1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 /** 1290 * rw_mgr_incr_vfifo() - Increase VFIFO value 1291 * @grp: Read/Write group 1292 * 1293 * Increase VFIFO value. 1294 */ 1295 static void rw_mgr_incr_vfifo(const u32 grp) 1296 { 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1298 } 1299 1300 /** 1301 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1302 * @grp: Read/Write group 1303 * 1304 * Decrease VFIFO value. 1305 */ 1306 static void rw_mgr_decr_vfifo(const u32 grp) 1307 { 1308 u32 i; 1309 1310 for (i = 0; i < VFIFO_SIZE - 1; i++) 1311 rw_mgr_incr_vfifo(grp); 1312 } 1313 1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1315 { 1316 uint32_t v; 1317 uint32_t fail_cnt = 0; 1318 uint32_t test_status; 1319 1320 for (v = 0; v < VFIFO_SIZE; v++) { 1321 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1322 __func__, __LINE__, v); 1323 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1324 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1325 if (!test_status) { 1326 fail_cnt++; 1327 1328 if (fail_cnt == 2) 1329 break; 1330 } 1331 1332 /* fiddle with FIFO */ 1333 rw_mgr_incr_vfifo(grp); 1334 } 1335 1336 if (v >= VFIFO_SIZE) { 1337 /* no failing read found!! Something must have gone wrong */ 1338 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1339 __func__, __LINE__); 1340 return 0; 1341 } else { 1342 return v; 1343 } 1344 } 1345 1346 /** 1347 * sdr_find_phase() - Find DQS enable phase 1348 * @working: If 1, look for working phase, if 0, look for non-working phase 1349 * @grp: Read/Write group 1350 * @work: Working window position 1351 * @i: Iterator 1352 * @p: DQS Phase Iterator 1353 * 1354 * Find working or non-working DQS enable phase setting. 1355 */ 1356 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1357 u32 *i, u32 *p) 1358 { 1359 u32 ret, bit_chk; 1360 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1361 1362 for (; *i < end; (*i)++) { 1363 if (working) 1364 *p = 0; 1365 1366 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1367 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1368 1369 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1370 PASS_ONE_BIT, &bit_chk, 0); 1371 if (!working) 1372 ret = !ret; 1373 1374 if (ret) 1375 return 0; 1376 1377 *work += IO_DELAY_PER_OPA_TAP; 1378 } 1379 1380 if (*p > IO_DQS_EN_PHASE_MAX) { 1381 /* Fiddle with FIFO. */ 1382 rw_mgr_incr_vfifo(grp); 1383 if (!working) 1384 *p = 0; 1385 } 1386 } 1387 1388 return -EINVAL; 1389 } 1390 1391 /** 1392 * sdr_working_phase() - Find working DQS enable phase 1393 * @grp: Read/Write group 1394 * @work_bgn: Working window start position 1395 * @d: dtaps output value 1396 * @p: DQS Phase Iterator 1397 * @i: Iterator 1398 * 1399 * Find working DQS enable phase setting. 1400 */ 1401 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1402 u32 *p, u32 *i) 1403 { 1404 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1405 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1406 int ret; 1407 1408 *work_bgn = 0; 1409 1410 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1411 *i = 0; 1412 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1413 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1414 if (!ret) 1415 return 0; 1416 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1417 } 1418 1419 /* Cannot find working solution */ 1420 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1421 __func__, __LINE__); 1422 return -EINVAL; 1423 } 1424 1425 /** 1426 * sdr_backup_phase() - Find DQS enable backup phase 1427 * @grp: Read/Write group 1428 * @work_bgn: Working window start position 1429 * @p: DQS Phase Iterator 1430 * 1431 * Find DQS enable backup phase setting. 1432 */ 1433 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1434 { 1435 u32 tmp_delay, bit_chk, d; 1436 int ret; 1437 1438 /* Special case code for backing up a phase */ 1439 if (*p == 0) { 1440 *p = IO_DQS_EN_PHASE_MAX; 1441 rw_mgr_decr_vfifo(grp); 1442 } else { 1443 (*p)--; 1444 } 1445 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1446 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1447 1448 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1449 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1450 1451 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1452 PASS_ONE_BIT, &bit_chk, 0); 1453 if (ret) { 1454 *work_bgn = tmp_delay; 1455 break; 1456 } 1457 1458 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1459 } 1460 1461 /* Restore VFIFO to old state before we decremented it (if needed). */ 1462 (*p)++; 1463 if (*p > IO_DQS_EN_PHASE_MAX) { 1464 *p = 0; 1465 rw_mgr_incr_vfifo(grp); 1466 } 1467 1468 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1469 } 1470 1471 /** 1472 * sdr_nonworking_phase() - Find non-working DQS enable phase 1473 * @grp: Read/Write group 1474 * @work_end: Working window end position 1475 * @p: DQS Phase Iterator 1476 * @i: Iterator 1477 * 1478 * Find non-working DQS enable phase setting. 1479 */ 1480 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1481 { 1482 int ret; 1483 1484 (*p)++; 1485 *work_end += IO_DELAY_PER_OPA_TAP; 1486 if (*p > IO_DQS_EN_PHASE_MAX) { 1487 /* Fiddle with FIFO. */ 1488 *p = 0; 1489 rw_mgr_incr_vfifo(grp); 1490 } 1491 1492 ret = sdr_find_phase(0, grp, work_end, i, p); 1493 if (ret) { 1494 /* Cannot see edge of failing read. */ 1495 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1496 __func__, __LINE__); 1497 } 1498 1499 return ret; 1500 } 1501 1502 /** 1503 * sdr_find_window_center() - Find center of the working DQS window. 1504 * @grp: Read/Write group 1505 * @work_bgn: First working settings 1506 * @work_end: Last working settings 1507 * 1508 * Find center of the working DQS enable window. 1509 */ 1510 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1511 const u32 work_end) 1512 { 1513 u32 bit_chk, work_mid; 1514 int tmp_delay = 0; 1515 int i, p, d; 1516 1517 work_mid = (work_bgn + work_end) / 2; 1518 1519 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1520 work_bgn, work_end, work_mid); 1521 /* Get the middle delay to be less than a VFIFO delay */ 1522 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1523 1524 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1525 work_mid %= tmp_delay; 1526 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1527 1528 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1529 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1530 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1531 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1532 1533 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1534 1535 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1536 if (d > IO_DQS_EN_DELAY_MAX) 1537 d = IO_DQS_EN_DELAY_MAX; 1538 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1539 1540 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1541 1542 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1543 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1544 1545 /* 1546 * push vfifo until we can successfully calibrate. We can do this 1547 * because the largest possible margin in 1 VFIFO cycle. 1548 */ 1549 for (i = 0; i < VFIFO_SIZE; i++) { 1550 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1551 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1552 PASS_ONE_BIT, 1553 &bit_chk, 0)) { 1554 debug_cond(DLEVEL == 2, 1555 "%s:%d center: found: ptap=%u dtap=%u\n", 1556 __func__, __LINE__, p, d); 1557 return 0; 1558 } 1559 1560 /* Fiddle with FIFO. */ 1561 rw_mgr_incr_vfifo(grp); 1562 } 1563 1564 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1565 __func__, __LINE__); 1566 return -EINVAL; 1567 } 1568 1569 /* find a good dqs enable to use */ 1570 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1571 { 1572 uint32_t d, p, i; 1573 uint32_t bit_chk; 1574 uint32_t dtaps_per_ptap; 1575 uint32_t work_bgn, work_end; 1576 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1577 1578 debug("%s:%d %u\n", __func__, __LINE__, grp); 1579 1580 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1581 1582 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1583 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1584 1585 /* ************************************************************** */ 1586 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1587 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1588 1589 /* ********************************************************* */ 1590 /* * Step 1 : First push vfifo until we get a failing read * */ 1591 find_vfifo_read(grp, &bit_chk); 1592 1593 /* ******************************************************** */ 1594 /* * step 2: find first working phase, increment in ptaps * */ 1595 work_bgn = 0; 1596 if (sdr_working_phase(grp, &work_bgn, &d, &p, &i)) 1597 return 0; 1598 1599 work_end = work_bgn; 1600 1601 /* 1602 * If d is 0 then the working window covers a phase tap and 1603 * we can follow the old procedure otherwise, we've found the beginning, 1604 * and we need to increment the dtaps until we find the end. 1605 */ 1606 if (d == 0) { 1607 /* ********************************************************* */ 1608 /* * step 3a: if we have room, back off by one and 1609 increment in dtaps * */ 1610 1611 sdr_backup_phase(grp, &work_bgn, &p); 1612 1613 /* ********************************************************* */ 1614 /* * step 4a: go forward from working phase to non working 1615 phase, increment in ptaps * */ 1616 if (sdr_nonworking_phase(grp, &work_end, &p, &i)) 1617 return 0; 1618 1619 /* ********************************************************* */ 1620 /* * step 5a: back off one from last, increment in dtaps * */ 1621 1622 /* Special case code for backing up a phase */ 1623 if (p == 0) { 1624 p = IO_DQS_EN_PHASE_MAX; 1625 rw_mgr_decr_vfifo(grp); 1626 } else { 1627 p = p - 1; 1628 } 1629 1630 work_end -= IO_DELAY_PER_OPA_TAP; 1631 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1632 1633 /* * The actual increment of dtaps is done outside