1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 /** 952 * rw_mgr_mem_initialize() - Initialize RW Manager 953 * 954 * Initialize RW Manager. 955 */ 956 static void rw_mgr_mem_initialize(void) 957 { 958 debug("%s:%d\n", __func__, __LINE__); 959 960 /* The reset / cke part of initialization is broadcasted to all ranks */ 961 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 962 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 963 964 /* 965 * Here's how you load register for a loop 966 * Counters are located @ 0x800 967 * Jump address are located @ 0xC00 968 * For both, registers 0 to 3 are selected using bits 3 and 2, like 969 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 970 * I know this ain't pretty, but Avalon bus throws away the 2 least 971 * significant bits 972 */ 973 974 /* Start with memory RESET activated */ 975 976 /* tINIT = 200us */ 977 978 /* 979 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 980 * If a and b are the number of iteration in 2 nested loops 981 * it takes the following number of cycles to complete the operation: 982 * number_of_cycles = ((2 + n) * a + 2) * b 983 * where n is the number of instruction in the inner loop 984 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 985 * b = 6A 986 */ 987 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 988 SEQ_TINIT_CNTR2_VAL, 989 RW_MGR_INIT_RESET_0_CKE_0); 990 991 /* Indicate that memory is stable. */ 992 writel(1, &phy_mgr_cfg->reset_mem_stbl); 993 994 /* 995 * transition the RESET to high 996 * Wait for 500us 997 */ 998 999 /* 1000 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1001 * If a and b are the number of iteration in 2 nested loops 1002 * it takes the following number of cycles to complete the operation 1003 * number_of_cycles = ((2 + n) * a + 2) * b 1004 * where n is the number of instruction in the inner loop 1005 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1006 * b = FF 1007 */ 1008 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1009 SEQ_TRESET_CNTR2_VAL, 1010 RW_MGR_INIT_RESET_1_CKE_0); 1011 1012 /* Bring up clock enable. */ 1013 1014 /* tXRP < 250 ck cycles */ 1015 delay_for_n_mem_clocks(250); 1016 1017 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1018 0); 1019 } 1020 1021 /* 1022 * At the end of calibration we have to program the user settings in, and 1023 * USER hand off the memory to the user. 1024 */ 1025 static void rw_mgr_mem_handoff(void) 1026 { 1027 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1028 /* 1029 * USER need to wait tMOD (12CK or 15ns) time before issuing 1030 * other commands, but we will have plenty of NIOS cycles before 1031 * actual handoff so its okay. 1032 */ 1033 } 1034 1035 1036 /** 1037 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1038 * @group: Write Group 1039 * @use_dm: Use DM 1040 * 1041 * Issue write test command. Two variants are provided, one that just tests 1042 * a write pattern and another that tests datamask functionality. 1043 */ 1044 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1045 u32 test_dm) 1046 { 1047 const u32 quick_write_mode = 1048 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1049 ENABLE_SUPER_QUICK_CALIBRATION; 1050 u32 mcc_instruction; 1051 u32 rw_wl_nop_cycles; 1052 1053 /* 1054 * Set counter and jump addresses for the right 1055 * number of NOP cycles. 1056 * The number of supported NOP cycles can range from -1 to infinity 1057 * Three different cases are handled: 1058 * 1059 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1060 * mechanism will be used to insert the right number of NOPs 1061 * 1062 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1063 * issuing the write command will jump straight to the 1064 * micro-instruction that turns on DQS (for DDRx), or outputs write 1065 * data (for RLD), skipping 1066 * the NOP micro-instruction all together 1067 * 1068 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1069 * turned on in the same micro-instruction that issues the write 1070 * command. Then we need 1071 * to directly jump to the micro-instruction that sends out the data 1072 * 1073 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1074 * (2 and 3). One jump-counter (0) is used to perform multiple 1075 * write-read operations. 1076 * one counter left to issue this command in "multiple-group" mode 1077 */ 1078 1079 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1080 1081 if (rw_wl_nop_cycles == -1) { 1082 /* 1083 * CNTR 2 - We want to execute the special write operation that 1084 * turns on DQS right away and then skip directly to the 1085 * instruction that sends out the data. We set the counter to a 1086 * large number so that the jump is always taken. 1087 */ 1088 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1089 1090 /* CNTR 3 - Not used */ 1091 if (test_dm) { 1092 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1093 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1094 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1095 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1097 } else { 1098 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1099 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1100 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1101 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1102 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1103 } 1104 } else if (rw_wl_nop_cycles == 0) { 1105 /* 1106 * CNTR 2 - We want to skip the NOP operation and go straight 1107 * to the DQS enable instruction. We set the counter to a large 1108 * number so that the jump is always taken. 1109 */ 1110 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1111 1112 /* CNTR 3 - Not used */ 1113 if (test_dm) { 1114 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1115 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1116 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1117 } else { 1118 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1119 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1120 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1121 } 1122 } else { 1123 /* 1124 * CNTR 2 - In this case we want to execute the next instruction 1125 * and NOT take the jump. So we set the counter to 0. The jump 1126 * address doesn't count. 1127 */ 1128 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1129 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1130 1131 /* 1132 * CNTR 3 - Set the nop counter to the number of cycles we 1133 * need to loop for, minus 1. 1134 */ 1135 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1136 if (test_dm) { 1137 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1138 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1140 } else { 1141 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1142 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1143 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1144 } 1145 } 1146 1147 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1148 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1149 1150 if (quick_write_mode) 1151 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1152 else 1153 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1154 1155 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1156 1157 /* 1158 * CNTR 1 - This is used to ensure enough time elapses 1159 * for read data to come back. 1160 */ 1161 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1162 1163 if (test_dm) { 1164 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1165 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1166 } else { 1167 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1168 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1169 } 1170 1171 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1172 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1173 (group << 2)); 1174 } 1175 1176 /** 1177 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1178 * @rank_bgn: Rank number 1179 * @write_group: Write Group 1180 * @use_dm: Use DM 1181 * @all_correct: All bits must be correct in the mask 1182 * @bit_chk: Resulting bit mask after the test 1183 * @all_ranks: Test all ranks 1184 * 1185 * Test writes, can check for a single bit pass or multiple bit pass. 1186 */ 1187 static int 1188 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1189 const u32 use_dm, const u32 all_correct, 1190 u32 *bit_chk, const u32 all_ranks) 1191 { 1192 const u32 rank_end = all_ranks ? 1193 RW_MGR_MEM_NUMBER_OF_RANKS : 1194 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1195 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1196 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1197 const u32 correct_mask_vg = param->write_correct_mask_vg; 1198 1199 u32 tmp_bit_chk, base_rw_mgr; 1200 int vg, r; 1201 1202 *bit_chk = param->write_correct_mask; 1203 1204 for (r = rank_bgn; r < rank_end; r++) { 1205 /* Request to skip the rank */ 1206 if (param->skip_ranks[r]) 1207 continue; 1208 1209 /* Set rank */ 1210 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1211 1212 tmp_bit_chk = 0; 1213 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1214 vg >= 0; vg--) { 1215 /* Reset the FIFOs to get pointers to known state. */ 1216 writel(0, &phy_mgr_cmd->fifo_reset); 1217 1218 rw_mgr_mem_calibrate_write_test_issue( 1219 write_group * 1220 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1221 use_dm); 1222 1223 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1224 tmp_bit_chk <<= shift_ratio; 1225 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1226 } 1227 1228 *bit_chk &= tmp_bit_chk; 1229 } 1230 1231 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1232 if (all_correct) { 1233 debug_cond(DLEVEL == 2, 1234 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1235 write_group, use_dm, *bit_chk, 1236 param->write_correct_mask, 1237 *bit_chk == param->write_correct_mask); 1238 return *bit_chk == param->write_correct_mask; 1239 } else { 1240 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1241 debug_cond(DLEVEL == 2, 1242 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1243 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1244 return *bit_chk != 0x00; 1245 } 1246 } 1247 1248 /** 1249 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1250 * @rank_bgn: Rank number 1251 * @group: Read/Write Group 1252 * @all_ranks: Test all ranks 1253 * 1254 * Performs a guaranteed read on the patterns we are going to use during a 1255 * read test to ensure memory works. 1256 */ 1257 static int 1258 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1259 const u32 all_ranks) 1260 { 1261 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1262 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1263 const u32 addr_offset = 1264 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1265 const u32 rank_end = all_ranks ? 