_incr_vfifo() - Increase VFIFO value
1291  * @grp:	Read/Write group
1292  *
1293  * Increase VFIFO value.
1294  */
1295 static void rw_mgr_incr_vfifo(const u32 grp)
1296 {
1297 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1298 }
1299 
1300 /**
1301  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302  * @grp:	Read/Write group
1303  *
1304  * Decrease VFIFO value.
1305  */
1306 static void rw_mgr_decr_vfifo(const u32 grp)
1307 {
1308 	u32 i;
1309 
1310 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1311 		rw_mgr_incr_vfifo(grp);
1312 }
1313 
1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1315 {
1316 	uint32_t v;
1317 	uint32_t fail_cnt = 0;
1318 	uint32_t test_status;
1319 
1320 	for (v = 0; v < VFIFO_SIZE; v++) {
1321 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1322 			   __func__, __LINE__, v);
1323 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1324 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1325 		if (!test_status) {
1326 			fail_cnt++;
1327 
1328 			if (fail_cnt == 2)
1329 				break;
1330 		}
1331 
1332 		/* fiddle with FIFO */
1333 		rw_mgr_incr_vfifo(grp);
1334 	}
1335 
1336 	if (v >= VFIFO_SIZE) {
1337 		/* no failing read found!! Something must have gone wrong */
1338 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1339 			   __func__, __LINE__);
1340 		return 0;
1341 	} else {
1342 		return v;
1343 	}
1344 }
1345 
1346 /**
1347  * sdr_find_phase() - Find DQS enable phase
1348  * @working:	If 1, look for working phase, if 0, look for non-working phase
1349  * @grp:	Read/Write group
1350  * @work:	Working window position
1351  * @i:		Iterator
1352  * @p:		DQS Phase Iterator
1353  *
1354  * Find working or non-working DQS enable phase setting.
1355  */
1356 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1357 			  u32 *i, u32 *p)
1358 {
1359 	u32 ret, bit_chk;
1360 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1361 
1362 	for (; *i < end; (*i)++) {
1363 		if (working)
1364 			*p = 0;
1365 
1366 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1367 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1368 
1369 			ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1370 						PASS_ONE_BIT, &bit_chk, 0);
1371 			if (!working)
1372 				ret = !ret;
1373 
1374 			if (ret)
1375 				return 0;
1376 
1377 			*work += IO_DELAY_PER_OPA_TAP;
1378 		}
1379 
1380 		if (*p > IO_DQS_EN_PHASE_MAX) {
1381 			/* Fiddle with FIFO. */
1382 			rw_mgr_incr_vfifo(grp);
1383 			if (!working)
1384 				*p = 0;
1385 		}
1386 	}
1387 
1388 	return -EINVAL;
1389 }
1390 
1391 /**
1392  * sdr_working_phase() - Find working DQS enable phase
1393  * @grp:	Read/Write group
1394  * @work_bgn:	Working window start position
1395  * @d:		dtaps output value
1396  * @p:		DQS Phase Iterator
1397  * @i:		Iterator
1398  *
1399  * Find working DQS enable phase setting.
1400  */
1401 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1402 			     u32 *p, u32 *i)
1403 {
1404 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1405 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1406 	int ret;
1407 
1408 	*work_bgn = 0;
1409 
1410 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1411 		*i = 0;
1412 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1413 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1414 		if (!ret)
1415 			return 0;
1416 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1417 	}
1418 
1419 	/* Cannot find working solution */
1420 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1421 		   __func__, __LINE__);
1422 	return -EINVAL;
1423 }
1424 
1425 /**
1426  * sdr_backup_phase() - Find DQS enable backup phase
1427  * @grp:	Read/Write group
1428  * @work_bgn:	Working window start position
1429  * @p:		DQS Phase Iterator
1430  *
1431  * Find DQS enable backup phase setting.
1432  */
1433 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1434 {
1435 	u32 tmp_delay, bit_chk, d;
1436 	int ret;
1437 
1438 	/* Special case code for backing up a phase */
1439 	if (*p == 0) {
1440 		*p = IO_DQS_EN_PHASE_MAX;
1441 		rw_mgr_decr_vfifo(grp);
1442 	} else {
1443 		(*p)--;
1444 	}
1445 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1446 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1447 
1448 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1449 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1450 
1451 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1452 					PASS_ONE_BIT, &bit_chk, 0);
1453 		if (ret) {
1454 			*work_bgn = tmp_delay;
1455 			break;
1456 		}
1457 
1458 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1459 	}
1460 
1461 	/* Restore VFIFO to old state before we decremented it (if needed). */
1462 	(*p)++;
1463 	if (*p > IO_DQS_EN_PHASE_MAX) {
1464 		*p = 0;
1465 		rw_mgr_incr_vfifo(grp);
1466 	}
1467 
1468 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1469 }
1470 
1471 /**
1472  * sdr_nonworking_phase() - Find non-working DQS enable phase
1473  * @grp:	Read/Write group
1474  * @work_end:	Working window end position
1475  * @p:		DQS Phase Iterator
1476  * @i:		Iterator
1477  *
1478  * Find non-working DQS enable phase setting.
1479  */
1480 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1481 {
1482 	int ret;
1483 
1484 	(*p)++;
1485 	*work_end += IO_DELAY_PER_OPA_TAP;
1486 	if (*p > IO_DQS_EN_PHASE_MAX) {
1487 		/* Fiddle with FIFO. */
1488 		*p = 0;
1489 		rw_mgr_incr_vfifo(grp);
1490 	}
1491 
1492 	ret = sdr_find_phase(0, grp, work_end, i, p);
1493 	if (ret) {
1494 		/* Cannot see edge of failing read. */
1495 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1496 			   __func__, __LINE__);
1497 	}
1498 
1499 	return ret;
1500 }
1501 
1502 /**
1503  * sdr_find_window_center() - Find center of the working DQS window.
1504  * @grp:	Read/Write group
1505  * @work_bgn:	First working settings
1506  * @work_end:	Last working settings
1507  *
1508  * Find center of the working DQS enable window.
1509  */
1510 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1511 				  const u32 work_end)
1512 {
1513 	u32 bit_chk, work_mid;
1514 	int tmp_delay = 0;
1515 	int i, p, d;
1516 
1517 	work_mid = (work_bgn + work_end) / 2;
1518 
1519 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1520 		   work_bgn, work_end, work_mid);
1521 	/* Get the middle delay to be less than a VFIFO delay */
1522 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1523 
1524 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1525 	work_mid %= tmp_delay;
1526 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1527 
1528 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1529 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1530 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1531 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1532 
1533 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1534 
1535 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1536 	if (d > IO_DQS_EN_DELAY_MAX)
1537 		d = IO_DQS_EN_DELAY_MAX;
1538 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1539 
1540 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1541 
1542 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1543 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1544 
1545 	/*
1546 	 * push vfifo until we can successfully calibrate. We can do this
1547 	 * because the largest possible margin in 1 VFIFO cycle.
1548 	 */
1549 	for (i = 0; i < VFIFO_SIZE; i++) {
1550 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1551 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1552 							     PASS_ONE_BIT,
1553 							     &bit_chk, 0)) {
1554 			debug_cond(DLEVEL == 2,
1555 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1556 				   __func__, __LINE__, p, d);
1557 			return 0;
1558 		}
1559 
1560 		/* Fiddle with FIFO. */
1561 		rw_mgr_incr_vfifo(grp);
1562 	}
1563 
1564 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1565 		   __func__, __LINE__);
1566 	return -EINVAL;
1567 }
1568 
1569 /* find a good dqs enable to use */
1570 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1571 {
1572 	uint32_t d, p, i;
1573 	uint32_t bit_chk;
1574 	uint32_t dtaps_per_ptap;
1575 	uint32_t work_bgn, work_end;
1576 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1577 
1578 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1579 
1580 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1581 
1582 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1583 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1584 
1585 	/* ************************************************************** */
1586 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1587 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1588 
1589 	/* ********************************************************* */
1590 	/* * Step 1 : First push vfifo until we get a failing read * */
1591 	find_vfifo_read(grp, &bit_chk);
1592 
1593 	/* ******************************************************** */
1594 	/* * step 2: find first working phase, increment in ptaps * */
1595 	work_bgn = 0;
1596 	if (sdr_working_phase(grp, &work_bgn, &d, &p, &i))
1597 		return 0;
1598 
1599 	work_end = work_bgn;
1600 
1601 	/*
1602 	 * If d is 0 then the working window covers a phase tap and
1603 	 * we can follow the old procedure otherwise, we've found the beginning,
1604 	 * and we need to increment the dtaps until we find the end.
