xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 86a39dc76ef129dd67dad6ae00ce49f014aea6ef)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 /**
1336  * sdr_find_phase() - Find DQS enable phase
1337  * @working:	If 1, look for working phase, if 0, look for non-working phase
1338  * @grp:	Read/Write group
1339  * @v:		VFIFO value
1340  * @work:	Working window position
1341  * @i:		Iterator
1342  * @p:		DQS Phase Iterator
1343  *
1344  * Find working or non-working DQS enable phase setting.
1345  */
1346 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
1347 			  u32 *i, u32 *p)
1348 {
1349 	u32 ret, bit_chk;
1350 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1351 
1352 	for (; *i < end; (*i)++) {
1353 		if (working)
1354 			*p = 0;
1355 
1356 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1357 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1358 
1359 			ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1360 						PASS_ONE_BIT, &bit_chk, 0);
1361 			if (!working)
1362 				ret = !ret;
1363 
1364 			if (ret)
1365 				return 0;
1366 
1367 			*work += IO_DELAY_PER_OPA_TAP;
1368 		}
1369 
1370 		if (*p > IO_DQS_EN_PHASE_MAX) {
1371 			/* Fiddle with FIFO. */
1372 			rw_mgr_incr_vfifo(grp, v);
1373 			if (!working)
1374 				*p = 0;
1375 		}
1376 	}
1377 
1378 	return -EINVAL;
1379 }
1380 
1381 static int sdr_working_phase(uint32_t grp,
1382 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1383 			      uint32_t *v, uint32_t *d, uint32_t *p,
1384 			      uint32_t *i)
1385 {
1386 	int ret;
1387 
1388 	*work_bgn = 0;
1389 
1390 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1391 		*i = 0;
1392 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1393 		ret = sdr_find_phase(1, grp, v, work_bgn, i, p);
1394 		if (!ret)
1395 			return 0;
1396 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1397 	}
1398 
1399 	/* Cannot find working solution */
1400 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1401 		   __func__, __LINE__);
1402 	return -EINVAL;
1403 }
1404 
1405 static void sdr_backup_phase(uint32_t grp,
1406 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1407 			     uint32_t *p)
1408 {
1409 	uint32_t tmp_delay;
1410 	u32 bit_chk;
1411 
1412 	/* Special case code for backing up a phase */
1413 	if (*p == 0) {
1414 		*p = IO_DQS_EN_PHASE_MAX;
1415 		rw_mgr_decr_vfifo(grp, v);
1416 	} else {
1417 		(*p)--;
1418 	}
1419 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1420 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1421 
1422 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1423 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1424 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1425 
1426 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1427 							     PASS_ONE_BIT,
1428 							     &bit_chk, 0)) {
1429 			*work_bgn = tmp_delay;
1430 			break;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * Restore VFIFO to old state before we decremented it
1436 	 * (if needed).
1437 	 */
1438 	(*p)++;
1439 	if (*p > IO_DQS_EN_PHASE_MAX) {
1440 		*p = 0;
1441 		rw_mgr_incr_vfifo(grp, v);
1442 	}
1443 
1444 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1445 }
1446 
1447 static int sdr_nonworking_phase(uint32_t grp,
1448 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1449 			     uint32_t *p, uint32_t *i,
1450 			     uint32_t *work_end)
1451 {
1452 	int ret;
1453 
1454 	(*p)++;
1455 	*work_end += IO_DELAY_PER_OPA_TAP;
1456 	if (*p > IO_DQS_EN_PHASE_MAX) {
1457 		/* Fiddle with FIFO. */
1458 		*p = 0;
1459 		rw_mgr_incr_vfifo(grp, v);
1460 	}
1461 
1462 	ret = sdr_find_phase(0, grp, v, work_end, i, p);
1463 	if (ret) {
1464 		/* Cannot see edge of failing read. */
1465 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1466 			   __func__, __LINE__);
1467 	}
1468 
1469 	return ret;
1470 }
1471 
1472 /**
1473  * sdr_find_window_center() - Find center of the working DQS window.
1474  * @grp:	Read/Write group
1475  * @work_bgn:	First working settings
1476  * @work_end:	Last working settings
1477  * @val:	VFIFO value
1478  *
1479  * Find center of the working DQS enable window.
1480  */
1481 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1482 				  const u32 work_end, const u32 val)
1483 {
1484 	u32 bit_chk, work_mid, v = val;
1485 	int tmp_delay = 0;
1486 	int i, p, d;
1487 
1488 	work_mid = (work_bgn + work_end) / 2;
1489 
1490 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1491 		   work_bgn, work_end, work_mid);
1492 	/* Get the middle delay to be less than a VFIFO delay */
1493 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1494 
1495 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1496 	work_mid %= tmp_delay;
1497 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1498 
1499 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1500 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1501 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1502 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1503 
1504 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1505 
1506 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1507 	if (d > IO_DQS_EN_DELAY_MAX)
1508 		d = IO_DQS_EN_DELAY_MAX;
1509 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1510 
1511 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1512 
1513 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1514 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1515 
1516 	/*
1517 	 * push vfifo until we can successfully calibrate. We can do this
1518 	 * because the largest possible margin in 1 VFIFO cycle.
1519 	 */
1520 	for (i = 0; i < VFIFO_SIZE; i++) {
1521 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1522 			   v);
1523 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1524 							     PASS_ONE_BIT,
1525 							     &bit_chk, 0)) {
1526 			debug_cond(DLEVEL == 2,
1527 				   "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1528 				   __func__, __LINE__, v, p, d);
1529 			return 0;
1530 		}
1531 
1532 		/* Fiddle with FIFO. */
1533 		rw_mgr_incr_vfifo(grp, &v);
1534 	}
1535 
1536 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1537 		   __func__, __LINE__);
1538 	return -EINVAL;
1539 }
1540 
1541 /* find a good dqs enable to use */
1542 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1543 {
1544 	uint32_t v, d, p, i;
1545 	uint32_t bit_chk;
1546 	uint32_t dtaps_per_ptap;
1547 	uint32_t work_bgn, work_end;
1548 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1549 
1550 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1551 
1552 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1553 
1554 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1555 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1556 
1557 	/* ************************************************************** */
1558 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1559 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1560 
1561 	/* ********************************************************* */
1562 	/* * Step 1 : First push vfifo until we get a failing read * */
1563 	v = find_vfifo_read(grp, &bit_chk);
1564 
1565 	/* ******************************************************** */
1566 	/* * step 2: find first working phase, increment in ptaps * */
1567 	work_bgn = 0;
1568 	if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, &p, &i))
1569 		return 0;
1570 
1571 	work_end = work_bgn;
1572 
1573 	/*
1574 	 * If d is 0 then the working window covers a phase tap and
1575 	 * we can follow the old procedure otherwise, we've found the beginning,
1576 	 * and we need to increment the dtaps until we find the end.