1266 RW_MGR_MEM_NUMBER_OF_RANKS : 1267 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1268 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1269 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1270 const u32 correct_mask_vg = param->read_correct_mask_vg; 1271 1272 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1273 int vg, r; 1274 int ret = 0; 1275 1276 bit_chk = param->read_correct_mask; 1277 1278 for (r = rank_bgn; r < rank_end; r++) { 1279 /* Request to skip the rank */ 1280 if (param->skip_ranks[r]) 1281 continue; 1282 1283 /* Set rank */ 1284 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1285 1286 /* Load up a constant bursts of read commands */ 1287 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1288 writel(RW_MGR_GUARANTEED_READ, 1289 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1290 1291 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1292 writel(RW_MGR_GUARANTEED_READ_CONT, 1293 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1294 1295 tmp_bit_chk = 0; 1296 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1297 vg >= 0; vg--) { 1298 /* Reset the FIFOs to get pointers to known state. */ 1299 writel(0, &phy_mgr_cmd->fifo_reset); 1300 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1301 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1302 writel(RW_MGR_GUARANTEED_READ, 1303 addr + addr_offset + (vg << 2)); 1304 1305 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1306 tmp_bit_chk <<= shift_ratio; 1307 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1308 } 1309 1310 bit_chk &= tmp_bit_chk; 1311 } 1312 1313 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1314 1315 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1316 1317 if (bit_chk != param->read_correct_mask) 1318 ret = -EIO; 1319 1320 debug_cond(DLEVEL == 1, 1321 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1322 __func__, __LINE__, group, bit_chk, 1323 param->read_correct_mask, ret); 1324 1325 return ret; 1326 } 1327 1328 /** 1329 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1330 * @rank_bgn: Rank number 1331 * @all_ranks: Test all ranks 1332 * 1333 * Load up the patterns we are going to use during a read test. 1334 */ 1335 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1336 const int all_ranks) 1337 { 1338 const u32 rank_end = all_ranks ? 1339 RW_MGR_MEM_NUMBER_OF_RANKS : 1340 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1341 u32 r; 1342 1343 debug("%s:%d\n", __func__, __LINE__); 1344 1345 for (r = rank_bgn; r < rank_end; r++) { 1346 if (param->skip_ranks[r]) 1347 /* request to skip the rank */ 1348 continue; 1349 1350 /* set rank */ 1351 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1352 1353 /* Load up a constant bursts */ 1354 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1355 1356 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1357 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1358 1359 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1360 1361 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1362 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1363 1364 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1365 1366 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1367 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1368 1369 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1370 1371 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1372 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1373 1374 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1375 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1376 } 1377 1378 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1379 } 1380 1381 /** 1382 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1383 * @rank_bgn: Rank number 1384 * @group: Read/Write group 1385 * @num_tries: Number of retries of the test 1386 * @all_correct: All bits must be correct in the mask 1387 * @bit_chk: Resulting bit mask after the test 1388 * @all_groups: Test all R/W groups 1389 * @all_ranks: Test all ranks 1390 * 1391 * Try a read and see if it returns correct data back. Test has dummy reads 1392 * inserted into the mix used to align DQS enable. Test has more thorough 1393 * checks than the regular read test. 1394 */ 1395 static int 1396 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1397 const u32 num_tries, const u32 all_correct, 1398 u32 *bit_chk, 1399 const u32 all_groups, const u32 all_ranks) 1400 { 1401 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1402 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1403 const u32 quick_read_mode = 1404 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1405 ENABLE_SUPER_QUICK_CALIBRATION); 1406 u32 correct_mask_vg = param->read_correct_mask_vg; 1407 u32 tmp_bit_chk; 1408 u32 base_rw_mgr; 1409 u32 addr; 1410 1411 int r, vg, ret; 1412 1413 *bit_chk = param->read_correct_mask; 1414 1415 for (r = rank_bgn; r < rank_end; r++) { 1416 if (param->skip_ranks[r]) 1417 /* request to skip the rank */ 1418 continue; 1419 1420 /* set rank */ 1421 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1422 1423 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1424 1425 writel(RW_MGR_READ_B2B_WAIT1, 1426 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1427 1428 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1429 writel(RW_MGR_READ_B2B_WAIT2, 1430 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1431 1432 if (quick_read_mode) 1433 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1434 /* need at least two (1+1) reads to capture failures */ 1435 else if (all_groups) 1436 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1437 else 1438 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1439 1440 writel(RW_MGR_READ_B2B, 1441 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1442 if (all_groups) 1443 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1444 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1445 &sdr_rw_load_mgr_regs->load_cntr3); 1446 else 1447 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1448 1449 writel(RW_MGR_READ_B2B, 1450 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1451 1452 tmp_bit_chk = 0; 1453 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1454 vg--) { 1455 /* Reset the FIFOs to get pointers to known state. */ 1456 writel(0, &phy_mgr_cmd->fifo_reset); 1457 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1458 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1459 1460 if (all_groups) { 1461 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1462 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1463 } else { 1464 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1465 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1466 } 1467 1468 writel(RW_MGR_READ_B2B, addr + 1469 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1470 vg) << 2)); 1471 1472 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1473 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1474 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1475 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1476 } 1477 1478 *bit_chk &= tmp_bit_chk; 1479 } 1480 1481 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1482 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1483 1484 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1485 1486 if (all_correct) { 1487 ret = (*bit_chk == param->read_correct_mask); 1488 debug_cond(DLEVEL == 2, 1489 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1490 __func__, __LINE__, group, all_groups, *bit_chk, 1491 param->read_correct_mask, ret); 1492 } else { 1493 ret = (*bit_chk != 0x00); 1494 debug_cond(DLEVEL == 2, 1495 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1496 __func__, __LINE__, group, all_groups, *bit_chk, 1497 0, ret); 1498 } 1499 1500 return ret; 1501 } 1502 1503 /** 1504 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1505 * @grp: Read/Write group 1506 * @num_tries: Number of retries of the test 1507 * @all_correct: All bits must be correct in the mask 1508 * @all_groups: Test all R/W groups 1509 * 1510 * Perform a READ test across all memory ranks. 1511 */ 1512 static int 1513 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1514 const u32 all_correct, 1515 const u32 all_groups) 1516 { 1517 u32 bit_chk; 1518 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1519 &bit_chk, all_groups, 1); 1520 } 1521 1522 /** 1523 * rw_mgr_incr_vfifo() - Increase VFIFO value 1524 * @grp: Read/Write group 1525 * 1526 * Increase VFIFO value. 1527 */ 1528 static void rw_mgr_incr_vfifo(const u32 grp) 1529 { 1530 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1531 } 1532 1533 /** 1534 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1535 * @grp: Read/Write group 1536 * 1537 * Decrease VFIFO value. 1538 */ 1539 static void rw_mgr_decr_vfifo(const u32 grp) 1540 { 1541 u32 i; 1542 1543 for (i = 0; i < VFIFO_SIZE - 1; i++) 1544 rw_mgr_incr_vfifo(grp); 1545 } 1546 1547 /** 1548 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1549 * @grp: Read/Write group 1550 * 1551 * Push VFIFO until a failing read happens. 1552 */ 1553 static int find_vfifo_failing_read(const u32 grp) 1554 { 1555 u32 v, ret, fail_cnt = 0; 1556 1557 for (v = 0; v < VFIFO_SIZE; v++) { 1558 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1559 __func__, __LINE__, v); 1560 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1561 PASS_ONE_BIT, 0); 1562 if (!ret) { 1563 fail_cnt++; 1564 1565 if (fail_cnt == 2) 1566 return v; 1567 } 1568 1569 /* Fiddle with FIFO. */ 1570 rw_mgr_incr_vfifo(grp); 1571 } 1572 1573 /* No failing read found! Something must have gone wrong. */ 1574 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1575 return 0; 1576 } 1577 1578 /** 1579 * sdr_find_phase_delay() - Find DQS enable phase or delay 1580 * @working: If 1, look for working phase/delay, if 0, look for non-working 1581 * @delay: If 1, look for delay, if 0, look for phase 1582 * @grp: Read/Write group 1583 * @work: Working window position 1584 * @work_inc: Working window increment 1585 * @pd: DQS Phase/Delay Iterator 1586 * 1587 * Find working or non-working DQS enable phase setting. 1588 */ 1589 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1590 u32 *work, const u32 work_inc, u32 *pd) 1591 { 1592 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1593 u32 ret; 1594 1595 for (; *pd <= max; (*pd)++) { 1596 if (delay) 1597 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1598 else 1599 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1600 1601 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1602 PASS_ONE_BIT, 0); 1603 if (!working) 1604 ret = !ret; 1605 1606 if (ret) 1607 return 0; 1608 1609 if (work) 1610 *work += work_inc; 1611 } 1612 1613 return -EINVAL; 1614 } 1615 /** 1616 * sdr_find_phase() - Find DQS enable phase 1617 * @working: If 1, look for working phase, if 0, look for non-working phase 1618 * @grp: Read/Write group 1619 * @work: Working window position 1620 * @i: Iterator 1621 * @p: DQS Phase Iterator 1622 * 1623 * Find working or non-working DQS enable phase setting. 