1605 	 */
1606 	if (d == 0) {
1607 		/* ********************************************************* */
1608 		/* * step 3a: if we have room, back off by one and
1609 		increment in dtaps * */
1610 
1611 		sdr_backup_phase(grp, &work_bgn, &p);
1612 
1613 		/* ********************************************************* */
1614 		/* * step 4a: go forward from working phase to non working
1615 		phase, increment in ptaps * */
1616 		if (sdr_nonworking_phase(grp, &work_end, &p, &i))
1617 			return 0;
1618 
1619 		/* ********************************************************* */
1620 		/* * step 5a:  back off one from last, increment in dtaps  * */
1621 
1622 		/* Special case code for backing up a phase */
1623 		if (p == 0) {
1624 			p = IO_DQS_EN_PHASE_MAX;
1625 			rw_mgr_decr_vfifo(grp);
1626 		} else {
1627 			p = p - 1;
1628 		}
1629 
1630 		work_end -= IO_DELAY_PER_OPA_TAP;
1631 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1632 
1633 		/* * The actual increment of dtaps is done outside of
1634 		the if/else loop to share code */
1635 		d = 0;
1636 
1637 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p: \
1638 			   ptap=%u\n", __func__, __LINE__,
1639 			   p);
1640 	} else {
1641 		/* ******************************************************* */
1642 		/* * step 3-5b:  Find the right edge of the window using
1643 		delay taps   * */
1644 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1645 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1646 			   p, d, work_bgn);
1647 
1648 		work_end = work_bgn;
1649 	}
1650 
1651 	/* The dtap increment to find the failing edge is done here */
1652 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1653 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1654 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1655 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1656 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1657 
1658 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1659 								      PASS_ONE_BIT,
1660 								      &bit_chk, 0)) {
1661 				break;
1662 			}
1663 	}
1664 
1665 	/* Go back to working dtap */
1666 	if (d != 0)
1667 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1668 
1669 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p/d: \
1670 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1671 		   p, d-1, work_end);
1672 
1673 	if (work_end < work_bgn) {
1674 		/* nil range */
1675 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1676 			   failed\n", __func__, __LINE__);
1677 		return 0;
1678 	}
1679 
1680 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1681 		   __func__, __LINE__, work_bgn, work_end);
1682 
1683 	/* *************************************************************** */
1684 	/*
1685 	 * * We need to calculate the number of dtaps that equal a ptap
1686 	 * * To do that we'll back up a ptap and re-find the edge of the
1687 	 * * window using dtaps
1688 	 */
1689 
1690 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1691 		   for tracking\n", __func__, __LINE__);
1692 
1693 	/* Special case code for backing up a phase */
1694 	if (p == 0) {
1695 		p = IO_DQS_EN_PHASE_MAX;
1696 		rw_mgr_decr_vfifo(grp);
1697 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1698 			   cycle/phase: p=%u\n", __func__, __LINE__,
1699 			   p);
1700 	} else {
1701 		p = p - 1;
1702 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1703 			   phase only: p=%u", __func__, __LINE__,
1704 			   p);
1705 	}
1706 
1707 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1708 
1709 	/*
1710 	 * Increase dtap until we first see a passing read (in case the
1711 	 * window is smaller than a ptap),
1712 	 * and then a failing read to mark the edge of the window again
1713 	 */
1714 
1715 	/* Find a passing read */
1716 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1717 		   __func__, __LINE__);
1718 	found_passing_read = 0;
1719 	found_failing_read = 0;
1720 	initial_failing_dtap = d;
1721 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1722 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1723 			   read d=%u\n", __func__, __LINE__, d);
1724 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1725 
1726 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1727 							     PASS_ONE_BIT,
1728 							     &bit_chk, 0)) {
1729 			found_passing_read = 1;
1730 			break;
1731 		}
1732 	}
1733 
1734 	if (found_passing_read) {
1735 		/* Find a failing read */
1736 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1737 			   read\n", __func__, __LINE__);
1738 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1739 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1740 				   testing read d=%u\n", __func__, __LINE__, d);
1741 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1742 
1743 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1744 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1745 				found_failing_read = 1;
1746 				break;
1747 			}
1748 		}
1749 	} else {
1750 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1751 			   calculate dtaps", __func__, __LINE__);
1752 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1753 	}
1754 
1755 	/*
1756 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1757 	 * found a passing/failing read. If we didn't, it means d hit the max
1758 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1759 	 * statically calculated value.
1760 	 */
1761 	if (found_passing_read && found_failing_read)
1762 		dtaps_per_ptap = d - initial_failing_dtap;
1763 
1764 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1765 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1766 		   - %u = %u",  __func__, __LINE__, d,
1767 		   initial_failing_dtap, dtaps_per_ptap);
1768 
1769 	/* ******************************************** */
1770 	/* * step 6:  Find the centre of the window   * */
1771 	if (sdr_find_window_centre(grp, work_bgn, work_end))
1772 		return 0; /* FIXME: Old code, return 0 means failure :-( */
1773 
1774 	return 1;
1775 }
1776 
1777 /* per-bit deskew DQ and center */
1778 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1779 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1780 	uint32_t use_read_test, uint32_t update_fom)
1781 {
1782 	uint32_t i, p, d, min_index;
1783 	/*
1784 	 * Store these as signed since there are comparisons with
1785 	 * signed numbers.
1786 	 */
1787 	uint32_t bit_chk;
1788 	uint32_t sticky_bit_chk;
1789 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1790 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1791 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1792 	int32_t mid;
1793 	int32_t orig_mid_min, mid_min;
1794 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1795 		final_dqs_en;
1796 	int32_t dq_margin, dqs_margin;
1797 	uint32_t stop;
1798 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1799 	uint32_t addr;
1800 
1801 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1802 
1803 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1804 	start_dqs = readl(addr + (read_group << 2));
1805 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1806 		start_dqs_en = readl(addr + ((read_group << 2)
1807 				     - IO_DQS_EN_DELAY_OFFSET));
1808 
1809 	/* set the left and right edge of each bit to an illegal value */
1810 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1811 	sticky_bit_chk = 0;
1812 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1813 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1814 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1815 	}
1816 
1817 	/* Search for the left edge of the window for each bit */
1818 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1819 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1820 
1821 		writel(0, &sdr_scc_mgr->update);
1822 
1823 		/*
1824 		 * Stop searching when the read test doesn't pass AND when
1825 		 * we've seen a passing read on every bit.
1826 		 */
1827 		if (use_read_test) {
1828 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1829 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1830 				&bit_chk, 0, 0);
1831 		} else {
1832 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1833 							0, PASS_ONE_BIT,
1834 							&bit_chk, 0);
1835 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1836 				(read_group - (write_group *
1837 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1838 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1839 			stop = (bit_chk == 0);
1840 		}
1841 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1842 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1843 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1844 			   && %u", __func__, __LINE__, d,
1845 			   sticky_bit_chk,
1846 			param->read_correct_mask, stop);
1847 
1848 		if (stop == 1) {
1849 			break;
1850 		} else {
1851 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1852 				if (bit_chk & 1) {
1853 					/* Remember a passing test as the
1854 					left_edge */
1855 					left_edge[i] = d;
1856 				} else {
1857 					/* If a left edge has not been seen yet,
1858 					then a future passing test will mark
1859 					this edge as the right edge */
1860 					if (left_edge[i] ==
1861 						IO_IO_IN_DELAY_MAX + 1) {
1862 						right_edge[i] = -(d + 1);
1863 					}
1864 				}
1865 				bit_chk = bit_chk >> 1;
1866 			}
1867 		}
1868 	}
1869 
1870 	/* Reset DQ delay chains to 0 */
1871 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1872 	sticky_bit_chk = 0;
1873 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1874 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1875 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1876 			   i, left_edge[i], i, right_edge[i]);
1877 
1878 		/*
1879 		 * Check for cases where we haven't found the left edge,
1880 		 * which makes our assignment of the the right edge invalid.
1881 		 * Reset it to the illegal value.
1882 		 */
1883 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1884 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1885 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1886 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1887 				   right_edge[%u]: %d\n", __func__, __LINE__,
1888 				   i, right_edge[i]);
1889 		}
1890 
1891 		/*
1892 		 * Reset sticky bit (except for bits where we have seen
1893 		 * both the left and right edge).
1894 		 */
1895 		sticky_bit_chk = sticky_bit_chk << 1;
1896 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1897 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1898 			sticky_bit_chk = sticky_bit_chk | 1;
1899 		}
1900 
1901 		if (i == 0)
1902 			break;
1903 	}
1904 
1905 	/* Search for the right edge of the window for each bit */
1906 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1907 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1908 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1909 			uint32_t delay = d + start_dqs_en;
1910 			if (delay > IO_DQS_EN_DELAY_MAX)
1911 				delay = IO_DQS_EN_DELAY_MAX;
1912 			scc_mgr_set_dqs_en_delay(read_group, delay);
1913 		}
1914 		scc_mgr_load_dqs(read_group);
1915 
1916 		writel(0, &sdr_scc_mgr->update);
1917 
1918 		/*
1919 		 * Stop searching when the read test doesn't pass AND when
1920 		 * we've seen a passing read on every bit.
