1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group); 17 18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 19 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 20 21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 22 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 23 24 static struct socfpga_sdr_reg_file *sdr_reg_file = 25 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 26 27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 28 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 29 30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 31 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 32 33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 34 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 35 36 static struct socfpga_data_mgr *data_mgr = 37 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 38 39 static struct socfpga_sdr_ctrl *sdr_ctrl = 40 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 41 42 #define DELTA_D 1 43 44 /* 45 * In order to reduce ROM size, most of the selectable calibration steps are 46 * decided at compile time based on the user's calibration mode selection, 47 * as captured by the STATIC_CALIB_STEPS selection below. 48 * 49 * However, to support simulation-time selection of fast simulation mode, where 50 * we skip everything except the bare minimum, we need a few of the steps to 51 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 52 * check, which is based on the rtl-supplied value, or we dynamically compute 53 * the value to use based on the dynamically-chosen calibration mode 54 */ 55 56 #define DLEVEL 0 57 #define STATIC_IN_RTL_SIM 0 58 #define STATIC_SKIP_DELAY_LOOPS 0 59 60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 61 STATIC_SKIP_DELAY_LOOPS) 62 63 /* calibration steps requested by the rtl */ 64 uint16_t dyn_calib_steps; 65 66 /* 67 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 68 * instead of static, we use boolean logic to select between 69 * non-skip and skip values 70 * 71 * The mask is set to include all bits when not-skipping, but is 72 * zero when skipping 73 */ 74 75 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 76 77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 78 ((non_skip_value) & skip_delay_mask) 79 80 struct gbl_type *gbl; 81 struct param_type *param; 82 uint32_t curr_shadow_reg; 83 84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 85 uint32_t write_group, uint32_t use_dm, 86 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 87 88 static void set_failing_group_stage(uint32_t group, uint32_t stage, 89 uint32_t substage) 90 { 91 /* 92 * Only set the global stage if there was not been any other 93 * failing group 94 */ 95 if (gbl->error_stage == CAL_STAGE_NIL) { 96 gbl->error_substage = substage; 97 gbl->error_stage = stage; 98 gbl->error_group = group; 99 } 100 } 101 102 static void reg_file_set_group(u16 set_group) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 105 } 106 107 static void reg_file_set_stage(u8 set_stage) 108 { 109 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 110 } 111 112 static void reg_file_set_sub_stage(u8 set_sub_stage) 113 { 114 set_sub_stage &= 0xff; 115 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 116 } 117 118 static void initialize(void) 119 { 120 debug("%s:%d\n", __func__, __LINE__); 121 /* USER calibration has control over path to memory */ 122 /* 123 * In Hard PHY this is a 2-bit control: 124 * 0: AFI Mux Select 125 * 1: DDIO Mux Select 126 */ 127 writel(0x3, &phy_mgr_cfg->mux_sel); 128 129 /* USER memory clock is not stable we begin initialization */ 130 writel(0, &phy_mgr_cfg->reset_mem_stbl); 131 132 /* USER calibration status all set to zero */ 133 writel(0, &phy_mgr_cfg->cal_status); 134 135 writel(0, &phy_mgr_cfg->cal_debug_info); 136 137 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 138 param->read_correct_mask_vg = ((uint32_t)1 << 139 (RW_MGR_MEM_DQ_PER_READ_DQS / 140 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 141 param->write_correct_mask_vg = ((uint32_t)1 << 142 (RW_MGR_MEM_DQ_PER_READ_DQS / 143 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 144 param->read_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 146 param->write_correct_mask = ((uint32_t)1 << 147 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 148 param->dm_correct_mask = ((uint32_t)1 << 149 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 150 - 1; 151 } 152 } 153 154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 155 { 156 uint32_t odt_mask_0 = 0; 157 uint32_t odt_mask_1 = 0; 158 uint32_t cs_and_odt_mask; 159 160 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 161 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 162 /* 163 * 1 Rank 164 * Read: ODT = 0 165 * Write: ODT = 1 166 */ 167 odt_mask_0 = 0x0; 168 odt_mask_1 = 0x1; 169 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 170 /* 2 Ranks */ 171 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 172 /* - Dual-Slot , Single-Rank 173 * (1 chip-select per DIMM) 174 * OR 175 * - RDIMM, 4 total CS (2 CS per DIMM) 176 * means 2 DIMM 177 * Since MEM_NUMBER_OF_RANKS is 2 they are 178 * both single rank 179 * with 2 CS each (special for RDIMM) 180 * Read: Turn on ODT on the opposite rank 181 * Write: Turn on ODT on all ranks 182 */ 183 odt_mask_0 = 0x3 & ~(1 << rank); 184 odt_mask_1 = 0x3; 185 } else { 186 /* 187 * USER - Single-Slot , Dual-rank DIMMs 188 * (2 chip-selects per DIMM) 189 * USER Read: Turn on ODT off on all ranks 190 * USER Write: Turn on ODT on active rank 191 */ 192 odt_mask_0 = 0x0; 193 odt_mask_1 = 0x3 & (1 << rank); 194 } 195 } else { 196 /* 4 Ranks 197 * Read: 198 * ----------+-----------------------+ 199 * | | 200 * | ODT | 201 * Read From +-----------------------+ 202 * Rank | 3 | 2 | 1 | 0 | 203 * ----------+-----+-----+-----+-----+ 204 * 0 | 0 | 1 | 0 | 0 | 205 * 1 | 1 | 0 | 0 | 0 | 206 * 2 | 0 | 0 | 0 | 1 | 207 * 3 | 0 | 0 | 1 | 0 | 208 * ----------+-----+-----+-----+-----+ 209 * 210 * Write: 211 * ----------+-----------------------+ 212 * | | 213 * | ODT | 214 * Write To +-----------------------+ 215 * Rank | 3 | 2 | 1 | 0 | 216 * ----------+-----+-----+-----+-----+ 217 * 0 | 0 | 1 | 0 | 1 | 218 * 1 | 1 | 0 | 1 | 0 | 219 * 2 | 0 | 1 | 0 | 1 | 220 * 3 | 1 | 0 | 1 | 0 | 221 * ----------+-----+-----+-----+-----+ 222 */ 223 switch (rank) { 224 case 0: 225 odt_mask_0 = 0x4; 226 odt_mask_1 = 0x5; 227 break; 228 case 1: 229 odt_mask_0 = 0x8; 230 odt_mask_1 = 0xA; 231 break; 232 case 2: 233 odt_mask_0 = 0x1; 234 odt_mask_1 = 0x5; 235 break; 236 case 3: 237 odt_mask_0 = 0x2; 238 odt_mask_1 = 0xA; 239 break; 240 } 241 } 242 } else { 243 odt_mask_0 = 0x0; 244 odt_mask_1 = 0x0; 245 } 246 247 cs_and_odt_mask = 248 (0xFF & ~(1 << rank)) | 249 ((0xFF & odt_mask_0) << 8) | 250 ((0xFF & odt_mask_1) << 16); 251 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 252 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 253 } 254 255 static void scc_mgr_initialize(void) 256 { 257 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET; 258 259 /* 260 * Clear register file for HPS 261 * 16 (2^4) is the size of the full register file in the scc mgr: 