1624 */ 1625 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1626 u32 *i, u32 *p) 1627 { 1628 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1629 int ret; 1630 1631 for (; *i < end; (*i)++) { 1632 if (working) 1633 *p = 0; 1634 1635 ret = sdr_find_phase_delay(working, 0, grp, work, 1636 IO_DELAY_PER_OPA_TAP, p); 1637 if (!ret) 1638 return 0; 1639 1640 if (*p > IO_DQS_EN_PHASE_MAX) { 1641 /* Fiddle with FIFO. */ 1642 rw_mgr_incr_vfifo(grp); 1643 if (!working) 1644 *p = 0; 1645 } 1646 } 1647 1648 return -EINVAL; 1649 } 1650 1651 /** 1652 * sdr_working_phase() - Find working DQS enable phase 1653 * @grp: Read/Write group 1654 * @work_bgn: Working window start position 1655 * @d: dtaps output value 1656 * @p: DQS Phase Iterator 1657 * @i: Iterator 1658 * 1659 * Find working DQS enable phase setting. 1660 */ 1661 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1662 u32 *p, u32 *i) 1663 { 1664 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1665 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1666 int ret; 1667 1668 *work_bgn = 0; 1669 1670 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1671 *i = 0; 1672 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1673 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1674 if (!ret) 1675 return 0; 1676 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1677 } 1678 1679 /* Cannot find working solution */ 1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1681 __func__, __LINE__); 1682 return -EINVAL; 1683 } 1684 1685 /** 1686 * sdr_backup_phase() - Find DQS enable backup phase 1687 * @grp: Read/Write group 1688 * @work_bgn: Working window start position 1689 * @p: DQS Phase Iterator 1690 * 1691 * Find DQS enable backup phase setting. 1692 */ 1693 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1694 { 1695 u32 tmp_delay, d; 1696 int ret; 1697 1698 /* Special case code for backing up a phase */ 1699 if (*p == 0) { 1700 *p = IO_DQS_EN_PHASE_MAX; 1701 rw_mgr_decr_vfifo(grp); 1702 } else { 1703 (*p)--; 1704 } 1705 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1706 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1707 1708 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1709 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1710 1711 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1712 PASS_ONE_BIT, 0); 1713 if (ret) { 1714 *work_bgn = tmp_delay; 1715 break; 1716 } 1717 1718 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1719 } 1720 1721 /* Restore VFIFO to old state before we decremented it (if needed). */ 1722 (*p)++; 1723 if (*p > IO_DQS_EN_PHASE_MAX) { 1724 *p = 0; 1725 rw_mgr_incr_vfifo(grp); 1726 } 1727 1728 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1729 } 1730 1731 /** 1732 * sdr_nonworking_phase() - Find non-working DQS enable phase 1733 * @grp: Read/Write group 1734 * @work_end: Working window end position 1735 * @p: DQS Phase Iterator 1736 * @i: Iterator 1737 * 1738 * Find non-working DQS enable phase setting. 1739 */ 1740 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1741 { 1742 int ret; 1743 1744 (*p)++; 1745 *work_end += IO_DELAY_PER_OPA_TAP; 1746 if (*p > IO_DQS_EN_PHASE_MAX) { 1747 /* Fiddle with FIFO. */ 1748 *p = 0; 1749 rw_mgr_incr_vfifo(grp); 1750 } 1751 1752 ret = sdr_find_phase(0, grp, work_end, i, p); 1753 if (ret) { 1754 /* Cannot see edge of failing read. */ 1755 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1756 __func__, __LINE__); 1757 } 1758 1759 return ret; 1760 } 1761 1762 /** 1763 * sdr_find_window_center() - Find center of the working DQS window. 1764 * @grp: Read/Write group 1765 * @work_bgn: First working settings 1766 * @work_end: Last working settings 1767 * 1768 * Find center of the working DQS enable window. 1769 */ 1770 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1771 const u32 work_end) 1772 { 1773 u32 work_mid; 1774 int tmp_delay = 0; 1775 int i, p, d; 1776 1777 work_mid = (work_bgn + work_end) / 2; 1778 1779 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1780 work_bgn, work_end, work_mid); 1781 /* Get the middle delay to be less than a VFIFO delay */ 1782 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1783 1784 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1785 work_mid %= tmp_delay; 1786 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1787 1788 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1789 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1790 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1791 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1792 1793 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1794 1795 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1796 if (d > IO_DQS_EN_DELAY_MAX) 1797 d = IO_DQS_EN_DELAY_MAX; 1798 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1799 1800 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1801 1802 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1803 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1804 1805 /* 1806 * push vfifo until we can successfully calibrate. We can do this 1807 * because the largest possible margin in 1 VFIFO cycle. 1808 */ 1809 for (i = 0; i < VFIFO_SIZE; i++) { 1810 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1811 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1812 PASS_ONE_BIT, 1813 0)) { 1814 debug_cond(DLEVEL == 2, 1815 "%s:%d center: found: ptap=%u dtap=%u\n", 1816 __func__, __LINE__, p, d); 1817 return 0; 1818 } 1819 1820 /* Fiddle with FIFO. */ 1821 rw_mgr_incr_vfifo(grp); 1822 } 1823 1824 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1825 __func__, __LINE__); 1826 return -EINVAL; 1827 } 1828 1829 /** 1830 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1831 * @grp: Read/Write Group 1832 * 1833 * Find a good DQS enable to use. 1834 */ 1835 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1836 { 1837 u32 d, p, i; 1838 u32 dtaps_per_ptap; 1839 u32 work_bgn, work_end; 1840 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1841 int ret; 1842 1843 debug("%s:%d %u\n", __func__, __LINE__, grp); 1844 1845 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1846 1847 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1848 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1849 1850 /* Step 0: Determine number of delay taps for each phase tap. */ 1851 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1852 1853 /* Step 1: First push vfifo until we get a failing read. */ 1854 find_vfifo_failing_read(grp); 1855 1856 /* Step 2: Find first working phase, increment in ptaps. */ 1857 work_bgn = 0; 1858 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1859 if (ret) 1860 return ret; 1861 1862 work_end = work_bgn; 1863 1864 /* 1865 * If d is 0 then the working window covers a phase tap and we can 1866 * follow the old procedure. Otherwise, we've found the beginning 1867 * and we need to increment the dtaps until we find the end. 1868 */ 1869 if (d == 0) { 1870 /* 1871 * Step 3a: If we have room, back off by one and 1872 * increment in dtaps. 1873 */ 1874 sdr_backup_phase(grp, &work_bgn, &p); 1875 1876 /* 1877 * Step 4a: go forward from working phase to non working 1878 * phase, increment in ptaps. 1879 */ 1880 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1881 if (ret) 1882 return ret; 1883 1884 /* Step 5a: Back off one from last, increment in dtaps. */ 1885 1886 /* Special case code for backing up a phase */ 1887 if (p == 0) { 1888 p = IO_DQS_EN_PHASE_MAX; 1889 rw_mgr_decr_vfifo(grp); 1890 } else { 1891 p = p - 1; 1892 } 1893 1894 work_end -= IO_DELAY_PER_OPA_TAP; 1895 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1896 1897 d = 0; 1898 1899 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1900 __func__, __LINE__, p); 1901 } 1902 1903 /* The dtap increment to find the failing edge is done here. */ 1904 sdr_find_phase_delay(0, 1, grp, &work_end, 1905 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1906 1907 /* Go back to working dtap */ 1908 if (d != 0) 1909 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1910 1911 debug_cond(DLEVEL == 2, 1912 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1913 __func__, __LINE__, p, d - 1, work_end); 1914 1915 if (work_end < work_bgn) { 1916 /* nil range */ 1917 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1918 __func__, __LINE__); 1919 return -EINVAL; 1920 } 1921 1922 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1923 __func__, __LINE__, work_bgn, work_end); 1924 1925 /* 1926 * We need to calculate the number of dtaps that equal a ptap. 1927 * To do that we'll back up a ptap and re-find the edge of the 1928 * window using dtaps 1929 */ 1930 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1931 __func__, __LINE__); 1932 1933 /* Special case code for backing up a phase */ 1934 if (p == 0) { 1935 p = IO_DQS_EN_PHASE_MAX; 1936 rw_mgr_decr_vfifo(grp); 1937 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1938 __func__, __LINE__, p); 1939 } else { 1940 p = p - 1; 1941 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1942 __func__, __LINE__, p); 1943 } 1944 1945 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1946 1947 /* 1948 * Increase dtap until we first see a passing read (in case the 1949 * window is smaller than a ptap), and then a failing read to 1950 * mark the edge of the window again. 1951 */ 1952 1953 /* Find a passing read. */ 1954 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1955 __func__, __LINE__); 1956 1957 initial_failing_dtap = d; 1958 1959 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1960 if (found_passing_read) { 1961 /* Find a failing read. */ 1962 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1963 __func__, __LINE__); 1964 d++; 1965 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1966 &d); 1967 } else { 1968 debug_cond(DLEVEL == 1, 1969 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1970 __func__, __LINE__); 1971 } 1972 1973 /* 1974 * The dynamically calculated dtaps_per_ptap is only valid if we 1975 * found a passing/failing read. If we didn't, it means d hit the max 1976 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1977 * statically calculated value. 1978 */ 1979 if (found_passing_read && found_failing_read) 1980 dtaps_per_ptap = d - initial_failing_dtap; 1981 1982 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1983 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1984 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1985 1986 /* Step 6: Find the centre of the window. */ 1987 ret = sdr_find_window_center(grp, work_bgn, work_end); 1988 1989 return ret; 1990 } 1991 1992 /** 1993 * search_stop_check() - Check if the detected edge is valid 1994 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1995 * @d: DQS delay 1996 * @rank_bgn: Rank number 1997 * @write_group: Write Group 1998 * @read_group: Read Group 1999 * @bit_chk: Resulting bit mask after the test 2000 * @sticky_bit_chk: Resulting sticky bit mask after the test 2001 * @use_read_test: Perform read test 2002 * 2003 * Test if the found edge is valid. 