of 1634 the if/else loop to share code */ 1635 d = 0; 1636 1637 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p: \ 1638 ptap=%u\n", __func__, __LINE__, 1639 p); 1640 } else { 1641 /* ******************************************************* */ 1642 /* * step 3-5b: Find the right edge of the window using 1643 delay taps * */ 1644 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1645 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1646 p, d, work_bgn); 1647 1648 work_end = work_bgn; 1649 } 1650 1651 /* The dtap increment to find the failing edge is done here */ 1652 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1653 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1655 end-2: dtap=%u\n", __func__, __LINE__, d); 1656 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1657 1658 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1659 PASS_ONE_BIT, 1660 &bit_chk, 0)) { 1661 break; 1662 } 1663 } 1664 1665 /* Go back to working dtap */ 1666 if (d != 0) 1667 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1668 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: p/d: \ 1670 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1671 p, d-1, work_end); 1672 1673 if (work_end < work_bgn) { 1674 /* nil range */ 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1676 failed\n", __func__, __LINE__); 1677 return 0; 1678 } 1679 1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1681 __func__, __LINE__, work_bgn, work_end); 1682 1683 /* *************************************************************** */ 1684 /* 1685 * * We need to calculate the number of dtaps that equal a ptap 1686 * * To do that we'll back up a ptap and re-find the edge of the 1687 * * window using dtaps 1688 */ 1689 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1691 for tracking\n", __func__, __LINE__); 1692 1693 /* Special case code for backing up a phase */ 1694 if (p == 0) { 1695 p = IO_DQS_EN_PHASE_MAX; 1696 rw_mgr_decr_vfifo(grp); 1697 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1698 cycle/phase: p=%u\n", __func__, __LINE__, 1699 p); 1700 } else { 1701 p = p - 1; 1702 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1703 phase only: p=%u", __func__, __LINE__, 1704 p); 1705 } 1706 1707 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1708 1709 /* 1710 * Increase dtap until we first see a passing read (in case the 1711 * window is smaller than a ptap), 1712 * and then a failing read to mark the edge of the window again 1713 */ 1714 1715 /* Find a passing read */ 1716 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1717 __func__, __LINE__); 1718 found_passing_read = 0; 1719 found_failing_read = 0; 1720 initial_failing_dtap = d; 1721 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1722 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1723 read d=%u\n", __func__, __LINE__, d); 1724 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1725 1726 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1727 PASS_ONE_BIT, 1728 &bit_chk, 0)) { 1729 found_passing_read = 1; 1730 break; 1731 } 1732 } 1733 1734 if (found_passing_read) { 1735 /* Find a failing read */ 1736 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1737 read\n", __func__, __LINE__); 1738 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1739 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1740 testing read d=%u\n", __func__, __LINE__, d); 1741 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1742 1743 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1744 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1745 found_failing_read = 1; 1746 break; 1747 } 1748 } 1749 } else { 1750 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1751 calculate dtaps", __func__, __LINE__); 1752 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1753 } 1754 1755 /* 1756 * The dynamically calculated dtaps_per_ptap is only valid if we 1757 * found a passing/failing read. If we didn't, it means d hit the max 1758 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1759 * statically calculated value. 1760 */ 1761 if (found_passing_read && found_failing_read) 1762 dtaps_per_ptap = d - initial_failing_dtap; 1763 1764 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1765 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1766 - %u = %u", __func__, __LINE__, d, 1767 initial_failing_dtap, dtaps_per_ptap); 1768 1769 /* ******************************************** */ 1770 /* * step 6: Find the centre of the window * */ 1771 if (sdr_find_window_centre(grp, work_bgn, work_end)) 1772 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1773 1774 return 1; 1775 } 1776 1777 /* per-bit deskew DQ and center */ 1778 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1779 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1780 uint32_t use_read_test, uint32_t update_fom) 1781 { 1782 uint32_t i, p, d, min_index; 1783 /* 1784 * Store these as signed since there are comparisons with 1785 * signed numbers. 1786 */ 1787 uint32_t bit_chk; 1788 uint32_t sticky_bit_chk; 1789 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1790 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1791 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1792 int32_t mid; 1793 int32_t orig_mid_min, mid_min; 1794 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1795 final_dqs_en; 1796 int32_t dq_margin, dqs_margin; 1797 uint32_t stop; 1798 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1799 uint32_t addr; 1800 1801 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1802 1803 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1804 start_dqs = readl(addr + (read_group << 2)); 1805 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1806 start_dqs_en = readl(addr + ((read_group << 2) 1807 - IO_DQS_EN_DELAY_OFFSET)); 1808 1809 /* set the left and right edge of each bit to an illegal value */ 1810 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1811 sticky_bit_chk = 0; 1812 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1813 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1814 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1815 } 1816 1817 /* Search for the left edge of the window for each bit */ 1818 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1819 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1820 1821 writel(0, &sdr_scc_mgr->update); 1822 1823 /* 1824 * Stop searching when the read test doesn't pass AND when 1825 * we've seen a passing read on every bit. 1826 */ 1827 if (use_read_test) { 1828 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1829 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1830 &bit_chk, 0, 0); 1831 } else { 1832 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1833 0, PASS_ONE_BIT, 1834 &bit_chk, 0); 1835 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1836 (read_group - (write_group * 1837 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1838 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1839 stop = (bit_chk == 0); 1840 } 1841 sticky_bit_chk = sticky_bit_chk | bit_chk; 1842 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1843 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1844 && %u", __func__, __LINE__, d, 1845 sticky_bit_chk, 1846 param->read_correct_mask, stop); 1847 1848 if (stop == 1) { 1849 break; 1850 } else { 1851 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1852 if (bit_chk & 1) { 1853 /* Remember a passing test as the 1854 left_edge */ 1855 left_edge[i] = d; 1856 } else { 1857 /* If a left edge has not been seen yet, 1858 then a future passing test will mark 1859 this edge as the right edge */ 1860 if (left_edge[i] == 1861 IO_IO_IN_DELAY_MAX + 1) { 1862 right_edge[i] = -(d + 1); 1863 } 1864 } 1865 bit_chk = bit_chk >> 1; 1866 } 1867 } 1868 } 1869 1870 /* Reset DQ delay chains to 0 */ 1871 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1872 sticky_bit_chk = 0; 1873 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1874 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1875 %d right_edge[%u]: %d\n", __func__, __LINE__, 1876 i, left_edge[i], i, right_edge[i]); 1877 1878 /* 1879 * Check for cases where we haven't found the left edge, 1880 * which makes our assignment of the the right edge invalid. 1881 * Reset it to the illegal value. 1882 */ 1883 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1884 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1885 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1886 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1887 right_edge[%u]: %d\n", __func__, __LINE__, 1888 i, right_edge[i]); 1889 } 1890 1891 /* 1892 * Reset sticky bit (except for bits where we have seen 1893 * both the left and right edge). 