xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 6a39be6ca93bfeb7f89d5ae2c170ea929d8222a0)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const u32 clocks)
762 {
763 	u32 afi_clocks;
764 	u16 c_loop;
765 	u8 inner;
766 	u8 outer;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 	/* Scale (rounding up) to get afi clocks. */
771 	afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
772 	if (afi_clocks)	/* Temporary underflow protection */
773 		afi_clocks--;
774 
775 	/*
776 	 * Note, we don't bother accounting for being off a little
777 	 * bit because of a few extra instructions in outer loops.
778 	 * Note, the loops have a test at the end, and do the test
779 	 * before the decrement, and so always perform the loop
780 	 * 1 time more than the counter value
781 	 */
782 	c_loop = afi_clocks >> 16;
783 	outer = c_loop ? 0xff : (afi_clocks >> 8);
784 	inner = outer ? 0xff : afi_clocks;
785 
786 	/*
787 	 * rom instructions are structured as follows:
788 	 *
789 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
790 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
791 	 *                return
792 	 *
793 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
794 	 * TARGET_B is set to IDLE_LOOP2 as well
795 	 *
796 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
797 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
798 	 *
799 	 * a little confusing, but it helps save precious space in the inst_rom
800 	 * and sequencer rom and keeps the delays more accurate and reduces
801 	 * overhead
802 	 */
803 	if (afi_clocks < 0x100) {
804 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
805 			&sdr_rw_load_mgr_regs->load_cntr1);
806 
807 		writel(RW_MGR_IDLE_LOOP1,
808 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
809 
810 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
811 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
812 	} else {
813 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
814 			&sdr_rw_load_mgr_regs->load_cntr0);
815 
816 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
817 			&sdr_rw_load_mgr_regs->load_cntr1);
818 
819 		writel(RW_MGR_IDLE_LOOP2,
820 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
821 
822 		writel(RW_MGR_IDLE_LOOP2,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		/* hack to get around compiler not being smart enough */
826 		if (afi_clocks <= 0x10000) {
827 			/* only need to run once */
828 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
829 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
830 		} else {
831 			do {
832 				writel(RW_MGR_IDLE_LOOP2,
833 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
834 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
835 			} while (c_loop-- != 0);
836 		}
837 	}
838 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
839 }
840 
841 /**
842  * rw_mgr_mem_init_load_regs() - Load instruction registers
843  * @cntr0:	Counter 0 value
844  * @cntr1:	Counter 1 value
845  * @cntr2:	Counter 2 value
846  * @jump:	Jump instruction value
847  *
848  * Load instruction registers.
849  */
850 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
851 {
852 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
853 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
854 
855 	/* Load counters */
856 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
857 	       &sdr_rw_load_mgr_regs->load_cntr0);
858 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
859 	       &sdr_rw_load_mgr_regs->load_cntr1);
860 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
861 	       &sdr_rw_load_mgr_regs->load_cntr2);
862 
863 	/* Load jump address */
864 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
865 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
866 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
867 
868 	/* Execute count instruction */
869 	writel(jump, grpaddr);
870 }
871 
872 /**
873  * rw_mgr_mem_load_user() - Load user calibration values
874  * @fin1:	Final instruction 1
875  * @fin2:	Final instruction 2
876  * @precharge:	If 1, precharge the banks at the end
877  *
878  * Load user calibration values and optionally precharge the banks.
879  */
880 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
881 				 const int precharge)
882 {
883 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
884 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
885 	u32 r;
886 
887 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
888 		if (param->skip_ranks[r]) {
889 			/* request to skip the rank */
890 			continue;
891 		}
892 
893 		/* set rank */
894 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
895 
896 		/* precharge all banks ... */
897 		if (precharge)
898 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
899 
900 		/*
901 		 * USER Use Mirror-ed commands for odd ranks if address
902 		 * mirrorring is on
903 		 */
904 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
905 			set_jump_as_return();
906 			writel(RW_MGR_MRS2_MIRR, grpaddr);
907 			delay_for_n_mem_clocks(4);
908 			set_jump_as_return();
909 			writel(RW_MGR_MRS3_MIRR, grpaddr);
910 			delay_for_n_mem_clocks(4);
911 			set_jump_as_return();
912 			writel(RW_MGR_MRS1_MIRR, grpaddr);
913 			delay_for_n_mem_clocks(4);
914 			set_jump_as_return();
915 			writel(fin1, grpaddr);
916 		} else {
917 			set_jump_as_return();
918 			writel(RW_MGR_MRS2, grpaddr);
919 			delay_for_n_mem_clocks(4);
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS3, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS1, grpaddr);
925 			set_jump_as_return();
926 			writel(fin2, grpaddr);
927 		}
928 
929 		if (precharge)
930 			continue;
931 
932 		set_jump_as_return();
933 		writel(RW_MGR_ZQCL, grpaddr);
934 
935 		/* tZQinit = tDLLK = 512 ck cycles */
936 		delay_for_n_mem_clocks(512);
937 	}
938 }
939 
940 /**
941  * rw_mgr_mem_initialize() - Initialize RW Manager
942  *
943  * Initialize RW Manager.
944  */
945 static void rw_mgr_mem_initialize(void)
946 {
947 	debug("%s:%d\n", __func__, __LINE__);
948 
949 	/* The reset / cke part of initialization is broadcasted to all ranks */
950 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
951 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
952 
953 	/*
954 	 * Here's how you load register for a loop
955 	 * Counters are located @ 0x800
956 	 * Jump address are located @ 0xC00
957 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
958 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
959 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
960 	 * significant bits
961 	 */
962 
963 	/* Start with memory RESET activated */
964 
965 	/* tINIT = 200us */
966 
967 	/*
968 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
969 	 * If a and b are the number of iteration in 2 nested loops
970 	 * it takes the following number of cycles to complete the operation:
971 	 * number_of_cycles = ((2 + n) * a + 2) * b
972 	 * where n is the number of instruction in the inner loop
973 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
974 	 * b = 6A
975 	 */
976 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
977 				  SEQ_TINIT_CNTR2_VAL,
978 				  RW_MGR_INIT_RESET_0_CKE_0);
979 
980 	/* Indicate that memory is stable. */
981 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
982 
983 	/*
984 	 * transition the RESET to high
985 	 * Wait for 500us
986 	 */
987 
988 	/*
989 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
990 	 * If a and b are the number of iteration in 2 nested loops
991 	 * it takes the following number of cycles to complete the operation
992 	 * number_of_cycles = ((2 + n) * a + 2) * b
993 	 * where n is the number of instruction in the inner loop
994 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
995 	 * b = FF
996 	 */
997 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
998 				  SEQ_TRESET_CNTR2_VAL,
999 				  RW_MGR_INIT_RESET_1_CKE_0);
1000 
1001 	/* Bring up clock enable. */
1002 
1003 	/* tXRP < 250 ck cycles */
1004 	delay_for_n_mem_clocks(250);
1005 
1006 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1007 			     0);
1008 }
1009 
1010 /**
1011  * rw_mgr_mem_handoff() - Hand off the memory to user
1012  *
1013  * At the end of calibration we have to program the user settings in
1014  * and hand off the memory to the user.
1015  */
1016 static void rw_mgr_mem_handoff(void)
1017 {
1018 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1019 	/*
1020 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1021 	 * commands, but we will have plenty of NIOS cycles before actual
1022 	 * handoff so its okay.
1023 	 */
1024 }
1025 
1026 /**
1027  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1028  * @group:	Write Group
1029  * @use_dm:	Use DM
1030  *
1031  * Issue write test command. Two variants are provided, one that just tests
1032  * a write pattern and another that tests datamask functionality.
1033  */
1034 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1035 						  u32 test_dm)
1036 {
1037 	const u32 quick_write_mode =
1038 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1039 		ENABLE_SUPER_QUICK_CALIBRATION;
1040 	u32 mcc_instruction;
1041 	u32 rw_wl_nop_cycles;
1042 
1043 	/*
1044 	 * Set counter and jump addresses for the right
1045 	 * number of NOP cycles.
1046 	 * The number of supported NOP cycles can range from -1 to infinity
1047 	 * Three different cases are handled:
1048 	 *
1049 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1050 	 *    mechanism will be used to insert the right number of NOPs
1051 	 *
1052 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1053 	 *    issuing the write command will jump straight to the
1054 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1055 	 *    data (for RLD), skipping
1056 	 *    the NOP micro-instruction all together
1057 	 *
1058 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1059 	 *    turned on in the same micro-instruction that issues the write
1060 	 *    command. Then we need
1061 	 *    to directly jump to the micro-instruction that sends out the data
1062 	 *
1063 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1064 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1065 	 *       write-read operations.
1066 	 *       one counter left to issue this command in "multiple-group" mode
1067 	 */
1068 
1069 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1070 
1071 	if (rw_wl_nop_cycles == -1) {
1072 		/*
1073 		 * CNTR 2 - We want to execute the special write operation that
1074 		 * turns on DQS right away and then skip directly to the
1075 		 * instruction that sends out the data. We set the counter to a
1076 		 * large number so that the jump is always taken.
1077 		 */
1078 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1079 
1080 		/* CNTR 3 - Not used */
1081 		if (test_dm) {
1082 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1083 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1084 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1085 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1086 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1087 		} else {
1088 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1089 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1090 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1091 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1092 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1093 		}
1094 	} else if (rw_wl_nop_cycles == 0) {
1095 		/*
1096 		 * CNTR 2 - We want to skip the NOP operation and go straight
1097 		 * to the DQS enable instruction. We set the counter to a large
1098 		 * number so that the jump is always taken.
1099 		 */
1100 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1101 
1102 		/* CNTR 3 - Not used */
1103 		if (test_dm) {
1104 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1105 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1106 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1107 		} else {
1108 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1109 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1110 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1111 		}
1112 	} else {
1113 		/*
1114 		 * CNTR 2 - In this case we want to execute the next instruction
1115 		 * and NOT take the jump. So we set the counter to 0. The jump
1116 		 * address doesn't count.
1117 		 */
1118 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1119 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1120 
1121 		/*
1122 		 * CNTR 3 - Set the nop counter to the number of cycles we
1123 		 * need to loop for, minus 1.
1124 		 */
1125 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1126 		if (test_dm) {
1127 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1128 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1129 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1130 		} else {
1131 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1132 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1133 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1134 		}
1135 	}
1136 
1137 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1138 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1139 
1140 	if (quick_write_mode)
1141 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1142 	else
1143 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1144 
1145 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1146 
1147 	/*
1148 	 * CNTR 1 - This is used to ensure enough time elapses
1149 	 * for read data to come back.