2004 */ 2005 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 2006 const u32 write_group, const u32 read_group, 2007 u32 *bit_chk, u32 *sticky_bit_chk, 2008 const u32 use_read_test) 2009 { 2010 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 2011 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2012 const u32 correct_mask = write ? param->write_correct_mask : 2013 param->read_correct_mask; 2014 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2015 RW_MGR_MEM_DQ_PER_READ_DQS; 2016 u32 ret; 2017 /* 2018 * Stop searching when the read test doesn't pass AND when 2019 * we've seen a passing read on every bit. 2020 */ 2021 if (write) { /* WRITE-ONLY */ 2022 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2023 0, PASS_ONE_BIT, 2024 bit_chk, 0); 2025 } else if (use_read_test) { /* READ-ONLY */ 2026 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2027 NUM_READ_PB_TESTS, 2028 PASS_ONE_BIT, bit_chk, 2029 0, 0); 2030 } else { /* READ-ONLY */ 2031 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2032 PASS_ONE_BIT, bit_chk, 0); 2033 *bit_chk = *bit_chk >> (per_dqs * 2034 (read_group - (write_group * ratio))); 2035 ret = (*bit_chk == 0); 2036 } 2037 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2038 ret = ret && (*sticky_bit_chk == correct_mask); 2039 debug_cond(DLEVEL == 2, 2040 "%s:%d center(left): dtap=%u => %u == %u && %u", 2041 __func__, __LINE__, d, 2042 *sticky_bit_chk, correct_mask, ret); 2043 return ret; 2044 } 2045 2046 /** 2047 * search_left_edge() - Find left edge of DQ/DQS working phase 2048 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2049 * @rank_bgn: Rank number 2050 * @write_group: Write Group 2051 * @read_group: Read Group 2052 * @test_bgn: Rank number to begin the test 2053 * @sticky_bit_chk: Resulting sticky bit mask after the test 2054 * @left_edge: Left edge of the DQ/DQS phase 2055 * @right_edge: Right edge of the DQ/DQS phase 2056 * @use_read_test: Perform read test 2057 * 2058 * Find left edge of DQ/DQS working phase. 2059 */ 2060 static void search_left_edge(const int write, const int rank_bgn, 2061 const u32 write_group, const u32 read_group, const u32 test_bgn, 2062 u32 *sticky_bit_chk, 2063 int *left_edge, int *right_edge, const u32 use_read_test) 2064 { 2065 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2066 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2067 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2068 RW_MGR_MEM_DQ_PER_READ_DQS; 2069 u32 stop, bit_chk; 2070 int i, d; 2071 2072 for (d = 0; d <= dqs_max; d++) { 2073 if (write) 2074 scc_mgr_apply_group_dq_out1_delay(d); 2075 else 2076 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2077 2078 writel(0, &sdr_scc_mgr->update); 2079 2080 stop = search_stop_check(write, d, rank_bgn, write_group, 2081 read_group, &bit_chk, sticky_bit_chk, 2082 use_read_test); 2083 if (stop == 1) 2084 break; 2085 2086 /* stop != 1 */ 2087 for (i = 0; i < per_dqs; i++) { 2088 if (bit_chk & 1) { 2089 /* 2090 * Remember a passing test as 2091 * the left_edge. 2092 */ 2093 left_edge[i] = d; 2094 } else { 2095 /* 2096 * If a left edge has not been seen 2097 * yet, then a future passing test 2098 * will mark this edge as the right 2099 * edge. 2100 */ 2101 if (left_edge[i] == delay_max + 1) 2102 right_edge[i] = -(d + 1); 2103 } 2104 bit_chk >>= 1; 2105 } 2106 } 2107 2108 /* Reset DQ delay chains to 0 */ 2109 if (write) 2110 scc_mgr_apply_group_dq_out1_delay(0); 2111 else 2112 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2113 2114 *sticky_bit_chk = 0; 2115 for (i = per_dqs - 1; i >= 0; i--) { 2116 debug_cond(DLEVEL == 2, 2117 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2118 __func__, __LINE__, i, left_edge[i], 2119 i, right_edge[i]); 2120 2121 /* 2122 * Check for cases where we haven't found the left edge, 2123 * which makes our assignment of the the right edge invalid. 2124 * Reset it to the illegal value. 2125 */ 2126 if ((left_edge[i] == delay_max + 1) && 2127 (right_edge[i] != delay_max + 1)) { 2128 right_edge[i] = delay_max + 1; 2129 debug_cond(DLEVEL == 2, 2130 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2131 __func__, __LINE__, i, right_edge[i]); 2132 } 2133 2134 /* 2135 * Reset sticky bit 2136 * READ: except for bits where we have seen both 2137 * the left and right edge. 2138 * WRITE: except for bits where we have seen the 2139 * left edge. 2140 */ 2141 *sticky_bit_chk <<= 1; 2142 if (write) { 2143 if (left_edge[i] != delay_max + 1) 2144 *sticky_bit_chk |= 1; 2145 } else { 2146 if ((left_edge[i] != delay_max + 1) && 2147 (right_edge[i] != delay_max + 1)) 2148 *sticky_bit_chk |= 1; 2149 } 2150 } 2151 2152 2153 } 2154 2155 /** 2156 * search_right_edge() - Find right edge of DQ/DQS working phase 2157 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2158 * @rank_bgn: Rank number 2159 * @write_group: Write Group 2160 * @read_group: Read Group 2161 * @start_dqs: DQS start phase 2162 * @start_dqs_en: DQS enable start phase 2163 * @sticky_bit_chk: Resulting sticky bit mask after the test 2164 * @left_edge: Left edge of the DQ/DQS phase 2165 * @right_edge: Right edge of the DQ/DQS phase 2166 * @use_read_test: Perform read test 2167 * 2168 * Find right edge of DQ/DQS working phase. 2169 */ 2170 static int search_right_edge(const int write, const int rank_bgn, 2171 const u32 write_group, const u32 read_group, 2172 const int start_dqs, const int start_dqs_en, 2173 u32 *sticky_bit_chk, 2174 int *left_edge, int *right_edge, const u32 use_read_test) 2175 { 2176 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2177 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2178 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2179 RW_MGR_MEM_DQ_PER_READ_DQS; 2180 u32 stop, bit_chk; 2181 int i, d; 2182 2183 for (d = 0; d <= dqs_max - start_dqs; d++) { 2184 if (write) { /* WRITE-ONLY */ 2185 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2186 d + start_dqs); 2187 } else { /* READ-ONLY */ 2188 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2189 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2190 uint32_t delay = d + start_dqs_en; 2191 if (delay > IO_DQS_EN_DELAY_MAX) 2192 delay = IO_DQS_EN_DELAY_MAX; 2193 scc_mgr_set_dqs_en_delay(read_group, delay); 2194 } 2195 scc_mgr_load_dqs(read_group); 2196 } 2197 2198 writel(0, &sdr_scc_mgr->update); 2199 2200 stop = search_stop_check(write, d, rank_bgn, write_group, 2201 read_group, &bit_chk, sticky_bit_chk, 2202 use_read_test); 2203 if (stop == 1) { 2204 if (write && (d == 0)) { /* WRITE-ONLY */ 2205 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2206 /* 2207 * d = 0 failed, but it passed when 2208 * testing the left edge, so it must be 2209 * marginal, set it to -1 2210 */ 2211 if (right_edge[i] == delay_max + 1 && 2212 left_edge[i] != delay_max + 1) 2213 right_edge[i] = -1; 2214 } 2215 } 2216 break; 2217 } 2218 2219 /* stop != 1 */ 2220 for (i = 0; i < per_dqs; i++) { 2221 if (bit_chk & 1) { 2222 /* 2223 * Remember a passing test as 2224 * the right_edge. 2225 */ 2226 right_edge[i] = d; 2227 } else { 2228 if (d != 0) { 2229 /* 2230 * If a right edge has not 2231 * been seen yet, then a future 2232 * passing test will mark this 2233 * edge as the left edge. 2234 */ 2235 if (right_edge[i] == delay_max + 1) 2236 left_edge[i] = -(d + 1); 2237 } else { 2238 /* 2239 * d = 0 failed, but it passed 2240 * when testing the left edge, 2241 * so it must be marginal, set 2242 * it to -1 2243 */ 2244 if (right_edge[i] == delay_max + 1 && 2245 left_edge[i] != delay_max + 1) 2246 right_edge[i] = -1; 2247 /* 2248 * If a right edge has not been 2249 * seen yet, then a future 2250 * passing test will mark this 2251 * edge as the left edge. 2252 */ 2253 else if (right_edge[i] == delay_max + 1) 2254 left_edge[i] = -(d + 1); 2255 } 2256 } 2257 2258 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2259 __func__, __LINE__, d); 2260 debug_cond(DLEVEL == 2, 2261 "bit_chk_test=%i left_edge[%u]: %d ", 2262 bit_chk & 1, i, left_edge[i]); 2263 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2264 right_edge[i]); 2265 bit_chk >>= 1; 2266 } 2267 } 2268 2269 /* Check that all bits have a window */ 2270 for (i = 0; i < per_dqs; i++) { 2271 debug_cond(DLEVEL == 2, 2272 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2273 __func__, __LINE__, i, left_edge[i], 2274 i, right_edge[i]); 2275 if ((left_edge[i] == dqs_max + 1) || 2276 (right_edge[i] == dqs_max + 1)) 2277 return i + 1; /* FIXME: If we fail, retval > 0 */ 2278 } 2279 2280 return 0; 2281 } 2282 2283 /** 2284 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2285 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2286 * @left_edge: Left edge of the DQ/DQS phase 2287 * @right_edge: Right edge of the DQ/DQS phase 2288 * @mid_min: Best DQ/DQS phase middle setting 2289 * 2290 * Find index and value of the middle of the DQ/DQS working phase. 2291 */ 2292 static int get_window_mid_index(const int write, int *left_edge, 2293 int *right_edge, int *mid_min) 2294 { 2295 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2296 RW_MGR_MEM_DQ_PER_READ_DQS; 2297 int i, mid, min_index; 2298 2299 /* Find middle of window for each DQ bit */ 2300 *mid_min = left_edge[0] - right_edge[0]; 2301 min_index = 0; 2302 for (i = 1; i < per_dqs; i++) { 2303 mid = left_edge[i] - right_edge[i]; 2304 if (mid < *mid_min) { 2305 *mid_min = mid; 2306 min_index = i; 2307 } 2308 } 2309 2310 /* 2311 * -mid_min/2 represents the amount that we need to move DQS. 2312 * If mid_min is odd and positive we'll need to add one to make 2313 * sure the rounding in further calculations is correct (always 2314 * bias to the right), so just add 1 for all positive values. 2315 */ 2316 if (*mid_min > 0) 2317 (*mid_min)++; 2318 *mid_min = *mid_min / 2; 2319 2320 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2321 __func__, __LINE__, *mid_min, min_index); 2322 return min_index; 2323 } 2324 2325 /** 2326 * center_dq_windows() - Center the DQ/DQS windows 2327 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2328 * @left_edge: Left edge of the DQ/DQS phase 2329 * @right_edge: Right edge of the DQ/DQS phase 2330 * @mid_min: Adjusted DQ/DQS phase middle setting 2331 * @orig_mid_min: Original DQ/DQS phase middle setting 2332 * @min_index: DQ/DQS phase middle setting index 2333 * @test_bgn: Rank number to begin the test 2334 * @dq_margin: Amount of shift for the DQ 2335 * @dqs_margin: Amount of shift for the DQS 2336 * 2337 * Align the DQ/DQS windows in each group. 