1894 */ 1895 sticky_bit_chk = sticky_bit_chk << 1; 1896 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1897 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1898 sticky_bit_chk = sticky_bit_chk | 1; 1899 } 1900 1901 if (i == 0) 1902 break; 1903 } 1904 1905 /* Search for the right edge of the window for each bit */ 1906 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1907 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1908 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1909 uint32_t delay = d + start_dqs_en; 1910 if (delay > IO_DQS_EN_DELAY_MAX) 1911 delay = IO_DQS_EN_DELAY_MAX; 1912 scc_mgr_set_dqs_en_delay(read_group, delay); 1913 } 1914 scc_mgr_load_dqs(read_group); 1915 1916 writel(0, &sdr_scc_mgr->update); 1917 1918 /* 1919 * Stop searching when the read test doesn't pass AND when 1920 * we've seen a passing read on every bit. 1921 */ 1922 if (use_read_test) { 1923 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1924 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1925 &bit_chk, 0, 0); 1926 } else { 1927 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1928 0, PASS_ONE_BIT, 1929 &bit_chk, 0); 1930 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1931 (read_group - (write_group * 1932 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1933 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1934 stop = (bit_chk == 0); 1935 } 1936 sticky_bit_chk = sticky_bit_chk | bit_chk; 1937 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1938 1939 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1940 %u && %u", __func__, __LINE__, d, 1941 sticky_bit_chk, param->read_correct_mask, stop); 1942 1943 if (stop == 1) { 1944 break; 1945 } else { 1946 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1947 if (bit_chk & 1) { 1948 /* Remember a passing test as 1949 the right_edge */ 1950 right_edge[i] = d; 1951 } else { 1952 if (d != 0) { 1953 /* If a right edge has not been 1954 seen yet, then a future passing 1955 test will mark this edge as the 1956 left edge */ 1957 if (right_edge[i] == 1958 IO_IO_IN_DELAY_MAX + 1) { 1959 left_edge[i] = -(d + 1); 1960 } 1961 } else { 1962 /* d = 0 failed, but it passed 1963 when testing the left edge, 1964 so it must be marginal, 1965 set it to -1 */ 1966 if (right_edge[i] == 1967 IO_IO_IN_DELAY_MAX + 1 && 1968 left_edge[i] != 1969 IO_IO_IN_DELAY_MAX 1970 + 1) { 1971 right_edge[i] = -1; 1972 } 1973 /* If a right edge has not been 1974 seen yet, then a future passing 1975 test will mark this edge as the 1976 left edge */ 1977 else if (right_edge[i] == 1978 IO_IO_IN_DELAY_MAX + 1979 1) { 1980 left_edge[i] = -(d + 1); 1981 } 1982 } 1983 } 1984 1985 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1986 d=%u]: ", __func__, __LINE__, d); 1987 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1988 (int)(bit_chk & 1), i, left_edge[i]); 1989 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1990 right_edge[i]); 1991 bit_chk = bit_chk >> 1; 1992 } 1993 } 1994 } 1995 1996 /* Check that all bits have a window */ 1997 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1998 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1999 %d right_edge[%u]: %d", __func__, __LINE__, 2000 i, left_edge[i], i, right_edge[i]); 2001 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2002 == IO_IO_IN_DELAY_MAX + 1)) { 2003 /* 2004 * Restore delay chain settings before letting the loop 2005 * in rw_mgr_mem_calibrate_vfifo to retry different 2006 * dqs/ck relationships. 2007 */ 2008 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2009 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2010 scc_mgr_set_dqs_en_delay(read_group, 2011 start_dqs_en); 2012 } 2013 scc_mgr_load_dqs(read_group); 2014 writel(0, &sdr_scc_mgr->update); 2015 2016 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2017 find edge [%u]: %d %d", __func__, __LINE__, 2018 i, left_edge[i], right_edge[i]); 2019 if (use_read_test) { 2020 set_failing_group_stage(read_group * 2021 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2022 CAL_STAGE_VFIFO, 2023 CAL_SUBSTAGE_VFIFO_CENTER); 2024 } else { 2025 set_failing_group_stage(read_group * 2026 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2027 CAL_STAGE_VFIFO_AFTER_WRITES, 2028 CAL_SUBSTAGE_VFIFO_CENTER); 2029 } 2030 return 0; 2031 } 2032 } 2033 2034 /* Find middle of window for each DQ bit */ 2035 mid_min = left_edge[0] - right_edge[0]; 2036 min_index = 0; 2037 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2038 mid = left_edge[i] - right_edge[i]; 2039 if (mid < mid_min) { 2040 mid_min = mid; 2041 min_index = i; 2042 } 2043 } 2044 2045 /* 2046 * -mid_min/2 represents the amount that we need to move DQS. 2047 * If mid_min is odd and positive we'll need to add one to 2048 * make sure the rounding in further calculations is correct 2049 * (always bias to the right), so just add 1 for all positive values. 2050 */ 2051 if (mid_min > 0) 2052 mid_min++; 2053 2054 mid_min = mid_min / 2; 2055 2056 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2057 __func__, __LINE__, mid_min, min_index); 2058 2059 /* Determine the amount we can change DQS (which is -mid_min) */ 2060 orig_mid_min = mid_min; 2061 new_dqs = start_dqs - mid_min; 2062 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2063 new_dqs = IO_DQS_IN_DELAY_MAX; 2064 else if (new_dqs < 0) 2065 new_dqs = 0; 2066 2067 mid_min = start_dqs - new_dqs; 2068 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2069 mid_min, new_dqs); 2070 2071 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2072 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2073 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2074 else if (start_dqs_en - mid_min < 0) 2075 mid_min += start_dqs_en - mid_min; 2076 } 2077 new_dqs = start_dqs - mid_min; 2078 2079 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2080 new_dqs=%d mid_min=%d\n", start_dqs, 2081 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2082 new_dqs, mid_min); 2083 2084 /* Initialize data for export structures */ 2085 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2086 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2087 2088 /* add delay to bring centre of all DQ windows to the same "level" */ 2089 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2090 /* Use values before divide by 2 to reduce round off error */ 2091 shift_dq = (left_edge[i] - right_edge[i] - 2092 (left_edge[min_index] - right_edge[min_index]))/2 + 2093 (orig_mid_min - mid_min); 2094 2095 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2096 shift_dq[%u]=%d\n", i, shift_dq); 2097 2098 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2099 temp_dq_in_delay1 = readl(addr + (p << 2)); 2100 temp_dq_in_delay2 = readl(addr + (i << 2)); 2101 2102 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2103 (int32_t)IO_IO_IN_DELAY_MAX) { 2104 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2105 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2106 shift_dq = -(int32_t)temp_dq_in_delay1; 2107 } 2108 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2109 shift_dq[%u]=%d\n", i, shift_dq); 2110 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2111 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2112 scc_mgr_load_dq(p); 2113 2114 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2115 left_edge[i] - shift_dq + (-mid_min), 2116 right_edge[i] + shift_dq - (-mid_min)); 2117 /* To determine values for export structures */ 2118 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2119 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2120 2121 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2122 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2123 } 2124 2125 final_dqs = new_dqs; 2126 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2127 final_dqs_en = start_dqs_en - mid_min; 2128 2129 /* Move DQS-en */ 2130 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2131 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2132 scc_mgr_load_dqs(read_group); 2133 } 2134 2135 /* Move DQS */ 2136 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2137 scc_mgr_load_dqs(read_group); 2138 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2139 dqs_margin=%d", __func__, __LINE__, 2140 dq_margin, dqs_margin); 2141 2142 /* 2143 * Do not remove this line as it makes sure all of our decisions 2144 * have been applied. Apply the update bit. 2145 */ 2146 writel(0, &sdr_scc_mgr->update); 2147 2148 return (dq_margin >= 0) && (dqs_margin >= 0); 2149 } 2150 2151 /** 2152 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2153 * @rw_group: Read/Write Group 2154 * @phase: DQ/DQS phase 2155 * 2156 * Because initially no communication ca be reliably performed with the memory 2157 * device, the sequencer uses a guaranteed write mechanism to write data into 2158 * the memory device. 2159 */ 2160 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2161 const u32 phase) 2162 { 2163 int ret; 2164 2165 /* Set a particular DQ/DQS phase. */ 2166 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2167 2168 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2169 __func__, __LINE__, rw_group, phase); 2170 2171 /* 2172 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2173 * Load up the patterns used by read calibration using the 2174 * current DQDQS phase. 2175 */ 2176 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2177 2178 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2179 return 0; 2180 2181 /* 2182 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2183 * Back-to-Back reads of the patterns used for calibration. 2184 */ 2185 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2186 if (ret) 2187 debug_cond(DLEVEL == 1, 2188 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2189 __func__, __LINE__, rw_group, phase); 2190 return ret; 2191 } 2192 2193 /** 2194 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2195 * @rw_group: Read/Write Group 2196 * @test_bgn: Rank at which the test begins 2197 * 2198 * DQS enable calibration ensures reliable capture of the DQ signal without 2199 * glitches on the DQS line. 2200 */ 2201 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2202 const u32 test_bgn) 2203 { 2204 /* 2205 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2206 * DQS and DQS Eanble Signal Relationships. 