1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const u32 clocks) 762 { 763 u32 afi_clocks; 764 u16 c_loop; 765 u8 inner; 766 u8 outer; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 /* Scale (rounding up) to get afi clocks. */ 771 afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO); 772 if (afi_clocks) /* Temporary underflow protection */ 773 afi_clocks--; 774 775 /* 776 * Note, we don't bother accounting for being off a little 777 * bit because of a few extra instructions in outer loops. 778 * Note, the loops have a test at the end, and do the test 779 * before the decrement, and so always perform the loop 780 * 1 time more than the counter value 781 */ 782 c_loop = afi_clocks >> 16; 783 outer = c_loop ? 0xff : (afi_clocks >> 8); 784 inner = outer ? 0xff : afi_clocks; 785 786 /* 787 * rom instructions are structured as follows: 788 * 789 * IDLE_LOOP2: jnz cntr0, TARGET_A 790 * IDLE_LOOP1: jnz cntr1, TARGET_B 791 * return 792 * 793 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 794 * TARGET_B is set to IDLE_LOOP2 as well 795 * 796 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 797 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 798 * 799 * a little confusing, but it helps save precious space in the inst_rom 800 * and sequencer rom and keeps the delays more accurate and reduces 801 * overhead 802 */ 803 if (afi_clocks < 0x100) { 804 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 805 &sdr_rw_load_mgr_regs->load_cntr1); 806 807 writel(RW_MGR_IDLE_LOOP1, 808 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 809 810 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 811 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 812 } else { 813 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 814 &sdr_rw_load_mgr_regs->load_cntr0); 815 816 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 817 &sdr_rw_load_mgr_regs->load_cntr1); 818 819 writel(RW_MGR_IDLE_LOOP2, 820 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 821 822 writel(RW_MGR_IDLE_LOOP2, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 /* hack to get around compiler not being smart enough */ 826 if (afi_clocks <= 0x10000) { 827 /* only need to run once */ 828 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 829 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 830 } else { 831 do { 832 writel(RW_MGR_IDLE_LOOP2, 833 SDR_PHYGRP_RWMGRGRP_ADDRESS | 834 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 835 } while (c_loop-- != 0); 836 } 837 } 838 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 839 } 840 841 /** 842 * rw_mgr_mem_init_load_regs() - Load instruction registers 843 * @cntr0: Counter 0 value 844 * @cntr1: Counter 1 value 845 * @cntr2: Counter 2 value 846 * @jump: Jump instruction value 847 * 848 * Load instruction registers. 849 */ 850 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 851 { 852 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 853 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 854 855 /* Load counters */ 856 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 857 &sdr_rw_load_mgr_regs->load_cntr0); 858 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 859 &sdr_rw_load_mgr_regs->load_cntr1); 860 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 861 &sdr_rw_load_mgr_regs->load_cntr2); 862 863 /* Load jump address */ 864 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 865 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 866 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 867 868 /* Execute count instruction */ 869 writel(jump, grpaddr); 870 } 871 872 /** 873 * rw_mgr_mem_load_user() - Load user calibration values 874 * @fin1: Final instruction 1 875 * @fin2: Final instruction 2 876 * @precharge: If 1, precharge the banks at the end 877 * 878 * Load user calibration values and optionally precharge the banks. 879 */ 880 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 881 const int precharge) 882 { 883 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 884 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 885 u32 r; 886 887 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 888 if (param->skip_ranks[r]) { 889 /* request to skip the rank */ 890 continue; 891 } 892 893 /* set rank */ 894 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 895 896 /* precharge all banks ... */ 897 if (precharge) 898 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 899 900 /* 901 * USER Use Mirror-ed commands for odd ranks if address 902 * mirrorring is on 903 */ 904 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 905 set_jump_as_return(); 906 writel(RW_MGR_MRS2_MIRR, grpaddr); 907 delay_for_n_mem_clocks(4); 908 set_jump_as_return(); 909 writel(RW_MGR_MRS3_MIRR, grpaddr); 910 delay_for_n_mem_clocks(4); 911 set_jump_as_return(); 912 writel(RW_MGR_MRS1_MIRR, grpaddr); 913 delay_for_n_mem_clocks(4); 914 set_jump_as_return(); 915 writel(fin1, grpaddr); 916 } else { 917 set_jump_as_return(); 918 writel(RW_MGR_MRS2, grpaddr); 919 delay_for_n_mem_clocks(4); 920 set_jump_as_return(); 921 writel(RW_MGR_MRS3, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS1, grpaddr); 925 set_jump_as_return(); 926 writel(fin2, grpaddr); 927 } 928 929 if (precharge) 930 continue; 931 932 set_jump_as_return(); 933 writel(RW_MGR_ZQCL, grpaddr); 934 935 /* tZQinit = tDLLK = 512 ck cycles */ 936 delay_for_n_mem_clocks(512); 937 } 938 } 939 940 /** 941 * rw_mgr_mem_initialize() - Initialize RW Manager 942 * 943 * Initialize RW Manager. 944 */ 945 static void rw_mgr_mem_initialize(void) 946 { 947 debug("%s:%d\n", __func__, __LINE__); 948 949 /* The reset / cke part of initialization is broadcasted to all ranks */ 950 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 951 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 952 953 /* 954 * Here's how you load register for a loop 955 * Counters are located @ 0x800 956 * Jump address are located @ 0xC00 957 * For both, registers 0 to 3 are selected using bits 3 and 2, like 958 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 959 * I know this ain't pretty, but Avalon bus throws away the 2 least 960 * significant bits 961 */ 962 963 /* Start with memory RESET activated */ 964 965 /* tINIT = 200us */ 966 967 /* 968 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 969 * If a and b are the number of iteration in 2 nested loops 970 * it takes the following number of cycles to complete the operation: 971 * number_of_cycles = ((2 + n) * a + 2) * b 972 * where n is the number of instruction in the inner loop 973 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 974 * b = 6A 975 */ 976 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 977 SEQ_TINIT_CNTR2_VAL, 978 RW_MGR_INIT_RESET_0_CKE_0); 979 980 /* Indicate that memory is stable. */ 981 writel(1, &phy_mgr_cfg->reset_mem_stbl); 982 983 /* 984 * transition the RESET to high 985 * Wait for 500us 986 */ 987 988 /* 989 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 990 * If a and b are the number of iteration in 2 nested loops 991 * it takes the following number of cycles to complete the operation 992 * number_of_cycles = ((2 + n) * a + 2) * b 993 * where n is the number of instruction in the inner loop 994 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 995 * b = FF 996 */ 997 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 998 SEQ_TRESET_CNTR2_VAL, 999 RW_MGR_INIT_RESET_1_CKE_0); 1000 1001 /* Bring up clock enable. */ 1002 1003 /* tXRP < 250 ck cycles */ 1004 delay_for_n_mem_clocks(250); 1005 1006 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1007 0); 1008 } 1009 1010 /** 1011 * rw_mgr_mem_handoff() - Hand off the memory to user 1012 * 1013 * At the end of calibration we have to program the user settings in 1014 * and hand off the memory to the user. 1015 */ 1016 static void rw_mgr_mem_handoff(void) 1017 { 1018 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1019 /* 1020 * Need to wait tMOD (12CK or 15ns) time before issuing other 1021 * commands, but we will have plenty of NIOS cycles before actual 1022 * handoff so its okay. 1023 */ 1024 } 1025 1026 /** 1027 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command 1028 * @group: Write Group 1029 * @use_dm: Use DM 1030 * 1031 * Issue write test command. Two variants are provided, one that just tests 1032 * a write pattern and another that tests datamask functionality. 1033 */ 1034 static void rw_mgr_mem_calibrate_write_test_issue(u32 group, 1035 u32 test_dm) 1036 { 1037 const u32 quick_write_mode = 1038 (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) && 1039 ENABLE_SUPER_QUICK_CALIBRATION; 1040 u32 mcc_instruction; 1041 u32 rw_wl_nop_cycles; 1042 1043 /* 1044 * Set counter and jump addresses for the right 1045 * number of NOP cycles. 1046 * The number of supported NOP cycles can range from -1 to infinity 1047 * Three different cases are handled: 1048 * 1049 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1050 * mechanism will be used to insert the right number of NOPs 1051 * 1052 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1053 * issuing the write command will jump straight to the 1054 * micro-instruction that turns on DQS (for DDRx), or outputs write 1055 * data (for RLD), skipping 1056 * the NOP micro-instruction all together 1057 * 1058 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1059 * turned on in the same micro-instruction that issues the write 1060 * command. Then we need 1061 * to directly jump to the micro-instruction that sends out the data 1062 * 1063 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1064 * (2 and 3). One jump-counter (0) is used to perform multiple 1065 * write-read operations. 1066 * one counter left to issue this command in "multiple-group" mode 1067 */ 1068 1069 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1070 1071 if (rw_wl_nop_cycles == -1) { 1072 /* 1073 * CNTR 2 - We want to execute the special write operation that 1074 * turns on DQS right away and then skip directly to the 1075 * instruction that sends out the data. We set the counter to a 1076 * large number so that the jump is always taken. 1077 */ 1078 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1079 1080 /* CNTR 3 - Not used */ 1081 if (test_dm) { 1082 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1083 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1085 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1086 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1087 } else { 1088 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1089 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1091 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1092 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1093 } 1094 } else if (rw_wl_nop_cycles == 0) { 1095 /* 1096 * CNTR 2 - We want to skip the NOP operation and go straight 1097 * to the DQS enable instruction. We set the counter to a large 1098 * number so that the jump is always taken. 1099 */ 1100 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1101 1102 /* CNTR 3 - Not used */ 1103 if (test_dm) { 1104 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1105 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1106 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1107 } else { 1108 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1109 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1110 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1111 } 1112 } else { 1113 /* 1114 * CNTR 2 - In this case we want to execute the next instruction 1115 * and NOT take the jump. So we set the counter to 0. The jump 1116 * address doesn't count. 1117 */ 1118 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1119 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1120 1121 /* 1122 * CNTR 3 - Set the nop counter to the number of cycles we 1123 * need to loop for, minus 1. 