1577 	 */
1578 	if (d == 0) {
1579 		/* ********************************************************* */
1580 		/* * step 3a: if we have room, back off by one and
1581 		increment in dtaps * */
1582 
1583 		sdr_backup_phase(grp, &work_bgn, &v, &d, &p);
1584 
1585 		/* ********************************************************* */
1586 		/* * step 4a: go forward from working phase to non working
1587 		phase, increment in ptaps * */
1588 		if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
1589 					 &i, &work_end))
1590 			return 0;
1591 
1592 		/* ********************************************************* */
1593 		/* * step 5a:  back off one from last, increment in dtaps  * */
1594 
1595 		/* Special case code for backing up a phase */
1596 		if (p == 0) {
1597 			p = IO_DQS_EN_PHASE_MAX;
1598 			rw_mgr_decr_vfifo(grp, &v);
1599 		} else {
1600 			p = p - 1;
1601 		}
1602 
1603 		work_end -= IO_DELAY_PER_OPA_TAP;
1604 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1605 
1606 		/* * The actual increment of dtaps is done outside of
1607 		the if/else loop to share code */
1608 		d = 0;
1609 
1610 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1611 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1612 			   v, p);
1613 	} else {
1614 		/* ******************************************************* */
1615 		/* * step 3-5b:  Find the right edge of the window using
1616 		delay taps   * */
1617 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1618 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1619 			   v, p, d, work_bgn);
1620 
1621 		work_end = work_bgn;
1622 	}
1623 
1624 	/* The dtap increment to find the failing edge is done here */
1625 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1626 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1627 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1628 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1629 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1630 
1631 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1632 								      PASS_ONE_BIT,
1633 								      &bit_chk, 0)) {
1634 				break;
1635 			}
1636 	}
1637 
1638 	/* Go back to working dtap */
1639 	if (d != 0)
1640 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1641 
1642 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1643 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1644 		   v, p, d-1, work_end);
1645 
1646 	if (work_end < work_bgn) {
1647 		/* nil range */
1648 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1649 			   failed\n", __func__, __LINE__);
1650 		return 0;
1651 	}
1652 
1653 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1654 		   __func__, __LINE__, work_bgn, work_end);
1655 
1656 	/* *************************************************************** */
1657 	/*
1658 	 * * We need to calculate the number of dtaps that equal a ptap
1659 	 * * To do that we'll back up a ptap and re-find the edge of the
1660 	 * * window using dtaps
1661 	 */
1662 
1663 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1664 		   for tracking\n", __func__, __LINE__);
1665 
1666 	/* Special case code for backing up a phase */
1667 	if (p == 0) {
1668 		p = IO_DQS_EN_PHASE_MAX;
1669 		rw_mgr_decr_vfifo(grp, &v);
1670 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1671 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1672 			   v, p);
1673 	} else {
1674 		p = p - 1;
1675 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1676 			   phase only: v=%u p=%u", __func__, __LINE__,
1677 			   v, p);
1678 	}
1679 
1680 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1681 
1682 	/*
1683 	 * Increase dtap until we first see a passing read (in case the
1684 	 * window is smaller than a ptap),
1685 	 * and then a failing read to mark the edge of the window again
1686 	 */
1687 
1688 	/* Find a passing read */
1689 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1690 		   __func__, __LINE__);
1691 	found_passing_read = 0;
1692 	found_failing_read = 0;
1693 	initial_failing_dtap = d;
1694 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1695 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1696 			   read d=%u\n", __func__, __LINE__, d);
1697 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1698 
1699 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1700 							     PASS_ONE_BIT,
1701 							     &bit_chk, 0)) {
1702 			found_passing_read = 1;
1703 			break;
1704 		}
1705 	}
1706 
1707 	if (found_passing_read) {
1708 		/* Find a failing read */
1709 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1710 			   read\n", __func__, __LINE__);
1711 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1712 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1713 				   testing read d=%u\n", __func__, __LINE__, d);
1714 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1715 
1716 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1717 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1718 				found_failing_read = 1;
1719 				break;
1720 			}
1721 		}
1722 	} else {
1723 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1724 			   calculate dtaps", __func__, __LINE__);
1725 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1726 	}
1727 
1728 	/*
1729 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1730 	 * found a passing/failing read. If we didn't, it means d hit the max
1731 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1732 	 * statically calculated value.
1733 	 */
1734 	if (found_passing_read && found_failing_read)
1735 		dtaps_per_ptap = d - initial_failing_dtap;
1736 
1737 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1738 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1739 		   - %u = %u",  __func__, __LINE__, d,
1740 		   initial_failing_dtap, dtaps_per_ptap);
1741 
1742 	/* ******************************************** */
1743 	/* * step 6:  Find the centre of the window   * */
1744 	if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1745 		return 0; /* FIXME: Old code, return 0 means failure :-( */
1746 
1747 	return 1;
1748 }
1749 
1750 /* per-bit deskew DQ and center */
1751 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1752 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1753 	uint32_t use_read_test, uint32_t update_fom)
1754 {
1755 	uint32_t i, p, d, min_index;
1756 	/*
1757 	 * Store these as signed since there are comparisons with
1758 	 * signed numbers.
1759 	 */
1760 	uint32_t bit_chk;
1761 	uint32_t sticky_bit_chk;
1762 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1763 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1764 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1765 	int32_t mid;
1766 	int32_t orig_mid_min, mid_min;
1767 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1768 		final_dqs_en;
1769 	int32_t dq_margin, dqs_margin;
1770 	uint32_t stop;
1771 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1772 	uint32_t addr;
1773 
1774 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1775 
1776 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1777 	start_dqs = readl(addr + (read_group << 2));
1778 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1779 		start_dqs_en = readl(addr + ((read_group << 2)
1780 				     - IO_DQS_EN_DELAY_OFFSET));
1781 
1782 	/* set the left and right edge of each bit to an illegal value */
1783 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1784 	sticky_bit_chk = 0;
1785 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1786 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1787 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1788 	}
1789 
1790 	/* Search for the left edge of the window for each bit */
1791 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1792 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1793 
1794 		writel(0, &sdr_scc_mgr->update);
1795 
1796 		/*
1797 		 * Stop searching when the read test doesn't pass AND when
1798 		 * we've seen a passing read on every bit.
1799 		 */
1800 		if (use_read_test) {
1801 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1802 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1803 				&bit_chk, 0, 0);
1804 		} else {
1805 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1806 							0, PASS_ONE_BIT,
1807 							&bit_chk, 0);
1808 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1809 				(read_group - (write_group *
1810 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1811 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1812 			stop = (bit_chk == 0);
1813 		}
1814 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1815 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1816 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1817 			   && %u", __func__, __LINE__, d,
1818 			   sticky_bit_chk,
1819 			param->read_correct_mask, stop);
1820 
1821 		if (stop == 1) {
1822 			break;
1823 		} else {
1824 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1825 				if (bit_chk & 1) {
1826 					/* Remember a passing test as the
1827 					left_edge */
1828 					left_edge[i] = d;
1829 				} else {
1830 					/* If a left edge has not been seen yet,
1831 					then a future passing test will mark
1832 					this edge as the right edge */
1833 					if (left_edge[i] ==
1834 						IO_IO_IN_DELAY_MAX + 1) {
1835 						right_edge[i] = -(d + 1);
1836 					}
1837 				}
1838 				bit_chk = bit_chk >> 1;
1839 			}
1840 		}
1841 	}
1842 
1843 	/* Reset DQ delay chains to 0 */
1844 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1845 	sticky_bit_chk = 0;
1846 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1847 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1848 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1849 			   i, left_edge[i], i, right_edge[i]);
1850 
1851 		/*
1852 		 * Check for cases where we haven't found the left edge,
1853 		 * which makes our assignment of the the right edge invalid.
1854 		 * Reset it to the illegal value.
1855 		 */
1856 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1857 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1858 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1859 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1860 				   right_edge[%u]: %d\n", __func__, __LINE__,
1861 				   i, right_edge[i]);
1862 		}
1863 
1864 		/*
1865 		 * Reset sticky bit (except for bits where we have seen
1866 		 * both the left and right edge).
1867 		 */
1868 		sticky_bit_chk = sticky_bit_chk << 1;
1869 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1870 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1871 			sticky_bit_chk = sticky_bit_chk | 1;
1872 		}
1873 
1874 		if (i == 0)
1875 			break;
1876 	}
1877 
1878 	/* Search for the right edge of the window for each bit */
1879 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1880 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1881 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1882 			uint32_t delay = d + start_dqs_en;
1883 			if (delay > IO_DQS_EN_DELAY_MAX)
1884 				delay = IO_DQS_EN_DELAY_MAX;
1885 			scc_mgr_set_dqs_en_delay(read_group, delay);
1886 		}
1887 		scc_mgr_load_dqs(read_group);
1888 
1889 		writel(0, &sdr_scc_mgr->update);
1890 
1891 		/*
1892 		 * Stop searching when the read test doesn't pass AND when
1893 		 * we've seen a passing read on every bit.
1894 		 */
1895 		if (use_read_test) {
1896 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1897 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1898 				&bit_chk, 0, 0);
1899 		} else {
1900 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1901 							0, PASS_ONE_BIT,
1902 							&bit_chk, 0);
1903 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1904 				(read_group - (write_group *
1905 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1906 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1907 			stop = (bit_chk == 0);
1908 		}
1909 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1910 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1911 
1912 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1913 			   %u && %u", __func__, __LINE__, d,
1914 			   sticky_bit_chk, param->read_correct_mask, stop);
1915 
1916 		if (stop == 1) {
1917 			break;
1918 		} else {
1919 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1920 				if (bit_chk & 1) {
1921 					/* Remember a passing test as
1922 					the right_edge */
1923 					right_edge[i] = d;
1924 				} else {
1925 					if (d != 0) {
1926 						/* If a right edge has not been
1927 						seen yet, then a future passing
1928 						test will mark this edge as the
1929 						left edge */
1930 						if (right_edge[i] ==
1931 						IO_IO_IN_DELAY_MAX + 1) {
1932 							left_edge[i] = -(d + 1);
1933 						}
1934 					} else {
1935 						/* d = 0 failed, but it passed
1936 						when testing the left edge,
1937 						so it must be marginal,
1938 						set it to -1 */
1939 						if (right_edge[i] ==
1940 							IO_IO_IN_DELAY_MAX + 1 &&
1941 							left_edge[i] !=
1942 							IO_IO_IN_DELAY_MAX
1943 							+ 1) {
1944 							right_edge[i] = -1;
1945 						}
1946 						/* If a right edge has not been
1947 						seen yet, then a future passing
1948 						test will mark this edge as the
1949 						left edge */
1950 						else if (right_edge[i] ==
1951 							IO_IO_IN_DELAY_MAX +
1952 							1) {
1953 							left_edge[i] = -(d + 1);
1954 						}
1955 					}
1956 				}
1957 
1958 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1959 					   d=%u]: ", __func__, __LINE__, d);
1960 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1961 					   (int)(bit_chk & 1), i, left_edge[i]);
1962 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1963 					   right_edge[i]);
1964 				bit_chk = bit_chk >> 1;
1965 			}
1966 		}
1967 	}
1968 
1969 	/* Check that all bits have a window */
1970 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1971 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1972 			   %d right_edge[%u]: %d", __func__, __LINE__,
1973 			   i, left_edge[i], i, right_edge[i]);
1974 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1975 			== IO_IO_IN_DELAY_MAX + 1)) {
1976 			/*
1977 			 * Restore delay chain settings before letting the loop
1978 			 * in rw_mgr_mem_calibrate_vfifo to retry different
1979 			 * dqs/ck relationships.