262 * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 263 * MEM_IF_READ_DQS_WIDTH - 1) + 1; 264 */ 265 uint32_t i; 266 for (i = 0; i < 16; i++) { 267 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 268 __func__, __LINE__, i); 269 writel(0, addr + (i << 2)); 270 } 271 } 272 273 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 274 { 275 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET; 276 277 /* Load the setting in the SCC manager */ 278 writel(phase, addr + (write_group << 2)); 279 } 280 281 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 282 { 283 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 284 285 /* Load the setting in the SCC manager */ 286 writel(delay, addr + (read_group << 2)); 287 } 288 289 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 290 { 291 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET; 292 293 /* Load the setting in the SCC manager */ 294 writel(phase, addr + (read_group << 2)); 295 } 296 297 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 298 { 299 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET; 300 301 /* Load the setting in the SCC manager */ 302 writel(delay + IO_DQS_EN_DELAY_OFFSET, addr + (read_group << 2)); 303 } 304 305 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 306 { 307 u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 308 309 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 310 } 311 312 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 313 { 314 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 315 316 /* Load the setting in the SCC manager */ 317 writel(delay, addr + (dq_in_group << 2)); 318 } 319 320 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 321 { 322 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 323 324 /* Load the setting in the SCC manager */ 325 writel(delay, addr + (dq_in_group << 2)); 326 } 327 328 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 329 uint32_t delay) 330 { 331 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 332 333 /* Load the setting in the SCC manager */ 334 writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 335 } 336 337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 338 { 339 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 340 341 /* Load the setting in the SCC manager */ 342 writel(delay, addr + ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2)); 343 } 344 345 /* load up dqs config settings */ 346 static void scc_mgr_load_dqs(uint32_t dqs) 347 { 348 writel(dqs, &sdr_scc_mgr->dqs_ena); 349 } 350 351 /* load up dqs io config settings */ 352 static void scc_mgr_load_dqs_io(void) 353 { 354 writel(0, &sdr_scc_mgr->dqs_io_ena); 355 } 356 357 /* load up dq config settings */ 358 static void scc_mgr_load_dq(uint32_t dq_in_group) 359 { 360 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 361 } 362 363 /* load up dm config settings */ 364 static void scc_mgr_load_dm(uint32_t dm) 365 { 366 writel(dm, &sdr_scc_mgr->dm_ena); 367 } 368 369 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, 370 uint32_t phase) 371 { 372 uint32_t r; 373 uint32_t update_scan_chains; 374 375 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 376 r += NUM_RANKS_PER_SHADOW_REG) { 377 /* 378 * USER although the h/w doesn't support different phases per 379 * shadow register, for simplicity our scc manager modeling 380 * keeps different phase settings per shadow reg, and it's 381 * important for us to keep them in sync to match h/w. 382 * for efficiency, the scan chain update should occur only 383 * once to sr0. 384 */ 385 update_scan_chains = (r == 0) ? 1 : 0; 386 387 scc_mgr_set_dqs_en_phase(read_group, phase); 388 389 if (update_scan_chains) { 390 writel(read_group, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 397 uint32_t phase) 398 { 399 uint32_t r; 400 uint32_t update_scan_chains; 401 402 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 403 r += NUM_RANKS_PER_SHADOW_REG) { 404 /* 405 * USER although the h/w doesn't support different phases per 406 * shadow register, for simplicity our scc manager modeling 407 * keeps different phase settings per shadow reg, and it's 408 * important for us to keep them in sync to match h/w. 409 * for efficiency, the scan chain update should occur only 410 * once to sr0. 411 */ 412 update_scan_chains = (r == 0) ? 1 : 0; 413 414 scc_mgr_set_dqdqs_output_phase(write_group, phase); 415 416 if (update_scan_chains) { 417 writel(write_group, &sdr_scc_mgr->dqs_ena); 418 writel(0, &sdr_scc_mgr->update); 419 } 420 } 421 } 422 423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 424 uint32_t delay) 425 { 426 uint32_t r; 427 428 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 429 r += NUM_RANKS_PER_SHADOW_REG) { 430 scc_mgr_set_dqs_en_delay(read_group, delay); 431 432 writel(read_group, &sdr_scc_mgr->dqs_ena); 433 /* 434 * In shadow register mode, the T11 settings are stored in 435 * registers in the core, which are updated by the DQS_ENA 436 * signals. Not issuing the SCC_MGR_UPD command allows us to 437 * save lots of rank switching overhead, by calling 438 * select_shadow_regs_for_update with update_scan_chains 439 * set to 0. 440 */ 441 writel(0, &sdr_scc_mgr->update); 442 } 443 /* 444 * In shadow register mode, the T11 settings are stored in 445 * registers in the core, which are updated by the DQS_ENA 446 * signals. Not issuing the SCC_MGR_UPD command allows us to 447 * save lots of rank switching overhead, by calling 448 * select_shadow_regs_for_update with update_scan_chains 449 * set to 0. 450 */ 451 writel(0, &sdr_scc_mgr->update); 452 } 453 454 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay) 455 { 456 uint32_t read_group; 457 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET; 458 459 /* 460 * Load the setting in the SCC manager 461 * Although OCT affects only write data, the OCT delay is controlled 462 * by the DQS logic block which is instantiated once per read group. 463 * For protocols where a write group consists of multiple read groups, 464 * the setting must be set multiple times. 465 */ 466 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 467 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 468 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 469 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 470 writel(delay, addr + (read_group << 2)); 471 } 472 473 static void scc_mgr_set_hhp_extras(void) 474 { 475 /* 476 * Load the fixed setting in the SCC manager 477 * bits: 0:0 = 1'b1 - dqs bypass 478 * bits: 1:1 = 1'b1 - dq bypass 479 * bits: 4:2 = 3'b001 - rfifo_mode 480 * bits: 6:5 = 2'b01 - rfifo clock_select 481 * bits: 7:7 = 1'b0 - separate gating from ungating setting 482 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 483 */ 484 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 485 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 486 487 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 488 } 489 490 /* 491 * USER Zero all DQS config 492 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 493 */ 494 static void scc_mgr_zero_all(void) 495 { 496 uint32_t i, r; 497 498 /* 499 * USER Zero all DQS config settings, across all groups and all 500 * shadow registers 501 */ 502 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 503 NUM_RANKS_PER_SHADOW_REG) { 504 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 505 /* 506 * The phases actually don't exist on a per-rank basis, 507 * but there's no harm updating them several times, so 508 * let's keep the code simple. 