2338 */ 2339 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2340 const int mid_min, const int orig_mid_min, 2341 const int min_index, const int test_bgn, 2342 int *dq_margin, int *dqs_margin) 2343 { 2344 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2345 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2346 RW_MGR_MEM_DQ_PER_READ_DQS; 2347 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2348 SCC_MGR_IO_IN_DELAY_OFFSET; 2349 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2350 2351 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2352 int shift_dq, i, p; 2353 2354 /* Initialize data for export structures */ 2355 *dqs_margin = delay_max + 1; 2356 *dq_margin = delay_max + 1; 2357 2358 /* add delay to bring centre of all DQ windows to the same "level" */ 2359 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2360 /* Use values before divide by 2 to reduce round off error */ 2361 shift_dq = (left_edge[i] - right_edge[i] - 2362 (left_edge[min_index] - right_edge[min_index]))/2 + 2363 (orig_mid_min - mid_min); 2364 2365 debug_cond(DLEVEL == 2, 2366 "vfifo_center: before: shift_dq[%u]=%d\n", 2367 i, shift_dq); 2368 2369 temp_dq_io_delay1 = readl(addr + (p << 2)); 2370 temp_dq_io_delay2 = readl(addr + (i << 2)); 2371 2372 if (shift_dq + temp_dq_io_delay1 > delay_max) 2373 shift_dq = delay_max - temp_dq_io_delay2; 2374 else if (shift_dq + temp_dq_io_delay1 < 0) 2375 shift_dq = -temp_dq_io_delay1; 2376 2377 debug_cond(DLEVEL == 2, 2378 "vfifo_center: after: shift_dq[%u]=%d\n", 2379 i, shift_dq); 2380 2381 if (write) 2382 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2383 else 2384 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2385 2386 scc_mgr_load_dq(p); 2387 2388 debug_cond(DLEVEL == 2, 2389 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2390 left_edge[i] - shift_dq + (-mid_min), 2391 right_edge[i] + shift_dq - (-mid_min)); 2392 2393 /* To determine values for export structures */ 2394 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2395 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2396 2397 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2398 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2399 } 2400 2401 } 2402 2403 /** 2404 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2405 * @rank_bgn: Rank number 2406 * @rw_group: Read/Write Group 2407 * @test_bgn: Rank at which the test begins 2408 * @use_read_test: Perform a read test 2409 * @update_fom: Update FOM 2410 * 2411 * Per-bit deskew DQ and centering. 2412 */ 2413 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2414 const u32 rw_group, const u32 test_bgn, 2415 const int use_read_test, const int update_fom) 2416 { 2417 const u32 addr = 2418 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2419 (rw_group << 2); 2420 /* 2421 * Store these as signed since there are comparisons with 2422 * signed numbers. 2423 */ 2424 uint32_t sticky_bit_chk; 2425 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2426 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2427 int32_t orig_mid_min, mid_min; 2428 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2429 int32_t dq_margin, dqs_margin; 2430 int i, min_index; 2431 int ret; 2432 2433 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2434 2435 start_dqs = readl(addr); 2436 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2437 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2438 2439 /* set the left and right edge of each bit to an illegal value */ 2440 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2441 sticky_bit_chk = 0; 2442 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2443 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2444 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2445 } 2446 2447 /* Search for the left edge of the window for each bit */ 2448 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2449 &sticky_bit_chk, 2450 left_edge, right_edge, use_read_test); 2451 2452 2453 /* Search for the right edge of the window for each bit */ 2454 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2455 start_dqs, start_dqs_en, 2456 &sticky_bit_chk, 2457 left_edge, right_edge, use_read_test); 2458 if (ret) { 2459 /* 2460 * Restore delay chain settings before letting the loop 2461 * in rw_mgr_mem_calibrate_vfifo to retry different 2462 * dqs/ck relationships. 2463 */ 2464 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2465 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2466 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2467 2468 scc_mgr_load_dqs(rw_group); 2469 writel(0, &sdr_scc_mgr->update); 2470 2471 debug_cond(DLEVEL == 1, 2472 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2473 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2474 if (use_read_test) { 2475 set_failing_group_stage(rw_group * 2476 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2477 CAL_STAGE_VFIFO, 2478 CAL_SUBSTAGE_VFIFO_CENTER); 2479 } else { 2480 set_failing_group_stage(rw_group * 2481 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2482 CAL_STAGE_VFIFO_AFTER_WRITES, 2483 CAL_SUBSTAGE_VFIFO_CENTER); 2484 } 2485 return -EIO; 2486 } 2487 2488 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2489 2490 /* Determine the amount we can change DQS (which is -mid_min) */ 2491 orig_mid_min = mid_min; 2492 new_dqs = start_dqs - mid_min; 2493 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2494 new_dqs = IO_DQS_IN_DELAY_MAX; 2495 else if (new_dqs < 0) 2496 new_dqs = 0; 2497 2498 mid_min = start_dqs - new_dqs; 2499 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2500 mid_min, new_dqs); 2501 2502 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2503 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2504 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2505 else if (start_dqs_en - mid_min < 0) 2506 mid_min += start_dqs_en - mid_min; 2507 } 2508 new_dqs = start_dqs - mid_min; 2509 2510 debug_cond(DLEVEL == 1, 2511 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2512 start_dqs, 2513 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2514 new_dqs, mid_min); 2515 2516 /* Add delay to bring centre of all DQ windows to the same "level". */ 2517 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2518 min_index, test_bgn, &dq_margin, &dqs_margin); 2519 2520 /* Move DQS-en */ 2521 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2522 final_dqs_en = start_dqs_en - mid_min; 2523 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2524 scc_mgr_load_dqs(rw_group); 2525 } 2526 2527 /* Move DQS */ 2528 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2529 scc_mgr_load_dqs(rw_group); 2530 debug_cond(DLEVEL == 2, 2531 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2532 __func__, __LINE__, dq_margin, dqs_margin); 2533 2534 /* 2535 * Do not remove this line as it makes sure all of our decisions 2536 * have been applied. Apply the update bit. 2537 */ 2538 writel(0, &sdr_scc_mgr->update); 2539 2540 if ((dq_margin < 0) || (dqs_margin < 0)) 2541 return -EINVAL; 2542 2543 return 0; 2544 } 2545 2546 /** 2547 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2548 * @rw_group: Read/Write Group 2549 * @phase: DQ/DQS phase 2550 * 2551 * Because initially no communication ca be reliably performed with the memory 2552 * device, the sequencer uses a guaranteed write mechanism to write data into 2553 * the memory device. 2554 */ 2555 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2556 const u32 phase) 2557 { 2558 int ret; 2559 2560 /* Set a particular DQ/DQS phase. */ 2561 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2562 2563 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2564 __func__, __LINE__, rw_group, phase); 2565 2566 /* 2567 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2568 * Load up the patterns used by read calibration using the 2569 * current DQDQS phase. 2570 */ 2571 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2572 2573 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2574 return 0; 2575 2576 /* 2577 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2578 * Back-to-Back reads of the patterns used for calibration. 2579 */ 2580 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2581 if (ret) 2582 debug_cond(DLEVEL == 1, 2583 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2584 __func__, __LINE__, rw_group, phase); 2585 return ret; 2586 } 2587 2588 /** 2589 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2590 * @rw_group: Read/Write Group 2591 * @test_bgn: Rank at which the test begins 2592 * 2593 * DQS enable calibration ensures reliable capture of the DQ signal without 2594 * glitches on the DQS line. 2595 */ 2596 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2597 const u32 test_bgn) 2598 { 2599 /* 2600 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2601 * DQS and DQS Eanble Signal Relationships. 2602 */ 2603 2604 /* We start at zero, so have one less dq to devide among */ 2605 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2606 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2607 int ret; 2608 u32 i, p, d, r; 2609 2610 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2611 2612 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2613 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2614 r += NUM_RANKS_PER_SHADOW_REG) { 2615 for (i = 0, p = test_bgn, d = 0; 2616 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2617 i++, p++, d += delay_step) { 2618 debug_cond(DLEVEL == 1, 2619 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2620 __func__, __LINE__, rw_group, r, i, p, d); 2621 2622 scc_mgr_set_dq_in_delay(p, d); 2623 scc_mgr_load_dq(p); 2624 } 2625 2626 writel(0, &sdr_scc_mgr->update); 2627 } 2628 2629 /* 2630 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2631 * dq_in_delay values 2632 */ 2633 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2634 2635 debug_cond(DLEVEL == 1, 2636 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2637 __func__, __LINE__, rw_group, !ret); 2638 2639 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2640 r += NUM_RANKS_PER_SHADOW_REG) { 2641 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2642 writel(0, &sdr_scc_mgr->update); 2643 } 2644 2645 return ret; 2646 } 2647 2648 /** 2649 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2650 * @rw_group: Read/Write Group 2651 * @test_bgn: Rank at which the test begins 2652 * @use_read_test: Perform a read test 2653 * @update_fom: Update FOM 2654 * 2655 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2656 * within a group. 2657 */ 2658 static int 2659 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2660 const int use_read_test, 2661 const int update_fom) 2662 2663 { 2664 int ret, grp_calibrated; 2665 u32 rank_bgn, sr; 2666 2667 /* 2668 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2669 * Read per-bit deskew can be done on a per shadow register basis. 2670 */ 2671 grp_calibrated = 1; 2672 for (rank_bgn = 0, sr = 0; 2673 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2674 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2675 /* Check if this set of ranks should be skipped entirely. */ 2676 if (param->skip_shadow_regs[sr]) 2677 continue; 2678 2679 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2680 test_bgn, 2681 use_read_test, 2682 update_fom); 2683 if (!ret) 2684 continue; 2685 2686 grp_calibrated = 0; 2687 } 2688 2689 if (!grp_calibrated) 2690 return -EIO; 2691 2692 return 0; 2693 } 2694 2695 /** 2696 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2697 * @rw_group: Read/Write Group 2698 * @test_bgn: Rank at which the test begins 2699 * 2700 * Stage 1: Calibrate the read valid prediction FIFO. 2701 * 2702 * This function implements UniPHY calibration Stage 1, as explained in 2703 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2704 * 2705 * - read valid prediction will consist of finding: 2706 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2707 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2708 * - we also do a per-bit deskew on the DQ lines. 