2207 */ 2208 2209 /* We start at zero, so have one less dq to devide among */ 2210 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2211 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2212 int found; 2213 u32 i, p, d, r; 2214 2215 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2216 2217 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2218 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2219 r += NUM_RANKS_PER_SHADOW_REG) { 2220 for (i = 0, p = test_bgn, d = 0; 2221 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2222 i++, p++, d += delay_step) { 2223 debug_cond(DLEVEL == 1, 2224 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2225 __func__, __LINE__, rw_group, r, i, p, d); 2226 2227 scc_mgr_set_dq_in_delay(p, d); 2228 scc_mgr_load_dq(p); 2229 } 2230 2231 writel(0, &sdr_scc_mgr->update); 2232 } 2233 2234 /* 2235 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2236 * dq_in_delay values 2237 */ 2238 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2239 2240 debug_cond(DLEVEL == 1, 2241 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2242 __func__, __LINE__, rw_group, found); 2243 2244 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2245 r += NUM_RANKS_PER_SHADOW_REG) { 2246 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2247 writel(0, &sdr_scc_mgr->update); 2248 } 2249 2250 if (!found) 2251 return -EINVAL; 2252 2253 return 0; 2254 2255 } 2256 2257 /** 2258 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2259 * @rw_group: Read/Write Group 2260 * @test_bgn: Rank at which the test begins 2261 * @use_read_test: Perform a read test 2262 * @update_fom: Update FOM 2263 * 2264 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2265 * within a group. 2266 */ 2267 static int 2268 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2269 const int use_read_test, 2270 const int update_fom) 2271 2272 { 2273 int ret, grp_calibrated; 2274 u32 rank_bgn, sr; 2275 2276 /* 2277 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2278 * Read per-bit deskew can be done on a per shadow register basis. 2279 */ 2280 grp_calibrated = 1; 2281 for (rank_bgn = 0, sr = 0; 2282 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2283 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2284 /* Check if this set of ranks should be skipped entirely. */ 2285 if (param->skip_shadow_regs[sr]) 2286 continue; 2287 2288 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2289 rw_group, test_bgn, 2290 use_read_test, 2291 update_fom); 2292 if (ret) 2293 continue; 2294 2295 grp_calibrated = 0; 2296 } 2297 2298 if (!grp_calibrated) 2299 return -EIO; 2300 2301 return 0; 2302 } 2303 2304 /** 2305 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2306 * @rw_group: Read/Write Group 2307 * @test_bgn: Rank at which the test begins 2308 * 2309 * Stage 1: Calibrate the read valid prediction FIFO. 2310 * 2311 * This function implements UniPHY calibration Stage 1, as explained in 2312 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2313 * 2314 * - read valid prediction will consist of finding: 2315 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2316 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2317 * - we also do a per-bit deskew on the DQ lines. 2318 */ 2319 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2320 { 2321 uint32_t p, d; 2322 uint32_t dtaps_per_ptap; 2323 uint32_t failed_substage; 2324 2325 int ret; 2326 2327 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2328 2329 /* Update info for sims */ 2330 reg_file_set_group(rw_group); 2331 reg_file_set_stage(CAL_STAGE_VFIFO); 2332 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2333 2334 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2335 2336 /* USER Determine number of delay taps for each phase tap. */ 2337 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2338 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2339 2340 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2341 /* 2342 * In RLDRAMX we may be messing the delay of pins in 2343 * the same write rw_group but outside of the current read 2344 * the rw_group, but that's ok because we haven't calibrated 2345 * output side yet. 2346 */ 2347 if (d > 0) { 2348 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2349 rw_group, d); 2350 } 2351 2352 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2353 /* 1) Guaranteed Write */ 2354 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2355 if (ret) 2356 break; 2357 2358 /* 2) DQS Enable Calibration */ 2359 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2360 test_bgn); 2361 if (ret) { 2362 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2363 continue; 2364 } 2365 2366 /* 3) Centering DQ/DQS */ 2367 /* 2368 * If doing read after write calibration, do not update 2369 * FOM now. Do it then. 2370 */ 2371 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2372 test_bgn, 1, 0); 2373 if (ret) { 2374 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2375 continue; 2376 } 2377 2378 /* All done. */ 2379 goto cal_done_ok; 2380 } 2381 } 2382 2383 /* Calibration Stage 1 failed. */ 2384 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2385 return 0; 2386 2387 /* Calibration Stage 1 completed OK. */ 2388 cal_done_ok: 2389 /* 2390 * Reset the delay chains back to zero if they have moved > 1 2391 * (check for > 1 because loop will increase d even when pass in 2392 * first case). 2393 */ 2394 if (d > 2) 2395 scc_mgr_zero_group(rw_group, 1); 2396 2397 return 1; 2398 } 2399 2400 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2401 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2402 uint32_t test_bgn) 2403 { 2404 uint32_t rank_bgn, sr; 2405 uint32_t grp_calibrated; 2406 uint32_t write_group; 2407 2408 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2409 2410 /* update info for sims */ 2411 2412 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2413 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2414 2415 write_group = read_group; 2416 2417 /* update info for sims */ 2418 reg_file_set_group(read_group); 2419 2420 grp_calibrated = 1; 2421 /* Read per-bit deskew can be done on a per shadow register basis */ 2422 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2423 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2424 /* Determine if this set of ranks should be skipped entirely */ 2425 if (!param->skip_shadow_regs[sr]) { 2426 /* This is the last calibration round, update FOM here */ 2427 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2428 write_group, 2429 read_group, 2430 test_bgn, 0, 2431 1)) { 2432 grp_calibrated = 0; 2433 } 2434 } 2435 } 2436 2437 2438 if (grp_calibrated == 0) { 2439 set_failing_group_stage(write_group, 2440 CAL_STAGE_VFIFO_AFTER_WRITES, 2441 CAL_SUBSTAGE_VFIFO_CENTER); 2442 return 0; 2443 } 2444 2445 return 1; 2446 } 2447 2448 /* Calibrate LFIFO to find smallest read latency */ 2449 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2450 { 2451 uint32_t found_one; 2452 uint32_t bit_chk; 2453 2454 debug("%s:%d\n", __func__, __LINE__); 2455 2456 /* update info for sims */ 2457 reg_file_set_stage(CAL_STAGE_LFIFO); 2458 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2459 2460 /* Load up the patterns used by read calibration for all ranks */ 2461 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2462 found_one = 0; 2463 2464 do { 2465 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2466 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2467 __func__, __LINE__, gbl->curr_read_lat); 2468 2469 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2470 NUM_READ_TESTS, 2471 PASS_ALL_BITS, 2472 &bit_chk, 1)) { 2473 break; 2474 } 2475 2476 found_one = 1; 2477 /* reduce read latency and see if things are working */ 2478 /* correctly */ 2479 gbl->curr_read_lat--; 2480 } while (gbl->curr_read_lat > 0); 2481 2482 /* reset the fifos to get pointers to known state */ 2483 2484 writel(0, &phy_mgr_cmd->fifo_reset); 2485 2486 if (found_one) { 2487 /* add a fudge factor to the read latency that was determined */ 2488 gbl->curr_read_lat += 2; 2489 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2490 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2491 read_lat=%u\n", __func__, __LINE__, 2492 gbl->curr_read_lat); 2493 return 1; 2494 } else { 2495 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2496 CAL_SUBSTAGE_READ_LATENCY); 2497 2498 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2499 read_lat=%u\n", __func__, __LINE__, 2500 gbl->curr_read_lat); 2501 return 0; 2502 } 2503 } 2504 2505 /* 2506 * issue write test command. 2507 * two variants are provided. one that just tests a write pattern and 2508 * another that tests datamask functionality. 2509 */ 2510 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2511 uint32_t test_dm) 2512 { 2513 uint32_t mcc_instruction; 2514 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2515 ENABLE_SUPER_QUICK_CALIBRATION); 2516 uint32_t rw_wl_nop_cycles; 2517 uint32_t addr; 2518 2519 /* 2520 * Set counter and jump addresses for the right 2521 * number of NOP cycles. 2522 * The number of supported NOP cycles can range from -1 to infinity 2523 * Three different cases are handled: 2524 * 2525 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2526 * mechanism will be used to insert the right number of NOPs 2527 * 2528 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2529 * issuing the write command will jump straight to the 2530 * micro-instruction that turns on DQS (for DDRx), or outputs write 2531 * data (for RLD), skipping 2532 * the NOP micro-instruction all together 2533 * 2534 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2535 * turned on in the same micro-instruction that issues the write 2536 * command. Then we need 2537 * to directly jump to the micro-instruction that sends out the data 2538 * 2539 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2540 * (2 and 3). One jump-counter (0) is used to perform multiple 2541 * write-read operations. 2542 * one counter left to issue this command in "multiple-group" mode 2543 */ 2544 2545 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2546 2547 if (rw_wl_nop_cycles == -1) { 2548 /* 2549 * CNTR 2 - We want to execute the special write operation that 2550 * turns on DQS right away and then skip directly to the 2551 * instruction that sends out the data. We set the counter to a 2552 * large number so that the jump is always taken. 