1150 	 */
1151 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1152 
1153 	if (test_dm) {
1154 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1155 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1156 	} else {
1157 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1159 	}
1160 
1161 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1162 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1163 				(group << 2));
1164 }
1165 
1166 /**
1167  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1168  * @rank_bgn:		Rank number
1169  * @write_group:	Write Group
1170  * @use_dm:		Use DM
1171  * @all_correct:	All bits must be correct in the mask
1172  * @bit_chk:		Resulting bit mask after the test
1173  * @all_ranks:		Test all ranks
1174  *
1175  * Test writes, can check for a single bit pass or multiple bit pass.
1176  */
1177 static int
1178 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1179 				const u32 use_dm, const u32 all_correct,
1180 				u32 *bit_chk, const u32 all_ranks)
1181 {
1182 	const u32 rank_end = all_ranks ?
1183 				RW_MGR_MEM_NUMBER_OF_RANKS :
1184 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1185 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1186 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1187 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1188 
1189 	u32 tmp_bit_chk, base_rw_mgr;
1190 	int vg, r;
1191 
1192 	*bit_chk = param->write_correct_mask;
1193 
1194 	for (r = rank_bgn; r < rank_end; r++) {
1195 		/* Request to skip the rank */
1196 		if (param->skip_ranks[r])
1197 			continue;
1198 
1199 		/* Set rank */
1200 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1201 
1202 		tmp_bit_chk = 0;
1203 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1204 		     vg >= 0; vg--) {
1205 			/* Reset the FIFOs to get pointers to known state. */
1206 			writel(0, &phy_mgr_cmd->fifo_reset);
1207 
1208 			rw_mgr_mem_calibrate_write_test_issue(
1209 				write_group *
1210 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1211 				use_dm);
1212 
1213 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1214 			tmp_bit_chk <<= shift_ratio;
1215 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1216 		}
1217 
1218 		*bit_chk &= tmp_bit_chk;
1219 	}
1220 
1221 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1222 	if (all_correct) {
1223 		debug_cond(DLEVEL == 2,
1224 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1225 			   write_group, use_dm, *bit_chk,
1226 			   param->write_correct_mask,
1227 			   *bit_chk == param->write_correct_mask);
1228 		return *bit_chk == param->write_correct_mask;
1229 	} else {
1230 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1231 		debug_cond(DLEVEL == 2,
1232 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1233 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1234 		return *bit_chk != 0x00;
1235 	}
1236 }
1237 
1238 /**
1239  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1240  * @rank_bgn:	Rank number
1241  * @group:	Read/Write Group
1242  * @all_ranks:	Test all ranks
1243  *
1244  * Performs a guaranteed read on the patterns we are going to use during a
1245  * read test to ensure memory works.
1246  */
1247 static int
1248 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1249 					const u32 all_ranks)
1250 {
1251 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1252 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1253 	const u32 addr_offset =
1254 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1255 	const u32 rank_end = all_ranks ?
1256 				RW_MGR_MEM_NUMBER_OF_RANKS :
1257 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1258 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1259 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1260 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1261 
1262 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1263 	int vg, r;
1264 	int ret = 0;
1265 
1266 	bit_chk = param->read_correct_mask;
1267 
1268 	for (r = rank_bgn; r < rank_end; r++) {
1269 		/* Request to skip the rank */
1270 		if (param->skip_ranks[r])
1271 			continue;
1272 
1273 		/* Set rank */
1274 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1275 
1276 		/* Load up a constant bursts of read commands */
1277 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1278 		writel(RW_MGR_GUARANTEED_READ,
1279 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1280 
1281 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1282 		writel(RW_MGR_GUARANTEED_READ_CONT,
1283 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1284 
1285 		tmp_bit_chk = 0;
1286 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1287 		     vg >= 0; vg--) {
1288 			/* Reset the FIFOs to get pointers to known state. */
1289 			writel(0, &phy_mgr_cmd->fifo_reset);
1290 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1291 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1292 			writel(RW_MGR_GUARANTEED_READ,
1293 			       addr + addr_offset + (vg << 2));
1294 
1295 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1296 			tmp_bit_chk <<= shift_ratio;
1297 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1298 		}
1299 
1300 		bit_chk &= tmp_bit_chk;
1301 	}
1302 
1303 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1304 
1305 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1306 
1307 	if (bit_chk != param->read_correct_mask)
1308 		ret = -EIO;
1309 
1310 	debug_cond(DLEVEL == 1,
1311 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1312 		   __func__, __LINE__, group, bit_chk,
1313 		   param->read_correct_mask, ret);
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1320  * @rank_bgn:	Rank number
1321  * @all_ranks:	Test all ranks
1322  *
1323  * Load up the patterns we are going to use during a read test.
1324  */
1325 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1326 						    const int all_ranks)
1327 {
1328 	const u32 rank_end = all_ranks ?
1329 			RW_MGR_MEM_NUMBER_OF_RANKS :
1330 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1331 	u32 r;
1332 
1333 	debug("%s:%d\n", __func__, __LINE__);
1334 
1335 	for (r = rank_bgn; r < rank_end; r++) {
1336 		if (param->skip_ranks[r])
1337 			/* request to skip the rank */
1338 			continue;
1339 
1340 		/* set rank */
1341 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1342 
1343 		/* Load up a constant bursts */
1344 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1345 
1346 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1347 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1348 
1349 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1350 
1351 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1352 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1353 
1354 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1355 
1356 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1357 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1358 
1359 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1360 
1361 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1362 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1363 
1364 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1365 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1366 	}
1367 
1368 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1369 }
1370 
1371 /**
1372  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1373  * @rank_bgn:		Rank number
1374  * @group:		Read/Write group
1375  * @num_tries:		Number of retries of the test
1376  * @all_correct:	All bits must be correct in the mask
1377  * @bit_chk:		Resulting bit mask after the test
1378  * @all_groups:		Test all R/W groups
1379  * @all_ranks:		Test all ranks
1380  *
1381  * Try a read and see if it returns correct data back. Test has dummy reads
1382  * inserted into the mix used to align DQS enable. Test has more thorough
1383  * checks than the regular read test.
1384  */
1385 static int
1386 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1387 			       const u32 num_tries, const u32 all_correct,
1388 			       u32 *bit_chk,
1389 			       const u32 all_groups, const u32 all_ranks)
1390 {
1391 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1392 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1393 	const u32 quick_read_mode =
1394 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1395 		 ENABLE_SUPER_QUICK_CALIBRATION);
1396 	u32 correct_mask_vg = param->read_correct_mask_vg;
1397 	u32 tmp_bit_chk;
1398 	u32 base_rw_mgr;
1399 	u32 addr;
1400 
1401 	int r, vg, ret;
1402 
1403 	*bit_chk = param->read_correct_mask;
1404 
1405 	for (r = rank_bgn; r < rank_end; r++) {
1406 		if (param->skip_ranks[r])
1407 			/* request to skip the rank */
1408 			continue;
1409 
1410 		/* set rank */
1411 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1412 
1413 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1414 
1415 		writel(RW_MGR_READ_B2B_WAIT1,
1416 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1417 
1418 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1419 		writel(RW_MGR_READ_B2B_WAIT2,
1420 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1421 
1422 		if (quick_read_mode)
1423 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1424 			/* need at least two (1+1) reads to capture failures */
1425 		else if (all_groups)
1426 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1427 		else
1428 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1429 
1430 		writel(RW_MGR_READ_B2B,
1431 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1432 		if (all_groups)
1433 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1434 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1435 			       &sdr_rw_load_mgr_regs->load_cntr3);
1436 		else
1437 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1438 
1439 		writel(RW_MGR_READ_B2B,
1440 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1441 
1442 		tmp_bit_chk = 0;
1443 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1444 		     vg--) {
1445 			/* Reset the FIFOs to get pointers to known state. */
1446 			writel(0, &phy_mgr_cmd->fifo_reset);
1447 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1448 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1449 
1450 			if (all_groups) {
1451 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1452 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1453 			} else {
1454 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1455 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1456 			}
1457 
1458 			writel(RW_MGR_READ_B2B, addr +
1459 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1460 			       vg) << 2));
1461 
1462 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1463 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1464 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1465 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1466 		}
1467 
1468 		*bit_chk &= tmp_bit_chk;
1469 	}
1470 
1471 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1472 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1473 
1474 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1475 
1476 	if (all_correct) {
1477 		ret = (*bit_chk == param->read_correct_mask);
1478 		debug_cond(DLEVEL == 2,
1479 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1480 			   __func__, __LINE__, group, all_groups, *bit_chk,
1481 			   param->read_correct_mask, ret);
1482 	} else	{
1483 		ret = (*bit_chk != 0x00);
1484 		debug_cond(DLEVEL == 2,
1485 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1486 			   __func__, __LINE__, group, all_groups, *bit_chk,
1487 			   0, ret);
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 /**
1494  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1495  * @grp:		Read/Write group
1496  * @num_tries:		Number of retries of the test
1497  * @all_correct:	All bits must be correct in the mask
1498  * @all_groups:		Test all R/W groups
1499  *
1500  * Perform a READ test across all memory ranks.
1501  */
1502 static int
1503 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1504 					 const u32 all_correct,
1505 					 const u32 all_groups)
1506 {
1507 	u32 bit_chk;
1508 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1509 					      &bit_chk, all_groups, 1);
1510 }
1511 
1512 /**
1513  * rw_mgr_incr_vfifo() - Increase VFIFO value
1514  * @grp:	Read/Write group
1515  *
1516  * Increase VFIFO value.
1517  */
1518 static void rw_mgr_incr_vfifo(const u32 grp)
1519 {
1520 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1521 }
1522 
1523 /**
1524  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1525  * @grp:	Read/Write group
1526  *
1527  * Decrease VFIFO value.
1528  */
1529 static void rw_mgr_decr_vfifo(const u32 grp)
1530 {
1531 	u32 i;
1532 
1533 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1534 		rw_mgr_incr_vfifo(grp);
1535 }
1536 
1537 /**
1538  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1539  * @grp:	Read/Write group
1540  *
1541  * Push VFIFO until a failing read happens.
1542  */
1543 static int find_vfifo_failing_read(const u32 grp)
1544 {
1545 	u32 v, ret, fail_cnt = 0;
1546 
1547 	for (v = 0; v < VFIFO_SIZE; v++) {
1548 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1549 			   __func__, __LINE__, v);
1550 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1551 						PASS_ONE_BIT, 0);
1552 		if (!ret) {
1553 			fail_cnt++;
1554 
1555 			if (fail_cnt == 2)
1556 				return v;
1557 		}
1558 
1559 		/* Fiddle with FIFO. */
1560 		rw_mgr_incr_vfifo(grp);
1561 	}
1562 
1563 	/* No failing read found! Something must have gone wrong. */
1564 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1565 	return 0;
1566 }
1567 
1568 /**
1569  * sdr_find_phase_delay() - Find DQS enable phase or delay
1570  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1571  * @delay:	If 1, look for delay, if 0, look for phase
1572  * @grp:	Read/Write group
1573  * @work:	Working window position
1574  * @work_inc:	Working window increment
1575  * @pd:		DQS Phase/Delay Iterator
1576  *
1577  * Find working or non-working DQS enable phase setting.