1980 			 */
1981 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1982 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1983 				scc_mgr_set_dqs_en_delay(read_group,
1984 							 start_dqs_en);
1985 			}
1986 			scc_mgr_load_dqs(read_group);
1987 			writel(0, &sdr_scc_mgr->update);
1988 
1989 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1990 				   find edge [%u]: %d %d", __func__, __LINE__,
1991 				   i, left_edge[i], right_edge[i]);
1992 			if (use_read_test) {
1993 				set_failing_group_stage(read_group *
1994 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
1995 					CAL_STAGE_VFIFO,
1996 					CAL_SUBSTAGE_VFIFO_CENTER);
1997 			} else {
1998 				set_failing_group_stage(read_group *
1999 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2000 					CAL_STAGE_VFIFO_AFTER_WRITES,
2001 					CAL_SUBSTAGE_VFIFO_CENTER);
2002 			}
2003 			return 0;
2004 		}
2005 	}
2006 
2007 	/* Find middle of window for each DQ bit */
2008 	mid_min = left_edge[0] - right_edge[0];
2009 	min_index = 0;
2010 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2011 		mid = left_edge[i] - right_edge[i];
2012 		if (mid < mid_min) {
2013 			mid_min = mid;
2014 			min_index = i;
2015 		}
2016 	}
2017 
2018 	/*
2019 	 * -mid_min/2 represents the amount that we need to move DQS.
2020 	 * If mid_min is odd and positive we'll need to add one to
2021 	 * make sure the rounding in further calculations is correct
2022 	 * (always bias to the right), so just add 1 for all positive values.
2023 	 */
2024 	if (mid_min > 0)
2025 		mid_min++;
2026 
2027 	mid_min = mid_min / 2;
2028 
2029 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2030 		   __func__, __LINE__, mid_min, min_index);
2031 
2032 	/* Determine the amount we can change DQS (which is -mid_min) */
2033 	orig_mid_min = mid_min;
2034 	new_dqs = start_dqs - mid_min;
2035 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2036 		new_dqs = IO_DQS_IN_DELAY_MAX;
2037 	else if (new_dqs < 0)
2038 		new_dqs = 0;
2039 
2040 	mid_min = start_dqs - new_dqs;
2041 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2042 		   mid_min, new_dqs);
2043 
2044 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2045 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2046 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2047 		else if (start_dqs_en - mid_min < 0)
2048 			mid_min += start_dqs_en - mid_min;
2049 	}
2050 	new_dqs = start_dqs - mid_min;
2051 
2052 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2053 		   new_dqs=%d mid_min=%d\n", start_dqs,
2054 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2055 		   new_dqs, mid_min);
2056 
2057 	/* Initialize data for export structures */
2058 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2059 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2060 
2061 	/* add delay to bring centre of all DQ windows to the same "level" */
2062 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2063 		/* Use values before divide by 2 to reduce round off error */
2064 		shift_dq = (left_edge[i] - right_edge[i] -
2065 			(left_edge[min_index] - right_edge[min_index]))/2  +
2066 			(orig_mid_min - mid_min);
2067 
2068 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2069 			   shift_dq[%u]=%d\n", i, shift_dq);
2070 
2071 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2072 		temp_dq_in_delay1 = readl(addr + (p << 2));
2073 		temp_dq_in_delay2 = readl(addr + (i << 2));
2074 
2075 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2076 			(int32_t)IO_IO_IN_DELAY_MAX) {
2077 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2078 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2079 			shift_dq = -(int32_t)temp_dq_in_delay1;
2080 		}
2081 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2082 			   shift_dq[%u]=%d\n", i, shift_dq);
2083 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2084 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2085 		scc_mgr_load_dq(p);
2086 
2087 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2088 			   left_edge[i] - shift_dq + (-mid_min),
2089 			   right_edge[i] + shift_dq - (-mid_min));
2090 		/* To determine values for export structures */
2091 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2092 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2093 
2094 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2095 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2096 	}
2097 
2098 	final_dqs = new_dqs;
2099 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2100 		final_dqs_en = start_dqs_en - mid_min;
2101 
2102 	/* Move DQS-en */
2103 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2104 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2105 		scc_mgr_load_dqs(read_group);
2106 	}
2107 
2108 	/* Move DQS */
2109 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2110 	scc_mgr_load_dqs(read_group);
2111 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2112 		   dqs_margin=%d", __func__, __LINE__,
2113 		   dq_margin, dqs_margin);
2114 
2115 	/*
2116 	 * Do not remove this line as it makes sure all of our decisions
2117 	 * have been applied. Apply the update bit.
2118 	 */
2119 	writel(0, &sdr_scc_mgr->update);
2120 
2121 	return (dq_margin >= 0) && (dqs_margin >= 0);
2122 }
2123 
2124 /**
2125  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2126  * @rw_group:	Read/Write Group
2127  * @phase:	DQ/DQS phase
2128  *
2129  * Because initially no communication ca be reliably performed with the memory
2130  * device, the sequencer uses a guaranteed write mechanism to write data into
2131  * the memory device.
2132  */
2133 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2134 						 const u32 phase)
2135 {
2136 	int ret;
2137 
2138 	/* Set a particular DQ/DQS phase. */
2139 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2140 
2141 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2142 		   __func__, __LINE__, rw_group, phase);
2143 
2144 	/*
2145 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2146 	 * Load up the patterns used by read calibration using the
2147 	 * current DQDQS phase.
2148 	 */
2149 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2150 
2151 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2152 		return 0;
2153 
2154 	/*
2155 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2156 	 * Back-to-Back reads of the patterns used for calibration.
2157 	 */
2158 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2159 	if (ret)
2160 		debug_cond(DLEVEL == 1,
2161 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2162 			   __func__, __LINE__, rw_group, phase);
2163 	return ret;
2164 }
2165 
2166 /**
2167  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2168  * @rw_group:	Read/Write Group
2169  * @test_bgn:	Rank at which the test begins
2170  *
2171  * DQS enable calibration ensures reliable capture of the DQ signal without
2172  * glitches on the DQS line.
2173  */
2174 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2175 						       const u32 test_bgn)
2176 {
2177 	/*
2178 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2179 	 * DQS and DQS Eanble Signal Relationships.
2180 	 */
2181 
2182 	/* We start at zero, so have one less dq to devide among */
2183 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2184 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2185 	int found;
2186 	u32 i, p, d, r;
2187 
2188 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2189 
2190 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2191 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2192 	     r += NUM_RANKS_PER_SHADOW_REG) {
2193 		for (i = 0, p = test_bgn, d = 0;
2194 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2195 		     i++, p++, d += delay_step) {
2196 			debug_cond(DLEVEL == 1,
2197 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2198 				   __func__, __LINE__, rw_group, r, i, p, d);
2199 
2200 			scc_mgr_set_dq_in_delay(p, d);
2201 			scc_mgr_load_dq(p);
2202 		}
2203 
2204 		writel(0, &sdr_scc_mgr->update);
2205 	}
2206 
2207 	/*
2208 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2209 	 * dq_in_delay values
2210 	 */
2211 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2212 
2213 	debug_cond(DLEVEL == 1,
2214 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2215 		   __func__, __LINE__, rw_group, found);
2216 
2217 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2218 	     r += NUM_RANKS_PER_SHADOW_REG) {
2219 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2220 		writel(0, &sdr_scc_mgr->update);
2221 	}
2222 
2223 	if (!found)
2224 		return -EINVAL;
2225 
2226 	return 0;
2227 
2228 }
2229 
2230 /**
2231  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2232  * @rw_group:		Read/Write Group
2233  * @test_bgn:		Rank at which the test begins
2234  * @use_read_test:	Perform a read test
2235  * @update_fom:		Update FOM
2236  *
2237  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2238  * within a group.
2239  */
2240 static int
2241 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2242 				      const int use_read_test,
2243 				      const int update_fom)
2244 
2245 {
2246 	int ret, grp_calibrated;
2247 	u32 rank_bgn, sr;
2248 
2249 	/*
2250 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2251 	 * Read per-bit deskew can be done on a per shadow register basis.