509 */ 510 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 511 scc_mgr_set_dqs_en_phase(i, 0); 512 scc_mgr_set_dqs_en_delay(i, 0); 513 } 514 515 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 516 scc_mgr_set_dqdqs_output_phase(i, 0); 517 /* av/cv don't have out2 */ 518 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 519 } 520 } 521 522 /* multicast to all DQS group enables */ 523 writel(0xff, &sdr_scc_mgr->dqs_ena); 524 writel(0, &sdr_scc_mgr->update); 525 } 526 527 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode) 528 { 529 /* mode = 0 : Do NOT bypass - Half Rate Mode */ 530 /* mode = 1 : Bypass - Full Rate Mode */ 531 532 /* only need to set once for all groups, pins, dq, dqs, dm */ 533 if (write_group == 0) { 534 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 535 __LINE__); 536 scc_mgr_set_hhp_extras(); 537 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 538 __func__, __LINE__); 539 } 540 /* multicast to all DQ enables */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* update current DQS IO enable */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* update the DQS logic */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* hit update */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group) 555 { 556 uint32_t read_group; 557 uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena; 558 /* 559 * Although OCT affects only write data, the OCT delay is controlled 560 * by the DQS logic block which is instantiated once per read group. 561 * For protocols where a write group consists of multiple read groups, 562 * the setting must be scanned multiple times. 563 */ 564 for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / 565 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 566 read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / 567 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group) 568 writel(read_group, addr); 569 } 570 571 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 572 int32_t out_only) 573 { 574 uint32_t i, r; 575 576 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 577 NUM_RANKS_PER_SHADOW_REG) { 578 /* Zero all DQ config settings */ 579 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 580 scc_mgr_set_dq_out1_delay(i, 0); 581 if (!out_only) 582 scc_mgr_set_dq_in_delay(i, 0); 583 } 584 585 /* multicast to all DQ enables */ 586 writel(0xff, &sdr_scc_mgr->dq_ena); 587 588 /* Zero all DM config settings */ 589 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 590 scc_mgr_set_dm_out1_delay(i, 0); 591 } 592 593 /* multicast to all DM enables */ 594 writel(0xff, &sdr_scc_mgr->dm_ena); 595 596 /* zero all DQS io settings */ 597 if (!out_only) 598 scc_mgr_set_dqs_io_in_delay(write_group, 0); 599 /* av/cv don't have out2 */ 600 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 601 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 602 scc_mgr_load_dqs_for_write_group(write_group); 603 604 /* multicast to all DQS IO enables (only 1) */ 605 writel(0, &sdr_scc_mgr->dqs_io_ena); 606 607 /* hit update to zero everything */ 608 writel(0, &sdr_scc_mgr->update); 609 } 610 } 611 612 /* 613 * apply and load a particular input delay for the DQ pins in a group 614 * group_bgn is the index of the first dq pin (in the write group) 615 */ 616 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 617 uint32_t group_bgn, uint32_t delay) 618 { 619 uint32_t i, p; 620 621 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 622 scc_mgr_set_dq_in_delay(p, delay); 623 scc_mgr_load_dq(p); 624 } 625 } 626 627 /* apply and load a particular output delay for the DQ pins in a group */ 628 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 629 uint32_t group_bgn, 630 uint32_t delay1) 631 { 632 uint32_t i, p; 633 634 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 635 scc_mgr_set_dq_out1_delay(i, delay1); 636 scc_mgr_load_dq(i); 637 } 638 } 639 640 /* apply and load a particular output delay for the DM pins in a group */ 641 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 642 uint32_t delay1) 643 { 644 uint32_t i; 645 646 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 647 scc_mgr_set_dm_out1_delay(i, delay1); 648 scc_mgr_load_dm(i); 649 } 650 } 651 652 653 /* apply and load delay on both DQS and OCT out1 */ 654 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 655 uint32_t delay) 656 { 657 scc_mgr_set_dqs_out1_delay(write_group, delay); 658 scc_mgr_load_dqs_io(); 659 660 scc_mgr_set_oct_out1_delay(write_group, delay); 661 scc_mgr_load_dqs_for_write_group(write_group); 662 } 663 664 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 665 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 666 uint32_t group_bgn, 667 uint32_t delay) 668 { 669 uint32_t i, p, new_delay; 670 671 /* dq shift */ 672 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 673 new_delay = READ_SCC_DQ_OUT2_DELAY; 674 new_delay += delay; 675 676 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 677 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 678 %u > %lu => %lu", __func__, __LINE__, 679 write_group, group_bgn, delay, i, p, new_delay, 680 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 681 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 682 new_delay = IO_IO_OUT2_DELAY_MAX; 683 } 684 685 scc_mgr_load_dq(i); 686 } 687 688 /* dm shift */ 689 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 690 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 691 new_delay += delay; 692 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 695 %u > %lu => %lu\n", __func__, __LINE__, 696 write_group, group_bgn, delay, i, new_delay, 697 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 698 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 699 new_delay = IO_IO_OUT2_DELAY_MAX; 700 } 701 702 scc_mgr_load_dm(i); 703 } 704 705 /* dqs shift */ 706 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 707 new_delay += delay; 708 709 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 710 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 711 " adding %u to OUT1\n", __func__, __LINE__, 712 write_group, group_bgn, delay, new_delay, 713 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 714 new_delay - IO_IO_OUT2_DELAY_MAX); 715 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 716 IO_IO_OUT2_DELAY_MAX); 717 new_delay = IO_IO_OUT2_DELAY_MAX; 718 } 719 720 scc_mgr_load_dqs_io(); 721 722 /* oct shift */ 723 new_delay = READ_SCC_OCT_OUT2_DELAY; 724 new_delay += delay; 725 726 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 727 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 728 " adding %u to OUT1\n", __func__, __LINE__, 729 write_group, group_bgn, delay, new_delay, 730 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 731 new_delay - IO_IO_OUT2_DELAY_MAX); 732 