1124 */ 1125 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1126 if (test_dm) { 1127 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1128 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1129 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1130 } else { 1131 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1132 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1133 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1134 } 1135 } 1136 1137 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1138 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1139 1140 if (quick_write_mode) 1141 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1142 else 1143 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1144 1145 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1146 1147 /* 1148 * CNTR 1 - This is used to ensure enough time elapses 1149 * for read data to come back. 1150 */ 1151 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1152 1153 if (test_dm) { 1154 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1155 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1156 } else { 1157 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1159 } 1160 1161 writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS | 1162 RW_MGR_RUN_SINGLE_GROUP_OFFSET) + 1163 (group << 2)); 1164 } 1165 1166 /** 1167 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1168 * @rank_bgn: Rank number 1169 * @write_group: Write Group 1170 * @use_dm: Use DM 1171 * @all_correct: All bits must be correct in the mask 1172 * @bit_chk: Resulting bit mask after the test 1173 * @all_ranks: Test all ranks 1174 * 1175 * Test writes, can check for a single bit pass or multiple bit pass. 1176 */ 1177 static int 1178 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1179 const u32 use_dm, const u32 all_correct, 1180 u32 *bit_chk, const u32 all_ranks) 1181 { 1182 const u32 rank_end = all_ranks ? 1183 RW_MGR_MEM_NUMBER_OF_RANKS : 1184 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1185 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1186 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1187 const u32 correct_mask_vg = param->write_correct_mask_vg; 1188 1189 u32 tmp_bit_chk, base_rw_mgr; 1190 int vg, r; 1191 1192 *bit_chk = param->write_correct_mask; 1193 1194 for (r = rank_bgn; r < rank_end; r++) { 1195 /* Request to skip the rank */ 1196 if (param->skip_ranks[r]) 1197 continue; 1198 1199 /* Set rank */ 1200 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1201 1202 tmp_bit_chk = 0; 1203 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1204 vg >= 0; vg--) { 1205 /* Reset the FIFOs to get pointers to known state. */ 1206 writel(0, &phy_mgr_cmd->fifo_reset); 1207 1208 rw_mgr_mem_calibrate_write_test_issue( 1209 write_group * 1210 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1211 use_dm); 1212 1213 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1214 tmp_bit_chk <<= shift_ratio; 1215 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1216 } 1217 1218 *bit_chk &= tmp_bit_chk; 1219 } 1220 1221 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1222 if (all_correct) { 1223 debug_cond(DLEVEL == 2, 1224 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1225 write_group, use_dm, *bit_chk, 1226 param->write_correct_mask, 1227 *bit_chk == param->write_correct_mask); 1228 return *bit_chk == param->write_correct_mask; 1229 } else { 1230 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1231 debug_cond(DLEVEL == 2, 1232 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1233 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1234 return *bit_chk != 0x00; 1235 } 1236 } 1237 1238 /** 1239 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1240 * @rank_bgn: Rank number 1241 * @group: Read/Write Group 1242 * @all_ranks: Test all ranks 1243 * 1244 * Performs a guaranteed read on the patterns we are going to use during a 1245 * read test to ensure memory works. 1246 */ 1247 static int 1248 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1249 const u32 all_ranks) 1250 { 1251 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1252 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1253 const u32 addr_offset = 1254 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1255 const u32 rank_end = all_ranks ? 1256 RW_MGR_MEM_NUMBER_OF_RANKS : 1257 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1258 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1259 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1260 const u32 correct_mask_vg = param->read_correct_mask_vg; 1261 1262 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1263 int vg, r; 1264 int ret = 0; 1265 1266 bit_chk = param->read_correct_mask; 1267 1268 for (r = rank_bgn; r < rank_end; r++) { 1269 /* Request to skip the rank */ 1270 if (param->skip_ranks[r]) 1271 continue; 1272 1273 /* Set rank */ 1274 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1275 1276 /* Load up a constant bursts of read commands */ 1277 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1278 writel(RW_MGR_GUARANTEED_READ, 1279 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1280 1281 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1282 writel(RW_MGR_GUARANTEED_READ_CONT, 1283 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1284 1285 tmp_bit_chk = 0; 1286 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1287 vg >= 0; vg--) { 1288 /* Reset the FIFOs to get pointers to known state. */ 1289 writel(0, &phy_mgr_cmd->fifo_reset); 1290 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1291 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1292 writel(RW_MGR_GUARANTEED_READ, 1293 addr + addr_offset + (vg << 2)); 1294 1295 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1296 tmp_bit_chk <<= shift_ratio; 1297 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1298 } 1299 1300 bit_chk &= tmp_bit_chk; 1301 } 1302 1303 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1304 1305 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1306 1307 if (bit_chk != param->read_correct_mask) 1308 ret = -EIO; 1309 1310 debug_cond(DLEVEL == 1, 1311 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1312 __func__, __LINE__, group, bit_chk, 1313 param->read_correct_mask, ret); 1314 1315 return ret; 1316 } 1317 1318 /** 1319 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1320 * @rank_bgn: Rank number 1321 * @all_ranks: Test all ranks 1322 * 1323 * Load up the patterns we are going to use during a read test. 1324 */ 1325 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1326 const int all_ranks) 1327 { 1328 const u32 rank_end = all_ranks ? 1329 RW_MGR_MEM_NUMBER_OF_RANKS : 1330 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1331 u32 r; 1332 1333 debug("%s:%d\n", __func__, __LINE__); 1334 1335 for (r = rank_bgn; r < rank_end; r++) { 1336 if (param->skip_ranks[r]) 1337 /* request to skip the rank */ 1338 continue; 1339 1340 /* set rank */ 1341 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1342 1343 /* Load up a constant bursts */ 1344 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1345 1346 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1347 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1348 1349 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1350 1351 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1352 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1353 1354 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1355 1356 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1357 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1358 1359 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1360 1361 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1362 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1363 1364 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1365 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1366 } 1367 1368 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1369 } 1370 1371 /** 1372 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1373 * @rank_bgn: Rank number 1374 * @group: Read/Write group 1375 * @num_tries: Number of retries of the test 1376 * @all_correct: All bits must be correct in the mask 1377 * @bit_chk: Resulting bit mask after the test 1378 * @all_groups: Test all R/W groups 1379 * @all_ranks: Test all ranks 1380 * 1381 * Try a read and see if it returns correct data back. Test has dummy reads 1382 * inserted into the mix used to align DQS enable. Test has more thorough 1383 * checks than the regular read test. 1384 */ 1385 static int 1386 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1387 const u32 num_tries, const u32 all_correct, 1388 u32 *bit_chk, 1389 const u32 all_groups, const u32 all_ranks) 1390 { 1391 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1392 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1393 const u32 quick_read_mode = 1394 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1395 ENABLE_SUPER_QUICK_CALIBRATION); 1396 u32 correct_mask_vg = param->read_correct_mask_vg; 1397 u32 tmp_bit_chk; 1398 u32 base_rw_mgr; 1399 u32 addr; 1400 1401 int r, vg, ret; 1402 1403 *bit_chk = param->read_correct_mask; 1404 1405 for (r = rank_bgn; r < rank_end; r++) { 1406 if (param->skip_ranks[r]) 1407 /* request to skip the rank */ 1408 continue; 1409 1410 /* set rank */ 1411 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1412 1413 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1414 1415 writel(RW_MGR_READ_B2B_WAIT1, 1416 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1417 1418 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1419 writel(RW_MGR_READ_B2B_WAIT2, 1420 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1421 1422 if (quick_read_mode) 1423 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1424 /* need at least two (1+1) reads to capture failures */ 1425 else if (all_groups) 1426 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1427 else 1428 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1429 1430 writel(RW_MGR_READ_B2B, 1431 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1432 if (all_groups) 1433 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1434 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1435 &sdr_rw_load_mgr_regs->load_cntr3); 1436 else 1437 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1438 1439 writel(RW_MGR_READ_B2B, 1440 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1441 1442 tmp_bit_chk = 0; 1443 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1444 vg--) { 1445 /* Reset the FIFOs to get pointers to known state. */ 1446 writel(0, &phy_mgr_cmd->fifo_reset); 1447 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1448 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1449 1450 if (all_groups) { 1451 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1452 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1453 } else { 1454 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1455 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1456 } 1457 1458 writel(RW_MGR_READ_B2B, addr + 1459 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1460 vg) << 2)); 1461 1462 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1463 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1464 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1465 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1466 } 1467 1468 *bit_chk &= tmp_bit_chk; 1469 } 1470 1471 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1472 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1473 1474 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1475 1476 if (all_correct) { 1477 ret = (*bit_chk == param->read_correct_mask); 1478 debug_cond(DLEVEL == 2, 1479 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1480 __func__, __LINE__, group, all_groups, *bit_chk, 1481 param->read_correct_mask, ret); 1482 } else { 1483 ret = (*bit_chk != 0x00); 1484 debug_cond(DLEVEL == 2, 1485 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1486 __func__, __LINE__, group, all_groups, *bit_chk, 1487 0, ret); 1488 } 1489 1490 return ret; 1491 } 1492 1493 /** 1494 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1495 * @grp: Read/Write group 1496 * @num_tries: Number of retries of the test 1497 * @all_correct: All bits must be correct in the mask 1498 * @all_groups: Test all R/W groups 1499 * 1500 * Perform a READ test across all memory ranks. 