2252 	 */
2253 	grp_calibrated = 1;
2254 	for (rank_bgn = 0, sr = 0;
2255 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2256 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2257 		/* Check if this set of ranks should be skipped entirely. */
2258 		if (param->skip_shadow_regs[sr])
2259 			continue;
2260 
2261 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2262 							rw_group, test_bgn,
2263 							use_read_test,
2264 							update_fom);
2265 		if (ret)
2266 			continue;
2267 
2268 		grp_calibrated = 0;
2269 	}
2270 
2271 	if (!grp_calibrated)
2272 		return -EIO;
2273 
2274 	return 0;
2275 }
2276 
2277 /**
2278  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2279  * @rw_group:		Read/Write Group
2280  * @test_bgn:		Rank at which the test begins
2281  *
2282  * Stage 1: Calibrate the read valid prediction FIFO.
2283  *
2284  * This function implements UniPHY calibration Stage 1, as explained in
2285  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2286  *
2287  * - read valid prediction will consist of finding:
2288  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2289  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2290  *  - we also do a per-bit deskew on the DQ lines.
2291  */
2292 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2293 {
2294 	uint32_t p, d;
2295 	uint32_t dtaps_per_ptap;
2296 	uint32_t failed_substage;
2297 
2298 	int ret;
2299 
2300 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2301 
2302 	/* Update info for sims */
2303 	reg_file_set_group(rw_group);
2304 	reg_file_set_stage(CAL_STAGE_VFIFO);
2305 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2306 
2307 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2308 
2309 	/* USER Determine number of delay taps for each phase tap. */
2310 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2311 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2312 
2313 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2314 		/*
2315 		 * In RLDRAMX we may be messing the delay of pins in
2316 		 * the same write rw_group but outside of the current read
2317 		 * the rw_group, but that's ok because we haven't calibrated
2318 		 * output side yet.
2319 		 */
2320 		if (d > 0) {
2321 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2322 								rw_group, d);
2323 		}
2324 
2325 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2326 			/* 1) Guaranteed Write */
2327 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2328 			if (ret)
2329 				break;
2330 
2331 			/* 2) DQS Enable Calibration */
2332 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2333 									  test_bgn);
2334 			if (ret) {
2335 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2336 				continue;
2337 			}
2338 
2339 			/* 3) Centering DQ/DQS */
2340 			/*
2341 			 * If doing read after write calibration, do not update
2342 			 * FOM now. Do it then.
2343 			 */
2344 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2345 								test_bgn, 1, 0);
2346 			if (ret) {
2347 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2348 				continue;
2349 			}
2350 
2351 			/* All done. */
2352 			goto cal_done_ok;
2353 		}
2354 	}
2355 
2356 	/* Calibration Stage 1 failed. */
2357 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2358 	return 0;
2359 
2360 	/* Calibration Stage 1 completed OK. */
2361 cal_done_ok:
2362 	/*
2363 	 * Reset the delay chains back to zero if they have moved > 1
2364 	 * (check for > 1 because loop will increase d even when pass in
2365 	 * first case).
2366 	 */
2367 	if (d > 2)
2368 		scc_mgr_zero_group(rw_group, 1);
2369 
2370 	return 1;
2371 }
2372 
2373 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2374 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2375 					       uint32_t test_bgn)
2376 {
2377 	uint32_t rank_bgn, sr;
2378 	uint32_t grp_calibrated;
2379 	uint32_t write_group;
2380 
2381 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2382 
2383 	/* update info for sims */
2384 
2385 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2386 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2387 
2388 	write_group = read_group;
2389 
2390 	/* update info for sims */
2391 	reg_file_set_group(read_group);
2392 
2393 	grp_calibrated = 1;
2394 	/* Read per-bit deskew can be done on a per shadow register basis */
2395 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2396 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2397 		/* Determine if this set of ranks should be skipped entirely */
2398 		if (!param->skip_shadow_regs[sr]) {
2399 		/* This is the last calibration round, update FOM here */
2400 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2401 								write_group,
2402 								read_group,
2403 								test_bgn, 0,
2404 								1)) {
2405 				grp_calibrated = 0;
2406 			}
2407 		}
2408 	}
2409 
2410 
2411 	if (grp_calibrated == 0) {
2412 		set_failing_group_stage(write_group,
2413 					CAL_STAGE_VFIFO_AFTER_WRITES,
2414 					CAL_SUBSTAGE_VFIFO_CENTER);
2415 		return 0;
2416 	}
2417 
2418 	return 1;
2419 }
2420 
2421 /* Calibrate LFIFO to find smallest read latency */
2422 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2423 {
2424 	uint32_t found_one;
2425 	uint32_t bit_chk;
2426 
2427 	debug("%s:%d\n", __func__, __LINE__);
2428 
2429 	/* update info for sims */
2430 	reg_file_set_stage(CAL_STAGE_LFIFO);
2431 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2432 
2433 	/* Load up the patterns used by read calibration for all ranks */
2434 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2435 	found_one = 0;
2436 
2437 	do {
2438 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2439 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2440 			   __func__, __LINE__, gbl->curr_read_lat);
2441 
2442 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2443 							      NUM_READ_TESTS,
2444 							      PASS_ALL_BITS,
2445 							      &bit_chk, 1)) {
2446 			break;
2447 		}
2448 
2449 		found_one = 1;
2450 		/* reduce read latency and see if things are working */
2451 		/* correctly */
2452 		gbl->curr_read_lat--;
2453 	} while (gbl->curr_read_lat > 0);
2454 
2455 	/* reset the fifos to get pointers to known state */
2456 
2457 	writel(0, &phy_mgr_cmd->fifo_reset);
2458 
2459 	if (found_one) {
2460 		/* add a fudge factor to the read latency that was determined */
2461 		gbl->curr_read_lat += 2;
2462 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2463 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2464 			   read_lat=%u\n", __func__, __LINE__,
2465 			   gbl->curr_read_lat);
2466 		return 1;
2467 	} else {
2468 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2469 					CAL_SUBSTAGE_READ_LATENCY);
2470 
2471 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2472 			   read_lat=%u\n", __func__, __LINE__,
2473 			   gbl->curr_read_lat);
2474 		return 0;
2475 	}
2476 }
2477 
2478 /*
2479  * issue write test command.
2480  * two variants are provided. one that just tests a write pattern and
2481  * another that tests datamask functionality.
2482  */
2483 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2484 						  uint32_t test_dm)
2485 {
2486 	uint32_t mcc_instruction;
2487 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2488 		ENABLE_SUPER_QUICK_CALIBRATION);
2489 	uint32_t rw_wl_nop_cycles;
2490 	uint32_t addr;
2491 
2492 	/*
2493 	 * Set counter and jump addresses for the right
2494 	 * number of NOP cycles.
2495 	 * The number of supported NOP cycles can range from -1 to infinity
2496 	 * Three different cases are handled:
2497 	 *
2498 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2499 	 *    mechanism will be used to insert the right number of NOPs
2500 	 *
2501 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2502 	 *    issuing the write command will jump straight to the
2503 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2504 	 *    data (for RLD), skipping
2505 	 *    the NOP micro-instruction all together
2506 	 *
2507 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2508 	 *    turned on in the same micro-instruction that issues the write
2509 	 *    command. Then we need
2510 	 *    to directly jump to the micro-instruction that sends out the data
2511 	 *
2512 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2513 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2514 	 *       write-read operations.
2515 	 *       one counter left to issue this command in "multiple-group" mode
2516 	 */
2517 
2518 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2519 
2520 	if (rw_wl_nop_cycles == -1) {
2521 		/*
2522 		 * CNTR 2 - We want to execute the special write operation that
2523 		 * turns on DQS right away and then skip directly to the
2524 		 * instruction that sends out the data. We set the counter to a
2525 		 * large number so that the jump is always taken.
2526 		 */
2527 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2528 
2529 		/* CNTR 3 - Not used */
2530 		if (test_dm) {
2531 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2532 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2533 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2534 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2535 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2536 		} else {
2537 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2538 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2539 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2540 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2541 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2542 		}
2543 	} else if (rw_wl_nop_cycles == 0) {
2544 		/*
2545 		 * CNTR 2 - We want to skip the NOP operation and go straight
2546 		 * to the DQS enable instruction. We set the counter to a large
2547 		 * number so that the jump is always taken.
2548 		 */
2549 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2550 
2551 		/* CNTR 3 - Not used */
2552 		if (test_dm) {
2553 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2554 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2555 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2556 		} else {
2557 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2558 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2559 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2560 		}
2561 	} else {
2562 		/*
2563 		 * CNTR 2 - In this case we want to execute the next instruction
2564 		 * and NOT take the jump. So we set the counter to 0. The jump
2565 		 * address doesn't count.
2566 		 */
2567 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2568 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2569 
2570 		/*
2571 		 * CNTR 3 - Set the nop counter to the number of cycles we
2572 		 * need to loop for, minus 1.