2553 */ 2554 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2555 2556 /* CNTR 3 - Not used */ 2557 if (test_dm) { 2558 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2559 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2561 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2562 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2563 } else { 2564 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2565 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2566 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2567 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2568 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2569 } 2570 } else if (rw_wl_nop_cycles == 0) { 2571 /* 2572 * CNTR 2 - We want to skip the NOP operation and go straight 2573 * to the DQS enable instruction. We set the counter to a large 2574 * number so that the jump is always taken. 2575 */ 2576 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2577 2578 /* CNTR 3 - Not used */ 2579 if (test_dm) { 2580 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2581 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2582 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2583 } else { 2584 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2585 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2586 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2587 } 2588 } else { 2589 /* 2590 * CNTR 2 - In this case we want to execute the next instruction 2591 * and NOT take the jump. So we set the counter to 0. The jump 2592 * address doesn't count. 2593 */ 2594 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2595 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2596 2597 /* 2598 * CNTR 3 - Set the nop counter to the number of cycles we 2599 * need to loop for, minus 1. 2600 */ 2601 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2602 if (test_dm) { 2603 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2604 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2605 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2606 } else { 2607 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2608 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2609 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2610 } 2611 } 2612 2613 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2614 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2615 2616 if (quick_write_mode) 2617 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2618 else 2619 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2620 2621 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2622 2623 /* 2624 * CNTR 1 - This is used to ensure enough time elapses 2625 * for read data to come back. 2626 */ 2627 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2628 2629 if (test_dm) { 2630 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2631 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2632 } else { 2633 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2634 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2635 } 2636 2637 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2638 writel(mcc_instruction, addr + (group << 2)); 2639 } 2640 2641 /* Test writes, can check for a single bit pass or multiple bit pass */ 2642 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2643 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2644 uint32_t *bit_chk, uint32_t all_ranks) 2645 { 2646 uint32_t r; 2647 uint32_t correct_mask_vg; 2648 uint32_t tmp_bit_chk; 2649 uint32_t vg; 2650 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2651 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2652 uint32_t addr_rw_mgr; 2653 uint32_t base_rw_mgr; 2654 2655 *bit_chk = param->write_correct_mask; 2656 correct_mask_vg = param->write_correct_mask_vg; 2657 2658 for (r = rank_bgn; r < rank_end; r++) { 2659 if (param->skip_ranks[r]) { 2660 /* request to skip the rank */ 2661 continue; 2662 } 2663 2664 /* set rank */ 2665 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2666 2667 tmp_bit_chk = 0; 2668 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2669 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2670 /* reset the fifos to get pointers to known state */ 2671 writel(0, &phy_mgr_cmd->fifo_reset); 2672 2673 tmp_bit_chk = tmp_bit_chk << 2674 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2675 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2676 rw_mgr_mem_calibrate_write_test_issue(write_group * 2677 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2678 use_dm); 2679 2680 base_rw_mgr = readl(addr_rw_mgr); 2681 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2682 if (vg == 0) 2683 break; 2684 } 2685 *bit_chk &= tmp_bit_chk; 2686 } 2687 2688 if (all_correct) { 2689 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2690 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2691 %u => %lu", write_group, use_dm, 2692 *bit_chk, param->write_correct_mask, 2693 (long unsigned int)(*bit_chk == 2694 param->write_correct_mask)); 2695 return *bit_chk == param->write_correct_mask; 2696 } else { 2697 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2698 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2699 write_group, use_dm, *bit_chk); 2700 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2701 (long unsigned int)(*bit_chk != 0)); 2702 return *bit_chk != 0x00; 2703 } 2704 } 2705 2706 /* 2707 * center all windows. do per-bit-deskew to possibly increase size of 2708 * certain windows. 2709 */ 2710 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2711 uint32_t write_group, uint32_t test_bgn) 2712 { 2713 uint32_t i, p, min_index; 2714 int32_t d; 2715 /* 2716 * Store these as signed since there are comparisons with 2717 * signed numbers. 2718 */ 2719 uint32_t bit_chk; 2720 uint32_t sticky_bit_chk; 2721 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2722 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2723 int32_t mid; 2724 int32_t mid_min, orig_mid_min; 2725 int32_t new_dqs, start_dqs, shift_dq; 2726 int32_t dq_margin, dqs_margin, dm_margin; 2727 uint32_t stop; 2728 uint32_t temp_dq_out1_delay; 2729 uint32_t addr; 2730 2731 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2732 2733 dm_margin = 0; 2734 2735 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2736 start_dqs = readl(addr + 2737 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2738 2739 /* per-bit deskew */ 2740 2741 /* 2742 * set the left and right edge of each bit to an illegal value 2743 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2744 */ 2745 sticky_bit_chk = 0; 2746 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2747 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2748 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2749 } 2750 2751 /* Search for the left edge of the window for each bit */ 2752 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2753 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2754 2755 writel(0, &sdr_scc_mgr->update); 2756 2757 /* 2758 * Stop searching when the read test doesn't pass AND when 2759 * we've seen a passing read on every bit. 2760 */ 2761 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2762 0, PASS_ONE_BIT, &bit_chk, 0); 2763 sticky_bit_chk = sticky_bit_chk | bit_chk; 2764 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2765 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2766 == %u && %u [bit_chk= %u ]\n", 2767 d, sticky_bit_chk, param->write_correct_mask, 2768 stop, bit_chk); 2769 2770 if (stop == 1) { 2771 break; 2772 } else { 2773 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2774 if (bit_chk & 1) { 2775 /* 2776 * Remember a passing test as the 2777 * left_edge. 2778 */ 2779 left_edge[i] = d; 2780 } else { 2781 /* 2782 * If a left edge has not been seen 2783 * yet, then a future passing test will 2784 * mark this edge as the right edge. 2785 */ 2786 if (left_edge[i] == 2787 IO_IO_OUT1_DELAY_MAX + 1) { 2788 right_edge[i] = -(d + 1); 2789 } 2790 } 2791 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2792 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2793 (int)(bit_chk & 1), i, left_edge[i]); 2794 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2795 right_edge[i]); 2796 bit_chk = bit_chk >> 1; 2797 } 2798 } 2799 } 2800 2801 /* Reset DQ delay chains to 0 */ 2802 scc_mgr_apply_group_dq_out1_delay(0); 2803 sticky_bit_chk = 0; 2804 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2805 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2806 %d right_edge[%u]: %d\n", __func__, __LINE__, 2807 i, left_edge[i], i, right_edge[i]); 2808 2809 /* 2810 * Check for cases where we haven't found the left edge, 2811 * which makes our assignment of the the right edge invalid. 2812 * Reset it to the illegal value. 2813 */ 2814 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2815 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2816 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2817 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2818 right_edge[%u]: %d\n", __func__, __LINE__, 2819 i, right_edge[i]); 2820 } 2821 2822 /* 2823 * Reset sticky bit (except for bits where we have 2824 * seen the left edge). 2825 */ 2826 sticky_bit_chk = sticky_bit_chk << 1; 2827 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2828 sticky_bit_chk = sticky_bit_chk | 1; 2829 2830 if (i == 0) 2831 break; 2832 } 2833 2834 /* Search for the right edge of the window for each bit */ 2835 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2836 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2837 d + start_dqs); 2838 2839 writel(0, &sdr_scc_mgr->update); 2840 2841 /* 2842 * Stop searching when the read test doesn't pass AND when 2843 * we've seen a passing read on every bit. 2844 */ 2845 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2846 0, PASS_ONE_BIT, &bit_chk, 0); 2847 2848 sticky_bit_chk = sticky_bit_chk | bit_chk; 2849 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2850 2851 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2852 %u && %u\n", d, sticky_bit_chk, 2853 param->write_correct_mask, stop); 2854 2855 if (stop == 1) { 2856 if (d == 0) { 2857 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2858 i++) { 2859 /* d = 0 failed, but it passed when 2860 testing the left edge, so it must be 2861 marginal, set it to -1 */ 2862 if (right_edge[i] == 2863 IO_IO_OUT1_DELAY_MAX + 1 && 2864 left_edge[i] != 2865 IO_IO_OUT1_DELAY_MAX + 1) { 2866 right_edge[i] = -1; 2867 } 2868 } 2869 } 2870 break; 2871 } else { 2872 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2873 if (bit_chk & 1) { 2874 /* 2875 * Remember a passing test as 2876 * the right_edge. 2877 */ 2878 right_edge[i] = d; 2879 } else { 2880 if (d != 0) { 2881 /* 2882 * If a right edge has not 2883 * been seen yet, then a future 2884 * passing test will mark this 2885 * edge as the left edge. 2886 */ 2887 if (right_edge[i] == 2888 IO_IO_OUT1_DELAY_MAX + 1) 2889 left_edge[i] = -(d + 1); 2890 } else { 2891 /* 2892 * d = 0 failed, but it passed 2893 * when testing the left edge, 2894 * so it must be marginal, set 2895 * it to -1. 