1501 */ 1502 static int 1503 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1504 const u32 all_correct, 1505 const u32 all_groups) 1506 { 1507 u32 bit_chk; 1508 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1509 &bit_chk, all_groups, 1); 1510 } 1511 1512 /** 1513 * rw_mgr_incr_vfifo() - Increase VFIFO value 1514 * @grp: Read/Write group 1515 * 1516 * Increase VFIFO value. 1517 */ 1518 static void rw_mgr_incr_vfifo(const u32 grp) 1519 { 1520 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1521 } 1522 1523 /** 1524 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1525 * @grp: Read/Write group 1526 * 1527 * Decrease VFIFO value. 1528 */ 1529 static void rw_mgr_decr_vfifo(const u32 grp) 1530 { 1531 u32 i; 1532 1533 for (i = 0; i < VFIFO_SIZE - 1; i++) 1534 rw_mgr_incr_vfifo(grp); 1535 } 1536 1537 /** 1538 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1539 * @grp: Read/Write group 1540 * 1541 * Push VFIFO until a failing read happens. 1542 */ 1543 static int find_vfifo_failing_read(const u32 grp) 1544 { 1545 u32 v, ret, fail_cnt = 0; 1546 1547 for (v = 0; v < VFIFO_SIZE; v++) { 1548 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1549 __func__, __LINE__, v); 1550 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1551 PASS_ONE_BIT, 0); 1552 if (!ret) { 1553 fail_cnt++; 1554 1555 if (fail_cnt == 2) 1556 return v; 1557 } 1558 1559 /* Fiddle with FIFO. */ 1560 rw_mgr_incr_vfifo(grp); 1561 } 1562 1563 /* No failing read found! Something must have gone wrong. */ 1564 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1565 return 0; 1566 } 1567 1568 /** 1569 * sdr_find_phase_delay() - Find DQS enable phase or delay 1570 * @working: If 1, look for working phase/delay, if 0, look for non-working 1571 * @delay: If 1, look for delay, if 0, look for phase 1572 * @grp: Read/Write group 1573 * @work: Working window position 1574 * @work_inc: Working window increment 1575 * @pd: DQS Phase/Delay Iterator 1576 * 1577 * Find working or non-working DQS enable phase setting. 1578 */ 1579 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1580 u32 *work, const u32 work_inc, u32 *pd) 1581 { 1582 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1583 u32 ret; 1584 1585 for (; *pd <= max; (*pd)++) { 1586 if (delay) 1587 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1588 else 1589 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1590 1591 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1592 PASS_ONE_BIT, 0); 1593 if (!working) 1594 ret = !ret; 1595 1596 if (ret) 1597 return 0; 1598 1599 if (work) 1600 *work += work_inc; 1601 } 1602 1603 return -EINVAL; 1604 } 1605 /** 1606 * sdr_find_phase() - Find DQS enable phase 1607 * @working: If 1, look for working phase, if 0, look for non-working phase 1608 * @grp: Read/Write group 1609 * @work: Working window position 1610 * @i: Iterator 1611 * @p: DQS Phase Iterator 1612 * 1613 * Find working or non-working DQS enable phase setting. 1614 */ 1615 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1616 u32 *i, u32 *p) 1617 { 1618 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1619 int ret; 1620 1621 for (; *i < end; (*i)++) { 1622 if (working) 1623 *p = 0; 1624 1625 ret = sdr_find_phase_delay(working, 0, grp, work, 1626 IO_DELAY_PER_OPA_TAP, p); 1627 if (!ret) 1628 return 0; 1629 1630 if (*p > IO_DQS_EN_PHASE_MAX) { 1631 /* Fiddle with FIFO. */ 1632 rw_mgr_incr_vfifo(grp); 1633 if (!working) 1634 *p = 0; 1635 } 1636 } 1637 1638 return -EINVAL; 1639 } 1640 1641 /** 1642 * sdr_working_phase() - Find working DQS enable phase 1643 * @grp: Read/Write group 1644 * @work_bgn: Working window start position 1645 * @d: dtaps output value 1646 * @p: DQS Phase Iterator 1647 * @i: Iterator 1648 * 1649 * Find working DQS enable phase setting. 1650 */ 1651 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1652 u32 *p, u32 *i) 1653 { 1654 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1655 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1656 int ret; 1657 1658 *work_bgn = 0; 1659 1660 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1661 *i = 0; 1662 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1663 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1664 if (!ret) 1665 return 0; 1666 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1667 } 1668 1669 /* Cannot find working solution */ 1670 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1671 __func__, __LINE__); 1672 return -EINVAL; 1673 } 1674 1675 /** 1676 * sdr_backup_phase() - Find DQS enable backup phase 1677 * @grp: Read/Write group 1678 * @work_bgn: Working window start position 1679 * @p: DQS Phase Iterator 1680 * 1681 * Find DQS enable backup phase setting. 1682 */ 1683 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1684 { 1685 u32 tmp_delay, d; 1686 int ret; 1687 1688 /* Special case code for backing up a phase */ 1689 if (*p == 0) { 1690 *p = IO_DQS_EN_PHASE_MAX; 1691 rw_mgr_decr_vfifo(grp); 1692 } else { 1693 (*p)--; 1694 } 1695 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1696 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1697 1698 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1699 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1700 1701 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1702 PASS_ONE_BIT, 0); 1703 if (ret) { 1704 *work_bgn = tmp_delay; 1705 break; 1706 } 1707 1708 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1709 } 1710 1711 /* Restore VFIFO to old state before we decremented it (if needed). */ 1712 (*p)++; 1713 if (*p > IO_DQS_EN_PHASE_MAX) { 1714 *p = 0; 1715 rw_mgr_incr_vfifo(grp); 1716 } 1717 1718 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1719 } 1720 1721 /** 1722 * sdr_nonworking_phase() - Find non-working DQS enable phase 1723 * @grp: Read/Write group 1724 * @work_end: Working window end position 1725 * @p: DQS Phase Iterator 1726 * @i: Iterator 1727 * 1728 * Find non-working DQS enable phase setting. 1729 */ 1730 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1731 { 1732 int ret; 1733 1734 (*p)++; 1735 *work_end += IO_DELAY_PER_OPA_TAP; 1736 if (*p > IO_DQS_EN_PHASE_MAX) { 1737 /* Fiddle with FIFO. */ 1738 *p = 0; 1739 rw_mgr_incr_vfifo(grp); 1740 } 1741 1742 ret = sdr_find_phase(0, grp, work_end, i, p); 1743 if (ret) { 1744 /* Cannot see edge of failing read. */ 1745 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1746 __func__, __LINE__); 1747 } 1748 1749 return ret; 1750 } 1751 1752 /** 1753 * sdr_find_window_center() - Find center of the working DQS window. 1754 * @grp: Read/Write group 1755 * @work_bgn: First working settings 1756 * @work_end: Last working settings 1757 * 1758 * Find center of the working DQS enable window. 1759 */ 1760 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1761 const u32 work_end) 1762 { 1763 u32 work_mid; 1764 int tmp_delay = 0; 1765 int i, p, d; 1766 1767 work_mid = (work_bgn + work_end) / 2; 1768 1769 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1770 work_bgn, work_end, work_mid); 1771 /* Get the middle delay to be less than a VFIFO delay */ 1772 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1773 1774 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1775 work_mid %= tmp_delay; 1776 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1777 1778 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1779 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1780 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1781 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1782 1783 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1784 1785 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1786 if (d > IO_DQS_EN_DELAY_MAX) 1787 d = IO_DQS_EN_DELAY_MAX; 1788 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1789 1790 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1791 1792 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1793 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1794 1795 /* 1796 * push vfifo until we can successfully calibrate. We can do this 1797 * because the largest possible margin in 1 VFIFO cycle. 1798 */ 1799 for (i = 0; i < VFIFO_SIZE; i++) { 1800 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1801 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1802 PASS_ONE_BIT, 1803 0)) { 1804 debug_cond(DLEVEL == 2, 1805 "%s:%d center: found: ptap=%u dtap=%u\n", 1806 __func__, __LINE__, p, d); 1807 return 0; 1808 } 1809 1810 /* Fiddle with FIFO. */ 1811 rw_mgr_incr_vfifo(grp); 1812 } 1813 1814 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1815 __func__, __LINE__); 1816 return -EINVAL; 1817 } 1818 1819 /** 1820 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1821 * @grp: Read/Write Group 1822 * 1823 * Find a good DQS enable to use. 1824 */ 1825 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1826 { 1827 u32 d, p, i; 1828 u32 dtaps_per_ptap; 1829 u32 work_bgn, work_end; 1830 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1831 int ret; 1832 1833 debug("%s:%d %u\n", __func__, __LINE__, grp); 1834 1835 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1836 1837 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1838 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1839 1840 /* Step 0: Determine number of delay taps for each phase tap. */ 1841 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1842 1843 /* Step 1: First push vfifo until we get a failing read. */ 1844 find_vfifo_failing_read(grp); 1845 1846 /* Step 2: Find first working phase, increment in ptaps. */ 1847 work_bgn = 0; 1848 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1849 if (ret) 1850 return ret; 1851 1852 work_end = work_bgn; 1853 1854 /* 1855 * If d is 0 then the working window covers a phase tap and we can 1856 * follow the old procedure. Otherwise, we've found the beginning 1857 * and we need to increment the dtaps until we find the end. 1858 */ 1859 if (d == 0) { 1860 /* 1861 * Step 3a: If we have room, back off by one and 1862 * increment in dtaps. 1863 */ 1864 sdr_backup_phase(grp, &work_bgn, &p); 1865 1866 /* 1867 * Step 4a: go forward from working phase to non working 1868 * phase, increment in ptaps. 