1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 /** 1290 * rw_mgr_incr_vfifo() - Increase VFIFO value 1291 * @grp: Read/Write group 1292 * @v: VFIFO value 1293 * 1294 * Increase VFIFO value. 1295 */ 1296 static void rw_mgr_incr_vfifo(const u32 grp, u32 *v) 1297 { 1298 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1299 (*v)++; 1300 } 1301 1302 /** 1303 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1304 * @grp: Read/Write group 1305 * @v: VFIFO value 1306 * 1307 * Decrease VFIFO value. 1308 */ 1309 static void rw_mgr_decr_vfifo(const u32 grp, u32 *v) 1310 { 1311 u32 i; 1312 1313 for (i = 0; i < VFIFO_SIZE - 1; i++) 1314 rw_mgr_incr_vfifo(grp, v); 1315 } 1316 1317 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1318 { 1319 uint32_t v; 1320 uint32_t fail_cnt = 0; 1321 uint32_t test_status; 1322 1323 for (v = 0; v < VFIFO_SIZE; ) { 1324 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1325 __func__, __LINE__, v); 1326 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1327 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1328 if (!test_status) { 1329 fail_cnt++; 1330 1331 if (fail_cnt == 2) 1332 break; 1333 } 1334 1335 /* fiddle with FIFO */ 1336 rw_mgr_incr_vfifo(grp, &v); 1337 } 1338 1339 if (v >= VFIFO_SIZE) { 1340 /* no failing read found!! Something must have gone wrong */ 1341 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1342 __func__, __LINE__); 1343 return 0; 1344 } else { 1345 return v; 1346 } 1347 } 1348 1349 /** 1350 * sdr_find_phase() - Find DQS enable phase 1351 * @working: If 1, look for working phase, if 0, look for non-working phase 1352 * @grp: Read/Write group 1353 * @v: VFIFO value 1354 * @work: Working window position 1355 * @i: Iterator 1356 * @p: DQS Phase Iterator 1357 * 1358 * Find working or non-working DQS enable phase setting. 1359 */ 1360 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work, 1361 u32 *i, u32 *p) 1362 { 1363 u32 ret, bit_chk; 1364 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1365 1366 for (; *i < end; (*i)++) { 1367 if (working) 1368 *p = 0; 1369 1370 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1371 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1372 1373 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1374 PASS_ONE_BIT, &bit_chk, 0); 1375 if (!working) 1376 ret = !ret; 1377 1378 if (ret) 1379 return 0; 1380 1381 *work += IO_DELAY_PER_OPA_TAP; 1382 } 1383 1384 if (*p > IO_DQS_EN_PHASE_MAX) { 1385 /* Fiddle with FIFO. */ 1386 rw_mgr_incr_vfifo(grp, v); 1387 if (!working) 1388 *p = 0; 1389 } 1390 } 1391 1392 return -EINVAL; 1393 } 1394 1395 /** 1396 * sdr_working_phase() - Find working DQS enable phase 1397 * @grp: Read/Write group 1398 * @work_bgn: Working window start position 1399 * @v: VFIFO value 1400 * @d: dtaps output value 1401 * @p: DQS Phase Iterator 1402 * @i: Iterator 1403 * 1404 * Find working DQS enable phase setting. 1405 */ 1406 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *v, u32 *d, 1407 u32 *p, u32 *i) 1408 { 1409 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1410 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1411 int ret; 1412 1413 *work_bgn = 0; 1414 1415 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1416 *i = 0; 1417 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1418 ret = sdr_find_phase(1, grp, v, work_bgn, i, p); 1419 if (!ret) 1420 return 0; 1421 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1422 } 1423 1424 /* Cannot find working solution */ 1425 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1426 __func__, __LINE__); 1427 return -EINVAL; 1428 } 1429 1430 /** 1431 * sdr_backup_phase() - Find DQS enable backup phase 1432 * @grp: Read/Write group 1433 * @work_bgn: Working window start position 1434 * @v: VFIFO value 1435 * @p: DQS Phase Iterator 1436 * 1437 * Find DQS enable backup phase setting. 1438 */ 1439 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *v, u32 *p) 1440 { 1441 u32 tmp_delay, bit_chk, d; 1442 int ret; 1443 1444 /* Special case code for backing up a phase */ 1445 if (*p == 0) { 1446 *p = IO_DQS_EN_PHASE_MAX; 1447 rw_mgr_decr_vfifo(grp, v); 1448 } else { 1449 (*p)--; 1450 } 1451 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1452 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1453 1454 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1455 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1456 1457 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1458 PASS_ONE_BIT, &bit_chk, 0); 1459 if (ret) { 1460 *work_bgn = tmp_delay; 1461 break; 1462 } 1463 1464 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1465 } 1466 1467 /* Restore VFIFO to old state before we decremented it (if needed). */ 1468 (*p)++; 1469 if (*p > IO_DQS_EN_PHASE_MAX) { 1470 *p = 0; 1471 rw_mgr_incr_vfifo(grp, v); 1472 } 1473 1474 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1475 } 1476 1477 /** 1478 * sdr_nonworking_phase() - Find non-working DQS enable phase 1479 * @grp: Read/Write group 1480 * @work_end: Working window end position 1481 * @v: VFIFO value 1482 * @p: DQS Phase Iterator 1483 * @i: Iterator 1484 * 1485 * Find non-working DQS enable phase setting. 1486 */ 1487 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *v, 1488 u32 *p, u32 *i) 1489 { 1490 int ret; 1491 1492 (*p)++; 1493 *work_end += IO_DELAY_PER_OPA_TAP; 1494 if (*p > IO_DQS_EN_PHASE_MAX) { 1495 /* Fiddle with FIFO. */ 1496 *p = 0; 1497 rw_mgr_incr_vfifo(grp, v); 1498 } 1499 1500 ret = sdr_find_phase(0, grp, v, work_end, i, p); 1501 if (ret) { 1502 /* Cannot see edge of failing read. */ 1503 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1504 __func__, __LINE__); 1505 } 1506 1507 return ret; 1508 } 1509 1510 /** 1511 * sdr_find_window_center() - Find center of the working DQS window. 1512 * @grp: Read/Write group 1513 * @work_bgn: First working settings 1514 * @work_end: Last working settings 1515 * @val: VFIFO value 1516 * 1517 * Find center of the working DQS enable window. 1518 */ 1519 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1520 const u32 work_end, const u32 val) 1521 { 1522 u32 bit_chk, work_mid, v = val; 1523 int tmp_delay = 0; 1524 int i, p, d; 1525 1526 work_mid = (work_bgn + work_end) / 2; 1527 1528 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1529 work_bgn, work_end, work_mid); 1530 /* Get the middle delay to be less than a VFIFO delay */ 1531 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1532 1533 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1534 work_mid %= tmp_delay; 1535 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1536 1537 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1538 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1539 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1540 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1541 1542 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1543 1544 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1545 if (d > IO_DQS_EN_DELAY_MAX) 1546 d = IO_DQS_EN_DELAY_MAX; 1547 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1548 1549 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1550 1551 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1552 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1553 1554 /* 1555 * push vfifo until we can successfully calibrate. We can do this 1556 * because the largest possible margin in 1 VFIFO cycle. 1557 */ 1558 for (i = 0; i < VFIFO_SIZE; i++) { 1559 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1560 v); 1561 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1562 PASS_ONE_BIT, 1563 &bit_chk, 0)) { 1564 debug_cond(DLEVEL == 2, 1565 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1566 __func__, __LINE__, v, p, d); 1567 return 0; 1568 } 1569 1570 /* Fiddle with FIFO. */ 1571 rw_mgr_incr_vfifo(grp, &v); 1572 } 1573 1574 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1575 __func__, __LINE__); 1576 return -EINVAL; 1577 } 1578 1579 /* find a good dqs enable to use */ 1580 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1581 { 1582 uint32_t v, d, p, i; 1583 uint32_t bit_chk; 1584 uint32_t dtaps_per_ptap; 1585 uint32_t work_bgn, work_end; 1586 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1587 1588 debug("%s:%d %u\n", __func__, __LINE__, grp); 1589 1590 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1591 1592 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1593 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1594 1595 /* ************************************************************** */ 1596 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1597 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1598 1599 /* ********************************************************* */ 1600 /* * Step 1 : First push vfifo until we get a failing read * */ 1601 v = find_vfifo_read(grp, &bit_chk); 1602 1603 /* ******************************************************** */ 1604 /* * step 2: find first working phase, increment in ptaps * */ 1605 work_bgn = 0; 1606 if (sdr_working_phase(grp, &work_bgn, &v, &d, &p, &i)) 1607 return 0; 1608 1609 work_end = work_bgn; 1610 1611 /* 1612 * If d is 0 then the working window covers a phase tap and 1613 * we can follow the old procedure otherwise, we've found the beginning, 1614 * and we need to increment the dtaps until we find the end. 1615 */ 1616 if (d == 0) { 1617 /* ********************************************************* */ 1618 /* * step 3a: if we have room, back off by one and 1619 increment in dtaps * */ 1620 1621 sdr_backup_phase(grp, &work_bgn, &v, &p); 1622 1623 /* ********************************************************* */ 1624 /* * step 4a: go forward from working phase to non working 1625 phase, increment in ptaps * */ 1626 if (sdr_nonworking_phase(grp, &work_end, &v, &p, &i)) 1627 return 0; 1628 1629 /* ********************************************************* */ 1630 /* * step 5a: back off one from last, increment in dtaps * */ 1631 1632 /* Special case code for backing up a phase */ 1633 if (p == 0) { 1634 