1578  */
1579 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1580 				u32 *work, const u32 work_inc, u32 *pd)
1581 {
1582 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1583 	u32 ret;
1584 
1585 	for (; *pd <= max; (*pd)++) {
1586 		if (delay)
1587 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1588 		else
1589 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1590 
1591 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1592 					PASS_ONE_BIT, 0);
1593 		if (!working)
1594 			ret = !ret;
1595 
1596 		if (ret)
1597 			return 0;
1598 
1599 		if (work)
1600 			*work += work_inc;
1601 	}
1602 
1603 	return -EINVAL;
1604 }
1605 /**
1606  * sdr_find_phase() - Find DQS enable phase
1607  * @working:	If 1, look for working phase, if 0, look for non-working phase
1608  * @grp:	Read/Write group
1609  * @work:	Working window position
1610  * @i:		Iterator
1611  * @p:		DQS Phase Iterator
1612  *
1613  * Find working or non-working DQS enable phase setting.
1614  */
1615 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1616 			  u32 *i, u32 *p)
1617 {
1618 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1619 	int ret;
1620 
1621 	for (; *i < end; (*i)++) {
1622 		if (working)
1623 			*p = 0;
1624 
1625 		ret = sdr_find_phase_delay(working, 0, grp, work,
1626 					   IO_DELAY_PER_OPA_TAP, p);
1627 		if (!ret)
1628 			return 0;
1629 
1630 		if (*p > IO_DQS_EN_PHASE_MAX) {
1631 			/* Fiddle with FIFO. */
1632 			rw_mgr_incr_vfifo(grp);
1633 			if (!working)
1634 				*p = 0;
1635 		}
1636 	}
1637 
1638 	return -EINVAL;
1639 }
1640 
1641 /**
1642  * sdr_working_phase() - Find working DQS enable phase
1643  * @grp:	Read/Write group
1644  * @work_bgn:	Working window start position
1645  * @d:		dtaps output value
1646  * @p:		DQS Phase Iterator
1647  * @i:		Iterator
1648  *
1649  * Find working DQS enable phase setting.
1650  */
1651 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1652 			     u32 *p, u32 *i)
1653 {
1654 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1655 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1656 	int ret;
1657 
1658 	*work_bgn = 0;
1659 
1660 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1661 		*i = 0;
1662 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1663 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1664 		if (!ret)
1665 			return 0;
1666 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1667 	}
1668 
1669 	/* Cannot find working solution */
1670 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1671 		   __func__, __LINE__);
1672 	return -EINVAL;
1673 }
1674 
1675 /**
1676  * sdr_backup_phase() - Find DQS enable backup phase
1677  * @grp:	Read/Write group
1678  * @work_bgn:	Working window start position
1679  * @p:		DQS Phase Iterator
1680  *
1681  * Find DQS enable backup phase setting.
1682  */
1683 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1684 {
1685 	u32 tmp_delay, d;
1686 	int ret;
1687 
1688 	/* Special case code for backing up a phase */
1689 	if (*p == 0) {
1690 		*p = IO_DQS_EN_PHASE_MAX;
1691 		rw_mgr_decr_vfifo(grp);
1692 	} else {
1693 		(*p)--;
1694 	}
1695 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1696 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1697 
1698 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1699 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1700 
1701 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1702 					PASS_ONE_BIT, 0);
1703 		if (ret) {
1704 			*work_bgn = tmp_delay;
1705 			break;
1706 		}
1707 
1708 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1709 	}
1710 
1711 	/* Restore VFIFO to old state before we decremented it (if needed). */
1712 	(*p)++;
1713 	if (*p > IO_DQS_EN_PHASE_MAX) {
1714 		*p = 0;
1715 		rw_mgr_incr_vfifo(grp);
1716 	}
1717 
1718 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1719 }
1720 
1721 /**
1722  * sdr_nonworking_phase() - Find non-working DQS enable phase
1723  * @grp:	Read/Write group
1724  * @work_end:	Working window end position
1725  * @p:		DQS Phase Iterator
1726  * @i:		Iterator
1727  *
1728  * Find non-working DQS enable phase setting.
1729  */
1730 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1731 {
1732 	int ret;
1733 
1734 	(*p)++;
1735 	*work_end += IO_DELAY_PER_OPA_TAP;
1736 	if (*p > IO_DQS_EN_PHASE_MAX) {
1737 		/* Fiddle with FIFO. */
1738 		*p = 0;
1739 		rw_mgr_incr_vfifo(grp);
1740 	}
1741 
1742 	ret = sdr_find_phase(0, grp, work_end, i, p);
1743 	if (ret) {
1744 		/* Cannot see edge of failing read. */
1745 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1746 			   __func__, __LINE__);
1747 	}
1748 
1749 	return ret;
1750 }
1751 
1752 /**
1753  * sdr_find_window_center() - Find center of the working DQS window.
1754  * @grp:	Read/Write group
1755  * @work_bgn:	First working settings
1756  * @work_end:	Last working settings
1757  *
1758  * Find center of the working DQS enable window.
1759  */
1760 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1761 				  const u32 work_end)
1762 {
1763 	u32 work_mid;
1764 	int tmp_delay = 0;
1765 	int i, p, d;
1766 
1767 	work_mid = (work_bgn + work_end) / 2;
1768 
1769 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1770 		   work_bgn, work_end, work_mid);
1771 	/* Get the middle delay to be less than a VFIFO delay */
1772 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1773 
1774 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1775 	work_mid %= tmp_delay;
1776 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1777 
1778 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1779 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1780 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1781 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1782 
1783 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1784 
1785 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1786 	if (d > IO_DQS_EN_DELAY_MAX)
1787 		d = IO_DQS_EN_DELAY_MAX;
1788 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1789 
1790 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1791 
1792 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1793 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1794 
1795 	/*
1796 	 * push vfifo until we can successfully calibrate. We can do this
1797 	 * because the largest possible margin in 1 VFIFO cycle.
1798 	 */
1799 	for (i = 0; i < VFIFO_SIZE; i++) {
1800 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1801 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1802 							     PASS_ONE_BIT,
1803 							     0)) {
1804 			debug_cond(DLEVEL == 2,
1805 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1806 				   __func__, __LINE__, p, d);
1807 			return 0;
1808 		}
1809 
1810 		/* Fiddle with FIFO. */
1811 		rw_mgr_incr_vfifo(grp);
1812 	}
1813 
1814 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1815 		   __func__, __LINE__);
1816 	return -EINVAL;
1817 }
1818 
1819 /**
1820  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1821  * @grp:	Read/Write Group
1822  *
1823  * Find a good DQS enable to use.
1824  */
1825 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1826 {
1827 	u32 d, p, i;
1828 	u32 dtaps_per_ptap;
1829 	u32 work_bgn, work_end;
1830 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1831 	int ret;
1832 
1833 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1834 
1835 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1836 
1837 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1838 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1839 
1840 	/* Step 0: Determine number of delay taps for each phase tap. */
1841 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1842 
1843 	/* Step 1: First push vfifo until we get a failing read. */
1844 	find_vfifo_failing_read(grp);
1845 
1846 	/* Step 2: Find first working phase, increment in ptaps. */
1847 	work_bgn = 0;
1848 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1849 	if (ret)
1850 		return ret;
1851 
1852 	work_end = work_bgn;
1853 
1854 	/*
1855 	 * If d is 0 then the working window covers a phase tap and we can
1856 	 * follow the old procedure. Otherwise, we've found the beginning
1857 	 * and we need to increment the dtaps until we find the end.
1858 	 */
1859 	if (d == 0) {
1860 		/*
1861 		 * Step 3a: If we have room, back off by one and
1862 		 *          increment in dtaps.
1863 		 */
1864 		sdr_backup_phase(grp, &work_bgn, &p);
1865 
1866 		/*
1867 		 * Step 4a: go forward from working phase to non working
1868 		 * phase, increment in ptaps.
1869 		 */
1870 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1871 		if (ret)
1872 			return ret;
1873 
1874 		/* Step 5a: Back off one from last, increment in dtaps. */
1875 
1876 		/* Special case code for backing up a phase */
1877 		if (p == 0) {
1878 			p = IO_DQS_EN_PHASE_MAX;
1879 			rw_mgr_decr_vfifo(grp);
1880 		} else {
1881 			p = p - 1;
1882 		}
1883 
1884 		work_end -= IO_DELAY_PER_OPA_TAP;
1885 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1886 
1887 		d = 0;
1888 
1889 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1890 			   __func__, __LINE__, p);
1891 	}
1892 
1893 	/* The dtap increment to find the failing edge is done here. */
1894 	sdr_find_phase_delay(0, 1, grp, &work_end,
1895 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1896 
1897 	/* Go back to working dtap */
1898 	if (d != 0)
1899 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1900 
1901 	debug_cond(DLEVEL == 2,
1902 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1903 		   __func__, __LINE__, p, d - 1, work_end);
1904 
1905 	if (work_end < work_bgn) {
1906 		/* nil range */
1907 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1908 			   __func__, __LINE__);
1909 		return -EINVAL;
1910 	}
1911 
1912 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1913 		   __func__, __LINE__, work_bgn, work_end);
1914 
1915 	/*
1916 	 * We need to calculate the number of dtaps that equal a ptap.
1917 	 * To do that we'll back up a ptap and re-find the edge of the
1918 	 * window using dtaps
1919 	 */
1920 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1921 		   __func__, __LINE__);
1922 
1923 	/* Special case code for backing up a phase */
1924 	if (p == 0) {
1925 		p = IO_DQS_EN_PHASE_MAX;
1926 		rw_mgr_decr_vfifo(grp);
1927 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1928 			   __func__, __LINE__, p);
1929 	} else {
1930 		p = p - 1;
1931 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1932 			   __func__, __LINE__, p);
1933 	}
1934 
1935 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1936 
1937 	/*
1938 	 * Increase dtap until we first see a passing read (in case the
1939 	 * window is smaller than a ptap), and then a failing read to
1940 	 * mark the edge of the window again.
1941 	 */
1942 
1943 	/* Find a passing read. */
1944 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1945 		   __func__, __LINE__);
1946 
1947 	initial_failing_dtap = d;
1948 
1949 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1950 	if (found_passing_read) {
1951 		/* Find a failing read. */
1952 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1953 			   __func__, __LINE__);
1954 		d++;
1955 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1956 							   &d);
1957 	} else {
1958 		debug_cond(DLEVEL == 1,
1959 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1960 			   __func__, __LINE__);
1961 	}
1962 
1963 	/*
1964 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1965 	 * found a passing/failing read. If we didn't, it means d hit the max
1966 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1967 	 * statically calculated value.