1869 */ 1870 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1871 if (ret) 1872 return ret; 1873 1874 /* Step 5a: Back off one from last, increment in dtaps. */ 1875 1876 /* Special case code for backing up a phase */ 1877 if (p == 0) { 1878 p = IO_DQS_EN_PHASE_MAX; 1879 rw_mgr_decr_vfifo(grp); 1880 } else { 1881 p = p - 1; 1882 } 1883 1884 work_end -= IO_DELAY_PER_OPA_TAP; 1885 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1886 1887 d = 0; 1888 1889 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1890 __func__, __LINE__, p); 1891 } 1892 1893 /* The dtap increment to find the failing edge is done here. */ 1894 sdr_find_phase_delay(0, 1, grp, &work_end, 1895 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1896 1897 /* Go back to working dtap */ 1898 if (d != 0) 1899 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1900 1901 debug_cond(DLEVEL == 2, 1902 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1903 __func__, __LINE__, p, d - 1, work_end); 1904 1905 if (work_end < work_bgn) { 1906 /* nil range */ 1907 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1908 __func__, __LINE__); 1909 return -EINVAL; 1910 } 1911 1912 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1913 __func__, __LINE__, work_bgn, work_end); 1914 1915 /* 1916 * We need to calculate the number of dtaps that equal a ptap. 1917 * To do that we'll back up a ptap and re-find the edge of the 1918 * window using dtaps 1919 */ 1920 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1921 __func__, __LINE__); 1922 1923 /* Special case code for backing up a phase */ 1924 if (p == 0) { 1925 p = IO_DQS_EN_PHASE_MAX; 1926 rw_mgr_decr_vfifo(grp); 1927 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1928 __func__, __LINE__, p); 1929 } else { 1930 p = p - 1; 1931 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1932 __func__, __LINE__, p); 1933 } 1934 1935 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1936 1937 /* 1938 * Increase dtap until we first see a passing read (in case the 1939 * window is smaller than a ptap), and then a failing read to 1940 * mark the edge of the window again. 1941 */ 1942 1943 /* Find a passing read. */ 1944 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1945 __func__, __LINE__); 1946 1947 initial_failing_dtap = d; 1948 1949 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1950 if (found_passing_read) { 1951 /* Find a failing read. */ 1952 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1953 __func__, __LINE__); 1954 d++; 1955 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1956 &d); 1957 } else { 1958 debug_cond(DLEVEL == 1, 1959 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1960 __func__, __LINE__); 1961 } 1962 1963 /* 1964 * The dynamically calculated dtaps_per_ptap is only valid if we 1965 * found a passing/failing read. If we didn't, it means d hit the max 1966 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1967 * statically calculated value. 1968 */ 1969 if (found_passing_read && found_failing_read) 1970 dtaps_per_ptap = d - initial_failing_dtap; 1971 1972 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1973 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1974 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1975 1976 /* Step 6: Find the centre of the window. */ 1977 ret = sdr_find_window_center(grp, work_bgn, work_end); 1978 1979 return ret; 1980 } 1981 1982 /** 1983 * search_stop_check() - Check if the detected edge is valid 1984 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1985 * @d: DQS delay 1986 * @rank_bgn: Rank number 1987 * @write_group: Write Group 1988 * @read_group: Read Group 1989 * @bit_chk: Resulting bit mask after the test 1990 * @sticky_bit_chk: Resulting sticky bit mask after the test 1991 * @use_read_test: Perform read test 1992 * 1993 * Test if the found edge is valid. 1994 */ 1995 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 1996 const u32 write_group, const u32 read_group, 1997 u32 *bit_chk, u32 *sticky_bit_chk, 1998 const u32 use_read_test) 1999 { 2000 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 2001 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2002 const u32 correct_mask = write ? param->write_correct_mask : 2003 param->read_correct_mask; 2004 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2005 RW_MGR_MEM_DQ_PER_READ_DQS; 2006 u32 ret; 2007 /* 2008 * Stop searching when the read test doesn't pass AND when 2009 * we've seen a passing read on every bit. 2010 */ 2011 if (write) { /* WRITE-ONLY */ 2012 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2013 0, PASS_ONE_BIT, 2014 bit_chk, 0); 2015 } else if (use_read_test) { /* READ-ONLY */ 2016 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2017 NUM_READ_PB_TESTS, 2018 PASS_ONE_BIT, bit_chk, 2019 0, 0); 2020 } else { /* READ-ONLY */ 2021 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2022 PASS_ONE_BIT, bit_chk, 0); 2023 *bit_chk = *bit_chk >> (per_dqs * 2024 (read_group - (write_group * ratio))); 2025 ret = (*bit_chk == 0); 2026 } 2027 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2028 ret = ret && (*sticky_bit_chk == correct_mask); 2029 debug_cond(DLEVEL == 2, 2030 "%s:%d center(left): dtap=%u => %u == %u && %u", 2031 __func__, __LINE__, d, 2032 *sticky_bit_chk, correct_mask, ret); 2033 return ret; 2034 } 2035 2036 /** 2037 * search_left_edge() - Find left edge of DQ/DQS working phase 2038 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2039 * @rank_bgn: Rank number 2040 * @write_group: Write Group 2041 * @read_group: Read Group 2042 * @test_bgn: Rank number to begin the test 2043 * @sticky_bit_chk: Resulting sticky bit mask after the test 2044 * @left_edge: Left edge of the DQ/DQS phase 2045 * @right_edge: Right edge of the DQ/DQS phase 2046 * @use_read_test: Perform read test 2047 * 2048 * Find left edge of DQ/DQS working phase. 2049 */ 2050 static void search_left_edge(const int write, const int rank_bgn, 2051 const u32 write_group, const u32 read_group, const u32 test_bgn, 2052 u32 *sticky_bit_chk, 2053 int *left_edge, int *right_edge, const u32 use_read_test) 2054 { 2055 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2056 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2057 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2058 RW_MGR_MEM_DQ_PER_READ_DQS; 2059 u32 stop, bit_chk; 2060 int i, d; 2061 2062 for (d = 0; d <= dqs_max; d++) { 2063 if (write) 2064 scc_mgr_apply_group_dq_out1_delay(d); 2065 else 2066 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2067 2068 writel(0, &sdr_scc_mgr->update); 2069 2070 stop = search_stop_check(write, d, rank_bgn, write_group, 2071 read_group, &bit_chk, sticky_bit_chk, 2072 use_read_test); 2073 if (stop == 1) 2074 break; 2075 2076 /* stop != 1 */ 2077 for (i = 0; i < per_dqs; i++) { 2078 if (bit_chk & 1) { 2079 /* 2080 * Remember a passing test as 2081 * the left_edge. 2082 */ 2083 left_edge[i] = d; 2084 } else { 2085 /* 2086 * If a left edge has not been seen 2087 * yet, then a future passing test 2088 * will mark this edge as the right 2089 * edge. 2090 */ 2091 if (left_edge[i] == delay_max + 1) 2092 right_edge[i] = -(d + 1); 2093 } 2094 bit_chk >>= 1; 2095 } 2096 } 2097 2098 /* Reset DQ delay chains to 0 */ 2099 if (write) 2100 scc_mgr_apply_group_dq_out1_delay(0); 2101 else 2102 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2103 2104 *sticky_bit_chk = 0; 2105 for (i = per_dqs - 1; i >= 0; i--) { 2106 debug_cond(DLEVEL == 2, 2107 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2108 __func__, __LINE__, i, left_edge[i], 2109 i, right_edge[i]); 2110 2111 /* 2112 * Check for cases where we haven't found the left edge, 2113 * which makes our assignment of the the right edge invalid. 2114 * Reset it to the illegal value. 2115 */ 2116 if ((left_edge[i] == delay_max + 1) && 2117 (right_edge[i] != delay_max + 1)) { 2118 right_edge[i] = delay_max + 1; 2119 debug_cond(DLEVEL == 2, 2120 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2121 __func__, __LINE__, i, right_edge[i]); 2122 } 2123 2124 /* 2125 * Reset sticky bit 2126 * READ: except for bits where we have seen both 2127 * the left and right edge. 2128 * WRITE: except for bits where we have seen the 2129 * left edge. 2130 */ 2131 *sticky_bit_chk <<= 1; 2132 if (write) { 2133 if (left_edge[i] != delay_max + 1) 2134 *sticky_bit_chk |= 1; 2135 } else { 2136 if ((left_edge[i] != delay_max + 1) && 2137 (right_edge[i] != delay_max + 1)) 2138 *sticky_bit_chk |= 1; 2139 } 2140 } 2141 2142 2143 } 2144 2145 /** 2146 * search_right_edge() - Find right edge of DQ/DQS working phase 2147 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2148 * @rank_bgn: Rank number 2149 * @write_group: Write Group 2150 * @read_group: Read Group 2151 * @start_dqs: DQS start phase 2152 * @start_dqs_en: DQS enable start phase 2153 * @sticky_bit_chk: Resulting sticky bit mask after the test 2154 * @left_edge: Left edge of the DQ/DQS phase 2155 * @right_edge: Right edge of the DQ/DQS phase 2156 * @use_read_test: Perform read test 2157 * 2158 * Find right edge of DQ/DQS working phase. 2159 */ 2160 static int search_right_edge(const int write, const int rank_bgn, 2161 const u32 write_group, const u32 read_group, 2162 const int start_dqs, const int start_dqs_en, 2163 u32 *sticky_bit_chk, 2164 int *left_edge, int *right_edge, const u32 use_read_test) 2165 { 2166 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2167 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2168 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2169 RW_MGR_MEM_DQ_PER_READ_DQS; 2170 u32 stop, bit_chk; 2171 int i, d; 2172 2173 for (d = 0; d <= dqs_max - start_dqs; d++) { 2174 if (write) { /* WRITE-ONLY */ 2175 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2176 d + start_dqs); 2177 } else { /* READ-ONLY */ 2178 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2179 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2180 uint32_t delay = d + start_dqs_en; 2181 if (delay > IO_DQS_EN_DELAY_MAX) 2182 delay = IO_DQS_EN_DELAY_MAX; 2183 scc_mgr_set_dqs_en_delay(read_group, delay); 2184 } 2185 scc_mgr_load_dqs(read_group); 2186 } 2187 2188 writel(0, &sdr_scc_mgr->update); 2189 2190 stop = search_stop_check(write, d, rank_bgn, write_group, 2191 read_group, &bit_chk, sticky_bit_chk, 2192 use_read_test); 2193 if (stop == 1) { 2194 if (write && (d == 0)) { /* WRITE-ONLY */ 2195 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2196 /* 2197 * d = 0 failed, but it passed when 2198 * testing the left edge, so it must be 2199 * marginal, set it to -1 2200 */ 2201 if (right_edge[i] == delay_max + 1 && 2202 left_edge[i] != delay_max + 1) 2203 right_edge[i] = -1; 2204 } 2205 } 2206 break; 2207 } 2208 2209 /* stop != 1 */ 2210 for (i = 0; i < per_dqs; i++) { 2211 if (bit_chk & 1) { 2212 /* 2213 * Remember a passing test as 2214 * the right_edge. 2215 */ 2216 right_edge[i] = d; 2217 } else { 2218 if (d != 0) { 2219 /* 2220 * If a right edge has not 2221 * been seen yet, then a future 2222 * passing test will mark this 2223 * edge as the left edge. 2224 */ 2225 if (right_edge[i] == delay_max + 1) 2226 left_edge[i] = -(d + 1); 2227 } else { 2228 /* 2229 * d = 0 failed, but it passed 2230 * when testing the left edge, 2231 * so it must be marginal, set 2232 * it to -1 2233 */ 2234 if (right_edge[i] == delay_max + 1 && 2235 left_edge[i] != delay_max + 1) 2236 right_edge[i] = -1; 2237 /* 2238 * If a right edge has not been 2239 * seen yet, then a future 2240 * passing test will mark this 2241 * edge as the left edge. 2242 */ 2243 else if (right_edge[i] == delay_max + 1) 2244 left_edge[i] = -(d + 1); 2245 } 2246 } 2247 2248 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2249 __func__, __LINE__, d); 2250 debug_cond(DLEVEL == 2, 2251 "bit_chk_test=%i left_edge[%u]: %d ", 2252 bit_chk & 1, i, left_edge[i]); 2253 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2254 right_edge[i]); 2255 bit_chk >>= 1; 2256 } 2257 } 2258 2259 /* Check that all bits have a window */ 2260 for (i = 0; i < per_dqs; i++) { 2261 debug_cond(DLEVEL == 2, 2262 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2263 __func__, __LINE__, i, left_edge[i], 2264 i, right_edge[i]); 2265 if ((left_edge[i] == dqs_max + 1) || 2266 (right_edge[i] == dqs_max + 1)) 2267 return i + 1; /* FIXME: If we fail, retval > 0 */ 2268 } 2269 2270 return 0; 2271 } 2272 2273 /** 2274 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2275 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2276 * @left_edge: Left edge of the DQ/DQS phase 2277 * @right_edge: Right edge of the DQ/DQS phase 2278 * @mid_min: Best DQ/DQS phase middle setting 2279 * 2280 * Find index and value of the middle of the DQ/DQS working phase. 