p = IO_DQS_EN_PHASE_MAX; 1635 rw_mgr_decr_vfifo(grp, &v); 1636 } else { 1637 p = p - 1; 1638 } 1639 1640 work_end -= IO_DELAY_PER_OPA_TAP; 1641 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1642 1643 /* * The actual increment of dtaps is done outside of 1644 the if/else loop to share code */ 1645 d = 0; 1646 1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1648 vfifo=%u ptap=%u\n", __func__, __LINE__, 1649 v, p); 1650 } else { 1651 /* ******************************************************* */ 1652 /* * step 3-5b: Find the right edge of the window using 1653 delay taps * */ 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1655 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1656 v, p, d, work_bgn); 1657 1658 work_end = work_bgn; 1659 } 1660 1661 /* The dtap increment to find the failing edge is done here */ 1662 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1663 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1664 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1665 end-2: dtap=%u\n", __func__, __LINE__, d); 1666 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1667 1668 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1669 PASS_ONE_BIT, 1670 &bit_chk, 0)) { 1671 break; 1672 } 1673 } 1674 1675 /* Go back to working dtap */ 1676 if (d != 0) 1677 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1678 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1680 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1681 v, p, d-1, work_end); 1682 1683 if (work_end < work_bgn) { 1684 /* nil range */ 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1686 failed\n", __func__, __LINE__); 1687 return 0; 1688 } 1689 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1691 __func__, __LINE__, work_bgn, work_end); 1692 1693 /* *************************************************************** */ 1694 /* 1695 * * We need to calculate the number of dtaps that equal a ptap 1696 * * To do that we'll back up a ptap and re-find the edge of the 1697 * * window using dtaps 1698 */ 1699 1700 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1701 for tracking\n", __func__, __LINE__); 1702 1703 /* Special case code for backing up a phase */ 1704 if (p == 0) { 1705 p = IO_DQS_EN_PHASE_MAX; 1706 rw_mgr_decr_vfifo(grp, &v); 1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1708 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1709 v, p); 1710 } else { 1711 p = p - 1; 1712 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1713 phase only: v=%u p=%u", __func__, __LINE__, 1714 v, p); 1715 } 1716 1717 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1718 1719 /* 1720 * Increase dtap until we first see a passing read (in case the 1721 * window is smaller than a ptap), 1722 * and then a failing read to mark the edge of the window again 1723 */ 1724 1725 /* Find a passing read */ 1726 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1727 __func__, __LINE__); 1728 found_passing_read = 0; 1729 found_failing_read = 0; 1730 initial_failing_dtap = d; 1731 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1732 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1733 read d=%u\n", __func__, __LINE__, d); 1734 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1735 1736 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1737 PASS_ONE_BIT, 1738 &bit_chk, 0)) { 1739 found_passing_read = 1; 1740 break; 1741 } 1742 } 1743 1744 if (found_passing_read) { 1745 /* Find a failing read */ 1746 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1747 read\n", __func__, __LINE__); 1748 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1749 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1750 testing read d=%u\n", __func__, __LINE__, d); 1751 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1752 1753 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1754 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1755 found_failing_read = 1; 1756 break; 1757 } 1758 } 1759 } else { 1760 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1761 calculate dtaps", __func__, __LINE__); 1762 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1763 } 1764 1765 /* 1766 * The dynamically calculated dtaps_per_ptap is only valid if we 1767 * found a passing/failing read. If we didn't, it means d hit the max 1768 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1769 * statically calculated value. 1770 */ 1771 if (found_passing_read && found_failing_read) 1772 dtaps_per_ptap = d - initial_failing_dtap; 1773 1774 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1775 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1776 - %u = %u", __func__, __LINE__, d, 1777 initial_failing_dtap, dtaps_per_ptap); 1778 1779 /* ******************************************** */ 1780 /* * step 6: Find the centre of the window * */ 1781 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1782 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1783 1784 return 1; 1785 } 1786 1787 /* per-bit deskew DQ and center */ 1788 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1789 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1790 uint32_t use_read_test, uint32_t update_fom) 1791 { 1792 uint32_t i, p, d, min_index; 1793 /* 1794 * Store these as signed since there are comparisons with 1795 * signed numbers. 1796 */ 1797 uint32_t bit_chk; 1798 uint32_t sticky_bit_chk; 1799 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1800 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1801 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1802 int32_t mid; 1803 int32_t orig_mid_min, mid_min; 1804 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1805 final_dqs_en; 1806 int32_t dq_margin, dqs_margin; 1807 uint32_t stop; 1808 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1809 uint32_t addr; 1810 1811 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1812 1813 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1814 start_dqs = readl(addr + (read_group << 2)); 1815 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1816 start_dqs_en = readl(addr + ((read_group << 2) 1817 - IO_DQS_EN_DELAY_OFFSET)); 1818 1819 /* set the left and right edge of each bit to an illegal value */ 1820 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1821 sticky_bit_chk = 0; 1822 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1823 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1824 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1825 } 1826 1827 /* Search for the left edge of the window for each bit */ 1828 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1829 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1830 1831 writel(0, &sdr_scc_mgr->update); 1832 1833 /* 1834 * Stop searching when the read test doesn't pass AND when 1835 * we've seen a passing read on every bit. 1836 */ 1837 if (use_read_test) { 1838 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1839 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1840 &bit_chk, 0, 0); 1841 } else { 1842 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1843 0, PASS_ONE_BIT, 1844 &bit_chk, 0); 1845 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1846 (read_group - (write_group * 1847 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1848 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1849 stop = (bit_chk == 0); 1850 } 1851 sticky_bit_chk = sticky_bit_chk | bit_chk; 1852 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1853 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1854 && %u", __func__, __LINE__, d, 1855 sticky_bit_chk, 1856 param->read_correct_mask, stop); 1857 1858 if (stop == 1) { 1859 break; 1860 } else { 1861 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1862 if (bit_chk & 1) { 1863 /* Remember a passing test as the 1864 left_edge */ 1865 left_edge[i] = d; 1866 } else { 1867 /* If a left edge has not been seen yet, 1868 then a future passing test will mark 1869 this edge as the right edge */ 1870 if (left_edge[i] == 1871 IO_IO_IN_DELAY_MAX + 1) { 1872 right_edge[i] = -(d + 1); 1873 } 1874 } 1875 bit_chk = bit_chk >> 1; 1876 } 1877 } 1878 } 1879 1880 /* Reset DQ delay chains to 0 */ 1881 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1882 sticky_bit_chk = 0; 1883 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1884 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1885 %d right_edge[%u]: %d\n", __func__, __LINE__, 1886 i, left_edge[i], i, right_edge[i]); 1887 1888 /* 1889 * Check for cases where we haven't found the left edge, 1890 * which makes our assignment of the the right edge invalid. 1891 * Reset it to the illegal value. 1892 */ 1893 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1894 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1895 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1896 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1897 right_edge[%u]: %d\n", __func__, __LINE__, 1898 i, right_edge[i]); 1899 } 1900 1901 /* 1902 * Reset sticky bit (except for bits where we have seen 1903 * both the left and right edge). 