xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 6afb4fe2a0a72a6930853945b3328cc65d4d5a96)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17 
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20 
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23 
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26 
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29 
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31 	(struct socfpga_phy_mgr_cmd *)(BASE_PHY_MGR);
32 
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34 	(struct socfpga_phy_mgr_cfg *)(BASE_PHY_MGR + 0x4000);
35 
36 static struct socfpga_data_mgr *data_mgr =
37 	(struct socfpga_data_mgr *)(BASE_DATA_MGR);
38 
39 #define DELTA_D		1
40 #define MGR_SELECT_MASK		0xf8000
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static u32 sdr_get_addr(u32 *base)
87 {
88 	u32 addr = (u32)base & MGR_SELECT_MASK;
89 
90 	switch (addr) {
91 	case BASE_PHY_MGR:
92 		addr = (((u32)base >> 8) & (1 << 6)) | ((u32)base & 0x3f) |
93 			SDR_PHYGRP_PHYMGRGRP_ADDRESS;
94 		break;
95 	case BASE_RW_MGR:
96 		addr = ((u32)base & 0x1fff) | SDR_PHYGRP_RWMGRGRP_ADDRESS;
97 		break;
98 	case BASE_DATA_MGR:
99 		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_DATAMGRGRP_ADDRESS;
100 		break;
101 	case BASE_SCC_MGR:
102 		addr = ((u32)base & 0xfff) | SDR_PHYGRP_SCCGRP_ADDRESS;
103 		break;
104 	case BASE_REG_FILE:
105 		addr = ((u32)base & 0x7ff) | SDR_PHYGRP_REGFILEGRP_ADDRESS;
106 		break;
107 	case BASE_MMR:
108 		addr = ((u32)base & 0xfff) | SDR_CTRLGRP_ADDRESS;
109 		break;
110 	default:
111 		return -1;
112 	}
113 
114 	return addr;
115 }
116 
117 static void set_failing_group_stage(uint32_t group, uint32_t stage,
118 	uint32_t substage)
119 {
120 	/*
121 	 * Only set the global stage if there was not been any other
122 	 * failing group
123 	 */
124 	if (gbl->error_stage == CAL_STAGE_NIL)	{
125 		gbl->error_substage = substage;
126 		gbl->error_stage = stage;
127 		gbl->error_group = group;
128 	}
129 }
130 
131 static void reg_file_set_group(uint32_t set_group)
132 {
133 	u32 addr = (u32)&sdr_reg_file->cur_stage;
134 
135 	/* Read the current group and stage */
136 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
137 
138 	/* Clear the group */
139 	cur_stage_group &= 0x0000FFFF;
140 
141 	/* Set the group */
142 	cur_stage_group |= (set_group << 16);
143 
144 	/* Write the data back */
145 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
146 }
147 
148 static void reg_file_set_stage(uint32_t set_stage)
149 {
150 	u32 addr = (u32)&sdr_reg_file->cur_stage;
151 
152 	/* Read the current group and stage */
153 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
154 
155 	/* Clear the stage and substage */
156 	cur_stage_group &= 0xFFFF0000;
157 
158 	/* Set the stage */
159 	cur_stage_group |= (set_stage & 0x000000FF);
160 
161 	/* Write the data back */
162 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
163 }
164 
165 static void reg_file_set_sub_stage(uint32_t set_sub_stage)
166 {
167 	u32 addr = (u32)&sdr_reg_file->cur_stage;
168 
169 	/* Read the current group and stage */
170 	uint32_t cur_stage_group = readl(SOCFPGA_SDR_ADDRESS + addr);
171 
172 	/* Clear the substage */
173 	cur_stage_group &= 0xFFFF00FF;
174 
175 	/* Set the sub stage */
176 	cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
177 
178 	/* Write the data back */
179 	writel(cur_stage_group, SOCFPGA_SDR_ADDRESS + addr);
180 }
181 
182 static void initialize(void)
183 {
184 	u32 addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
185 
186 	debug("%s:%d\n", __func__, __LINE__);
187 	/* USER calibration has control over path to memory */
188 	/*
189 	 * In Hard PHY this is a 2-bit control:
190 	 * 0: AFI Mux Select
191 	 * 1: DDIO Mux Select
192 	 */
193 	writel(0x3, SOCFPGA_SDR_ADDRESS + addr);
194 
195 	/* USER memory clock is not stable we begin initialization  */
196 	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
197 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
198 
199 	/* USER calibration status all set to zero */
200 	addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
201 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
202 
203 	addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
204 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
205 
206 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
207 		param->read_correct_mask_vg  = ((uint32_t)1 <<
208 			(RW_MGR_MEM_DQ_PER_READ_DQS /
209 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
210 		param->write_correct_mask_vg = ((uint32_t)1 <<
211 			(RW_MGR_MEM_DQ_PER_READ_DQS /
212 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
213 		param->read_correct_mask     = ((uint32_t)1 <<
214 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
215 		param->write_correct_mask    = ((uint32_t)1 <<
216 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
217 		param->dm_correct_mask       = ((uint32_t)1 <<
218 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
219 			- 1;
220 	}
221 }
222 
223 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
224 {
225 	uint32_t odt_mask_0 = 0;
226 	uint32_t odt_mask_1 = 0;
227 	uint32_t cs_and_odt_mask;
228 	uint32_t addr;
229 
230 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
231 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
232 			/*
233 			 * 1 Rank
234 			 * Read: ODT = 0
235 			 * Write: ODT = 1
236 			 */
237 			odt_mask_0 = 0x0;
238 			odt_mask_1 = 0x1;
239 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
240 			/* 2 Ranks */
241 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
242 				/* - Dual-Slot , Single-Rank
243 				 * (1 chip-select per DIMM)
244 				 * OR
245 				 * - RDIMM, 4 total CS (2 CS per DIMM)
246 				 * means 2 DIMM
247 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
248 				 * both single rank
249 				 * with 2 CS each (special for RDIMM)
250 				 * Read: Turn on ODT on the opposite rank
251 				 * Write: Turn on ODT on all ranks
252 				 */
253 				odt_mask_0 = 0x3 & ~(1 << rank);
254 				odt_mask_1 = 0x3;
255 			} else {
256 				/*
257 				 * USER - Single-Slot , Dual-rank DIMMs
258 				 * (2 chip-selects per DIMM)
259 				 * USER Read: Turn on ODT off on all ranks
260 				 * USER Write: Turn on ODT on active rank
261 				 */
262 				odt_mask_0 = 0x0;
263 				odt_mask_1 = 0x3 & (1 << rank);
264 			}
265 		} else {
266 			/* 4 Ranks
267 			 * Read:
268 			 * ----------+-----------------------+
269 			 *           |                       |
270 			 *           |         ODT           |
271 			 * Read From +-----------------------+
272 			 *   Rank    |  3  |  2  |  1  |  0  |
273 			 * ----------+-----+-----+-----+-----+
274 			 *     0     |  0  |  1  |  0  |  0  |
275 			 *     1     |  1  |  0  |  0  |  0  |
276 			 *     2     |  0  |  0  |  0  |  1  |
277 			 *     3     |  0  |  0  |  1  |  0  |
278 			 * ----------+-----+-----+-----+-----+
279 			 *
280 			 * Write:
281 			 * ----------+-----------------------+
282 			 *           |                       |
283 			 *           |         ODT           |
284 			 * Write To  +-----------------------+
285 			 *   Rank    |  3  |  2  |  1  |  0  |
286 			 * ----------+-----+-----+-----+-----+
287 			 *     0     |  0  |  1  |  0  |  1  |
288 			 *     1     |  1  |  0  |  1  |  0  |
289 			 *     2     |  0  |  1  |  0  |  1  |
290 			 *     3     |  1  |  0  |  1  |  0  |
291 			 * ----------+-----+-----+-----+-----+
292 			 */
293 			switch (rank) {
294 			case 0:
295 				odt_mask_0 = 0x4;
296 				odt_mask_1 = 0x5;
297 				break;
298 			case 1:
299 				odt_mask_0 = 0x8;
300 				odt_mask_1 = 0xA;
301 				break;
302 			case 2:
303 				odt_mask_0 = 0x1;
304 				odt_mask_1 = 0x5;
305 				break;
306 			case 3:
307 				odt_mask_0 = 0x2;
308 				odt_mask_1 = 0xA;
309 				break;
310 			}
311 		}
312 	} else {
313 		odt_mask_0 = 0x0;
314 		odt_mask_1 = 0x0;
315 	}
316 
317 	cs_and_odt_mask =
318 		(0xFF & ~(1 << rank)) |
319 		((0xFF & odt_mask_0) << 8) |
320 		((0xFF & odt_mask_1) << 16);
321 	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
322 	writel(cs_and_odt_mask, SOCFPGA_SDR_ADDRESS + addr);
323 }
324 
325 static void scc_mgr_initialize(void)
326 {
327 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_HHP_RFILE);
328 
329 	/*
330 	 * Clear register file for HPS
331 	 * 16 (2^4) is the size of the full register file in the scc mgr:
332 	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
333 	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
334 	 */
335 	uint32_t i;
336 	for (i = 0; i < 16; i++) {
337 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
338 			   __func__, __LINE__, i);
339 		writel(0, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
340 	}
341 }
342 
343 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
344 						uint32_t delay)
345 {
346 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
347 
348 	/* Load the setting in the SCC manager */
349 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
350 }
351 
352 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
353 	uint32_t delay)
354 {
355 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
356 
357 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
358 }
359 
360 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
361 {
362 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_PHASE);
363 
364 	/* Load the setting in the SCC manager */
365 	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
366 }
367 
368 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
369 					       uint32_t phase)
370 {
371 	uint32_t r;
372 	uint32_t update_scan_chains;
373 	uint32_t addr;
374 
375 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
376 	     r += NUM_RANKS_PER_SHADOW_REG) {
377 		/*
378 		 * USER although the h/w doesn't support different phases per
379 		 * shadow register, for simplicity our scc manager modeling
380 		 * keeps different phase settings per shadow reg, and it's
381 		 * important for us to keep them in sync to match h/w.
382 		 * for efficiency, the scan chain update should occur only
383 		 * once to sr0.
384 		 */
385 		update_scan_chains = (r == 0) ? 1 : 0;
386 
387 		scc_mgr_set_dqs_en_phase(read_group, phase);
388 
389 		if (update_scan_chains) {
390 			addr = (u32)&sdr_scc_mgr->dqs_ena;
391 			writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
392 
393 			addr = (u32)&sdr_scc_mgr->update;
394 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
395 		}
396 	}
397 }
398 
399 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
400 						  uint32_t phase)
401 {
402 	u32 addr = sdr_get_addr((u32 *)SCC_MGR_DQDQS_OUT_PHASE);
403 
404 	/* Load the setting in the SCC manager */
405 	writel(phase, SOCFPGA_SDR_ADDRESS + addr + (write_group << 2));
406 }
407 
408 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
409 						     uint32_t phase)
410 {
411 	uint32_t r;
412 	uint32_t update_scan_chains;
413 	uint32_t addr;
414 
415 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
416 	     r += NUM_RANKS_PER_SHADOW_REG) {
417 		/*
418 		 * USER although the h/w doesn't support different phases per
419 		 * shadow register, for simplicity our scc manager modeling
420 		 * keeps different phase settings per shadow reg, and it's
421 		 * important for us to keep them in sync to match h/w.
422 		 * for efficiency, the scan chain update should occur only
423 		 * once to sr0.
424 		 */
425 		update_scan_chains = (r == 0) ? 1 : 0;
426 
427 		scc_mgr_set_dqdqs_output_phase(write_group, phase);
428 
429 		if (update_scan_chains) {
430 			addr = (u32)&sdr_scc_mgr->dqs_ena;
431 			writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
432 
433 			addr = (u32)&sdr_scc_mgr->update;
434 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
435 		}
436 	}
437 }
438 
439 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
440 {
441 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_DQS_EN_DELAY);
442 
443 	/* Load the setting in the SCC manager */
444 	writel(delay + IO_DQS_EN_DELAY_OFFSET, SOCFPGA_SDR_ADDRESS + addr +
445 	       (read_group << 2));
446 }
447 
448 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
449 					       uint32_t delay)
450 {
451 	uint32_t r;
452 	uint32_t addr;
453 
454 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
455 		r += NUM_RANKS_PER_SHADOW_REG) {
456 		scc_mgr_set_dqs_en_delay(read_group, delay);
457 
458 		addr = (u32)&sdr_scc_mgr->dqs_ena;
459 		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
460 		/*
461 		 * In shadow register mode, the T11 settings are stored in
462 		 * registers in the core, which are updated by the DQS_ENA
463 		 * signals. Not issuing the SCC_MGR_UPD command allows us to
464 		 * save lots of rank switching overhead, by calling
465 		 * select_shadow_regs_for_update with update_scan_chains
466 		 * set to 0.
467 		 */
468 		addr = (u32)&sdr_scc_mgr->update;
469 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
470 	}
471 	/*
472 	 * In shadow register mode, the T11 settings are stored in
473 	 * registers in the core, which are updated by the DQS_ENA
474 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
475 	 * save lots of rank switching overhead, by calling
476 	 * select_shadow_regs_for_update with update_scan_chains
477 	 * set to 0.
478 	 */
479 	addr = (u32)&sdr_scc_mgr->update;
480 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
481 }
482 
483 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
484 {
485 	uint32_t read_group;
486 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_OCT_OUT1_DELAY);
487 
488 	/*
489 	 * Load the setting in the SCC manager
490 	 * Although OCT affects only write data, the OCT delay is controlled
491 	 * by the DQS logic block which is instantiated once per read group.
492 	 * For protocols where a write group consists of multiple read groups,
493 	 * the setting must be set multiple times.
494 	 */
495 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
496 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
497 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
498 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
499 		writel(delay, SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
500 }
501 
502 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
503 				      uint32_t dq_in_group, uint32_t delay)
504 {
505 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
506 
507 	/* Load the setting in the SCC manager */
508 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
509 }
510 
511 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
512 	uint32_t dq_in_group, uint32_t delay)
513 {
514 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
515 
516 	/* Load the setting in the SCC manager */
517 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (dq_in_group << 2));
518 }
519 
520 static void scc_mgr_set_hhp_extras(void)
521 {
522 	/*
523 	 * Load the fixed setting in the SCC manager
524 	 * bits: 0:0 = 1'b1   - dqs bypass
525 	 * bits: 1:1 = 1'b1   - dq bypass
526 	 * bits: 4:2 = 3'b001   - rfifo_mode
527 	 * bits: 6:5 = 2'b01  - rfifo clock_select
528 	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
529 	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
530 	 */
531 	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
532 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_HHP_GLOBALS);
533 
534 	writel(value, SOCFPGA_SDR_ADDRESS + addr + SCC_MGR_HHP_EXTRAS_OFFSET);
535 }
536 
537 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
538 					      uint32_t delay)
539 {
540 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
541 
542 	/* Load the setting in the SCC manager */
543 	writel(delay, SOCFPGA_SDR_ADDRESS + addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
544 }
545 
546 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
547 					     uint32_t dm, uint32_t delay)
548 {
549 	uint32_t addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
550 
551 	/* Load the setting in the SCC manager */
552 	writel(delay, SOCFPGA_SDR_ADDRESS + addr +
553 		((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
554 }
555 
556 /*
557  * USER Zero all DQS config
558  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
559  */
560 static void scc_mgr_zero_all(void)
561 {
562 	uint32_t i, r;
563 	uint32_t addr;
564 
565 	/*
566 	 * USER Zero all DQS config settings, across all groups and all
567 	 * shadow registers
568 	 */
569 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
570 	     NUM_RANKS_PER_SHADOW_REG) {
571 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
572 			/*
573 			 * The phases actually don't exist on a per-rank basis,
574 			 * but there's no harm updating them several times, so
575 			 * let's keep the code simple.