1921 		 */
1922 		if (use_read_test) {
1923 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1924 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1925 				&bit_chk, 0, 0);
1926 		} else {
1927 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1928 							0, PASS_ONE_BIT,
1929 							&bit_chk, 0);
1930 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1931 				(read_group - (write_group *
1932 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1933 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1934 			stop = (bit_chk == 0);
1935 		}
1936 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1937 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1938 
1939 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1940 			   %u && %u", __func__, __LINE__, d,
1941 			   sticky_bit_chk, param->read_correct_mask, stop);
1942 
1943 		if (stop == 1) {
1944 			break;
1945 		} else {
1946 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1947 				if (bit_chk & 1) {
1948 					/* Remember a passing test as
1949 					the right_edge */
1950 					right_edge[i] = d;
1951 				} else {
1952 					if (d != 0) {
1953 						/* If a right edge has not been
1954 						seen yet, then a future passing
1955 						test will mark this edge as the
1956 						left edge */
1957 						if (right_edge[i] ==
1958 						IO_IO_IN_DELAY_MAX + 1) {
1959 							left_edge[i] = -(d + 1);
1960 						}
1961 					} else {
1962 						/* d = 0 failed, but it passed
1963 						when testing the left edge,
1964 						so it must be marginal,
1965 						set it to -1 */
1966 						if (right_edge[i] ==
1967 							IO_IO_IN_DELAY_MAX + 1 &&
1968 							left_edge[i] !=
1969 							IO_IO_IN_DELAY_MAX
1970 							+ 1) {
1971 							right_edge[i] = -1;
1972 						}
1973 						/* If a right edge has not been
1974 						seen yet, then a future passing
1975 						test will mark this edge as the
1976 						left edge */
1977 						else if (right_edge[i] ==
1978 							IO_IO_IN_DELAY_MAX +
1979 							1) {
1980 							left_edge[i] = -(d + 1);
1981 						}
1982 					}
1983 				}
1984 
1985 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1986 					   d=%u]: ", __func__, __LINE__, d);
1987 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1988 					   (int)(bit_chk & 1), i, left_edge[i]);
1989 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1990 					   right_edge[i]);
1991 				bit_chk = bit_chk >> 1;
1992 			}
1993 		}
1994 	}
1995 
1996 	/* Check that all bits have a window */
1997 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1998 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1999 			   %d right_edge[%u]: %d", __func__, __LINE__,
2000 			   i, left_edge[i], i, right_edge[i]);
2001 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2002 			== IO_IO_IN_DELAY_MAX + 1)) {
2003 			/*
2004 			 * Restore delay chain settings before letting the loop
2005 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2006 			 * dqs/ck relationships.
2007 			 */
2008 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2009 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2010 				scc_mgr_set_dqs_en_delay(read_group,
2011 							 start_dqs_en);
2012 			}
2013 			scc_mgr_load_dqs(read_group);
2014 			writel(0, &sdr_scc_mgr->update);
2015 
2016 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2017 				   find edge [%u]: %d %d", __func__, __LINE__,
2018 				   i, left_edge[i], right_edge[i]);
2019 			if (use_read_test) {
2020 				set_failing_group_stage(read_group *
2021 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2022 					CAL_STAGE_VFIFO,
2023 					CAL_SUBSTAGE_VFIFO_CENTER);
2024 			} else {
2025 				set_failing_group_stage(read_group *
2026 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2027 					CAL_STAGE_VFIFO_AFTER_WRITES,
2028 					CAL_SUBSTAGE_VFIFO_CENTER);
2029 			}
2030 			return 0;
2031 		}
2032 	}
2033 
2034 	/* Find middle of window for each DQ bit */
2035 	mid_min = left_edge[0] - right_edge[0];
2036 	min_index = 0;
2037 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2038 		mid = left_edge[i] - right_edge[i];
2039 		if (mid < mid_min) {
2040 			mid_min = mid;
2041 			min_index = i;
2042 		}
2043 	}
2044 
2045 	/*
2046 	 * -mid_min/2 represents the amount that we need to move DQS.
2047 	 * If mid_min is odd and positive we'll need to add one to
2048 	 * make sure the rounding in further calculations is correct
2049 	 * (always bias to the right), so just add 1 for all positive values.
2050 	 */
2051 	if (mid_min > 0)
2052 		mid_min++;
2053 
2054 	mid_min = mid_min / 2;
2055 
2056 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2057 		   __func__, __LINE__, mid_min, min_index);
2058 
2059 	/* Determine the amount we can change DQS (which is -mid_min) */
2060 	orig_mid_min = mid_min;
2061 	new_dqs = start_dqs - mid_min;
2062 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2063 		new_dqs = IO_DQS_IN_DELAY_MAX;
2064 	else if (new_dqs < 0)
2065 		new_dqs = 0;
2066 
2067 	mid_min = start_dqs - new_dqs;
2068 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2069 		   mid_min, new_dqs);
2070 
2071 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2072 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2073 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2074 		else if (start_dqs_en - mid_min < 0)
2075 			mid_min += start_dqs_en - mid_min;
2076 	}
2077 	new_dqs = start_dqs - mid_min;
2078 
2079 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2080 		   new_dqs=%d mid_min=%d\n", start_dqs,
2081 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2082 		   new_dqs, mid_min);
2083 
2084 	/* Initialize data for export structures */
2085 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2086 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2087 
2088 	/* add delay to bring centre of all DQ windows to the same "level" */
2089 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2090 		/* Use values before divide by 2 to reduce round off error */
2091 		shift_dq = (left_edge[i] - right_edge[i] -
2092 			(left_edge[min_index] - right_edge[min_index]))/2  +
2093 			(orig_mid_min - mid_min);
2094 
2095 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2096 			   shift_dq[%u]=%d\n", i, shift_dq);
2097 
2098 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2099 		temp_dq_in_delay1 = readl(addr + (p << 2));
2100 		temp_dq_in_delay2 = readl(addr + (i << 2));
2101 
2102 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2103 			(int32_t)IO_IO_IN_DELAY_MAX) {
2104 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2105 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2106 			shift_dq = -(int32_t)temp_dq_in_delay1;
2107 		}
2108 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2109 			   shift_dq[%u]=%d\n", i, shift_dq);
2110 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2111 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2112 		scc_mgr_load_dq(p);
2113 
2114 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2115 			   left_edge[i] - shift_dq + (-mid_min),
2116 			   right_edge[i] + shift_dq - (-mid_min));
2117 		/* To determine values for export structures */
2118 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2119 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2120 
2121 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2122 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2123 	}
2124 
2125 	final_dqs = new_dqs;
2126 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2127 		final_dqs_en = start_dqs_en - mid_min;
2128 
2129 	/* Move DQS-en */
2130 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2131 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2132 		scc_mgr_load_dqs(read_group);
2133 	}
2134 
2135 	/* Move DQS */
2136 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2137 	scc_mgr_load_dqs(read_group);
2138 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2139 		   dqs_margin=%d", __func__, __LINE__,
2140 		   dq_margin, dqs_margin);
2141 
2142 	/*
2143 	 * Do not remove this line as it makes sure all of our decisions
2144 	 * have been applied. Apply the update bit.
2145 	 */
2146 	writel(0, &sdr_scc_mgr->update);
2147 
2148 	return (dq_margin >= 0) && (dqs_margin >= 0);
2149 }
2150 
2151 /**
2152  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2153  * @rw_group:	Read/Write Group
2154  * @phase:	DQ/DQS phase
2155  *
2156  * Because initially no communication ca be reliably performed with the memory
2157  * device, the sequencer uses a guaranteed write mechanism to write data into
2158  * the memory device.
2159  */
2160 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2161 						 const u32 phase)
2162 {
2163 	int ret;
2164 
2165 	/* Set a particular DQ/DQS phase. */
2166 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2167 
2168 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2169 		   __func__, __LINE__, rw_group, phase);
2170 
2171 	/*
2172 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2173 	 * Load up the patterns used by read calibration using the
2174 	 * current DQDQS phase.
2175 	 */
2176 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2177 
2178 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2179 		return 0;
2180 
2181 	/*
2182 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2183 	 * Back-to-Back reads of the patterns used for calibration.
2184 	 */
2185 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2186 	if (ret)
2187 		debug_cond(DLEVEL == 1,
2188 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2189 			   __func__, __LINE__, rw_group, phase);
2190 	return ret;
2191 }
2192 
2193 /**
2194  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2195  * @rw_group:	Read/Write Group
2196  * @test_bgn:	Rank at which the test begins
2197  *
2198  * DQS enable calibration ensures reliable capture of the DQ signal without
2199  * glitches on the DQS line.
2200  */
2201 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2202 						       const u32 test_bgn)
2203 {
2204 	/*
2205 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2206 	 * DQS and DQS Eanble Signal Relationships.