1904 */ 1905 sticky_bit_chk = sticky_bit_chk << 1; 1906 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1907 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1908 sticky_bit_chk = sticky_bit_chk | 1; 1909 } 1910 1911 if (i == 0) 1912 break; 1913 } 1914 1915 /* Search for the right edge of the window for each bit */ 1916 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1917 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1918 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1919 uint32_t delay = d + start_dqs_en; 1920 if (delay > IO_DQS_EN_DELAY_MAX) 1921 delay = IO_DQS_EN_DELAY_MAX; 1922 scc_mgr_set_dqs_en_delay(read_group, delay); 1923 } 1924 scc_mgr_load_dqs(read_group); 1925 1926 writel(0, &sdr_scc_mgr->update); 1927 1928 /* 1929 * Stop searching when the read test doesn't pass AND when 1930 * we've seen a passing read on every bit. 1931 */ 1932 if (use_read_test) { 1933 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1934 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1935 &bit_chk, 0, 0); 1936 } else { 1937 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1938 0, PASS_ONE_BIT, 1939 &bit_chk, 0); 1940 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1941 (read_group - (write_group * 1942 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1943 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1944 stop = (bit_chk == 0); 1945 } 1946 sticky_bit_chk = sticky_bit_chk | bit_chk; 1947 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1948 1949 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1950 %u && %u", __func__, __LINE__, d, 1951 sticky_bit_chk, param->read_correct_mask, stop); 1952 1953 if (stop == 1) { 1954 break; 1955 } else { 1956 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1957 if (bit_chk & 1) { 1958 /* Remember a passing test as 1959 the right_edge */ 1960 right_edge[i] = d; 1961 } else { 1962 if (d != 0) { 1963 /* If a right edge has not been 1964 seen yet, then a future passing 1965 test will mark this edge as the 1966 left edge */ 1967 if (right_edge[i] == 1968 IO_IO_IN_DELAY_MAX + 1) { 1969 left_edge[i] = -(d + 1); 1970 } 1971 } else { 1972 /* d = 0 failed, but it passed 1973 when testing the left edge, 1974 so it must be marginal, 1975 set it to -1 */ 1976 if (right_edge[i] == 1977 IO_IO_IN_DELAY_MAX + 1 && 1978 left_edge[i] != 1979 IO_IO_IN_DELAY_MAX 1980 + 1) { 1981 right_edge[i] = -1; 1982 } 1983 /* If a right edge has not been 1984 seen yet, then a future passing 1985 test will mark this edge as the 1986 left edge */ 1987 else if (right_edge[i] == 1988 IO_IO_IN_DELAY_MAX + 1989 1) { 1990 left_edge[i] = -(d + 1); 1991 } 1992 } 1993 } 1994 1995 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1996 d=%u]: ", __func__, __LINE__, d); 1997 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1998 (int)(bit_chk & 1), i, left_edge[i]); 1999 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2000 right_edge[i]); 2001 bit_chk = bit_chk >> 1; 2002 } 2003 } 2004 } 2005 2006 /* Check that all bits have a window */ 2007 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2008 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2009 %d right_edge[%u]: %d", __func__, __LINE__, 2010 i, left_edge[i], i, right_edge[i]); 2011 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2012 == IO_IO_IN_DELAY_MAX + 1)) { 2013 /* 2014 * Restore delay chain settings before letting the loop 2015 * in rw_mgr_mem_calibrate_vfifo to retry different 2016 * dqs/ck relationships. 2017 */ 2018 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2019 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2020 scc_mgr_set_dqs_en_delay(read_group, 2021 start_dqs_en); 2022 } 2023 scc_mgr_load_dqs(read_group); 2024 writel(0, &sdr_scc_mgr->update); 2025 2026 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2027 find edge [%u]: %d %d", __func__, __LINE__, 2028 i, left_edge[i], right_edge[i]); 2029 if (use_read_test) { 2030 set_failing_group_stage(read_group * 2031 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2032 CAL_STAGE_VFIFO, 2033 CAL_SUBSTAGE_VFIFO_CENTER); 2034 } else { 2035 set_failing_group_stage(read_group * 2036 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2037 CAL_STAGE_VFIFO_AFTER_WRITES, 2038 CAL_SUBSTAGE_VFIFO_CENTER); 2039 } 2040 return 0; 2041 } 2042 } 2043 2044 /* Find middle of window for each DQ bit */ 2045 mid_min = left_edge[0] - right_edge[0]; 2046 min_index = 0; 2047 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2048 mid = left_edge[i] - right_edge[i]; 2049 if (mid < mid_min) { 2050 mid_min = mid; 2051 min_index = i; 2052 } 2053 } 2054 2055 /* 2056 * -mid_min/2 represents the amount that we need to move DQS. 2057 * If mid_min is odd and positive we'll need to add one to 2058 * make sure the rounding in further calculations is correct 2059 * (always bias to the right), so just add 1 for all positive values. 2060 */ 2061 if (mid_min > 0) 2062 mid_min++; 2063 2064 mid_min = mid_min / 2; 2065 2066 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2067 __func__, __LINE__, mid_min, min_index); 2068 2069 /* Determine the amount we can change DQS (which is -mid_min) */ 2070 orig_mid_min = mid_min; 2071 new_dqs = start_dqs - mid_min; 2072 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2073 new_dqs = IO_DQS_IN_DELAY_MAX; 2074 else if (new_dqs < 0) 2075 new_dqs = 0; 2076 2077 mid_min = start_dqs - new_dqs; 2078 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2079 mid_min, new_dqs); 2080 2081 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2082 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2083 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2084 else if (start_dqs_en - mid_min < 0) 2085 mid_min += start_dqs_en - mid_min; 2086 } 2087 new_dqs = start_dqs - mid_min; 2088 2089 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2090 new_dqs=%d mid_min=%d\n", start_dqs, 2091 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2092 new_dqs, mid_min); 2093 2094 /* Initialize data for export structures */ 2095 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2096 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2097 2098 /* add delay to bring centre of all DQ windows to the same "level" */ 2099 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2100 /* Use values before divide by 2 to reduce round off error */ 2101 shift_dq = (left_edge[i] - right_edge[i] - 2102 (left_edge[min_index] - right_edge[min_index]))/2 + 2103 (orig_mid_min - mid_min); 2104 2105 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2106 shift_dq[%u]=%d\n", i, shift_dq); 2107 2108 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2109 temp_dq_in_delay1 = readl(addr + (p << 2)); 2110 temp_dq_in_delay2 = readl(addr + (i << 2)); 2111 2112 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2113 (int32_t)IO_IO_IN_DELAY_MAX) { 2114 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2115 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2116 shift_dq = -(int32_t)temp_dq_in_delay1; 2117 } 2118 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2119 shift_dq[%u]=%d\n", i, shift_dq); 2120 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2121 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2122 scc_mgr_load_dq(p); 2123 2124 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2125 left_edge[i] - shift_dq + (-mid_min), 2126 right_edge[i] + shift_dq - (-mid_min)); 2127 /* To determine values for export structures */ 2128 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2129 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2130 2131 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2132 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2133 } 2134 2135 final_dqs = new_dqs; 2136 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2137 final_dqs_en = start_dqs_en - mid_min; 2138 2139 /* Move DQS-en */ 2140 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2141 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2142 scc_mgr_load_dqs(read_group); 2143 } 2144 2145 /* Move DQS */ 2146 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2147 scc_mgr_load_dqs(read_group); 2148 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2149 dqs_margin=%d", __func__, __LINE__, 2150 dq_margin, dqs_margin); 2151 2152 /* 2153 * Do not remove this line as it makes sure all of our decisions 2154 * have been applied. Apply the update bit. 2155 */ 2156 writel(0, &sdr_scc_mgr->update); 2157 2158 return (dq_margin >= 0) && (dqs_margin >= 0); 2159 } 2160 2161 /** 2162 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2163 * @rw_group: Read/Write Group 2164 * @phase: DQ/DQS phase 2165 * 2166 * Because initially no communication ca be reliably performed with the memory 2167 * device, the sequencer uses a guaranteed write mechanism to write data into 2168 * the memory device. 2169 */ 2170 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2171 const u32 phase) 2172 { 2173 int ret; 2174 2175 /* Set a particular DQ/DQS phase. */ 2176 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2177 2178 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2179 __func__, __LINE__, rw_group, phase); 2180 2181 /* 2182 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2183 * Load up the patterns used by read calibration using the 2184 * current DQDQS phase. 2185 */ 2186 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2187 2188 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2189 return 0; 2190 2191 /* 2192 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2193 * Back-to-Back reads of the patterns used for calibration. 2194 */ 2195 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2196 if (ret) 2197 debug_cond(DLEVEL == 1, 2198 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2199 __func__, __LINE__, rw_group, phase); 2200 return ret; 2201 } 2202 2203 /** 2204 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2205 * @rw_group: Read/Write Group 2206 * @test_bgn: Rank at which the test begins 2207 * 2208 * DQS enable calibration ensures reliable capture of the DQ signal without 2209 * glitches on the DQS line. 2210 */ 2211 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2212 const u32 test_bgn) 2213 { 2214 /* 2215 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2216 * DQS and DQS Eanble Signal Relationships. 