2709 */ 2710 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2711 { 2712 uint32_t p, d; 2713 uint32_t dtaps_per_ptap; 2714 uint32_t failed_substage; 2715 2716 int ret; 2717 2718 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2719 2720 /* Update info for sims */ 2721 reg_file_set_group(rw_group); 2722 reg_file_set_stage(CAL_STAGE_VFIFO); 2723 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2724 2725 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2726 2727 /* USER Determine number of delay taps for each phase tap. */ 2728 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2729 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2730 2731 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2732 /* 2733 * In RLDRAMX we may be messing the delay of pins in 2734 * the same write rw_group but outside of the current read 2735 * the rw_group, but that's ok because we haven't calibrated 2736 * output side yet. 2737 */ 2738 if (d > 0) { 2739 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2740 rw_group, d); 2741 } 2742 2743 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2744 /* 1) Guaranteed Write */ 2745 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2746 if (ret) 2747 break; 2748 2749 /* 2) DQS Enable Calibration */ 2750 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2751 test_bgn); 2752 if (ret) { 2753 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2754 continue; 2755 } 2756 2757 /* 3) Centering DQ/DQS */ 2758 /* 2759 * If doing read after write calibration, do not update 2760 * FOM now. Do it then. 2761 */ 2762 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2763 test_bgn, 1, 0); 2764 if (ret) { 2765 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2766 continue; 2767 } 2768 2769 /* All done. */ 2770 goto cal_done_ok; 2771 } 2772 } 2773 2774 /* Calibration Stage 1 failed. */ 2775 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2776 return 0; 2777 2778 /* Calibration Stage 1 completed OK. */ 2779 cal_done_ok: 2780 /* 2781 * Reset the delay chains back to zero if they have moved > 1 2782 * (check for > 1 because loop will increase d even when pass in 2783 * first case). 2784 */ 2785 if (d > 2) 2786 scc_mgr_zero_group(rw_group, 1); 2787 2788 return 1; 2789 } 2790 2791 /** 2792 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2793 * @rw_group: Read/Write Group 2794 * @test_bgn: Rank at which the test begins 2795 * 2796 * Stage 3: DQ/DQS Centering. 2797 * 2798 * This function implements UniPHY calibration Stage 3, as explained in 2799 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2800 */ 2801 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2802 const u32 test_bgn) 2803 { 2804 int ret; 2805 2806 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2807 2808 /* Update info for sims. */ 2809 reg_file_set_group(rw_group); 2810 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2811 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2812 2813 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2814 if (ret) 2815 set_failing_group_stage(rw_group, 2816 CAL_STAGE_VFIFO_AFTER_WRITES, 2817 CAL_SUBSTAGE_VFIFO_CENTER); 2818 return ret; 2819 } 2820 2821 /* Calibrate LFIFO to find smallest read latency */ 2822 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2823 { 2824 uint32_t found_one; 2825 2826 debug("%s:%d\n", __func__, __LINE__); 2827 2828 /* update info for sims */ 2829 reg_file_set_stage(CAL_STAGE_LFIFO); 2830 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2831 2832 /* Load up the patterns used by read calibration for all ranks */ 2833 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2834 found_one = 0; 2835 2836 do { 2837 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2838 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2839 __func__, __LINE__, gbl->curr_read_lat); 2840 2841 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2842 NUM_READ_TESTS, 2843 PASS_ALL_BITS, 2844 1)) { 2845 break; 2846 } 2847 2848 found_one = 1; 2849 /* reduce read latency and see if things are working */ 2850 /* correctly */ 2851 gbl->curr_read_lat--; 2852 } while (gbl->curr_read_lat > 0); 2853 2854 /* reset the fifos to get pointers to known state */ 2855 2856 writel(0, &phy_mgr_cmd->fifo_reset); 2857 2858 if (found_one) { 2859 /* add a fudge factor to the read latency that was determined */ 2860 gbl->curr_read_lat += 2; 2861 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2862 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2863 read_lat=%u\n", __func__, __LINE__, 2864 gbl->curr_read_lat); 2865 return 1; 2866 } else { 2867 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2868 CAL_SUBSTAGE_READ_LATENCY); 2869 2870 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2871 read_lat=%u\n", __func__, __LINE__, 2872 gbl->curr_read_lat); 2873 return 0; 2874 } 2875 } 2876 2877 /** 2878 * search_window() - Search for the/part of the window with DM/DQS shift 2879 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2880 * @rank_bgn: Rank number 2881 * @write_group: Write Group 2882 * @bgn_curr: Current window begin 2883 * @end_curr: Current window end 2884 * @bgn_best: Current best window begin 2885 * @end_best: Current best window end 2886 * @win_best: Size of the best window 2887 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2888 * 2889 * Search for the/part of the window with DM/DQS shift. 2890 */ 2891 static void search_window(const int search_dm, 2892 const u32 rank_bgn, const u32 write_group, 2893 int *bgn_curr, int *end_curr, int *bgn_best, 2894 int *end_best, int *win_best, int new_dqs) 2895 { 2896 u32 bit_chk; 2897 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2898 int d, di; 2899 2900 /* Search for the/part of the window with DM/DQS shift. */ 2901 for (di = max; di >= 0; di -= DELTA_D) { 2902 if (search_dm) { 2903 d = di; 2904 scc_mgr_apply_group_dm_out1_delay(d); 2905 } else { 2906 /* For DQS, we go from 0...max */ 2907 d = max - di; 2908 /* 2909 * Note: This only shifts DQS, so are we limiting ourselve to 2910 * width of DQ unnecessarily. 2911 */ 2912 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2913 d + new_dqs); 2914 } 2915 2916 writel(0, &sdr_scc_mgr->update); 2917 2918 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2919 PASS_ALL_BITS, &bit_chk, 2920 0)) { 2921 /* Set current end of the window. */ 2922 *end_curr = search_dm ? -d : d; 2923 2924 /* 2925 * If a starting edge of our window has not been seen 2926 * this is our current start of the DM window. 2927 */ 2928 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2929 *bgn_curr = search_dm ? -d : d; 2930 2931 /* 2932 * If current window is bigger than best seen. 2933 * Set best seen to be current window. 2934 */ 2935 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2936 *win_best = *end_curr - *bgn_curr + 1; 2937 *bgn_best = *bgn_curr; 2938 *end_best = *end_curr; 2939 } 2940 } else { 2941 /* We just saw a failing test. Reset temp edge. */ 2942 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2943 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2944 2945 /* Early exit is only applicable to DQS. */ 2946 if (search_dm) 2947 continue; 2948 2949 /* 2950 * Early exit optimization: if the remaining delay 2951 * chain space is less than already seen largest 2952 * window we can exit. 2953 */ 2954 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2955 break; 2956 } 2957 } 2958 } 2959 2960 /* 2961 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2962 * @rank_bgn: Rank number 2963 * @write_group: Write group 2964 * @test_bgn: Rank at which the test begins 2965 * 2966 * Center all windows. Do per-bit-deskew to possibly increase size of 2967 * certain windows. 2968 */ 2969 static int 2970 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2971 const u32 test_bgn) 2972 { 2973 int i; 2974 u32 sticky_bit_chk; 2975 u32 min_index; 2976 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2977 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2978 int mid; 2979 int mid_min, orig_mid_min; 2980 int new_dqs, start_dqs; 2981 int dq_margin, dqs_margin, dm_margin; 2982 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2983 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2984 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2985 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2986 int win_best = 0; 2987 2988 int ret; 2989 2990 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2991 2992 dm_margin = 0; 2993 2994 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2995 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2996 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2997 2998 /* Per-bit deskew. */ 2999 3000 /* 3001 * Set the left and right edge of each bit to an illegal value. 3002 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3003 */ 3004 sticky_bit_chk = 0; 3005 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3006 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3007 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3008 } 3009 3010 /* Search for the left edge of the window for each bit. */ 3011 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3012 &sticky_bit_chk, 3013 left_edge, right_edge, 0); 3014 3015 /* Search for the right edge of the window for each bit. */ 3016 ret = search_right_edge(1, rank_bgn, write_group, 0, 3017 start_dqs, 0, 3018 &sticky_bit_chk, 3019 left_edge, right_edge, 0); 3020 if (ret) { 3021 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3022 CAL_SUBSTAGE_WRITES_CENTER); 3023 return -EINVAL; 3024 } 3025 3026 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3027 3028 /* Determine the amount we can change DQS (which is -mid_min). */ 3029 orig_mid_min = mid_min; 3030 new_dqs = start_dqs; 3031 mid_min = 0; 3032 debug_cond(DLEVEL == 1, 3033 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3034 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3035 3036 /* Add delay to bring centre of all DQ windows to the same "level". */ 3037 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3038 min_index, 0, &dq_margin, &dqs_margin); 3039 3040 /* Move DQS */ 3041 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3042 writel(0, &sdr_scc_mgr->update); 3043 3044 /* Centre DM */ 3045 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3046 3047 /* 3048 * Set the left and right edge of each bit to an illegal value. 3049 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3050 */ 3051 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3052 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3053 3054 /* Search for the/part of the window with DM shift. */ 3055 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3056 &bgn_best, &end_best, &win_best, 0); 3057 3058 /* Reset DM delay chains to 0. */ 3059 scc_mgr_apply_group_dm_out1_delay(0); 3060 3061 /* 3062 * Check to see if the current window nudges up aganist 0 delay. 3063 * If so we need to continue the search by shifting DQS otherwise DQS 3064 * search begins as a new search. 