2573 		 */
2574 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2575 		if (test_dm) {
2576 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2577 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2578 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2579 		} else {
2580 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2581 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2582 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2583 		}
2584 	}
2585 
2586 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2587 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2588 
2589 	if (quick_write_mode)
2590 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2591 	else
2592 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2593 
2594 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2595 
2596 	/*
2597 	 * CNTR 1 - This is used to ensure enough time elapses
2598 	 * for read data to come back.
2599 	 */
2600 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2601 
2602 	if (test_dm) {
2603 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2604 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2605 	} else {
2606 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2607 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2608 	}
2609 
2610 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2611 	writel(mcc_instruction, addr + (group << 2));
2612 }
2613 
2614 /* Test writes, can check for a single bit pass or multiple bit pass */
2615 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2616 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2617 	uint32_t *bit_chk, uint32_t all_ranks)
2618 {
2619 	uint32_t r;
2620 	uint32_t correct_mask_vg;
2621 	uint32_t tmp_bit_chk;
2622 	uint32_t vg;
2623 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2624 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2625 	uint32_t addr_rw_mgr;
2626 	uint32_t base_rw_mgr;
2627 
2628 	*bit_chk = param->write_correct_mask;
2629 	correct_mask_vg = param->write_correct_mask_vg;
2630 
2631 	for (r = rank_bgn; r < rank_end; r++) {
2632 		if (param->skip_ranks[r]) {
2633 			/* request to skip the rank */
2634 			continue;
2635 		}
2636 
2637 		/* set rank */
2638 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2639 
2640 		tmp_bit_chk = 0;
2641 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2642 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2643 			/* reset the fifos to get pointers to known state */
2644 			writel(0, &phy_mgr_cmd->fifo_reset);
2645 
2646 			tmp_bit_chk = tmp_bit_chk <<
2647 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2648 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2649 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2650 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2651 				use_dm);
2652 
2653 			base_rw_mgr = readl(addr_rw_mgr);
2654 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2655 			if (vg == 0)
2656 				break;
2657 		}
2658 		*bit_chk &= tmp_bit_chk;
2659 	}
2660 
2661 	if (all_correct) {
2662 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2663 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2664 			   %u => %lu", write_group, use_dm,
2665 			   *bit_chk, param->write_correct_mask,
2666 			   (long unsigned int)(*bit_chk ==
2667 			   param->write_correct_mask));
2668 		return *bit_chk == param->write_correct_mask;
2669 	} else {
2670 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2671 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2672 		       write_group, use_dm, *bit_chk);
2673 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2674 			(long unsigned int)(*bit_chk != 0));
2675 		return *bit_chk != 0x00;
2676 	}
2677 }
2678 
2679 /*
2680  * center all windows. do per-bit-deskew to possibly increase size of
2681  * certain windows.
2682  */
2683 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2684 	uint32_t write_group, uint32_t test_bgn)
2685 {
2686 	uint32_t i, p, min_index;
2687 	int32_t d;
2688 	/*
2689 	 * Store these as signed since there are comparisons with
2690 	 * signed numbers.
2691 	 */
2692 	uint32_t bit_chk;
2693 	uint32_t sticky_bit_chk;
2694 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2695 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2696 	int32_t mid;
2697 	int32_t mid_min, orig_mid_min;
2698 	int32_t new_dqs, start_dqs, shift_dq;
2699 	int32_t dq_margin, dqs_margin, dm_margin;
2700 	uint32_t stop;
2701 	uint32_t temp_dq_out1_delay;
2702 	uint32_t addr;
2703 
2704 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2705 
2706 	dm_margin = 0;
2707 
2708 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2709 	start_dqs = readl(addr +
2710 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2711 
2712 	/* per-bit deskew */
2713 
2714 	/*
2715 	 * set the left and right edge of each bit to an illegal value
2716 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2717 	 */
2718 	sticky_bit_chk = 0;
2719 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2720 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2721 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2722 	}
2723 
2724 	/* Search for the left edge of the window for each bit */
2725 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2726 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2727 
2728 		writel(0, &sdr_scc_mgr->update);
2729 
2730 		/*
2731 		 * Stop searching when the read test doesn't pass AND when
2732 		 * we've seen a passing read on every bit.
2733 		 */
2734 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2735 			0, PASS_ONE_BIT, &bit_chk, 0);
2736 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2737 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2738 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2739 			   == %u && %u [bit_chk= %u ]\n",
2740 			d, sticky_bit_chk, param->write_correct_mask,
2741 			stop, bit_chk);
2742 
2743 		if (stop == 1) {
2744 			break;
2745 		} else {
2746 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2747 				if (bit_chk & 1) {
2748 					/*
2749 					 * Remember a passing test as the
2750 					 * left_edge.
2751 					 */
2752 					left_edge[i] = d;
2753 				} else {
2754 					/*
2755 					 * If a left edge has not been seen
2756 					 * yet, then a future passing test will
2757 					 * mark this edge as the right edge.
2758 					 */
2759 					if (left_edge[i] ==
2760 						IO_IO_OUT1_DELAY_MAX + 1) {
2761 						right_edge[i] = -(d + 1);
2762 					}
2763 				}
2764 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2765 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2766 					   (int)(bit_chk & 1), i, left_edge[i]);
2767 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2768 				       right_edge[i]);
2769 				bit_chk = bit_chk >> 1;
2770 			}
2771 		}
2772 	}
2773 
2774 	/* Reset DQ delay chains to 0 */
2775 	scc_mgr_apply_group_dq_out1_delay(0);
2776 	sticky_bit_chk = 0;
2777 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2778 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2779 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2780 			   i, left_edge[i], i, right_edge[i]);
2781 
2782 		/*
2783 		 * Check for cases where we haven't found the left edge,
2784 		 * which makes our assignment of the the right edge invalid.
2785 		 * Reset it to the illegal value.
2786 		 */
2787 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2788 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2789 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2790 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2791 				   right_edge[%u]: %d\n", __func__, __LINE__,
2792 				   i, right_edge[i]);
2793 		}
2794 
2795 		/*
2796 		 * Reset sticky bit (except for bits where we have
2797 		 * seen the left edge).
2798 		 */
2799 		sticky_bit_chk = sticky_bit_chk << 1;
2800 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2801 			sticky_bit_chk = sticky_bit_chk | 1;
2802 
2803 		if (i == 0)
2804 			break;
2805 	}
2806 
2807 	/* Search for the right edge of the window for each bit */
2808 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2809 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2810 							d + start_dqs);
2811 
2812 		writel(0, &sdr_scc_mgr->update);
2813 
2814 		/*
2815 		 * Stop searching when the read test doesn't pass AND when
2816 		 * we've seen a passing read on every bit.
2817 		 */
2818 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2819 			0, PASS_ONE_BIT, &bit_chk, 0);
2820 
2821 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2822 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2823 
2824 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2825 			   %u && %u\n", d, sticky_bit_chk,
2826 			   param->write_correct_mask, stop);
2827 
2828 		if (stop == 1) {
2829 			if (d == 0) {
2830 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2831 					i++) {
2832 					/* d = 0 failed, but it passed when
2833 					testing the left edge, so it must be
2834 					marginal, set it to -1 */
2835 					if (right_edge[i] ==
2836 						IO_IO_OUT1_DELAY_MAX + 1 &&
2837 						left_edge[i] !=
2838 						IO_IO_OUT1_DELAY_MAX + 1) {
2839 						right_edge[i] = -1;
2840 					}
2841 				}
2842 			}
2843 			break;
2844 		} else {
2845 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2846 				if (bit_chk & 1) {
2847 					/*
2848 					 * Remember a passing test as
2849 					 * the right_edge.
2850 					 */
2851 					right_edge[i] = d;
2852 				} else {
2853 					if (d != 0) {
2854 						/*
2855 						 * If a right edge has not
2856 						 * been seen yet, then a future
2857 						 * passing test will mark this
2858 						 * edge as the left edge.
2859 						 */
2860 						if (right_edge[i] ==
2861 						    IO_IO_OUT1_DELAY_MAX + 1)
2862 							left_edge[i] = -(d + 1);
2863 					} else {
2864 						/*
2865 						 * d = 0 failed, but it passed
2866 						 * when testing the left edge,
2867 						 * so it must be marginal, set
2868 						 * it to -1.
2869 						 */
2870 						if (right_edge[i] ==
2871 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2872 						    left_edge[i] !=
2873 						    IO_IO_OUT1_DELAY_MAX + 1)
2874 							right_edge[i] = -1;
2875 						/*
2876 						 * If a right edge has not been
2877 						 * seen yet, then a future
2878 						 * passing test will mark this
2879 						 * edge as the left edge.