1968 	 */
1969 	if (found_passing_read && found_failing_read)
1970 		dtaps_per_ptap = d - initial_failing_dtap;
1971 
1972 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1973 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1974 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1975 
1976 	/* Step 6: Find the centre of the window. */
1977 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1978 
1979 	return ret;
1980 }
1981 
1982 /**
1983  * search_stop_check() - Check if the detected edge is valid
1984  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1985  * @d:			DQS delay
1986  * @rank_bgn:		Rank number
1987  * @write_group:	Write Group
1988  * @read_group:		Read Group
1989  * @bit_chk:		Resulting bit mask after the test
1990  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1991  * @use_read_test:	Perform read test
1992  *
1993  * Test if the found edge is valid.
1994  */
1995 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1996 			     const u32 write_group, const u32 read_group,
1997 			     u32 *bit_chk, u32 *sticky_bit_chk,
1998 			     const u32 use_read_test)
1999 {
2000 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
2001 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
2002 	const u32 correct_mask = write ? param->write_correct_mask :
2003 					 param->read_correct_mask;
2004 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2005 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2006 	u32 ret;
2007 	/*
2008 	 * Stop searching when the read test doesn't pass AND when
2009 	 * we've seen a passing read on every bit.
2010 	 */
2011 	if (write) {			/* WRITE-ONLY */
2012 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2013 							 0, PASS_ONE_BIT,
2014 							 bit_chk, 0);
2015 	} else if (use_read_test) {	/* READ-ONLY */
2016 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2017 							NUM_READ_PB_TESTS,
2018 							PASS_ONE_BIT, bit_chk,
2019 							0, 0);
2020 	} else {			/* READ-ONLY */
2021 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2022 						PASS_ONE_BIT, bit_chk, 0);
2023 		*bit_chk = *bit_chk >> (per_dqs *
2024 			(read_group - (write_group * ratio)));
2025 		ret = (*bit_chk == 0);
2026 	}
2027 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2028 	ret = ret && (*sticky_bit_chk == correct_mask);
2029 	debug_cond(DLEVEL == 2,
2030 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2031 		   __func__, __LINE__, d,
2032 		   *sticky_bit_chk, correct_mask, ret);
2033 	return ret;
2034 }
2035 
2036 /**
2037  * search_left_edge() - Find left edge of DQ/DQS working phase
2038  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2039  * @rank_bgn:		Rank number
2040  * @write_group:	Write Group
2041  * @read_group:		Read Group
2042  * @test_bgn:		Rank number to begin the test
2043  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2044  * @left_edge:		Left edge of the DQ/DQS phase
2045  * @right_edge:		Right edge of the DQ/DQS phase
2046  * @use_read_test:	Perform read test
2047  *
2048  * Find left edge of DQ/DQS working phase.
2049  */
2050 static void search_left_edge(const int write, const int rank_bgn,
2051 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2052 	u32 *sticky_bit_chk,
2053 	int *left_edge, int *right_edge, const u32 use_read_test)
2054 {
2055 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2056 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2057 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2058 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2059 	u32 stop, bit_chk;
2060 	int i, d;
2061 
2062 	for (d = 0; d <= dqs_max; d++) {
2063 		if (write)
2064 			scc_mgr_apply_group_dq_out1_delay(d);
2065 		else
2066 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2067 
2068 		writel(0, &sdr_scc_mgr->update);
2069 
2070 		stop = search_stop_check(write, d, rank_bgn, write_group,
2071 					 read_group, &bit_chk, sticky_bit_chk,
2072 					 use_read_test);
2073 		if (stop == 1)
2074 			break;
2075 
2076 		/* stop != 1 */
2077 		for (i = 0; i < per_dqs; i++) {
2078 			if (bit_chk & 1) {
2079 				/*
2080 				 * Remember a passing test as
2081 				 * the left_edge.
2082 				 */
2083 				left_edge[i] = d;
2084 			} else {
2085 				/*
2086 				 * If a left edge has not been seen
2087 				 * yet, then a future passing test
2088 				 * will mark this edge as the right
2089 				 * edge.
2090 				 */
2091 				if (left_edge[i] == delay_max + 1)
2092 					right_edge[i] = -(d + 1);
2093 			}
2094 			bit_chk >>= 1;
2095 		}
2096 	}
2097 
2098 	/* Reset DQ delay chains to 0 */
2099 	if (write)
2100 		scc_mgr_apply_group_dq_out1_delay(0);
2101 	else
2102 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2103 
2104 	*sticky_bit_chk = 0;
2105 	for (i = per_dqs - 1; i >= 0; i--) {
2106 		debug_cond(DLEVEL == 2,
2107 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2108 			   __func__, __LINE__, i, left_edge[i],
2109 			   i, right_edge[i]);
2110 
2111 		/*
2112 		 * Check for cases where we haven't found the left edge,
2113 		 * which makes our assignment of the the right edge invalid.
2114 		 * Reset it to the illegal value.
2115 		 */
2116 		if ((left_edge[i] == delay_max + 1) &&
2117 		    (right_edge[i] != delay_max + 1)) {
2118 			right_edge[i] = delay_max + 1;
2119 			debug_cond(DLEVEL == 2,
2120 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2121 				   __func__, __LINE__, i, right_edge[i]);
2122 		}
2123 
2124 		/*
2125 		 * Reset sticky bit
2126 		 * READ: except for bits where we have seen both
2127 		 *       the left and right edge.
2128 		 * WRITE: except for bits where we have seen the
2129 		 *        left edge.
2130 		 */
2131 		*sticky_bit_chk <<= 1;
2132 		if (write) {
2133 			if (left_edge[i] != delay_max + 1)
2134 				*sticky_bit_chk |= 1;
2135 		} else {
2136 			if ((left_edge[i] != delay_max + 1) &&
2137 			    (right_edge[i] != delay_max + 1))
2138 				*sticky_bit_chk |= 1;
2139 		}
2140 	}
2141 
2142 
2143 }
2144 
2145 /**
2146  * search_right_edge() - Find right edge of DQ/DQS working phase
2147  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2148  * @rank_bgn:		Rank number
2149  * @write_group:	Write Group
2150  * @read_group:		Read Group
2151  * @start_dqs:		DQS start phase
2152  * @start_dqs_en:	DQS enable start phase
2153  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2154  * @left_edge:		Left edge of the DQ/DQS phase
2155  * @right_edge:		Right edge of the DQ/DQS phase
2156  * @use_read_test:	Perform read test
2157  *
2158  * Find right edge of DQ/DQS working phase.
2159  */
2160 static int search_right_edge(const int write, const int rank_bgn,
2161 	const u32 write_group, const u32 read_group,
2162 	const int start_dqs, const int start_dqs_en,
2163 	u32 *sticky_bit_chk,
2164 	int *left_edge, int *right_edge, const u32 use_read_test)
2165 {
2166 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2167 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2168 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2169 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2170 	u32 stop, bit_chk;
2171 	int i, d;
2172 
2173 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2174 		if (write) {	/* WRITE-ONLY */
2175 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2176 								d + start_dqs);
2177 		} else {	/* READ-ONLY */
2178 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2179 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2180 				uint32_t delay = d + start_dqs_en;
2181 				if (delay > IO_DQS_EN_DELAY_MAX)
2182 					delay = IO_DQS_EN_DELAY_MAX;
2183 				scc_mgr_set_dqs_en_delay(read_group, delay);
2184 			}
2185 			scc_mgr_load_dqs(read_group);
2186 		}
2187 
2188 		writel(0, &sdr_scc_mgr->update);
2189 
2190 		stop = search_stop_check(write, d, rank_bgn, write_group,
2191 					 read_group, &bit_chk, sticky_bit_chk,
2192 					 use_read_test);
2193 		if (stop == 1) {
2194 			if (write && (d == 0)) {	/* WRITE-ONLY */
2195 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2196 					/*
2197 					 * d = 0 failed, but it passed when
2198 					 * testing the left edge, so it must be
2199 					 * marginal, set it to -1
2200 					 */
2201 					if (right_edge[i] == delay_max + 1 &&
2202 					    left_edge[i] != delay_max + 1)
2203 						right_edge[i] = -1;
2204 				}
2205 			}
2206 			break;
2207 		}
2208 
2209 		/* stop != 1 */
2210 		for (i = 0; i < per_dqs; i++) {
2211 			if (bit_chk & 1) {
2212 				/*
2213 				 * Remember a passing test as
2214 				 * the right_edge.
2215 				 */
2216 				right_edge[i] = d;
2217 			} else {
2218 				if (d != 0) {
2219 					/*
2220 					 * If a right edge has not
2221 					 * been seen yet, then a future
2222 					 * passing test will mark this
2223 					 * edge as the left edge.
2224 					 */
2225 					if (right_edge[i] == delay_max + 1)
2226 						left_edge[i] = -(d + 1);
2227 				} else {
2228 					/*
2229 					 * d = 0 failed, but it passed
2230 					 * when testing the left edge,
2231 					 * so it must be marginal, set
2232 					 * it to -1
2233 					 */
2234 					if (right_edge[i] == delay_max + 1 &&
2235 					    left_edge[i] != delay_max + 1)
2236 						right_edge[i] = -1;
2237 					/*
2238 					 * If a right edge has not been
2239 					 * seen yet, then a future
2240 					 * passing test will mark this
2241 					 * edge as the left edge.
2242 					 */
2243 					else if (right_edge[i] == delay_max + 1)
2244 						left_edge[i] = -(d + 1);
2245 				}
2246 			}
2247 
2248 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2249 				   __func__, __LINE__, d);
2250 			debug_cond(DLEVEL == 2,
2251 				   "bit_chk_test=%i left_edge[%u]: %d ",
2252 				   bit_chk & 1, i, left_edge[i]);
2253 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2254 				   right_edge[i]);
2255 			bit_chk >>= 1;
2256 		}
2257 	}
2258 
2259 	/* Check that all bits have a window */
2260 	for (i = 0; i < per_dqs; i++) {
2261 		debug_cond(DLEVEL == 2,
2262 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2263 			   __func__, __LINE__, i, left_edge[i],
2264 			   i, right_edge[i]);
2265 		if ((left_edge[i] == dqs_max + 1) ||
2266 		    (right_edge[i] == dqs_max + 1))
2267 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 /**
2274  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2275  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2276  * @left_edge:		Left edge of the DQ/DQS phase
2277  * @right_edge:		Right edge of the DQ/DQS phase
2278  * @mid_min:		Best DQ/DQS phase middle setting
2279  *
2280  * Find index and value of the middle of the DQ/DQS working phase.