2217 */ 2218 2219 /* We start at zero, so have one less dq to devide among */ 2220 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2221 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2222 int found; 2223 u32 i, p, d, r; 2224 2225 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2226 2227 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2228 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2229 r += NUM_RANKS_PER_SHADOW_REG) { 2230 for (i = 0, p = test_bgn, d = 0; 2231 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2232 i++, p++, d += delay_step) { 2233 debug_cond(DLEVEL == 1, 2234 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2235 __func__, __LINE__, rw_group, r, i, p, d); 2236 2237 scc_mgr_set_dq_in_delay(p, d); 2238 scc_mgr_load_dq(p); 2239 } 2240 2241 writel(0, &sdr_scc_mgr->update); 2242 } 2243 2244 /* 2245 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2246 * dq_in_delay values 2247 */ 2248 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2249 2250 debug_cond(DLEVEL == 1, 2251 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2252 __func__, __LINE__, rw_group, found); 2253 2254 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2255 r += NUM_RANKS_PER_SHADOW_REG) { 2256 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2257 writel(0, &sdr_scc_mgr->update); 2258 } 2259 2260 if (!found) 2261 return -EINVAL; 2262 2263 return 0; 2264 2265 } 2266 2267 /** 2268 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2269 * @rw_group: Read/Write Group 2270 * @test_bgn: Rank at which the test begins 2271 * @use_read_test: Perform a read test 2272 * @update_fom: Update FOM 2273 * 2274 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2275 * within a group. 2276 */ 2277 static int 2278 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2279 const int use_read_test, 2280 const int update_fom) 2281 2282 { 2283 int ret, grp_calibrated; 2284 u32 rank_bgn, sr; 2285 2286 /* 2287 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2288 * Read per-bit deskew can be done on a per shadow register basis. 2289 */ 2290 grp_calibrated = 1; 2291 for (rank_bgn = 0, sr = 0; 2292 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2293 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2294 /* Check if this set of ranks should be skipped entirely. */ 2295 if (param->skip_shadow_regs[sr]) 2296 continue; 2297 2298 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2299 rw_group, test_bgn, 2300 use_read_test, 2301 update_fom); 2302 if (ret) 2303 continue; 2304 2305 grp_calibrated = 0; 2306 } 2307 2308 if (!grp_calibrated) 2309 return -EIO; 2310 2311 return 0; 2312 } 2313 2314 /** 2315 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2316 * @rw_group: Read/Write Group 2317 * @test_bgn: Rank at which the test begins 2318 * 2319 * Stage 1: Calibrate the read valid prediction FIFO. 2320 * 2321 * This function implements UniPHY calibration Stage 1, as explained in 2322 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2323 * 2324 * - read valid prediction will consist of finding: 2325 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2326 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2327 * - we also do a per-bit deskew on the DQ lines. 2328 */ 2329 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2330 { 2331 uint32_t p, d; 2332 uint32_t dtaps_per_ptap; 2333 uint32_t failed_substage; 2334 2335 int ret; 2336 2337 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2338 2339 /* Update info for sims */ 2340 reg_file_set_group(rw_group); 2341 reg_file_set_stage(CAL_STAGE_VFIFO); 2342 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2343 2344 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2345 2346 /* USER Determine number of delay taps for each phase tap. */ 2347 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2348 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2349 2350 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2351 /* 2352 * In RLDRAMX we may be messing the delay of pins in 2353 * the same write rw_group but outside of the current read 2354 * the rw_group, but that's ok because we haven't calibrated 2355 * output side yet. 2356 */ 2357 if (d > 0) { 2358 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2359 rw_group, d); 2360 } 2361 2362 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2363 /* 1) Guaranteed Write */ 2364 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2365 if (ret) 2366 break; 2367 2368 /* 2) DQS Enable Calibration */ 2369 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2370 test_bgn); 2371 if (ret) { 2372 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2373 continue; 2374 } 2375 2376 /* 3) Centering DQ/DQS */ 2377 /* 2378 * If doing read after write calibration, do not update 2379 * FOM now. Do it then. 2380 */ 2381 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2382 test_bgn, 1, 0); 2383 if (ret) { 2384 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2385 continue; 2386 } 2387 2388 /* All done. */ 2389 goto cal_done_ok; 2390 } 2391 } 2392 2393 /* Calibration Stage 1 failed. */ 2394 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2395 return 0; 2396 2397 /* Calibration Stage 1 completed OK. */ 2398 cal_done_ok: 2399 /* 2400 * Reset the delay chains back to zero if they have moved > 1 2401 * (check for > 1 because loop will increase d even when pass in 2402 * first case). 2403 */ 2404 if (d > 2) 2405 scc_mgr_zero_group(rw_group, 1); 2406 2407 return 1; 2408 } 2409 2410 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2411 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2412 uint32_t test_bgn) 2413 { 2414 uint32_t rank_bgn, sr; 2415 uint32_t grp_calibrated; 2416 uint32_t write_group; 2417 2418 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2419 2420 /* update info for sims */ 2421 2422 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2423 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2424 2425 write_group = read_group; 2426 2427 /* update info for sims */ 2428 reg_file_set_group(read_group); 2429 2430 grp_calibrated = 1; 2431 /* Read per-bit deskew can be done on a per shadow register basis */ 2432 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2433 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2434 /* Determine if this set of ranks should be skipped entirely */ 2435 if (!param->skip_shadow_regs[sr]) { 2436 /* This is the last calibration round, update FOM here */ 2437 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2438 write_group, 2439 read_group, 2440 test_bgn, 0, 2441 1)) { 2442 grp_calibrated = 0; 2443 } 2444 } 2445 } 2446 2447 2448 if (grp_calibrated == 0) { 2449 set_failing_group_stage(write_group, 2450 CAL_STAGE_VFIFO_AFTER_WRITES, 2451 CAL_SUBSTAGE_VFIFO_CENTER); 2452 return 0; 2453 } 2454 2455 return 1; 2456 } 2457 2458 /* Calibrate LFIFO to find smallest read latency */ 2459 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2460 { 2461 uint32_t found_one; 2462 uint32_t bit_chk; 2463 2464 debug("%s:%d\n", __func__, __LINE__); 2465 2466 /* update info for sims */ 2467 reg_file_set_stage(CAL_STAGE_LFIFO); 2468 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2469 2470 /* Load up the patterns used by read calibration for all ranks */ 2471 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2472 found_one = 0; 2473 2474 do { 2475 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2476 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2477 __func__, __LINE__, gbl->curr_read_lat); 2478 2479 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2480 NUM_READ_TESTS, 2481 PASS_ALL_BITS, 2482 &bit_chk, 1)) { 2483 break; 2484 } 2485 2486 found_one = 1; 2487 /* reduce read latency and see if things are working */ 2488 /* correctly */ 2489 gbl->curr_read_lat--; 2490 } while (gbl->curr_read_lat > 0); 2491 2492 /* reset the fifos to get pointers to known state */ 2493 2494 writel(0, &phy_mgr_cmd->fifo_reset); 2495 2496 if (found_one) { 2497 /* add a fudge factor to the read latency that was determined */ 2498 gbl->curr_read_lat += 2; 2499 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2500 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2501 read_lat=%u\n", __func__, __LINE__, 2502 gbl->curr_read_lat); 2503 return 1; 2504 } else { 2505 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2506 CAL_SUBSTAGE_READ_LATENCY); 2507 2508 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2509 read_lat=%u\n", __func__, __LINE__, 2510 gbl->curr_read_lat); 2511 return 0; 2512 } 2513 } 2514 2515 /* 2516 * issue write test command. 2517 * two variants are provided. one that just tests a write pattern and 2518 * another that tests datamask functionality. 2519 */ 2520 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2521 uint32_t test_dm) 2522 { 2523 uint32_t mcc_instruction; 2524 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2525 ENABLE_SUPER_QUICK_CALIBRATION); 2526 uint32_t rw_wl_nop_cycles; 2527 uint32_t addr; 2528 2529 /* 2530 * Set counter and jump addresses for the right 2531 * number of NOP cycles. 2532 * The number of supported NOP cycles can range from -1 to infinity 2533 * Three different cases are handled: 2534 * 2535 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2536 * mechanism will be used to insert the right number of NOPs 2537 * 2538 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2539 * issuing the write command will jump straight to the 2540 * micro-instruction that turns on DQS (for DDRx), or outputs write 2541 * data (for RLD), skipping 2542 * the NOP micro-instruction all together 2543 * 2544 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2545 * turned on in the same micro-instruction that issues the write 2546 * command. Then we need 2547 * to directly jump to the micro-instruction that sends out the data 2548 * 2549 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2550 * (2 and 3). One jump-counter (0) is used to perform multiple 2551 * write-read operations. 2552 * one counter left to issue this command in "multiple-group" mode 2553 */ 2554 2555 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2556 2557 if (rw_wl_nop_cycles == -1) { 2558 /* 2559 * CNTR 2 - We want to execute the special write operation that 2560 * turns on DQS right away and then skip directly to the 2561 * instruction that sends out the data. We set the counter to a 2562 * large number so that the jump is always taken. 