2880 						 */
2881 						else if (right_edge[i] ==
2882 							IO_IO_OUT1_DELAY_MAX +
2883 							1)
2884 							left_edge[i] = -(d + 1);
2885 					}
2886 				}
2887 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2888 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2889 					   (int)(bit_chk & 1), i, left_edge[i]);
2890 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2891 					   right_edge[i]);
2892 				bit_chk = bit_chk >> 1;
2893 			}
2894 		}
2895 	}
2896 
2897 	/* Check that all bits have a window */
2898 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2899 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2900 			   %d right_edge[%u]: %d", __func__, __LINE__,
2901 			   i, left_edge[i], i, right_edge[i]);
2902 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2903 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2904 			set_failing_group_stage(test_bgn + i,
2905 						CAL_STAGE_WRITES,
2906 						CAL_SUBSTAGE_WRITES_CENTER);
2907 			return 0;
2908 		}
2909 	}
2910 
2911 	/* Find middle of window for each DQ bit */
2912 	mid_min = left_edge[0] - right_edge[0];
2913 	min_index = 0;
2914 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2915 		mid = left_edge[i] - right_edge[i];
2916 		if (mid < mid_min) {
2917 			mid_min = mid;
2918 			min_index = i;
2919 		}
2920 	}
2921 
2922 	/*
2923 	 * -mid_min/2 represents the amount that we need to move DQS.
2924 	 * If mid_min is odd and positive we'll need to add one to
2925 	 * make sure the rounding in further calculations is correct
2926 	 * (always bias to the right), so just add 1 for all positive values.
2927 	 */
2928 	if (mid_min > 0)
2929 		mid_min++;
2930 	mid_min = mid_min / 2;
2931 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2932 		   __LINE__, mid_min);
2933 
2934 	/* Determine the amount we can change DQS (which is -mid_min) */
2935 	orig_mid_min = mid_min;
2936 	new_dqs = start_dqs;
2937 	mid_min = 0;
2938 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2939 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2940 	/* Initialize data for export structures */
2941 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2942 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2943 
2944 	/* add delay to bring centre of all DQ windows to the same "level" */
2945 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2946 		/* Use values before divide by 2 to reduce round off error */
2947 		shift_dq = (left_edge[i] - right_edge[i] -
2948 			(left_edge[min_index] - right_edge[min_index]))/2  +
2949 		(orig_mid_min - mid_min);
2950 
2951 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2952 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2953 
2954 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2955 		temp_dq_out1_delay = readl(addr + (i << 2));
2956 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2957 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2958 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2959 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2960 			shift_dq = -(int32_t)temp_dq_out1_delay;
2961 		}
2962 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2963 			   i, shift_dq);
2964 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2965 		scc_mgr_load_dq(i);
2966 
2967 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2968 			   left_edge[i] - shift_dq + (-mid_min),
2969 			   right_edge[i] + shift_dq - (-mid_min));
2970 		/* To determine values for export structures */
2971 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2972 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2973 
2974 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2975 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2976 	}
2977 
2978 	/* Move DQS */
2979 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2980 	writel(0, &sdr_scc_mgr->update);
2981 
2982 	/* Centre DM */
2983 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2984 
2985 	/*
2986 	 * set the left and right edge of each bit to an illegal value,
2987 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2988 	 */
2989 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2990 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2991 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2992 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2993 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2994 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2995 	int32_t win_best = 0;
2996 
2997 	/* Search for the/part of the window with DM shift */
2998 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2999 		scc_mgr_apply_group_dm_out1_delay(d);
3000 		writel(0, &sdr_scc_mgr->update);
3001 
3002 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3003 						    PASS_ALL_BITS, &bit_chk,
3004 						    0)) {
3005 			/* USE Set current end of the window */
3006 			end_curr = -d;
3007 			/*
3008 			 * If a starting edge of our window has not been seen
3009 			 * this is our current start of the DM window.
3010 			 */
3011 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3012 				bgn_curr = -d;
3013 
3014 			/*
3015 			 * If current window is bigger than best seen.
3016 			 * Set best seen to be current window.
3017 			 */
3018 			if ((end_curr-bgn_curr+1) > win_best) {
3019 				win_best = end_curr-bgn_curr+1;
3020 				bgn_best = bgn_curr;
3021 				end_best = end_curr;
3022 			}
3023 		} else {
3024 			/* We just saw a failing test. Reset temp edge */
3025 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3026 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3027 			}
3028 		}
3029 
3030 
3031 	/* Reset DM delay chains to 0 */
3032 	scc_mgr_apply_group_dm_out1_delay(0);
3033 
3034 	/*
3035 	 * Check to see if the current window nudges up aganist 0 delay.
3036 	 * If so we need to continue the search by shifting DQS otherwise DQS
3037 	 * search begins as a new search. */
3038 	if (end_curr != 0) {
3039 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3040 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3041 	}
3042 
3043 	/* Search for the/part of the window with DQS shifts */
3044 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3045 		/*
3046 		 * Note: This only shifts DQS, so are we limiting ourselve to
3047 		 * width of DQ unnecessarily.
3048 		 */
3049 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3050 							d + new_dqs);
3051 
3052 		writel(0, &sdr_scc_mgr->update);
3053 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3054 						    PASS_ALL_BITS, &bit_chk,
3055 						    0)) {
3056 			/* USE Set current end of the window */
3057 			end_curr = d;
3058 			/*
3059 			 * If a beginning edge of our window has not been seen
3060 			 * this is our current begin of the DM window.
3061 			 */
3062 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3063 				bgn_curr = d;
3064 
3065 			/*
3066 			 * If current window is bigger than best seen. Set best
3067 			 * seen to be current window.
3068 			 */
3069 			if ((end_curr-bgn_curr+1) > win_best) {
3070 				win_best = end_curr-bgn_curr+1;
3071 				bgn_best = bgn_curr;
3072 				end_best = end_curr;
3073 			}
3074 		} else {
3075 			/* We just saw a failing test. Reset temp edge */
3076 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3077 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3078 
3079 			/* Early exit optimization: if ther remaining delay
3080 			chain space is less than already seen largest window
3081 			we can exit */
3082 			if ((win_best-1) >
3083 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3084 					break;
3085 				}
3086 			}
3087 		}
3088 
3089 	/* assign left and right edge for cal and reporting; */
3090 	left_edge[0] = -1*bgn_best;
3091 	right_edge[0] = end_best;
3092 
3093 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3094 		   __LINE__, left_edge[0], right_edge[0]);
3095 
3096 	/* Move DQS (back to orig) */
3097 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3098 
3099 	/* Move DM */
3100 
3101 	/* Find middle of window for the DM bit */
3102 	mid = (left_edge[0] - right_edge[0]) / 2;
3103 
3104 	/* only move right, since we are not moving DQS/DQ */
3105 	if (mid < 0)
3106 		mid = 0;
3107 
3108 	/* dm_marign should fail if we never find a window */
3109 	if (win_best == 0)
3110 		dm_margin = -1;
3111 	else
3112 		dm_margin = left_edge[0] - mid;
3113 
3114 	scc_mgr_apply_group_dm_out1_delay(mid);
3115 	writel(0, &sdr_scc_mgr->update);
3116 
3117 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3118 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3119 		   right_edge[0], mid, dm_margin);
3120 	/* Export values */
3121 	gbl->fom_out += dq_margin + dqs_margin;
3122 
3123 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3124 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3125 		   dq_margin, dqs_margin, dm_margin);
3126 
3127 	/*
3128 	 * Do not remove this line as it makes sure all of our
3129 	 * decisions have been applied.
3130 	 */
3131 	writel(0, &sdr_scc_mgr->update);
3132 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3133 }
3134 
3135 /* calibrate the write operations */
3136 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3137 	uint32_t test_bgn)
3138 {
3139 	/* update info for sims */
3140 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3141 
3142 	reg_file_set_stage(CAL_STAGE_WRITES);
3143 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3144 
3145 	reg_file_set_group(g);
3146 
3147 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3148 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3149 					CAL_SUBSTAGE_WRITES_CENTER);
3150 		return 0;
3151 	}
3152 
3153 	return 1;
3154 }
3155 
3156 /**
3157  * mem_precharge_and_activate() - Precharge all banks and activate
3158  *
3159  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3160  */
3161 static void mem_precharge_and_activate(void)
3162 {
3163 	int r;
3164 
3165 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3166 		/* Test if the rank should be skipped. */
3167 		if (param->skip_ranks[r])
3168 			continue;
3169 
3170 		/* Set rank. */
3171 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3172 
3173 		/* Precharge all banks. */
3174 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3175 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3176 
3177 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3178 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3179 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3180 
3181 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3182 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3183 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3184 
3185 		/* Activate rows. */
3186 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3187 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3188 	}
3189 }
3190 
3191 /**
3192  * mem_init_latency() - Configure memory RLAT and WLAT settings
3193  *
3194  * Configure memory RLAT and WLAT parameters.
3195  */
3196 static void mem_init_latency(void)
3197 {
3198 	/*
3199 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3200 	 * so max latency in AFI clocks, used here, is correspondingly
3201 	 * smaller.