2896 */ 2897 if (right_edge[i] == 2898 IO_IO_OUT1_DELAY_MAX + 1 && 2899 left_edge[i] != 2900 IO_IO_OUT1_DELAY_MAX + 1) 2901 right_edge[i] = -1; 2902 /* 2903 * If a right edge has not been 2904 * seen yet, then a future 2905 * passing test will mark this 2906 * edge as the left edge. 2907 */ 2908 else if (right_edge[i] == 2909 IO_IO_OUT1_DELAY_MAX + 2910 1) 2911 left_edge[i] = -(d + 1); 2912 } 2913 } 2914 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2915 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2916 (int)(bit_chk & 1), i, left_edge[i]); 2917 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2918 right_edge[i]); 2919 bit_chk = bit_chk >> 1; 2920 } 2921 } 2922 } 2923 2924 /* Check that all bits have a window */ 2925 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2926 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2927 %d right_edge[%u]: %d", __func__, __LINE__, 2928 i, left_edge[i], i, right_edge[i]); 2929 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2930 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2931 set_failing_group_stage(test_bgn + i, 2932 CAL_STAGE_WRITES, 2933 CAL_SUBSTAGE_WRITES_CENTER); 2934 return 0; 2935 } 2936 } 2937 2938 /* Find middle of window for each DQ bit */ 2939 mid_min = left_edge[0] - right_edge[0]; 2940 min_index = 0; 2941 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2942 mid = left_edge[i] - right_edge[i]; 2943 if (mid < mid_min) { 2944 mid_min = mid; 2945 min_index = i; 2946 } 2947 } 2948 2949 /* 2950 * -mid_min/2 represents the amount that we need to move DQS. 2951 * If mid_min is odd and positive we'll need to add one to 2952 * make sure the rounding in further calculations is correct 2953 * (always bias to the right), so just add 1 for all positive values. 2954 */ 2955 if (mid_min > 0) 2956 mid_min++; 2957 mid_min = mid_min / 2; 2958 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2959 __LINE__, mid_min); 2960 2961 /* Determine the amount we can change DQS (which is -mid_min) */ 2962 orig_mid_min = mid_min; 2963 new_dqs = start_dqs; 2964 mid_min = 0; 2965 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2966 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2967 /* Initialize data for export structures */ 2968 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2969 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2970 2971 /* add delay to bring centre of all DQ windows to the same "level" */ 2972 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2973 /* Use values before divide by 2 to reduce round off error */ 2974 shift_dq = (left_edge[i] - right_edge[i] - 2975 (left_edge[min_index] - right_edge[min_index]))/2 + 2976 (orig_mid_min - mid_min); 2977 2978 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2979 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2980 2981 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2982 temp_dq_out1_delay = readl(addr + (i << 2)); 2983 if (shift_dq + (int32_t)temp_dq_out1_delay > 2984 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2985 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2986 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2987 shift_dq = -(int32_t)temp_dq_out1_delay; 2988 } 2989 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2990 i, shift_dq); 2991 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2992 scc_mgr_load_dq(i); 2993 2994 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2995 left_edge[i] - shift_dq + (-mid_min), 2996 right_edge[i] + shift_dq - (-mid_min)); 2997 /* To determine values for export structures */ 2998 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2999 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3000 3001 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3002 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3003 } 3004 3005 /* Move DQS */ 3006 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3007 writel(0, &sdr_scc_mgr->update); 3008 3009 /* Centre DM */ 3010 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3011 3012 /* 3013 * set the left and right edge of each bit to an illegal value, 3014 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3015 */ 3016 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3017 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3018 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3019 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3020 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3021 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3022 int32_t win_best = 0; 3023 3024 /* Search for the/part of the window with DM shift */ 3025 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3026 scc_mgr_apply_group_dm_out1_delay(d); 3027 writel(0, &sdr_scc_mgr->update); 3028 3029 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3030 PASS_ALL_BITS, &bit_chk, 3031 0)) { 3032 /* USE Set current end of the window */ 3033 end_curr = -d; 3034 /* 3035 * If a starting edge of our window has not been seen 3036 * this is our current start of the DM window. 3037 */ 3038 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3039 bgn_curr = -d; 3040 3041 /* 3042 * If current window is bigger than best seen. 3043 * Set best seen to be current window. 3044 */ 3045 if ((end_curr-bgn_curr+1) > win_best) { 3046 win_best = end_curr-bgn_curr+1; 3047 bgn_best = bgn_curr; 3048 end_best = end_curr; 3049 } 3050 } else { 3051 /* We just saw a failing test. Reset temp edge */ 3052 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3053 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3054 } 3055 } 3056 3057 3058 /* Reset DM delay chains to 0 */ 3059 scc_mgr_apply_group_dm_out1_delay(0); 3060 3061 /* 3062 * Check to see if the current window nudges up aganist 0 delay. 3063 * If so we need to continue the search by shifting DQS otherwise DQS 3064 * search begins as a new search. */ 3065 if (end_curr != 0) { 3066 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3067 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3068 } 3069 3070 /* Search for the/part of the window with DQS shifts */ 3071 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3072 /* 3073 * Note: This only shifts DQS, so are we limiting ourselve to 3074 * width of DQ unnecessarily. 3075 */ 3076 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3077 d + new_dqs); 3078 3079 writel(0, &sdr_scc_mgr->update); 3080 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3081 PASS_ALL_BITS, &bit_chk, 3082 0)) { 3083 /* USE Set current end of the window */ 3084 end_curr = d; 3085 /* 3086 * If a beginning edge of our window has not been seen 3087 * this is our current begin of the DM window. 3088 */ 3089 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3090 bgn_curr = d; 3091 3092 /* 3093 * If current window is bigger than best seen. Set best 3094 * seen to be current window. 3095 */ 3096 if ((end_curr-bgn_curr+1) > win_best) { 3097 win_best = end_curr-bgn_curr+1; 3098 bgn_best = bgn_curr; 3099 end_best = end_curr; 3100 } 3101 } else { 3102 /* We just saw a failing test. Reset temp edge */ 3103 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3104 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3105 3106 /* Early exit optimization: if ther remaining delay 3107 chain space is less than already seen largest window 3108 we can exit */ 3109 if ((win_best-1) > 3110 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3111 break; 3112 } 3113 } 3114 } 3115 3116 /* assign left and right edge for cal and reporting; */ 3117 left_edge[0] = -1*bgn_best; 3118 right_edge[0] = end_best; 3119 3120 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3121 __LINE__, left_edge[0], right_edge[0]); 3122 3123 /* Move DQS (back to orig) */ 3124 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3125 3126 /* Move DM */ 3127 3128 /* Find middle of window for the DM bit */ 3129 mid = (left_edge[0] - right_edge[0]) / 2; 3130 3131 /* only move right, since we are not moving DQS/DQ */ 3132 if (mid < 0) 3133 mid = 0; 3134 3135 /* dm_marign should fail if we never find a window */ 3136 if (win_best == 0) 3137 dm_margin = -1; 3138 else 3139 dm_margin = left_edge[0] - mid; 3140 3141 scc_mgr_apply_group_dm_out1_delay(mid); 3142 writel(0, &sdr_scc_mgr->update); 3143 3144 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3145 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3146 right_edge[0], mid, dm_margin); 3147 /* Export values */ 3148 gbl->fom_out += dq_margin + dqs_margin; 3149 3150 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3151 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3152 dq_margin, dqs_margin, dm_margin); 3153 3154 /* 3155 * Do not remove this line as it makes sure all of our 3156 * decisions have been applied. 