2281 */ 2282 static int get_window_mid_index(const int write, int *left_edge, 2283 int *right_edge, int *mid_min) 2284 { 2285 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2286 RW_MGR_MEM_DQ_PER_READ_DQS; 2287 int i, mid, min_index; 2288 2289 /* Find middle of window for each DQ bit */ 2290 *mid_min = left_edge[0] - right_edge[0]; 2291 min_index = 0; 2292 for (i = 1; i < per_dqs; i++) { 2293 mid = left_edge[i] - right_edge[i]; 2294 if (mid < *mid_min) { 2295 *mid_min = mid; 2296 min_index = i; 2297 } 2298 } 2299 2300 /* 2301 * -mid_min/2 represents the amount that we need to move DQS. 2302 * If mid_min is odd and positive we'll need to add one to make 2303 * sure the rounding in further calculations is correct (always 2304 * bias to the right), so just add 1 for all positive values. 2305 */ 2306 if (*mid_min > 0) 2307 (*mid_min)++; 2308 *mid_min = *mid_min / 2; 2309 2310 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2311 __func__, __LINE__, *mid_min, min_index); 2312 return min_index; 2313 } 2314 2315 /** 2316 * center_dq_windows() - Center the DQ/DQS windows 2317 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2318 * @left_edge: Left edge of the DQ/DQS phase 2319 * @right_edge: Right edge of the DQ/DQS phase 2320 * @mid_min: Adjusted DQ/DQS phase middle setting 2321 * @orig_mid_min: Original DQ/DQS phase middle setting 2322 * @min_index: DQ/DQS phase middle setting index 2323 * @test_bgn: Rank number to begin the test 2324 * @dq_margin: Amount of shift for the DQ 2325 * @dqs_margin: Amount of shift for the DQS 2326 * 2327 * Align the DQ/DQS windows in each group. 2328 */ 2329 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2330 const int mid_min, const int orig_mid_min, 2331 const int min_index, const int test_bgn, 2332 int *dq_margin, int *dqs_margin) 2333 { 2334 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2335 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2336 RW_MGR_MEM_DQ_PER_READ_DQS; 2337 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2338 SCC_MGR_IO_IN_DELAY_OFFSET; 2339 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2340 2341 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2342 int shift_dq, i, p; 2343 2344 /* Initialize data for export structures */ 2345 *dqs_margin = delay_max + 1; 2346 *dq_margin = delay_max + 1; 2347 2348 /* add delay to bring centre of all DQ windows to the same "level" */ 2349 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2350 /* Use values before divide by 2 to reduce round off error */ 2351 shift_dq = (left_edge[i] - right_edge[i] - 2352 (left_edge[min_index] - right_edge[min_index]))/2 + 2353 (orig_mid_min - mid_min); 2354 2355 debug_cond(DLEVEL == 2, 2356 "vfifo_center: before: shift_dq[%u]=%d\n", 2357 i, shift_dq); 2358 2359 temp_dq_io_delay1 = readl(addr + (p << 2)); 2360 temp_dq_io_delay2 = readl(addr + (i << 2)); 2361 2362 if (shift_dq + temp_dq_io_delay1 > delay_max) 2363 shift_dq = delay_max - temp_dq_io_delay2; 2364 else if (shift_dq + temp_dq_io_delay1 < 0) 2365 shift_dq = -temp_dq_io_delay1; 2366 2367 debug_cond(DLEVEL == 2, 2368 "vfifo_center: after: shift_dq[%u]=%d\n", 2369 i, shift_dq); 2370 2371 if (write) 2372 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2373 else 2374 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2375 2376 scc_mgr_load_dq(p); 2377 2378 debug_cond(DLEVEL == 2, 2379 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2380 left_edge[i] - shift_dq + (-mid_min), 2381 right_edge[i] + shift_dq - (-mid_min)); 2382 2383 /* To determine values for export structures */ 2384 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2385 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2386 2387 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2388 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2389 } 2390 2391 } 2392 2393 /** 2394 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2395 * @rank_bgn: Rank number 2396 * @rw_group: Read/Write Group 2397 * @test_bgn: Rank at which the test begins 2398 * @use_read_test: Perform a read test 2399 * @update_fom: Update FOM 2400 * 2401 * Per-bit deskew DQ and centering. 2402 */ 2403 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2404 const u32 rw_group, const u32 test_bgn, 2405 const int use_read_test, const int update_fom) 2406 { 2407 const u32 addr = 2408 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2409 (rw_group << 2); 2410 /* 2411 * Store these as signed since there are comparisons with 2412 * signed numbers. 2413 */ 2414 uint32_t sticky_bit_chk; 2415 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2416 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2417 int32_t orig_mid_min, mid_min; 2418 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2419 int32_t dq_margin, dqs_margin; 2420 int i, min_index; 2421 int ret; 2422 2423 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2424 2425 start_dqs = readl(addr); 2426 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2427 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2428 2429 /* set the left and right edge of each bit to an illegal value */ 2430 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2431 sticky_bit_chk = 0; 2432 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2433 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2434 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2435 } 2436 2437 /* Search for the left edge of the window for each bit */ 2438 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2439 &sticky_bit_chk, 2440 left_edge, right_edge, use_read_test); 2441 2442 2443 /* Search for the right edge of the window for each bit */ 2444 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2445 start_dqs, start_dqs_en, 2446 &sticky_bit_chk, 2447 left_edge, right_edge, use_read_test); 2448 if (ret) { 2449 /* 2450 * Restore delay chain settings before letting the loop 2451 * in rw_mgr_mem_calibrate_vfifo to retry different 2452 * dqs/ck relationships. 2453 */ 2454 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2455 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2456 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2457 2458 scc_mgr_load_dqs(rw_group); 2459 writel(0, &sdr_scc_mgr->update); 2460 2461 debug_cond(DLEVEL == 1, 2462 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2463 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2464 if (use_read_test) { 2465 set_failing_group_stage(rw_group * 2466 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2467 CAL_STAGE_VFIFO, 2468 CAL_SUBSTAGE_VFIFO_CENTER); 2469 } else { 2470 set_failing_group_stage(rw_group * 2471 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2472 CAL_STAGE_VFIFO_AFTER_WRITES, 2473 CAL_SUBSTAGE_VFIFO_CENTER); 2474 } 2475 return -EIO; 2476 } 2477 2478 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2479 2480 /* Determine the amount we can change DQS (which is -mid_min) */ 2481 orig_mid_min = mid_min; 2482 new_dqs = start_dqs - mid_min; 2483 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2484 new_dqs = IO_DQS_IN_DELAY_MAX; 2485 else if (new_dqs < 0) 2486 new_dqs = 0; 2487 2488 mid_min = start_dqs - new_dqs; 2489 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2490 mid_min, new_dqs); 2491 2492 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2493 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2494 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2495 else if (start_dqs_en - mid_min < 0) 2496 mid_min += start_dqs_en - mid_min; 2497 } 2498 new_dqs = start_dqs - mid_min; 2499 2500 debug_cond(DLEVEL == 1, 2501 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2502 start_dqs, 2503 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2504 new_dqs, mid_min); 2505 2506 /* Add delay to bring centre of all DQ windows to the same "level". */ 2507 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2508 min_index, test_bgn, &dq_margin, &dqs_margin); 2509 2510 /* Move DQS-en */ 2511 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2512 final_dqs_en = start_dqs_en - mid_min; 2513 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2514 scc_mgr_load_dqs(rw_group); 2515 } 2516 2517 /* Move DQS */ 2518 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2519 scc_mgr_load_dqs(rw_group); 2520 debug_cond(DLEVEL == 2, 2521 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2522 __func__, __LINE__, dq_margin, dqs_margin); 2523 2524 /* 2525 * Do not remove this line as it makes sure all of our decisions 2526 * have been applied. Apply the update bit. 2527 */ 2528 writel(0, &sdr_scc_mgr->update); 2529 2530 if ((dq_margin < 0) || (dqs_margin < 0)) 2531 return -EINVAL; 2532 2533 return 0; 2534 } 2535 2536 /** 2537 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2538 * @rw_group: Read/Write Group 2539 * @phase: DQ/DQS phase 2540 * 2541 * Because initially no communication ca be reliably performed with the memory 2542 * device, the sequencer uses a guaranteed write mechanism to write data into 2543 * the memory device. 2544 */ 2545 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2546 const u32 phase) 2547 { 2548 int ret; 2549 2550 /* Set a particular DQ/DQS phase. */ 2551 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2552 2553 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2554 __func__, __LINE__, rw_group, phase); 2555 2556 /* 2557 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2558 * Load up the patterns used by read calibration using the 2559 * current DQDQS phase. 2560 */ 2561 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2562 2563 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2564 return 0; 2565 2566 /* 2567 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2568 * Back-to-Back reads of the patterns used for calibration. 2569 */ 2570 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2571 if (ret) 2572 debug_cond(DLEVEL == 1, 2573 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2574 __func__, __LINE__, rw_group, phase); 2575 return ret; 2576 } 2577 2578 /** 2579 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2580 * @rw_group: Read/Write Group 2581 * @test_bgn: Rank at which the test begins 2582 * 2583 * DQS enable calibration ensures reliable capture of the DQ signal without 2584 * glitches on the DQS line. 2585 */ 2586 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2587 const u32 test_bgn) 2588 { 2589 /* 2590 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2591 * DQS and DQS Eanble Signal Relationships. 2592 */ 2593 2594 /* We start at zero, so have one less dq to devide among */ 2595 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2596 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2597 int ret; 2598 u32 i, p, d, r; 2599 2600 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2601 2602 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2603 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2604 r += NUM_RANKS_PER_SHADOW_REG) { 2605 for (i = 0, p = test_bgn, d = 0; 2606 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2607 i++, p++, d += delay_step) { 2608 debug_cond(DLEVEL == 1, 2609 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2610 __func__, __LINE__, rw_group, r, i, p, d); 2611 2612 scc_mgr_set_dq_in_delay(p, d); 2613 scc_mgr_load_dq(p); 2614 } 2615 2616 writel(0, &sdr_scc_mgr->update); 2617 } 2618 2619 /* 2620 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2621 * dq_in_delay values 2622 */ 2623 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2624 2625 debug_cond(DLEVEL == 1, 2626 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2627 __func__, __LINE__, rw_group, !ret); 2628 2629 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2630 r += NUM_RANKS_PER_SHADOW_REG) { 2631 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2632 writel(0, &sdr_scc_mgr->update); 2633 } 2634 2635 return ret; 2636 } 2637 2638 /** 2639 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2640 * @rw_group: Read/Write Group 2641 * @test_bgn: Rank at which the test begins 2642 * @use_read_test: Perform a read test 2643 * @update_fom: Update FOM 2644 * 2645 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2646 * within a group. 