scc_mgr_set_oct_out1_delay(write_group, new_delay - 733 IO_IO_OUT2_DELAY_MAX); 734 new_delay = IO_IO_OUT2_DELAY_MAX; 735 } 736 737 scc_mgr_load_dqs_for_write_group(write_group); 738 } 739 740 /* 741 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 742 * and to all ranks 743 */ 744 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 745 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 746 { 747 uint32_t r; 748 749 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 750 r += NUM_RANKS_PER_SHADOW_REG) { 751 scc_mgr_apply_group_all_out_delay_add(write_group, 752 group_bgn, delay); 753 writel(0, &sdr_scc_mgr->update); 754 } 755 } 756 757 /* optimization used to recover some slots in ddr3 inst_rom */ 758 /* could be applied to other protocols if we wanted to */ 759 static void set_jump_as_return(void) 760 { 761 /* 762 * to save space, we replace return with jump to special shared 763 * RETURN instruction so we set the counter to large value so that 764 * we always jump 765 */ 766 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 767 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 768 } 769 770 /* 771 * should always use constants as argument to ensure all computations are 772 * performed at compile time 773 */ 774 static void delay_for_n_mem_clocks(const uint32_t clocks) 775 { 776 uint32_t afi_clocks; 777 uint8_t inner = 0; 778 uint8_t outer = 0; 779 uint16_t c_loop = 0; 780 781 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 782 783 784 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 785 /* scale (rounding up) to get afi clocks */ 786 787 /* 788 * Note, we don't bother accounting for being off a little bit 789 * because of a few extra instructions in outer loops 790 * Note, the loops have a test at the end, and do the test before 791 * the decrement, and so always perform the loop 792 * 1 time more than the counter value 793 */ 794 if (afi_clocks == 0) { 795 ; 796 } else if (afi_clocks <= 0x100) { 797 inner = afi_clocks-1; 798 outer = 0; 799 c_loop = 0; 800 } else if (afi_clocks <= 0x10000) { 801 inner = 0xff; 802 outer = (afi_clocks-1) >> 8; 803 c_loop = 0; 804 } else { 805 inner = 0xff; 806 outer = 0xff; 807 c_loop = (afi_clocks-1) >> 16; 808 } 809 810 /* 811 * rom instructions are structured as follows: 812 * 813 * IDLE_LOOP2: jnz cntr0, TARGET_A 814 * IDLE_LOOP1: jnz cntr1, TARGET_B 815 * return 816 * 817 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 818 * TARGET_B is set to IDLE_LOOP2 as well 819 * 820 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 821 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 822 * 823 * a little confusing, but it helps save precious space in the inst_rom 824 * and sequencer rom and keeps the delays more accurate and reduces 825 * overhead 826 */ 827 if (afi_clocks <= 0x100) { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr1); 830 831 writel(RW_MGR_IDLE_LOOP1, 832 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 833 834 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 835 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 836 } else { 837 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 838 &sdr_rw_load_mgr_regs->load_cntr0); 839 840 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 841 &sdr_rw_load_mgr_regs->load_cntr1); 842 843 writel(RW_MGR_IDLE_LOOP2, 844 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 845 846 writel(RW_MGR_IDLE_LOOP2, 847 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 848 849 /* hack to get around compiler not being smart enough */ 850 if (afi_clocks <= 0x10000) { 851 /* only need to run once */ 852 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 853 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 854 } else { 855 do { 856 writel(RW_MGR_IDLE_LOOP2, 857 SDR_PHYGRP_RWMGRGRP_ADDRESS | 858 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 859 } while (c_loop-- != 0); 860 } 861 } 862 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 863 } 864 865 static void rw_mgr_mem_initialize(void) 866 { 867 uint32_t r; 868 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 869 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 870 871 debug("%s:%d\n", __func__, __LINE__); 872 873 /* The reset / cke part of initialization is broadcasted to all ranks */ 874 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 875 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 876 877 /* 878 * Here's how you load register for a loop 879 * Counters are located @ 0x800 880 * Jump address are located @ 0xC00 881 * For both, registers 0 to 3 are selected using bits 3 and 2, like 882 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 883 * I know this ain't pretty, but Avalon bus throws away the 2 least 884 * significant bits 885 */ 886 887 /* start with memory RESET activated */ 888 889 /* tINIT = 200us */ 890 891 /* 892 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 893 * If a and b are the number of iteration in 2 nested loops 894 * it takes the following number of cycles to complete the operation: 895 * number_of_cycles = ((2 + n) * a + 2) * b 896 * where n is the number of instruction in the inner loop 897 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 898 * b = 6A 899 */ 900 901 /* Load counters */ 902 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 903 &sdr_rw_load_mgr_regs->load_cntr0); 904 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 905 &sdr_rw_load_mgr_regs->load_cntr1); 906 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 907 &sdr_rw_load_mgr_regs->load_cntr2); 908 909 /* Load jump address */ 910 writel(RW_MGR_INIT_RESET_0_CKE_0, 911 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 912 writel(RW_MGR_INIT_RESET_0_CKE_0, 913 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 914 writel(RW_MGR_INIT_RESET_0_CKE_0, 915 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 916 917 /* Execute count instruction */ 918 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 919 920 /* indicate that memory is stable */ 921 writel(1, &phy_mgr_cfg->reset_mem_stbl); 922 923 /* 924 * transition the RESET to high 925 * Wait for 500us 926 */ 927 928 /* 929 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 930 * If a and b are the number of iteration in 2 nested loops 931 * it takes the following number of cycles to complete the operation 932 * number_of_cycles = ((2 + n) * a + 2) * b 933 * where n is the number of instruction in the inner loop 934 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 935 * b = FF 936 */ 937 938 /* Load counters */ 939 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 940 &sdr_rw_load_mgr_regs->load_cntr0); 941 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 942 &sdr_rw_load_mgr_regs->load_cntr1); 943 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 944 &sdr_rw_load_mgr_regs->load_cntr2); 945 946 /* Load jump address */ 947 writel(RW_MGR_INIT_RESET_1_CKE_0, 948 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 949 writel(RW_MGR_INIT_RESET_1_CKE_0, 950 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 951 writel(RW_MGR_INIT_RESET_1_CKE_0, 952 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 953 954 