576 			 */
577 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
578 			scc_mgr_set_dqs_en_phase(i, 0);
579 			scc_mgr_set_dqs_en_delay(i, 0);
580 		}
581 
582 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
583 			scc_mgr_set_dqdqs_output_phase(i, 0);
584 			/* av/cv don't have out2 */
585 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
586 		}
587 	}
588 
589 	/* multicast to all DQS group enables */
590 	addr = (u32)&sdr_scc_mgr->dqs_ena;
591 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
592 
593 	addr = (u32)&sdr_scc_mgr->update;
594 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
595 }
596 
597 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
598 {
599 	uint32_t addr;
600 	/* mode = 0 : Do NOT bypass - Half Rate Mode */
601 	/* mode = 1 : Bypass - Full Rate Mode */
602 
603 	/* only need to set once for all groups, pins, dq, dqs, dm */
604 	if (write_group == 0) {
605 		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
606 			   __LINE__);
607 		scc_mgr_set_hhp_extras();
608 		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
609 			  __func__, __LINE__);
610 	}
611 	/* multicast to all DQ enables */
612 	addr = (u32)&sdr_scc_mgr->dq_ena;
613 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
614 
615 	addr = (u32)&sdr_scc_mgr->dm_ena;
616 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
617 
618 	/* update current DQS IO enable */
619 	addr = (u32)&sdr_scc_mgr->dqs_io_ena;
620 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
621 
622 	/* update the DQS logic */
623 	addr = (u32)&sdr_scc_mgr->dqs_ena;
624 	writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
625 
626 	/* hit update */
627 	addr = (u32)&sdr_scc_mgr->update;
628 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
629 }
630 
631 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
632 			       int32_t out_only)
633 {
634 	uint32_t i, r;
635 	uint32_t addr;
636 
637 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
638 		NUM_RANKS_PER_SHADOW_REG) {
639 		/* Zero all DQ config settings */
640 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
641 			scc_mgr_set_dq_out1_delay(write_group, i, 0);
642 			if (!out_only)
643 				scc_mgr_set_dq_in_delay(write_group, i, 0);
644 		}
645 
646 		/* multicast to all DQ enables */
647 		addr = (u32)&sdr_scc_mgr->dq_ena;
648 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
649 
650 		/* Zero all DM config settings */
651 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
652 			scc_mgr_set_dm_out1_delay(write_group, i, 0);
653 		}
654 
655 		/* multicast to all DM enables */
656 		addr = (u32)&sdr_scc_mgr->dm_ena;
657 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
658 
659 		/* zero all DQS io settings */
660 		if (!out_only)
661 			scc_mgr_set_dqs_io_in_delay(write_group, 0);
662 		/* av/cv don't have out2 */
663 		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
664 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
665 		scc_mgr_load_dqs_for_write_group(write_group);
666 
667 		/* multicast to all DQS IO enables (only 1) */
668 		addr = (u32)&sdr_scc_mgr->dqs_io_ena;
669 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
670 
671 		/* hit update to zero everything */
672 		addr = (u32)&sdr_scc_mgr->update;
673 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
674 	}
675 }
676 
677 /* load up dqs config settings */
678 static void scc_mgr_load_dqs(uint32_t dqs)
679 {
680 	uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
681 
682 	writel(dqs, SOCFPGA_SDR_ADDRESS + addr);
683 }
684 
685 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
686 {
687 	uint32_t read_group;
688 	uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
689 	/*
690 	 * Although OCT affects only write data, the OCT delay is controlled
691 	 * by the DQS logic block which is instantiated once per read group.
692 	 * For protocols where a write group consists of multiple read groups,
693 	 * the setting must be scanned multiple times.
694 	 */
695 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
696 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
697 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
698 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
699 		writel(read_group, SOCFPGA_SDR_ADDRESS + addr);
700 }
701 
702 /* load up dqs io config settings */
703 static void scc_mgr_load_dqs_io(void)
704 {
705 	uint32_t addr = (u32)&sdr_scc_mgr->dqs_io_ena;
706 
707 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
708 }
709 
710 /* load up dq config settings */
711 static void scc_mgr_load_dq(uint32_t dq_in_group)
712 {
713 	uint32_t addr = (u32)&sdr_scc_mgr->dq_ena;
714 
715 	writel(dq_in_group, SOCFPGA_SDR_ADDRESS + addr);
716 }
717 
718 /* load up dm config settings */
719 static void scc_mgr_load_dm(uint32_t dm)
720 {
721 	uint32_t addr = (u32)&sdr_scc_mgr->dm_ena;
722 
723 	writel(dm, SOCFPGA_SDR_ADDRESS + addr);
724 }
725 
726 /*
727  * apply and load a particular input delay for the DQ pins in a group
728  * group_bgn is the index of the first dq pin (in the write group)
729  */
730 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
731 					    uint32_t group_bgn, uint32_t delay)
732 {
733 	uint32_t i, p;
734 
735 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
736 		scc_mgr_set_dq_in_delay(write_group, p, delay);
737 		scc_mgr_load_dq(p);
738 	}
739 }
740 
741 /* apply and load a particular output delay for the DQ pins in a group */
742 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
743 					      uint32_t group_bgn,
744 					      uint32_t delay1)
745 {
746 	uint32_t i, p;
747 
748 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
749 		scc_mgr_set_dq_out1_delay(write_group, i, delay1);
750 		scc_mgr_load_dq(i);
751 	}
752 }
753 
754 /* apply and load a particular output delay for the DM pins in a group */
755 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
756 					      uint32_t delay1)
757 {
758 	uint32_t i;
759 
760 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
761 		scc_mgr_set_dm_out1_delay(write_group, i, delay1);
762 		scc_mgr_load_dm(i);
763 	}
764 }
765 
766 
767 /* apply and load delay on both DQS and OCT out1 */
768 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
769 						    uint32_t delay)
770 {
771 	scc_mgr_set_dqs_out1_delay(write_group, delay);
772 	scc_mgr_load_dqs_io();
773 
774 	scc_mgr_set_oct_out1_delay(write_group, delay);
775 	scc_mgr_load_dqs_for_write_group(write_group);
776 }
777 
778 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
779 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
780 						  uint32_t group_bgn,
781 						  uint32_t delay)
782 {
783 	uint32_t i, p, new_delay;
784 
785 	/* dq shift */
786 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
787 		new_delay = READ_SCC_DQ_OUT2_DELAY;
788 		new_delay += delay;
789 
790 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
791 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
792 				   %u > %lu => %lu", __func__, __LINE__,
793 				   write_group, group_bgn, delay, i, p, new_delay,
794 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
795 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
796 			new_delay = IO_IO_OUT2_DELAY_MAX;
797 		}
798 
799 		scc_mgr_load_dq(i);
800 	}
801 
802 	/* dm shift */
803 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
804 		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
805 		new_delay += delay;
806 
807 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
808 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
809 				   %u > %lu => %lu\n",  __func__, __LINE__,
810 				   write_group, group_bgn, delay, i, new_delay,
811 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
812 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
813 			new_delay = IO_IO_OUT2_DELAY_MAX;
814 		}
815 
816 		scc_mgr_load_dm(i);
817 	}
818 
819 	/* dqs shift */
820 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
821 	new_delay += delay;
822 
823 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
824 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
825 			   " adding %u to OUT1\n", __func__, __LINE__,
826 			   write_group, group_bgn, delay, new_delay,
827 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
828 			   new_delay - IO_IO_OUT2_DELAY_MAX);
829 		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
830 					   IO_IO_OUT2_DELAY_MAX);
831 		new_delay = IO_IO_OUT2_DELAY_MAX;
832 	}
833 
834 	scc_mgr_load_dqs_io();
835 
836 	/* oct shift */
837 	new_delay = READ_SCC_OCT_OUT2_DELAY;
838 	new_delay += delay;
839 
840 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
841 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
842 			   " adding %u to OUT1\n", __func__, __LINE__,
843 			   write_group, group_bgn, delay, new_delay,
844 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
845 			   new_delay - IO_IO_OUT2_DELAY_MAX);
846 		scc_mgr_set_oct_out1_delay(write_group, new_delay -
847 					   IO_IO_OUT2_DELAY_MAX);
848 		new_delay = IO_IO_OUT2_DELAY_MAX;
849 	}
850 
851 	scc_mgr_load_dqs_for_write_group(write_group);
852 }
853 
854 /*
855  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
856  * and to all ranks
857  */
858 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
859 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
860 {
861 	uint32_t r;
862 	uint32_t addr = (u32)&sdr_scc_mgr->update;
863 
864 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
865 		r += NUM_RANKS_PER_SHADOW_REG) {
866 		scc_mgr_apply_group_all_out_delay_add(write_group,
867 						      group_bgn, delay);
868 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
869 	}
870 }
871 
872 /* optimization used to recover some slots in ddr3 inst_rom */
873 /* could be applied to other protocols if we wanted to */
874 static void set_jump_as_return(void)
875 {
876 	uint32_t addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
877 
878 	/*
879 	 * to save space, we replace return with jump to special shared
880 	 * RETURN instruction so we set the counter to large value so that
881 	 * we always jump
882 	 */
883 	writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
884 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
885 	writel(RW_MGR_RETURN, SOCFPGA_SDR_ADDRESS + addr);
886 }
887 
888 /*
889  * should always use constants as argument to ensure all computations are
890  * performed at compile time
891  */
892 static void delay_for_n_mem_clocks(const uint32_t clocks)
893 {
894 	uint32_t afi_clocks;
895 	uint8_t inner = 0;
896 	uint8_t outer = 0;
897 	uint16_t c_loop = 0;
898 	uint32_t addr;
899 
900 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
901 
902 
903 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
904 	/* scale (rounding up) to get afi clocks */
905 
906 	/*
907 	 * Note, we don't bother accounting for being off a little bit
908 	 * because of a few extra instructions in outer loops
909 	 * Note, the loops have a test at the end, and do the test before
910 	 * the decrement, and so always perform the loop
911 	 * 1 time more than the counter value
912 	 */
913 	if (afi_clocks == 0) {
914 		;
915 	} else if (afi_clocks <= 0x100) {
916 		inner = afi_clocks-1;
917 		outer = 0;
918 		c_loop = 0;
919 	} else if (afi_clocks <= 0x10000) {
920 		inner = 0xff;
921 		outer = (afi_clocks-1) >> 8;
922 		c_loop = 0;
923 	} else {
924 		inner = 0xff;
925 		outer = 0xff;
926 		c_loop = (afi_clocks-1) >> 16;
927 	}
928 
929 	/*
930 	 * rom instructions are structured as follows:
931 	 *
932 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
933 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
934 	 *                return
935 	 *
936 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
937 	 * TARGET_B is set to IDLE_LOOP2 as well
938 	 *
939 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
940 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
941 	 *
942 	 * a little confusing, but it helps save precious space in the inst_rom
943 	 * and sequencer rom and keeps the delays more accurate and reduces
944 	 * overhead
945 	 */
946 	if (afi_clocks <= 0x100) {
947 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
948 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
949 
950 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
951 		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
952 
953 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
954 		writel(RW_MGR_IDLE_LOOP1, SOCFPGA_SDR_ADDRESS + addr);
955 	} else {
956 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
957 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), SOCFPGA_SDR_ADDRESS + addr);
958 
959 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
960 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), SOCFPGA_SDR_ADDRESS + addr);
961 
962 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
963 		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
964 
965 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
966 		writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
967 
968 		/* hack to get around compiler not being smart enough */
969 		if (afi_clocks <= 0x10000) {
970 			/* only need to run once */
971 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
972 			writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
973 		} else {
974 			do {
975 				addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
976 				writel(RW_MGR_IDLE_LOOP2, SOCFPGA_SDR_ADDRESS + addr);
977 			} while (c_loop-- != 0);
978 		}
979 	}
980 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
981 }
982 
983 static void rw_mgr_mem_initialize(void)
984 {
985 	uint32_t r;
986 	uint32_t addr;
987 
988 	debug("%s:%d\n", __func__, __LINE__);
989 
990 	/* The reset / cke part of initialization is broadcasted to all ranks */
991 	addr = sdr_get_addr((u32 *)RW_MGR_SET_CS_AND_ODT_MASK);
992 	writel(RW_MGR_RANK_ALL, SOCFPGA_SDR_ADDRESS + addr);
993 
994 	/*
995 	 * Here's how you load register for a loop
996 	 * Counters are located @ 0x800
997 	 * Jump address are located @ 0xC00
998 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
999 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
1000 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
1001 	 * significant bits
1002 	 */
1003 
1004 	/* start with memory RESET activated */
1005 
1006 	/* tINIT = 200us */
1007 
1008 	/*
1009 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
1010 	 * If a and b are the number of iteration in 2 nested loops
1011 	 * it takes the following number of cycles to complete the operation:
1012 	 * number_of_cycles = ((2 + n) * a + 2) * b
1013 	 * where n is the number of instruction in the inner loop
1014 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
1015 	 * b = 6A
1016 	 */
1017 
1018 	/* Load counters */
1019 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1020 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
1021 	       SOCFPGA_SDR_ADDRESS + addr);
1022 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1023 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
1024 	       SOCFPGA_SDR_ADDRESS + addr);
1025 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1026 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
1027 	       SOCFPGA_SDR_ADDRESS + addr);
1028 
1029 	/* Load jump address */
1030 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1031 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1032 
1033 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1034 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1035 
1036 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1037 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1038 
1039 	/* Execute count instruction */
1040 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1041 	writel(RW_MGR_INIT_RESET_0_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1042 
1043 	/* indicate that memory is stable */
1044 	addr = sdr_get_addr(&phy_mgr_cfg->reset_mem_stbl);
1045 	writel(1, SOCFPGA_SDR_ADDRESS + addr);
1046 
1047 	/*
1048 	 * transition the RESET to high
1049 	 * Wait for 500us
1050 	 */
1051 
1052 	/*
1053 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1054 	 * If a and b are the number of iteration in 2 nested loops
1055 	 * it takes the following number of cycles to complete the operation
1056 	 * number_of_cycles = ((2 + n) * a + 2) * b
1057 	 * where n is the number of instruction in the inner loop
1058 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1059 	 * b = FF
1060 	 */
1061 
1062 	/* Load counters */
1063 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1064 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
1065 	       SOCFPGA_SDR_ADDRESS + addr);
1066 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1067 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
1068 	       SOCFPGA_SDR_ADDRESS + addr);
1069 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1070 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
1071 	       SOCFPGA_SDR_ADDRESS + addr);
1072 
1073 	/* Load jump address */
1074 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1075 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1076 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1077 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1078 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1079 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1080 
1081 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1082 	writel(RW_MGR_INIT_RESET_1_CKE_0, SOCFPGA_SDR_ADDRESS + addr);
1083 
1084 	/* bring up clock enable */
1085 
1086 	/* tXRP < 250 ck cycles */
1087 	delay_for_n_mem_clocks(250);
1088 
1089 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1090 		if (param->skip_ranks[r]) {
1091 			/* request to skip the rank */
1092 			continue;
1093 		}
1094 
1095 		/* set rank */
1096 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1097 
1098 		/*
1099 		 * USER Use Mirror-ed commands for odd ranks if address
1100 		 * mirrorring is on
1101 		 */
1102 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1103 			set_jump_as_return();
1104 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1105 			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1106 			delay_for_n_mem_clocks(4);
1107 			set_jump_as_return();
1108 			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1109 			delay_for_n_mem_clocks(4);
1110 			set_jump_as_return();
1111 			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1112 			delay_for_n_mem_clocks(4);
1113 			set_jump_as_return();
1114 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1115 		} else {
1116 			set_jump_as_return();
1117 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1118 			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1119 			delay_for_n_mem_clocks(4);
1120 			set_jump_as_return();
1121 			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1122 			delay_for_n_mem_clocks(4);
1123 			set_jump_as_return();
1124 			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1125 			set_jump_as_return();
1126 			writel(RW_MGR_MRS0_DLL_RESET, SOCFPGA_SDR_ADDRESS + addr);
1127 		}
1128 		set_jump_as_return();
1129 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1130 		writel(RW_MGR_ZQCL, SOCFPGA_SDR_ADDRESS + addr);
1131 
1132 		/* tZQinit = tDLLK = 512 ck cycles */
1133 		delay_for_n_mem_clocks(512);
1134 	}
1135 }
1136 
1137 /*
1138  * At the end of calibration we have to program the user settings in, and
1139  * USER  hand off the memory to the user.