2281  */
2282 static int get_window_mid_index(const int write, int *left_edge,
2283 				int *right_edge, int *mid_min)
2284 {
2285 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2286 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2287 	int i, mid, min_index;
2288 
2289 	/* Find middle of window for each DQ bit */
2290 	*mid_min = left_edge[0] - right_edge[0];
2291 	min_index = 0;
2292 	for (i = 1; i < per_dqs; i++) {
2293 		mid = left_edge[i] - right_edge[i];
2294 		if (mid < *mid_min) {
2295 			*mid_min = mid;
2296 			min_index = i;
2297 		}
2298 	}
2299 
2300 	/*
2301 	 * -mid_min/2 represents the amount that we need to move DQS.
2302 	 * If mid_min is odd and positive we'll need to add one to make
2303 	 * sure the rounding in further calculations is correct (always
2304 	 * bias to the right), so just add 1 for all positive values.
2305 	 */
2306 	if (*mid_min > 0)
2307 		(*mid_min)++;
2308 	*mid_min = *mid_min / 2;
2309 
2310 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2311 		   __func__, __LINE__, *mid_min, min_index);
2312 	return min_index;
2313 }
2314 
2315 /**
2316  * center_dq_windows() - Center the DQ/DQS windows
2317  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2318  * @left_edge:		Left edge of the DQ/DQS phase
2319  * @right_edge:		Right edge of the DQ/DQS phase
2320  * @mid_min:		Adjusted DQ/DQS phase middle setting
2321  * @orig_mid_min:	Original DQ/DQS phase middle setting
2322  * @min_index:		DQ/DQS phase middle setting index
2323  * @test_bgn:		Rank number to begin the test
2324  * @dq_margin:		Amount of shift for the DQ
2325  * @dqs_margin:		Amount of shift for the DQS
2326  *
2327  * Align the DQ/DQS windows in each group.
2328  */
2329 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2330 			      const int mid_min, const int orig_mid_min,
2331 			      const int min_index, const int test_bgn,
2332 			      int *dq_margin, int *dqs_margin)
2333 {
2334 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2335 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2336 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2337 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2338 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2339 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2340 
2341 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2342 	int shift_dq, i, p;
2343 
2344 	/* Initialize data for export structures */
2345 	*dqs_margin = delay_max + 1;
2346 	*dq_margin  = delay_max + 1;
2347 
2348 	/* add delay to bring centre of all DQ windows to the same "level" */
2349 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2350 		/* Use values before divide by 2 to reduce round off error */
2351 		shift_dq = (left_edge[i] - right_edge[i] -
2352 			(left_edge[min_index] - right_edge[min_index]))/2  +
2353 			(orig_mid_min - mid_min);
2354 
2355 		debug_cond(DLEVEL == 2,
2356 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2357 			   i, shift_dq);
2358 
2359 		temp_dq_io_delay1 = readl(addr + (p << 2));
2360 		temp_dq_io_delay2 = readl(addr + (i << 2));
2361 
2362 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2363 			shift_dq = delay_max - temp_dq_io_delay2;
2364 		else if (shift_dq + temp_dq_io_delay1 < 0)
2365 			shift_dq = -temp_dq_io_delay1;
2366 
2367 		debug_cond(DLEVEL == 2,
2368 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2369 			   i, shift_dq);
2370 
2371 		if (write)
2372 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2373 		else
2374 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2375 
2376 		scc_mgr_load_dq(p);
2377 
2378 		debug_cond(DLEVEL == 2,
2379 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2380 			   left_edge[i] - shift_dq + (-mid_min),
2381 			   right_edge[i] + shift_dq - (-mid_min));
2382 
2383 		/* To determine values for export structures */
2384 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2385 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2386 
2387 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2388 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2389 	}
2390 
2391 }
2392 
2393 /**
2394  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2395  * @rank_bgn:		Rank number
2396  * @rw_group:		Read/Write Group
2397  * @test_bgn:		Rank at which the test begins
2398  * @use_read_test:	Perform a read test
2399  * @update_fom:		Update FOM
2400  *
2401  * Per-bit deskew DQ and centering.
2402  */
2403 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2404 			const u32 rw_group, const u32 test_bgn,
2405 			const int use_read_test, const int update_fom)
2406 {
2407 	const u32 addr =
2408 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2409 		(rw_group << 2);
2410 	/*
2411 	 * Store these as signed since there are comparisons with
2412 	 * signed numbers.
2413 	 */
2414 	uint32_t sticky_bit_chk;
2415 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2416 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2417 	int32_t orig_mid_min, mid_min;
2418 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2419 	int32_t dq_margin, dqs_margin;
2420 	int i, min_index;
2421 	int ret;
2422 
2423 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2424 
2425 	start_dqs = readl(addr);
2426 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2427 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2428 
2429 	/* set the left and right edge of each bit to an illegal value */
2430 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2431 	sticky_bit_chk = 0;
2432 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2433 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2434 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2435 	}
2436 
2437 	/* Search for the left edge of the window for each bit */
2438 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2439 			 &sticky_bit_chk,
2440 			 left_edge, right_edge, use_read_test);
2441 
2442 
2443 	/* Search for the right edge of the window for each bit */
2444 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2445 				start_dqs, start_dqs_en,
2446 				&sticky_bit_chk,
2447 				left_edge, right_edge, use_read_test);
2448 	if (ret) {
2449 		/*
2450 		 * Restore delay chain settings before letting the loop
2451 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2452 		 * dqs/ck relationships.
2453 		 */
2454 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2455 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2456 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2457 
2458 		scc_mgr_load_dqs(rw_group);
2459 		writel(0, &sdr_scc_mgr->update);
2460 
2461 		debug_cond(DLEVEL == 1,
2462 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2463 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2464 		if (use_read_test) {
2465 			set_failing_group_stage(rw_group *
2466 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2467 				CAL_STAGE_VFIFO,
2468 				CAL_SUBSTAGE_VFIFO_CENTER);
2469 		} else {
2470 			set_failing_group_stage(rw_group *
2471 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2472 				CAL_STAGE_VFIFO_AFTER_WRITES,
2473 				CAL_SUBSTAGE_VFIFO_CENTER);
2474 		}
2475 		return -EIO;
2476 	}
2477 
2478 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2479 
2480 	/* Determine the amount we can change DQS (which is -mid_min) */
2481 	orig_mid_min = mid_min;
2482 	new_dqs = start_dqs - mid_min;
2483 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2484 		new_dqs = IO_DQS_IN_DELAY_MAX;
2485 	else if (new_dqs < 0)
2486 		new_dqs = 0;
2487 
2488 	mid_min = start_dqs - new_dqs;
2489 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2490 		   mid_min, new_dqs);
2491 
2492 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2493 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2494 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2495 		else if (start_dqs_en - mid_min < 0)
2496 			mid_min += start_dqs_en - mid_min;
2497 	}
2498 	new_dqs = start_dqs - mid_min;
2499 
2500 	debug_cond(DLEVEL == 1,
2501 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2502 		   start_dqs,
2503 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2504 		   new_dqs, mid_min);
2505 
2506 	/* Add delay to bring centre of all DQ windows to the same "level". */
2507 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2508 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2509 
2510 	/* Move DQS-en */
2511 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2512 		final_dqs_en = start_dqs_en - mid_min;
2513 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2514 		scc_mgr_load_dqs(rw_group);
2515 	}
2516 
2517 	/* Move DQS */
2518 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2519 	scc_mgr_load_dqs(rw_group);
2520 	debug_cond(DLEVEL == 2,
2521 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2522 		   __func__, __LINE__, dq_margin, dqs_margin);
2523 
2524 	/*
2525 	 * Do not remove this line as it makes sure all of our decisions
2526 	 * have been applied. Apply the update bit.
2527 	 */
2528 	writel(0, &sdr_scc_mgr->update);
2529 
2530 	if ((dq_margin < 0) || (dqs_margin < 0))
2531 		return -EINVAL;
2532 
2533 	return 0;
2534 }
2535 
2536 /**
2537  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2538  * @rw_group:	Read/Write Group
2539  * @phase:	DQ/DQS phase
2540  *
2541  * Because initially no communication ca be reliably performed with the memory
2542  * device, the sequencer uses a guaranteed write mechanism to write data into
2543  * the memory device.
2544  */
2545 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2546 						 const u32 phase)
2547 {
2548 	int ret;
2549 
2550 	/* Set a particular DQ/DQS phase. */
2551 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2552 
2553 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2554 		   __func__, __LINE__, rw_group, phase);
2555 
2556 	/*
2557 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2558 	 * Load up the patterns used by read calibration using the
2559 	 * current DQDQS phase.
2560 	 */
2561 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2562 
2563 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2564 		return 0;
2565 
2566 	/*
2567 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2568 	 * Back-to-Back reads of the patterns used for calibration.
2569 	 */
2570 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2571 	if (ret)
2572 		debug_cond(DLEVEL == 1,
2573 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2574 			   __func__, __LINE__, rw_group, phase);
2575 	return ret;
2576 }
2577 
2578 /**
2579  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2580  * @rw_group:	Read/Write Group
2581  * @test_bgn:	Rank at which the test begins
2582  *
2583  * DQS enable calibration ensures reliable capture of the DQ signal without
2584  * glitches on the DQS line.
2585  */
2586 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2587 						       const u32 test_bgn)
2588 {
2589 	/*
2590 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2591 	 * DQS and DQS Eanble Signal Relationships.
2592 	 */
2593 
2594 	/* We start at zero, so have one less dq to devide among */
2595 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2596 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2597 	int ret;
2598 	u32 i, p, d, r;
2599 
2600 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2601 
2602 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2603 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2604 	     r += NUM_RANKS_PER_SHADOW_REG) {
2605 		for (i = 0, p = test_bgn, d = 0;
2606 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2607 		     i++, p++, d += delay_step) {
2608 			debug_cond(DLEVEL == 1,
2609 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2610 				   __func__, __LINE__, rw_group, r, i, p, d);
2611 
2612 			scc_mgr_set_dq_in_delay(p, d);
2613 			scc_mgr_load_dq(p);
2614 		}
2615 
2616 		writel(0, &sdr_scc_mgr->update);
2617 	}
2618 
2619 	/*
2620 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2621 	 * dq_in_delay values
2622 	 */
2623 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2624 
2625 	debug_cond(DLEVEL == 1,
2626 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2627 		   __func__, __LINE__, rw_group, !ret);
2628 
2629 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2630 	     r += NUM_RANKS_PER_SHADOW_REG) {
2631 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2632 		writel(0, &sdr_scc_mgr->update);
2633 	}
2634 
2635 	return ret;
2636 }
2637 
2638 /**
2639  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2640  * @rw_group:		Read/Write Group
2641  * @test_bgn:		Rank at which the test begins
2642  * @use_read_test:	Perform a read test
2643  * @update_fom:		Update FOM
2644  *
2645  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2646  * within a group.
2647  */
2648 static int
2649 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2650 				      const int use_read_test,
2651 				      const int update_fom)
2652 
2653 {
2654 	int ret, grp_calibrated;
2655 	u32 rank_bgn, sr;
2656 
2657 	/*
2658 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2659 	 * Read per-bit deskew can be done on a per shadow register basis.