3157 */ 3158 writel(0, &sdr_scc_mgr->update); 3159 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3160 } 3161 3162 /* calibrate the write operations */ 3163 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3164 uint32_t test_bgn) 3165 { 3166 /* update info for sims */ 3167 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3168 3169 reg_file_set_stage(CAL_STAGE_WRITES); 3170 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3171 3172 reg_file_set_group(g); 3173 3174 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3175 set_failing_group_stage(g, CAL_STAGE_WRITES, 3176 CAL_SUBSTAGE_WRITES_CENTER); 3177 return 0; 3178 } 3179 3180 return 1; 3181 } 3182 3183 /** 3184 * mem_precharge_and_activate() - Precharge all banks and activate 3185 * 3186 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3187 */ 3188 static void mem_precharge_and_activate(void) 3189 { 3190 int r; 3191 3192 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3193 /* Test if the rank should be skipped. */ 3194 if (param->skip_ranks[r]) 3195 continue; 3196 3197 /* Set rank. */ 3198 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3199 3200 /* Precharge all banks. */ 3201 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3202 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3203 3204 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3205 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3206 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3207 3208 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3209 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3210 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3211 3212 /* Activate rows. */ 3213 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3214 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3215 } 3216 } 3217 3218 /** 3219 * mem_init_latency() - Configure memory RLAT and WLAT settings 3220 * 3221 * Configure memory RLAT and WLAT parameters. 3222 */ 3223 static void mem_init_latency(void) 3224 { 3225 /* 3226 * For AV/CV, LFIFO is hardened and always runs at full rate 3227 * so max latency in AFI clocks, used here, is correspondingly 3228 * smaller. 3229 */ 3230 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3231 u32 rlat, wlat; 3232 3233 debug("%s:%d\n", __func__, __LINE__); 3234 3235 /* 3236 * Read in write latency. 3237 * WL for Hard PHY does not include additive latency. 3238 */ 3239 wlat = readl(&data_mgr->t_wl_add); 3240 wlat += readl(&data_mgr->mem_t_add); 3241 3242 gbl->rw_wl_nop_cycles = wlat - 1; 3243 3244 /* Read in readl latency. */ 3245 rlat = readl(&data_mgr->t_rl_add); 3246 3247 /* Set a pretty high read latency initially. */ 3248 gbl->curr_read_lat = rlat + 16; 3249 if (gbl->curr_read_lat > max_latency) 3250 gbl->curr_read_lat = max_latency; 3251 3252 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3253 3254 /* Advertise write latency. */ 3255 writel(wlat, &phy_mgr_cfg->afi_wlat); 3256 } 3257 3258 /** 3259 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3260 * 3261 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3262 */ 3263 static void mem_skip_calibrate(void) 3264 { 3265 uint32_t vfifo_offset; 3266 uint32_t i, j, r; 3267 3268 debug("%s:%d\n", __func__, __LINE__); 3269 /* Need to update every shadow register set used by the interface */ 3270 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3271 r += NUM_RANKS_PER_SHADOW_REG) { 3272 /* 3273 * Set output phase alignment settings appropriate for 3274 * skip calibration. 3275 */ 3276 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3277 scc_mgr_set_dqs_en_phase(i, 0); 3278 #if IO_DLL_CHAIN_LENGTH == 6 3279 scc_mgr_set_dqdqs_output_phase(i, 6); 3280 #else 3281 scc_mgr_set_dqdqs_output_phase(i, 7); 3282 #endif 3283 /* 3284 * Case:33398 3285 * 3286 * Write data arrives to the I/O two cycles before write 3287 * latency is reached (720 deg). 3288 * -> due to bit-slip in a/c bus 3289 * -> to allow board skew where dqs is longer than ck 3290 * -> how often can this happen!? 3291 * -> can claim back some ptaps for high freq 3292 * support if we can relax this, but i digress... 3293 * 3294 * The write_clk leads mem_ck by 90 deg 3295 * The minimum ptap of the OPA is 180 deg 3296 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3297 * The write_clk is always delayed by 2 ptaps 3298 * 3299 * Hence, to make DQS aligned to CK, we need to delay 3300 * DQS by: 3301 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3302 * 3303 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3304 * gives us the number of ptaps, which simplies to: 3305 * 3306 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3307 */ 3308 scc_mgr_set_dqdqs_output_phase(i, 3309 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3310 } 3311 writel(0xff, &sdr_scc_mgr->dqs_ena); 3312 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3313 3314 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3315 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3316 SCC_MGR_GROUP_COUNTER_OFFSET); 3317 } 3318 writel(0xff, &sdr_scc_mgr->dq_ena); 3319 writel(0xff, &sdr_scc_mgr->dm_ena); 3320 writel(0, &sdr_scc_mgr->update); 3321 } 3322 3323 /* Compensate for simulation model behaviour */ 3324 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3325 scc_mgr_set_dqs_bus_in_delay(i, 10); 3326 scc_mgr_load_dqs(i); 3327 } 3328 writel(0, &sdr_scc_mgr->update); 3329 3330 /* 3331 * ArriaV has hard FIFOs that can only be initialized by incrementing 3332 * in sequencer. 3333 */ 3334 vfifo_offset = CALIB_VFIFO_OFFSET; 3335 for (j = 0; j < vfifo_offset; j++) 3336 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3337 writel(0, &phy_mgr_cmd->fifo_reset); 3338 3339 /* 3340 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3341 * setting from generation-time constant. 3342 */ 3343 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3344 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3345 } 3346 3347 /** 3348 * mem_calibrate() - Memory calibration entry point. 3349 * 3350 * Perform memory calibration. 3351 */ 3352 static uint32_t mem_calibrate(void) 3353 { 3354 uint32_t i; 3355 uint32_t rank_bgn, sr; 3356 uint32_t write_group, write_test_bgn; 3357 uint32_t read_group, read_test_bgn; 3358 uint32_t run_groups, current_run; 3359 uint32_t failing_groups = 0; 3360 uint32_t group_failed = 0; 3361 3362 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3363 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3364 3365 debug("%s:%d\n", __func__, __LINE__); 3366 3367 /* Initialize the data settings */ 3368 gbl->error_substage = CAL_SUBSTAGE_NIL; 3369 gbl->error_stage = CAL_STAGE_NIL; 3370 gbl->error_group = 0xff; 3371 gbl->fom_in = 0; 3372 gbl->fom_out = 0; 3373 3374 /* Initialize WLAT and RLAT. */ 3375 mem_init_latency(); 3376 3377 /* Initialize bit slips. */ 3378 mem_precharge_and_activate(); 3379 3380 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3381 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3382 SCC_MGR_GROUP_COUNTER_OFFSET); 3383 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3384 if (i == 0) 3385 scc_mgr_set_hhp_extras(); 3386 3387 scc_set_bypass_mode(i); 3388 } 3389 3390 /* Calibration is skipped. */ 3391 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3392 /* 3393 * Set VFIFO and LFIFO to instant-on settings in skip 3394 * calibration mode. 3395 */ 3396 mem_skip_calibrate(); 3397 3398 /* 3399 * Do not remove this line as it makes sure all of our 3400 * decisions have been applied. 3401 */ 3402 writel(0, &sdr_scc_mgr->update); 3403 return 1; 3404 } 3405 3406 /* Calibration is not skipped. */ 3407 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3408 /* 3409 * Zero all delay chain/phase settings for all 3410 * groups and all shadow register sets. 3411 */ 3412 scc_mgr_zero_all(); 3413 3414 run_groups = ~param->skip_groups; 3415 3416 for (write_group = 0, write_test_bgn = 0; write_group 3417 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3418 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3419 3420 /* Initialize the group failure */ 3421 group_failed = 0; 3422 3423 current_run = run_groups & ((1 << 3424 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3425 run_groups = run_groups >> 3426 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3427 3428 if (current_run == 0) 3429 continue; 3430 3431 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3432 SCC_MGR_GROUP_COUNTER_OFFSET); 3433 scc_mgr_zero_group(write_group, 0); 3434 3435 for (read_group = write_group * rwdqs_ratio, 3436 read_test_bgn = 0; 3437 read_group < (write_group + 1) * rwdqs_ratio; 3438 read_group++, 3439 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3440 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3441 continue; 3442 3443 /* Calibrate the VFIFO */ 3444 if (rw_mgr_mem_calibrate_vfifo(read_group, 3445 read_test_bgn)) 3446 continue; 3447 3448 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3449 return 0; 3450 3451 /* The group failed, we're done. */ 3452 goto grp_failed; 3453 } 3454 3455 /* Calibrate the output side */ 3456 for (rank_bgn = 0, sr = 0; 3457 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3458 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3459 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3460 continue; 3461 3462 /* Not needed in quick mode! */ 3463 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3464 continue; 3465 3466 /* 3467 * Determine if this set of ranks 3468 * should be skipped entirely. 3469 */ 3470 if (param->skip_shadow_regs[sr]) 3471 continue; 3472 3473 /* Calibrate WRITEs */ 3474 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3475 write_group, write_test_bgn)) 3476 continue; 3477 3478 group_failed = 1; 3479 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3480 return 0; 3481 } 3482 3483 /* Some group failed, we're done. */ 3484 if (group_failed) 3485 goto grp_failed; 3486 3487 for (read_group = write_group * rwdqs_ratio, 3488 read_test_bgn = 0; 3489 read_group < (write_group + 1) * rwdqs_ratio; 3490 read_group++, 3491 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3492 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3493 continue; 3494 3495 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3496 read_test_bgn)) 3497 continue; 3498 3499 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3500 return 0; 3501 3502 /* The group failed, we're done. */ 3503 goto grp_failed; 3504 } 3505 3506 /* No group failed, continue as usual. */ 3507 continue; 3508 3509 grp_failed: /* A group failed, increment the counter. */ 3510 failing_groups++; 3511 } 3512 3513 /* 3514 * USER If there are any failing groups then report 3515 * the failure. 