1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static int 1178 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1179 const u32 num_tries, const u32 all_correct, 1180 u32 *bit_chk, 1181 const u32 all_groups, const u32 all_ranks) 1182 { 1183 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1185 const u32 quick_read_mode = 1186 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1187 ENABLE_SUPER_QUICK_CALIBRATION); 1188 u32 correct_mask_vg = param->read_correct_mask_vg; 1189 u32 tmp_bit_chk; 1190 u32 base_rw_mgr; 1191 u32 addr; 1192 1193 int r, vg, ret; 1194 1195 *bit_chk = param->read_correct_mask; 1196 1197 for (r = rank_bgn; r < rank_end; r++) { 1198 if (param->skip_ranks[r]) 1199 /* request to skip the rank */ 1200 continue; 1201 1202 /* set rank */ 1203 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1204 1205 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1206 1207 writel(RW_MGR_READ_B2B_WAIT1, 1208 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1209 1210 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1211 writel(RW_MGR_READ_B2B_WAIT2, 1212 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1213 1214 if (quick_read_mode) 1215 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1216 /* need at least two (1+1) reads to capture failures */ 1217 else if (all_groups) 1218 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1219 else 1220 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1221 1222 writel(RW_MGR_READ_B2B, 1223 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1224 if (all_groups) 1225 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1226 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1227 &sdr_rw_load_mgr_regs->load_cntr3); 1228 else 1229 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1230 1231 writel(RW_MGR_READ_B2B, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1233 1234 tmp_bit_chk = 0; 1235 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1236 vg--) { 1237 /* reset the fifos to get pointers to known state */ 1238 writel(0, &phy_mgr_cmd->fifo_reset); 1239 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1240 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1241 1242 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1243 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1244 1245 if (all_groups) 1246 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1247 else 1248 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1249 1250 writel(RW_MGR_READ_B2B, addr + 1251 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1252 vg) << 2)); 1253 1254 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1255 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1256 } 1257 1258 *bit_chk &= tmp_bit_chk; 1259 } 1260 1261 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1262 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1263 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 1266 if (all_correct) { 1267 ret = (*bit_chk == param->read_correct_mask); 1268 debug_cond(DLEVEL == 2, 1269 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1270 __func__, __LINE__, group, all_groups, *bit_chk, 1271 param->read_correct_mask, ret); 1272 } else { 1273 ret = (*bit_chk != 0x00); 1274 debug_cond(DLEVEL == 2, 1275 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1276 __func__, __LINE__, group, all_groups, *bit_chk, 1277 0, ret); 1278 } 1279 1280 return ret; 1281 } 1282 1283 /** 1284 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1285 * @grp: Read/Write group 1286 * @num_tries: Number of retries of the test 1287 * @all_correct: All bits must be correct in the mask 1288 * @all_groups: Test all R/W groups 1289 * 1290 * Perform a READ test across all memory ranks. 1291 */ 1292 static int 1293 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1294 const u32 all_correct, 1295 const u32 all_groups) 1296 { 1297 u32 bit_chk; 1298 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1299 &bit_chk, all_groups, 1); 1300 } 1301 1302 /** 1303 * rw_mgr_incr_vfifo() - Increase VFIFO value 1304 * @grp: Read/Write group 1305 * 1306 * Increase VFIFO value. 1307 */ 1308 static void rw_mgr_incr_vfifo(const u32 grp) 1309 { 1310 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1311 } 1312 1313 /** 1314 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1315 * @grp: Read/Write group 1316 * 1317 * Decrease VFIFO value. 1318 */ 1319 static void rw_mgr_decr_vfifo(const u32 grp) 1320 { 1321 u32 i; 1322 1323 for (i = 0; i < VFIFO_SIZE - 1; i++) 1324 rw_mgr_incr_vfifo(grp); 1325 } 1326 1327 /** 1328 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1329 * @grp: Read/Write group 1330 * 1331 * Push VFIFO until a failing read happens. 1332 */ 1333 static int find_vfifo_failing_read(const u32 grp) 1334 { 1335 u32 v, ret, fail_cnt = 0; 1336 1337 for (v = 0; v < VFIFO_SIZE; v++) { 1338 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1339 __func__, __LINE__, v); 1340 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1341 PASS_ONE_BIT, 0); 1342 if (!ret) { 1343 fail_cnt++; 1344 1345 if (fail_cnt == 2) 1346 return v; 1347 } 1348 1349 /* Fiddle with FIFO. */ 1350 rw_mgr_incr_vfifo(grp); 1351 } 1352 1353 /* No failing read found! Something must have gone wrong. */ 1354 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1355 return 0; 1356 } 1357 1358 /** 1359 * sdr_find_phase_delay() - Find DQS enable phase or delay 1360 * @working: If 1, look for working phase/delay, if 0, look for non-working 1361 * @delay: If 1, look for delay, if 0, look for phase 1362 * @grp: Read/Write group 1363 * @work: Working window position 1364 * @work_inc: Working window increment 1365 * @pd: DQS Phase/Delay Iterator 1366 * 1367 * Find working or non-working DQS enable phase setting. 1368 */ 1369 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1370 u32 *work, const u32 work_inc, u32 *pd) 1371 { 1372 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1373 u32 ret; 1374 1375 for (; *pd <= max; (*pd)++) { 1376 if (delay) 1377 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1378 else 1379 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1380 1381 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1382 PASS_ONE_BIT, 0); 1383 if (!working) 1384 ret = !ret; 1385 1386 if (ret) 1387 return 0; 1388 1389 if (work) 1390 *work += work_inc; 1391 } 1392 1393 return -EINVAL; 1394 } 1395 /** 1396 * sdr_find_phase() - Find DQS enable phase 1397 * @working: If 1, look for working phase, if 0, look for non-working phase 1398 * @grp: Read/Write group 1399 * @work: Working window position 1400 * @i: Iterator 1401 * @p: DQS Phase Iterator 1402 * 1403 * Find working or non-working DQS enable phase setting. 1404 */ 1405 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1406 u32 *i, u32 *p) 1407 { 1408 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1409 int ret; 1410 1411 for (; *i < end; (*i)++) { 1412 if (working) 1413 *p = 0; 1414 1415 ret = sdr_find_phase_delay(working, 0, grp, work, 1416 IO_DELAY_PER_OPA_TAP, p); 1417 if (!ret) 1418 return 0; 1419 1420 if (*p > IO_DQS_EN_PHASE_MAX) { 1421 /* Fiddle with FIFO. */ 1422 rw_mgr_incr_vfifo(grp); 1423 if (!working) 1424 *p = 0; 1425 } 1426 } 1427 1428 return -EINVAL; 1429 } 1430 1431 /** 1432 * sdr_working_phase() - Find working DQS enable phase 1433 * @grp: Read/Write group 1434 * @work_bgn: Working window start position 1435 * @d: dtaps output value 1436 * @p: DQS Phase Iterator 1437 * @i: Iterator 1438 * 1439 * Find working DQS enable phase setting. 1440 */ 1441 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1442 u32 *p, u32 *i) 1443 { 1444 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1445 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1446 int ret; 1447 1448 *work_bgn = 0; 1449 1450 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1451 *i = 0; 1452 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1453 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1454 if (!ret) 1455 return 0; 1456 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1457 } 1458 1459 /* Cannot find working solution */ 1460 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1461 __func__, __LINE__); 1462 return -EINVAL; 1463 } 1464 1465 /** 1466 * sdr_backup_phase() - Find DQS enable backup phase 1467 * @grp: Read/Write group 1468 * @work_bgn: Working window start position 1469 * @p: DQS Phase Iterator 1470 * 1471 * Find DQS enable backup phase setting. 1472 */ 1473 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1474 { 1475 u32 tmp_delay, d; 1476 int ret; 1477 1478 /* Special case code for backing up a phase */ 1479 if (*p == 0) { 1480 *p = IO_DQS_EN_PHASE_MAX; 1481 rw_mgr_decr_vfifo(grp); 1482 } else { 1483 (*p)--; 1484 } 1485 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1486 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1487 1488 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1489 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1490 1491 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1492 PASS_ONE_BIT, 0); 1493 if (ret) { 1494 *work_bgn = tmp_delay; 1495 break; 1496 } 1497 1498 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1499 } 1500 1501 /* Restore VFIFO to old state before we decremented it (if needed). */ 1502 (*p)++; 1503 if (*p > IO_DQS_EN_PHASE_MAX) { 1504 *p = 0; 1505 rw_mgr_incr_vfifo(grp); 1506 } 1507 1508 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1509 } 1510 1511 /** 1512 * sdr_nonworking_phase() - Find non-working DQS enable phase 1513 * @grp: Read/Write group 1514 * @work_end: Working window end position 1515 * @p: DQS Phase Iterator 1516 * @i: Iterator 1517 * 1518 * Find non-working DQS enable phase setting. 1519 */ 1520 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1521 { 1522 int ret; 1523 1524 (*p)++; 1525 *work_end += IO_DELAY_PER_OPA_TAP; 1526 if (*p > IO_DQS_EN_PHASE_MAX) { 1527 /* Fiddle with FIFO. */ 1528 *p = 0; 1529 rw_mgr_incr_vfifo(grp); 1530 } 1531 1532 ret = sdr_find_phase(0, grp, work_end, i, p); 1533 if (ret) { 1534 /* Cannot see edge of failing read. */ 1535 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1536 __func__, __LINE__); 1537 } 1538 1539 return ret; 1540 } 1541 1542 /** 1543 * sdr_find_window_center() - Find center of the working DQS window. 