2207 	 */
2208 
2209 	/* We start at zero, so have one less dq to devide among */
2210 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2211 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2212 	int found;
2213 	u32 i, p, d, r;
2214 
2215 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2216 
2217 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2218 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2219 	     r += NUM_RANKS_PER_SHADOW_REG) {
2220 		for (i = 0, p = test_bgn, d = 0;
2221 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2222 		     i++, p++, d += delay_step) {
2223 			debug_cond(DLEVEL == 1,
2224 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2225 				   __func__, __LINE__, rw_group, r, i, p, d);
2226 
2227 			scc_mgr_set_dq_in_delay(p, d);
2228 			scc_mgr_load_dq(p);
2229 		}
2230 
2231 		writel(0, &sdr_scc_mgr->update);
2232 	}
2233 
2234 	/*
2235 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2236 	 * dq_in_delay values
2237 	 */
2238 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2239 
2240 	debug_cond(DLEVEL == 1,
2241 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2242 		   __func__, __LINE__, rw_group, found);
2243 
2244 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2245 	     r += NUM_RANKS_PER_SHADOW_REG) {
2246 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2247 		writel(0, &sdr_scc_mgr->update);
2248 	}
2249 
2250 	if (!found)
2251 		return -EINVAL;
2252 
2253 	return 0;
2254 
2255 }
2256 
2257 /**
2258  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2259  * @rw_group:		Read/Write Group
2260  * @test_bgn:		Rank at which the test begins
2261  * @use_read_test:	Perform a read test
2262  * @update_fom:		Update FOM
2263  *
2264  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2265  * within a group.
2266  */
2267 static int
2268 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2269 				      const int use_read_test,
2270 				      const int update_fom)
2271 
2272 {
2273 	int ret, grp_calibrated;
2274 	u32 rank_bgn, sr;
2275 
2276 	/*
2277 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2278 	 * Read per-bit deskew can be done on a per shadow register basis.
2279 	 */
2280 	grp_calibrated = 1;
2281 	for (rank_bgn = 0, sr = 0;
2282 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2283 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2284 		/* Check if this set of ranks should be skipped entirely. */
2285 		if (param->skip_shadow_regs[sr])
2286 			continue;
2287 
2288 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2289 							rw_group, test_bgn,
2290 							use_read_test,
2291 							update_fom);
2292 		if (ret)
2293 			continue;
2294 
2295 		grp_calibrated = 0;
2296 	}
2297 
2298 	if (!grp_calibrated)
2299 		return -EIO;
2300 
2301 	return 0;
2302 }
2303 
2304 /**
2305  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2306  * @rw_group:		Read/Write Group
2307  * @test_bgn:		Rank at which the test begins
2308  *
2309  * Stage 1: Calibrate the read valid prediction FIFO.
2310  *
2311  * This function implements UniPHY calibration Stage 1, as explained in
2312  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2313  *
2314  * - read valid prediction will consist of finding:
2315  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2316  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2317  *  - we also do a per-bit deskew on the DQ lines.
2318  */
2319 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2320 {
2321 	uint32_t p, d;
2322 	uint32_t dtaps_per_ptap;
2323 	uint32_t failed_substage;
2324 
2325 	int ret;
2326 
2327 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2328 
2329 	/* Update info for sims */
2330 	reg_file_set_group(rw_group);
2331 	reg_file_set_stage(CAL_STAGE_VFIFO);
2332 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2333 
2334 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2335 
2336 	/* USER Determine number of delay taps for each phase tap. */
2337 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2338 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2339 
2340 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2341 		/*
2342 		 * In RLDRAMX we may be messing the delay of pins in
2343 		 * the same write rw_group but outside of the current read
2344 		 * the rw_group, but that's ok because we haven't calibrated
2345 		 * output side yet.
2346 		 */
2347 		if (d > 0) {
2348 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2349 								rw_group, d);
2350 		}
2351 
2352 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2353 			/* 1) Guaranteed Write */
2354 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2355 			if (ret)
2356 				break;
2357 
2358 			/* 2) DQS Enable Calibration */
2359 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2360 									  test_bgn);
2361 			if (ret) {
2362 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2363 				continue;
2364 			}
2365 
2366 			/* 3) Centering DQ/DQS */
2367 			/*
2368 			 * If doing read after write calibration, do not update
2369 			 * FOM now. Do it then.
2370 			 */
2371 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2372 								test_bgn, 1, 0);
2373 			if (ret) {
2374 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2375 				continue;
2376 			}
2377 
2378 			/* All done. */
2379 			goto cal_done_ok;
2380 		}
2381 	}
2382 
2383 	/* Calibration Stage 1 failed. */
2384 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2385 	return 0;
2386 
2387 	/* Calibration Stage 1 completed OK. */
2388 cal_done_ok:
2389 	/*
2390 	 * Reset the delay chains back to zero if they have moved > 1
2391 	 * (check for > 1 because loop will increase d even when pass in
2392 	 * first case).
2393 	 */
2394 	if (d > 2)
2395 		scc_mgr_zero_group(rw_group, 1);
2396 
2397 	return 1;
2398 }
2399 
2400 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2401 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2402 					       uint32_t test_bgn)
2403 {
2404 	uint32_t rank_bgn, sr;
2405 	uint32_t grp_calibrated;
2406 	uint32_t write_group;
2407 
2408 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2409 
2410 	/* update info for sims */
2411 
2412 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2413 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2414 
2415 	write_group = read_group;
2416 
2417 	/* update info for sims */
2418 	reg_file_set_group(read_group);
2419 
2420 	grp_calibrated = 1;
2421 	/* Read per-bit deskew can be done on a per shadow register basis */
2422 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2423 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2424 		/* Determine if this set of ranks should be skipped entirely */
2425 		if (!param->skip_shadow_regs[sr]) {
2426 		/* This is the last calibration round, update FOM here */
2427 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2428 								write_group,
2429 								read_group,
2430 								test_bgn, 0,
2431 								1)) {
2432 				grp_calibrated = 0;
2433 			}
2434 		}
2435 	}
2436 
2437 
2438 	if (grp_calibrated == 0) {
2439 		set_failing_group_stage(write_group,
2440 					CAL_STAGE_VFIFO_AFTER_WRITES,
2441 					CAL_SUBSTAGE_VFIFO_CENTER);
2442 		return 0;
2443 	}
2444 
2445 	return 1;
2446 }
2447 
2448 /* Calibrate LFIFO to find smallest read latency */
2449 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2450 {
2451 	uint32_t found_one;
2452 	uint32_t bit_chk;
2453 
2454 	debug("%s:%d\n", __func__, __LINE__);
2455 
2456 	/* update info for sims */
2457 	reg_file_set_stage(CAL_STAGE_LFIFO);
2458 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2459 
2460 	/* Load up the patterns used by read calibration for all ranks */
2461 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2462 	found_one = 0;
2463 
2464 	do {
2465 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2466 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2467 			   __func__, __LINE__, gbl->curr_read_lat);
2468 
2469 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2470 							      NUM_READ_TESTS,
2471 							      PASS_ALL_BITS,
2472 							      &bit_chk, 1)) {
2473 			break;
2474 		}
2475 
2476 		found_one = 1;
2477 		/* reduce read latency and see if things are working */
2478 		/* correctly */
2479 		gbl->curr_read_lat--;
2480 	} while (gbl->curr_read_lat > 0);
2481 
2482 	/* reset the fifos to get pointers to known state */
2483 
2484 	writel(0, &phy_mgr_cmd->fifo_reset);
2485 
2486 	if (found_one) {
2487 		/* add a fudge factor to the read latency that was determined */
2488 		gbl->curr_read_lat += 2;
2489 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2490 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2491 			   read_lat=%u\n", __func__, __LINE__,
2492 			   gbl->curr_read_lat);
2493 		return 1;
2494 	} else {
2495 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2496 					CAL_SUBSTAGE_READ_LATENCY);
2497 
2498 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2499 			   read_lat=%u\n", __func__, __LINE__,
2500 			   gbl->curr_read_lat);
2501 		return 0;
2502 	}
2503 }
2504 
2505 /*
2506  * issue write test command.
2507  * two variants are provided. one that just tests a write pattern and
2508  * another that tests datamask functionality.
2509  */
2510 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2511 						  uint32_t test_dm)
2512 {
2513 	uint32_t mcc_instruction;
2514 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2515 		ENABLE_SUPER_QUICK_CALIBRATION);
2516 	uint32_t rw_wl_nop_cycles;
2517 	uint32_t addr;
2518 
2519 	/*
2520 	 * Set counter and jump addresses for the right
2521 	 * number of NOP cycles.
2522 	 * The number of supported NOP cycles can range from -1 to infinity
2523 	 * Three different cases are handled:
2524 	 *
2525 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2526 	 *    mechanism will be used to insert the right number of NOPs
2527 	 *
2528 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2529 	 *    issuing the write command will jump straight to the
2530 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2531 	 *    data (for RLD), skipping
2532 	 *    the NOP micro-instruction all together
2533 	 *
2534 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2535 	 *    turned on in the same micro-instruction that issues the write
2536 	 *    command. Then we need
2537 	 *    to directly jump to the micro-instruction that sends out the data
2538 	 *
2539 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2540 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2541 	 *       write-read operations.
2542 	 *       one counter left to issue this command in "multiple-group" mode
2543 	 */
2544 
2545 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2546 
2547 	if (rw_wl_nop_cycles == -1) {
2548 		/*
2549 		 * CNTR 2 - We want to execute the special write operation that
2550 		 * turns on DQS right away and then skip directly to the
2551 		 * instruction that sends out the data. We set the counter to a
2552 		 * large number so that the jump is always taken.