2660 	 */
2661 	grp_calibrated = 1;
2662 	for (rank_bgn = 0, sr = 0;
2663 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2664 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2665 		/* Check if this set of ranks should be skipped entirely. */
2666 		if (param->skip_shadow_regs[sr])
2667 			continue;
2668 
2669 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2670 							test_bgn,
2671 							use_read_test,
2672 							update_fom);
2673 		if (!ret)
2674 			continue;
2675 
2676 		grp_calibrated = 0;
2677 	}
2678 
2679 	if (!grp_calibrated)
2680 		return -EIO;
2681 
2682 	return 0;
2683 }
2684 
2685 /**
2686  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2687  * @rw_group:		Read/Write Group
2688  * @test_bgn:		Rank at which the test begins
2689  *
2690  * Stage 1: Calibrate the read valid prediction FIFO.
2691  *
2692  * This function implements UniPHY calibration Stage 1, as explained in
2693  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2694  *
2695  * - read valid prediction will consist of finding:
2696  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2697  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2698  *  - we also do a per-bit deskew on the DQ lines.
2699  */
2700 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2701 {
2702 	uint32_t p, d;
2703 	uint32_t dtaps_per_ptap;
2704 	uint32_t failed_substage;
2705 
2706 	int ret;
2707 
2708 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2709 
2710 	/* Update info for sims */
2711 	reg_file_set_group(rw_group);
2712 	reg_file_set_stage(CAL_STAGE_VFIFO);
2713 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2714 
2715 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2716 
2717 	/* USER Determine number of delay taps for each phase tap. */
2718 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2719 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2720 
2721 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2722 		/*
2723 		 * In RLDRAMX we may be messing the delay of pins in
2724 		 * the same write rw_group but outside of the current read
2725 		 * the rw_group, but that's ok because we haven't calibrated
2726 		 * output side yet.
2727 		 */
2728 		if (d > 0) {
2729 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2730 								rw_group, d);
2731 		}
2732 
2733 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2734 			/* 1) Guaranteed Write */
2735 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2736 			if (ret)
2737 				break;
2738 
2739 			/* 2) DQS Enable Calibration */
2740 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2741 									  test_bgn);
2742 			if (ret) {
2743 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2744 				continue;
2745 			}
2746 
2747 			/* 3) Centering DQ/DQS */
2748 			/*
2749 			 * If doing read after write calibration, do not update
2750 			 * FOM now. Do it then.
2751 			 */
2752 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2753 								test_bgn, 1, 0);
2754 			if (ret) {
2755 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2756 				continue;
2757 			}
2758 
2759 			/* All done. */
2760 			goto cal_done_ok;
2761 		}
2762 	}
2763 
2764 	/* Calibration Stage 1 failed. */
2765 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2766 	return 0;
2767 
2768 	/* Calibration Stage 1 completed OK. */
2769 cal_done_ok:
2770 	/*
2771 	 * Reset the delay chains back to zero if they have moved > 1
2772 	 * (check for > 1 because loop will increase d even when pass in
2773 	 * first case).
2774 	 */
2775 	if (d > 2)
2776 		scc_mgr_zero_group(rw_group, 1);
2777 
2778 	return 1;
2779 }
2780 
2781 /**
2782  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2783  * @rw_group:		Read/Write Group
2784  * @test_bgn:		Rank at which the test begins
2785  *
2786  * Stage 3: DQ/DQS Centering.
2787  *
2788  * This function implements UniPHY calibration Stage 3, as explained in
2789  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2790  */
2791 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2792 					  const u32 test_bgn)
2793 {
2794 	int ret;
2795 
2796 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2797 
2798 	/* Update info for sims. */
2799 	reg_file_set_group(rw_group);
2800 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2801 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2802 
2803 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2804 	if (ret)
2805 		set_failing_group_stage(rw_group,
2806 					CAL_STAGE_VFIFO_AFTER_WRITES,
2807 					CAL_SUBSTAGE_VFIFO_CENTER);
2808 	return ret;
2809 }
2810 
2811 /**
2812  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2813  *
2814  * Stage 4: Minimize latency.
2815  *
2816  * This function implements UniPHY calibration Stage 4, as explained in
2817  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2818  * Calibrate LFIFO to find smallest read latency.
2819  */
2820 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2821 {
2822 	int found_one = 0;
2823 
2824 	debug("%s:%d\n", __func__, __LINE__);
2825 
2826 	/* Update info for sims. */
2827 	reg_file_set_stage(CAL_STAGE_LFIFO);
2828 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2829 
2830 	/* Load up the patterns used by read calibration for all ranks */
2831 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2832 
2833 	do {
2834 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2835 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2836 			   __func__, __LINE__, gbl->curr_read_lat);
2837 
2838 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2839 							      PASS_ALL_BITS, 1))
2840 			break;
2841 
2842 		found_one = 1;
2843 		/*
2844 		 * Reduce read latency and see if things are
2845 		 * working correctly.
2846 		 */
2847 		gbl->curr_read_lat--;
2848 	} while (gbl->curr_read_lat > 0);
2849 
2850 	/* Reset the fifos to get pointers to known state. */
2851 	writel(0, &phy_mgr_cmd->fifo_reset);
2852 
2853 	if (found_one) {
2854 		/* Add a fudge factor to the read latency that was determined */
2855 		gbl->curr_read_lat += 2;
2856 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2857 		debug_cond(DLEVEL == 2,
2858 			   "%s:%d lfifo: success: using read_lat=%u\n",
2859 			   __func__, __LINE__, gbl->curr_read_lat);
2860 	} else {
2861 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2862 					CAL_SUBSTAGE_READ_LATENCY);
2863 
2864 		debug_cond(DLEVEL == 2,
2865 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2866 			   __func__, __LINE__, gbl->curr_read_lat);
2867 	}
2868 
2869 	return found_one;
2870 }
2871 
2872 /**
2873  * search_window() - Search for the/part of the window with DM/DQS shift
2874  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2875  * @rank_bgn:		Rank number
2876  * @write_group:	Write Group
2877  * @bgn_curr:		Current window begin
2878  * @end_curr:		Current window end
2879  * @bgn_best:		Current best window begin
2880  * @end_best:		Current best window end
2881  * @win_best:		Size of the best window
2882  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2883  *
2884  * Search for the/part of the window with DM/DQS shift.
2885  */
2886 static void search_window(const int search_dm,
2887 			  const u32 rank_bgn, const u32 write_group,
2888 			  int *bgn_curr, int *end_curr, int *bgn_best,
2889 			  int *end_best, int *win_best, int new_dqs)
2890 {
2891 	u32 bit_chk;
2892 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2893 	int d, di;
2894 
2895 	/* Search for the/part of the window with DM/DQS shift. */
2896 	for (di = max; di >= 0; di -= DELTA_D) {
2897 		if (search_dm) {
2898 			d = di;
2899 			scc_mgr_apply_group_dm_out1_delay(d);
2900 		} else {
2901 			/* For DQS, we go from 0...max */
2902 			d = max - di;
2903 			/*
2904 			 * Note: This only shifts DQS, so are we limiting ourselve to
2905 			 * width of DQ unnecessarily.
2906 			 */
2907 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2908 								d + new_dqs);
2909 		}
2910 
2911 		writel(0, &sdr_scc_mgr->update);
2912 
2913 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2914 						    PASS_ALL_BITS, &bit_chk,
2915 						    0)) {
2916 			/* Set current end of the window. */
2917 			*end_curr = search_dm ? -d : d;
2918 
2919 			/*
2920 			 * If a starting edge of our window has not been seen
2921 			 * this is our current start of the DM window.
2922 			 */
2923 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2924 				*bgn_curr = search_dm ? -d : d;
2925 
2926 			/*
2927 			 * If current window is bigger than best seen.
2928 			 * Set best seen to be current window.
2929 			 */
2930 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2931 				*win_best = *end_curr - *bgn_curr + 1;
2932 				*bgn_best = *bgn_curr;
2933 				*end_best = *end_curr;
2934 			}
2935 		} else {
2936 			/* We just saw a failing test. Reset temp edge. */
2937 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2938 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2939 
2940 			/* Early exit is only applicable to DQS. */
2941 			if (search_dm)
2942 				continue;
2943 
2944 			/*
2945 			 * Early exit optimization: if the remaining delay
2946 			 * chain space is less than already seen largest
2947 			 * window we can exit.
2948 			 */
2949 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2950 				break;
2951 		}
2952 	}
2953 }
2954 
2955 /*
2956  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2957  * @rank_bgn:		Rank number
2958  * @write_group:	Write group
2959  * @test_bgn:		Rank at which the test begins
2960  *
2961  * Center all windows. Do per-bit-deskew to possibly increase size of
2962  * certain windows.
2963  */
2964 static int
2965 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2966 				   const u32 test_bgn)
2967 {
2968 	int i;
2969 	u32 sticky_bit_chk;
2970 	u32 min_index;
2971 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2972 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2973 	int mid;
2974 	int mid_min, orig_mid_min;
2975 	int new_dqs, start_dqs;
2976 	int dq_margin, dqs_margin, dm_margin;
2977 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2978 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2980 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2981 	int win_best = 0;
2982 
2983 	int ret;
2984 
2985 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2986 
2987 	dm_margin = 0;
2988 
2989 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2990 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2991 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2992 
2993 	/* Per-bit deskew. */
2994 
2995 	/*
2996 	 * Set the left and right edge of each bit to an illegal value.
2997 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2998 	 */
2999 	sticky_bit_chk = 0;
3000 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
3001 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
3002 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
3003 	}
3004 
3005 	/* Search for the left edge of the window for each bit. */
3006 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3007 			 &sticky_bit_chk,
3008 			 left_edge, right_edge, 0);
3009 
3010 	/* Search for the right edge of the window for each bit. */
3011 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3012 				start_dqs, 0,
3013 				&sticky_bit_chk,
3014 				left_edge, right_edge, 0);
3015 	if (ret) {
3016 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3017 					CAL_SUBSTAGE_WRITES_CENTER);
3018 		return -EINVAL;
3019 	}
3020 
3021 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3022 
3023 	/* Determine the amount we can change DQS (which is -mid_min). */
3024 	orig_mid_min = mid_min;
3025 	new_dqs = start_dqs;
3026 	mid_min = 0;
3027 	debug_cond(DLEVEL == 1,
3028 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3029 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3030 
3031 	/* Add delay to bring centre of all DQ windows to the same "level". */
3032 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3033 			  min_index, 0, &dq_margin, &dqs_margin);
3034 
3035 	/* Move DQS */
3036 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3037 	writel(0, &sdr_scc_mgr->update);
3038 
3039 	/* Centre DM */
3040 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3041 
3042 	/*
3043 	 * Set the left and right edge of each bit to an illegal value.