1544 * @grp: Read/Write group 1545 * @work_bgn: First working settings 1546 * @work_end: Last working settings 1547 * 1548 * Find center of the working DQS enable window. 1549 */ 1550 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1551 const u32 work_end) 1552 { 1553 u32 work_mid; 1554 int tmp_delay = 0; 1555 int i, p, d; 1556 1557 work_mid = (work_bgn + work_end) / 2; 1558 1559 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1560 work_bgn, work_end, work_mid); 1561 /* Get the middle delay to be less than a VFIFO delay */ 1562 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1563 1564 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1565 work_mid %= tmp_delay; 1566 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1567 1568 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1569 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1570 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1571 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1572 1573 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1574 1575 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1576 if (d > IO_DQS_EN_DELAY_MAX) 1577 d = IO_DQS_EN_DELAY_MAX; 1578 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1579 1580 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1581 1582 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1583 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1584 1585 /* 1586 * push vfifo until we can successfully calibrate. We can do this 1587 * because the largest possible margin in 1 VFIFO cycle. 1588 */ 1589 for (i = 0; i < VFIFO_SIZE; i++) { 1590 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1591 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1592 PASS_ONE_BIT, 1593 0)) { 1594 debug_cond(DLEVEL == 2, 1595 "%s:%d center: found: ptap=%u dtap=%u\n", 1596 __func__, __LINE__, p, d); 1597 return 0; 1598 } 1599 1600 /* Fiddle with FIFO. */ 1601 rw_mgr_incr_vfifo(grp); 1602 } 1603 1604 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1605 __func__, __LINE__); 1606 return -EINVAL; 1607 } 1608 1609 /** 1610 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1611 * @grp: Read/Write Group 1612 * 1613 * Find a good DQS enable to use. 1614 */ 1615 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1616 { 1617 u32 d, p, i; 1618 u32 dtaps_per_ptap; 1619 u32 work_bgn, work_end; 1620 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1621 int ret; 1622 1623 debug("%s:%d %u\n", __func__, __LINE__, grp); 1624 1625 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1626 1627 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1628 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1629 1630 /* Step 0: Determine number of delay taps for each phase tap. */ 1631 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1632 1633 /* Step 1: First push vfifo until we get a failing read. */ 1634 find_vfifo_failing_read(grp); 1635 1636 /* Step 2: Find first working phase, increment in ptaps. */ 1637 work_bgn = 0; 1638 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1639 if (ret) 1640 return ret; 1641 1642 work_end = work_bgn; 1643 1644 /* 1645 * If d is 0 then the working window covers a phase tap and we can 1646 * follow the old procedure. Otherwise, we've found the beginning 1647 * and we need to increment the dtaps until we find the end. 1648 */ 1649 if (d == 0) { 1650 /* 1651 * Step 3a: If we have room, back off by one and 1652 * increment in dtaps. 1653 */ 1654 sdr_backup_phase(grp, &work_bgn, &p); 1655 1656 /* 1657 * Step 4a: go forward from working phase to non working 1658 * phase, increment in ptaps. 1659 */ 1660 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1661 if (ret) 1662 return ret; 1663 1664 /* Step 5a: Back off one from last, increment in dtaps. */ 1665 1666 /* Special case code for backing up a phase */ 1667 if (p == 0) { 1668 p = IO_DQS_EN_PHASE_MAX; 1669 rw_mgr_decr_vfifo(grp); 1670 } else { 1671 p = p - 1; 1672 } 1673 1674 work_end -= IO_DELAY_PER_OPA_TAP; 1675 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1676 1677 d = 0; 1678 1679 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1680 __func__, __LINE__, p); 1681 } 1682 1683 /* The dtap increment to find the failing edge is done here. */ 1684 sdr_find_phase_delay(0, 1, grp, &work_end, 1685 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1686 1687 /* Go back to working dtap */ 1688 if (d != 0) 1689 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1690 1691 debug_cond(DLEVEL == 2, 1692 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1693 __func__, __LINE__, p, d - 1, work_end); 1694 1695 if (work_end < work_bgn) { 1696 /* nil range */ 1697 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1698 __func__, __LINE__); 1699 return -EINVAL; 1700 } 1701 1702 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1703 __func__, __LINE__, work_bgn, work_end); 1704 1705 /* 1706 * We need to calculate the number of dtaps that equal a ptap. 1707 * To do that we'll back up a ptap and re-find the edge of the 1708 * window using dtaps 1709 */ 1710 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1711 __func__, __LINE__); 1712 1713 /* Special case code for backing up a phase */ 1714 if (p == 0) { 1715 p = IO_DQS_EN_PHASE_MAX; 1716 rw_mgr_decr_vfifo(grp); 1717 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1718 __func__, __LINE__, p); 1719 } else { 1720 p = p - 1; 1721 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1722 __func__, __LINE__, p); 1723 } 1724 1725 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1726 1727 /* 1728 * Increase dtap until we first see a passing read (in case the 1729 * window is smaller than a ptap), and then a failing read to 1730 * mark the edge of the window again. 1731 */ 1732 1733 /* Find a passing read. */ 1734 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1735 __func__, __LINE__); 1736 1737 initial_failing_dtap = d; 1738 1739 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1740 if (found_passing_read) { 1741 /* Find a failing read. */ 1742 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1743 __func__, __LINE__); 1744 d++; 1745 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1746 &d); 1747 } else { 1748 debug_cond(DLEVEL == 1, 1749 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1750 __func__, __LINE__); 1751 } 1752 1753 /* 1754 * The dynamically calculated dtaps_per_ptap is only valid if we 1755 * found a passing/failing read. If we didn't, it means d hit the max 1756 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1757 * statically calculated value. 1758 */ 1759 if (found_passing_read && found_failing_read) 1760 dtaps_per_ptap = d - initial_failing_dtap; 1761 1762 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1763 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1764 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1765 1766 /* Step 6: Find the centre of the window. */ 1767 ret = sdr_find_window_center(grp, work_bgn, work_end); 1768 1769 return ret; 1770 } 1771 1772 /* per-bit deskew DQ and center */ 1773 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1774 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1775 uint32_t use_read_test, uint32_t update_fom) 1776 { 1777 uint32_t i, p, d, min_index; 1778 /* 1779 * Store these as signed since there are comparisons with 1780 * signed numbers. 1781 */ 1782 uint32_t bit_chk; 1783 uint32_t sticky_bit_chk; 1784 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1785 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1786 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1787 int32_t mid; 1788 int32_t orig_mid_min, mid_min; 1789 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1790 final_dqs_en; 1791 int32_t dq_margin, dqs_margin; 1792 uint32_t stop; 1793 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1794 uint32_t addr; 1795 1796 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1797 1798 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1799 start_dqs = readl(addr + (read_group << 2)); 1800 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1801 start_dqs_en = readl(addr + ((read_group << 2) 1802 - IO_DQS_EN_DELAY_OFFSET)); 1803 1804 /* set the left and right edge of each bit to an illegal value */ 1805 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1806 sticky_bit_chk = 0; 1807 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1808 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1809 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1810 } 1811 1812 /* Search for the left edge of the window for each bit */ 1813 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1814 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1815 1816 writel(0, &sdr_scc_mgr->update); 1817 1818 /* 1819 * Stop searching when the read test doesn't pass AND when 1820 * we've seen a passing read on every bit. 1821 */ 1822 if (use_read_test) { 1823 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1824 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1825 &bit_chk, 0, 0); 1826 } else { 1827 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1828 0, PASS_ONE_BIT, 1829 &bit_chk, 0); 1830 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1831 (read_group - (write_group * 1832 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1833 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1834 stop = (bit_chk == 0); 1835 } 1836 sticky_bit_chk = sticky_bit_chk | bit_chk; 1837 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1838 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1839 && %u", __func__, __LINE__, d, 1840 sticky_bit_chk, 1841 param->read_correct_mask, stop); 1842 1843 if (stop == 1) { 1844 break; 1845 } else { 1846 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1847 if (bit_chk & 1) { 1848 /* Remember a passing test as the 1849 left_edge */ 1850 left_edge[i] = d; 1851 } else { 1852 /* If a left edge has not been seen yet, 1853 then a future passing test will mark 1854 this edge as the right edge */ 1855 if (left_edge[i] == 1856 IO_IO_IN_DELAY_MAX + 1) { 1857 right_edge[i] = -(d + 1); 1858 } 1859 } 1860 bit_chk = bit_chk >> 1; 1861 } 1862 } 1863 } 1864 1865 /* Reset DQ delay chains to 0 */ 1866 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1867 sticky_bit_chk = 0; 1868 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1869 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1870 %d right_edge[%u]: %d\n", __func__, __LINE__, 1871 i, left_edge[i], i, right_edge[i]); 1872 1873 /* 1874 * Check for cases where we haven't found the left edge, 1875 * which makes our assignment of the the right edge invalid. 