1140  */
1141 static void rw_mgr_mem_handoff(void)
1142 {
1143 	uint32_t r;
1144 	uint32_t addr;
1145 
1146 	debug("%s:%d\n", __func__, __LINE__);
1147 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1148 		if (param->skip_ranks[r])
1149 			/* request to skip the rank */
1150 			continue;
1151 		/* set rank */
1152 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1153 
1154 		/* precharge all banks ... */
1155 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1156 		writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
1157 
1158 		/* load up MR settings specified by user */
1159 
1160 		/*
1161 		 * Use Mirror-ed commands for odd ranks if address
1162 		 * mirrorring is on
1163 		 */
1164 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1165 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1166 			set_jump_as_return();
1167 			writel(RW_MGR_MRS2_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1168 			delay_for_n_mem_clocks(4);
1169 			set_jump_as_return();
1170 			writel(RW_MGR_MRS3_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1171 			delay_for_n_mem_clocks(4);
1172 			set_jump_as_return();
1173 			writel(RW_MGR_MRS1_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1174 			delay_for_n_mem_clocks(4);
1175 			set_jump_as_return();
1176 			writel(RW_MGR_MRS0_USER_MIRR, SOCFPGA_SDR_ADDRESS + addr);
1177 		} else {
1178 			set_jump_as_return();
1179 			writel(RW_MGR_MRS2, SOCFPGA_SDR_ADDRESS + addr);
1180 			delay_for_n_mem_clocks(4);
1181 			set_jump_as_return();
1182 			writel(RW_MGR_MRS3, SOCFPGA_SDR_ADDRESS + addr);
1183 			delay_for_n_mem_clocks(4);
1184 			set_jump_as_return();
1185 			writel(RW_MGR_MRS1, SOCFPGA_SDR_ADDRESS + addr);
1186 			delay_for_n_mem_clocks(4);
1187 			set_jump_as_return();
1188 			writel(RW_MGR_MRS0_USER, SOCFPGA_SDR_ADDRESS + addr);
1189 		}
1190 		/*
1191 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1192 		 * other commands, but we will have plenty of NIOS cycles before
1193 		 * actual handoff so its okay.
1194 		 */
1195 	}
1196 }
1197 
1198 /*
1199  * performs a guaranteed read on the patterns we are going to use during a
1200  * read test to ensure memory works
1201  */
1202 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1203 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1204 	uint32_t all_ranks)
1205 {
1206 	uint32_t r, vg;
1207 	uint32_t correct_mask_vg;
1208 	uint32_t tmp_bit_chk;
1209 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1210 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1211 	uint32_t addr;
1212 	uint32_t base_rw_mgr;
1213 
1214 	*bit_chk = param->read_correct_mask;
1215 	correct_mask_vg = param->read_correct_mask_vg;
1216 
1217 	for (r = rank_bgn; r < rank_end; r++) {
1218 		if (param->skip_ranks[r])
1219 			/* request to skip the rank */
1220 			continue;
1221 
1222 		/* set rank */
1223 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1224 
1225 		/* Load up a constant bursts of read commands */
1226 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1227 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1228 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1229 		writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr);
1230 
1231 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1232 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1233 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1234 		writel(RW_MGR_GUARANTEED_READ_CONT, SOCFPGA_SDR_ADDRESS + addr);
1235 
1236 		tmp_bit_chk = 0;
1237 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1238 			/* reset the fifos to get pointers to known state */
1239 
1240 			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1241 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1242 			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1243 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1244 
1245 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1246 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1247 
1248 			addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1249 			writel(RW_MGR_GUARANTEED_READ, SOCFPGA_SDR_ADDRESS + addr +
1250 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1251 				vg) << 2));
1252 
1253 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1254 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1255 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1256 
1257 			if (vg == 0)
1258 				break;
1259 		}
1260 		*bit_chk &= tmp_bit_chk;
1261 	}
1262 
1263 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1264 	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1265 
1266 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1267 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1268 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1269 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1270 	return *bit_chk == param->read_correct_mask;
1271 }
1272 
1273 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1274 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1275 {
1276 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1277 		num_tries, bit_chk, 1);
1278 }
1279 
1280 /* load up the patterns we are going to use during a read test */
1281 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1282 	uint32_t all_ranks)
1283 {
1284 	uint32_t r;
1285 	uint32_t addr;
1286 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1287 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1288 
1289 	debug("%s:%d\n", __func__, __LINE__);
1290 	for (r = rank_bgn; r < rank_end; r++) {
1291 		if (param->skip_ranks[r])
1292 			/* request to skip the rank */
1293 			continue;
1294 
1295 		/* set rank */
1296 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1297 
1298 		/* Load up a constant bursts */
1299 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1300 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1301 
1302 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1303 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0, SOCFPGA_SDR_ADDRESS + addr);
1304 
1305 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1306 		writel(0x20, SOCFPGA_SDR_ADDRESS + addr);
1307 
1308 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1309 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1310 
1311 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1312 		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1313 
1314 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1315 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1316 
1317 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
1318 		writel(0x04, SOCFPGA_SDR_ADDRESS + addr);
1319 
1320 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
1321 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3, SOCFPGA_SDR_ADDRESS + addr);
1322 
1323 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1324 		writel(RW_MGR_GUARANTEED_WRITE, SOCFPGA_SDR_ADDRESS + addr);
1325 	}
1326 
1327 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1328 }
1329 
1330 /*
1331  * try a read and see if it returns correct data back. has dummy reads
1332  * inserted into the mix used to align dqs enable. has more thorough checks
1333  * than the regular read test.
1334  */
1335 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1336 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1337 	uint32_t all_groups, uint32_t all_ranks)
1338 {
1339 	uint32_t r, vg;
1340 	uint32_t correct_mask_vg;
1341 	uint32_t tmp_bit_chk;
1342 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1343 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1344 	uint32_t addr;
1345 	uint32_t base_rw_mgr;
1346 
1347 	*bit_chk = param->read_correct_mask;
1348 	correct_mask_vg = param->read_correct_mask_vg;
1349 
1350 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1351 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1352 
1353 	for (r = rank_bgn; r < rank_end; r++) {
1354 		if (param->skip_ranks[r])
1355 			/* request to skip the rank */
1356 			continue;
1357 
1358 		/* set rank */
1359 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1360 
1361 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
1362 		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1363 
1364 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
1365 		writel(RW_MGR_READ_B2B_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
1366 
1367 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
1368 		writel(0x10, SOCFPGA_SDR_ADDRESS + addr);
1369 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
1370 		writel(RW_MGR_READ_B2B_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
1371 
1372 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
1373 		if (quick_read_mode)
1374 			writel(0x1, SOCFPGA_SDR_ADDRESS + addr);
1375 			/* need at least two (1+1) reads to capture failures */
1376 		else if (all_groups)
1377 			writel(0x06, SOCFPGA_SDR_ADDRESS + addr);
1378 		else
1379 			writel(0x32, SOCFPGA_SDR_ADDRESS + addr);
1380 
1381 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
1382 		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1383 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
1384 		if (all_groups)
1385 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1386 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1387 			       SOCFPGA_SDR_ADDRESS + addr);
1388 		else
1389 			writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
1390 
1391 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
1392 		writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr);
1393 
1394 		tmp_bit_chk = 0;
1395 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1396 			/* reset the fifos to get pointers to known state */
1397 			addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
1398 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1399 			addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
1400 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
1401 
1402 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1403 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1404 
1405 			addr = sdr_get_addr((u32 *)(all_groups ? RW_MGR_RUN_ALL_GROUPS :
1406 					    RW_MGR_RUN_SINGLE_GROUP));
1407 			writel(RW_MGR_READ_B2B, SOCFPGA_SDR_ADDRESS + addr +
1408 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1409 			       vg) << 2));
1410 
1411 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
1412 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr);
1413 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1414 
1415 			if (vg == 0)
1416 				break;
1417 		}
1418 		*bit_chk &= tmp_bit_chk;
1419 	}
1420 
1421 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
1422 	writel(RW_MGR_CLEAR_DQS_ENABLE, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
1423 
1424 	if (all_correct) {
1425 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1426 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1427 			   (%u == %u) => %lu", __func__, __LINE__, group,
1428 			   all_groups, *bit_chk, param->read_correct_mask,
1429 			   (long unsigned int)(*bit_chk ==
1430 			   param->read_correct_mask));
1431 		return *bit_chk == param->read_correct_mask;
1432 	} else	{
1433 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1434 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1435 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1436 			   group, all_groups, *bit_chk, (long unsigned int)0,
1437 			   (long unsigned int)(*bit_chk != 0x00));
1438 		return *bit_chk != 0x00;
1439 	}
1440 }
1441 
1442 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1443 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1444 	uint32_t all_groups)
1445 {
1446 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1447 					      bit_chk, all_groups, 1);
1448 }
1449 
1450 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1451 {
1452 	uint32_t addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
1453 
1454 	writel(grp, SOCFPGA_SDR_ADDRESS + addr);
1455 	(*v)++;
1456 }
1457 
1458 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1459 {
1460 	uint32_t i;
1461 
1462 	for (i = 0; i < VFIFO_SIZE-1; i++)
1463 		rw_mgr_incr_vfifo(grp, v);
1464 }
1465 
1466 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1467 {
1468 	uint32_t  v;
1469 	uint32_t fail_cnt = 0;
1470 	uint32_t test_status;
1471 
1472 	for (v = 0; v < VFIFO_SIZE; ) {
1473 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1474 			   __func__, __LINE__, v);
1475 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1476 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1477 		if (!test_status) {
1478 			fail_cnt++;
1479 
1480 			if (fail_cnt == 2)
1481 				break;
1482 		}
1483 
1484 		/* fiddle with FIFO */
1485 		rw_mgr_incr_vfifo(grp, &v);
1486 	}
1487 
1488 	if (v >= VFIFO_SIZE) {
1489 		/* no failing read found!! Something must have gone wrong */
1490 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1491 			   __func__, __LINE__);
1492 		return 0;
1493 	} else {
1494 		return v;
1495 	}
1496 }
1497 
1498 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1499 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1500 			      uint32_t *v, uint32_t *d, uint32_t *p,
1501 			      uint32_t *i, uint32_t *max_working_cnt)
1502 {
1503 	uint32_t found_begin = 0;
1504 	uint32_t tmp_delay = 0;
1505 	uint32_t test_status;
1506 
1507 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1508 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1509 		*work_bgn = tmp_delay;
1510 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1511 
1512 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1513 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1514 				IO_DELAY_PER_OPA_TAP) {
1515 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1516 
1517 				test_status =
1518 				rw_mgr_mem_calibrate_read_test_all_ranks
1519 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1520 
1521 				if (test_status) {
1522 					*max_working_cnt = 1;
1523 					found_begin = 1;
1524 					break;
1525 				}
1526 			}
1527 
1528 			if (found_begin)
1529 				break;
1530 
1531 			if (*p > IO_DQS_EN_PHASE_MAX)
1532 				/* fiddle with FIFO */
1533 				rw_mgr_incr_vfifo(*grp, v);
1534 		}
1535 
1536 		if (found_begin)
1537 			break;
1538 	}
1539 
1540 	if (*i >= VFIFO_SIZE) {
1541 		/* cannot find working solution */
1542 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1543 			   ptap/dtap\n", __func__, __LINE__);
1544 		return 0;
1545 	} else {
1546 		return 1;
1547 	}
1548 }
1549 
1550 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1551 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1552 			     uint32_t *p, uint32_t *max_working_cnt)
1553 {
1554 	uint32_t found_begin = 0;
1555 	uint32_t tmp_delay;
1556 
1557 	/* Special case code for backing up a phase */
1558 	if (*p == 0) {
1559 		*p = IO_DQS_EN_PHASE_MAX;
1560 		rw_mgr_decr_vfifo(*grp, v);
1561 	} else {
1562 		(*p)--;
1563 	}
1564 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1565 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1566 
1567 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1568 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1569 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1570 
1571 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1572 							     PASS_ONE_BIT,
1573 							     bit_chk, 0)) {
1574 			found_begin = 1;
1575 			*work_bgn = tmp_delay;
1576 			break;
1577 		}
1578 	}
1579 
1580 	/* We have found a working dtap before the ptap found above */
1581 	if (found_begin == 1)
1582 		(*max_working_cnt)++;
1583 
1584 	/*
1585 	 * Restore VFIFO to old state before we decremented it
1586 	 * (if needed).