2647 */ 2648 static int 2649 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2650 const int use_read_test, 2651 const int update_fom) 2652 2653 { 2654 int ret, grp_calibrated; 2655 u32 rank_bgn, sr; 2656 2657 /* 2658 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2659 * Read per-bit deskew can be done on a per shadow register basis. 2660 */ 2661 grp_calibrated = 1; 2662 for (rank_bgn = 0, sr = 0; 2663 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2664 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2665 /* Check if this set of ranks should be skipped entirely. */ 2666 if (param->skip_shadow_regs[sr]) 2667 continue; 2668 2669 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2670 test_bgn, 2671 use_read_test, 2672 update_fom); 2673 if (!ret) 2674 continue; 2675 2676 grp_calibrated = 0; 2677 } 2678 2679 if (!grp_calibrated) 2680 return -EIO; 2681 2682 return 0; 2683 } 2684 2685 /** 2686 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2687 * @rw_group: Read/Write Group 2688 * @test_bgn: Rank at which the test begins 2689 * 2690 * Stage 1: Calibrate the read valid prediction FIFO. 2691 * 2692 * This function implements UniPHY calibration Stage 1, as explained in 2693 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2694 * 2695 * - read valid prediction will consist of finding: 2696 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2697 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2698 * - we also do a per-bit deskew on the DQ lines. 2699 */ 2700 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2701 { 2702 uint32_t p, d; 2703 uint32_t dtaps_per_ptap; 2704 uint32_t failed_substage; 2705 2706 int ret; 2707 2708 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2709 2710 /* Update info for sims */ 2711 reg_file_set_group(rw_group); 2712 reg_file_set_stage(CAL_STAGE_VFIFO); 2713 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2714 2715 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2716 2717 /* USER Determine number of delay taps for each phase tap. */ 2718 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2719 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2720 2721 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2722 /* 2723 * In RLDRAMX we may be messing the delay of pins in 2724 * the same write rw_group but outside of the current read 2725 * the rw_group, but that's ok because we haven't calibrated 2726 * output side yet. 2727 */ 2728 if (d > 0) { 2729 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2730 rw_group, d); 2731 } 2732 2733 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2734 /* 1) Guaranteed Write */ 2735 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2736 if (ret) 2737 break; 2738 2739 /* 2) DQS Enable Calibration */ 2740 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2741 test_bgn); 2742 if (ret) { 2743 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2744 continue; 2745 } 2746 2747 /* 3) Centering DQ/DQS */ 2748 /* 2749 * If doing read after write calibration, do not update 2750 * FOM now. Do it then. 2751 */ 2752 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2753 test_bgn, 1, 0); 2754 if (ret) { 2755 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2756 continue; 2757 } 2758 2759 /* All done. */ 2760 goto cal_done_ok; 2761 } 2762 } 2763 2764 /* Calibration Stage 1 failed. */ 2765 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2766 return 0; 2767 2768 /* Calibration Stage 1 completed OK. */ 2769 cal_done_ok: 2770 /* 2771 * Reset the delay chains back to zero if they have moved > 1 2772 * (check for > 1 because loop will increase d even when pass in 2773 * first case). 2774 */ 2775 if (d > 2) 2776 scc_mgr_zero_group(rw_group, 1); 2777 2778 return 1; 2779 } 2780 2781 /** 2782 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering. 2783 * @rw_group: Read/Write Group 2784 * @test_bgn: Rank at which the test begins 2785 * 2786 * Stage 3: DQ/DQS Centering. 2787 * 2788 * This function implements UniPHY calibration Stage 3, as explained in 2789 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2790 */ 2791 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group, 2792 const u32 test_bgn) 2793 { 2794 int ret; 2795 2796 debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn); 2797 2798 /* Update info for sims. */ 2799 reg_file_set_group(rw_group); 2800 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2801 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2802 2803 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1); 2804 if (ret) 2805 set_failing_group_stage(rw_group, 2806 CAL_STAGE_VFIFO_AFTER_WRITES, 2807 CAL_SUBSTAGE_VFIFO_CENTER); 2808 return ret; 2809 } 2810 2811 /** 2812 * rw_mgr_mem_calibrate_lfifo() - Minimize latency 2813 * 2814 * Stage 4: Minimize latency. 2815 * 2816 * This function implements UniPHY calibration Stage 4, as explained in 2817 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2818 * Calibrate LFIFO to find smallest read latency. 2819 */ 2820 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2821 { 2822 int found_one = 0; 2823 2824 debug("%s:%d\n", __func__, __LINE__); 2825 2826 /* Update info for sims. */ 2827 reg_file_set_stage(CAL_STAGE_LFIFO); 2828 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2829 2830 /* Load up the patterns used by read calibration for all ranks */ 2831 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2832 2833 do { 2834 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2835 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2836 __func__, __LINE__, gbl->curr_read_lat); 2837 2838 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, 2839 PASS_ALL_BITS, 1)) 2840 break; 2841 2842 found_one = 1; 2843 /* 2844 * Reduce read latency and see if things are 2845 * working correctly. 2846 */ 2847 gbl->curr_read_lat--; 2848 } while (gbl->curr_read_lat > 0); 2849 2850 /* Reset the fifos to get pointers to known state. */ 2851 writel(0, &phy_mgr_cmd->fifo_reset); 2852 2853 if (found_one) { 2854 /* Add a fudge factor to the read latency that was determined */ 2855 gbl->curr_read_lat += 2; 2856 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2857 debug_cond(DLEVEL == 2, 2858 "%s:%d lfifo: success: using read_lat=%u\n", 2859 __func__, __LINE__, gbl->curr_read_lat); 2860 } else { 2861 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2862 CAL_SUBSTAGE_READ_LATENCY); 2863 2864 debug_cond(DLEVEL == 2, 2865 "%s:%d lfifo: failed at initial read_lat=%u\n", 2866 __func__, __LINE__, gbl->curr_read_lat); 2867 } 2868 2869 return found_one; 2870 } 2871 2872 /** 2873 * search_window() - Search for the/part of the window with DM/DQS shift 2874 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2875 * @rank_bgn: Rank number 2876 * @write_group: Write Group 2877 * @bgn_curr: Current window begin 2878 * @end_curr: Current window end 2879 * @bgn_best: Current best window begin 2880 * @end_best: Current best window end 2881 * @win_best: Size of the best window 2882 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2883 * 2884 * Search for the/part of the window with DM/DQS shift. 2885 */ 2886 static void search_window(const int search_dm, 2887 const u32 rank_bgn, const u32 write_group, 2888 int *bgn_curr, int *end_curr, int *bgn_best, 2889 int *end_best, int *win_best, int new_dqs) 2890 { 2891 u32 bit_chk; 2892 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2893 int d, di; 2894 2895 /* Search for the/part of the window with DM/DQS shift. */ 2896 for (di = max; di >= 0; di -= DELTA_D) { 2897 if (search_dm) { 2898 d = di; 2899 scc_mgr_apply_group_dm_out1_delay(d); 2900 } else { 2901 /* For DQS, we go from 0...max */ 2902 d = max - di; 2903 /* 2904 * Note: This only shifts DQS, so are we limiting ourselve to 2905 * width of DQ unnecessarily. 2906 */ 2907 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2908 d + new_dqs); 2909 } 2910 2911 writel(0, &sdr_scc_mgr->update); 2912 2913 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2914 PASS_ALL_BITS, &bit_chk, 2915 0)) { 2916 /* Set current end of the window. */ 2917 *end_curr = search_dm ? -d : d; 2918 2919 /* 2920 * If a starting edge of our window has not been seen 2921 * this is our current start of the DM window. 2922 */ 2923 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2924 *bgn_curr = search_dm ? -d : d; 2925 2926 /* 2927 * If current window is bigger than best seen. 2928 * Set best seen to be current window. 2929 */ 2930 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2931 *win_best = *end_curr - *bgn_curr + 1; 2932 *bgn_best = *bgn_curr; 2933 *end_best = *end_curr; 2934 } 2935 } else { 2936 /* We just saw a failing test. Reset temp edge. */ 2937 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2938 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2939 2940 /* Early exit is only applicable to DQS. */ 2941 if (search_dm) 2942 continue; 2943 2944 /* 2945 * Early exit optimization: if the remaining delay 2946 * chain space is less than already seen largest 2947 * window we can exit. 2948 */ 2949 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2950 break; 2951 } 2952 } 2953 } 2954 2955 /* 2956 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2957 * @rank_bgn: Rank number 2958 * @write_group: Write group 2959 * @test_bgn: Rank at which the test begins 2960 * 2961 * Center all windows. Do per-bit-deskew to possibly increase size of 2962 * certain windows. 2963 */ 2964 static int 2965 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2966 const u32 test_bgn) 2967 { 2968 int i; 2969 u32 sticky_bit_chk; 2970 u32 min_index; 2971 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2972 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2973 int mid; 2974 int mid_min, orig_mid_min; 2975 int new_dqs, start_dqs; 2976 int dq_margin, dqs_margin, dm_margin; 2977 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2978 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2979 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2980 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2981 int win_best = 0; 2982 2983 int ret; 2984 2985 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2986 2987 dm_margin = 0; 2988 2989 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 2990 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 2991 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2992 2993 /* Per-bit deskew. */ 2994 2995 /* 2996 * Set the left and right edge of each bit to an illegal value. 2997 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2998 */ 2999 sticky_bit_chk = 0; 3000 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3001 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3002 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3003 } 3004 3005 /* Search for the left edge of the window for each bit. */ 3006 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3007 &sticky_bit_chk, 3008 left_edge, right_edge, 0); 3009 3010 /* Search for the right edge of the window for each bit. */ 3011 ret = search_right_edge(1, rank_bgn, write_group, 0, 3012 start_dqs, 0, 3013 &sticky_bit_chk, 3014 left_edge, right_edge, 0); 3015 if (ret) { 3016 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3017 CAL_SUBSTAGE_WRITES_CENTER); 3018 return -EINVAL; 3019 } 3020 3021 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3022 3023 /* Determine the amount we can change DQS (which is -mid_min). */ 3024 orig_mid_min = mid_min; 3025 new_dqs = start_dqs; 3026 mid_min = 0; 3027 debug_cond(DLEVEL == 1, 3028 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3029 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3030 3031 /* Add delay to bring centre of all DQ windows to the same "level". */ 3032 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3033 min_index, 0, &dq_margin, &dqs_margin); 3034 3035 /* Move DQS */ 3036 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3037 writel(0, &sdr_scc_mgr->update); 3038 3039 /* Centre DM */ 3040 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3041 3042 /* 3043 * Set the left and right edge of each bit to an illegal value. 