3065 */ 3066 if (end_curr != 0) { 3067 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3068 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3069 } 3070 3071 /* Search for the/part of the window with DQS shifts. */ 3072 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3073 &bgn_best, &end_best, &win_best, new_dqs); 3074 3075 /* Assign left and right edge for cal and reporting. */ 3076 left_edge[0] = -1 * bgn_best; 3077 right_edge[0] = end_best; 3078 3079 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3080 __func__, __LINE__, left_edge[0], right_edge[0]); 3081 3082 /* Move DQS (back to orig). */ 3083 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3084 3085 /* Move DM */ 3086 3087 /* Find middle of window for the DM bit. */ 3088 mid = (left_edge[0] - right_edge[0]) / 2; 3089 3090 /* Only move right, since we are not moving DQS/DQ. */ 3091 if (mid < 0) 3092 mid = 0; 3093 3094 /* dm_marign should fail if we never find a window. */ 3095 if (win_best == 0) 3096 dm_margin = -1; 3097 else 3098 dm_margin = left_edge[0] - mid; 3099 3100 scc_mgr_apply_group_dm_out1_delay(mid); 3101 writel(0, &sdr_scc_mgr->update); 3102 3103 debug_cond(DLEVEL == 2, 3104 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3105 __func__, __LINE__, left_edge[0], right_edge[0], 3106 mid, dm_margin); 3107 /* Export values. */ 3108 gbl->fom_out += dq_margin + dqs_margin; 3109 3110 debug_cond(DLEVEL == 2, 3111 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3112 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3113 3114 /* 3115 * Do not remove this line as it makes sure all of our 3116 * decisions have been applied. 3117 */ 3118 writel(0, &sdr_scc_mgr->update); 3119 3120 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3121 return -EINVAL; 3122 3123 return 0; 3124 } 3125 3126 /** 3127 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3128 * @rank_bgn: Rank number 3129 * @group: Read/Write Group 3130 * @test_bgn: Rank at which the test begins 3131 * 3132 * Stage 2: Write Calibration Part One. 3133 * 3134 * This function implements UniPHY calibration Stage 2, as explained in 3135 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3136 */ 3137 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3138 const u32 test_bgn) 3139 { 3140 int ret; 3141 3142 /* Update info for sims */ 3143 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3144 3145 reg_file_set_group(group); 3146 reg_file_set_stage(CAL_STAGE_WRITES); 3147 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3148 3149 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3150 if (ret) 3151 set_failing_group_stage(group, CAL_STAGE_WRITES, 3152 CAL_SUBSTAGE_WRITES_CENTER); 3153 3154 return ret; 3155 } 3156 3157 /** 3158 * mem_precharge_and_activate() - Precharge all banks and activate 3159 * 3160 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3161 */ 3162 static void mem_precharge_and_activate(void) 3163 { 3164 int r; 3165 3166 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3167 /* Test if the rank should be skipped. */ 3168 if (param->skip_ranks[r]) 3169 continue; 3170 3171 /* Set rank. */ 3172 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3173 3174 /* Precharge all banks. */ 3175 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3176 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3177 3178 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3179 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3180 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3181 3182 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3183 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3184 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3185 3186 /* Activate rows. */ 3187 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3188 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3189 } 3190 } 3191 3192 /** 3193 * mem_init_latency() - Configure memory RLAT and WLAT settings 3194 * 3195 * Configure memory RLAT and WLAT parameters. 3196 */ 3197 static void mem_init_latency(void) 3198 { 3199 /* 3200 * For AV/CV, LFIFO is hardened and always runs at full rate 3201 * so max latency in AFI clocks, used here, is correspondingly 3202 * smaller. 3203 */ 3204 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3205 u32 rlat, wlat; 3206 3207 debug("%s:%d\n", __func__, __LINE__); 3208 3209 /* 3210 * Read in write latency. 3211 * WL for Hard PHY does not include additive latency. 3212 */ 3213 wlat = readl(&data_mgr->t_wl_add); 3214 wlat += readl(&data_mgr->mem_t_add); 3215 3216 gbl->rw_wl_nop_cycles = wlat - 1; 3217 3218 /* Read in readl latency. */ 3219 rlat = readl(&data_mgr->t_rl_add); 3220 3221 /* Set a pretty high read latency initially. */ 3222 gbl->curr_read_lat = rlat + 16; 3223 if (gbl->curr_read_lat > max_latency) 3224 gbl->curr_read_lat = max_latency; 3225 3226 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3227 3228 /* Advertise write latency. */ 3229 writel(wlat, &phy_mgr_cfg->afi_wlat); 3230 } 3231 3232 /** 3233 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3234 * 3235 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3236 */ 3237 static void mem_skip_calibrate(void) 3238 { 3239 uint32_t vfifo_offset; 3240 uint32_t i, j, r; 3241 3242 debug("%s:%d\n", __func__, __LINE__); 3243 /* Need to update every shadow register set used by the interface */ 3244 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3245 r += NUM_RANKS_PER_SHADOW_REG) { 3246 /* 3247 * Set output phase alignment settings appropriate for 3248 * skip calibration. 3249 */ 3250 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3251 scc_mgr_set_dqs_en_phase(i, 0); 3252 #if IO_DLL_CHAIN_LENGTH == 6 3253 scc_mgr_set_dqdqs_output_phase(i, 6); 3254 #else 3255 scc_mgr_set_dqdqs_output_phase(i, 7); 3256 #endif 3257 /* 3258 * Case:33398 3259 * 3260 * Write data arrives to the I/O two cycles before write 3261 * latency is reached (720 deg). 3262 * -> due to bit-slip in a/c bus 3263 * -> to allow board skew where dqs is longer than ck 3264 * -> how often can this happen!? 3265 * -> can claim back some ptaps for high freq 3266 * support if we can relax this, but i digress... 3267 * 3268 * The write_clk leads mem_ck by 90 deg 3269 * The minimum ptap of the OPA is 180 deg 3270 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3271 * The write_clk is always delayed by 2 ptaps 3272 * 3273 * Hence, to make DQS aligned to CK, we need to delay 3274 * DQS by: 3275 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3276 * 3277 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3278 * gives us the number of ptaps, which simplies to: 3279 * 3280 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3281 */ 3282 scc_mgr_set_dqdqs_output_phase(i, 3283 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3284 } 3285 writel(0xff, &sdr_scc_mgr->dqs_ena); 3286 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3287 3288 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3289 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3290 SCC_MGR_GROUP_COUNTER_OFFSET); 3291 } 3292 writel(0xff, &sdr_scc_mgr->dq_ena); 3293 writel(0xff, &sdr_scc_mgr->dm_ena); 3294 writel(0, &sdr_scc_mgr->update); 3295 } 3296 3297 /* Compensate for simulation model behaviour */ 3298 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3299 scc_mgr_set_dqs_bus_in_delay(i, 10); 3300 scc_mgr_load_dqs(i); 3301 } 3302 writel(0, &sdr_scc_mgr->update); 3303 3304 /* 3305 * ArriaV has hard FIFOs that can only be initialized by incrementing 3306 * in sequencer. 3307 */ 3308 vfifo_offset = CALIB_VFIFO_OFFSET; 3309 for (j = 0; j < vfifo_offset; j++) 3310 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3311 writel(0, &phy_mgr_cmd->fifo_reset); 3312 3313 /* 3314 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3315 * setting from generation-time constant. 3316 */ 3317 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3318 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3319 } 3320 3321 /** 3322 * mem_calibrate() - Memory calibration entry point. 3323 * 3324 * Perform memory calibration. 3325 */ 3326 static uint32_t mem_calibrate(void) 3327 { 3328 uint32_t i; 3329 uint32_t rank_bgn, sr; 3330 uint32_t write_group, write_test_bgn; 3331 uint32_t read_group, read_test_bgn; 3332 uint32_t run_groups, current_run; 3333 uint32_t failing_groups = 0; 3334 uint32_t group_failed = 0; 3335 3336 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3337 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3338 3339 debug("%s:%d\n", __func__, __LINE__); 3340 3341 /* Initialize the data settings */ 3342 gbl->error_substage = CAL_SUBSTAGE_NIL; 3343 gbl->error_stage = CAL_STAGE_NIL; 3344 gbl->error_group = 0xff; 3345 gbl->fom_in = 0; 3346 gbl->fom_out = 0; 3347 3348 /* Initialize WLAT and RLAT. */ 3349 mem_init_latency(); 3350 3351 /* Initialize bit slips. */ 3352 mem_precharge_and_activate(); 3353 3354 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3355 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3356 SCC_MGR_GROUP_COUNTER_OFFSET); 3357 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3358 if (i == 0) 3359 scc_mgr_set_hhp_extras(); 3360 3361 scc_set_bypass_mode(i); 3362 } 3363 3364 /* Calibration is skipped. */ 3365 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3366 /* 3367 * Set VFIFO and LFIFO to instant-on settings in skip 3368 * calibration mode. 3369 */ 3370 mem_skip_calibrate(); 3371 3372 /* 3373 * Do not remove this line as it makes sure all of our 3374 * decisions have been applied. 3375 */ 3376 writel(0, &sdr_scc_mgr->update); 3377 return 1; 3378 } 3379 3380 /* Calibration is not skipped. */ 3381 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3382 /* 3383 * Zero all delay chain/phase settings for all 3384 * groups and all shadow register sets. 3385 */ 3386 scc_mgr_zero_all(); 3387 3388 run_groups = ~param->skip_groups; 3389 3390 for (write_group = 0, write_test_bgn = 0; write_group 3391 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3392 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3393 3394 /* Initialize the group failure */ 3395 group_failed = 0; 3396 3397 current_run = run_groups & ((1 << 3398 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3399 run_groups = run_groups >> 3400 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3401 3402 if (current_run == 0) 3403 continue; 3404 3405 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3406 SCC_MGR_GROUP_COUNTER_OFFSET); 3407 scc_mgr_zero_group(write_group, 0); 3408 3409 for (read_group = write_group * rwdqs_ratio, 3410 read_test_bgn = 0; 3411 read_group < (write_group + 1) * rwdqs_ratio; 3412 read_group++, 3413 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3414 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3415 continue; 3416 3417 /* Calibrate the VFIFO */ 3418 if (rw_mgr_mem_calibrate_vfifo(read_group, 3419 read_test_bgn)) 3420 continue; 3421 3422 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3423 return 0; 3424 3425 /* The group failed, we're done. */ 3426 goto grp_failed; 3427 } 3428 3429 /* Calibrate the output side */ 3430 for (rank_bgn = 0, sr = 0; 3431 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3432 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3433 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3434 continue; 3435 3436 /* Not needed in quick mode! */ 3437 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3438 continue; 3439 3440 /* 3441 * Determine if this set of ranks 3442 * should be skipped entirely. 