3202 	 */
3203 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3204 	u32 rlat, wlat;
3205 
3206 	debug("%s:%d\n", __func__, __LINE__);
3207 
3208 	/*
3209 	 * Read in write latency.
3210 	 * WL for Hard PHY does not include additive latency.
3211 	 */
3212 	wlat = readl(&data_mgr->t_wl_add);
3213 	wlat += readl(&data_mgr->mem_t_add);
3214 
3215 	gbl->rw_wl_nop_cycles = wlat - 1;
3216 
3217 	/* Read in readl latency. */
3218 	rlat = readl(&data_mgr->t_rl_add);
3219 
3220 	/* Set a pretty high read latency initially. */
3221 	gbl->curr_read_lat = rlat + 16;
3222 	if (gbl->curr_read_lat > max_latency)
3223 		gbl->curr_read_lat = max_latency;
3224 
3225 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3226 
3227 	/* Advertise write latency. */
3228 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3229 }
3230 
3231 /**
3232  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3233  *
3234  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3235  */
3236 static void mem_skip_calibrate(void)
3237 {
3238 	uint32_t vfifo_offset;
3239 	uint32_t i, j, r;
3240 
3241 	debug("%s:%d\n", __func__, __LINE__);
3242 	/* Need to update every shadow register set used by the interface */
3243 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3244 	     r += NUM_RANKS_PER_SHADOW_REG) {
3245 		/*
3246 		 * Set output phase alignment settings appropriate for
3247 		 * skip calibration.
3248 		 */
3249 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3250 			scc_mgr_set_dqs_en_phase(i, 0);
3251 #if IO_DLL_CHAIN_LENGTH == 6
3252 			scc_mgr_set_dqdqs_output_phase(i, 6);
3253 #else
3254 			scc_mgr_set_dqdqs_output_phase(i, 7);
3255 #endif
3256 			/*
3257 			 * Case:33398
3258 			 *
3259 			 * Write data arrives to the I/O two cycles before write
3260 			 * latency is reached (720 deg).
3261 			 *   -> due to bit-slip in a/c bus
3262 			 *   -> to allow board skew where dqs is longer than ck
3263 			 *      -> how often can this happen!?
3264 			 *      -> can claim back some ptaps for high freq
3265 			 *       support if we can relax this, but i digress...
3266 			 *
3267 			 * The write_clk leads mem_ck by 90 deg
3268 			 * The minimum ptap of the OPA is 180 deg
3269 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3270 			 * The write_clk is always delayed by 2 ptaps
3271 			 *
3272 			 * Hence, to make DQS aligned to CK, we need to delay
3273 			 * DQS by:
3274 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3275 			 *
3276 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3277 			 * gives us the number of ptaps, which simplies to:
3278 			 *
3279 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3280 			 */
3281 			scc_mgr_set_dqdqs_output_phase(i,
3282 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3283 		}
3284 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3285 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3286 
3287 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3288 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3289 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3290 		}
3291 		writel(0xff, &sdr_scc_mgr->dq_ena);
3292 		writel(0xff, &sdr_scc_mgr->dm_ena);
3293 		writel(0, &sdr_scc_mgr->update);
3294 	}
3295 
3296 	/* Compensate for simulation model behaviour */
3297 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3298 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3299 		scc_mgr_load_dqs(i);
3300 	}
3301 	writel(0, &sdr_scc_mgr->update);
3302 
3303 	/*
3304 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3305 	 * in sequencer.
3306 	 */
3307 	vfifo_offset = CALIB_VFIFO_OFFSET;
3308 	for (j = 0; j < vfifo_offset; j++)
3309 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3310 	writel(0, &phy_mgr_cmd->fifo_reset);
3311 
3312 	/*
3313 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3314 	 * setting from generation-time constant.
3315 	 */
3316 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3317 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3318 }
3319 
3320 /**
3321  * mem_calibrate() - Memory calibration entry point.
3322  *
3323  * Perform memory calibration.
3324  */
3325 static uint32_t mem_calibrate(void)
3326 {
3327 	uint32_t i;
3328 	uint32_t rank_bgn, sr;
3329 	uint32_t write_group, write_test_bgn;
3330 	uint32_t read_group, read_test_bgn;
3331 	uint32_t run_groups, current_run;
3332 	uint32_t failing_groups = 0;
3333 	uint32_t group_failed = 0;
3334 
3335 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3336 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3337 
3338 	debug("%s:%d\n", __func__, __LINE__);
3339 
3340 	/* Initialize the data settings */
3341 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3342 	gbl->error_stage = CAL_STAGE_NIL;
3343 	gbl->error_group = 0xff;
3344 	gbl->fom_in = 0;
3345 	gbl->fom_out = 0;
3346 
3347 	/* Initialize WLAT and RLAT. */
3348 	mem_init_latency();
3349 
3350 	/* Initialize bit slips. */
3351 	mem_precharge_and_activate();
3352 
3353 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3354 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3355 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3356 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3357 		if (i == 0)
3358 			scc_mgr_set_hhp_extras();
3359 
3360 		scc_set_bypass_mode(i);
3361 	}
3362 
3363 	/* Calibration is skipped. */
3364 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3365 		/*
3366 		 * Set VFIFO and LFIFO to instant-on settings in skip
3367 		 * calibration mode.
3368 		 */
3369 		mem_skip_calibrate();
3370 
3371 		/*
3372 		 * Do not remove this line as it makes sure all of our
3373 		 * decisions have been applied.
3374 		 */
3375 		writel(0, &sdr_scc_mgr->update);
3376 		return 1;
3377 	}
3378 
3379 	/* Calibration is not skipped. */
3380 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3381 		/*
3382 		 * Zero all delay chain/phase settings for all
3383 		 * groups and all shadow register sets.
3384 		 */
3385 		scc_mgr_zero_all();
3386 
3387 		run_groups = ~param->skip_groups;
3388 
3389 		for (write_group = 0, write_test_bgn = 0; write_group
3390 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3391 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3392 
3393 			/* Initialize the group failure */
3394 			group_failed = 0;
3395 
3396 			current_run = run_groups & ((1 <<
3397 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3398 			run_groups = run_groups >>
3399 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3400 
3401 			if (current_run == 0)
3402 				continue;
3403 
3404 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3405 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3406 			scc_mgr_zero_group(write_group, 0);
3407 
3408 			for (read_group = write_group * rwdqs_ratio,
3409 			     read_test_bgn = 0;
3410 			     read_group < (write_group + 1) * rwdqs_ratio;
3411 			     read_group++,
3412 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3413 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3414 					continue;
3415 
3416 				/* Calibrate the VFIFO */
3417 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3418 							       read_test_bgn))
3419 					continue;
3420 
3421 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3422 					return 0;
3423 
3424 				/* The group failed, we're done. */
3425 				goto grp_failed;
3426 			}
3427 
3428 			/* Calibrate the output side */
3429 			for (rank_bgn = 0, sr = 0;
3430 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3431 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3432 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3433 					continue;
3434 
3435 				/* Not needed in quick mode! */
3436 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3437 					continue;
3438 
3439 				/*
3440 				 * Determine if this set of ranks
3441 				 * should be skipped entirely.
3442 				 */
3443 				if (param->skip_shadow_regs[sr])
3444 					continue;
3445 
3446 				/* Calibrate WRITEs */
3447 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3448 						write_group, write_test_bgn))
3449 					continue;
3450 
3451 				group_failed = 1;
3452 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3453 					return 0;
3454 			}
3455 
3456 			/* Some group failed, we're done. */
3457 			if (group_failed)
3458 				goto grp_failed;
3459 
3460 			for (read_group = write_group * rwdqs_ratio,
3461 			     read_test_bgn = 0;
3462 			     read_group < (write_group + 1) * rwdqs_ratio;
3463 			     read_group++,
3464 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3465 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3466 					continue;
3467 
3468 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3469 								read_test_bgn))
3470 					continue;
3471 
3472 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3473 					return 0;
3474 
3475 				/* The group failed, we're done. */
3476 				goto grp_failed;
3477 			}
3478 
3479 			/* No group failed, continue as usual. */
3480 			continue;
3481 
3482 grp_failed:		/* A group failed, increment the counter. */
3483 			failing_groups++;
3484 		}
3485 
3486 		/*
3487 		 * USER If there are any failing groups then report
3488 		 * the failure.
3489 		 */
3490 		if (failing_groups != 0)
3491 			return 0;
3492 
3493 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3494 			continue;
3495 
3496 		/*
3497 		 * If we're skipping groups as part of debug,
3498 		 * don't calibrate LFIFO.
3499 		 */
3500 		if (param->skip_groups != 0)
3501 			continue;
3502 
3503 		/* Calibrate the LFIFO */
3504 		if (!rw_mgr_mem_calibrate_lfifo())
3505 			return 0;
3506 	}
3507 
3508 	/*
3509 	 * Do not remove this line as it makes sure all of our decisions
3510 	 * have been applied.