2553 		 */
2554 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2555 
2556 		/* CNTR 3 - Not used */
2557 		if (test_dm) {
2558 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2559 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2560 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2561 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2562 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2563 		} else {
2564 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2565 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2566 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2567 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2568 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2569 		}
2570 	} else if (rw_wl_nop_cycles == 0) {
2571 		/*
2572 		 * CNTR 2 - We want to skip the NOP operation and go straight
2573 		 * to the DQS enable instruction. We set the counter to a large
2574 		 * number so that the jump is always taken.
2575 		 */
2576 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2577 
2578 		/* CNTR 3 - Not used */
2579 		if (test_dm) {
2580 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2581 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2582 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2583 		} else {
2584 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2585 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2586 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2587 		}
2588 	} else {
2589 		/*
2590 		 * CNTR 2 - In this case we want to execute the next instruction
2591 		 * and NOT take the jump. So we set the counter to 0. The jump
2592 		 * address doesn't count.
2593 		 */
2594 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2595 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2596 
2597 		/*
2598 		 * CNTR 3 - Set the nop counter to the number of cycles we
2599 		 * need to loop for, minus 1.
2600 		 */
2601 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2602 		if (test_dm) {
2603 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2604 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2605 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2606 		} else {
2607 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2608 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2609 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2610 		}
2611 	}
2612 
2613 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2614 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2615 
2616 	if (quick_write_mode)
2617 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2618 	else
2619 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2620 
2621 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2622 
2623 	/*
2624 	 * CNTR 1 - This is used to ensure enough time elapses
2625 	 * for read data to come back.
2626 	 */
2627 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2628 
2629 	if (test_dm) {
2630 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2631 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2632 	} else {
2633 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2634 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2635 	}
2636 
2637 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2638 	writel(mcc_instruction, addr + (group << 2));
2639 }
2640 
2641 /* Test writes, can check for a single bit pass or multiple bit pass */
2642 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2643 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2644 	uint32_t *bit_chk, uint32_t all_ranks)
2645 {
2646 	uint32_t r;
2647 	uint32_t correct_mask_vg;
2648 	uint32_t tmp_bit_chk;
2649 	uint32_t vg;
2650 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2651 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2652 	uint32_t addr_rw_mgr;
2653 	uint32_t base_rw_mgr;
2654 
2655 	*bit_chk = param->write_correct_mask;
2656 	correct_mask_vg = param->write_correct_mask_vg;
2657 
2658 	for (r = rank_bgn; r < rank_end; r++) {
2659 		if (param->skip_ranks[r]) {
2660 			/* request to skip the rank */
2661 			continue;
2662 		}
2663 
2664 		/* set rank */
2665 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2666 
2667 		tmp_bit_chk = 0;
2668 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2669 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2670 			/* reset the fifos to get pointers to known state */
2671 			writel(0, &phy_mgr_cmd->fifo_reset);
2672 
2673 			tmp_bit_chk = tmp_bit_chk <<
2674 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2675 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2676 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2677 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2678 				use_dm);
2679 
2680 			base_rw_mgr = readl(addr_rw_mgr);
2681 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2682 			if (vg == 0)
2683 				break;
2684 		}
2685 		*bit_chk &= tmp_bit_chk;
2686 	}
2687 
2688 	if (all_correct) {
2689 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2690 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2691 			   %u => %lu", write_group, use_dm,
2692 			   *bit_chk, param->write_correct_mask,
2693 			   (long unsigned int)(*bit_chk ==
2694 			   param->write_correct_mask));
2695 		return *bit_chk == param->write_correct_mask;
2696 	} else {
2697 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2698 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2699 		       write_group, use_dm, *bit_chk);
2700 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2701 			(long unsigned int)(*bit_chk != 0));
2702 		return *bit_chk != 0x00;
2703 	}
2704 }
2705 
2706 /*
2707  * center all windows. do per-bit-deskew to possibly increase size of
2708  * certain windows.
2709  */
2710 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2711 	uint32_t write_group, uint32_t test_bgn)
2712 {
2713 	uint32_t i, p, min_index;
2714 	int32_t d;
2715 	/*
2716 	 * Store these as signed since there are comparisons with
2717 	 * signed numbers.
2718 	 */
2719 	uint32_t bit_chk;
2720 	uint32_t sticky_bit_chk;
2721 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2722 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2723 	int32_t mid;
2724 	int32_t mid_min, orig_mid_min;
2725 	int32_t new_dqs, start_dqs, shift_dq;
2726 	int32_t dq_margin, dqs_margin, dm_margin;
2727 	uint32_t stop;
2728 	uint32_t temp_dq_out1_delay;
2729 	uint32_t addr;
2730 
2731 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2732 
2733 	dm_margin = 0;
2734 
2735 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2736 	start_dqs = readl(addr +
2737 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2738 
2739 	/* per-bit deskew */
2740 
2741 	/*
2742 	 * set the left and right edge of each bit to an illegal value
2743 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2744 	 */
2745 	sticky_bit_chk = 0;
2746 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2747 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2748 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2749 	}
2750 
2751 	/* Search for the left edge of the window for each bit */
2752 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2753 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2754 
2755 		writel(0, &sdr_scc_mgr->update);
2756 
2757 		/*
2758 		 * Stop searching when the read test doesn't pass AND when
2759 		 * we've seen a passing read on every bit.
2760 		 */
2761 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2762 			0, PASS_ONE_BIT, &bit_chk, 0);
2763 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2764 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2765 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2766 			   == %u && %u [bit_chk= %u ]\n",
2767 			d, sticky_bit_chk, param->write_correct_mask,
2768 			stop, bit_chk);
2769 
2770 		if (stop == 1) {
2771 			break;
2772 		} else {
2773 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2774 				if (bit_chk & 1) {
2775 					/*
2776 					 * Remember a passing test as the
2777 					 * left_edge.
2778 					 */
2779 					left_edge[i] = d;
2780 				} else {
2781 					/*
2782 					 * If a left edge has not been seen
2783 					 * yet, then a future passing test will
2784 					 * mark this edge as the right edge.
2785 					 */
2786 					if (left_edge[i] ==
2787 						IO_IO_OUT1_DELAY_MAX + 1) {
2788 						right_edge[i] = -(d + 1);
2789 					}
2790 				}
2791 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2792 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2793 					   (int)(bit_chk & 1), i, left_edge[i]);
2794 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2795 				       right_edge[i]);
2796 				bit_chk = bit_chk >> 1;
2797 			}
2798 		}
2799 	}
2800 
2801 	/* Reset DQ delay chains to 0 */
2802 	scc_mgr_apply_group_dq_out1_delay(0);
2803 	sticky_bit_chk = 0;
2804 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2805 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2806 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2807 			   i, left_edge[i], i, right_edge[i]);
2808 
2809 		/*
2810 		 * Check for cases where we haven't found the left edge,
2811 		 * which makes our assignment of the the right edge invalid.
2812 		 * Reset it to the illegal value.
2813 		 */
2814 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2815 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2816 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2817 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2818 				   right_edge[%u]: %d\n", __func__, __LINE__,
2819 				   i, right_edge[i]);
2820 		}
2821 
2822 		/*
2823 		 * Reset sticky bit (except for bits where we have
2824 		 * seen the left edge).
2825 		 */
2826 		sticky_bit_chk = sticky_bit_chk << 1;
2827 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2828 			sticky_bit_chk = sticky_bit_chk | 1;
2829 
2830 		if (i == 0)
2831 			break;
2832 	}
2833 
2834 	/* Search for the right edge of the window for each bit */
2835 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2836 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2837 							d + start_dqs);
2838 
2839 		writel(0, &sdr_scc_mgr->update);
2840 
2841 		/*
2842 		 * Stop searching when the read test doesn't pass AND when
2843 		 * we've seen a passing read on every bit.
2844 		 */
2845 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2846 			0, PASS_ONE_BIT, &bit_chk, 0);
2847 
2848 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2849 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2850 
2851 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2852 			   %u && %u\n", d, sticky_bit_chk,
2853 			   param->write_correct_mask, stop);
2854 
2855 		if (stop == 1) {
2856 			if (d == 0) {
2857 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2858 					i++) {
2859 					/* d = 0 failed, but it passed when
2860 					testing the left edge, so it must be
2861 					marginal, set it to -1 */
2862 					if (right_edge[i] ==
2863 						IO_IO_OUT1_DELAY_MAX + 1 &&
2864 						left_edge[i] !=
2865 						IO_IO_OUT1_DELAY_MAX + 1) {
2866 						right_edge[i] = -1;
2867 					}
2868 				}
2869 			}
2870 			break;
2871 		} else {
2872 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2873 				if (bit_chk & 1) {
2874 					/*
2875 					 * Remember a passing test as
2876 					 * the right_edge.
2877 					 */
2878 					right_edge[i] = d;
2879 				} else {
2880 					if (d != 0) {
2881 						/*
2882 						 * If a right edge has not
2883 						 * been seen yet, then a future
2884 						 * passing test will mark this
2885 						 * edge as the left edge.
2886 						 */
2887 						if (right_edge[i] ==
2888 						    IO_IO_OUT1_DELAY_MAX + 1)
2889 							left_edge[i] = -(d + 1);
2890 					} else {
2891 						/*
2892 						 * d = 0 failed, but it passed
2893 						 * when testing the left edge,
2894 						 * so it must be marginal, set
2895 						 * it to -1.