3443 */ 3444 if (param->skip_shadow_regs[sr]) 3445 continue; 3446 3447 /* Calibrate WRITEs */ 3448 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3449 write_group, write_test_bgn)) 3450 continue; 3451 3452 group_failed = 1; 3453 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3454 return 0; 3455 } 3456 3457 /* Some group failed, we're done. */ 3458 if (group_failed) 3459 goto grp_failed; 3460 3461 for (read_group = write_group * rwdqs_ratio, 3462 read_test_bgn = 0; 3463 read_group < (write_group + 1) * rwdqs_ratio; 3464 read_group++, 3465 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3466 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3467 continue; 3468 3469 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3470 read_test_bgn)) 3471 continue; 3472 3473 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3474 return 0; 3475 3476 /* The group failed, we're done. */ 3477 goto grp_failed; 3478 } 3479 3480 /* No group failed, continue as usual. */ 3481 continue; 3482 3483 grp_failed: /* A group failed, increment the counter. */ 3484 failing_groups++; 3485 } 3486 3487 /* 3488 * USER If there are any failing groups then report 3489 * the failure. 3490 */ 3491 if (failing_groups != 0) 3492 return 0; 3493 3494 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3495 continue; 3496 3497 /* 3498 * If we're skipping groups as part of debug, 3499 * don't calibrate LFIFO. 3500 */ 3501 if (param->skip_groups != 0) 3502 continue; 3503 3504 /* Calibrate the LFIFO */ 3505 if (!rw_mgr_mem_calibrate_lfifo()) 3506 return 0; 3507 } 3508 3509 /* 3510 * Do not remove this line as it makes sure all of our decisions 3511 * have been applied. 3512 */ 3513 writel(0, &sdr_scc_mgr->update); 3514 return 1; 3515 } 3516 3517 /** 3518 * run_mem_calibrate() - Perform memory calibration 3519 * 3520 * This function triggers the entire memory calibration procedure. 3521 */ 3522 static int run_mem_calibrate(void) 3523 { 3524 int pass; 3525 3526 debug("%s:%d\n", __func__, __LINE__); 3527 3528 /* Reset pass/fail status shown on afi_cal_success/fail */ 3529 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3530 3531 /* Stop tracking manager. */ 3532 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3533 3534 phy_mgr_initialize(); 3535 rw_mgr_mem_initialize(); 3536 3537 /* Perform the actual memory calibration. */ 3538 pass = mem_calibrate(); 3539 3540 mem_precharge_and_activate(); 3541 writel(0, &phy_mgr_cmd->fifo_reset); 3542 3543 /* Handoff. */ 3544 rw_mgr_mem_handoff(); 3545 /* 3546 * In Hard PHY this is a 2-bit control: 3547 * 0: AFI Mux Select 3548 * 1: DDIO Mux Select 3549 */ 3550 writel(0x2, &phy_mgr_cfg->mux_sel); 3551 3552 /* Start tracking manager. */ 3553 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3554 3555 return pass; 3556 } 3557 3558 /** 3559 * debug_mem_calibrate() - Report result of memory calibration 3560 * @pass: Value indicating whether calibration passed or failed 3561 * 3562 * This function reports the results of the memory calibration 3563 * and writes debug information into the register file. 3564 */ 3565 static void debug_mem_calibrate(int pass) 3566 { 3567 uint32_t debug_info; 3568 3569 if (pass) { 3570 printf("%s: CALIBRATION PASSED\n", __FILE__); 3571 3572 gbl->fom_in /= 2; 3573 gbl->fom_out /= 2; 3574 3575 if (gbl->fom_in > 0xff) 3576 gbl->fom_in = 0xff; 3577 3578 if (gbl->fom_out > 0xff) 3579 gbl->fom_out = 0xff; 3580 3581 /* Update the FOM in the register file */ 3582 debug_info = gbl->fom_in; 3583 debug_info |= gbl->fom_out << 8; 3584 writel(debug_info, &sdr_reg_file->fom); 3585 3586 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3587 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3588 } else { 3589 printf("%s: CALIBRATION FAILED\n", __FILE__); 3590 3591 debug_info = gbl->error_stage; 3592 debug_info |= gbl->error_substage << 8; 3593 debug_info |= gbl->error_group << 16; 3594 3595 writel(debug_info, &sdr_reg_file->failing_stage); 3596 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3597 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3598 3599 /* Update the failing group/stage in the register file */ 3600 debug_info = gbl->error_stage; 3601 debug_info |= gbl->error_substage << 8; 3602 debug_info |= gbl->error_group << 16; 3603 writel(debug_info, &sdr_reg_file->failing_stage); 3604 } 3605 3606 printf("%s: Calibration complete\n", __FILE__); 3607 } 3608 3609 /** 3610 * hc_initialize_rom_data() - Initialize ROM data 3611 * 3612 * Initialize ROM data. 3613 */ 3614 static void hc_initialize_rom_data(void) 3615 { 3616 u32 i, addr; 3617 3618 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3619 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3620 writel(inst_rom_init[i], addr + (i << 2)); 3621 3622 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3623 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3624 writel(ac_rom_init[i], addr + (i << 2)); 3625 } 3626 3627 /** 3628 * initialize_reg_file() - Initialize SDR register file 3629 * 3630 * Initialize SDR register file. 3631 */ 3632 static void initialize_reg_file(void) 3633 { 3634 /* Initialize the register file with the correct data */ 3635 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3636 writel(0, &sdr_reg_file->debug_data_addr); 3637 writel(0, &sdr_reg_file->cur_stage); 3638 writel(0, &sdr_reg_file->fom); 3639 writel(0, &sdr_reg_file->failing_stage); 3640 writel(0, &sdr_reg_file->debug1); 3641 writel(0, &sdr_reg_file->debug2); 3642 } 3643 3644 /** 3645 * initialize_hps_phy() - Initialize HPS PHY 3646 * 3647 * Initialize HPS PHY. 3648 */ 3649 static void initialize_hps_phy(void) 3650 { 3651 uint32_t reg; 3652 /* 3653 * Tracking also gets configured here because it's in the 3654 * same register. 3655 */ 3656 uint32_t trk_sample_count = 7500; 3657 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3658 /* 3659 * Format is number of outer loops in the 16 MSB, sample 3660 * count in 16 LSB. 3661 */ 3662 3663 reg = 0; 3664 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3665 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3666 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3667 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3670 /* 3671 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3672 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3673 */ 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3676 trk_sample_count); 3677 writel(reg, &sdr_ctrl->phy_ctrl0); 3678 3679 reg = 0; 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3681 trk_sample_count >> 3682 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3684 trk_long_idle_sample_count); 3685 writel(reg, &sdr_ctrl->phy_ctrl1); 3686 3687 reg = 0; 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3689 trk_long_idle_sample_count >> 3690 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3691 writel(reg, &sdr_ctrl->phy_ctrl2); 3692 } 3693 3694 /** 3695 * initialize_tracking() - Initialize tracking 3696 * 3697 * Initialize the register file with usable initial data. 3698 */ 3699 static void initialize_tracking(void) 3700 { 3701 /* 3702 * Initialize the register file with the correct data. 3703 * Compute usable version of value in case we skip full 3704 * computation later. 3705 */ 3706 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3707 &sdr_reg_file->dtaps_per_ptap); 3708 3709 /* trk_sample_count */ 3710 writel(7500, &sdr_reg_file->trk_sample_count); 3711 3712 /* longidle outer loop [15:0] */ 3713 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3714 3715 /* 3716 * longidle sample count [31:24] 3717 * trfc, worst case of 933Mhz 4Gb [23:16] 3718 * trcd, worst case [15:8] 3719 * vfifo wait [7:0] 3720 */ 3721 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3722 &sdr_reg_file->delays); 3723 3724 /* mux delay */ 3725 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3726 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3727 &sdr_reg_file->trk_rw_mgr_addr); 3728 3729 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3730 &sdr_reg_file->trk_read_dqs_width); 3731 3732 /* trefi [7:0] */ 3733 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3734 &sdr_reg_file->trk_rfsh); 3735 } 3736 3737 int sdram_calibration_full(void) 3738 { 3739 struct param_type my_param; 3740 struct gbl_type my_gbl; 3741 uint32_t pass; 3742 3743 memset(&my_param, 0, sizeof(my_param)); 3744 memset(&my_gbl, 0, sizeof(my_gbl)); 3745 3746 param = &my_param; 3747 gbl = &my_gbl; 3748 3749 /* Set the calibration enabled by default */ 3750 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3751 /* 3752 * Only sweep all groups (regardless of fail state) by default 3753 * Set enabled read test by default. 3754 */ 3755 #if DISABLE_GUARANTEED_READ 3756 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3757 #endif 3758 /* Initialize the register file */ 3759 initialize_reg_file(); 3760 3761 /* Initialize any PHY CSR */ 3762 initialize_hps_phy(); 3763 3764 scc_mgr_initialize(); 3765 3766 initialize_tracking(); 3767 3768 printf("%s: Preparing to start memory calibration\n", __FILE__); 3769 3770 debug("%s:%d\n", __func__, __LINE__); 3771 debug_cond(DLEVEL == 1, 3772 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3773 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3774 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3775 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3776 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3777 debug_cond(DLEVEL == 1, 3778 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3779 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3780 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3781 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3782 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3783 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3784 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3785 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3786 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3787 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3788 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3789 IO_IO_OUT2_DELAY_MAX); 3790 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3791 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3792 3793 hc_initialize_rom_data(); 3794 3795 /* update info for sims */ 3796 reg_file_set_stage(CAL_STAGE_NIL); 3797 reg_file_set_group(0); 3798 3799 /* 3800 * Load global needed for those actions that require 3801 * some dynamic calibration support. 3802 */ 3803 dyn_calib_steps = STATIC_CALIB_STEPS; 3804 /* 3805 * Load global to allow dynamic selection of delay loop settings 3806 * based on calibration mode. 3807 */ 3808 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3809 skip_delay_mask = 0xff; 3810 else 3811 skip_delay_mask = 0x0; 3812 3813 pass = run_mem_calibrate(); 3814 debug_mem_calibrate(pass); 3815 return pass; 3816 } 3817