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 955 956 /* bring up clock enable */ 957 958 /* tXRP < 250 ck cycles */ 959 delay_for_n_mem_clocks(250); 960 961 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 962 if (param->skip_ranks[r]) { 963 /* request to skip the rank */ 964 continue; 965 } 966 967 /* set rank */ 968 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 969 970 /* 971 * USER Use Mirror-ed commands for odd ranks if address 972 * mirrorring is on 973 */ 974 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 975 set_jump_as_return(); 976 writel(RW_MGR_MRS2_MIRR, grpaddr); 977 delay_for_n_mem_clocks(4); 978 set_jump_as_return(); 979 writel(RW_MGR_MRS3_MIRR, grpaddr); 980 delay_for_n_mem_clocks(4); 981 set_jump_as_return(); 982 writel(RW_MGR_MRS1_MIRR, grpaddr); 983 delay_for_n_mem_clocks(4); 984 set_jump_as_return(); 985 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 986 } else { 987 set_jump_as_return(); 988 writel(RW_MGR_MRS2, grpaddr); 989 delay_for_n_mem_clocks(4); 990 set_jump_as_return(); 991 writel(RW_MGR_MRS3, grpaddr); 992 delay_for_n_mem_clocks(4); 993 set_jump_as_return(); 994 writel(RW_MGR_MRS1, grpaddr); 995 set_jump_as_return(); 996 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 997 } 998 set_jump_as_return(); 999 writel(RW_MGR_ZQCL, grpaddr); 1000 1001 /* tZQinit = tDLLK = 512 ck cycles */ 1002 delay_for_n_mem_clocks(512); 1003 } 1004 } 1005 1006 /* 1007 * At the end of calibration we have to program the user settings in, and 1008 * USER hand off the memory to the user. 1009 */ 1010 static void rw_mgr_mem_handoff(void) 1011 { 1012 uint32_t r; 1013 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1014 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1015 1016 debug("%s:%d\n", __func__, __LINE__); 1017 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1018 if (param->skip_ranks[r]) 1019 /* request to skip the rank */ 1020 continue; 1021 /* set rank */ 1022 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1023 1024 /* precharge all banks ... */ 1025 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1026 1027 /* load up MR settings specified by user */ 1028 1029 /* 1030 * Use Mirror-ed commands for odd ranks if address 1031 * mirrorring is on 1032 */ 1033 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1034 set_jump_as_return(); 1035 writel(RW_MGR_MRS2_MIRR, grpaddr); 1036 delay_for_n_mem_clocks(4); 1037 set_jump_as_return(); 1038 writel(RW_MGR_MRS3_MIRR, grpaddr); 1039 delay_for_n_mem_clocks(4); 1040 set_jump_as_return(); 1041 writel(RW_MGR_MRS1_MIRR, grpaddr); 1042 delay_for_n_mem_clocks(4); 1043 set_jump_as_return(); 1044 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1045 } else { 1046 set_jump_as_return(); 1047 writel(RW_MGR_MRS2, grpaddr); 1048 delay_for_n_mem_clocks(4); 1049 set_jump_as_return(); 1050 writel(RW_MGR_MRS3, grpaddr); 1051 delay_for_n_mem_clocks(4); 1052 set_jump_as_return(); 1053 writel(RW_MGR_MRS1, grpaddr); 1054 delay_for_n_mem_clocks(4); 1055 set_jump_as_return(); 1056 writel(RW_MGR_MRS0_USER, grpaddr); 1057 } 1058 /* 1059 * USER need to wait tMOD (12CK or 15ns) time before issuing 1060 * other commands, but we will have plenty of NIOS cycles before 1061 * actual handoff so its okay. 1062 */ 1063 } 1064 } 1065 1066 /* 1067 * performs a guaranteed read on the patterns we are going to use during a 1068 * read test to ensure memory works 1069 */ 1070 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1071 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1072 uint32_t all_ranks) 1073 { 1074 uint32_t r, vg; 1075 uint32_t correct_mask_vg; 1076 uint32_t tmp_bit_chk; 1077 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1078 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1079 uint32_t addr; 1080 uint32_t base_rw_mgr; 1081 1082 *bit_chk = param->read_correct_mask; 1083 correct_mask_vg = param->read_correct_mask_vg; 1084 1085 for (r = rank_bgn; r < rank_end; r++) { 1086 if (param->skip_ranks[r]) 1087 /* request to skip the rank */ 1088 continue; 1089 1090 /* set rank */ 1091 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1092 1093 /* Load up a constant bursts of read commands */ 1094 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1095 writel(RW_MGR_GUARANTEED_READ, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1097 1098 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1099 writel(RW_MGR_GUARANTEED_READ_CONT, 1100 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1101 1102 tmp_bit_chk = 0; 1103 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1104 /* reset the fifos to get pointers to known state */ 1105 1106 writel(0, &phy_mgr_cmd->fifo_reset); 1107 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1108 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1109 1110 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1111 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1112 1113 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1114 writel(RW_MGR_GUARANTEED_READ, addr + 1115 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1116 vg) << 2)); 1117 1118 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1119 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1120 1121 if (vg == 0) 1122 break; 1123 } 1124 *bit_chk &= tmp_bit_chk; 1125 } 1126 1127 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1128 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1129 1130 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1131 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1132 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1133 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1134 return *bit_chk == param->read_correct_mask; 1135 } 1136 1137 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1138 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1139 { 1140 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1141 num_tries, bit_chk, 1); 1142 } 1143 1144 /* load up the patterns we are going to use during a read test */ 1145 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1146 uint32_t all_ranks) 1147 { 1148 uint32_t r; 1149 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1150 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1151 1152 debug("%s:%d\n", __func__, __LINE__); 1153 for (r = rank_bgn; r < rank_end; r++) { 1154 if (param->skip_ranks[r]) 1155 /* request to skip the rank */ 1156 continue; 1157 1158 /* set rank */ 1159 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1160 1161 /* Load up a constant bursts */ 1162 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1163 1164 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1165 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1166 1167 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1168 1169 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1170 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1171 1172 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1173 1174 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1175 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1176 1177 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1178 1179 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1180 