1587 	 */
1588 	(*p)++;
1589 	if (*p > IO_DQS_EN_PHASE_MAX) {
1590 		*p = 0;
1591 		rw_mgr_incr_vfifo(*grp, v);
1592 	}
1593 
1594 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1595 }
1596 
1597 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1598 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1599 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1600 			     uint32_t *work_end)
1601 {
1602 	uint32_t found_end = 0;
1603 
1604 	(*p)++;
1605 	*work_end += IO_DELAY_PER_OPA_TAP;
1606 	if (*p > IO_DQS_EN_PHASE_MAX) {
1607 		/* fiddle with FIFO */
1608 		*p = 0;
1609 		rw_mgr_incr_vfifo(*grp, v);
1610 	}
1611 
1612 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1613 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1614 			+= IO_DELAY_PER_OPA_TAP) {
1615 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1616 
1617 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1618 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1619 				found_end = 1;
1620 				break;
1621 			} else {
1622 				(*max_working_cnt)++;
1623 			}
1624 		}
1625 
1626 		if (found_end)
1627 			break;
1628 
1629 		if (*p > IO_DQS_EN_PHASE_MAX) {
1630 			/* fiddle with FIFO */
1631 			rw_mgr_incr_vfifo(*grp, v);
1632 			*p = 0;
1633 		}
1634 	}
1635 
1636 	if (*i >= VFIFO_SIZE + 1) {
1637 		/* cannot see edge of failing read */
1638 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1639 			   failed\n", __func__, __LINE__);
1640 		return 0;
1641 	} else {
1642 		return 1;
1643 	}
1644 }
1645 
1646 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1647 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1648 				  uint32_t *p, uint32_t *work_mid,
1649 				  uint32_t *work_end)
1650 {
1651 	int i;
1652 	int tmp_delay = 0;
1653 
1654 	*work_mid = (*work_bgn + *work_end) / 2;
1655 
1656 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1657 		   *work_bgn, *work_end, *work_mid);
1658 	/* Get the middle delay to be less than a VFIFO delay */
1659 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1660 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1661 		;
1662 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1663 	while (*work_mid > tmp_delay)
1664 		*work_mid -= tmp_delay;
1665 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1666 
1667 	tmp_delay = 0;
1668 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1669 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1670 		;
1671 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1672 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1673 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1674 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1675 		;
1676 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1677 
1678 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1679 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1680 
1681 	/*
1682 	 * push vfifo until we can successfully calibrate. We can do this
1683 	 * because the largest possible margin in 1 VFIFO cycle.
1684 	 */
1685 	for (i = 0; i < VFIFO_SIZE; i++) {
1686 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1687 			   *v);
1688 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1689 							     PASS_ONE_BIT,
1690 							     bit_chk, 0)) {
1691 			break;
1692 		}
1693 
1694 		/* fiddle with FIFO */
1695 		rw_mgr_incr_vfifo(*grp, v);
1696 	}
1697 
1698 	if (i >= VFIFO_SIZE) {
1699 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1700 			   failed\n", __func__, __LINE__);
1701 		return 0;
1702 	} else {
1703 		return 1;
1704 	}
1705 }
1706 
1707 /* find a good dqs enable to use */
1708 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1709 {
1710 	uint32_t v, d, p, i;
1711 	uint32_t max_working_cnt;
1712 	uint32_t bit_chk;
1713 	uint32_t dtaps_per_ptap;
1714 	uint32_t work_bgn, work_mid, work_end;
1715 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1716 	uint32_t addr;
1717 
1718 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1719 
1720 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1721 
1722 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1723 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1724 
1725 	/* ************************************************************** */
1726 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1727 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1728 
1729 	/* ********************************************************* */
1730 	/* * Step 1 : First push vfifo until we get a failing read * */
1731 	v = find_vfifo_read(grp, &bit_chk);
1732 
1733 	max_working_cnt = 0;
1734 
1735 	/* ******************************************************** */
1736 	/* * step 2: find first working phase, increment in ptaps * */
1737 	work_bgn = 0;
1738 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1739 				&p, &i, &max_working_cnt) == 0)
1740 		return 0;
1741 
1742 	work_end = work_bgn;
1743 
1744 	/*
1745 	 * If d is 0 then the working window covers a phase tap and
1746 	 * we can follow the old procedure otherwise, we've found the beginning,
1747 	 * and we need to increment the dtaps until we find the end.
1748 	 */
1749 	if (d == 0) {
1750 		/* ********************************************************* */
1751 		/* * step 3a: if we have room, back off by one and
1752 		increment in dtaps * */
1753 
1754 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1755 				 &max_working_cnt);
1756 
1757 		/* ********************************************************* */
1758 		/* * step 4a: go forward from working phase to non working
1759 		phase, increment in ptaps * */
1760 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1761 					 &i, &max_working_cnt, &work_end) == 0)
1762 			return 0;
1763 
1764 		/* ********************************************************* */
1765 		/* * step 5a:  back off one from last, increment in dtaps  * */
1766 
1767 		/* Special case code for backing up a phase */
1768 		if (p == 0) {
1769 			p = IO_DQS_EN_PHASE_MAX;
1770 			rw_mgr_decr_vfifo(grp, &v);
1771 		} else {
1772 			p = p - 1;
1773 		}
1774 
1775 		work_end -= IO_DELAY_PER_OPA_TAP;
1776 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1777 
1778 		/* * The actual increment of dtaps is done outside of
1779 		the if/else loop to share code */
1780 		d = 0;
1781 
1782 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1783 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1784 			   v, p);
1785 	} else {
1786 		/* ******************************************************* */
1787 		/* * step 3-5b:  Find the right edge of the window using
1788 		delay taps   * */
1789 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1790 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1791 			   v, p, d, work_bgn);
1792 
1793 		work_end = work_bgn;
1794 
1795 		/* * The actual increment of dtaps is done outside of the
1796 		if/else loop to share code */
1797 
1798 		/* Only here to counterbalance a subtract later on which is
1799 		not needed if this branch of the algorithm is taken */
1800 		max_working_cnt++;
1801 	}
1802 
1803 	/* The dtap increment to find the failing edge is done here */
1804 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1805 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1806 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1807 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1808 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1809 
1810 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1811 								      PASS_ONE_BIT,
1812 								      &bit_chk, 0)) {
1813 				break;
1814 			}
1815 	}
1816 
1817 	/* Go back to working dtap */
1818 	if (d != 0)
1819 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1820 
1821 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1822 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1823 		   v, p, d-1, work_end);
1824 
1825 	if (work_end < work_bgn) {
1826 		/* nil range */
1827 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1828 			   failed\n", __func__, __LINE__);
1829 		return 0;
1830 	}
1831 
1832 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1833 		   __func__, __LINE__, work_bgn, work_end);
1834 
1835 	/* *************************************************************** */
1836 	/*
1837 	 * * We need to calculate the number of dtaps that equal a ptap
1838 	 * * To do that we'll back up a ptap and re-find the edge of the
1839 	 * * window using dtaps
1840 	 */
1841 
1842 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1843 		   for tracking\n", __func__, __LINE__);
1844 
1845 	/* Special case code for backing up a phase */
1846 	if (p == 0) {
1847 		p = IO_DQS_EN_PHASE_MAX;
1848 		rw_mgr_decr_vfifo(grp, &v);
1849 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1850 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1851 			   v, p);
1852 	} else {
1853 		p = p - 1;
1854 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1855 			   phase only: v=%u p=%u", __func__, __LINE__,
1856 			   v, p);
1857 	}
1858 
1859 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1860 
1861 	/*
1862 	 * Increase dtap until we first see a passing read (in case the
1863 	 * window is smaller than a ptap),
1864 	 * and then a failing read to mark the edge of the window again
1865 	 */
1866 
1867 	/* Find a passing read */
1868 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1869 		   __func__, __LINE__);
1870 	found_passing_read = 0;
1871 	found_failing_read = 0;
1872 	initial_failing_dtap = d;
1873 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1874 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1875 			   read d=%u\n", __func__, __LINE__, d);
1876 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1877 
1878 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1879 							     PASS_ONE_BIT,
1880 							     &bit_chk, 0)) {
1881 			found_passing_read = 1;
1882 			break;
1883 		}
1884 	}
1885 
1886 	if (found_passing_read) {
1887 		/* Find a failing read */
1888 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1889 			   read\n", __func__, __LINE__);
1890 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1891 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1892 				   testing read d=%u\n", __func__, __LINE__, d);
1893 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1894 
1895 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1896 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1897 				found_failing_read = 1;
1898 				break;
1899 			}
1900 		}
1901 	} else {
1902 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1903 			   calculate dtaps", __func__, __LINE__);
1904 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1905 	}
1906 
1907 	/*
1908 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1909 	 * found a passing/failing read. If we didn't, it means d hit the max
1910 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1911 	 * statically calculated value.
1912 	 */
1913 	if (found_passing_read && found_failing_read)
1914 		dtaps_per_ptap = d - initial_failing_dtap;
1915 
1916 	addr = (u32)&sdr_reg_file->dtaps_per_ptap;
1917 	writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
1918 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1919 		   - %u = %u",  __func__, __LINE__, d,
1920 		   initial_failing_dtap, dtaps_per_ptap);
1921 
1922 	/* ******************************************** */
1923 	/* * step 6:  Find the centre of the window   * */
1924 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1925 				   &work_mid, &work_end) == 0)
1926 		return 0;
1927 
1928 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1929 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1930 		   v, p-1, d);
1931 	return 1;
1932 }
1933 
1934 /*
1935  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1936  * dq_in_delay values
1937  */
1938 static uint32_t
1939 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1940 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1941 {
1942 	uint32_t found;
1943 	uint32_t i;
1944 	uint32_t p;
1945 	uint32_t d;
1946 	uint32_t r;
1947 	uint32_t addr;
1948 
1949 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1950 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1951 		/* we start at zero, so have one less dq to devide among */
1952 
1953 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1954 	      test_bgn);
1955 
1956 	/* try different dq_in_delays since the dq path is shorter than dqs */
1957 
1958 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1959 	     r += NUM_RANKS_PER_SHADOW_REG) {
1960 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1961 			i++, p++, d += delay_step) {
1962 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1963 				   vfifo_find_dqs_", __func__, __LINE__);
1964 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1965 			       write_group, read_group);
1966 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1967 			scc_mgr_set_dq_in_delay(write_group, p, d);
1968 			scc_mgr_load_dq(p);
1969 		}
1970 		addr = (u32)&sdr_scc_mgr->update;
1971 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
1972 	}
1973 
1974 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1975 
1976 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1977 		   en_phase_sweep_dq", __func__, __LINE__);
1978 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1979 		   chain to zero\n", write_group, read_group, found);
1980 
1981 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1982 	     r += NUM_RANKS_PER_SHADOW_REG) {
1983 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1984 			i++, p++) {
1985 			scc_mgr_set_dq_in_delay(write_group, p, 0);
1986 			scc_mgr_load_dq(p);
1987 		}
1988 		addr = (u32)&sdr_scc_mgr->update;
1989 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
1990 	}
1991 
1992 	return found;
1993 }
1994 
1995 /* per-bit deskew DQ and center */
1996 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1997 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1998 	uint32_t use_read_test, uint32_t update_fom)
1999 {
2000 	uint32_t i, p, d, min_index;
2001 	/*
2002 	 * Store these as signed since there are comparisons with
2003 	 * signed numbers.
2004 	 */
2005 	uint32_t bit_chk;
2006 	uint32_t sticky_bit_chk;
2007 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2008 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2009 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
2010 	int32_t mid;
2011 	int32_t orig_mid_min, mid_min;
2012 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
2013 		final_dqs_en;
2014 	int32_t dq_margin, dqs_margin;
2015 	uint32_t stop;
2016 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
2017 	uint32_t addr;
2018 
2019 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
2020 
2021 	addr = sdr_get_addr((u32 *)SCC_MGR_DQS_IN_DELAY);
2022 	start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr + (read_group << 2));
2023 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2024 		start_dqs_en = readl(SOCFPGA_SDR_ADDRESS + addr + ((read_group << 2)
2025 				     - IO_DQS_EN_DELAY_OFFSET));
2026 
2027 	/* set the left and right edge of each bit to an illegal value */
2028 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2029 	sticky_bit_chk = 0;
2030 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2031 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2032 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2033 	}
2034 
2035 	addr = (u32)&sdr_scc_mgr->update;
2036 	/* Search for the left edge of the window for each bit */
2037 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
2038 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
2039 
2040 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2041 
2042 		/*
2043 		 * Stop searching when the read test doesn't pass AND when
2044 		 * we've seen a passing read on every bit.
2045 		 */
2046 		if (use_read_test) {
2047 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2048 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2049 				&bit_chk, 0, 0);
2050 		} else {
2051 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2052 							0, PASS_ONE_BIT,
2053 							&bit_chk, 0);
2054 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2055 				(read_group - (write_group *
2056 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2057 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2058 			stop = (bit_chk == 0);
2059 		}
2060 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2061 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2062 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
2063 			   && %u", __func__, __LINE__, d,
2064 			   sticky_bit_chk,
2065 			param->read_correct_mask, stop);
2066 
2067 		if (stop == 1) {
2068 			break;
2069 		} else {
2070 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2071 				if (bit_chk & 1) {
2072 					/* Remember a passing test as the
2073 					left_edge */
2074 					left_edge[i] = d;
2075 				} else {
2076 					/* If a left edge has not been seen yet,
2077 					then a future passing test will mark
2078 					this edge as the right edge */
2079 					if (left_edge[i] ==
2080 						IO_IO_IN_DELAY_MAX + 1) {
2081 						right_edge[i] = -(d + 1);
2082 					}
2083 				}
2084 				bit_chk = bit_chk >> 1;
2085 			}
2086 		}
2087 	}
2088 
2089 	/* Reset DQ delay chains to 0 */
2090 	scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
2091 	sticky_bit_chk = 0;
2092 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
2093 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2094 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2095 			   i, left_edge[i], i, right_edge[i]);
2096 
2097 		/*
2098 		 * Check for cases where we haven't found the left edge,
2099 		 * which makes our assignment of the the right edge invalid.
2100 		 * Reset it to the illegal value.
2101 		 */
2102 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
2103 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2104 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2105 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
2106 				   right_edge[%u]: %d\n", __func__, __LINE__,
2107 				   i, right_edge[i]);
2108 		}
2109 
2110 		/*
2111 		 * Reset sticky bit (except for bits where we have seen
2112 		 * both the left and right edge).
2113 		 */
2114 		sticky_bit_chk = sticky_bit_chk << 1;
2115 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2116 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2117 			sticky_bit_chk = sticky_bit_chk | 1;
2118 		}
2119 
2120 		if (i == 0)
2121 			break;
2122 	}
2123 
2124 	addr = (u32)&sdr_scc_mgr->update;
2125 	/* Search for the right edge of the window for each bit */
2126 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2127 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2128 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2129 			uint32_t delay = d + start_dqs_en;
2130 			if (delay > IO_DQS_EN_DELAY_MAX)
2131 				delay = IO_DQS_EN_DELAY_MAX;
2132 			scc_mgr_set_dqs_en_delay(read_group, delay);
2133 		}
2134 		scc_mgr_load_dqs(read_group);
2135 
2136 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2137 
2138 		/*
2139 		 * Stop searching when the read test doesn't pass AND when
2140 		 * we've seen a passing read on every bit.