3516 */ 3517 if (failing_groups != 0) 3518 return 0; 3519 3520 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3521 continue; 3522 3523 /* 3524 * If we're skipping groups as part of debug, 3525 * don't calibrate LFIFO. 3526 */ 3527 if (param->skip_groups != 0) 3528 continue; 3529 3530 /* Calibrate the LFIFO */ 3531 if (!rw_mgr_mem_calibrate_lfifo()) 3532 return 0; 3533 } 3534 3535 /* 3536 * Do not remove this line as it makes sure all of our decisions 3537 * have been applied. 3538 */ 3539 writel(0, &sdr_scc_mgr->update); 3540 return 1; 3541 } 3542 3543 /** 3544 * run_mem_calibrate() - Perform memory calibration 3545 * 3546 * This function triggers the entire memory calibration procedure. 3547 */ 3548 static int run_mem_calibrate(void) 3549 { 3550 int pass; 3551 3552 debug("%s:%d\n", __func__, __LINE__); 3553 3554 /* Reset pass/fail status shown on afi_cal_success/fail */ 3555 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3556 3557 /* Stop tracking manager. */ 3558 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3559 3560 phy_mgr_initialize(); 3561 rw_mgr_mem_initialize(); 3562 3563 /* Perform the actual memory calibration. */ 3564 pass = mem_calibrate(); 3565 3566 mem_precharge_and_activate(); 3567 writel(0, &phy_mgr_cmd->fifo_reset); 3568 3569 /* Handoff. */ 3570 rw_mgr_mem_handoff(); 3571 /* 3572 * In Hard PHY this is a 2-bit control: 3573 * 0: AFI Mux Select 3574 * 1: DDIO Mux Select 3575 */ 3576 writel(0x2, &phy_mgr_cfg->mux_sel); 3577 3578 /* Start tracking manager. */ 3579 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3580 3581 return pass; 3582 } 3583 3584 /** 3585 * debug_mem_calibrate() - Report result of memory calibration 3586 * @pass: Value indicating whether calibration passed or failed 3587 * 3588 * This function reports the results of the memory calibration 3589 * and writes debug information into the register file. 3590 */ 3591 static void debug_mem_calibrate(int pass) 3592 { 3593 uint32_t debug_info; 3594 3595 if (pass) { 3596 printf("%s: CALIBRATION PASSED\n", __FILE__); 3597 3598 gbl->fom_in /= 2; 3599 gbl->fom_out /= 2; 3600 3601 if (gbl->fom_in > 0xff) 3602 gbl->fom_in = 0xff; 3603 3604 if (gbl->fom_out > 0xff) 3605 gbl->fom_out = 0xff; 3606 3607 /* Update the FOM in the register file */ 3608 debug_info = gbl->fom_in; 3609 debug_info |= gbl->fom_out << 8; 3610 writel(debug_info, &sdr_reg_file->fom); 3611 3612 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3613 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3614 } else { 3615 printf("%s: CALIBRATION FAILED\n", __FILE__); 3616 3617 debug_info = gbl->error_stage; 3618 debug_info |= gbl->error_substage << 8; 3619 debug_info |= gbl->error_group << 16; 3620 3621 writel(debug_info, &sdr_reg_file->failing_stage); 3622 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3623 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3624 3625 /* Update the failing group/stage in the register file */ 3626 debug_info = gbl->error_stage; 3627 debug_info |= gbl->error_substage << 8; 3628 debug_info |= gbl->error_group << 16; 3629 writel(debug_info, &sdr_reg_file->failing_stage); 3630 } 3631 3632 printf("%s: Calibration complete\n", __FILE__); 3633 } 3634 3635 /** 3636 * hc_initialize_rom_data() - Initialize ROM data 3637 * 3638 * Initialize ROM data. 3639 */ 3640 static void hc_initialize_rom_data(void) 3641 { 3642 u32 i, addr; 3643 3644 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3645 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3646 writel(inst_rom_init[i], addr + (i << 2)); 3647 3648 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3649 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3650 writel(ac_rom_init[i], addr + (i << 2)); 3651 } 3652 3653 /** 3654 * initialize_reg_file() - Initialize SDR register file 3655 * 3656 * Initialize SDR register file. 3657 */ 3658 static void initialize_reg_file(void) 3659 { 3660 /* Initialize the register file with the correct data */ 3661 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3662 writel(0, &sdr_reg_file->debug_data_addr); 3663 writel(0, &sdr_reg_file->cur_stage); 3664 writel(0, &sdr_reg_file->fom); 3665 writel(0, &sdr_reg_file->failing_stage); 3666 writel(0, &sdr_reg_file->debug1); 3667 writel(0, &sdr_reg_file->debug2); 3668 } 3669 3670 /** 3671 * initialize_hps_phy() - Initialize HPS PHY 3672 * 3673 * Initialize HPS PHY. 3674 */ 3675 static void initialize_hps_phy(void) 3676 { 3677 uint32_t reg; 3678 /* 3679 * Tracking also gets configured here because it's in the 3680 * same register. 3681 */ 3682 uint32_t trk_sample_count = 7500; 3683 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3684 /* 3685 * Format is number of outer loops in the 16 MSB, sample 3686 * count in 16 LSB. 3687 */ 3688 3689 reg = 0; 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3695 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3696 /* 3697 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3698 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3699 */ 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3702 trk_sample_count); 3703 writel(reg, &sdr_ctrl->phy_ctrl0); 3704 3705 reg = 0; 3706 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3707 trk_sample_count >> 3708 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3709 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3710 trk_long_idle_sample_count); 3711 writel(reg, &sdr_ctrl->phy_ctrl1); 3712 3713 reg = 0; 3714 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3715 trk_long_idle_sample_count >> 3716 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3717 writel(reg, &sdr_ctrl->phy_ctrl2); 3718 } 3719 3720 /** 3721 * initialize_tracking() - Initialize tracking 3722 * 3723 * Initialize the register file with usable initial data. 3724 */ 3725 static void initialize_tracking(void) 3726 { 3727 /* 3728 * Initialize the register file with the correct data. 3729 * Compute usable version of value in case we skip full 3730 * computation later. 3731 */ 3732 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3733 &sdr_reg_file->dtaps_per_ptap); 3734 3735 /* trk_sample_count */ 3736 writel(7500, &sdr_reg_file->trk_sample_count); 3737 3738 /* longidle outer loop [15:0] */ 3739 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3740 3741 /* 3742 * longidle sample count [31:24] 3743 * trfc, worst case of 933Mhz 4Gb [23:16] 3744 * trcd, worst case [15:8] 3745 * vfifo wait [7:0] 3746 */ 3747 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3748 &sdr_reg_file->delays); 3749 3750 /* mux delay */ 3751 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3752 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3753 &sdr_reg_file->trk_rw_mgr_addr); 3754 3755 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3756 &sdr_reg_file->trk_read_dqs_width); 3757 3758 /* trefi [7:0] */ 3759 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3760 &sdr_reg_file->trk_rfsh); 3761 } 3762 3763 int sdram_calibration_full(void) 3764 { 3765 struct param_type my_param; 3766 struct gbl_type my_gbl; 3767 uint32_t pass; 3768 3769 memset(&my_param, 0, sizeof(my_param)); 3770 memset(&my_gbl, 0, sizeof(my_gbl)); 3771 3772 param = &my_param; 3773 gbl = &my_gbl; 3774 3775 /* Set the calibration enabled by default */ 3776 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3777 /* 3778 * Only sweep all groups (regardless of fail state) by default 3779 * Set enabled read test by default. 3780 */ 3781 #if DISABLE_GUARANTEED_READ 3782 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3783 #endif 3784 /* Initialize the register file */ 3785 initialize_reg_file(); 3786 3787 /* Initialize any PHY CSR */ 3788 initialize_hps_phy(); 3789 3790 scc_mgr_initialize(); 3791 3792 initialize_tracking(); 3793 3794 printf("%s: Preparing to start memory calibration\n", __FILE__); 3795 3796 debug("%s:%d\n", __func__, __LINE__); 3797 debug_cond(DLEVEL == 1, 3798 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3799 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3800 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3801 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3802 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3803 debug_cond(DLEVEL == 1, 3804 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3805 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3806 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3807 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3808 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3809 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3810 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3811 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3812 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3813 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3814 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3815 IO_IO_OUT2_DELAY_MAX); 3816 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3817 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3818 3819 hc_initialize_rom_data(); 3820 3821 /* update info for sims */ 3822 reg_file_set_stage(CAL_STAGE_NIL); 3823 reg_file_set_group(0); 3824 3825 /* 3826 * Load global needed for those actions that require 3827 * some dynamic calibration support. 3828 */ 3829 dyn_calib_steps = STATIC_CALIB_STEPS; 3830 /* 3831 * Load global to allow dynamic selection of delay loop settings 3832 * based on calibration mode. 3833 */ 3834 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3835 skip_delay_mask = 0xff; 3836 else 3837 skip_delay_mask = 0x0; 3838 3839 pass = run_mem_calibrate(); 3840 debug_mem_calibrate(pass); 3841 return pass; 3842 } 3843