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1181 1182 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1183 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1184 } 1185 1186 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1187 } 1188 1189 /* 1190 * try a read and see if it returns correct data back. has dummy reads 1191 * inserted into the mix used to align dqs enable. has more thorough checks 1192 * than the regular read test. 1193 */ 1194 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1195 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1196 uint32_t all_groups, uint32_t all_ranks) 1197 { 1198 uint32_t r, vg; 1199 uint32_t correct_mask_vg; 1200 uint32_t tmp_bit_chk; 1201 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1202 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1203 uint32_t addr; 1204 uint32_t base_rw_mgr; 1205 1206 *bit_chk = param->read_correct_mask; 1207 correct_mask_vg = param->read_correct_mask_vg; 1208 1209 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1210 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1211 1212 for (r = rank_bgn; r < rank_end; r++) { 1213 if (param->skip_ranks[r]) 1214 /* request to skip the rank */ 1215 continue; 1216 1217 /* set rank */ 1218 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1219 1220 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1221 1222 writel(RW_MGR_READ_B2B_WAIT1, 1223 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1224 1225 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1226 writel(RW_MGR_READ_B2B_WAIT2, 1227 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1228 1229 if (quick_read_mode) 1230 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1231 /* need at least two (1+1) reads to capture failures */ 1232 else if (all_groups) 1233 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1234 else 1235 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1236 1237 writel(RW_MGR_READ_B2B, 1238 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1239 if (all_groups) 1240 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1241 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1242 &sdr_rw_load_mgr_regs->load_cntr3); 1243 else 1244 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1245 1246 writel(RW_MGR_READ_B2B, 1247 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1248 1249 tmp_bit_chk = 0; 1250 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1251 /* reset the fifos to get pointers to known state */ 1252 writel(0, &phy_mgr_cmd->fifo_reset); 1253 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1254 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1255 1256 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1257 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1258 1259 if (all_groups) 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1261 else 1262 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1263 1264 writel(RW_MGR_READ_B2B, addr + 1265 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1266 vg) << 2)); 1267 1268 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1269 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1270 1271 if (vg == 0) 1272 break; 1273 } 1274 *bit_chk &= tmp_bit_chk; 1275 } 1276 1277 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1278 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1279 1280 if (all_correct) { 1281 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1282 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1283 (%u == %u) => %lu", __func__, __LINE__, group, 1284 all_groups, *bit_chk, param->read_correct_mask, 1285 (long unsigned int)(*bit_chk == 1286 param->read_correct_mask)); 1287 return *bit_chk == param->read_correct_mask; 1288 } else { 1289 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1290 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1291 (%u != %lu) => %lu\n", __func__, __LINE__, 1292 group, all_groups, *bit_chk, (long unsigned int)0, 1293 (long unsigned int)(*bit_chk != 0x00)); 1294 return *bit_chk != 0x00; 1295 } 1296 } 1297 1298 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1299 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1300 uint32_t all_groups) 1301 { 1302 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1303 bit_chk, all_groups, 1); 1304 } 1305 1306 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1307 { 1308 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1309 (*v)++; 1310 } 1311 1312 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1313 { 1314 uint32_t i; 1315 1316 for (i = 0; i < VFIFO_SIZE-1; i++) 1317 rw_mgr_incr_vfifo(grp, v); 1318 } 1319 1320 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1321 { 1322 uint32_t v; 1323 uint32_t fail_cnt = 0; 1324 uint32_t test_status; 1325 1326 for (v = 0; v < VFIFO_SIZE; ) { 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1328 __func__, __LINE__, v); 1329 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1330 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1331 if (!test_status) { 1332 fail_cnt++; 1333 1334 if (fail_cnt == 2) 1335 break; 1336 } 1337 1338 /* fiddle with FIFO */ 1339 rw_mgr_incr_vfifo(grp, &v); 1340 } 1341 1342 if (v >= VFIFO_SIZE) { 1343 /* no failing read found!! Something must have gone wrong */ 1344 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1345 __func__, __LINE__); 1346 return 0; 1347 } else { 1348 return v; 1349 } 1350 } 1351 1352 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1353 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1354 uint32_t *v, uint32_t *d, uint32_t *p, 1355 uint32_t *i, uint32_t *max_working_cnt) 1356 { 1357 uint32_t found_begin = 0; 1358 uint32_t tmp_delay = 0; 1359 uint32_t test_status; 1360 1361 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1362 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1363 *work_bgn = tmp_delay; 1364 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1365 1366 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1367 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1368 IO_DELAY_PER_OPA_TAP) { 1369 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1370 1371 test_status = 1372 rw_mgr_mem_calibrate_read_test_all_ranks 1373 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1374 1375 if (test_status) { 1376 *max_working_cnt = 1; 1377 found_begin = 1; 1378 break; 1379 } 1380 } 1381 1382 if (found_begin) 1383 break; 1384 1385 if (*p > IO_DQS_EN_PHASE_MAX) 1386 /* fiddle with FIFO */ 1387 rw_mgr_incr_vfifo(*grp, v); 1388 } 1389 1390 if (found_begin) 1391 break; 1392 } 1393 1394 if (*i >= VFIFO_SIZE) { 1395 /* cannot find working solution */ 1396 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1397 ptap/dtap\n", __func__, __LINE__); 1398 return 0; 1399 } else { 1400 return 1; 1401 } 1402 } 1403 1404 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1405 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1406 uint32_t *p, uint32_t *max_working_cnt) 1407 { 1408 uint32_t found_begin = 0; 1409 uint32_t tmp_delay; 1410 1411 /* Special case code for backing up a phase */ 1412 if (*p == 0) { 1413 *p = IO_DQS_EN_PHASE_MAX; 1414 rw_mgr_decr_vfifo(*grp, v); 1415 } else { 1416 (*p)--; 1417 } 1418 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1419 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1420 1421 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1422 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1423 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1424 1425 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1426 PASS_ONE_BIT, 1427 bit_chk, 0)) { 1428 found_begin = 1; 1429 *work_bgn = tmp_delay; 1430 break; 1431 } 1432 } 1433 1434 /* We have found a working dtap before the ptap found above */ 1435 if (found_begin == 1) 1436 (*max_working_cnt)++; 1437 1438 /* 1439 * Restore VFIFO to old state before we decremented it 1440 * (if needed). 