2141 		 */
2142 		if (use_read_test) {
2143 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2144 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2145 				&bit_chk, 0, 0);
2146 		} else {
2147 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2148 							0, PASS_ONE_BIT,
2149 							&bit_chk, 0);
2150 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2151 				(read_group - (write_group *
2152 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2153 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2154 			stop = (bit_chk == 0);
2155 		}
2156 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2157 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2158 
2159 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2160 			   %u && %u", __func__, __LINE__, d,
2161 			   sticky_bit_chk, param->read_correct_mask, stop);
2162 
2163 		if (stop == 1) {
2164 			break;
2165 		} else {
2166 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2167 				if (bit_chk & 1) {
2168 					/* Remember a passing test as
2169 					the right_edge */
2170 					right_edge[i] = d;
2171 				} else {
2172 					if (d != 0) {
2173 						/* If a right edge has not been
2174 						seen yet, then a future passing
2175 						test will mark this edge as the
2176 						left edge */
2177 						if (right_edge[i] ==
2178 						IO_IO_IN_DELAY_MAX + 1) {
2179 							left_edge[i] = -(d + 1);
2180 						}
2181 					} else {
2182 						/* d = 0 failed, but it passed
2183 						when testing the left edge,
2184 						so it must be marginal,
2185 						set it to -1 */
2186 						if (right_edge[i] ==
2187 							IO_IO_IN_DELAY_MAX + 1 &&
2188 							left_edge[i] !=
2189 							IO_IO_IN_DELAY_MAX
2190 							+ 1) {
2191 							right_edge[i] = -1;
2192 						}
2193 						/* If a right edge has not been
2194 						seen yet, then a future passing
2195 						test will mark this edge as the
2196 						left edge */
2197 						else if (right_edge[i] ==
2198 							IO_IO_IN_DELAY_MAX +
2199 							1) {
2200 							left_edge[i] = -(d + 1);
2201 						}
2202 					}
2203 				}
2204 
2205 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2206 					   d=%u]: ", __func__, __LINE__, d);
2207 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2208 					   (int)(bit_chk & 1), i, left_edge[i]);
2209 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2210 					   right_edge[i]);
2211 				bit_chk = bit_chk >> 1;
2212 			}
2213 		}
2214 	}
2215 
2216 	/* Check that all bits have a window */
2217 	addr = (u32)&sdr_scc_mgr->update;
2218 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2219 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2220 			   %d right_edge[%u]: %d", __func__, __LINE__,
2221 			   i, left_edge[i], i, right_edge[i]);
2222 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2223 			== IO_IO_IN_DELAY_MAX + 1)) {
2224 			/*
2225 			 * Restore delay chain settings before letting the loop
2226 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2227 			 * dqs/ck relationships.
2228 			 */
2229 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2230 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2231 				scc_mgr_set_dqs_en_delay(read_group,
2232 							 start_dqs_en);
2233 			}
2234 			scc_mgr_load_dqs(read_group);
2235 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
2236 
2237 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2238 				   find edge [%u]: %d %d", __func__, __LINE__,
2239 				   i, left_edge[i], right_edge[i]);
2240 			if (use_read_test) {
2241 				set_failing_group_stage(read_group *
2242 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2243 					CAL_STAGE_VFIFO,
2244 					CAL_SUBSTAGE_VFIFO_CENTER);
2245 			} else {
2246 				set_failing_group_stage(read_group *
2247 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2248 					CAL_STAGE_VFIFO_AFTER_WRITES,
2249 					CAL_SUBSTAGE_VFIFO_CENTER);
2250 			}
2251 			return 0;
2252 		}
2253 	}
2254 
2255 	/* Find middle of window for each DQ bit */
2256 	mid_min = left_edge[0] - right_edge[0];
2257 	min_index = 0;
2258 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2259 		mid = left_edge[i] - right_edge[i];
2260 		if (mid < mid_min) {
2261 			mid_min = mid;
2262 			min_index = i;
2263 		}
2264 	}
2265 
2266 	/*
2267 	 * -mid_min/2 represents the amount that we need to move DQS.
2268 	 * If mid_min is odd and positive we'll need to add one to
2269 	 * make sure the rounding in further calculations is correct
2270 	 * (always bias to the right), so just add 1 for all positive values.
2271 	 */
2272 	if (mid_min > 0)
2273 		mid_min++;
2274 
2275 	mid_min = mid_min / 2;
2276 
2277 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2278 		   __func__, __LINE__, mid_min, min_index);
2279 
2280 	/* Determine the amount we can change DQS (which is -mid_min) */
2281 	orig_mid_min = mid_min;
2282 	new_dqs = start_dqs - mid_min;
2283 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2284 		new_dqs = IO_DQS_IN_DELAY_MAX;
2285 	else if (new_dqs < 0)
2286 		new_dqs = 0;
2287 
2288 	mid_min = start_dqs - new_dqs;
2289 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2290 		   mid_min, new_dqs);
2291 
2292 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2293 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2294 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2295 		else if (start_dqs_en - mid_min < 0)
2296 			mid_min += start_dqs_en - mid_min;
2297 	}
2298 	new_dqs = start_dqs - mid_min;
2299 
2300 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2301 		   new_dqs=%d mid_min=%d\n", start_dqs,
2302 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2303 		   new_dqs, mid_min);
2304 
2305 	/* Initialize data for export structures */
2306 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2307 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2308 
2309 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_IN_DELAY);
2310 	/* add delay to bring centre of all DQ windows to the same "level" */
2311 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2312 		/* Use values before divide by 2 to reduce round off error */
2313 		shift_dq = (left_edge[i] - right_edge[i] -
2314 			(left_edge[min_index] - right_edge[min_index]))/2  +
2315 			(orig_mid_min - mid_min);
2316 
2317 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2318 			   shift_dq[%u]=%d\n", i, shift_dq);
2319 
2320 		temp_dq_in_delay1 = readl(SOCFPGA_SDR_ADDRESS + addr + (p << 2));
2321 		temp_dq_in_delay2 = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
2322 
2323 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2324 			(int32_t)IO_IO_IN_DELAY_MAX) {
2325 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2326 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2327 			shift_dq = -(int32_t)temp_dq_in_delay1;
2328 		}
2329 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2330 			   shift_dq[%u]=%d\n", i, shift_dq);
2331 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2332 		scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2333 		scc_mgr_load_dq(p);
2334 
2335 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2336 			   left_edge[i] - shift_dq + (-mid_min),
2337 			   right_edge[i] + shift_dq - (-mid_min));
2338 		/* To determine values for export structures */
2339 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2340 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2341 
2342 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2343 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2344 	}
2345 
2346 	final_dqs = new_dqs;
2347 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2348 		final_dqs_en = start_dqs_en - mid_min;
2349 
2350 	/* Move DQS-en */
2351 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2352 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2353 		scc_mgr_load_dqs(read_group);
2354 	}
2355 
2356 	/* Move DQS */
2357 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2358 	scc_mgr_load_dqs(read_group);
2359 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2360 		   dqs_margin=%d", __func__, __LINE__,
2361 		   dq_margin, dqs_margin);
2362 
2363 	/*
2364 	 * Do not remove this line as it makes sure all of our decisions
2365 	 * have been applied. Apply the update bit.
2366 	 */
2367 	addr = (u32)&sdr_scc_mgr->update;
2368 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2369 
2370 	return (dq_margin >= 0) && (dqs_margin >= 0);
2371 }
2372 
2373 /*
2374  * calibrate the read valid prediction FIFO.
2375  *
2376  *  - read valid prediction will consist of finding a good DQS enable phase,
2377  * DQS enable delay, DQS input phase, and DQS input delay.
2378  *  - we also do a per-bit deskew on the DQ lines.
2379  */
2380 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2381 					   uint32_t test_bgn)
2382 {
2383 	uint32_t p, d, rank_bgn, sr;
2384 	uint32_t dtaps_per_ptap;
2385 	uint32_t tmp_delay;
2386 	uint32_t bit_chk;
2387 	uint32_t grp_calibrated;
2388 	uint32_t write_group, write_test_bgn;
2389 	uint32_t failed_substage;
2390 
2391 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2392 
2393 	/* update info for sims */
2394 	reg_file_set_stage(CAL_STAGE_VFIFO);
2395 
2396 	write_group = read_group;
2397 	write_test_bgn = test_bgn;
2398 
2399 	/* USER Determine number of delay taps for each phase tap */
2400 	dtaps_per_ptap = 0;
2401 	tmp_delay = 0;
2402 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2403 		dtaps_per_ptap++;
2404 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2405 	}
2406 	dtaps_per_ptap--;
2407 	tmp_delay = 0;
2408 
2409 	/* update info for sims */
2410 	reg_file_set_group(read_group);
2411 
2412 	grp_calibrated = 0;
2413 
2414 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2415 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2416 
2417 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2418 		/*
2419 		 * In RLDRAMX we may be messing the delay of pins in
2420 		 * the same write group but outside of the current read
2421 		 * the group, but that's ok because we haven't
2422 		 * calibrated output side yet.
2423 		 */
2424 		if (d > 0) {
2425 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2426 			(write_group, write_test_bgn, d);
2427 		}
2428 
2429 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2430 			p++) {
2431 			/* set a particular dqdqs phase */
2432 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2433 
2434 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2435 				   p=%u d=%u\n", __func__, __LINE__,
2436 				   read_group, p, d);
2437 
2438 			/*
2439 			 * Load up the patterns used by read calibration
2440 			 * using current DQDQS phase.
2441 			 */
2442 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2443 			if (!(gbl->phy_debug_mode_flags &
2444 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2445 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2446 				    (read_group, 1, &bit_chk)) {
2447 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2448 						   __func__, __LINE__);
2449 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2450 						   read_group, p, d);
2451 					break;
2452 				}
2453 			}
2454 
2455 /* case:56390 */
2456 			grp_calibrated = 1;
2457 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2458 		    (write_group, read_group, test_bgn)) {
2459 				/*
2460 				 * USER Read per-bit deskew can be done on a
2461 				 * per shadow register basis.
2462 				 */
2463 				for (rank_bgn = 0, sr = 0;
2464 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2465 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2466 					++sr) {
2467 					/*
2468 					 * Determine if this set of ranks
2469 					 * should be skipped entirely.
2470 					 */
2471 					if (!param->skip_shadow_regs[sr]) {
2472 						/*
2473 						 * If doing read after write
2474 						 * calibration, do not update
2475 						 * FOM, now - do it then.
2476 						 */
2477 					if (!rw_mgr_mem_calibrate_vfifo_center
2478 						(rank_bgn, write_group,
2479 						read_group, test_bgn, 1, 0)) {
2480 							grp_calibrated = 0;
2481 							failed_substage =
2482 						CAL_SUBSTAGE_VFIFO_CENTER;
2483 						}
2484 					}
2485 				}
2486 			} else {
2487 				grp_calibrated = 0;
2488 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2489 			}
2490 		}
2491 	}
2492 
2493 	if (grp_calibrated == 0) {
2494 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2495 					failed_substage);
2496 		return 0;
2497 	}
2498 
2499 	/*
2500 	 * Reset the delay chains back to zero if they have moved > 1
2501 	 * (check for > 1 because loop will increase d even when pass in
2502 	 * first case).
2503 	 */
2504 	if (d > 2)
2505 		scc_mgr_zero_group(write_group, write_test_bgn, 1);
2506 
2507 	return 1;
2508 }
2509 
2510 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2511 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2512 					       uint32_t test_bgn)
2513 {
2514 	uint32_t rank_bgn, sr;
2515 	uint32_t grp_calibrated;
2516 	uint32_t write_group;
2517 
2518 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2519 
2520 	/* update info for sims */
2521 
2522 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2523 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2524 
2525 	write_group = read_group;
2526 
2527 	/* update info for sims */
2528 	reg_file_set_group(read_group);
2529 
2530 	grp_calibrated = 1;
2531 	/* Read per-bit deskew can be done on a per shadow register basis */
2532 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2533 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2534 		/* Determine if this set of ranks should be skipped entirely */
2535 		if (!param->skip_shadow_regs[sr]) {
2536 		/* This is the last calibration round, update FOM here */
2537 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2538 								write_group,
2539 								read_group,
2540 								test_bgn, 0,
2541 								1)) {
2542 				grp_calibrated = 0;
2543 			}
2544 		}
2545 	}
2546 
2547 
2548 	if (grp_calibrated == 0) {
2549 		set_failing_group_stage(write_group,
2550 					CAL_STAGE_VFIFO_AFTER_WRITES,
2551 					CAL_SUBSTAGE_VFIFO_CENTER);
2552 		return 0;
2553 	}
2554 
2555 	return 1;
2556 }
2557 
2558 /* Calibrate LFIFO to find smallest read latency */
2559 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2560 {
2561 	uint32_t found_one;
2562 	uint32_t bit_chk;
2563 	uint32_t addr;
2564 
2565 	debug("%s:%d\n", __func__, __LINE__);
2566 
2567 	/* update info for sims */
2568 	reg_file_set_stage(CAL_STAGE_LFIFO);
2569 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2570 
2571 	/* Load up the patterns used by read calibration for all ranks */
2572 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2573 	found_one = 0;
2574 
2575 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2576 	do {
2577 		writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2578 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2579 			   __func__, __LINE__, gbl->curr_read_lat);
2580 
2581 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2582 							      NUM_READ_TESTS,
2583 							      PASS_ALL_BITS,
2584 							      &bit_chk, 1)) {
2585 			break;
2586 		}
2587 
2588 		found_one = 1;
2589 		/* reduce read latency and see if things are working */
2590 		/* correctly */
2591 		gbl->curr_read_lat--;
2592 	} while (gbl->curr_read_lat > 0);
2593 
2594 	/* reset the fifos to get pointers to known state */
2595 
2596 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2597 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2598 
2599 	if (found_one) {
2600 		/* add a fudge factor to the read latency that was determined */
2601 		gbl->curr_read_lat += 2;
2602 		addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
2603 		writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
2604 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2605 			   read_lat=%u\n", __func__, __LINE__,
2606 			   gbl->curr_read_lat);
2607 		return 1;
2608 	} else {
2609 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2610 					CAL_SUBSTAGE_READ_LATENCY);
2611 
2612 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2613 			   read_lat=%u\n", __func__, __LINE__,
2614 			   gbl->curr_read_lat);
2615 		return 0;
2616 	}
2617 }
2618 
2619 /*
2620  * issue write test command.
2621  * two variants are provided. one that just tests a write pattern and
2622  * another that tests datamask functionality.
2623  */
2624 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2625 						  uint32_t test_dm)
2626 {
2627 	uint32_t mcc_instruction;
2628 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2629 		ENABLE_SUPER_QUICK_CALIBRATION);
2630 	uint32_t rw_wl_nop_cycles;
2631 	uint32_t addr;
2632 
2633 	/*
2634 	 * Set counter and jump addresses for the right
2635 	 * number of NOP cycles.