1876 * Reset it to the illegal value. 1877 */ 1878 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1879 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1880 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1881 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1882 right_edge[%u]: %d\n", __func__, __LINE__, 1883 i, right_edge[i]); 1884 } 1885 1886 /* 1887 * Reset sticky bit (except for bits where we have seen 1888 * both the left and right edge). 1889 */ 1890 sticky_bit_chk = sticky_bit_chk << 1; 1891 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1892 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1893 sticky_bit_chk = sticky_bit_chk | 1; 1894 } 1895 1896 if (i == 0) 1897 break; 1898 } 1899 1900 /* Search for the right edge of the window for each bit */ 1901 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1902 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1903 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1904 uint32_t delay = d + start_dqs_en; 1905 if (delay > IO_DQS_EN_DELAY_MAX) 1906 delay = IO_DQS_EN_DELAY_MAX; 1907 scc_mgr_set_dqs_en_delay(read_group, delay); 1908 } 1909 scc_mgr_load_dqs(read_group); 1910 1911 writel(0, &sdr_scc_mgr->update); 1912 1913 /* 1914 * Stop searching when the read test doesn't pass AND when 1915 * we've seen a passing read on every bit. 1916 */ 1917 if (use_read_test) { 1918 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1919 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1920 &bit_chk, 0, 0); 1921 } else { 1922 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1923 0, PASS_ONE_BIT, 1924 &bit_chk, 0); 1925 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1926 (read_group - (write_group * 1927 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1928 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1929 stop = (bit_chk == 0); 1930 } 1931 sticky_bit_chk = sticky_bit_chk | bit_chk; 1932 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1933 1934 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1935 %u && %u", __func__, __LINE__, d, 1936 sticky_bit_chk, param->read_correct_mask, stop); 1937 1938 if (stop == 1) { 1939 break; 1940 } else { 1941 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1942 if (bit_chk & 1) { 1943 /* Remember a passing test as 1944 the right_edge */ 1945 right_edge[i] = d; 1946 } else { 1947 if (d != 0) { 1948 /* If a right edge has not been 1949 seen yet, then a future passing 1950 test will mark this edge as the 1951 left edge */ 1952 if (right_edge[i] == 1953 IO_IO_IN_DELAY_MAX + 1) { 1954 left_edge[i] = -(d + 1); 1955 } 1956 } else { 1957 /* d = 0 failed, but it passed 1958 when testing the left edge, 1959 so it must be marginal, 1960 set it to -1 */ 1961 if (right_edge[i] == 1962 IO_IO_IN_DELAY_MAX + 1 && 1963 left_edge[i] != 1964 IO_IO_IN_DELAY_MAX 1965 + 1) { 1966 right_edge[i] = -1; 1967 } 1968 /* If a right edge has not been 1969 seen yet, then a future passing 1970 test will mark this edge as the 1971 left edge */ 1972 else if (right_edge[i] == 1973 IO_IO_IN_DELAY_MAX + 1974 1) { 1975 left_edge[i] = -(d + 1); 1976 } 1977 } 1978 } 1979 1980 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1981 d=%u]: ", __func__, __LINE__, d); 1982 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1983 (int)(bit_chk & 1), i, left_edge[i]); 1984 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1985 right_edge[i]); 1986 bit_chk = bit_chk >> 1; 1987 } 1988 } 1989 } 1990 1991 /* Check that all bits have a window */ 1992 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1993 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1994 %d right_edge[%u]: %d", __func__, __LINE__, 1995 i, left_edge[i], i, right_edge[i]); 1996 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1997 == IO_IO_IN_DELAY_MAX + 1)) { 1998 /* 1999 * Restore delay chain settings before letting the loop 2000 * in rw_mgr_mem_calibrate_vfifo to retry different 2001 * dqs/ck relationships. 2002 */ 2003 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2004 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2005 scc_mgr_set_dqs_en_delay(read_group, 2006 start_dqs_en); 2007 } 2008 scc_mgr_load_dqs(read_group); 2009 writel(0, &sdr_scc_mgr->update); 2010 2011 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2012 find edge [%u]: %d %d", __func__, __LINE__, 2013 i, left_edge[i], right_edge[i]); 2014 if (use_read_test) { 2015 set_failing_group_stage(read_group * 2016 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2017 CAL_STAGE_VFIFO, 2018 CAL_SUBSTAGE_VFIFO_CENTER); 2019 } else { 2020 set_failing_group_stage(read_group * 2021 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2022 CAL_STAGE_VFIFO_AFTER_WRITES, 2023 CAL_SUBSTAGE_VFIFO_CENTER); 2024 } 2025 return 0; 2026 } 2027 } 2028 2029 /* Find middle of window for each DQ bit */ 2030 mid_min = left_edge[0] - right_edge[0]; 2031 min_index = 0; 2032 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2033 mid = left_edge[i] - right_edge[i]; 2034 if (mid < mid_min) { 2035 mid_min = mid; 2036 min_index = i; 2037 } 2038 } 2039 2040 /* 2041 * -mid_min/2 represents the amount that we need to move DQS. 2042 * If mid_min is odd and positive we'll need to add one to 2043 * make sure the rounding in further calculations is correct 2044 * (always bias to the right), so just add 1 for all positive values. 2045 */ 2046 if (mid_min > 0) 2047 mid_min++; 2048 2049 mid_min = mid_min / 2; 2050 2051 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2052 __func__, __LINE__, mid_min, min_index); 2053 2054 /* Determine the amount we can change DQS (which is -mid_min) */ 2055 orig_mid_min = mid_min; 2056 new_dqs = start_dqs - mid_min; 2057 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2058 new_dqs = IO_DQS_IN_DELAY_MAX; 2059 else if (new_dqs < 0) 2060 new_dqs = 0; 2061 2062 mid_min = start_dqs - new_dqs; 2063 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2064 mid_min, new_dqs); 2065 2066 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2067 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2068 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2069 else if (start_dqs_en - mid_min < 0) 2070 mid_min += start_dqs_en - mid_min; 2071 } 2072 new_dqs = start_dqs - mid_min; 2073 2074 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2075 new_dqs=%d mid_min=%d\n", start_dqs, 2076 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2077 new_dqs, mid_min); 2078 2079 /* Initialize data for export structures */ 2080 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2081 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2082 2083 /* add delay to bring centre of all DQ windows to the same "level" */ 2084 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2085 /* Use values before divide by 2 to reduce round off error */ 2086 shift_dq = (left_edge[i] - right_edge[i] - 2087 (left_edge[min_index] - right_edge[min_index]))/2 + 2088 (orig_mid_min - mid_min); 2089 2090 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2091 shift_dq[%u]=%d\n", i, shift_dq); 2092 2093 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2094 temp_dq_in_delay1 = readl(addr + (p << 2)); 2095 temp_dq_in_delay2 = readl(addr + (i << 2)); 2096 2097 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2098 (int32_t)IO_IO_IN_DELAY_MAX) { 2099 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2100 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2101 shift_dq = -(int32_t)temp_dq_in_delay1; 2102 } 2103 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2104 shift_dq[%u]=%d\n", i, shift_dq); 2105 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2106 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2107 scc_mgr_load_dq(p); 2108 2109 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2110 left_edge[i] - shift_dq + (-mid_min), 2111 right_edge[i] + shift_dq - (-mid_min)); 2112 /* To determine values for export structures */ 2113 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2114 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2115 2116 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2117 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2118 } 2119 2120 final_dqs = new_dqs; 2121 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2122 final_dqs_en = start_dqs_en - mid_min; 2123 2124 /* Move DQS-en */ 2125 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2126 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2127 scc_mgr_load_dqs(read_group); 2128 } 2129 2130 /* Move DQS */ 2131 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2132 scc_mgr_load_dqs(read_group); 2133 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2134 dqs_margin=%d", __func__, __LINE__, 2135 dq_margin, dqs_margin); 2136 2137 /* 2138 * Do not remove this line as it makes sure all of our decisions 2139 * have been applied. Apply the update bit. 2140 */ 2141 writel(0, &sdr_scc_mgr->update); 2142 2143 return (dq_margin >= 0) && (dqs_margin >= 0); 2144 } 2145 2146 /** 2147 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2148 * @rw_group: Read/Write Group 2149 * @phase: DQ/DQS phase 2150 * 2151 * Because initially no communication ca be reliably performed with the memory 2152 * device, the sequencer uses a guaranteed write mechanism to write data into 2153 * the memory device. 2154 */ 2155 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2156 const u32 phase) 2157 { 2158 int ret; 2159 2160 /* Set a particular DQ/DQS phase. */ 2161 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2162 2163 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2164 __func__, __LINE__, rw_group, phase); 2165 2166 /* 2167 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2168 * Load up the patterns used by read calibration using the 2169 * current DQDQS phase. 2170 */ 2171 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2172 2173 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2174 return 0; 2175 2176 /* 2177 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2178 * Back-to-Back reads of the patterns used for calibration. 