2896 						 */
2897 						if (right_edge[i] ==
2898 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2899 						    left_edge[i] !=
2900 						    IO_IO_OUT1_DELAY_MAX + 1)
2901 							right_edge[i] = -1;
2902 						/*
2903 						 * If a right edge has not been
2904 						 * seen yet, then a future
2905 						 * passing test will mark this
2906 						 * edge as the left edge.
2907 						 */
2908 						else if (right_edge[i] ==
2909 							IO_IO_OUT1_DELAY_MAX +
2910 							1)
2911 							left_edge[i] = -(d + 1);
2912 					}
2913 				}
2914 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2915 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2916 					   (int)(bit_chk & 1), i, left_edge[i]);
2917 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2918 					   right_edge[i]);
2919 				bit_chk = bit_chk >> 1;
2920 			}
2921 		}
2922 	}
2923 
2924 	/* Check that all bits have a window */
2925 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2926 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2927 			   %d right_edge[%u]: %d", __func__, __LINE__,
2928 			   i, left_edge[i], i, right_edge[i]);
2929 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2930 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2931 			set_failing_group_stage(test_bgn + i,
2932 						CAL_STAGE_WRITES,
2933 						CAL_SUBSTAGE_WRITES_CENTER);
2934 			return 0;
2935 		}
2936 	}
2937 
2938 	/* Find middle of window for each DQ bit */
2939 	mid_min = left_edge[0] - right_edge[0];
2940 	min_index = 0;
2941 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2942 		mid = left_edge[i] - right_edge[i];
2943 		if (mid < mid_min) {
2944 			mid_min = mid;
2945 			min_index = i;
2946 		}
2947 	}
2948 
2949 	/*
2950 	 * -mid_min/2 represents the amount that we need to move DQS.
2951 	 * If mid_min is odd and positive we'll need to add one to
2952 	 * make sure the rounding in further calculations is correct
2953 	 * (always bias to the right), so just add 1 for all positive values.
2954 	 */
2955 	if (mid_min > 0)
2956 		mid_min++;
2957 	mid_min = mid_min / 2;
2958 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2959 		   __LINE__, mid_min);
2960 
2961 	/* Determine the amount we can change DQS (which is -mid_min) */
2962 	orig_mid_min = mid_min;
2963 	new_dqs = start_dqs;
2964 	mid_min = 0;
2965 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2966 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2967 	/* Initialize data for export structures */
2968 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2969 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2970 
2971 	/* add delay to bring centre of all DQ windows to the same "level" */
2972 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2973 		/* Use values before divide by 2 to reduce round off error */
2974 		shift_dq = (left_edge[i] - right_edge[i] -
2975 			(left_edge[min_index] - right_edge[min_index]))/2  +
2976 		(orig_mid_min - mid_min);
2977 
2978 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2979 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2980 
2981 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2982 		temp_dq_out1_delay = readl(addr + (i << 2));
2983 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2984 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2985 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2986 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2987 			shift_dq = -(int32_t)temp_dq_out1_delay;
2988 		}
2989 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2990 			   i, shift_dq);
2991 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2992 		scc_mgr_load_dq(i);
2993 
2994 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2995 			   left_edge[i] - shift_dq + (-mid_min),
2996 			   right_edge[i] + shift_dq - (-mid_min));
2997 		/* To determine values for export structures */
2998 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2999 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3000 
3001 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3002 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3003 	}
3004 
3005 	/* Move DQS */
3006 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3007 	writel(0, &sdr_scc_mgr->update);
3008 
3009 	/* Centre DM */
3010 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3011 
3012 	/*
3013 	 * set the left and right edge of each bit to an illegal value,
3014 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3015 	 */
3016 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3017 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3018 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3019 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3020 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3021 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3022 	int32_t win_best = 0;
3023 
3024 	/* Search for the/part of the window with DM shift */
3025 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3026 		scc_mgr_apply_group_dm_out1_delay(d);
3027 		writel(0, &sdr_scc_mgr->update);
3028 
3029 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3030 						    PASS_ALL_BITS, &bit_chk,
3031 						    0)) {
3032 			/* USE Set current end of the window */
3033 			end_curr = -d;
3034 			/*
3035 			 * If a starting edge of our window has not been seen
3036 			 * this is our current start of the DM window.
3037 			 */
3038 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3039 				bgn_curr = -d;
3040 
3041 			/*
3042 			 * If current window is bigger than best seen.
3043 			 * Set best seen to be current window.
3044 			 */
3045 			if ((end_curr-bgn_curr+1) > win_best) {
3046 				win_best = end_curr-bgn_curr+1;
3047 				bgn_best = bgn_curr;
3048 				end_best = end_curr;
3049 			}
3050 		} else {
3051 			/* We just saw a failing test. Reset temp edge */
3052 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3053 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3054 			}
3055 		}
3056 
3057 
3058 	/* Reset DM delay chains to 0 */
3059 	scc_mgr_apply_group_dm_out1_delay(0);
3060 
3061 	/*
3062 	 * Check to see if the current window nudges up aganist 0 delay.
3063 	 * If so we need to continue the search by shifting DQS otherwise DQS
3064 	 * search begins as a new search. */
3065 	if (end_curr != 0) {
3066 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3067 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3068 	}
3069 
3070 	/* Search for the/part of the window with DQS shifts */
3071 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3072 		/*
3073 		 * Note: This only shifts DQS, so are we limiting ourselve to
3074 		 * width of DQ unnecessarily.
3075 		 */
3076 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3077 							d + new_dqs);
3078 
3079 		writel(0, &sdr_scc_mgr->update);
3080 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3081 						    PASS_ALL_BITS, &bit_chk,
3082 						    0)) {
3083 			/* USE Set current end of the window */
3084 			end_curr = d;
3085 			/*
3086 			 * If a beginning edge of our window has not been seen
3087 			 * this is our current begin of the DM window.
3088 			 */
3089 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3090 				bgn_curr = d;
3091 
3092 			/*
3093 			 * If current window is bigger than best seen. Set best
3094 			 * seen to be current window.
3095 			 */
3096 			if ((end_curr-bgn_curr+1) > win_best) {
3097 				win_best = end_curr-bgn_curr+1;
3098 				bgn_best = bgn_curr;
3099 				end_best = end_curr;
3100 			}
3101 		} else {
3102 			/* We just saw a failing test. Reset temp edge */
3103 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3104 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3105 
3106 			/* Early exit optimization: if ther remaining delay
3107 			chain space is less than already seen largest window
3108 			we can exit */
3109 			if ((win_best-1) >
3110 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3111 					break;
3112 				}
3113 			}
3114 		}
3115 
3116 	/* assign left and right edge for cal and reporting; */
3117 	left_edge[0] = -1*bgn_best;
3118 	right_edge[0] = end_best;
3119 
3120 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3121 		   __LINE__, left_edge[0], right_edge[0]);
3122 
3123 	/* Move DQS (back to orig) */
3124 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3125 
3126 	/* Move DM */
3127 
3128 	/* Find middle of window for the DM bit */
3129 	mid = (left_edge[0] - right_edge[0]) / 2;
3130 
3131 	/* only move right, since we are not moving DQS/DQ */
3132 	if (mid < 0)
3133 		mid = 0;
3134 
3135 	/* dm_marign should fail if we never find a window */
3136 	if (win_best == 0)
3137 		dm_margin = -1;
3138 	else
3139 		dm_margin = left_edge[0] - mid;
3140 
3141 	scc_mgr_apply_group_dm_out1_delay(mid);
3142 	writel(0, &sdr_scc_mgr->update);
3143 
3144 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3145 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3146 		   right_edge[0], mid, dm_margin);
3147 	/* Export values */
3148 	gbl->fom_out += dq_margin + dqs_margin;
3149 
3150 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3151 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3152 		   dq_margin, dqs_margin, dm_margin);
3153 
3154 	/*
3155 	 * Do not remove this line as it makes sure all of our
3156 	 * decisions have been applied.
3157 	 */
3158 	writel(0, &sdr_scc_mgr->update);
3159 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3160 }
3161 
3162 /* calibrate the write operations */
3163 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3164 	uint32_t test_bgn)
3165 {
3166 	/* update info for sims */
3167 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3168 
3169 	reg_file_set_stage(CAL_STAGE_WRITES);
3170 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3171 
3172 	reg_file_set_group(g);
3173 
3174 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3175 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3176 					CAL_SUBSTAGE_WRITES_CENTER);
3177 		return 0;
3178 	}
3179 
3180 	return 1;
3181 }
3182 
3183 /**
3184  * mem_precharge_and_activate() - Precharge all banks and activate
3185  *
3186  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3187  */
3188 static void mem_precharge_and_activate(void)
3189 {
3190 	int r;
3191 
3192 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3193 		/* Test if the rank should be skipped. */
3194 		if (param->skip_ranks[r])
3195 			continue;
3196 
3197 		/* Set rank. */
3198 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3199 
3200 		/* Precharge all banks. */
3201 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3202 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3203 
3204 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3205 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3206 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3207 
3208 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3209 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3210 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3211 
3212 		/* Activate rows. */
3213 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3214 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3215 	}
3216 }
3217 
3218 /**
3219  * mem_init_latency() - Configure memory RLAT and WLAT settings
3220  *
3221  * Configure memory RLAT and WLAT parameters.