2636 	 * The number of supported NOP cycles can range from -1 to infinity
2637 	 * Three different cases are handled:
2638 	 *
2639 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2640 	 *    mechanism will be used to insert the right number of NOPs
2641 	 *
2642 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2643 	 *    issuing the write command will jump straight to the
2644 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2645 	 *    data (for RLD), skipping
2646 	 *    the NOP micro-instruction all together
2647 	 *
2648 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2649 	 *    turned on in the same micro-instruction that issues the write
2650 	 *    command. Then we need
2651 	 *    to directly jump to the micro-instruction that sends out the data
2652 	 *
2653 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2654 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2655 	 *       write-read operations.
2656 	 *       one counter left to issue this command in "multiple-group" mode
2657 	 */
2658 
2659 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2660 
2661 	if (rw_wl_nop_cycles == -1) {
2662 		/*
2663 		 * CNTR 2 - We want to execute the special write operation that
2664 		 * turns on DQS right away and then skip directly to the
2665 		 * instruction that sends out the data. We set the counter to a
2666 		 * large number so that the jump is always taken.
2667 		 */
2668 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2669 		writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2670 
2671 		/* CNTR 3 - Not used */
2672 		if (test_dm) {
2673 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2674 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2675 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2676 			       SOCFPGA_SDR_ADDRESS + addr);
2677 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2678 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2679 			       SOCFPGA_SDR_ADDRESS + addr);
2680 		} else {
2681 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2682 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2683 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, SOCFPGA_SDR_ADDRESS + addr);
2684 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2685 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2686 		}
2687 	} else if (rw_wl_nop_cycles == 0) {
2688 		/*
2689 		 * CNTR 2 - We want to skip the NOP operation and go straight
2690 		 * to the DQS enable instruction. We set the counter to a large
2691 		 * number so that the jump is always taken.
2692 		 */
2693 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2694 		writel(0xFF, SOCFPGA_SDR_ADDRESS + addr);
2695 
2696 		/* CNTR 3 - Not used */
2697 		if (test_dm) {
2698 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2699 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2700 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2701 			       SOCFPGA_SDR_ADDRESS + addr);
2702 		} else {
2703 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2704 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2705 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, SOCFPGA_SDR_ADDRESS + addr);
2706 		}
2707 	} else {
2708 		/*
2709 		 * CNTR 2 - In this case we want to execute the next instruction
2710 		 * and NOT take the jump. So we set the counter to 0. The jump
2711 		 * address doesn't count.
2712 		 */
2713 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr2;
2714 		writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2715 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add2;
2716 		writel(0x0, SOCFPGA_SDR_ADDRESS + addr);
2717 
2718 		/*
2719 		 * CNTR 3 - Set the nop counter to the number of cycles we
2720 		 * need to loop for, minus 1.
2721 		 */
2722 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr3;
2723 		writel(rw_wl_nop_cycles - 1, SOCFPGA_SDR_ADDRESS + addr);
2724 		if (test_dm) {
2725 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2726 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2727 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2728 		} else {
2729 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2730 			addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add3;
2731 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, SOCFPGA_SDR_ADDRESS + addr);
2732 		}
2733 	}
2734 
2735 	addr = sdr_get_addr((u32 *)RW_MGR_RESET_READ_DATAPATH);
2736 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
2737 
2738 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
2739 	if (quick_write_mode)
2740 		writel(0x08, SOCFPGA_SDR_ADDRESS + addr);
2741 	else
2742 		writel(0x40, SOCFPGA_SDR_ADDRESS + addr);
2743 
2744 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
2745 	writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr);
2746 
2747 	/*
2748 	 * CNTR 1 - This is used to ensure enough time elapses
2749 	 * for read data to come back.
2750 	 */
2751 	addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
2752 	writel(0x30, SOCFPGA_SDR_ADDRESS + addr);
2753 
2754 	addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
2755 	if (test_dm) {
2756 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2757 	} else {
2758 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, SOCFPGA_SDR_ADDRESS + addr);
2759 	}
2760 
2761 	addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
2762 	writel(mcc_instruction, SOCFPGA_SDR_ADDRESS + addr + (group << 2));
2763 }
2764 
2765 /* Test writes, can check for a single bit pass or multiple bit pass */
2766 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2767 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2768 	uint32_t *bit_chk, uint32_t all_ranks)
2769 {
2770 	uint32_t addr;
2771 	uint32_t r;
2772 	uint32_t correct_mask_vg;
2773 	uint32_t tmp_bit_chk;
2774 	uint32_t vg;
2775 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2776 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2777 	uint32_t addr_rw_mgr;
2778 	uint32_t base_rw_mgr;
2779 
2780 	*bit_chk = param->write_correct_mask;
2781 	correct_mask_vg = param->write_correct_mask_vg;
2782 
2783 	for (r = rank_bgn; r < rank_end; r++) {
2784 		if (param->skip_ranks[r]) {
2785 			/* request to skip the rank */
2786 			continue;
2787 		}
2788 
2789 		/* set rank */
2790 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2791 
2792 		tmp_bit_chk = 0;
2793 		addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
2794 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2795 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2796 			/* reset the fifos to get pointers to known state */
2797 			writel(0, SOCFPGA_SDR_ADDRESS + addr);
2798 
2799 			tmp_bit_chk = tmp_bit_chk <<
2800 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2801 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2802 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2803 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2804 				use_dm);
2805 
2806 			base_rw_mgr = readl(SOCFPGA_SDR_ADDRESS + addr_rw_mgr);
2807 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2808 			if (vg == 0)
2809 				break;
2810 		}
2811 		*bit_chk &= tmp_bit_chk;
2812 	}
2813 
2814 	if (all_correct) {
2815 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2816 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2817 			   %u => %lu", write_group, use_dm,
2818 			   *bit_chk, param->write_correct_mask,
2819 			   (long unsigned int)(*bit_chk ==
2820 			   param->write_correct_mask));
2821 		return *bit_chk == param->write_correct_mask;
2822 	} else {
2823 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2824 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2825 		       write_group, use_dm, *bit_chk);
2826 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2827 			(long unsigned int)(*bit_chk != 0));
2828 		return *bit_chk != 0x00;
2829 	}
2830 }
2831 
2832 /*
2833  * center all windows. do per-bit-deskew to possibly increase size of
2834  * certain windows.
2835  */
2836 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2837 	uint32_t write_group, uint32_t test_bgn)
2838 {
2839 	uint32_t i, p, min_index;
2840 	int32_t d;
2841 	/*
2842 	 * Store these as signed since there are comparisons with
2843 	 * signed numbers.
2844 	 */
2845 	uint32_t bit_chk;
2846 	uint32_t sticky_bit_chk;
2847 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2848 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2849 	int32_t mid;
2850 	int32_t mid_min, orig_mid_min;
2851 	int32_t new_dqs, start_dqs, shift_dq;
2852 	int32_t dq_margin, dqs_margin, dm_margin;
2853 	uint32_t stop;
2854 	uint32_t temp_dq_out1_delay;
2855 	uint32_t addr;
2856 
2857 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2858 
2859 	dm_margin = 0;
2860 
2861 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
2862 	start_dqs = readl(SOCFPGA_SDR_ADDRESS + addr +
2863 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2864 
2865 	/* per-bit deskew */
2866 
2867 	/*
2868 	 * set the left and right edge of each bit to an illegal value
2869 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2870 	 */
2871 	sticky_bit_chk = 0;
2872 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2873 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2874 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2875 	}
2876 
2877 	/* Search for the left edge of the window for each bit */
2878 	addr = (u32)&sdr_scc_mgr->update;
2879 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2880 		scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2881 
2882 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2883 
2884 		/*
2885 		 * Stop searching when the read test doesn't pass AND when
2886 		 * we've seen a passing read on every bit.
2887 		 */
2888 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2889 			0, PASS_ONE_BIT, &bit_chk, 0);
2890 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2891 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2892 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2893 			   == %u && %u [bit_chk= %u ]\n",
2894 			d, sticky_bit_chk, param->write_correct_mask,
2895 			stop, bit_chk);
2896 
2897 		if (stop == 1) {
2898 			break;
2899 		} else {
2900 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2901 				if (bit_chk & 1) {
2902 					/*
2903 					 * Remember a passing test as the
2904 					 * left_edge.
2905 					 */
2906 					left_edge[i] = d;
2907 				} else {
2908 					/*
2909 					 * If a left edge has not been seen
2910 					 * yet, then a future passing test will
2911 					 * mark this edge as the right edge.
2912 					 */
2913 					if (left_edge[i] ==
2914 						IO_IO_OUT1_DELAY_MAX + 1) {
2915 						right_edge[i] = -(d + 1);
2916 					}
2917 				}
2918 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2919 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2920 					   (int)(bit_chk & 1), i, left_edge[i]);
2921 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2922 				       right_edge[i]);
2923 				bit_chk = bit_chk >> 1;
2924 			}
2925 		}
2926 	}
2927 
2928 	/* Reset DQ delay chains to 0 */
2929 	scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2930 	sticky_bit_chk = 0;
2931 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2932 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2933 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2934 			   i, left_edge[i], i, right_edge[i]);
2935 
2936 		/*
2937 		 * Check for cases where we haven't found the left edge,
2938 		 * which makes our assignment of the the right edge invalid.
2939 		 * Reset it to the illegal value.
2940 		 */
2941 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2942 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2943 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2944 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2945 				   right_edge[%u]: %d\n", __func__, __LINE__,
2946 				   i, right_edge[i]);
2947 		}
2948 
2949 		/*
2950 		 * Reset sticky bit (except for bits where we have
2951 		 * seen the left edge).
2952 		 */
2953 		sticky_bit_chk = sticky_bit_chk << 1;
2954 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2955 			sticky_bit_chk = sticky_bit_chk | 1;
2956 
2957 		if (i == 0)
2958 			break;
2959 	}
2960 
2961 	/* Search for the right edge of the window for each bit */
2962 	addr = (u32)&sdr_scc_mgr->update;
2963 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2964 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2965 							d + start_dqs);
2966 
2967 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
2968 
2969 		/*
2970 		 * Stop searching when the read test doesn't pass AND when
2971 		 * we've seen a passing read on every bit.
2972 		 */
2973 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2974 			0, PASS_ONE_BIT, &bit_chk, 0);
2975 
2976 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2977 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2978 
2979 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2980 			   %u && %u\n", d, sticky_bit_chk,
2981 			   param->write_correct_mask, stop);
2982 
2983 		if (stop == 1) {
2984 			if (d == 0) {
2985 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2986 					i++) {
2987 					/* d = 0 failed, but it passed when
2988 					testing the left edge, so it must be
2989 					marginal, set it to -1 */
2990 					if (right_edge[i] ==
2991 						IO_IO_OUT1_DELAY_MAX + 1 &&
2992 						left_edge[i] !=
2993 						IO_IO_OUT1_DELAY_MAX + 1) {
2994 						right_edge[i] = -1;
2995 					}
2996 				}
2997 			}
2998 			break;
2999 		} else {
3000 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3001 				if (bit_chk & 1) {
3002 					/*
3003 					 * Remember a passing test as
3004 					 * the right_edge.
3005 					 */
3006 					right_edge[i] = d;
3007 				} else {
3008 					if (d != 0) {
3009 						/*
3010 						 * If a right edge has not
3011 						 * been seen yet, then a future
3012 						 * passing test will mark this
3013 						 * edge as the left edge.
3014 						 */
3015 						if (right_edge[i] ==
3016 						    IO_IO_OUT1_DELAY_MAX + 1)
3017 							left_edge[i] = -(d + 1);
3018 					} else {
3019 						/*
3020 						 * d = 0 failed, but it passed
3021 						 * when testing the left edge,
3022 						 * so it must be marginal, set
3023 						 * it to -1.
3024 						 */
3025 						if (right_edge[i] ==
3026 						    IO_IO_OUT1_DELAY_MAX + 1 &&
3027 						    left_edge[i] !=
3028 						    IO_IO_OUT1_DELAY_MAX + 1)
3029 							right_edge[i] = -1;
3030 						/*
3031 						 * If a right edge has not been
3032 						 * seen yet, then a future
3033 						 * passing test will mark this
3034 						 * edge as the left edge.
3035 						 */
3036 						else if (right_edge[i] ==
3037 							IO_IO_OUT1_DELAY_MAX +
3038 							1)
3039 							left_edge[i] = -(d + 1);
3040 					}
3041 				}
3042 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
3043 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
3044 					   (int)(bit_chk & 1), i, left_edge[i]);
3045 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
3046 					   right_edge[i]);
3047 				bit_chk = bit_chk >> 1;
3048 			}
3049 		}
3050 	}
3051 
3052 	/* Check that all bits have a window */
3053 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3054 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
3055 			   %d right_edge[%u]: %d", __func__, __LINE__,
3056 			   i, left_edge[i], i, right_edge[i]);
3057 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
3058 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
3059 			set_failing_group_stage(test_bgn + i,
3060 						CAL_STAGE_WRITES,
3061 						CAL_SUBSTAGE_WRITES_CENTER);
3062 			return 0;
3063 		}
3064 	}
3065 
3066 	/* Find middle of window for each DQ bit */
3067 	mid_min = left_edge[0] - right_edge[0];
3068 	min_index = 0;
3069 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3070 		mid = left_edge[i] - right_edge[i];
3071 		if (mid < mid_min) {
3072 			mid_min = mid;
3073 			min_index = i;
3074 		}
3075 	}
3076 
3077 	/*
3078 	 * -mid_min/2 represents the amount that we need to move DQS.
3079 	 * If mid_min is odd and positive we'll need to add one to
3080 	 * make sure the rounding in further calculations is correct
3081 	 * (always bias to the right), so just add 1 for all positive values.
3082 	 */
3083 	if (mid_min > 0)
3084 		mid_min++;
3085 	mid_min = mid_min / 2;
3086 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
3087 		   __LINE__, mid_min);
3088 
3089 	/* Determine the amount we can change DQS (which is -mid_min) */
3090 	orig_mid_min = mid_min;
3091 	new_dqs = start_dqs;
3092 	mid_min = 0;
3093 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
3094 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
3095 	/* Initialize data for export structures */
3096 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
3097 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
3098 
3099 	/* add delay to bring centre of all DQ windows to the same "level" */
3100 	addr = sdr_get_addr((u32 *)SCC_MGR_IO_OUT1_DELAY);
3101 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
3102 		/* Use values before divide by 2 to reduce round off error */
3103 		shift_dq = (left_edge[i] - right_edge[i] -
3104 			(left_edge[min_index] - right_edge[min_index]))/2  +
3105 		(orig_mid_min - mid_min);
3106 
3107 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
3108 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
3109 
3110 		temp_dq_out1_delay = readl(SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3111 		if (shift_dq + (int32_t)temp_dq_out1_delay >
3112 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
3113 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
3114 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
3115 			shift_dq = -(int32_t)temp_dq_out1_delay;
3116 		}
3117 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
3118 			   i, shift_dq);
3119 		scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
3120 					  shift_dq);
3121 		scc_mgr_load_dq(i);
3122 
3123 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
3124 			   left_edge[i] - shift_dq + (-mid_min),
3125 			   right_edge[i] + shift_dq - (-mid_min));
3126 		/* To determine values for export structures */
3127 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
3128 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
3129 
3130 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
3131 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
3132 	}
3133 
3134 	/* Move DQS */
3135 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3136 	addr = (u32)&sdr_scc_mgr->update;
3137 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3138 
3139 	/* Centre DM */
3140 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3141 
3142 	/*
3143 	 * set the left and right edge of each bit to an illegal value,
3144 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3145 	 */
3146 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3147 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3148 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3149 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3150 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3151 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3152 	int32_t win_best = 0;
3153 
3154 	/* Search for the/part of the window with DM shift */
3155 	addr = (u32)&sdr_scc_mgr->update;
3156 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3157 		scc_mgr_apply_group_dm_out1_delay(write_group, d);
3158 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3159 
3160 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3161 						    PASS_ALL_BITS, &bit_chk,
3162 						    0)) {
3163 			/* USE Set current end of the window */
3164 			end_curr = -d;
3165 			/*
3166 			 * If a starting edge of our window has not been seen
3167 			 * this is our current start of the DM window.