2563 */ 2564 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2565 2566 /* CNTR 3 - Not used */ 2567 if (test_dm) { 2568 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2569 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2570 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2571 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2572 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2573 } else { 2574 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2575 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2576 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2577 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2578 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2579 } 2580 } else if (rw_wl_nop_cycles == 0) { 2581 /* 2582 * CNTR 2 - We want to skip the NOP operation and go straight 2583 * to the DQS enable instruction. We set the counter to a large 2584 * number so that the jump is always taken. 2585 */ 2586 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2587 2588 /* CNTR 3 - Not used */ 2589 if (test_dm) { 2590 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2591 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2592 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2593 } else { 2594 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2595 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2596 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2597 } 2598 } else { 2599 /* 2600 * CNTR 2 - In this case we want to execute the next instruction 2601 * and NOT take the jump. So we set the counter to 0. The jump 2602 * address doesn't count. 2603 */ 2604 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2605 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2606 2607 /* 2608 * CNTR 3 - Set the nop counter to the number of cycles we 2609 * need to loop for, minus 1. 2610 */ 2611 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2612 if (test_dm) { 2613 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2614 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2615 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2616 } else { 2617 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2618 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2619 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2620 } 2621 } 2622 2623 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2624 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2625 2626 if (quick_write_mode) 2627 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2628 else 2629 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2630 2631 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2632 2633 /* 2634 * CNTR 1 - This is used to ensure enough time elapses 2635 * for read data to come back. 2636 */ 2637 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2638 2639 if (test_dm) { 2640 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2641 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2642 } else { 2643 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2644 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2645 } 2646 2647 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2648 writel(mcc_instruction, addr + (group << 2)); 2649 } 2650 2651 /* Test writes, can check for a single bit pass or multiple bit pass */ 2652 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2653 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2654 uint32_t *bit_chk, uint32_t all_ranks) 2655 { 2656 uint32_t r; 2657 uint32_t correct_mask_vg; 2658 uint32_t tmp_bit_chk; 2659 uint32_t vg; 2660 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2661 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2662 uint32_t addr_rw_mgr; 2663 uint32_t base_rw_mgr; 2664 2665 *bit_chk = param->write_correct_mask; 2666 correct_mask_vg = param->write_correct_mask_vg; 2667 2668 for (r = rank_bgn; r < rank_end; r++) { 2669 if (param->skip_ranks[r]) { 2670 /* request to skip the rank */ 2671 continue; 2672 } 2673 2674 /* set rank */ 2675 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2676 2677 tmp_bit_chk = 0; 2678 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2679 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2680 /* reset the fifos to get pointers to known state */ 2681 writel(0, &phy_mgr_cmd->fifo_reset); 2682 2683 tmp_bit_chk = tmp_bit_chk << 2684 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2685 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2686 rw_mgr_mem_calibrate_write_test_issue(write_group * 2687 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2688 use_dm); 2689 2690 base_rw_mgr = readl(addr_rw_mgr); 2691 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2692 if (vg == 0) 2693 break; 2694 } 2695 *bit_chk &= tmp_bit_chk; 2696 } 2697 2698 if (all_correct) { 2699 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2700 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2701 %u => %lu", write_group, use_dm, 2702 *bit_chk, param->write_correct_mask, 2703 (long unsigned int)(*bit_chk == 2704 param->write_correct_mask)); 2705 return *bit_chk == param->write_correct_mask; 2706 } else { 2707 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2708 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2709 write_group, use_dm, *bit_chk); 2710 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2711 (long unsigned int)(*bit_chk != 0)); 2712 return *bit_chk != 0x00; 2713 } 2714 } 2715 2716 /* 2717 * center all windows. do per-bit-deskew to possibly increase size of 2718 * certain windows. 2719 */ 2720 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2721 uint32_t write_group, uint32_t test_bgn) 2722 { 2723 uint32_t i, p, min_index; 2724 int32_t d; 2725 /* 2726 * Store these as signed since there are comparisons with 2727 * signed numbers. 2728 */ 2729 uint32_t bit_chk; 2730 uint32_t sticky_bit_chk; 2731 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2732 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2733 int32_t mid; 2734 int32_t mid_min, orig_mid_min; 2735 int32_t new_dqs, start_dqs, shift_dq; 2736 int32_t dq_margin, dqs_margin, dm_margin; 2737 uint32_t stop; 2738 uint32_t temp_dq_out1_delay; 2739 uint32_t addr; 2740 2741 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2742 2743 dm_margin = 0; 2744 2745 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2746 start_dqs = readl(addr + 2747 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2748 2749 /* per-bit deskew */ 2750 2751 /* 2752 * set the left and right edge of each bit to an illegal value 2753 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2754 */ 2755 sticky_bit_chk = 0; 2756 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2757 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2758 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2759 } 2760 2761 /* Search for the left edge of the window for each bit */ 2762 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2763 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2764 2765 writel(0, &sdr_scc_mgr->update); 2766 2767 /* 2768 * Stop searching when the read test doesn't pass AND when 2769 * we've seen a passing read on every bit. 2770 */ 2771 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2772 0, PASS_ONE_BIT, &bit_chk, 0); 2773 sticky_bit_chk = sticky_bit_chk | bit_chk; 2774 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2775 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2776 == %u && %u [bit_chk= %u ]\n", 2777 d, sticky_bit_chk, param->write_correct_mask, 2778 stop, bit_chk); 2779 2780 if (stop == 1) { 2781 break; 2782 } else { 2783 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2784 if (bit_chk & 1) { 2785 /* 2786 * Remember a passing test as the 2787 * left_edge. 2788 */ 2789 left_edge[i] = d; 2790 } else { 2791 /* 2792 * If a left edge has not been seen 2793 * yet, then a future passing test will 2794 * mark this edge as the right edge. 2795 */ 2796 if (left_edge[i] == 2797 IO_IO_OUT1_DELAY_MAX + 1) { 2798 right_edge[i] = -(d + 1); 2799 } 2800 } 2801 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2802 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2803 (int)(bit_chk & 1), i, left_edge[i]); 2804 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2805 right_edge[i]); 2806 bit_chk = bit_chk >> 1; 2807 } 2808 } 2809 } 2810 2811 /* Reset DQ delay chains to 0 */ 2812 scc_mgr_apply_group_dq_out1_delay(0); 2813 sticky_bit_chk = 0; 2814 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2815 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2816 %d right_edge[%u]: %d\n", __func__, __LINE__, 2817 i, left_edge[i], i, right_edge[i]); 2818 2819 /* 2820 * Check for cases where we haven't found the left edge, 2821 * which makes our assignment of the the right edge invalid. 2822 * Reset it to the illegal value. 2823 */ 2824 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2825 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2826 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2827 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2828 right_edge[%u]: %d\n", __func__, __LINE__, 2829 i, right_edge[i]); 2830 } 2831 2832 /* 2833 * Reset sticky bit (except for bits where we have 2834 * seen the left edge). 2835 */ 2836 sticky_bit_chk = sticky_bit_chk << 1; 2837 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2838 sticky_bit_chk = sticky_bit_chk | 1; 2839 2840 if (i == 0) 2841 break; 2842 } 2843 2844 /* Search for the right edge of the window for each bit */ 2845 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2846 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2847 d + start_dqs); 2848 2849 writel(0, &sdr_scc_mgr->update); 2850 2851 /* 2852 * Stop searching when the read test doesn't pass AND when 2853 * we've seen a passing read on every bit. 2854 */ 2855 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2856 0, PASS_ONE_BIT, &bit_chk, 0); 2857 2858 sticky_bit_chk = sticky_bit_chk | bit_chk; 2859 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2860 2861 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2862 %u && %u\n", d, sticky_bit_chk, 2863 param->write_correct_mask, stop); 2864 2865 if (stop == 1) { 2866 if (d == 0) { 2867 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2868 i++) { 2869 /* d = 0 failed, but it passed when 2870 testing the left edge, so it must be 2871 marginal, set it to -1 */ 2872 if (right_edge[i] == 2873 IO_IO_OUT1_DELAY_MAX + 1 && 2874 left_edge[i] != 2875 IO_IO_OUT1_DELAY_MAX + 1) { 2876 right_edge[i] = -1; 2877 } 2878 } 2879 } 2880 break; 2881 } else { 2882 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2883 if (bit_chk & 1) { 2884 /* 2885 * Remember a passing test as 2886 * the right_edge. 2887 */ 2888 right_edge[i] = d; 2889 } else { 2890 if (d != 0) { 2891 /* 2892 * If a right edge has not 2893 * been seen yet, then a future 2894 * passing test will mark this 2895 * edge as the left edge. 2896 */ 2897 if (right_edge[i] == 2898 IO_IO_OUT1_DELAY_MAX + 1) 2899 left_edge[i] = -(d + 1); 2900 } else { 2901 /* 2902 * d = 0 failed, but it passed 2903 * when testing the left edge, 2904 * so it must be marginal, set 2905 * it to -1. 