3044 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3045 	 */
3046 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3047 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3048 
3049 	/* Search for the/part of the window with DM shift. */
3050 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3051 		      &bgn_best, &end_best, &win_best, 0);
3052 
3053 	/* Reset DM delay chains to 0. */
3054 	scc_mgr_apply_group_dm_out1_delay(0);
3055 
3056 	/*
3057 	 * Check to see if the current window nudges up aganist 0 delay.
3058 	 * If so we need to continue the search by shifting DQS otherwise DQS
3059 	 * search begins as a new search.
3060 	 */
3061 	if (end_curr != 0) {
3062 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3063 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3064 	}
3065 
3066 	/* Search for the/part of the window with DQS shifts. */
3067 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3068 		      &bgn_best, &end_best, &win_best, new_dqs);
3069 
3070 	/* Assign left and right edge for cal and reporting. */
3071 	left_edge[0] = -1 * bgn_best;
3072 	right_edge[0] = end_best;
3073 
3074 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3075 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3076 
3077 	/* Move DQS (back to orig). */
3078 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3079 
3080 	/* Move DM */
3081 
3082 	/* Find middle of window for the DM bit. */
3083 	mid = (left_edge[0] - right_edge[0]) / 2;
3084 
3085 	/* Only move right, since we are not moving DQS/DQ. */
3086 	if (mid < 0)
3087 		mid = 0;
3088 
3089 	/* dm_marign should fail if we never find a window. */
3090 	if (win_best == 0)
3091 		dm_margin = -1;
3092 	else
3093 		dm_margin = left_edge[0] - mid;
3094 
3095 	scc_mgr_apply_group_dm_out1_delay(mid);
3096 	writel(0, &sdr_scc_mgr->update);
3097 
3098 	debug_cond(DLEVEL == 2,
3099 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3100 		   __func__, __LINE__, left_edge[0], right_edge[0],
3101 		   mid, dm_margin);
3102 	/* Export values. */
3103 	gbl->fom_out += dq_margin + dqs_margin;
3104 
3105 	debug_cond(DLEVEL == 2,
3106 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3107 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3108 
3109 	/*
3110 	 * Do not remove this line as it makes sure all of our
3111 	 * decisions have been applied.
3112 	 */
3113 	writel(0, &sdr_scc_mgr->update);
3114 
3115 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3116 		return -EINVAL;
3117 
3118 	return 0;
3119 }
3120 
3121 /**
3122  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3123  * @rank_bgn:		Rank number
3124  * @group:		Read/Write Group
3125  * @test_bgn:		Rank at which the test begins
3126  *
3127  * Stage 2: Write Calibration Part One.
3128  *
3129  * This function implements UniPHY calibration Stage 2, as explained in
3130  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3131  */
3132 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3133 				       const u32 test_bgn)
3134 {
3135 	int ret;
3136 
3137 	/* Update info for sims */
3138 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3139 
3140 	reg_file_set_group(group);
3141 	reg_file_set_stage(CAL_STAGE_WRITES);
3142 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3143 
3144 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3145 	if (ret)
3146 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3147 					CAL_SUBSTAGE_WRITES_CENTER);
3148 
3149 	return ret;
3150 }
3151 
3152 /**
3153  * mem_precharge_and_activate() - Precharge all banks and activate
3154  *
3155  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3156  */
3157 static void mem_precharge_and_activate(void)
3158 {
3159 	int r;
3160 
3161 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3162 		/* Test if the rank should be skipped. */
3163 		if (param->skip_ranks[r])
3164 			continue;
3165 
3166 		/* Set rank. */
3167 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3168 
3169 		/* Precharge all banks. */
3170 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3171 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3172 
3173 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3174 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3175 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3176 
3177 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3178 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3179 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3180 
3181 		/* Activate rows. */
3182 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3183 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3184 	}
3185 }
3186 
3187 /**
3188  * mem_init_latency() - Configure memory RLAT and WLAT settings
3189  *
3190  * Configure memory RLAT and WLAT parameters.
3191  */
3192 static void mem_init_latency(void)
3193 {
3194 	/*
3195 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3196 	 * so max latency in AFI clocks, used here, is correspondingly
3197 	 * smaller.
3198 	 */
3199 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3200 	u32 rlat, wlat;
3201 
3202 	debug("%s:%d\n", __func__, __LINE__);
3203 
3204 	/*
3205 	 * Read in write latency.
3206 	 * WL for Hard PHY does not include additive latency.
3207 	 */
3208 	wlat = readl(&data_mgr->t_wl_add);
3209 	wlat += readl(&data_mgr->mem_t_add);
3210 
3211 	gbl->rw_wl_nop_cycles = wlat - 1;
3212 
3213 	/* Read in readl latency. */
3214 	rlat = readl(&data_mgr->t_rl_add);
3215 
3216 	/* Set a pretty high read latency initially. */
3217 	gbl->curr_read_lat = rlat + 16;
3218 	if (gbl->curr_read_lat > max_latency)
3219 		gbl->curr_read_lat = max_latency;
3220 
3221 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3222 
3223 	/* Advertise write latency. */
3224 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3225 }
3226 
3227 /**
3228  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3229  *
3230  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3231  */
3232 static void mem_skip_calibrate(void)
3233 {
3234 	uint32_t vfifo_offset;
3235 	uint32_t i, j, r;
3236 
3237 	debug("%s:%d\n", __func__, __LINE__);
3238 	/* Need to update every shadow register set used by the interface */
3239 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3240 	     r += NUM_RANKS_PER_SHADOW_REG) {
3241 		/*
3242 		 * Set output phase alignment settings appropriate for
3243 		 * skip calibration.
3244 		 */
3245 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3246 			scc_mgr_set_dqs_en_phase(i, 0);
3247 #if IO_DLL_CHAIN_LENGTH == 6
3248 			scc_mgr_set_dqdqs_output_phase(i, 6);
3249 #else
3250 			scc_mgr_set_dqdqs_output_phase(i, 7);
3251 #endif
3252 			/*
3253 			 * Case:33398
3254 			 *
3255 			 * Write data arrives to the I/O two cycles before write
3256 			 * latency is reached (720 deg).
3257 			 *   -> due to bit-slip in a/c bus
3258 			 *   -> to allow board skew where dqs is longer than ck
3259 			 *      -> how often can this happen!?
3260 			 *      -> can claim back some ptaps for high freq
3261 			 *       support if we can relax this, but i digress...
3262 			 *
3263 			 * The write_clk leads mem_ck by 90 deg
3264 			 * The minimum ptap of the OPA is 180 deg
3265 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3266 			 * The write_clk is always delayed by 2 ptaps
3267 			 *
3268 			 * Hence, to make DQS aligned to CK, we need to delay
3269 			 * DQS by:
3270 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3271 			 *
3272 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3273 			 * gives us the number of ptaps, which simplies to:
3274 			 *
3275 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3276 			 */
3277 			scc_mgr_set_dqdqs_output_phase(i,
3278 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3279 		}
3280 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3281 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3282 
3283 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3284 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3285 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3286 		}
3287 		writel(0xff, &sdr_scc_mgr->dq_ena);
3288 		writel(0xff, &sdr_scc_mgr->dm_ena);
3289 		writel(0, &sdr_scc_mgr->update);
3290 	}
3291 
3292 	/* Compensate for simulation model behaviour */
3293 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3294 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3295 		scc_mgr_load_dqs(i);
3296 	}
3297 	writel(0, &sdr_scc_mgr->update);
3298 
3299 	/*
3300 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3301 	 * in sequencer.
3302 	 */
3303 	vfifo_offset = CALIB_VFIFO_OFFSET;
3304 	for (j = 0; j < vfifo_offset; j++)
3305 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3306 	writel(0, &phy_mgr_cmd->fifo_reset);
3307 
3308 	/*
3309 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3310 	 * setting from generation-time constant.
3311 	 */
3312 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3313 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3314 }
3315 
3316 /**
3317  * mem_calibrate() - Memory calibration entry point.
3318  *
3319  * Perform memory calibration.
3320  */
3321 static uint32_t mem_calibrate(void)
3322 {
3323 	uint32_t i;
3324 	uint32_t rank_bgn, sr;
3325 	uint32_t write_group, write_test_bgn;
3326 	uint32_t read_group, read_test_bgn;
3327 	uint32_t run_groups, current_run;
3328 	uint32_t failing_groups = 0;
3329 	uint32_t group_failed = 0;
3330 
3331 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3332 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3333 
3334 	debug("%s:%d\n", __func__, __LINE__);
3335 
3336 	/* Initialize the data settings */
3337 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3338 	gbl->error_stage = CAL_STAGE_NIL;
3339 	gbl->error_group = 0xff;
3340 	gbl->fom_in = 0;
3341 	gbl->fom_out = 0;
3342 
3343 	/* Initialize WLAT and RLAT. */
3344 	mem_init_latency();
3345 
3346 	/* Initialize bit slips. */
3347 	mem_precharge_and_activate();
3348 
3349 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3350 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3351 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3352 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3353 		if (i == 0)
3354 			scc_mgr_set_hhp_extras();
3355 
3356 		scc_set_bypass_mode(i);
3357 	}
3358 
3359 	/* Calibration is skipped. */
3360 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3361 		/*
3362 		 * Set VFIFO and LFIFO to instant-on settings in skip
3363 		 * calibration mode.
3364 		 */
3365 		mem_skip_calibrate();
3366 
3367 		/*
3368 		 * Do not remove this line as it makes sure all of our
3369 		 * decisions have been applied.
3370 		 */
3371 		writel(0, &sdr_scc_mgr->update);
3372 		return 1;
3373 	}
3374 
3375 	/* Calibration is not skipped. */
3376 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3377 		/*
3378 		 * Zero all delay chain/phase settings for all
3379 		 * groups and all shadow register sets.
3380 		 */
3381 		scc_mgr_zero_all();
3382 
3383 		run_groups = ~param->skip_groups;
3384 
3385 		for (write_group = 0, write_test_bgn = 0; write_group
3386 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3387 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3388 
3389 			/* Initialize the group failure */
3390 			group_failed = 0;
3391 
3392 			current_run = run_groups & ((1 <<
3393 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3394 			run_groups = run_groups >>
3395 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3396 
3397 			if (current_run == 0)
3398 				continue;
3399 
3400 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3401 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3402 			scc_mgr_zero_group(write_group, 0);
3403 
3404 			for (read_group = write_group * rwdqs_ratio,
3405 			     read_test_bgn = 0;
3406 			     read_group < (write_group + 1) * rwdqs_ratio;
3407 			     read_group++,
3408 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3409 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3410 					continue;
3411 
3412 				/* Calibrate the VFIFO */
3413 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3414 							       read_test_bgn))
3415 					continue;
3416 
3417 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3418 					return 0;
3419 
3420 				/* The group failed, we're done. */
3421 				goto grp_failed;
3422 			}
3423 
3424 			/* Calibrate the output side */
3425 			for (rank_bgn = 0, sr = 0;
3426 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3427 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3428 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3429 					continue;
3430 
3431 				/* Not needed in quick mode! */
3432 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3433 					continue;
3434 
3435 				/*
3436 				 * Determine if this set of ranks
3437 				 * should be skipped entirely.