3168 			 */
3169 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3170 				bgn_curr = -d;
3171 
3172 			/*
3173 			 * If current window is bigger than best seen.
3174 			 * Set best seen to be current window.
3175 			 */
3176 			if ((end_curr-bgn_curr+1) > win_best) {
3177 				win_best = end_curr-bgn_curr+1;
3178 				bgn_best = bgn_curr;
3179 				end_best = end_curr;
3180 			}
3181 		} else {
3182 			/* We just saw a failing test. Reset temp edge */
3183 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3184 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3185 			}
3186 		}
3187 
3188 
3189 	/* Reset DM delay chains to 0 */
3190 	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3191 
3192 	/*
3193 	 * Check to see if the current window nudges up aganist 0 delay.
3194 	 * If so we need to continue the search by shifting DQS otherwise DQS
3195 	 * search begins as a new search. */
3196 	if (end_curr != 0) {
3197 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3198 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3199 	}
3200 
3201 	/* Search for the/part of the window with DQS shifts */
3202 	addr = (u32)&sdr_scc_mgr->update;
3203 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3204 		/*
3205 		 * Note: This only shifts DQS, so are we limiting ourselve to
3206 		 * width of DQ unnecessarily.
3207 		 */
3208 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3209 							d + new_dqs);
3210 
3211 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3212 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3213 						    PASS_ALL_BITS, &bit_chk,
3214 						    0)) {
3215 			/* USE Set current end of the window */
3216 			end_curr = d;
3217 			/*
3218 			 * If a beginning edge of our window has not been seen
3219 			 * this is our current begin of the DM window.
3220 			 */
3221 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3222 				bgn_curr = d;
3223 
3224 			/*
3225 			 * If current window is bigger than best seen. Set best
3226 			 * seen to be current window.
3227 			 */
3228 			if ((end_curr-bgn_curr+1) > win_best) {
3229 				win_best = end_curr-bgn_curr+1;
3230 				bgn_best = bgn_curr;
3231 				end_best = end_curr;
3232 			}
3233 		} else {
3234 			/* We just saw a failing test. Reset temp edge */
3235 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3236 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3237 
3238 			/* Early exit optimization: if ther remaining delay
3239 			chain space is less than already seen largest window
3240 			we can exit */
3241 			if ((win_best-1) >
3242 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3243 					break;
3244 				}
3245 			}
3246 		}
3247 
3248 	/* assign left and right edge for cal and reporting; */
3249 	left_edge[0] = -1*bgn_best;
3250 	right_edge[0] = end_best;
3251 
3252 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3253 		   __LINE__, left_edge[0], right_edge[0]);
3254 
3255 	/* Move DQS (back to orig) */
3256 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3257 
3258 	/* Move DM */
3259 
3260 	/* Find middle of window for the DM bit */
3261 	mid = (left_edge[0] - right_edge[0]) / 2;
3262 
3263 	/* only move right, since we are not moving DQS/DQ */
3264 	if (mid < 0)
3265 		mid = 0;
3266 
3267 	/* dm_marign should fail if we never find a window */
3268 	if (win_best == 0)
3269 		dm_margin = -1;
3270 	else
3271 		dm_margin = left_edge[0] - mid;
3272 
3273 	scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3274 	addr = (u32)&sdr_scc_mgr->update;
3275 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3276 
3277 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3278 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3279 		   right_edge[0], mid, dm_margin);
3280 	/* Export values */
3281 	gbl->fom_out += dq_margin + dqs_margin;
3282 
3283 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3284 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3285 		   dq_margin, dqs_margin, dm_margin);
3286 
3287 	/*
3288 	 * Do not remove this line as it makes sure all of our
3289 	 * decisions have been applied.
3290 	 */
3291 	addr = (u32)&sdr_scc_mgr->update;
3292 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3293 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3294 }
3295 
3296 /* calibrate the write operations */
3297 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3298 	uint32_t test_bgn)
3299 {
3300 	/* update info for sims */
3301 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3302 
3303 	reg_file_set_stage(CAL_STAGE_WRITES);
3304 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3305 
3306 	reg_file_set_group(g);
3307 
3308 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3309 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3310 					CAL_SUBSTAGE_WRITES_CENTER);
3311 		return 0;
3312 	}
3313 
3314 	return 1;
3315 }
3316 
3317 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3318 static void mem_precharge_and_activate(void)
3319 {
3320 	uint32_t r;
3321 	uint32_t addr;
3322 
3323 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3324 		if (param->skip_ranks[r]) {
3325 			/* request to skip the rank */
3326 			continue;
3327 		}
3328 
3329 		/* set rank */
3330 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3331 
3332 		/* precharge all banks ... */
3333 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3334 		writel(RW_MGR_PRECHARGE_ALL, SOCFPGA_SDR_ADDRESS + addr);
3335 
3336 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr0;
3337 		writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3338 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add0;
3339 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, SOCFPGA_SDR_ADDRESS + addr);
3340 
3341 		addr = (u32)&sdr_rw_load_mgr_regs->load_cntr1;
3342 		writel(0x0F, SOCFPGA_SDR_ADDRESS + addr);
3343 		addr = (u32)&sdr_rw_load_jump_mgr_regs->load_jump_add1;
3344 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, SOCFPGA_SDR_ADDRESS + addr);
3345 
3346 		/* activate rows */
3347 		addr = sdr_get_addr((u32 *)RW_MGR_RUN_SINGLE_GROUP);
3348 		writel(RW_MGR_ACTIVATE_0_AND_1, SOCFPGA_SDR_ADDRESS + addr);
3349 	}
3350 }
3351 
3352 /* Configure various memory related parameters. */
3353 static void mem_config(void)
3354 {
3355 	uint32_t rlat, wlat;
3356 	uint32_t rw_wl_nop_cycles;
3357 	uint32_t max_latency;
3358 	uint32_t addr;
3359 
3360 	debug("%s:%d\n", __func__, __LINE__);
3361 	/* read in write and read latency */
3362 	addr = sdr_get_addr(&data_mgr->t_wl_add);
3363 	wlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3364 
3365 	addr = sdr_get_addr(&data_mgr->mem_t_add);
3366 	wlat += readl(SOCFPGA_SDR_ADDRESS + addr);
3367 	/* WL for hard phy does not include additive latency */
3368 
3369 	/*
3370 	 * add addtional write latency to offset the address/command extra
3371 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3372 	 * by one mem clock cycle. Only do this for DDR3
3373 	 */
3374 	wlat = wlat + 1;
3375 
3376 	addr = sdr_get_addr(&data_mgr->t_rl_add);
3377 	rlat = readl(SOCFPGA_SDR_ADDRESS + addr);
3378 
3379 	rw_wl_nop_cycles = wlat - 2;
3380 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3381 
3382 	/*
3383 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3384 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3385 	 */
3386 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3387 	/* configure for a burst length of 8 */
3388 
3389 	/* write latency */
3390 	/* Adjust Write Latency for Hard PHY */
3391 	wlat = wlat + 1;
3392 
3393 	/* set a pretty high read latency initially */
3394 	gbl->curr_read_lat = rlat + 16;
3395 
3396 	if (gbl->curr_read_lat > max_latency)
3397 		gbl->curr_read_lat = max_latency;
3398 
3399 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3400 	writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3401 
3402 	/* advertise write latency */
3403 	gbl->curr_write_lat = wlat;
3404 	addr = sdr_get_addr(&phy_mgr_cfg->afi_wlat);
3405 	writel(wlat - 2, SOCFPGA_SDR_ADDRESS + addr);
3406 
3407 	/* initialize bit slips */
3408 	mem_precharge_and_activate();
3409 }
3410 
3411 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3412 static void mem_skip_calibrate(void)
3413 {
3414 	uint32_t vfifo_offset;
3415 	uint32_t i, j, r;
3416 	uint32_t addr;
3417 
3418 	debug("%s:%d\n", __func__, __LINE__);
3419 	/* Need to update every shadow register set used by the interface */
3420 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3421 		r += NUM_RANKS_PER_SHADOW_REG) {
3422 		/*
3423 		 * Set output phase alignment settings appropriate for
3424 		 * skip calibration.
3425 		 */
3426 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3427 			scc_mgr_set_dqs_en_phase(i, 0);
3428 #if IO_DLL_CHAIN_LENGTH == 6
3429 			scc_mgr_set_dqdqs_output_phase(i, 6);
3430 #else
3431 			scc_mgr_set_dqdqs_output_phase(i, 7);
3432 #endif
3433 			/*
3434 			 * Case:33398
3435 			 *
3436 			 * Write data arrives to the I/O two cycles before write
3437 			 * latency is reached (720 deg).
3438 			 *   -> due to bit-slip in a/c bus
3439 			 *   -> to allow board skew where dqs is longer than ck
3440 			 *      -> how often can this happen!?
3441 			 *      -> can claim back some ptaps for high freq
3442 			 *       support if we can relax this, but i digress...
3443 			 *
3444 			 * The write_clk leads mem_ck by 90 deg
3445 			 * The minimum ptap of the OPA is 180 deg
3446 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3447 			 * The write_clk is always delayed by 2 ptaps
3448 			 *
3449 			 * Hence, to make DQS aligned to CK, we need to delay
3450 			 * DQS by:
3451 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3452 			 *
3453 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3454 			 * gives us the number of ptaps, which simplies to:
3455 			 *
3456 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3457 			 */
3458 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3459 				IO_DLL_CHAIN_LENGTH - 2));
3460 		}
3461 		addr = (u32)&sdr_scc_mgr->dqs_ena;
3462 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3463 		addr = (u32)&sdr_scc_mgr->dqs_io_ena;
3464 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3465 
3466 		addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3467 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3468 			writel(i, SOCFPGA_SDR_ADDRESS + addr);
3469 		}
3470 		addr = (u32)&sdr_scc_mgr->dq_ena;
3471 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3472 		addr = (u32)&sdr_scc_mgr->dm_ena;
3473 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3474 		addr = (u32)&sdr_scc_mgr->update;
3475 		writel(0, SOCFPGA_SDR_ADDRESS + addr);
3476 	}
3477 
3478 	/* Compensate for simulation model behaviour */
3479 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3480 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3481 		scc_mgr_load_dqs(i);
3482 	}
3483 	addr = (u32)&sdr_scc_mgr->update;
3484 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3485 
3486 	/*
3487 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3488 	 * in sequencer.
3489 	 */
3490 	vfifo_offset = CALIB_VFIFO_OFFSET;
3491 	addr = sdr_get_addr(&phy_mgr_cmd->inc_vfifo_hard_phy);
3492 	for (j = 0; j < vfifo_offset; j++) {
3493 		writel(0xff, SOCFPGA_SDR_ADDRESS + addr);
3494 	}
3495 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3496 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3497 
3498 	/*
3499 	 * For ACV with hard lfifo, we get the skip-cal setting from
3500 	 * generation-time constant.
3501 	 */
3502 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3503 	addr = sdr_get_addr(&phy_mgr_cfg->phy_rlat);
3504 	writel(gbl->curr_read_lat, SOCFPGA_SDR_ADDRESS + addr);
3505 }
3506 
3507 /* Memory calibration entry point */
3508 static uint32_t mem_calibrate(void)
3509 {
3510 	uint32_t i;
3511 	uint32_t rank_bgn, sr;
3512 	uint32_t write_group, write_test_bgn;
3513 	uint32_t read_group, read_test_bgn;
3514 	uint32_t run_groups, current_run;
3515 	uint32_t failing_groups = 0;
3516 	uint32_t group_failed = 0;
3517 	uint32_t sr_failed = 0;
3518 	uint32_t addr;
3519 
3520 	debug("%s:%d\n", __func__, __LINE__);
3521 	/* Initialize the data settings */
3522 
3523 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3524 	gbl->error_stage = CAL_STAGE_NIL;
3525 	gbl->error_group = 0xff;
3526 	gbl->fom_in = 0;
3527 	gbl->fom_out = 0;
3528 
3529 	mem_config();
3530 
3531 	uint32_t bypass_mode = 0x1;
3532 	addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3533 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3534 		writel(i, SOCFPGA_SDR_ADDRESS + addr);
3535 		scc_set_bypass_mode(i, bypass_mode);
3536 	}
3537 
3538 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3539 		/*
3540 		 * Set VFIFO and LFIFO to instant-on settings in skip
3541 		 * calibration mode.
3542 		 */
3543 		mem_skip_calibrate();
3544 	} else {
3545 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3546 			/*
3547 			 * Zero all delay chain/phase settings for all
3548 			 * groups and all shadow register sets.
3549 			 */
3550 			scc_mgr_zero_all();
3551 
3552 			run_groups = ~param->skip_groups;
3553 
3554 			for (write_group = 0, write_test_bgn = 0; write_group
3555 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3556 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3557 				/* Initialized the group failure */
3558 				group_failed = 0;
3559 
3560 				current_run = run_groups & ((1 <<
3561 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3562 				run_groups = run_groups >>
3563 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3564 
3565 				if (current_run == 0)
3566 					continue;
3567 
3568 				addr = sdr_get_addr((u32 *)SCC_MGR_GROUP_COUNTER);
3569 				writel(write_group, SOCFPGA_SDR_ADDRESS + addr);
3570 				scc_mgr_zero_group(write_group, write_test_bgn,
3571 						   0);
3572 
3573 				for (read_group = write_group *
3574 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3575 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3576 					read_test_bgn = 0;
3577 					read_group < (write_group + 1) *
3578 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3579 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3580 					group_failed == 0;
3581 					read_group++, read_test_bgn +=
3582 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3583 					/* Calibrate the VFIFO */
3584 					if (!((STATIC_CALIB_STEPS) &
3585 						CALIB_SKIP_VFIFO)) {
3586 						if (!rw_mgr_mem_calibrate_vfifo
3587 							(read_group,
3588 							read_test_bgn)) {
3589 							group_failed = 1;
3590 
3591 							if (!(gbl->
3592 							phy_debug_mode_flags &
3593 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3594 								return 0;
3595 							}
3596 						}
3597 					}
3598 				}
3599 
3600 				/* Calibrate the output side */
3601 				if (group_failed == 0)	{
3602 					for (rank_bgn = 0, sr = 0; rank_bgn
3603 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3604 						rank_bgn +=
3605 						NUM_RANKS_PER_SHADOW_REG,
3606 						++sr) {
3607 						sr_failed = 0;
3608 						if (!((STATIC_CALIB_STEPS) &
3609 						CALIB_SKIP_WRITES)) {
3610 							if ((STATIC_CALIB_STEPS)
3611 						& CALIB_SKIP_DELAY_SWEEPS) {
3612 						/* not needed in quick mode! */
3613 							} else {
3614 						/*
3615 						 * Determine if this set of
3616 						 * ranks should be skipped
3617 						 * entirely.