2179 */ 2180 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2181 if (ret) 2182 debug_cond(DLEVEL == 1, 2183 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2184 __func__, __LINE__, rw_group, phase); 2185 return ret; 2186 } 2187 2188 /** 2189 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2190 * @rw_group: Read/Write Group 2191 * @test_bgn: Rank at which the test begins 2192 * 2193 * DQS enable calibration ensures reliable capture of the DQ signal without 2194 * glitches on the DQS line. 2195 */ 2196 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2197 const u32 test_bgn) 2198 { 2199 /* 2200 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2201 * DQS and DQS Eanble Signal Relationships. 2202 */ 2203 2204 /* We start at zero, so have one less dq to devide among */ 2205 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2206 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2207 int ret; 2208 u32 i, p, d, r; 2209 2210 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2211 2212 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2213 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2214 r += NUM_RANKS_PER_SHADOW_REG) { 2215 for (i = 0, p = test_bgn, d = 0; 2216 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2217 i++, p++, d += delay_step) { 2218 debug_cond(DLEVEL == 1, 2219 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2220 __func__, __LINE__, rw_group, r, i, p, d); 2221 2222 scc_mgr_set_dq_in_delay(p, d); 2223 scc_mgr_load_dq(p); 2224 } 2225 2226 writel(0, &sdr_scc_mgr->update); 2227 } 2228 2229 /* 2230 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2231 * dq_in_delay values 2232 */ 2233 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2234 2235 debug_cond(DLEVEL == 1, 2236 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2237 __func__, __LINE__, rw_group, !ret); 2238 2239 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2240 r += NUM_RANKS_PER_SHADOW_REG) { 2241 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2242 writel(0, &sdr_scc_mgr->update); 2243 } 2244 2245 return ret; 2246 } 2247 2248 /** 2249 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2250 * @rw_group: Read/Write Group 2251 * @test_bgn: Rank at which the test begins 2252 * @use_read_test: Perform a read test 2253 * @update_fom: Update FOM 2254 * 2255 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2256 * within a group. 2257 */ 2258 static int 2259 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2260 const int use_read_test, 2261 const int update_fom) 2262 2263 { 2264 int ret, grp_calibrated; 2265 u32 rank_bgn, sr; 2266 2267 /* 2268 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2269 * Read per-bit deskew can be done on a per shadow register basis. 2270 */ 2271 grp_calibrated = 1; 2272 for (rank_bgn = 0, sr = 0; 2273 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2274 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2275 /* Check if this set of ranks should be skipped entirely. */ 2276 if (param->skip_shadow_regs[sr]) 2277 continue; 2278 2279 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2280 rw_group, test_bgn, 2281 use_read_test, 2282 update_fom); 2283 if (ret) 2284 continue; 2285 2286 grp_calibrated = 0; 2287 } 2288 2289 if (!grp_calibrated) 2290 return -EIO; 2291 2292 return 0; 2293 } 2294 2295 /** 2296 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2297 * @rw_group: Read/Write Group 2298 * @test_bgn: Rank at which the test begins 2299 * 2300 * Stage 1: Calibrate the read valid prediction FIFO. 2301 * 2302 * This function implements UniPHY calibration Stage 1, as explained in 2303 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2304 * 2305 * - read valid prediction will consist of finding: 2306 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2307 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2308 * - we also do a per-bit deskew on the DQ lines. 2309 */ 2310 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2311 { 2312 uint32_t p, d; 2313 uint32_t dtaps_per_ptap; 2314 uint32_t failed_substage; 2315 2316 int ret; 2317 2318 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2319 2320 /* Update info for sims */ 2321 reg_file_set_group(rw_group); 2322 reg_file_set_stage(CAL_STAGE_VFIFO); 2323 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2324 2325 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2326 2327 /* USER Determine number of delay taps for each phase tap. */ 2328 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2329 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2330 2331 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2332 /* 2333 * In RLDRAMX we may be messing the delay of pins in 2334 * the same write rw_group but outside of the current read 2335 * the rw_group, but that's ok because we haven't calibrated 2336 * output side yet. 2337 */ 2338 if (d > 0) { 2339 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2340 rw_group, d); 2341 } 2342 2343 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2344 /* 1) Guaranteed Write */ 2345 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2346 if (ret) 2347 break; 2348 2349 /* 2) DQS Enable Calibration */ 2350 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2351 test_bgn); 2352 if (ret) { 2353 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2354 continue; 2355 } 2356 2357 /* 3) Centering DQ/DQS */ 2358 /* 2359 * If doing read after write calibration, do not update 2360 * FOM now. Do it then. 2361 */ 2362 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2363 test_bgn, 1, 0); 2364 if (ret) { 2365 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2366 continue; 2367 } 2368 2369 /* All done. */ 2370 goto cal_done_ok; 2371 } 2372 } 2373 2374 /* Calibration Stage 1 failed. */ 2375 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2376 return 0; 2377 2378 /* Calibration Stage 1 completed OK. */ 2379 cal_done_ok: 2380 /* 2381 * Reset the delay chains back to zero if they have moved > 1 2382 * (check for > 1 because loop will increase d even when pass in 2383 * first case). 2384 */ 2385 if (d > 2) 2386 scc_mgr_zero_group(rw_group, 1); 2387 2388 return 1; 2389 } 2390 2391 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2392 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2393 uint32_t test_bgn) 2394 { 2395 uint32_t rank_bgn, sr; 2396 uint32_t grp_calibrated; 2397 uint32_t write_group; 2398 2399 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2400 2401 /* update info for sims */ 2402 2403 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2404 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2405 2406 write_group = read_group; 2407 2408 /* update info for sims */ 2409 reg_file_set_group(read_group); 2410 2411 grp_calibrated = 1; 2412 /* Read per-bit deskew can be done on a per shadow register basis */ 2413 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2414 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2415 /* Determine if this set of ranks should be skipped entirely */ 2416 if (!param->skip_shadow_regs[sr]) { 2417 /* This is the last calibration round, update FOM here */ 2418 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2419 write_group, 2420 read_group, 2421 test_bgn, 0, 2422 1)) { 2423 grp_calibrated = 0; 2424 } 2425 } 2426 } 2427 2428 2429 if (grp_calibrated == 0) { 2430 set_failing_group_stage(write_group, 2431 CAL_STAGE_VFIFO_AFTER_WRITES, 2432 CAL_SUBSTAGE_VFIFO_CENTER); 2433 return 0; 2434 } 2435 2436 return 1; 2437 } 2438 2439 /* Calibrate LFIFO to find smallest read latency */ 2440 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2441 { 2442 uint32_t found_one; 2443 2444 debug("%s:%d\n", __func__, __LINE__); 2445 2446 /* update info for sims */ 2447 reg_file_set_stage(CAL_STAGE_LFIFO); 2448 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2449 2450 /* Load up the patterns used by read calibration for all ranks */ 2451 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2452 found_one = 0; 2453 2454 do { 2455 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2456 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2457 __func__, __LINE__, gbl->curr_read_lat); 2458 2459 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2460 NUM_READ_TESTS, 2461 PASS_ALL_BITS, 2462 1)) { 2463 break; 2464 } 2465 2466 found_one = 1; 2467 /* reduce read latency and see if things are working */ 2468 /* correctly */ 2469 gbl->curr_read_lat--; 2470 } while (gbl->curr_read_lat > 0); 2471 2472 /* reset the fifos to get pointers to known state */ 2473 2474 writel(0, &phy_mgr_cmd->fifo_reset); 2475 2476 if (found_one) { 2477 /* add a fudge factor to the read latency that was determined */ 2478 gbl->curr_read_lat += 2; 2479 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2480 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2481 read_lat=%u\n", __func__, __LINE__, 2482 gbl->curr_read_lat); 2483 return 1; 2484 } else { 2485 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2486 CAL_SUBSTAGE_READ_LATENCY); 2487 2488 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2489 read_lat=%u\n", __func__, __LINE__, 2490 gbl->curr_read_lat); 2491 return 0; 2492 } 2493 } 2494 2495 /* 2496 * issue write test command. 2497 * two variants are provided. one that just tests a write pattern and 2498 * another that tests datamask functionality. 2499 */ 2500 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2501 uint32_t test_dm) 2502 { 2503 uint32_t mcc_instruction; 2504 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2505 ENABLE_SUPER_QUICK_CALIBRATION); 2506 uint32_t rw_wl_nop_cycles; 2507 uint32_t addr; 2508 2509 /* 2510 * Set counter and jump addresses for the right 2511 * number of NOP cycles. 