1441 */ 1442 (*p)++; 1443 if (*p > IO_DQS_EN_PHASE_MAX) { 1444 *p = 0; 1445 rw_mgr_incr_vfifo(*grp, v); 1446 } 1447 1448 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1449 } 1450 1451 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1452 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1453 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1454 uint32_t *work_end) 1455 { 1456 uint32_t found_end = 0; 1457 1458 (*p)++; 1459 *work_end += IO_DELAY_PER_OPA_TAP; 1460 if (*p > IO_DQS_EN_PHASE_MAX) { 1461 /* fiddle with FIFO */ 1462 *p = 0; 1463 rw_mgr_incr_vfifo(*grp, v); 1464 } 1465 1466 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1467 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1468 += IO_DELAY_PER_OPA_TAP) { 1469 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1470 1471 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1472 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1473 found_end = 1; 1474 break; 1475 } else { 1476 (*max_working_cnt)++; 1477 } 1478 } 1479 1480 if (found_end) 1481 break; 1482 1483 if (*p > IO_DQS_EN_PHASE_MAX) { 1484 /* fiddle with FIFO */ 1485 rw_mgr_incr_vfifo(*grp, v); 1486 *p = 0; 1487 } 1488 } 1489 1490 if (*i >= VFIFO_SIZE + 1) { 1491 /* cannot see edge of failing read */ 1492 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1493 failed\n", __func__, __LINE__); 1494 return 0; 1495 } else { 1496 return 1; 1497 } 1498 } 1499 1500 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1501 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1502 uint32_t *p, uint32_t *work_mid, 1503 uint32_t *work_end) 1504 { 1505 int i; 1506 int tmp_delay = 0; 1507 1508 *work_mid = (*work_bgn + *work_end) / 2; 1509 1510 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1511 *work_bgn, *work_end, *work_mid); 1512 /* Get the middle delay to be less than a VFIFO delay */ 1513 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1514 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1515 ; 1516 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1517 while (*work_mid > tmp_delay) 1518 *work_mid -= tmp_delay; 1519 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1520 1521 tmp_delay = 0; 1522 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1523 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1524 ; 1525 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1526 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1527 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1528 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1529 ; 1530 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1531 1532 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1533 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1534 1535 /* 1536 * push vfifo until we can successfully calibrate. We can do this 1537 * because the largest possible margin in 1 VFIFO cycle. 1538 */ 1539 for (i = 0; i < VFIFO_SIZE; i++) { 1540 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1541 *v); 1542 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1543 PASS_ONE_BIT, 1544 bit_chk, 0)) { 1545 break; 1546 } 1547 1548 /* fiddle with FIFO */ 1549 rw_mgr_incr_vfifo(*grp, v); 1550 } 1551 1552 if (i >= VFIFO_SIZE) { 1553 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1554 failed\n", __func__, __LINE__); 1555 return 0; 1556 } else { 1557 return 1; 1558 } 1559 } 1560 1561 /* find a good dqs enable to use */ 1562 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1563 { 1564 uint32_t v, d, p, i; 1565 uint32_t max_working_cnt; 1566 uint32_t bit_chk; 1567 uint32_t dtaps_per_ptap; 1568 uint32_t work_bgn, work_mid, work_end; 1569 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1570 1571 debug("%s:%d %u\n", __func__, __LINE__, grp); 1572 1573 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1574 1575 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1576 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1577 1578 /* ************************************************************** */ 1579 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1580 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1581 1582 /* ********************************************************* */ 1583 /* * Step 1 : First push vfifo until we get a failing read * */ 1584 v = find_vfifo_read(grp, &bit_chk); 1585 1586 max_working_cnt = 0; 1587 1588 /* ******************************************************** */ 1589 /* * step 2: find first working phase, increment in ptaps * */ 1590 work_bgn = 0; 1591 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1592 &p, &i, &max_working_cnt) == 0) 1593 return 0; 1594 1595 work_end = work_bgn; 1596 1597 /* 1598 * If d is 0 then the working window covers a phase tap and 1599 * we can follow the old procedure otherwise, we've found the beginning, 1600 * and we need to increment the dtaps until we find the end. 1601 */ 1602 if (d == 0) { 1603 /* ********************************************************* */ 1604 /* * step 3a: if we have room, back off by one and 1605 increment in dtaps * */ 1606 1607 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1608 &max_working_cnt); 1609 1610 /* ********************************************************* */ 1611 /* * step 4a: go forward from working phase to non working 1612 phase, increment in ptaps * */ 1613 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1614 &i, &max_working_cnt, &work_end) == 0) 1615 return 0; 1616 1617 /* ********************************************************* */ 1618 /* * step 5a: back off one from last, increment in dtaps * */ 1619 1620 /* Special case code for backing up a phase */ 1621 if (p == 0) { 1622 p = IO_DQS_EN_PHASE_MAX; 1623 rw_mgr_decr_vfifo(grp, &v); 1624 } else { 1625 p = p - 1; 1626 } 1627 1628 work_end -= IO_DELAY_PER_OPA_TAP; 1629 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1630 1631 /* * The actual increment of dtaps is done outside of 1632 the if/else loop to share code */ 1633 d = 0; 1634 1635 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1636 vfifo=%u ptap=%u\n", __func__, __LINE__, 1637 v, p); 1638 } else { 1639 /* ******************************************************* */ 1640 /* * step 3-5b: Find the right edge of the window using 1641 delay taps * */ 1642 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1643 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1644 v, p, d, work_bgn); 1645 1646 work_end = work_bgn; 1647 1648 /* * The actual increment