2906 */ 2907 if (right_edge[i] == 2908 IO_IO_OUT1_DELAY_MAX + 1 && 2909 left_edge[i] != 2910 IO_IO_OUT1_DELAY_MAX + 1) 2911 right_edge[i] = -1; 2912 /* 2913 * If a right edge has not been 2914 * seen yet, then a future 2915 * passing test will mark this 2916 * edge as the left edge. 2917 */ 2918 else if (right_edge[i] == 2919 IO_IO_OUT1_DELAY_MAX + 2920 1) 2921 left_edge[i] = -(d + 1); 2922 } 2923 } 2924 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2925 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2926 (int)(bit_chk & 1), i, left_edge[i]); 2927 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2928 right_edge[i]); 2929 bit_chk = bit_chk >> 1; 2930 } 2931 } 2932 } 2933 2934 /* Check that all bits have a window */ 2935 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2936 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2937 %d right_edge[%u]: %d", __func__, __LINE__, 2938 i, left_edge[i], i, right_edge[i]); 2939 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2940 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2941 set_failing_group_stage(test_bgn + i, 2942 CAL_STAGE_WRITES, 2943 CAL_SUBSTAGE_WRITES_CENTER); 2944 return 0; 2945 } 2946 } 2947 2948 /* Find middle of window for each DQ bit */ 2949 mid_min = left_edge[0] - right_edge[0]; 2950 min_index = 0; 2951 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2952 mid = left_edge[i] - right_edge[i]; 2953 if (mid < mid_min) { 2954 mid_min = mid; 2955 min_index = i; 2956 } 2957 } 2958 2959 /* 2960 * -mid_min/2 represents the amount that we need to move DQS. 2961 * If mid_min is odd and positive we'll need to add one to 2962 * make sure the rounding in further calculations is correct 2963 * (always bias to the right), so just add 1 for all positive values. 2964 */ 2965 if (mid_min > 0) 2966 mid_min++; 2967 mid_min = mid_min / 2; 2968 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2969 __LINE__, mid_min); 2970 2971 /* Determine the amount we can change DQS (which is -mid_min) */ 2972 orig_mid_min = mid_min; 2973 new_dqs = start_dqs; 2974 mid_min = 0; 2975 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2976 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2977 /* Initialize data for export structures */ 2978 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2979 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2980 2981 /* add delay to bring centre of all DQ windows to the same "level" */ 2982 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2983 /* Use values before divide by 2 to reduce round off error */ 2984 shift_dq = (left_edge[i] - right_edge[i] - 2985 (left_edge[min_index] - right_edge[min_index]))/2 + 2986 (orig_mid_min - mid_min); 2987 2988 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2989 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2990 2991 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2992 temp_dq_out1_delay = readl(addr + (i << 2)); 2993 if (shift_dq + (int32_t)temp_dq_out1_delay > 2994 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2995 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2996 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2997 shift_dq = -(int32_t)temp_dq_out1_delay; 2998 } 2999 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 3000 i, shift_dq); 3001 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 3002 scc_mgr_load_dq(i); 3003 3004 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 3005 left_edge[i] - shift_dq + (-mid_min), 3006 right_edge[i] + shift_dq - (-mid_min)); 3007 /* To determine values for export structures */ 3008 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 3009 dq_margin = left_edge[i] - shift_dq + (-mid_min); 3010 3011 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3012 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3013 } 3014 3015 /* Move DQS */ 3016 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3017 writel(0, &sdr_scc_mgr->update); 3018 3019 /* Centre DM */ 3020 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3021 3022 /* 3023 * set the left and right edge of each bit to an illegal value, 3024 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3025 */ 3026 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3027 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3028 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3029 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3030 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3031 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3032 int32_t win_best = 0; 3033 3034 /* Search for the/part of the window with DM shift */ 3035 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3036 scc_mgr_apply_group_dm_out1_delay(d); 3037 writel(0, &sdr_scc_mgr->update); 3038 3039 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3040 PASS_ALL_BITS, &bit_chk, 3041 0)) { 3042 /* USE Set current end of the window */ 3043 end_curr = -d; 3044 /* 3045 * If a starting edge of our window has not been seen 3046 * this is our current start of the DM window. 3047 */ 3048 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3049 bgn_curr = -d; 3050 3051 /* 3052 * If current window is bigger than best seen. 3053 * Set best seen to be current window. 3054 */ 3055 if ((end_curr-bgn_curr+1) > win_best) { 3056 win_best = end_curr-bgn_curr+1; 3057 bgn_best = bgn_curr; 3058 end_best = end_curr; 3059 } 3060 } else { 3061 /* We just saw a failing test. Reset temp edge */ 3062 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3063 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3064 } 3065 } 3066 3067 3068 /* Reset DM delay chains to 0 */ 3069 scc_mgr_apply_group_dm_out1_delay(0); 3070 3071 /* 3072 * Check to see if the current window nudges up aganist 0 delay. 3073 * If so we need to continue the search by shifting DQS otherwise DQS 3074 * search begins as a new search. */ 3075 if (end_curr != 0) { 3076 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3077 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3078 } 3079 3080 /* Search for the/part of the window with DQS shifts */ 3081 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3082 /* 3083 * Note: This only shifts DQS, so are we limiting ourselve to 3084 * width of DQ unnecessarily. 3085 */ 3086 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3087 d + new_dqs); 3088 3089 writel(0, &sdr_scc_mgr->update); 3090 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3091 PASS_ALL_BITS, &bit_chk, 3092 0)) { 3093 /* USE Set current end of the window */ 3094 end_curr = d; 3095 /* 3096 * If a beginning edge of our window has not been seen 3097 * this is our current begin of the DM window. 3098 */ 3099 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3100 bgn_curr = d; 3101 3102 /* 3103 * If current window is bigger than best seen. Set best 3104 * seen to be current window. 3105 */ 3106 if ((end_curr-bgn_curr+1) > win_best) { 3107 win_best = end_curr-bgn_curr+1; 3108 bgn_best = bgn_curr; 3109 end_best = end_curr; 3110 } 3111 } else { 3112 /* We just saw a failing test. Reset temp edge */ 3113 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3114 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3115 3116 /* Early exit optimization: if ther remaining delay 3117 chain space is less than already seen largest window 3118 we can exit */ 3119 if ((win_best-1) > 3120 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3121 break; 3122 } 3123 } 3124 } 3125 3126 /* assign left and right edge for cal and reporting; */ 3127 left_edge[0] = -1*bgn_best; 3128 right_edge[0] = end_best; 3129 3130 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3131 __LINE__, left_edge[0], right_edge[0]); 3132 3133 /* Move DQS (back to orig) */ 3134 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3135 3136 /* Move DM */ 3137 3138 /* Find middle of window for the DM bit */ 3139 mid = (left_edge[0] - right_edge[0]) / 2; 3140 3141 /* only move right, since we are not moving DQS/DQ */ 3142 if (mid < 0) 3143 mid = 0; 3144 3145 /* dm_marign should fail if we never find a window */ 3146 if (win_best == 0) 3147 dm_margin = -1; 3148 else 3149 dm_margin = left_edge[0] - mid; 3150 3151 scc_mgr_apply_group_dm_out1_delay(mid); 3152 writel(0, &sdr_scc_mgr->update); 3153 3154 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3155 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3156 right_edge[0], mid, dm_margin); 3157 /* Export values */ 3158 gbl->fom_out += dq_margin + dqs_margin; 3159 3160 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3161 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3162 dq_margin, dqs_margin, dm_margin); 3163 3164 /* 3165 * Do not remove this line as it makes sure all of our 3166 * decisions have been applied. 