3044 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3045 */ 3046 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3047 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3048 3049 /* Search for the/part of the window with DM shift. */ 3050 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3051 &bgn_best, &end_best, &win_best, 0); 3052 3053 /* Reset DM delay chains to 0. */ 3054 scc_mgr_apply_group_dm_out1_delay(0); 3055 3056 /* 3057 * Check to see if the current window nudges up aganist 0 delay. 3058 * If so we need to continue the search by shifting DQS otherwise DQS 3059 * search begins as a new search. 3060 */ 3061 if (end_curr != 0) { 3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3064 } 3065 3066 /* Search for the/part of the window with DQS shifts. */ 3067 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3068 &bgn_best, &end_best, &win_best, new_dqs); 3069 3070 /* Assign left and right edge for cal and reporting. */ 3071 left_edge[0] = -1 * bgn_best; 3072 right_edge[0] = end_best; 3073 3074 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3075 __func__, __LINE__, left_edge[0], right_edge[0]); 3076 3077 /* Move DQS (back to orig). */ 3078 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3079 3080 /* Move DM */ 3081 3082 /* Find middle of window for the DM bit. */ 3083 mid = (left_edge[0] - right_edge[0]) / 2; 3084 3085 /* Only move right, since we are not moving DQS/DQ. */ 3086 if (mid < 0) 3087 mid = 0; 3088 3089 /* dm_marign should fail if we never find a window. */ 3090 if (win_best == 0) 3091 dm_margin = -1; 3092 else 3093 dm_margin = left_edge[0] - mid; 3094 3095 scc_mgr_apply_group_dm_out1_delay(mid); 3096 writel(0, &sdr_scc_mgr->update); 3097 3098 debug_cond(DLEVEL == 2, 3099 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3100 __func__, __LINE__, left_edge[0], right_edge[0], 3101 mid, dm_margin); 3102 /* Export values. */ 3103 gbl->fom_out += dq_margin + dqs_margin; 3104 3105 debug_cond(DLEVEL == 2, 3106 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3107 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3108 3109 /* 3110 * Do not remove this line as it makes sure all of our 3111 * decisions have been applied. 3112 */ 3113 writel(0, &sdr_scc_mgr->update); 3114 3115 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3116 return -EINVAL; 3117 3118 return 0; 3119 } 3120 3121 /** 3122 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3123 * @rank_bgn: Rank number 3124 * @group: Read/Write Group 3125 * @test_bgn: Rank at which the test begins 3126 * 3127 * Stage 2: Write Calibration Part One. 3128 * 3129 * This function implements UniPHY calibration Stage 2, as explained in 3130 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3131 */ 3132 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3133 const u32 test_bgn) 3134 { 3135 int ret; 3136 3137 /* Update info for sims */ 3138 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3139 3140 reg_file_set_group(group); 3141 reg_file_set_stage(CAL_STAGE_WRITES); 3142 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3143 3144 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3145 if (ret) 3146 set_failing_group_stage(group, CAL_STAGE_WRITES, 3147 CAL_SUBSTAGE_WRITES_CENTER); 3148 3149 return ret; 3150 } 3151 3152 /** 3153 * mem_precharge_and_activate() - Precharge all banks and activate 3154 * 3155 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3156 */ 3157 static void mem_precharge_and_activate(void) 3158 { 3159 int r; 3160 3161 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3162 /* Test if the rank should be skipped. */ 3163 if (param->skip_ranks[r]) 3164 continue; 3165 3166 /* Set rank. */ 3167 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3168 3169 /* Precharge all banks. */ 3170 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3171 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3172 3173 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3174 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3175 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3176 3177 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3178 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3179 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3180 3181 /* Activate rows. */ 3182 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3183 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3184 } 3185 } 3186 3187 /** 3188 * mem_init_latency() - Configure memory RLAT and WLAT settings 3189 * 3190 * Configure memory RLAT and WLAT parameters. 3191 */ 3192 static void mem_init_latency(void) 3193 { 3194 /* 3195 * For AV/CV, LFIFO is hardened and always runs at full rate 3196 * so max latency in AFI clocks, used here, is correspondingly 3197 * smaller. 3198 */ 3199 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3200 u32 rlat, wlat; 3201 3202 debug("%s:%d\n", __func__, __LINE__); 3203 3204 /* 3205 * Read in write latency. 3206 * WL for Hard PHY does not include additive latency. 3207 */ 3208 wlat = readl(&data_mgr->t_wl_add); 3209 wlat += readl(&data_mgr->mem_t_add); 3210 3211 gbl->rw_wl_nop_cycles = wlat - 1; 3212 3213 /* Read in readl latency. */ 3214 rlat = readl(&data_mgr->t_rl_add); 3215 3216 /* Set a pretty high read latency initially. */ 3217 gbl->curr_read_lat = rlat + 16; 3218 if (gbl->curr_read_lat > max_latency) 3219 gbl->curr_read_lat = max_latency; 3220 3221 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3222 3223 /* Advertise write latency. */ 3224 writel(wlat, &phy_mgr_cfg->afi_wlat); 3225 } 3226 3227 /** 3228 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3229 * 3230 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3231 */ 3232 static void mem_skip_calibrate(void) 3233 { 3234 uint32_t vfifo_offset; 3235 uint32_t i, j, r; 3236 3237 debug("%s:%d\n", __func__, __LINE__); 3238 /* Need to update every shadow register set used by the interface */ 3239 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3240 r += NUM_RANKS_PER_SHADOW_REG) { 3241 /* 3242 * Set output phase alignment settings appropriate for 3243 * skip calibration. 3244 */ 3245 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3246 scc_mgr_set_dqs_en_phase(i, 0); 3247 #if IO_DLL_CHAIN_LENGTH == 6 3248 scc_mgr_set_dqdqs_output_phase(i, 6); 3249 #else 3250 scc_mgr_set_dqdqs_output_phase(i, 7); 3251 #endif 3252 /* 3253 * Case:33398 3254 * 3255 * Write data arrives to the I/O two cycles before write 3256 * latency is reached (720 deg). 3257 * -> due to bit-slip in a/c bus 3258 * -> to allow board skew where dqs is longer than ck 3259 * -> how often can this happen!? 3260 * -> can claim back some ptaps for high freq 3261 * support if we can relax this, but i digress... 3262 * 3263 * The write_clk leads mem_ck by 90 deg 3264 * The minimum ptap of the OPA is 180 deg 3265 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3266 * The write_clk is always delayed by 2 ptaps 3267 * 3268 * Hence, to make DQS aligned to CK, we need to delay 3269 * DQS by: 3270 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3271 * 3272 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3273 * gives us the number of ptaps, which simplies to: 3274 * 3275 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3276 */ 3277 scc_mgr_set_dqdqs_output_phase(i, 3278 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3279 } 3280 writel(0xff, &sdr_scc_mgr->dqs_ena); 3281 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3282 3283 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3284 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3285 SCC_MGR_GROUP_COUNTER_OFFSET); 3286 } 3287 writel(0xff, &sdr_scc_mgr->dq_ena); 3288 writel(0xff, &sdr_scc_mgr->dm_ena); 3289 writel(0, &sdr_scc_mgr->update); 3290 } 3291 3292 /* Compensate for simulation model behaviour */ 3293 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3294 scc_mgr_set_dqs_bus_in_delay(i, 10); 3295 scc_mgr_load_dqs(i); 3296 } 3297 writel(0, &sdr_scc_mgr->update); 3298 3299 /* 3300 * ArriaV has hard FIFOs that can only be initialized by incrementing 3301 * in sequencer. 3302 */ 3303 vfifo_offset = CALIB_VFIFO_OFFSET; 3304 for (j = 0; j < vfifo_offset; j++) 3305 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3306 writel(0, &phy_mgr_cmd->fifo_reset); 3307 3308 /* 3309 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3310 * setting from generation-time constant. 3311 */ 3312 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3313 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3314 } 3315 3316 /** 3317 * mem_calibrate() - Memory calibration entry point. 3318 * 3319 * Perform memory calibration. 3320 */ 3321 static uint32_t mem_calibrate(void) 3322 { 3323 uint32_t i; 3324 uint32_t rank_bgn, sr; 3325 uint32_t write_group, write_test_bgn; 3326 uint32_t read_group, read_test_bgn; 3327 uint32_t run_groups, current_run; 3328 uint32_t failing_groups = 0; 3329 uint32_t group_failed = 0; 3330 3331 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3332 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3333 3334 debug("%s:%d\n", __func__, __LINE__); 3335 3336 /* Initialize the data settings */ 3337 gbl->error_substage = CAL_SUBSTAGE_NIL; 3338 gbl->error_stage = CAL_STAGE_NIL; 3339 gbl->error_group = 0xff; 3340 gbl->fom_in = 0; 3341 gbl->fom_out = 0; 3342 3343 /* Initialize WLAT and RLAT. */ 3344 mem_init_latency(); 3345 3346 /* Initialize bit slips. */ 3347 mem_precharge_and_activate(); 3348 3349 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3350 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3351 SCC_MGR_GROUP_COUNTER_OFFSET); 3352 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3353 if (i == 0) 3354 scc_mgr_set_hhp_extras(); 3355 3356 scc_set_bypass_mode(i); 3357 } 3358 3359 /* Calibration is skipped. */ 3360 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3361 /* 3362 * Set VFIFO and LFIFO to instant-on settings in skip 3363 * calibration mode. 3364 */ 3365 mem_skip_calibrate(); 3366 3367 /* 3368 * Do not remove this line as it makes sure all of our 3369 * decisions have been applied. 3370 */ 3371 writel(0, &sdr_scc_mgr->update); 3372 return 1; 3373 } 3374 3375 /* Calibration is not skipped. */ 3376 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3377 /* 3378 * Zero all delay chain/phase settings for all 3379 * groups and all shadow register sets. 3380 */ 3381 scc_mgr_zero_all(); 3382 3383 run_groups = ~param->skip_groups; 3384 3385 for (write_group = 0, write_test_bgn = 0; write_group 3386 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3387 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3388 3389 /* Initialize the group failure */ 3390 group_failed = 0; 3391 3392 current_run = run_groups & ((1 << 3393 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3394 run_groups = run_groups >> 3395 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3396 3397 if (current_run == 0) 3398 continue; 3399 3400 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3401 SCC_MGR_GROUP_COUNTER_OFFSET); 3402 scc_mgr_zero_group(write_group, 0); 3403 3404 for (read_group = write_group * rwdqs_ratio, 3405 read_test_bgn = 0; 3406 read_group < (write_group + 1) * rwdqs_ratio; 3407 read_group++, 3408 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3409 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3410 continue; 3411 3412 /* Calibrate the VFIFO */ 3413 if (rw_mgr_mem_calibrate_vfifo(read_group, 3414 read_test_bgn)) 3415 continue; 3416 3417 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3418 return 0; 3419 3420 /* The group failed, we're done. */ 3421 goto grp_failed; 3422 } 3423 3424 /* Calibrate the output side */ 3425 for (rank_bgn = 0, sr = 0; 3426 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3427 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3428 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3429 continue; 3430 3431 /* Not needed in quick mode! */ 3432 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3433 continue; 3434 3435 /* 3436 * Determine if this set of ranks 3437 * should be skipped entirely. 