2512 * The number of supported NOP cycles can range from -1 to infinity 2513 * Three different cases are handled: 2514 * 2515 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2516 * mechanism will be used to insert the right number of NOPs 2517 * 2518 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2519 * issuing the write command will jump straight to the 2520 * micro-instruction that turns on DQS (for DDRx), or outputs write 2521 * data (for RLD), skipping 2522 * the NOP micro-instruction all together 2523 * 2524 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2525 * turned on in the same micro-instruction that issues the write 2526 * command. Then we need 2527 * to directly jump to the micro-instruction that sends out the data 2528 * 2529 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2530 * (2 and 3). One jump-counter (0) is used to perform multiple 2531 * write-read operations. 2532 * one counter left to issue this command in "multiple-group" mode 2533 */ 2534 2535 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2536 2537 if (rw_wl_nop_cycles == -1) { 2538 /* 2539 * CNTR 2 - We want to execute the special write operation that 2540 * turns on DQS right away and then skip directly to the 2541 * instruction that sends out the data. We set the counter to a 2542 * large number so that the jump is always taken. 2543 */ 2544 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2545 2546 /* CNTR 3 - Not used */ 2547 if (test_dm) { 2548 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2549 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2550 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2551 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2552 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2553 } else { 2554 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2555 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2556 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2557 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2558 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2559 } 2560 } else if (rw_wl_nop_cycles == 0) { 2561 /* 2562 * CNTR 2 - We want to skip the NOP operation and go straight 2563 * to the DQS enable instruction. We set the counter to a large 2564 * number so that the jump is always taken. 2565 */ 2566 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2567 2568 /* CNTR 3 - Not used */ 2569 if (test_dm) { 2570 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2571 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2573 } else { 2574 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2575 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2576 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2577 } 2578 } else { 2579 /* 2580 * CNTR 2 - In this case we want to execute the next instruction 2581 * and NOT take the jump. So we set the counter to 0. The jump 2582 * address doesn't count. 2583 */ 2584 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2585 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2586 2587 /* 2588 * CNTR 3 - Set the nop counter to the number of cycles we 2589 * need to loop for, minus 1. 2590 */ 2591 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2592 if (test_dm) { 2593 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2594 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2595 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2596 } else { 2597 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2598 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2599 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2600 } 2601 } 2602 2603 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2604 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2605 2606 if (quick_write_mode) 2607 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2608 else 2609 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2610 2611 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2612 2613 /* 2614 * CNTR 1 - This is used to ensure enough time elapses 2615 * for read data to come back. 2616 */ 2617 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2618 2619 if (test_dm) { 2620 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2621 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2622 } else { 2623 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2624 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2625 } 2626 2627 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2628 writel(mcc_instruction, addr + (group << 2)); 2629 } 2630 2631 /* Test writes, can check for a single bit pass or multiple bit pass */ 2632 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2633 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2634 uint32_t *bit_chk, uint32_t all_ranks) 2635 { 2636 uint32_t r; 2637 uint32_t correct_mask_vg; 2638 uint32_t tmp_bit_chk; 2639 uint32_t vg; 2640 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2641 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2642 uint32_t addr_rw_mgr; 2643 uint32_t base_rw_mgr; 2644 2645 *bit_chk = param->write_correct_mask; 2646 correct_mask_vg = param->write_correct_mask_vg; 2647 2648 for (r = rank_bgn; r < rank_end; r++) { 2649 if (param->skip_ranks[r]) { 2650 /* request to skip the rank */ 2651 continue; 2652 } 2653 2654 /* set rank */ 2655 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2656 2657 tmp_bit_chk = 0; 2658 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2659 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2660 /* reset the fifos to get pointers to known state */ 2661 writel(0, &phy_mgr_cmd->fifo_reset); 2662 2663 tmp_bit_chk = tmp_bit_chk << 2664 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2665 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2666 rw_mgr_mem_calibrate_write_test_issue(write_group * 2667 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2668 use_dm); 2669 2670 base_rw_mgr = readl(addr_rw_mgr); 2671 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2672 if (vg == 0) 2673 break; 2674 } 2675 *bit_chk &= tmp_bit_chk; 2676 } 2677 2678 if (all_correct) { 2679 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2680 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2681 %u => %lu", write_group, use_dm, 2682 *bit_chk, param->write_correct_mask, 2683 (long unsigned int)(*bit_chk == 2684 param->write_correct_mask)); 2685 return *bit_chk == param->write_correct_mask; 2686 } else { 2687 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2688 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2689 write_group, use_dm, *bit_chk); 2690 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2691 (long unsigned int)(*bit_chk != 0)); 2692 return *bit_chk != 0x00; 2693 } 2694 } 2695 2696 /* 2697 * center all windows. do per-bit-deskew to possibly increase size of 2698 * certain windows. 2699 */ 2700 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2701 uint32_t write_group, uint32_t test_bgn) 2702 { 2703 uint32_t i, p, min_index; 2704 int32_t d; 2705 /* 2706 * Store these as signed since there are comparisons with 2707 * signed numbers. 2708 */ 2709 uint32_t bit_chk; 2710 uint32_t sticky_bit_chk; 2711 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2712 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2713 int32_t mid; 2714 int32_t mid_min, orig_mid_min; 2715 int32_t new_dqs, start_dqs, shift_dq; 2716 int32_t dq_margin, dqs_margin, dm_margin; 2717 uint32_t stop; 2718 uint32_t temp_dq_out1_delay; 2719 uint32_t addr; 2720 2721 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2722 2723 dm_margin = 0; 2724 2725 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2726 start_dqs = readl(addr + 2727 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2728 2729 /* per-bit deskew */ 2730 2731 /* 2732 * set the left and right edge of each bit to an illegal value 2733 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2734 */ 2735 sticky_bit_chk = 0; 2736 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2737 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2738 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2739 } 2740 2741 /* Search for the left edge of the window for each bit */ 2742 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2743 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2744 2745 writel(0, &sdr_scc_mgr->update); 2746 2747 /* 2748 * Stop searching when the read test doesn't pass AND when 2749 * we've seen a passing read on every bit. 2750 */ 2751 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2752 0, PASS_ONE_BIT, &bit_chk, 0); 2753 sticky_bit_chk = sticky_bit_chk | bit_chk; 2754 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2755 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2756 == %u && %u [bit_chk= %u ]\n", 2757 d, sticky_bit_chk, param->write_correct_mask, 2758 stop, bit_chk); 2759 2760 if (stop == 1) { 2761 break; 2762 } else { 2763 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2764 if (bit_chk & 1) { 2765 /* 2766 * Remember a passing test as the 2767 * left_edge. 2768 */ 2769 left_edge[i] = d; 2770 } else { 2771 /* 2772 * If a left edge has not been seen 2773 * yet, then a future passing test will 2774 * mark this edge as the right edge. 2775 */ 2776 if (left_edge[i] == 2777 IO_IO_OUT1_DELAY_MAX + 1) { 2778 right_edge[i] = -(d + 1); 2779 } 2780 } 2781 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2782 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2783 (int)(bit_chk & 1), i, left_edge[i]); 2784 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2785 right_edge[i]); 2786 bit_chk = bit_chk >> 1; 2787 } 2788 } 2789 } 2790 2791 /* Reset DQ delay chains to 0 */ 2792 scc_mgr_apply_group_dq_out1_delay(0); 2793 sticky_bit_chk = 0; 2794 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2795 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2796 %d right_edge[%u]: %d\n", __func__, __LINE__, 2797 i, left_edge[i], i, right_edge[i]); 2798 2799 /* 2800 * Check for cases where we haven't found the left edge, 2801 * which makes our assignment of the the right edge invalid. 2802 * Reset it to the illegal value. 2803 */ 2804 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2805 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2806 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2807 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2808 right_edge[%u]: %d\n", __func__, __LINE__, 2809 i, right_edge[i]); 2810 } 2811 2812 /* 2813 * Reset sticky bit (except for bits where we have 2814 * seen the left edge). 