3438 				 */
3439 				if (param->skip_shadow_regs[sr])
3440 					continue;
3441 
3442 				/* Calibrate WRITEs */
3443 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3444 						write_group, write_test_bgn))
3445 					continue;
3446 
3447 				group_failed = 1;
3448 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3449 					return 0;
3450 			}
3451 
3452 			/* Some group failed, we're done. */
3453 			if (group_failed)
3454 				goto grp_failed;
3455 
3456 			for (read_group = write_group * rwdqs_ratio,
3457 			     read_test_bgn = 0;
3458 			     read_group < (write_group + 1) * rwdqs_ratio;
3459 			     read_group++,
3460 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3461 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3462 					continue;
3463 
3464 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3465 								read_test_bgn))
3466 					continue;
3467 
3468 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3469 					return 0;
3470 
3471 				/* The group failed, we're done. */
3472 				goto grp_failed;
3473 			}
3474 
3475 			/* No group failed, continue as usual. */
3476 			continue;
3477 
3478 grp_failed:		/* A group failed, increment the counter. */
3479 			failing_groups++;
3480 		}
3481 
3482 		/*
3483 		 * USER If there are any failing groups then report
3484 		 * the failure.
3485 		 */
3486 		if (failing_groups != 0)
3487 			return 0;
3488 
3489 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3490 			continue;
3491 
3492 		/*
3493 		 * If we're skipping groups as part of debug,
3494 		 * don't calibrate LFIFO.
3495 		 */
3496 		if (param->skip_groups != 0)
3497 			continue;
3498 
3499 		/* Calibrate the LFIFO */
3500 		if (!rw_mgr_mem_calibrate_lfifo())
3501 			return 0;
3502 	}
3503 
3504 	/*
3505 	 * Do not remove this line as it makes sure all of our decisions
3506 	 * have been applied.
3507 	 */
3508 	writel(0, &sdr_scc_mgr->update);
3509 	return 1;
3510 }
3511 
3512 /**
3513  * run_mem_calibrate() - Perform memory calibration
3514  *
3515  * This function triggers the entire memory calibration procedure.
3516  */
3517 static int run_mem_calibrate(void)
3518 {
3519 	int pass;
3520 
3521 	debug("%s:%d\n", __func__, __LINE__);
3522 
3523 	/* Reset pass/fail status shown on afi_cal_success/fail */
3524 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3525 
3526 	/* Stop tracking manager. */
3527 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3528 
3529 	phy_mgr_initialize();
3530 	rw_mgr_mem_initialize();
3531 
3532 	/* Perform the actual memory calibration. */
3533 	pass = mem_calibrate();
3534 
3535 	mem_precharge_and_activate();
3536 	writel(0, &phy_mgr_cmd->fifo_reset);
3537 
3538 	/* Handoff. */
3539 	rw_mgr_mem_handoff();
3540 	/*
3541 	 * In Hard PHY this is a 2-bit control:
3542 	 * 0: AFI Mux Select
3543 	 * 1: DDIO Mux Select
3544 	 */
3545 	writel(0x2, &phy_mgr_cfg->mux_sel);
3546 
3547 	/* Start tracking manager. */
3548 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3549 
3550 	return pass;
3551 }
3552 
3553 /**
3554  * debug_mem_calibrate() - Report result of memory calibration
3555  * @pass:	Value indicating whether calibration passed or failed
3556  *
3557  * This function reports the results of the memory calibration
3558  * and writes debug information into the register file.
3559  */
3560 static void debug_mem_calibrate(int pass)
3561 {
3562 	uint32_t debug_info;
3563 
3564 	if (pass) {
3565 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3566 
3567 		gbl->fom_in /= 2;
3568 		gbl->fom_out /= 2;
3569 
3570 		if (gbl->fom_in > 0xff)
3571 			gbl->fom_in = 0xff;
3572 
3573 		if (gbl->fom_out > 0xff)
3574 			gbl->fom_out = 0xff;
3575 
3576 		/* Update the FOM in the register file */
3577 		debug_info = gbl->fom_in;
3578 		debug_info |= gbl->fom_out << 8;
3579 		writel(debug_info, &sdr_reg_file->fom);
3580 
3581 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3582 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3583 	} else {
3584 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3585 
3586 		debug_info = gbl->error_stage;
3587 		debug_info |= gbl->error_substage << 8;
3588 		debug_info |= gbl->error_group << 16;
3589 
3590 		writel(debug_info, &sdr_reg_file->failing_stage);
3591 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3592 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3593 
3594 		/* Update the failing group/stage in the register file */
3595 		debug_info = gbl->error_stage;
3596 		debug_info |= gbl->error_substage << 8;
3597 		debug_info |= gbl->error_group << 16;
3598 		writel(debug_info, &sdr_reg_file->failing_stage);
3599 	}
3600 
3601 	printf("%s: Calibration complete\n", __FILE__);
3602 }
3603 
3604 /**
3605  * hc_initialize_rom_data() - Initialize ROM data
3606  *
3607  * Initialize ROM data.
3608  */
3609 static void hc_initialize_rom_data(void)
3610 {
3611 	u32 i, addr;
3612 
3613 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3614 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3615 		writel(inst_rom_init[i], addr + (i << 2));
3616 
3617 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3618 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3619 		writel(ac_rom_init[i], addr + (i << 2));
3620 }
3621 
3622 /**
3623  * initialize_reg_file() - Initialize SDR register file
3624  *
3625  * Initialize SDR register file.
3626  */
3627 static void initialize_reg_file(void)
3628 {
3629 	/* Initialize the register file with the correct data */
3630 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3631 	writel(0, &sdr_reg_file->debug_data_addr);
3632 	writel(0, &sdr_reg_file->cur_stage);
3633 	writel(0, &sdr_reg_file->fom);
3634 	writel(0, &sdr_reg_file->failing_stage);
3635 	writel(0, &sdr_reg_file->debug1);
3636 	writel(0, &sdr_reg_file->debug2);
3637 }
3638 
3639 /**
3640  * initialize_hps_phy() - Initialize HPS PHY
3641  *
3642  * Initialize HPS PHY.
3643  */
3644 static void initialize_hps_phy(void)
3645 {
3646 	uint32_t reg;
3647 	/*
3648 	 * Tracking also gets configured here because it's in the
3649 	 * same register.
3650 	 */
3651 	uint32_t trk_sample_count = 7500;
3652 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3653 	/*
3654 	 * Format is number of outer loops in the 16 MSB, sample
3655 	 * count in 16 LSB.
3656 	 */
3657 
3658 	reg = 0;
3659 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3660 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3661 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3662 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3663 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3664 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3665 	/*
3666 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3667 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3668 	 */
3669 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3671 		trk_sample_count);
3672 	writel(reg, &sdr_ctrl->phy_ctrl0);
3673 
3674 	reg = 0;
3675 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3676 		trk_sample_count >>
3677 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3678 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3679 		trk_long_idle_sample_count);
3680 	writel(reg, &sdr_ctrl->phy_ctrl1);
3681 
3682 	reg = 0;
3683 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3684 		trk_long_idle_sample_count >>
3685 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3686 	writel(reg, &sdr_ctrl->phy_ctrl2);
3687 }
3688 
3689 /**
3690  * initialize_tracking() - Initialize tracking
3691  *
3692  * Initialize the register file with usable initial data.
3693  */
3694 static void initialize_tracking(void)
3695 {
3696 	/*
3697 	 * Initialize the register file with the correct data.
3698 	 * Compute usable version of value in case we skip full
3699 	 * computation later.
3700 	 */
3701 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3702 	       &sdr_reg_file->dtaps_per_ptap);
3703 
3704 	/* trk_sample_count */
3705 	writel(7500, &sdr_reg_file->trk_sample_count);
3706 
3707 	/* longidle outer loop [15:0] */
3708 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3709 
3710 	/*
3711 	 * longidle sample count [31:24]
3712 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3713 	 * trcd, worst case [15:8]
3714 	 * vfifo wait [7:0]
3715 	 */
3716 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3717 	       &sdr_reg_file->delays);
3718 
3719 	/* mux delay */
3720 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3721 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3722 	       &sdr_reg_file->trk_rw_mgr_addr);
3723 
3724 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3725 	       &sdr_reg_file->trk_read_dqs_width);
3726 
3727 	/* trefi [7:0] */
3728 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3729 	       &sdr_reg_file->trk_rfsh);
3730 }
3731 
3732 int sdram_calibration_full(void)
3733 {
3734 	struct param_type my_param;
3735 	struct gbl_type my_gbl;
3736 	uint32_t pass;
3737 
3738 	memset(&my_param, 0, sizeof(my_param));
3739 	memset(&my_gbl, 0, sizeof(my_gbl));
3740 
3741 	param = &my_param;
3742 	gbl = &my_gbl;
3743 
3744 	/* Set the calibration enabled by default */
3745 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3746 	/*
3747 	 * Only sweep all groups (regardless of fail state) by default
3748 	 * Set enabled read test by default.
3749 	 */
3750 #if DISABLE_GUARANTEED_READ
3751 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3752 #endif
3753 	/* Initialize the register file */
3754 	initialize_reg_file();
3755 
3756 	/* Initialize any PHY CSR */
3757 	initialize_hps_phy();
3758 
3759 	scc_mgr_initialize();
3760 
3761 	initialize_tracking();
3762 
3763 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3764 
3765 	debug("%s:%d\n", __func__, __LINE__);
3766 	debug_cond(DLEVEL == 1,
3767 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3768 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3769 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3770 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3771 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3772 	debug_cond(DLEVEL == 1,
3773 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3774 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3775 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3776 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3777 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3778 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3779 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3780 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3781 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3782 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3783 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3784 		   IO_IO_OUT2_DELAY_MAX);
3785 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3786 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3787 
3788 	hc_initialize_rom_data();
3789 
3790 	/* update info for sims */
3791 	reg_file_set_stage(CAL_STAGE_NIL);
3792 	reg_file_set_group(0);
3793 
3794 	/*
3795 	 * Load global needed for those actions that require
3796 	 * some dynamic calibration support.
3797 	 */
3798 	dyn_calib_steps = STATIC_CALIB_STEPS;
3799 	/*
3800 	 * Load global to allow dynamic selection of delay loop settings
3801 	 * based on calibration mode.
3802 	 */
3803 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3804 		skip_delay_mask = 0xff;
3805 	else
3806 		skip_delay_mask = 0x0;
3807 
3808 	pass = run_mem_calibrate();
3809 	debug_mem_calibrate(pass);
3810 	return pass;
3811 }
3812