3222  */
3223 static void mem_init_latency(void)
3224 {
3225 	/*
3226 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3227 	 * so max latency in AFI clocks, used here, is correspondingly
3228 	 * smaller.
3229 	 */
3230 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3231 	u32 rlat, wlat;
3232 
3233 	debug("%s:%d\n", __func__, __LINE__);
3234 
3235 	/*
3236 	 * Read in write latency.
3237 	 * WL for Hard PHY does not include additive latency.
3238 	 */
3239 	wlat = readl(&data_mgr->t_wl_add);
3240 	wlat += readl(&data_mgr->mem_t_add);
3241 
3242 	gbl->rw_wl_nop_cycles = wlat - 1;
3243 
3244 	/* Read in readl latency. */
3245 	rlat = readl(&data_mgr->t_rl_add);
3246 
3247 	/* Set a pretty high read latency initially. */
3248 	gbl->curr_read_lat = rlat + 16;
3249 	if (gbl->curr_read_lat > max_latency)
3250 		gbl->curr_read_lat = max_latency;
3251 
3252 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3253 
3254 	/* Advertise write latency. */
3255 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3256 }
3257 
3258 /**
3259  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3260  *
3261  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3262  */
3263 static void mem_skip_calibrate(void)
3264 {
3265 	uint32_t vfifo_offset;
3266 	uint32_t i, j, r;
3267 
3268 	debug("%s:%d\n", __func__, __LINE__);
3269 	/* Need to update every shadow register set used by the interface */
3270 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3271 	     r += NUM_RANKS_PER_SHADOW_REG) {
3272 		/*
3273 		 * Set output phase alignment settings appropriate for
3274 		 * skip calibration.
3275 		 */
3276 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3277 			scc_mgr_set_dqs_en_phase(i, 0);
3278 #if IO_DLL_CHAIN_LENGTH == 6
3279 			scc_mgr_set_dqdqs_output_phase(i, 6);
3280 #else
3281 			scc_mgr_set_dqdqs_output_phase(i, 7);
3282 #endif
3283 			/*
3284 			 * Case:33398
3285 			 *
3286 			 * Write data arrives to the I/O two cycles before write
3287 			 * latency is reached (720 deg).
3288 			 *   -> due to bit-slip in a/c bus
3289 			 *   -> to allow board skew where dqs is longer than ck
3290 			 *      -> how often can this happen!?
3291 			 *      -> can claim back some ptaps for high freq
3292 			 *       support if we can relax this, but i digress...
3293 			 *
3294 			 * The write_clk leads mem_ck by 90 deg
3295 			 * The minimum ptap of the OPA is 180 deg
3296 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3297 			 * The write_clk is always delayed by 2 ptaps
3298 			 *
3299 			 * Hence, to make DQS aligned to CK, we need to delay
3300 			 * DQS by:
3301 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3302 			 *
3303 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3304 			 * gives us the number of ptaps, which simplies to:
3305 			 *
3306 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3307 			 */
3308 			scc_mgr_set_dqdqs_output_phase(i,
3309 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3310 		}
3311 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3312 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3313 
3314 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3315 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3316 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3317 		}
3318 		writel(0xff, &sdr_scc_mgr->dq_ena);
3319 		writel(0xff, &sdr_scc_mgr->dm_ena);
3320 		writel(0, &sdr_scc_mgr->update);
3321 	}
3322 
3323 	/* Compensate for simulation model behaviour */
3324 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3325 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3326 		scc_mgr_load_dqs(i);
3327 	}
3328 	writel(0, &sdr_scc_mgr->update);
3329 
3330 	/*
3331 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3332 	 * in sequencer.
3333 	 */
3334 	vfifo_offset = CALIB_VFIFO_OFFSET;
3335 	for (j = 0; j < vfifo_offset; j++)
3336 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3337 	writel(0, &phy_mgr_cmd->fifo_reset);
3338 
3339 	/*
3340 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3341 	 * setting from generation-time constant.
3342 	 */
3343 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3344 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3345 }
3346 
3347 /**
3348  * mem_calibrate() - Memory calibration entry point.
3349  *
3350  * Perform memory calibration.
3351  */
3352 static uint32_t mem_calibrate(void)
3353 {
3354 	uint32_t i;
3355 	uint32_t rank_bgn, sr;
3356 	uint32_t write_group, write_test_bgn;
3357 	uint32_t read_group, read_test_bgn;
3358 	uint32_t run_groups, current_run;
3359 	uint32_t failing_groups = 0;
3360 	uint32_t group_failed = 0;
3361 
3362 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3363 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3364 
3365 	debug("%s:%d\n", __func__, __LINE__);
3366 
3367 	/* Initialize the data settings */
3368 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3369 	gbl->error_stage = CAL_STAGE_NIL;
3370 	gbl->error_group = 0xff;
3371 	gbl->fom_in = 0;
3372 	gbl->fom_out = 0;
3373 
3374 	/* Initialize WLAT and RLAT. */
3375 	mem_init_latency();
3376 
3377 	/* Initialize bit slips. */
3378 	mem_precharge_and_activate();
3379 
3380 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3381 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3382 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3383 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3384 		if (i == 0)
3385 			scc_mgr_set_hhp_extras();
3386 
3387 		scc_set_bypass_mode(i);
3388 	}
3389 
3390 	/* Calibration is skipped. */
3391 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3392 		/*
3393 		 * Set VFIFO and LFIFO to instant-on settings in skip
3394 		 * calibration mode.
3395 		 */
3396 		mem_skip_calibrate();
3397 
3398 		/*
3399 		 * Do not remove this line as it makes sure all of our
3400 		 * decisions have been applied.
3401 		 */
3402 		writel(0, &sdr_scc_mgr->update);
3403 		return 1;
3404 	}
3405 
3406 	/* Calibration is not skipped. */
3407 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3408 		/*
3409 		 * Zero all delay chain/phase settings for all
3410 		 * groups and all shadow register sets.
3411 		 */
3412 		scc_mgr_zero_all();
3413 
3414 		run_groups = ~param->skip_groups;
3415 
3416 		for (write_group = 0, write_test_bgn = 0; write_group
3417 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3418 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3419 
3420 			/* Initialize the group failure */
3421 			group_failed = 0;
3422 
3423 			current_run = run_groups & ((1 <<
3424 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3425 			run_groups = run_groups >>
3426 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3427 
3428 			if (current_run == 0)
3429 				continue;
3430 
3431 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3432 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3433 			scc_mgr_zero_group(write_group, 0);
3434 
3435 			for (read_group = write_group * rwdqs_ratio,
3436 			     read_test_bgn = 0;
3437 			     read_group < (write_group + 1) * rwdqs_ratio;
3438 			     read_group++,
3439 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3440 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3441 					continue;
3442 
3443 				/* Calibrate the VFIFO */
3444 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3445 							       read_test_bgn))
3446 					continue;
3447 
3448 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3449 					return 0;
3450 
3451 				/* The group failed, we're done. */
3452 				goto grp_failed;
3453 			}
3454 
3455 			/* Calibrate the output side */
3456 			for (rank_bgn = 0, sr = 0;
3457 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3458 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3459 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3460 					continue;
3461 
3462 				/* Not needed in quick mode! */
3463 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3464 					continue;
3465 
3466 				/*
3467 				 * Determine if this set of ranks
3468 				 * should be skipped entirely.
3469 				 */
3470 				if (param->skip_shadow_regs[sr])
3471 					continue;
3472 
3473 				/* Calibrate WRITEs */
3474 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3475 						write_group, write_test_bgn))
3476 					continue;
3477 
3478 				group_failed = 1;
3479 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3480 					return 0;
3481 			}
3482 
3483 			/* Some group failed, we're done. */
3484 			if (group_failed)
3485 				goto grp_failed;
3486 
3487 			for (read_group = write_group * rwdqs_ratio,
3488 			     read_test_bgn = 0;
3489 			     read_group < (write_group + 1) * rwdqs_ratio;
3490 			     read_group++,
3491 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3492 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3493 					continue;
3494 
3495 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3496 								read_test_bgn))
3497 					continue;
3498 
3499 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3500 					return 0;
3501 
3502 				/* The group failed, we're done. */
3503 				goto grp_failed;
3504 			}
3505 
3506 			/* No group failed, continue as usual. */
3507 			continue;
3508 
3509 grp_failed:		/* A group failed, increment the counter. */
3510 			failing_groups++;
3511 		}
3512 
3513 		/*
3514 		 * USER If there are any failing groups then report
3515 		 * the failure.
3516 		 */
3517 		if (failing_groups != 0)
3518 			return 0;
3519 
3520 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3521 			continue;
3522 
3523 		/*
3524 		 * If we're skipping groups as part of debug,
3525 		 * don't calibrate LFIFO.