2815 */ 2816 sticky_bit_chk = sticky_bit_chk << 1; 2817 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2818 sticky_bit_chk = sticky_bit_chk | 1; 2819 2820 if (i == 0) 2821 break; 2822 } 2823 2824 /* Search for the right edge of the window for each bit */ 2825 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2826 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2827 d + start_dqs); 2828 2829 writel(0, &sdr_scc_mgr->update); 2830 2831 /* 2832 * Stop searching when the read test doesn't pass AND when 2833 * we've seen a passing read on every bit. 2834 */ 2835 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2836 0, PASS_ONE_BIT, &bit_chk, 0); 2837 2838 sticky_bit_chk = sticky_bit_chk | bit_chk; 2839 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2840 2841 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2842 %u && %u\n", d, sticky_bit_chk, 2843 param->write_correct_mask, stop); 2844 2845 if (stop == 1) { 2846 if (d == 0) { 2847 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2848 i++) { 2849 /* d = 0 failed, but it passed when 2850 testing the left edge, so it must be 2851 marginal, set it to -1 */ 2852 if (right_edge[i] == 2853 IO_IO_OUT1_DELAY_MAX + 1 && 2854 left_edge[i] != 2855 IO_IO_OUT1_DELAY_MAX + 1) { 2856 right_edge[i] = -1; 2857 } 2858 } 2859 } 2860 break; 2861 } else { 2862 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2863 if (bit_chk & 1) { 2864 /* 2865 * Remember a passing test as 2866 * the right_edge. 2867 */ 2868 right_edge[i] = d; 2869 } else { 2870 if (d != 0) { 2871 /* 2872 * If a right edge has not 2873 * been seen yet, then a future 2874 * passing test will mark this 2875 * edge as the left edge. 2876 */ 2877 if (right_edge[i] == 2878 IO_IO_OUT1_DELAY_MAX + 1) 2879 left_edge[i] = -(d + 1); 2880 } else { 2881 /* 2882 * d = 0 failed, but it passed 2883 * when testing the left edge, 2884 * so it must be marginal, set 2885 * it to -1. 2886 */ 2887 if (right_edge[i] == 2888 IO_IO_OUT1_DELAY_MAX + 1 && 2889 left_edge[i] != 2890 IO_IO_OUT1_DELAY_MAX + 1) 2891 right_edge[i] = -1; 2892 /* 2893 * If a right edge has not been 2894 * seen yet, then a future 2895 * passing test will mark this 2896 * edge as the left edge. 2897 */ 2898 else if (right_edge[i] == 2899 IO_IO_OUT1_DELAY_MAX + 2900 1) 2901 left_edge[i] = -(d + 1); 2902 } 2903 } 2904 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2905 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2906 (int)(bit_chk & 1), i, left_edge[i]); 2907 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2908 right_edge[i]); 2909 bit_chk = bit_chk >> 1; 2910 } 2911 } 2912 } 2913 2914 /* Check that all bits have a window */ 2915 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2916 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2917 %d right_edge[%u]: %d", __func__, __LINE__, 2918 i, left_edge[i], i, right_edge[i]); 2919 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2920 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2921 set_failing_group_stage(test_bgn + i, 2922 CAL_STAGE_WRITES, 2923 CAL_SUBSTAGE_WRITES_CENTER); 2924 return 0; 2925 } 2926 } 2927 2928 /* Find middle of window for each DQ bit */ 2929 mid_min = left_edge[0] - right_edge[0]; 2930 min_index = 0; 2931 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2932 mid = left_edge[i] - right_edge[i]; 2933 if (mid < mid_min) { 2934 mid_min = mid; 2935 min_index = i; 2936 } 2937 } 2938 2939 /* 2940 * -mid_min/2 represents the amount that we need to move DQS. 2941 * If mid_min is odd and positive we'll need to add one to 2942 * make sure the rounding in further calculations is correct 2943 * (always bias to the right), so just add 1 for all positive values. 2944 */ 2945 if (mid_min > 0) 2946 mid_min++; 2947 mid_min = mid_min / 2; 2948 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2949 __LINE__, mid_min); 2950 2951 /* Determine the amount we can change DQS (which is -mid_min) */ 2952 orig_mid_min = mid_min; 2953 new_dqs = start_dqs; 2954 mid_min = 0; 2955 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2956 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2957 /* Initialize data for export structures */ 2958 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2959 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2960 2961 /* add delay to bring centre of all DQ windows to the same "level" */ 2962 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2963 /* Use values before divide by 2 to reduce round off error */ 2964 shift_dq = (left_edge[i] - right_edge[i] - 2965 (left_edge[min_index] - right_edge[min_index]))/2 + 2966 (orig_mid_min - mid_min); 2967 2968 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2969 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2970 2971 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2972 temp_dq_out1_delay = readl(addr + (i << 2)); 2973 if (shift_dq + (int32_t)temp_dq_out1_delay > 2974 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2975 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2976 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2977 shift_dq = -(int32_t)temp_dq_out1_delay; 2978 } 2979 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2980 i, shift_dq); 2981 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2982 scc_mgr_load_dq(i); 2983 2984 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2985 left_edge[i] - shift_dq + (-mid_min), 2986 right_edge[i] + shift_dq - (-mid_min)); 2987 /* To determine values for export structures */ 2988 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2989 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2990 2991 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2992 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2993 } 2994 2995 /* Move DQS */ 2996 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2997 writel(0, &sdr_scc_mgr->update); 2998 2999 /* Centre DM */ 3000 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3001 3002 /* 3003 * set the left and right edge of each bit to an illegal value, 3004 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3005 */ 3006 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3007 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3008 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3009 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3010 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3011 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3012 int32_t win_best = 0; 3013 3014 /* Search for the/part of the window with DM shift */ 3015 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3016 scc_mgr_apply_group_dm_out1_delay(d); 3017 writel(0, &sdr_scc_mgr->update); 3018 3019 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3020 PASS_ALL_BITS, &bit_chk, 3021 0)) { 3022 /* USE Set current end of the window */ 3023 end_curr = -d; 3024 /* 3025 * If a starting edge of our window has not been seen 3026 * this is our current start of the DM window. 3027 */ 3028 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3029 bgn_curr = -d; 3030 3031 /* 3032 * If current window is bigger than best seen. 3033 * Set best seen to be current window. 3034 */ 3035 if ((end_curr-bgn_curr+1) > win_best) { 3036 win_best = end_curr-bgn_curr+1; 3037 bgn_best = bgn_curr; 3038 end_best = end_curr; 3039 } 3040 } else { 3041 /* We just saw a failing test. Reset temp edge */ 3042 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3043 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3044 } 3045 } 3046 3047 3048 /* Reset DM delay chains to 0 */ 3049 scc_mgr_apply_group_dm_out1_delay(0); 3050 3051 /* 3052 * Check to see if the current window nudges up aganist 0 delay. 3053 * If so we need to continue the search by shifting DQS otherwise DQS 3054 * search begins as a new search. */ 3055 if (end_curr != 0) { 3056 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3057 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3058 } 3059 3060 /* Search for the/part of the window with DQS shifts */ 3061 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3062 /* 3063 * Note: This only shifts DQS, so are we limiting ourselve to 3064 * width of DQ unnecessarily. 3065 */ 3066 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3067 d + new_dqs); 3068 3069 writel(0, &sdr_scc_mgr->update); 3070 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3071 PASS_ALL_BITS, &bit_chk, 3072 0)) { 3073 /* USE Set current end of the window */ 3074 end_curr = d; 3075 /* 3076 * If a beginning edge of our window has not been seen 3077 * this is our current begin of the DM window. 3078 */ 3079 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3080 bgn_curr = d; 3081 3082 /* 3083 * If current window is bigger than best seen. Set best 3084 * seen to be current window. 3085 */ 3086 if ((end_curr-bgn_curr+1) > win_best) { 3087 win_best = end_curr-bgn_curr+1; 3088 bgn_best = bgn_curr; 3089 end_best = end_curr; 3090 } 3091 } else { 3092 /* We just saw a failing test. Reset temp edge */ 3093 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3094 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3095 3096 /* Early exit optimization: if ther remaining delay 3097 chain space is less than already seen largest window 3098 we can exit */ 3099 if ((win_best-1) > 3100 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3101 break; 3102 } 3103 } 3104 } 3105 3106 /* assign left and right edge for cal and reporting; */ 3107 left_edge[0] = -1*bgn_best; 3108 right_edge[0] = end_best; 3109 3110 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3111 __LINE__, left_edge[0], right_edge[0]); 3112 3113 /* Move DQS (back to orig) */ 3114 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3115 3116 /* Move DM */ 3117 3118 /* Find middle of window for the DM bit */ 3119 mid = (left_edge[0] - right_edge[0]) / 2; 3120 3121 /* only move right, since we are not moving DQS/DQ */ 3122 if (mid < 0) 3123 mid = 0; 3124 3125 /* dm_marign should fail if we never find a window */ 3126 if (win_best == 0) 3127 dm_margin = -1; 3128 else 3129 dm_margin = left_edge[0] - mid; 3130 3131 scc_mgr_apply_group_dm_out1_delay(mid); 3132 writel(0, &sdr_scc_mgr->update); 3133 3134 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3135 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3136 right_edge[0], mid, dm_margin); 3137 /* Export values */ 3138 gbl->fom_out += dq_margin + dqs_margin; 3139 3140 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3141 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3142 dq_margin, dqs_margin, dm_margin); 3143 3144 /* 3145 * Do not remove this line as it makes sure all of our 3146 * decisions have been applied. 