3618 						 */
3619 					if (!param->skip_shadow_regs[sr]) {
3620 						if (!rw_mgr_mem_calibrate_writes
3621 						(rank_bgn, write_group,
3622 						write_test_bgn)) {
3623 							sr_failed = 1;
3624 							if (!(gbl->
3625 							phy_debug_mode_flags &
3626 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3627 								return 0;
3628 									}
3629 									}
3630 								}
3631 							}
3632 						}
3633 						if (sr_failed != 0)
3634 							group_failed = 1;
3635 					}
3636 				}
3637 
3638 				if (group_failed == 0) {
3639 					for (read_group = write_group *
3640 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3641 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3642 					read_test_bgn = 0;
3643 						read_group < (write_group + 1)
3644 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3645 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3646 						group_failed == 0;
3647 						read_group++, read_test_bgn +=
3648 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3649 						if (!((STATIC_CALIB_STEPS) &
3650 							CALIB_SKIP_WRITES)) {
3651 					if (!rw_mgr_mem_calibrate_vfifo_end
3652 						(read_group, read_test_bgn)) {
3653 							group_failed = 1;
3654 
3655 						if (!(gbl->phy_debug_mode_flags
3656 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3657 								return 0;
3658 								}
3659 							}
3660 						}
3661 					}
3662 				}
3663 
3664 				if (group_failed != 0)
3665 					failing_groups++;
3666 			}
3667 
3668 			/*
3669 			 * USER If there are any failing groups then report
3670 			 * the failure.
3671 			 */
3672 			if (failing_groups != 0)
3673 				return 0;
3674 
3675 			/* Calibrate the LFIFO */
3676 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3677 				/*
3678 				 * If we're skipping groups as part of debug,
3679 				 * don't calibrate LFIFO.
3680 				 */
3681 				if (param->skip_groups == 0) {
3682 					if (!rw_mgr_mem_calibrate_lfifo())
3683 						return 0;
3684 				}
3685 			}
3686 		}
3687 	}
3688 
3689 	/*
3690 	 * Do not remove this line as it makes sure all of our decisions
3691 	 * have been applied.
3692 	 */
3693 	addr = (u32)&sdr_scc_mgr->update;
3694 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3695 	return 1;
3696 }
3697 
3698 static uint32_t run_mem_calibrate(void)
3699 {
3700 	uint32_t pass;
3701 	uint32_t debug_info;
3702 	uint32_t addr;
3703 
3704 	debug("%s:%d\n", __func__, __LINE__);
3705 
3706 	/* Reset pass/fail status shown on afi_cal_success/fail */
3707 	addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3708 	writel(PHY_MGR_CAL_RESET, SOCFPGA_SDR_ADDRESS + addr);
3709 
3710 	addr = sdr_get_addr((u32 *)BASE_MMR);
3711 	/* stop tracking manger */
3712 	uint32_t ctrlcfg = readl(SOCFPGA_SDR_ADDRESS + addr);
3713 
3714 	addr = sdr_get_addr((u32 *)BASE_MMR);
3715 	writel(ctrlcfg & 0xFFBFFFFF, SOCFPGA_SDR_ADDRESS + addr);
3716 
3717 	initialize();
3718 	rw_mgr_mem_initialize();
3719 
3720 	pass = mem_calibrate();
3721 
3722 	mem_precharge_and_activate();
3723 	addr = sdr_get_addr(&phy_mgr_cmd->fifo_reset);
3724 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3725 
3726 	/*
3727 	 * Handoff:
3728 	 * Don't return control of the PHY back to AFI when in debug mode.
3729 	 */
3730 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3731 		rw_mgr_mem_handoff();
3732 		/*
3733 		 * In Hard PHY this is a 2-bit control:
3734 		 * 0: AFI Mux Select
3735 		 * 1: DDIO Mux Select
3736 		 */
3737 		addr = sdr_get_addr(&phy_mgr_cfg->mux_sel);
3738 		writel(0x2, SOCFPGA_SDR_ADDRESS + addr);
3739 	}
3740 
3741 	addr = sdr_get_addr((u32 *)BASE_MMR);
3742 	writel(ctrlcfg, SOCFPGA_SDR_ADDRESS + addr);
3743 
3744 	if (pass) {
3745 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3746 
3747 		gbl->fom_in /= 2;
3748 		gbl->fom_out /= 2;
3749 
3750 		if (gbl->fom_in > 0xff)
3751 			gbl->fom_in = 0xff;
3752 
3753 		if (gbl->fom_out > 0xff)
3754 			gbl->fom_out = 0xff;
3755 
3756 		/* Update the FOM in the register file */
3757 		debug_info = gbl->fom_in;
3758 		debug_info |= gbl->fom_out << 8;
3759 		addr = (u32)&sdr_reg_file->fom;
3760 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3761 
3762 		addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3763 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3764 		addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3765 		writel(PHY_MGR_CAL_SUCCESS, SOCFPGA_SDR_ADDRESS + addr);
3766 	} else {
3767 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3768 
3769 		debug_info = gbl->error_stage;
3770 		debug_info |= gbl->error_substage << 8;
3771 		debug_info |= gbl->error_group << 16;
3772 
3773 		addr = (u32)&sdr_reg_file->failing_stage;
3774 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3775 		addr = sdr_get_addr(&phy_mgr_cfg->cal_debug_info);
3776 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3777 		addr = sdr_get_addr(&phy_mgr_cfg->cal_status);
3778 		writel(PHY_MGR_CAL_FAIL, SOCFPGA_SDR_ADDRESS + addr);
3779 
3780 		/* Update the failing group/stage in the register file */
3781 		debug_info = gbl->error_stage;
3782 		debug_info |= gbl->error_substage << 8;
3783 		debug_info |= gbl->error_group << 16;
3784 		addr = (u32)&sdr_reg_file->failing_stage;
3785 		writel(debug_info, SOCFPGA_SDR_ADDRESS + addr);
3786 	}
3787 
3788 	return pass;
3789 }
3790 
3791 static void hc_initialize_rom_data(void)
3792 {
3793 	uint32_t i;
3794 	uint32_t addr;
3795 
3796 	addr = sdr_get_addr((u32 *)(RW_MGR_INST_ROM_WRITE));
3797 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) {
3798 		uint32_t data = inst_rom_init[i];
3799 		writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3800 	}
3801 
3802 	addr = sdr_get_addr((u32 *)(RW_MGR_AC_ROM_WRITE));
3803 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) {
3804 		uint32_t data = ac_rom_init[i];
3805 		writel(data, SOCFPGA_SDR_ADDRESS + addr + (i << 2));
3806 	}
3807 }
3808 
3809 static void initialize_reg_file(void)
3810 {
3811 	uint32_t addr;
3812 
3813 	/* Initialize the register file with the correct data */
3814 	addr = (u32)&sdr_reg_file->signature;
3815 	writel(REG_FILE_INIT_SEQ_SIGNATURE, SOCFPGA_SDR_ADDRESS + addr);
3816 
3817 	addr = (u32)&sdr_reg_file->debug_data_addr;
3818 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3819 
3820 	addr = (u32)&sdr_reg_file->cur_stage;
3821 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3822 
3823 	addr = (u32)&sdr_reg_file->fom;
3824 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3825 
3826 	addr = (u32)&sdr_reg_file->failing_stage;
3827 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3828 
3829 	addr = (u32)&sdr_reg_file->debug1;
3830 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3831 
3832 	addr = (u32)&sdr_reg_file->debug2;
3833 	writel(0, SOCFPGA_SDR_ADDRESS + addr);
3834 }
3835 
3836 static void initialize_hps_phy(void)
3837 {
3838 	uint32_t reg;
3839 	uint32_t addr;
3840 	/*
3841 	 * Tracking also gets configured here because it's in the
3842 	 * same register.
3843 	 */
3844 	uint32_t trk_sample_count = 7500;
3845 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3846 	/*
3847 	 * Format is number of outer loops in the 16 MSB, sample
3848 	 * count in 16 LSB.
3849 	 */
3850 
3851 	reg = 0;
3852 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3853 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3854 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3855 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3856 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3857 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3858 	/*
3859 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3860 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3861 	 */
3862 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3863 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3864 		trk_sample_count);
3865 	addr = sdr_get_addr((u32 *)BASE_MMR);
3866 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET);
3867 
3868 	reg = 0;
3869 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3870 		trk_sample_count >>
3871 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3872 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3873 		trk_long_idle_sample_count);
3874 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET);
3875 
3876 	reg = 0;
3877 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3878 		trk_long_idle_sample_count >>
3879 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3880 	writel(reg, SOCFPGA_SDR_ADDRESS + addr + SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET);
3881 }
3882 
3883 static void initialize_tracking(void)
3884 {
3885 	uint32_t concatenated_longidle = 0x0;
3886 	uint32_t concatenated_delays = 0x0;
3887 	uint32_t concatenated_rw_addr = 0x0;
3888 	uint32_t concatenated_refresh = 0x0;
3889 	uint32_t trk_sample_count = 7500;
3890 	uint32_t dtaps_per_ptap;
3891 	uint32_t tmp_delay;
3892 	uint32_t addr;
3893 
3894 	/*
3895 	 * compute usable version of value in case we skip full
3896 	 * computation later
3897 	 */
3898 	dtaps_per_ptap = 0;
3899 	tmp_delay = 0;
3900 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3901 		dtaps_per_ptap++;
3902 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3903 	}
3904 	dtaps_per_ptap--;
3905 
3906 	concatenated_longidle = concatenated_longidle ^ 10;
3907 		/*longidle outer loop */
3908 	concatenated_longidle = concatenated_longidle << 16;
3909 	concatenated_longidle = concatenated_longidle ^ 100;
3910 		/*longidle sample count */
3911 	concatenated_delays = concatenated_delays ^ 243;
3912 		/* trfc, worst case of 933Mhz 4Gb */
3913 	concatenated_delays = concatenated_delays << 8;
3914 	concatenated_delays = concatenated_delays ^ 14;
3915 		/* trcd, worst case */
3916 	concatenated_delays = concatenated_delays << 8;
3917 	concatenated_delays = concatenated_delays ^ 10;
3918 		/* vfifo wait */
3919 	concatenated_delays = concatenated_delays << 8;
3920 	concatenated_delays = concatenated_delays ^ 4;
3921 		/* mux delay */
3922 
3923 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3924 	concatenated_rw_addr = concatenated_rw_addr << 8;
3925 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3926 	concatenated_rw_addr = concatenated_rw_addr << 8;
3927 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3928 	concatenated_rw_addr = concatenated_rw_addr << 8;
3929 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3930 
3931 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3932 	concatenated_refresh = concatenated_refresh << 24;
3933 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3934 
3935 	/* Initialize the register file with the correct data */
3936 	addr = (u32)&sdr_reg_file->dtaps_per_ptap;
3937 	writel(dtaps_per_ptap, SOCFPGA_SDR_ADDRESS + addr);
3938 
3939 	addr = (u32)&sdr_reg_file->trk_sample_count;
3940 	writel(trk_sample_count, SOCFPGA_SDR_ADDRESS + addr);
3941 
3942 	addr = (u32)&sdr_reg_file->trk_longidle;
3943 	writel(concatenated_longidle, SOCFPGA_SDR_ADDRESS + addr);
3944 
3945 	addr = (u32)&sdr_reg_file->delays;
3946 	writel(concatenated_delays, SOCFPGA_SDR_ADDRESS + addr);
3947 
3948 	addr = (u32)&sdr_reg_file->trk_rw_mgr_addr;
3949 	writel(concatenated_rw_addr, SOCFPGA_SDR_ADDRESS + addr);
3950 
3951 	addr = (u32)&sdr_reg_file->trk_read_dqs_width;
3952 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, SOCFPGA_SDR_ADDRESS + addr);
3953 
3954 	addr = (u32)&sdr_reg_file->trk_rfsh;
3955 	writel(concatenated_refresh, SOCFPGA_SDR_ADDRESS + addr);
3956 }
3957 
3958 int sdram_calibration_full(void)
3959 {
3960 	struct param_type my_param;
3961 	struct gbl_type my_gbl;
3962 	uint32_t pass;
3963 	uint32_t i;
3964 
3965 	param = &my_param;
3966 	gbl = &my_gbl;
3967 
3968 	/* Initialize the debug mode flags */
3969 	gbl->phy_debug_mode_flags = 0;
3970 	/* Set the calibration enabled by default */
3971 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3972 	/*
3973 	 * Only sweep all groups (regardless of fail state) by default
3974 	 * Set enabled read test by default.
3975 	 */
3976 #if DISABLE_GUARANTEED_READ
3977 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3978 #endif
3979 	/* Initialize the register file */
3980 	initialize_reg_file();
3981 
3982 	/* Initialize any PHY CSR */
3983 	initialize_hps_phy();
3984 
3985 	scc_mgr_initialize();
3986 
3987 	initialize_tracking();
3988 
3989 	/* USER Enable all ranks, groups */
3990 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3991 		param->skip_ranks[i] = 0;
3992 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3993 		param->skip_shadow_regs[i] = 0;
3994 	param->skip_groups = 0;
3995 
3996 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3997 
3998 	debug("%s:%d\n", __func__, __LINE__);
3999 	debug_cond(DLEVEL == 1,
4000 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
4001 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
4002 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
4003 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
4004 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
4005 	debug_cond(DLEVEL == 1,
4006 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
4007 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
4008 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
4009 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
4010 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
4011 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
4012 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
4013 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
4014 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
4015 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
4016 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
4017 		   IO_IO_OUT2_DELAY_MAX);
4018 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
4019 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
4020 
4021 	hc_initialize_rom_data();
4022 
4023 	/* update info for sims */
4024 	reg_file_set_stage(CAL_STAGE_NIL);
4025 	reg_file_set_group(0);
4026 
4027 	/*
4028 	 * Load global needed for those actions that require
4029 	 * some dynamic calibration support.
4030 	 */
4031 	dyn_calib_steps = STATIC_CALIB_STEPS;
4032 	/*
4033 	 * Load global to allow dynamic selection of delay loop settings
4034 	 * based on calibration mode.
4035 	 */
4036 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
4037 		skip_delay_mask = 0xff;
4038 	else
4039 		skip_delay_mask = 0x0;
4040 
4041 	pass = run_mem_calibrate();
4042 
4043 	printf("%s: Calibration complete\n", __FILE__);
4044 	return pass;
4045 }
4046