3167 */ 3168 writel(0, &sdr_scc_mgr->update); 3169 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3170 } 3171 3172 /* calibrate the write operations */ 3173 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3174 uint32_t test_bgn) 3175 { 3176 /* update info for sims */ 3177 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3178 3179 reg_file_set_stage(CAL_STAGE_WRITES); 3180 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3181 3182 reg_file_set_group(g); 3183 3184 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3185 set_failing_group_stage(g, CAL_STAGE_WRITES, 3186 CAL_SUBSTAGE_WRITES_CENTER); 3187 return 0; 3188 } 3189 3190 return 1; 3191 } 3192 3193 /** 3194 * mem_precharge_and_activate() - Precharge all banks and activate 3195 * 3196 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3197 */ 3198 static void mem_precharge_and_activate(void) 3199 { 3200 int r; 3201 3202 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3203 /* Test if the rank should be skipped. */ 3204 if (param->skip_ranks[r]) 3205 continue; 3206 3207 /* Set rank. */ 3208 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3209 3210 /* Precharge all banks. */ 3211 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3212 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3213 3214 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3215 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3216 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3217 3218 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3219 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3220 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3221 3222 /* Activate rows. */ 3223 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3224 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3225 } 3226 } 3227 3228 /** 3229 * mem_init_latency() - Configure memory RLAT and WLAT settings 3230 * 3231 * Configure memory RLAT and WLAT parameters. 3232 */ 3233 static void mem_init_latency(void) 3234 { 3235 /* 3236 * For AV/CV, LFIFO is hardened and always runs at full rate 3237 * so max latency in AFI clocks, used here, is correspondingly 3238 * smaller. 3239 */ 3240 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3241 u32 rlat, wlat; 3242 3243 debug("%s:%d\n", __func__, __LINE__); 3244 3245 /* 3246 * Read in write latency. 3247 * WL for Hard PHY does not include additive latency. 3248 */ 3249 wlat = readl(&data_mgr->t_wl_add); 3250 wlat += readl(&data_mgr->mem_t_add); 3251 3252 gbl->rw_wl_nop_cycles = wlat - 1; 3253 3254 /* Read in readl latency. */ 3255 rlat = readl(&data_mgr->t_rl_add); 3256 3257 /* Set a pretty high read latency initially. */ 3258 gbl->curr_read_lat = rlat + 16; 3259 if (gbl->curr_read_lat > max_latency) 3260 gbl->curr_read_lat = max_latency; 3261 3262 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3263 3264 /* Advertise write latency. */ 3265 writel(wlat, &phy_mgr_cfg->afi_wlat); 3266 } 3267 3268 /** 3269 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3270 * 3271 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3272 */ 3273 static void mem_skip_calibrate(void) 3274 { 3275 uint32_t vfifo_offset; 3276 uint32_t i, j, r; 3277 3278 debug("%s:%d\n", __func__, __LINE__); 3279 /* Need to update every shadow register set used by the interface */ 3280 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3281 r += NUM_RANKS_PER_SHADOW_REG) { 3282 /* 3283 * Set output phase alignment settings appropriate for 3284 * skip calibration. 3285 */ 3286 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3287 scc_mgr_set_dqs_en_phase(i, 0); 3288 #if IO_DLL_CHAIN_LENGTH == 6 3289 scc_mgr_set_dqdqs_output_phase(i, 6); 3290 #else 3291 scc_mgr_set_dqdqs_output_phase(i, 7); 3292 #endif 3293 /* 3294 * Case:33398 3295 * 3296 * Write data arrives to the I/O two cycles before write 3297 * latency is reached (720 deg). 3298 * -> due to bit-slip in a/c bus 3299 * -> to allow board skew where dqs is longer than ck 3300 * -> how often can this happen!? 3301 * -> can claim back some ptaps for high freq 3302 * support if we can relax this, but i digress... 3303 * 3304 * The write_clk leads mem_ck by 90 deg 3305 * The minimum ptap of the OPA is 180 deg 3306 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3307 * The write_clk is always delayed by 2 ptaps 3308 * 3309 * Hence, to make DQS aligned to CK, we need to delay 3310 * DQS by: 3311 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3312 * 3313 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3314 * gives us the number of ptaps, which simplies to: 3315 * 3316 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3317 */ 3318 scc_mgr_set_dqdqs_output_phase(i, 3319 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3320 } 3321 writel(0xff, &sdr_scc_mgr->dqs_ena); 3322 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3323 3324 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3325 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3326 SCC_MGR_GROUP_COUNTER_OFFSET); 3327 } 3328 writel(0xff, &sdr_scc_mgr->dq_ena); 3329 writel(0xff, &sdr_scc_mgr->dm_ena); 3330 writel(0, &sdr_scc_mgr->update); 3331 } 3332 3333 /* Compensate for simulation model behaviour */ 3334 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3335 scc_mgr_set_dqs_bus_in_delay(i, 10); 3336 scc_mgr_load_dqs(i); 3337 } 3338 writel(0, &sdr_scc_mgr->update); 3339 3340 /* 3341 * ArriaV has hard FIFOs that can only be initialized by incrementing 3342 * in sequencer. 3343 */ 3344 vfifo_offset = CALIB_VFIFO_OFFSET; 3345 for (j = 0; j < vfifo_offset; j++) 3346 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3347 writel(0, &phy_mgr_cmd->fifo_reset); 3348 3349 /* 3350 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3351 * setting from generation-time constant. 3352 */ 3353 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3354 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3355 } 3356 3357 /** 3358 * mem_calibrate() - Memory calibration entry point. 3359 * 3360 * Perform memory calibration. 3361 */ 3362 static uint32_t mem_calibrate(void) 3363 { 3364 uint32_t i; 3365 uint32_t rank_bgn, sr; 3366 uint32_t write_group, write_test_bgn; 3367 uint32_t read_group, read_test_bgn; 3368 uint32_t run_groups, current_run; 3369 uint32_t failing_groups = 0; 3370 uint32_t group_failed = 0; 3371 3372 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3373 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3374 3375 debug("%s:%d\n", __func__, __LINE__); 3376 3377 /* Initialize the data settings */ 3378 gbl->error_substage = CAL_SUBSTAGE_NIL; 3379 gbl->error_stage = CAL_STAGE_NIL; 3380 gbl->error_group = 0xff; 3381 gbl->fom_in = 0; 3382 gbl->fom_out = 0; 3383 3384 /* Initialize WLAT and RLAT. */ 3385 mem_init_latency(); 3386 3387 /* Initialize bit slips. */ 3388 mem_precharge_and_activate(); 3389 3390 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3391 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3392 SCC_MGR_GROUP_COUNTER_OFFSET); 3393 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3394 if (i == 0) 3395 scc_mgr_set_hhp_extras(); 3396 3397 scc_set_bypass_mode(i); 3398 } 3399 3400 /* Calibration is skipped. */ 3401 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3402 /* 3403 * Set VFIFO and LFIFO to instant-on settings in skip 3404 * calibration mode. 3405 */ 3406 mem_skip_calibrate(); 3407 3408 /* 3409 * Do not remove this line as it makes sure all of our 3410 * decisions have been applied. 3411 */ 3412 writel(0, &sdr_scc_mgr->update); 3413 return 1; 3414 } 3415 3416 /* Calibration is not skipped. */ 3417 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3418 /* 3419 * Zero all delay chain/phase settings for all 3420 * groups and all shadow register sets. 3421 */ 3422 scc_mgr_zero_all(); 3423 3424 run_groups = ~param->skip_groups; 3425 3426 for (write_group = 0, write_test_bgn = 0; write_group 3427 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3428 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3429 3430 /* Initialize the group failure */ 3431 group_failed = 0; 3432 3433 current_run = run_groups & ((1 << 3434 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3435 run_groups = run_groups >> 3436 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3437 3438 if (current_run == 0) 3439 continue; 3440 3441 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3442 SCC_MGR_GROUP_COUNTER_OFFSET); 3443 scc_mgr_zero_group(write_group, 0); 3444 3445 for (read_group = write_group * rwdqs_ratio, 3446 read_test_bgn = 0; 3447 read_group < (write_group + 1) * rwdqs_ratio; 3448 read_group++, 3449 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3450 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3451 continue; 3452 3453 /* Calibrate the VFIFO */ 3454 if (rw_mgr_mem_calibrate_vfifo(read_group, 3455 read_test_bgn)) 3456 continue; 3457 3458 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3459 return 0; 3460 3461 /* The group failed, we're done. */ 3462 goto grp_failed; 3463 } 3464 3465 /* Calibrate the output side */ 3466 for (rank_bgn = 0, sr = 0; 3467 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3468 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3469 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3470 continue; 3471 3472 /* Not needed in quick mode! */ 3473 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3474 continue; 3475 3476 /* 3477 * Determine if this set of ranks 3478 * should be skipped entirely. 3479 */ 3480 if (param->skip_shadow_regs[sr]) 3481 continue; 3482 3483 /* Calibrate WRITEs */ 3484 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3485 write_group, write_test_bgn)) 3486 continue; 3487 3488 group_failed = 1; 3489 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3490 return 0; 3491 } 3492 3493 /* Some group failed, we're done. */ 3494 if (group_failed) 3495 goto grp_failed; 3496 3497 for (read_group = write_group * rwdqs_ratio, 3498 read_test_bgn = 0; 3499 read_group < (write_group + 1) * rwdqs_ratio; 3500 read_group++, 3501 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3502 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3503 continue; 3504 3505 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3506 read_test_bgn)) 3507 continue; 3508 3509 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3510 return 0; 3511 3512 /* The group failed, we're done. */ 3513 goto grp_failed; 3514 } 3515 3516 /* No group failed, continue as usual. */ 3517 continue; 3518 3519 grp_failed: /* A group failed, increment the counter. */ 3520 failing_groups++; 3521 } 3522 3523 /* 3524 * USER If there are any failing groups then report 3525 * the failure. 