3147 */ 3148 writel(0, &sdr_scc_mgr->update); 3149 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3150 } 3151 3152 /* calibrate the write operations */ 3153 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3154 uint32_t test_bgn) 3155 { 3156 /* update info for sims */ 3157 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3158 3159 reg_file_set_stage(CAL_STAGE_WRITES); 3160 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3161 3162 reg_file_set_group(g); 3163 3164 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3165 set_failing_group_stage(g, CAL_STAGE_WRITES, 3166 CAL_SUBSTAGE_WRITES_CENTER); 3167 return 0; 3168 } 3169 3170 return 1; 3171 } 3172 3173 /** 3174 * mem_precharge_and_activate() - Precharge all banks and activate 3175 * 3176 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3177 */ 3178 static void mem_precharge_and_activate(void) 3179 { 3180 int r; 3181 3182 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3183 /* Test if the rank should be skipped. */ 3184 if (param->skip_ranks[r]) 3185 continue; 3186 3187 /* Set rank. */ 3188 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3189 3190 /* Precharge all banks. */ 3191 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3192 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3193 3194 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3195 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3196 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3197 3198 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3199 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3200 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3201 3202 /* Activate rows. */ 3203 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3204 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3205 } 3206 } 3207 3208 /** 3209 * mem_init_latency() - Configure memory RLAT and WLAT settings 3210 * 3211 * Configure memory RLAT and WLAT parameters. 3212 */ 3213 static void mem_init_latency(void) 3214 { 3215 /* 3216 * For AV/CV, LFIFO is hardened and always runs at full rate 3217 * so max latency in AFI clocks, used here, is correspondingly 3218 * smaller. 3219 */ 3220 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3221 u32 rlat, wlat; 3222 3223 debug("%s:%d\n", __func__, __LINE__); 3224 3225 /* 3226 * Read in write latency. 3227 * WL for Hard PHY does not include additive latency. 3228 */ 3229 wlat = readl(&data_mgr->t_wl_add); 3230 wlat += readl(&data_mgr->mem_t_add); 3231 3232 gbl->rw_wl_nop_cycles = wlat - 1; 3233 3234 /* Read in readl latency. */ 3235 rlat = readl(&data_mgr->t_rl_add); 3236 3237 /* Set a pretty high read latency initially. */ 3238 gbl->curr_read_lat = rlat + 16; 3239 if (gbl->curr_read_lat > max_latency) 3240 gbl->curr_read_lat = max_latency; 3241 3242 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3243 3244 /* Advertise write latency. */ 3245 writel(wlat, &phy_mgr_cfg->afi_wlat); 3246 } 3247 3248 /** 3249 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3250 * 3251 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3252 */ 3253 static void mem_skip_calibrate(void) 3254 { 3255 uint32_t vfifo_offset; 3256 uint32_t i, j, r; 3257 3258 debug("%s:%d\n", __func__, __LINE__); 3259 /* Need to update every shadow register set used by the interface */ 3260 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3261 r += NUM_RANKS_PER_SHADOW_REG) { 3262 /* 3263 * Set output phase alignment settings appropriate for 3264 * skip calibration. 3265 */ 3266 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3267 scc_mgr_set_dqs_en_phase(i, 0); 3268 #if IO_DLL_CHAIN_LENGTH == 6 3269 scc_mgr_set_dqdqs_output_phase(i, 6); 3270 #else 3271 scc_mgr_set_dqdqs_output_phase(i, 7); 3272 #endif 3273 /* 3274 * Case:33398 3275 * 3276 * Write data arrives to the I/O two cycles before write 3277 * latency is reached (720 deg). 3278 * -> due to bit-slip in a/c bus 3279 * -> to allow board skew where dqs is longer than ck 3280 * -> how often can this happen!? 3281 * -> can claim back some ptaps for high freq 3282 * support if we can relax this, but i digress... 3283 * 3284 * The write_clk leads mem_ck by 90 deg 3285 * The minimum ptap of the OPA is 180 deg 3286 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3287 * The write_clk is always delayed by 2 ptaps 3288 * 3289 * Hence, to make DQS aligned to CK, we need to delay 3290 * DQS by: 3291 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3292 * 3293 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3294 * gives us the number of ptaps, which simplies to: 3295 * 3296 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3297 */ 3298 scc_mgr_set_dqdqs_output_phase(i, 3299 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3300 } 3301 writel(0xff, &sdr_scc_mgr->dqs_ena); 3302 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3303 3304 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3305 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3306 SCC_MGR_GROUP_COUNTER_OFFSET); 3307 } 3308 writel(0xff, &sdr_scc_mgr->dq_ena); 3309 writel(0xff, &sdr_scc_mgr->dm_ena); 3310 writel(0, &sdr_scc_mgr->update); 3311 } 3312 3313 /* Compensate for simulation model behaviour */ 3314 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3315 scc_mgr_set_dqs_bus_in_delay(i, 10); 3316 scc_mgr_load_dqs(i); 3317 } 3318 writel(0, &sdr_scc_mgr->update); 3319 3320 /* 3321 * ArriaV has hard FIFOs that can only be initialized by incrementing 3322 * in sequencer. 3323 */ 3324 vfifo_offset = CALIB_VFIFO_OFFSET; 3325 for (j = 0; j < vfifo_offset; j++) 3326 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3327 writel(0, &phy_mgr_cmd->fifo_reset); 3328 3329 /* 3330 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3331 * setting from generation-time constant. 3332 */ 3333 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3334 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3335 } 3336 3337 /** 3338 * mem_calibrate() - Memory calibration entry point. 3339 * 3340 * Perform memory calibration. 3341 */ 3342 static uint32_t mem_calibrate(void) 3343 { 3344 uint32_t i; 3345 uint32_t rank_bgn, sr; 3346 uint32_t write_group, write_test_bgn; 3347 uint32_t read_group, read_test_bgn; 3348 uint32_t run_groups, current_run; 3349 uint32_t failing_groups = 0; 3350 uint32_t group_failed = 0; 3351 3352 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3353 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3354 3355 debug("%s:%d\n", __func__, __LINE__); 3356 3357 /* Initialize the data settings */ 3358 gbl->error_substage = CAL_SUBSTAGE_NIL; 3359 gbl->error_stage = CAL_STAGE_NIL; 3360 gbl->error_group = 0xff; 3361 gbl->fom_in = 0; 3362 gbl->fom_out = 0; 3363 3364 /* Initialize WLAT and RLAT. */ 3365 mem_init_latency(); 3366 3367 /* Initialize bit slips. */ 3368 mem_precharge_and_activate(); 3369 3370 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3371 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3372 SCC_MGR_GROUP_COUNTER_OFFSET); 3373 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3374 if (i == 0) 3375 scc_mgr_set_hhp_extras(); 3376 3377 scc_set_bypass_mode(i); 3378 } 3379 3380 /* Calibration is skipped. */ 3381 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3382 /* 3383 * Set VFIFO and LFIFO to instant-on settings in skip 3384 * calibration mode. 3385 */ 3386 mem_skip_calibrate(); 3387 3388 /* 3389 * Do not remove this line as it makes sure all of our 3390 * decisions have been applied. 3391 */ 3392 writel(0, &sdr_scc_mgr->update); 3393 return 1; 3394 } 3395 3396 /* Calibration is not skipped. */ 3397 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3398 /* 3399 * Zero all delay chain/phase settings for all 3400 * groups and all shadow register sets. 3401 */ 3402 scc_mgr_zero_all(); 3403 3404 run_groups = ~param->skip_groups; 3405 3406 for (write_group = 0, write_test_bgn = 0; write_group 3407 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3408 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3409 3410 /* Initialize the group failure */ 3411 group_failed = 0; 3412 3413 current_run = run_groups & ((1 << 3414 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3415 run_groups = run_groups >> 3416 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3417 3418 if (current_run == 0) 3419 continue; 3420 3421 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3422 SCC_MGR_GROUP_COUNTER_OFFSET); 3423 scc_mgr_zero_group(write_group, 0); 3424 3425 for (read_group = write_group * rwdqs_ratio, 3426 read_test_bgn = 0; 3427 read_group < (write_group + 1) * rwdqs_ratio; 3428 read_group++, 3429 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3430 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3431 continue; 3432 3433 /* Calibrate the VFIFO */ 3434 if (rw_mgr_mem_calibrate_vfifo(read_group, 3435 read_test_bgn)) 3436 continue; 3437 3438 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3439 return 0; 3440 3441 /* The group failed, we're done. */ 3442 goto grp_failed; 3443 } 3444 3445 /* Calibrate the output side */ 3446 for (rank_bgn = 0, sr = 0; 3447 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3448 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3449 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3450 continue; 3451 3452 /* Not needed in quick mode! */ 3453 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3454 continue; 3455 3456 /* 3457 * Determine if this set of ranks 3458 * should be skipped entirely. 3459 */ 3460 if (param->skip_shadow_regs[sr]) 3461 continue; 3462 3463 /* Calibrate WRITEs */ 3464 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3465 write_group, write_test_bgn)) 3466 continue; 3467 3468 group_failed = 1; 3469 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3470 return 0; 3471 } 3472 3473 /* Some group failed, we're done. */ 3474 if (group_failed) 3475 goto grp_failed; 3476 3477 for (read_group = write_group * rwdqs_ratio, 3478 read_test_bgn = 0; 3479 read_group < (write_group + 1) * rwdqs_ratio; 3480 read_group++, 3481 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3482 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3483 continue; 3484 3485 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3486 read_test_bgn)) 3487 continue; 3488 3489 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3490 return 0; 3491 3492 /* The group failed, we're done. */ 3493 goto grp_failed; 3494 } 3495 3496 /* No group failed, continue as usual. */ 3497 continue; 3498 3499 grp_failed: /* A group failed, increment the counter. */ 3500 failing_groups++; 3501 } 3502 3503 /* 3504 * USER If there are any failing groups then report 3505 * the failure. 