3511 	 */
3512 	writel(0, &sdr_scc_mgr->update);
3513 	return 1;
3514 }
3515 
3516 /**
3517  * run_mem_calibrate() - Perform memory calibration
3518  *
3519  * This function triggers the entire memory calibration procedure.
3520  */
3521 static int run_mem_calibrate(void)
3522 {
3523 	int pass;
3524 
3525 	debug("%s:%d\n", __func__, __LINE__);
3526 
3527 	/* Reset pass/fail status shown on afi_cal_success/fail */
3528 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3529 
3530 	/* Stop tracking manager. */
3531 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3532 
3533 	phy_mgr_initialize();
3534 	rw_mgr_mem_initialize();
3535 
3536 	/* Perform the actual memory calibration. */
3537 	pass = mem_calibrate();
3538 
3539 	mem_precharge_and_activate();
3540 	writel(0, &phy_mgr_cmd->fifo_reset);
3541 
3542 	/* Handoff. */
3543 	rw_mgr_mem_handoff();
3544 	/*
3545 	 * In Hard PHY this is a 2-bit control:
3546 	 * 0: AFI Mux Select
3547 	 * 1: DDIO Mux Select
3548 	 */
3549 	writel(0x2, &phy_mgr_cfg->mux_sel);
3550 
3551 	/* Start tracking manager. */
3552 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3553 
3554 	return pass;
3555 }
3556 
3557 /**
3558  * debug_mem_calibrate() - Report result of memory calibration
3559  * @pass:	Value indicating whether calibration passed or failed
3560  *
3561  * This function reports the results of the memory calibration
3562  * and writes debug information into the register file.
3563  */
3564 static void debug_mem_calibrate(int pass)
3565 {
3566 	uint32_t debug_info;
3567 
3568 	if (pass) {
3569 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3570 
3571 		gbl->fom_in /= 2;
3572 		gbl->fom_out /= 2;
3573 
3574 		if (gbl->fom_in > 0xff)
3575 			gbl->fom_in = 0xff;
3576 
3577 		if (gbl->fom_out > 0xff)
3578 			gbl->fom_out = 0xff;
3579 
3580 		/* Update the FOM in the register file */
3581 		debug_info = gbl->fom_in;
3582 		debug_info |= gbl->fom_out << 8;
3583 		writel(debug_info, &sdr_reg_file->fom);
3584 
3585 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3586 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3587 	} else {
3588 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3589 
3590 		debug_info = gbl->error_stage;
3591 		debug_info |= gbl->error_substage << 8;
3592 		debug_info |= gbl->error_group << 16;
3593 
3594 		writel(debug_info, &sdr_reg_file->failing_stage);
3595 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3596 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3597 
3598 		/* Update the failing group/stage in the register file */
3599 		debug_info = gbl->error_stage;
3600 		debug_info |= gbl->error_substage << 8;
3601 		debug_info |= gbl->error_group << 16;
3602 		writel(debug_info, &sdr_reg_file->failing_stage);
3603 	}
3604 
3605 	printf("%s: Calibration complete\n", __FILE__);
3606 }
3607 
3608 /**
3609  * hc_initialize_rom_data() - Initialize ROM data
3610  *
3611  * Initialize ROM data.
3612  */
3613 static void hc_initialize_rom_data(void)
3614 {
3615 	u32 i, addr;
3616 
3617 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3618 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3619 		writel(inst_rom_init[i], addr + (i << 2));
3620 
3621 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3622 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3623 		writel(ac_rom_init[i], addr + (i << 2));
3624 }
3625 
3626 /**
3627  * initialize_reg_file() - Initialize SDR register file
3628  *
3629  * Initialize SDR register file.
3630  */
3631 static void initialize_reg_file(void)
3632 {
3633 	/* Initialize the register file with the correct data */
3634 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3635 	writel(0, &sdr_reg_file->debug_data_addr);
3636 	writel(0, &sdr_reg_file->cur_stage);
3637 	writel(0, &sdr_reg_file->fom);
3638 	writel(0, &sdr_reg_file->failing_stage);
3639 	writel(0, &sdr_reg_file->debug1);
3640 	writel(0, &sdr_reg_file->debug2);
3641 }
3642 
3643 /**
3644  * initialize_hps_phy() - Initialize HPS PHY
3645  *
3646  * Initialize HPS PHY.
3647  */
3648 static void initialize_hps_phy(void)
3649 {
3650 	uint32_t reg;
3651 	/*
3652 	 * Tracking also gets configured here because it's in the
3653 	 * same register.
3654 	 */
3655 	uint32_t trk_sample_count = 7500;
3656 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3657 	/*
3658 	 * Format is number of outer loops in the 16 MSB, sample
3659 	 * count in 16 LSB.
3660 	 */
3661 
3662 	reg = 0;
3663 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3664 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3665 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3666 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3667 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3668 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3669 	/*
3670 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3671 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3672 	 */
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3675 		trk_sample_count);
3676 	writel(reg, &sdr_ctrl->phy_ctrl0);
3677 
3678 	reg = 0;
3679 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3680 		trk_sample_count >>
3681 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3682 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3683 		trk_long_idle_sample_count);
3684 	writel(reg, &sdr_ctrl->phy_ctrl1);
3685 
3686 	reg = 0;
3687 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3688 		trk_long_idle_sample_count >>
3689 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3690 	writel(reg, &sdr_ctrl->phy_ctrl2);
3691 }
3692 
3693 /**
3694  * initialize_tracking() - Initialize tracking
3695  *
3696  * Initialize the register file with usable initial data.
3697  */
3698 static void initialize_tracking(void)
3699 {
3700 	/*
3701 	 * Initialize the register file with the correct data.
3702 	 * Compute usable version of value in case we skip full
3703 	 * computation later.
3704 	 */
3705 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3706 	       &sdr_reg_file->dtaps_per_ptap);
3707 
3708 	/* trk_sample_count */
3709 	writel(7500, &sdr_reg_file->trk_sample_count);
3710 
3711 	/* longidle outer loop [15:0] */
3712 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3713 
3714 	/*
3715 	 * longidle sample count [31:24]
3716 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3717 	 * trcd, worst case [15:8]
3718 	 * vfifo wait [7:0]
3719 	 */
3720 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3721 	       &sdr_reg_file->delays);
3722 
3723 	/* mux delay */
3724 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3725 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3726 	       &sdr_reg_file->trk_rw_mgr_addr);
3727 
3728 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3729 	       &sdr_reg_file->trk_read_dqs_width);
3730 
3731 	/* trefi [7:0] */
3732 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3733 	       &sdr_reg_file->trk_rfsh);
3734 }
3735 
3736 int sdram_calibration_full(void)
3737 {
3738 	struct param_type my_param;
3739 	struct gbl_type my_gbl;
3740 	uint32_t pass;
3741 
3742 	memset(&my_param, 0, sizeof(my_param));
3743 	memset(&my_gbl, 0, sizeof(my_gbl));
3744 
3745 	param = &my_param;
3746 	gbl = &my_gbl;
3747 
3748 	/* Set the calibration enabled by default */
3749 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3750 	/*
3751 	 * Only sweep all groups (regardless of fail state) by default
3752 	 * Set enabled read test by default.
3753 	 */
3754 #if DISABLE_GUARANTEED_READ
3755 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3756 #endif
3757 	/* Initialize the register file */
3758 	initialize_reg_file();
3759 
3760 	/* Initialize any PHY CSR */
3761 	initialize_hps_phy();
3762 
3763 	scc_mgr_initialize();
3764 
3765 	initialize_tracking();
3766 
3767 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3768 
3769 	debug("%s:%d\n", __func__, __LINE__);
3770 	debug_cond(DLEVEL == 1,
3771 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3772 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3773 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3774 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3775 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3776 	debug_cond(DLEVEL == 1,
3777 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3778 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3779 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3780 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3781 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3782 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3783 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3784 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3785 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3786 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3787 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3788 		   IO_IO_OUT2_DELAY_MAX);
3789 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3790 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3791 
3792 	hc_initialize_rom_data();
3793 
3794 	/* update info for sims */
3795 	reg_file_set_stage(CAL_STAGE_NIL);
3796 	reg_file_set_group(0);
3797 
3798 	/*
3799 	 * Load global needed for those actions that require
3800 	 * some dynamic calibration support.
3801 	 */
3802 	dyn_calib_steps = STATIC_CALIB_STEPS;
3803 	/*
3804 	 * Load global to allow dynamic selection of delay loop settings
3805 	 * based on calibration mode.
3806 	 */
3807 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3808 		skip_delay_mask = 0xff;
3809 	else
3810 		skip_delay_mask = 0x0;
3811 
3812 	pass = run_mem_calibrate();
3813 	debug_mem_calibrate(pass);
3814 	return pass;
3815 }
3816