3526 */ 3527 if (failing_groups != 0) 3528 return 0; 3529 3530 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3531 continue; 3532 3533 /* 3534 * If we're skipping groups as part of debug, 3535 * don't calibrate LFIFO. 3536 */ 3537 if (param->skip_groups != 0) 3538 continue; 3539 3540 /* Calibrate the LFIFO */ 3541 if (!rw_mgr_mem_calibrate_lfifo()) 3542 return 0; 3543 } 3544 3545 /* 3546 * Do not remove this line as it makes sure all of our decisions 3547 * have been applied. 3548 */ 3549 writel(0, &sdr_scc_mgr->update); 3550 return 1; 3551 } 3552 3553 /** 3554 * run_mem_calibrate() - Perform memory calibration 3555 * 3556 * This function triggers the entire memory calibration procedure. 3557 */ 3558 static int run_mem_calibrate(void) 3559 { 3560 int pass; 3561 3562 debug("%s:%d\n", __func__, __LINE__); 3563 3564 /* Reset pass/fail status shown on afi_cal_success/fail */ 3565 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3566 3567 /* Stop tracking manager. */ 3568 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3569 3570 phy_mgr_initialize(); 3571 rw_mgr_mem_initialize(); 3572 3573 /* Perform the actual memory calibration. */ 3574 pass = mem_calibrate(); 3575 3576 mem_precharge_and_activate(); 3577 writel(0, &phy_mgr_cmd->fifo_reset); 3578 3579 /* Handoff. */ 3580 rw_mgr_mem_handoff(); 3581 /* 3582 * In Hard PHY this is a 2-bit control: 3583 * 0: AFI Mux Select 3584 * 1: DDIO Mux Select 3585 */ 3586 writel(0x2, &phy_mgr_cfg->mux_sel); 3587 3588 /* Start tracking manager. */ 3589 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3590 3591 return pass; 3592 } 3593 3594 /** 3595 * debug_mem_calibrate() - Report result of memory calibration 3596 * @pass: Value indicating whether calibration passed or failed 3597 * 3598 * This function reports the results of the memory calibration 3599 * and writes debug information into the register file. 3600 */ 3601 static void debug_mem_calibrate(int pass) 3602 { 3603 uint32_t debug_info; 3604 3605 if (pass) { 3606 printf("%s: CALIBRATION PASSED\n", __FILE__); 3607 3608 gbl->fom_in /= 2; 3609 gbl->fom_out /= 2; 3610 3611 if (gbl->fom_in > 0xff) 3612 gbl->fom_in = 0xff; 3613 3614 if (gbl->fom_out > 0xff) 3615 gbl->fom_out = 0xff; 3616 3617 /* Update the FOM in the register file */ 3618 debug_info = gbl->fom_in; 3619 debug_info |= gbl->fom_out << 8; 3620 writel(debug_info, &sdr_reg_file->fom); 3621 3622 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3623 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3624 } else { 3625 printf("%s: CALIBRATION FAILED\n", __FILE__); 3626 3627 debug_info = gbl->error_stage; 3628 debug_info |= gbl->error_substage << 8; 3629 debug_info |= gbl->error_group << 16; 3630 3631 writel(debug_info, &sdr_reg_file->failing_stage); 3632 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3633 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3634 3635 /* Update the failing group/stage in the register file */ 3636 debug_info = gbl->error_stage; 3637 debug_info |= gbl->error_substage << 8; 3638 debug_info |= gbl->error_group << 16; 3639 writel(debug_info, &sdr_reg_file->failing_stage); 3640 } 3641 3642 printf("%s: Calibration complete\n", __FILE__); 3643 } 3644 3645 /** 3646 * hc_initialize_rom_data() - Initialize ROM data 3647 * 3648 * Initialize ROM data. 3649 */ 3650 static void hc_initialize_rom_data(void) 3651 { 3652 u32 i, addr; 3653 3654 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3655 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3656 writel(inst_rom_init[i], addr + (i << 2)); 3657 3658 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3659 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3660 writel(ac_rom_init[i], addr + (i << 2)); 3661 } 3662 3663 /** 3664 * initialize_reg_file() - Initialize SDR register file 3665 * 3666 * Initialize SDR register file. 3667 */ 3668 static void initialize_reg_file(void) 3669 { 3670 /* Initialize the register file with the correct data */ 3671 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3672 writel(0, &sdr_reg_file->debug_data_addr); 3673 writel(0, &sdr_reg_file->cur_stage); 3674 writel(0, &sdr_reg_file->fom); 3675 writel(0, &sdr_reg_file->failing_stage); 3676 writel(0, &sdr_reg_file->debug1); 3677 writel(0, &sdr_reg_file->debug2); 3678 } 3679 3680 /** 3681 * initialize_hps_phy() - Initialize HPS PHY 3682 * 3683 * Initialize HPS PHY. 3684 */ 3685 static void initialize_hps_phy(void) 3686 { 3687 uint32_t reg; 3688 /* 3689 * Tracking also gets configured here because it's in the 3690 * same register. 3691 */ 3692 uint32_t trk_sample_count = 7500; 3693 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3694 /* 3695 * Format is number of outer loops in the 16 MSB, sample 3696 * count in 16 LSB. 3697 */ 3698 3699 reg = 0; 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3701 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3702 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3703 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3704 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3706 /* 3707 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3708 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3709 */ 3710 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3711 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3712 trk_sample_count); 3713 writel(reg, &sdr_ctrl->phy_ctrl0); 3714 3715 reg = 0; 3716 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3717 trk_sample_count >> 3718 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3719 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3720 trk_long_idle_sample_count); 3721 writel(reg, &sdr_ctrl->phy_ctrl1); 3722 3723 reg = 0; 3724 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3725 trk_long_idle_sample_count >> 3726 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3727 writel(reg, &sdr_ctrl->phy_ctrl2); 3728 } 3729 3730 /** 3731 * initialize_tracking() - Initialize tracking 3732 * 3733 * Initialize the register file with usable initial data. 3734 */ 3735 static void initialize_tracking(void) 3736 { 3737 /* 3738 * Initialize the register file with the correct data. 3739 * Compute usable version of value in case we skip full 3740 * computation later. 3741 */ 3742 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3743 &sdr_reg_file->dtaps_per_ptap); 3744 3745 /* trk_sample_count */ 3746 writel(7500, &sdr_reg_file->trk_sample_count); 3747 3748 /* longidle outer loop [15:0] */ 3749 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3750 3751 /* 3752 * longidle sample count [31:24] 3753 * trfc, worst case of 933Mhz 4Gb [23:16] 3754 * trcd, worst case [15:8] 3755 * vfifo wait [7:0] 3756 */ 3757 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3758 &sdr_reg_file->delays); 3759 3760 /* mux delay */ 3761 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3762 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3763 &sdr_reg_file->trk_rw_mgr_addr); 3764 3765 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3766 &sdr_reg_file->trk_read_dqs_width); 3767 3768 /* trefi [7:0] */ 3769 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3770 &sdr_reg_file->trk_rfsh); 3771 } 3772 3773 int sdram_calibration_full(void) 3774 { 3775 struct param_type my_param; 3776 struct gbl_type my_gbl; 3777 uint32_t pass; 3778 3779 memset(&my_param, 0, sizeof(my_param)); 3780 memset(&my_gbl, 0, sizeof(my_gbl)); 3781 3782 param = &my_param; 3783 gbl = &my_gbl; 3784 3785 /* Set the calibration enabled by default */ 3786 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3787 /* 3788 * Only sweep all groups (regardless of fail state) by default 3789 * Set enabled read test by default. 3790 */ 3791 #if DISABLE_GUARANTEED_READ 3792 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3793 #endif 3794 /* Initialize the register file */ 3795 initialize_reg_file(); 3796 3797 /* Initialize any PHY CSR */ 3798 initialize_hps_phy(); 3799 3800 scc_mgr_initialize(); 3801 3802 initialize_tracking(); 3803 3804 printf("%s: Preparing to start memory calibration\n", __FILE__); 3805 3806 debug("%s:%d\n", __func__, __LINE__); 3807 debug_cond(DLEVEL == 1, 3808 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3809 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3810 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3811 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3812 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3813 debug_cond(DLEVEL == 1, 3814 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3815 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3816 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3817 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3818 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3819 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3820 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3821 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3822 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3823 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3824 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3825 IO_IO_OUT2_DELAY_MAX); 3826 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3827 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3828 3829 hc_initialize_rom_data(); 3830 3831 /* update info for sims */ 3832 reg_file_set_stage(CAL_STAGE_NIL); 3833 reg_file_set_group(0); 3834 3835 /* 3836 * Load global needed for those actions that require 3837 * some dynamic calibration support. 3838 */ 3839 dyn_calib_steps = STATIC_CALIB_STEPS; 3840 /* 3841 * Load global to allow dynamic selection of delay loop settings 3842 * based on calibration mode. 3843 */ 3844 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3845 skip_delay_mask = 0xff; 3846 else 3847 skip_delay_mask = 0x0; 3848 3849 pass = run_mem_calibrate(); 3850 debug_mem_calibrate(pass); 3851 return pass; 3852 } 3853