3438 */ 3439 if (param->skip_shadow_regs[sr]) 3440 continue; 3441 3442 /* Calibrate WRITEs */ 3443 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3444 write_group, write_test_bgn)) 3445 continue; 3446 3447 group_failed = 1; 3448 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3449 return 0; 3450 } 3451 3452 /* Some group failed, we're done. */ 3453 if (group_failed) 3454 goto grp_failed; 3455 3456 for (read_group = write_group * rwdqs_ratio, 3457 read_test_bgn = 0; 3458 read_group < (write_group + 1) * rwdqs_ratio; 3459 read_group++, 3460 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3461 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3462 continue; 3463 3464 if (!rw_mgr_mem_calibrate_vfifo_end(read_group, 3465 read_test_bgn)) 3466 continue; 3467 3468 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3469 return 0; 3470 3471 /* The group failed, we're done. */ 3472 goto grp_failed; 3473 } 3474 3475 /* No group failed, continue as usual. */ 3476 continue; 3477 3478 grp_failed: /* A group failed, increment the counter. */ 3479 failing_groups++; 3480 } 3481 3482 /* 3483 * USER If there are any failing groups then report 3484 * the failure. 3485 */ 3486 if (failing_groups != 0) 3487 return 0; 3488 3489 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3490 continue; 3491 3492 /* 3493 * If we're skipping groups as part of debug, 3494 * don't calibrate LFIFO. 3495 */ 3496 if (param->skip_groups != 0) 3497 continue; 3498 3499 /* Calibrate the LFIFO */ 3500 if (!rw_mgr_mem_calibrate_lfifo()) 3501 return 0; 3502 } 3503 3504 /* 3505 * Do not remove this line as it makes sure all of our decisions 3506 * have been applied. 3507 */ 3508 writel(0, &sdr_scc_mgr->update); 3509 return 1; 3510 } 3511 3512 /** 3513 * run_mem_calibrate() - Perform memory calibration 3514 * 3515 * This function triggers the entire memory calibration procedure. 3516 */ 3517 static int run_mem_calibrate(void) 3518 { 3519 int pass; 3520 3521 debug("%s:%d\n", __func__, __LINE__); 3522 3523 /* Reset pass/fail status shown on afi_cal_success/fail */ 3524 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3525 3526 /* Stop tracking manager. */ 3527 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3528 3529 phy_mgr_initialize(); 3530 rw_mgr_mem_initialize(); 3531 3532 /* Perform the actual memory calibration. */ 3533 pass = mem_calibrate(); 3534 3535 mem_precharge_and_activate(); 3536 writel(0, &phy_mgr_cmd->fifo_reset); 3537 3538 /* Handoff. */ 3539 rw_mgr_mem_handoff(); 3540 /* 3541 * In Hard PHY this is a 2-bit control: 3542 * 0: AFI Mux Select 3543 * 1: DDIO Mux Select 3544 */ 3545 writel(0x2, &phy_mgr_cfg->mux_sel); 3546 3547 /* Start tracking manager. */ 3548 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3549 3550 return pass; 3551 } 3552 3553 /** 3554 * debug_mem_calibrate() - Report result of memory calibration 3555 * @pass: Value indicating whether calibration passed or failed 3556 * 3557 * This function reports the results of the memory calibration 3558 * and writes debug information into the register file. 3559 */ 3560 static void debug_mem_calibrate(int pass) 3561 { 3562 uint32_t debug_info; 3563 3564 if (pass) { 3565 printf("%s: CALIBRATION PASSED\n", __FILE__); 3566 3567 gbl->fom_in /= 2; 3568 gbl->fom_out /= 2; 3569 3570 if (gbl->fom_in > 0xff) 3571 gbl->fom_in = 0xff; 3572 3573 if (gbl->fom_out > 0xff) 3574 gbl->fom_out = 0xff; 3575 3576 /* Update the FOM in the register file */ 3577 debug_info = gbl->fom_in; 3578 debug_info |= gbl->fom_out << 8; 3579 writel(debug_info, &sdr_reg_file->fom); 3580 3581 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3582 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3583 } else { 3584 printf("%s: CALIBRATION FAILED\n", __FILE__); 3585 3586 debug_info = gbl->error_stage; 3587 debug_info |= gbl->error_substage << 8; 3588 debug_info |= gbl->error_group << 16; 3589 3590 writel(debug_info, &sdr_reg_file->failing_stage); 3591 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3592 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3593 3594 /* Update the failing group/stage in the register file */ 3595 debug_info = gbl->error_stage; 3596 debug_info |= gbl->error_substage << 8; 3597 debug_info |= gbl->error_group << 16; 3598 writel(debug_info, &sdr_reg_file->failing_stage); 3599 } 3600 3601 printf("%s: Calibration complete\n", __FILE__); 3602 } 3603 3604 /** 3605 * hc_initialize_rom_data() - Initialize ROM data 3606 * 3607 * Initialize ROM data. 3608 */ 3609 static void hc_initialize_rom_data(void) 3610 { 3611 u32 i, addr; 3612 3613 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3614 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3615 writel(inst_rom_init[i], addr + (i << 2)); 3616 3617 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3618 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3619 writel(ac_rom_init[i], addr + (i << 2)); 3620 } 3621 3622 /** 3623 * initialize_reg_file() - Initialize SDR register file 3624 * 3625 * Initialize SDR register file. 3626 */ 3627 static void initialize_reg_file(void) 3628 { 3629 /* Initialize the register file with the correct data */ 3630 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3631 writel(0, &sdr_reg_file->debug_data_addr); 3632 writel(0, &sdr_reg_file->cur_stage); 3633 writel(0, &sdr_reg_file->fom); 3634 writel(0, &sdr_reg_file->failing_stage); 3635 writel(0, &sdr_reg_file->debug1); 3636 writel(0, &sdr_reg_file->debug2); 3637 } 3638 3639 /** 3640 * initialize_hps_phy() - Initialize HPS PHY 3641 * 3642 * Initialize HPS PHY. 3643 */ 3644 static void initialize_hps_phy(void) 3645 { 3646 uint32_t reg; 3647 /* 3648 * Tracking also gets configured here because it's in the 3649 * same register. 3650 */ 3651 uint32_t trk_sample_count = 7500; 3652 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3653 /* 3654 * Format is number of outer loops in the 16 MSB, sample 3655 * count in 16 LSB. 3656 */ 3657 3658 reg = 0; 3659 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3660 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3661 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3662 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3663 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3664 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3665 /* 3666 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3667 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3668 */ 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3671 trk_sample_count); 3672 writel(reg, &sdr_ctrl->phy_ctrl0); 3673 3674 reg = 0; 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3676 trk_sample_count >> 3677 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3679 trk_long_idle_sample_count); 3680 writel(reg, &sdr_ctrl->phy_ctrl1); 3681 3682 reg = 0; 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3684 trk_long_idle_sample_count >> 3685 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3686 writel(reg, &sdr_ctrl->phy_ctrl2); 3687 } 3688 3689 /** 3690 * initialize_tracking() - Initialize tracking 3691 * 3692 * Initialize the register file with usable initial data. 3693 */ 3694 static void initialize_tracking(void) 3695 { 3696 /* 3697 * Initialize the register file with the correct data. 3698 * Compute usable version of value in case we skip full 3699 * computation later. 3700 */ 3701 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3702 &sdr_reg_file->dtaps_per_ptap); 3703 3704 /* trk_sample_count */ 3705 writel(7500, &sdr_reg_file->trk_sample_count); 3706 3707 /* longidle outer loop [15:0] */ 3708 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3709 3710 /* 3711 * longidle sample count [31:24] 3712 * trfc, worst case of 933Mhz 4Gb [23:16] 3713 * trcd, worst case [15:8] 3714 * vfifo wait [7:0] 3715 */ 3716 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3717 &sdr_reg_file->delays); 3718 3719 /* mux delay */ 3720 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3721 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3722 &sdr_reg_file->trk_rw_mgr_addr); 3723 3724 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3725 &sdr_reg_file->trk_read_dqs_width); 3726 3727 /* trefi [7:0] */ 3728 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3729 &sdr_reg_file->trk_rfsh); 3730 } 3731 3732 int sdram_calibration_full(void) 3733 { 3734 struct param_type my_param; 3735 struct gbl_type my_gbl; 3736 uint32_t pass; 3737 3738 memset(&my_param, 0, sizeof(my_param)); 3739 memset(&my_gbl, 0, sizeof(my_gbl)); 3740 3741 param = &my_param; 3742 gbl = &my_gbl; 3743 3744 /* Set the calibration enabled by default */ 3745 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3746 /* 3747 * Only sweep all groups (regardless of fail state) by default 3748 * Set enabled read test by default. 3749 */ 3750 #if DISABLE_GUARANTEED_READ 3751 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3752 #endif 3753 /* Initialize the register file */ 3754 initialize_reg_file(); 3755 3756 /* Initialize any PHY CSR */ 3757 initialize_hps_phy(); 3758 3759 scc_mgr_initialize(); 3760 3761 initialize_tracking(); 3762 3763 printf("%s: Preparing to start memory calibration\n", __FILE__); 3764 3765 debug("%s:%d\n", __func__, __LINE__); 3766 debug_cond(DLEVEL == 1, 3767 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3768 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3769 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3770 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3771 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3772 debug_cond(DLEVEL == 1, 3773 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3774 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3775 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3776 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3777 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3778 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3779 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3780 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3781 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3782 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3783 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3784 IO_IO_OUT2_DELAY_MAX); 3785 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3786 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3787 3788 hc_initialize_rom_data(); 3789 3790 /* update info for sims */ 3791 reg_file_set_stage(CAL_STAGE_NIL); 3792 reg_file_set_group(0); 3793 3794 /* 3795 * Load global needed for those actions that require 3796 * some dynamic calibration support. 3797 */ 3798 dyn_calib_steps = STATIC_CALIB_STEPS; 3799 /* 3800 * Load global to allow dynamic selection of delay loop settings 3801 * based on calibration mode. 3802 */ 3803 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3804 skip_delay_mask = 0xff; 3805 else 3806 skip_delay_mask = 0x0; 3807 3808 pass = run_mem_calibrate(); 3809 debug_mem_calibrate(pass); 3810 return pass; 3811 } 3812