3506 */ 3507 if (failing_groups != 0) 3508 return 0; 3509 3510 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3511 continue; 3512 3513 /* 3514 * If we're skipping groups as part of debug, 3515 * don't calibrate LFIFO. 3516 */ 3517 if (param->skip_groups != 0) 3518 continue; 3519 3520 /* Calibrate the LFIFO */ 3521 if (!rw_mgr_mem_calibrate_lfifo()) 3522 return 0; 3523 } 3524 3525 /* 3526 * Do not remove this line as it makes sure all of our decisions 3527 * have been applied. 3528 */ 3529 writel(0, &sdr_scc_mgr->update); 3530 return 1; 3531 } 3532 3533 /** 3534 * run_mem_calibrate() - Perform memory calibration 3535 * 3536 * This function triggers the entire memory calibration procedure. 3537 */ 3538 static int run_mem_calibrate(void) 3539 { 3540 int pass; 3541 3542 debug("%s:%d\n", __func__, __LINE__); 3543 3544 /* Reset pass/fail status shown on afi_cal_success/fail */ 3545 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3546 3547 /* Stop tracking manager. */ 3548 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3549 3550 phy_mgr_initialize(); 3551 rw_mgr_mem_initialize(); 3552 3553 /* Perform the actual memory calibration. */ 3554 pass = mem_calibrate(); 3555 3556 mem_precharge_and_activate(); 3557 writel(0, &phy_mgr_cmd->fifo_reset); 3558 3559 /* Handoff. */ 3560 rw_mgr_mem_handoff(); 3561 /* 3562 * In Hard PHY this is a 2-bit control: 3563 * 0: AFI Mux Select 3564 * 1: DDIO Mux Select 3565 */ 3566 writel(0x2, &phy_mgr_cfg->mux_sel); 3567 3568 /* Start tracking manager. */ 3569 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3570 3571 return pass; 3572 } 3573 3574 /** 3575 * debug_mem_calibrate() - Report result of memory calibration 3576 * @pass: Value indicating whether calibration passed or failed 3577 * 3578 * This function reports the results of the memory calibration 3579 * and writes debug information into the register file. 3580 */ 3581 static void debug_mem_calibrate(int pass) 3582 { 3583 uint32_t debug_info; 3584 3585 if (pass) { 3586 printf("%s: CALIBRATION PASSED\n", __FILE__); 3587 3588 gbl->fom_in /= 2; 3589 gbl->fom_out /= 2; 3590 3591 if (gbl->fom_in > 0xff) 3592 gbl->fom_in = 0xff; 3593 3594 if (gbl->fom_out > 0xff) 3595 gbl->fom_out = 0xff; 3596 3597 /* Update the FOM in the register file */ 3598 debug_info = gbl->fom_in; 3599 debug_info |= gbl->fom_out << 8; 3600 writel(debug_info, &sdr_reg_file->fom); 3601 3602 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3603 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3604 } else { 3605 printf("%s: CALIBRATION FAILED\n", __FILE__); 3606 3607 debug_info = gbl->error_stage; 3608 debug_info |= gbl->error_substage << 8; 3609 debug_info |= gbl->error_group << 16; 3610 3611 writel(debug_info, &sdr_reg_file->failing_stage); 3612 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3613 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3614 3615 /* Update the failing group/stage in the register file */ 3616 debug_info = gbl->error_stage; 3617 debug_info |= gbl->error_substage << 8; 3618 debug_info |= gbl->error_group << 16; 3619 writel(debug_info, &sdr_reg_file->failing_stage); 3620 } 3621 3622 printf("%s: Calibration complete\n", __FILE__); 3623 } 3624 3625 /** 3626 * hc_initialize_rom_data() - Initialize ROM data 3627 * 3628 * Initialize ROM data. 3629 */ 3630 static void hc_initialize_rom_data(void) 3631 { 3632 u32 i, addr; 3633 3634 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3635 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3636 writel(inst_rom_init[i], addr + (i << 2)); 3637 3638 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3639 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3640 writel(ac_rom_init[i], addr + (i << 2)); 3641 } 3642 3643 /** 3644 * initialize_reg_file() - Initialize SDR register file 3645 * 3646 * Initialize SDR register file. 3647 */ 3648 static void initialize_reg_file(void) 3649 { 3650 /* Initialize the register file with the correct data */ 3651 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3652 writel(0, &sdr_reg_file->debug_data_addr); 3653 writel(0, &sdr_reg_file->cur_stage); 3654 writel(0, &sdr_reg_file->fom); 3655 writel(0, &sdr_reg_file->failing_stage); 3656 writel(0, &sdr_reg_file->debug1); 3657 writel(0, &sdr_reg_file->debug2); 3658 } 3659 3660 /** 3661 * initialize_hps_phy() - Initialize HPS PHY 3662 * 3663 * Initialize HPS PHY. 3664 */ 3665 static void initialize_hps_phy(void) 3666 { 3667 uint32_t reg; 3668 /* 3669 * Tracking also gets configured here because it's in the 3670 * same register. 3671 */ 3672 uint32_t trk_sample_count = 7500; 3673 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3674 /* 3675 * Format is number of outer loops in the 16 MSB, sample 3676 * count in 16 LSB. 3677 */ 3678 3679 reg = 0; 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3682 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3685 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3686 /* 3687 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3688 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3689 */ 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3692 trk_sample_count); 3693 writel(reg, &sdr_ctrl->phy_ctrl0); 3694 3695 reg = 0; 3696 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3697 trk_sample_count >> 3698 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3699 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3700 trk_long_idle_sample_count); 3701 writel(reg, &sdr_ctrl->phy_ctrl1); 3702 3703 reg = 0; 3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3705 trk_long_idle_sample_count >> 3706 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3707 writel(reg, &sdr_ctrl->phy_ctrl2); 3708 } 3709 3710 /** 3711 * initialize_tracking() - Initialize tracking 3712 * 3713 * Initialize the register file with usable initial data. 3714 */ 3715 static void initialize_tracking(void) 3716 { 3717 /* 3718 * Initialize the register file with the correct data. 3719 * Compute usable version of value in case we skip full 3720 * computation later. 3721 */ 3722 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3723 &sdr_reg_file->dtaps_per_ptap); 3724 3725 /* trk_sample_count */ 3726 writel(7500, &sdr_reg_file->trk_sample_count); 3727 3728 /* longidle outer loop [15:0] */ 3729 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3730 3731 /* 3732 * longidle sample count [31:24] 3733 * trfc, worst case of 933Mhz 4Gb [23:16] 3734 * trcd, worst case [15:8] 3735 * vfifo wait [7:0] 3736 */ 3737 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3738 &sdr_reg_file->delays); 3739 3740 /* mux delay */ 3741 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3742 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3743 &sdr_reg_file->trk_rw_mgr_addr); 3744 3745 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3746 &sdr_reg_file->trk_read_dqs_width); 3747 3748 /* trefi [7:0] */ 3749 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3750 &sdr_reg_file->trk_rfsh); 3751 } 3752 3753 int sdram_calibration_full(void) 3754 { 3755 struct param_type my_param; 3756 struct gbl_type my_gbl; 3757 uint32_t pass; 3758 3759 memset(&my_param, 0, sizeof(my_param)); 3760 memset(&my_gbl, 0, sizeof(my_gbl)); 3761 3762 param = &my_param; 3763 gbl = &my_gbl; 3764 3765 /* Set the calibration enabled by default */ 3766 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3767 /* 3768 * Only sweep all groups (regardless of fail state) by default 3769 * Set enabled read test by default. 3770 */ 3771 #if DISABLE_GUARANTEED_READ 3772 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3773 #endif 3774 /* Initialize the register file */ 3775 initialize_reg_file(); 3776 3777 /* Initialize any PHY CSR */ 3778 initialize_hps_phy(); 3779 3780 scc_mgr_initialize(); 3781 3782 initialize_tracking(); 3783 3784 printf("%s: Preparing to start memory calibration\n", __FILE__); 3785 3786 debug("%s:%d\n", __func__, __LINE__); 3787 debug_cond(DLEVEL == 1, 3788 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3789 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3790 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3791 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3792 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3793 debug_cond(DLEVEL == 1, 3794 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3795 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3796 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3797 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3798 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3799 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3800 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3801 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3802 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3803 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3804 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3805 IO_IO_OUT2_DELAY_MAX); 3806 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3807 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3808 3809 hc_initialize_rom_data(); 3810 3811 /* update info for sims */ 3812 reg_file_set_stage(CAL_STAGE_NIL); 3813 reg_file_set_group(0); 3814 3815 /* 3816 * Load global needed for those actions that require 3817 * some dynamic calibration support. 3818 */ 3819 dyn_calib_steps = STATIC_CALIB_STEPS; 3820 /* 3821 * Load global to allow dynamic selection of delay loop settings 3822 * based on calibration mode. 3823 */ 3824 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3825 skip_delay_mask = 0xff; 3826 else 3827 skip_delay_mask = 0x0; 3828 3829 pass = run_mem_calibrate(); 3830 debug_mem_calibrate(pass); 3831 return pass; 3832 } 3833