3526 		 */
3527 		if (param->skip_groups != 0)
3528 			continue;
3529 
3530 		/* Calibrate the LFIFO */
3531 		if (!rw_mgr_mem_calibrate_lfifo())
3532 			return 0;
3533 	}
3534 
3535 	/*
3536 	 * Do not remove this line as it makes sure all of our decisions
3537 	 * have been applied.
3538 	 */
3539 	writel(0, &sdr_scc_mgr->update);
3540 	return 1;
3541 }
3542 
3543 /**
3544  * run_mem_calibrate() - Perform memory calibration
3545  *
3546  * This function triggers the entire memory calibration procedure.
3547  */
3548 static int run_mem_calibrate(void)
3549 {
3550 	int pass;
3551 
3552 	debug("%s:%d\n", __func__, __LINE__);
3553 
3554 	/* Reset pass/fail status shown on afi_cal_success/fail */
3555 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3556 
3557 	/* Stop tracking manager. */
3558 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3559 
3560 	phy_mgr_initialize();
3561 	rw_mgr_mem_initialize();
3562 
3563 	/* Perform the actual memory calibration. */
3564 	pass = mem_calibrate();
3565 
3566 	mem_precharge_and_activate();
3567 	writel(0, &phy_mgr_cmd->fifo_reset);
3568 
3569 	/* Handoff. */
3570 	rw_mgr_mem_handoff();
3571 	/*
3572 	 * In Hard PHY this is a 2-bit control:
3573 	 * 0: AFI Mux Select
3574 	 * 1: DDIO Mux Select
3575 	 */
3576 	writel(0x2, &phy_mgr_cfg->mux_sel);
3577 
3578 	/* Start tracking manager. */
3579 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3580 
3581 	return pass;
3582 }
3583 
3584 /**
3585  * debug_mem_calibrate() - Report result of memory calibration
3586  * @pass:	Value indicating whether calibration passed or failed
3587  *
3588  * This function reports the results of the memory calibration
3589  * and writes debug information into the register file.
3590  */
3591 static void debug_mem_calibrate(int pass)
3592 {
3593 	uint32_t debug_info;
3594 
3595 	if (pass) {
3596 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3597 
3598 		gbl->fom_in /= 2;
3599 		gbl->fom_out /= 2;
3600 
3601 		if (gbl->fom_in > 0xff)
3602 			gbl->fom_in = 0xff;
3603 
3604 		if (gbl->fom_out > 0xff)
3605 			gbl->fom_out = 0xff;
3606 
3607 		/* Update the FOM in the register file */
3608 		debug_info = gbl->fom_in;
3609 		debug_info |= gbl->fom_out << 8;
3610 		writel(debug_info, &sdr_reg_file->fom);
3611 
3612 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3613 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3614 	} else {
3615 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3616 
3617 		debug_info = gbl->error_stage;
3618 		debug_info |= gbl->error_substage << 8;
3619 		debug_info |= gbl->error_group << 16;
3620 
3621 		writel(debug_info, &sdr_reg_file->failing_stage);
3622 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3623 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3624 
3625 		/* Update the failing group/stage in the register file */
3626 		debug_info = gbl->error_stage;
3627 		debug_info |= gbl->error_substage << 8;
3628 		debug_info |= gbl->error_group << 16;
3629 		writel(debug_info, &sdr_reg_file->failing_stage);
3630 	}
3631 
3632 	printf("%s: Calibration complete\n", __FILE__);
3633 }
3634 
3635 /**
3636  * hc_initialize_rom_data() - Initialize ROM data
3637  *
3638  * Initialize ROM data.
3639  */
3640 static void hc_initialize_rom_data(void)
3641 {
3642 	u32 i, addr;
3643 
3644 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3645 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3646 		writel(inst_rom_init[i], addr + (i << 2));
3647 
3648 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3649 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3650 		writel(ac_rom_init[i], addr + (i << 2));
3651 }
3652 
3653 /**
3654  * initialize_reg_file() - Initialize SDR register file
3655  *
3656  * Initialize SDR register file.
3657  */
3658 static void initialize_reg_file(void)
3659 {
3660 	/* Initialize the register file with the correct data */
3661 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3662 	writel(0, &sdr_reg_file->debug_data_addr);
3663 	writel(0, &sdr_reg_file->cur_stage);
3664 	writel(0, &sdr_reg_file->fom);
3665 	writel(0, &sdr_reg_file->failing_stage);
3666 	writel(0, &sdr_reg_file->debug1);
3667 	writel(0, &sdr_reg_file->debug2);
3668 }
3669 
3670 /**
3671  * initialize_hps_phy() - Initialize HPS PHY
3672  *
3673  * Initialize HPS PHY.
3674  */
3675 static void initialize_hps_phy(void)
3676 {
3677 	uint32_t reg;
3678 	/*
3679 	 * Tracking also gets configured here because it's in the
3680 	 * same register.
3681 	 */
3682 	uint32_t trk_sample_count = 7500;
3683 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3684 	/*
3685 	 * Format is number of outer loops in the 16 MSB, sample
3686 	 * count in 16 LSB.
3687 	 */
3688 
3689 	reg = 0;
3690 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3691 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3692 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3693 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3694 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3695 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3696 	/*
3697 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3698 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3699 	 */
3700 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3701 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3702 		trk_sample_count);
3703 	writel(reg, &sdr_ctrl->phy_ctrl0);
3704 
3705 	reg = 0;
3706 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3707 		trk_sample_count >>
3708 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3709 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3710 		trk_long_idle_sample_count);
3711 	writel(reg, &sdr_ctrl->phy_ctrl1);
3712 
3713 	reg = 0;
3714 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3715 		trk_long_idle_sample_count >>
3716 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3717 	writel(reg, &sdr_ctrl->phy_ctrl2);
3718 }
3719 
3720 /**
3721  * initialize_tracking() - Initialize tracking
3722  *
3723  * Initialize the register file with usable initial data.
3724  */
3725 static void initialize_tracking(void)
3726 {
3727 	/*
3728 	 * Initialize the register file with the correct data.
3729 	 * Compute usable version of value in case we skip full
3730 	 * computation later.
3731 	 */
3732 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3733 	       &sdr_reg_file->dtaps_per_ptap);
3734 
3735 	/* trk_sample_count */
3736 	writel(7500, &sdr_reg_file->trk_sample_count);
3737 
3738 	/* longidle outer loop [15:0] */
3739 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3740 
3741 	/*
3742 	 * longidle sample count [31:24]
3743 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3744 	 * trcd, worst case [15:8]
3745 	 * vfifo wait [7:0]
3746 	 */
3747 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3748 	       &sdr_reg_file->delays);
3749 
3750 	/* mux delay */
3751 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3752 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3753 	       &sdr_reg_file->trk_rw_mgr_addr);
3754 
3755 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3756 	       &sdr_reg_file->trk_read_dqs_width);
3757 
3758 	/* trefi [7:0] */
3759 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3760 	       &sdr_reg_file->trk_rfsh);
3761 }
3762 
3763 int sdram_calibration_full(void)
3764 {
3765 	struct param_type my_param;
3766 	struct gbl_type my_gbl;
3767 	uint32_t pass;
3768 
3769 	memset(&my_param, 0, sizeof(my_param));
3770 	memset(&my_gbl, 0, sizeof(my_gbl));
3771 
3772 	param = &my_param;
3773 	gbl = &my_gbl;
3774 
3775 	/* Set the calibration enabled by default */
3776 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3777 	/*
3778 	 * Only sweep all groups (regardless of fail state) by default
3779 	 * Set enabled read test by default.
3780 	 */
3781 #if DISABLE_GUARANTEED_READ
3782 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3783 #endif
3784 	/* Initialize the register file */
3785 	initialize_reg_file();
3786 
3787 	/* Initialize any PHY CSR */
3788 	initialize_hps_phy();
3789 
3790 	scc_mgr_initialize();
3791 
3792 	initialize_tracking();
3793 
3794 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3795 
3796 	debug("%s:%d\n", __func__, __LINE__);
3797 	debug_cond(DLEVEL == 1,
3798 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3799 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3800 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3801 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3802 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3803 	debug_cond(DLEVEL == 1,
3804 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3805 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3806 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3807 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3808 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3809 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3810 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3811 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3812 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3813 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3814 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3815 		   IO_IO_OUT2_DELAY_MAX);
3816 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3817 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3818 
3819 	hc_initialize_rom_data();
3820 
3821 	/* update info for sims */
3822 	reg_file_set_stage(CAL_STAGE_NIL);
3823 	reg_file_set_group(0);
3824 
3825 	/*
3826 	 * Load global needed for those actions that require
3827 	 * some dynamic calibration support.
3828 	 */
3829 	dyn_calib_steps = STATIC_CALIB_STEPS;
3830 	/*
3831 	 * Load global to allow dynamic selection of delay loop settings
3832 	 * based on calibration mode.
3833 	 */
3834 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3835 		skip_delay_mask = 0xff;
3836 	else
3837 		skip_delay_mask = 0x0;
3838 
3839 	pass = run_mem_calibrate();
3840 	debug_mem_calibrate(pass);
3841 	return pass;
3842 }
3843