of dtaps is done outside of the 1649 if/else loop to share code */ 1650 1651 /* Only here to counterbalance a subtract later on which is 1652 not needed if this branch of the algorithm is taken */ 1653 max_working_cnt++; 1654 } 1655 1656 /* The dtap increment to find the failing edge is done here */ 1657 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1658 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1659 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1660 end-2: dtap=%u\n", __func__, __LINE__, d); 1661 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1662 1663 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1664 PASS_ONE_BIT, 1665 &bit_chk, 0)) { 1666 break; 1667 } 1668 } 1669 1670 /* Go back to working dtap */ 1671 if (d != 0) 1672 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1673 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1675 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1676 v, p, d-1, work_end); 1677 1678 if (work_end < work_bgn) { 1679 /* nil range */ 1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1681 failed\n", __func__, __LINE__); 1682 return 0; 1683 } 1684 1685 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1686 __func__, __LINE__, work_bgn, work_end); 1687 1688 /* *************************************************************** */ 1689 /* 1690 * * We need to calculate the number of dtaps that equal a ptap 1691 * * To do that we'll back up a ptap and re-find the edge of the 1692 * * window using dtaps 1693 */ 1694 1695 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1696 for tracking\n", __func__, __LINE__); 1697 1698 /* Special case code for backing up a phase */ 1699 if (p == 0) { 1700 p = IO_DQS_EN_PHASE_MAX; 1701 rw_mgr_decr_vfifo(grp, &v); 1702 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1703 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1704 v, p); 1705 } else { 1706 p = p - 1; 1707 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1708 phase only: v=%u p=%u", __func__, __LINE__, 1709 v, p); 1710 } 1711 1712 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1713 1714 /* 1715 * Increase dtap until we first see a passing read (in case the 1716 * window is smaller than a ptap), 1717 * and then a failing read to mark the edge of the window again 1718 */ 1719 1720 /* Find a passing read */ 1721 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1722 __func__, __LINE__); 1723 found_passing_read = 0; 1724 found_failing_read = 0; 1725 initial_failing_dtap = d; 1726 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1727 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1728 read d=%u\n", __func__, __LINE__, d); 1729 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1730 1731 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1732 PASS_ONE_BIT, 1733 &bit_chk, 0)) { 1734 found_passing_read = 1; 1735 break; 1736 } 1737 } 1738 1739 if (found_passing_read) { 1740 /* Find a failing read */ 1741 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1742 read\n", __func__, __LINE__); 1743 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1744 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1745 testing read d=%u\n", __func__, __LINE__, d); 1746 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1747 1748 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1749 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1750 found_failing_read = 1; 1751 break; 1752 } 1753 } 1754 } else { 1755 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1756 calculate dtaps", __func__, __LINE__); 1757 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1758 } 1759 1760 /* 1761 * The dynamically calculated dtaps_per_ptap is only valid if we 1762 * found a passing/failing read. If we didn't, it means d hit the max 1763 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1764 * statically calculated value. 1765 */ 1766 if (found_passing_read && found_failing_read) 1767 dtaps_per_ptap = d - initial_failing_dtap; 1768 1769 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1770 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1771 - %u = %u", __func__, __LINE__, d, 1772 initial_failing_dtap, dtaps_per_ptap); 1773 1774 /* ******************************************** */ 1775 /* * step 6: Find the centre of the window * */ 1776 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1777 &work_mid, &work_end) == 0) 1778 return 0; 1779 1780 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1781 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1782 v, p-1, d); 1783 return 1; 1784 } 1785 1786 /* 1787 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1788 * dq_in_delay values 1789 */ 1790 static uint32_t 1791 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1792 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1793 { 1794 uint32_t found; 1795 uint32_t i; 1796 uint32_t p; 1797 uint32_t d; 1798 uint32_t r; 1799 1800 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1801 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1802 /* we start at zero, so have one less dq to devide among */ 1803 1804 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1805 test_bgn); 1806 1807 /* try different dq_in_delays since the dq path is shorter than dqs */ 1808 1809 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1810 r += NUM_RANKS_PER_SHADOW_REG) { 1811 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1812 i++, p++, d += delay_step) { 1813 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1814 vfifo_find_dqs_", __func__, __LINE__); 1815 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1816 write_group, read_group); 1817 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1818 scc_mgr_set_dq_in_delay(p, d); 1819 scc_mgr_load_dq(p); 1820 } 1821 writel(0, &sdr_scc_mgr->update); 1822 } 1823 1824 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1825 1826 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1827 en_phase_sweep_dq", __func__, __LINE__); 1828 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1829 chain to zero\n", write_group, read_group, found); 1830 1831 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1832 r += NUM_RANKS_PER_SHADOW_REG) { 1833 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1834 i++, p++) { 1835 scc_mgr_set_dq_in_delay(p, 0); 1836 scc_mgr_load_dq(p); 1837 } 1838 writel(0, &sdr_scc_mgr->update); 1839 } 1840 1841 return found; 1842 } 1843 1844 /* per-bit deskew DQ and center */ 1845 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1846 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1847 uint32_t use_read_test, uint32_t update_fom) 1848 { 1849 uint32_t i, p, d, min_index; 1850 /* 1851 * Store these as signed since there are comparisons with 1852 * signed numbers. 1853 */ 1854 uint32_t bit_chk; 1855 uint32_t sticky_bit_chk; 1856 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1857 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1858 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1859 int32_t mid; 1860 int32_t orig_mid_min, mid_min; 1861 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1862 final_dqs_en; 1863 int32_t dq_margin, dqs_margin; 1864 uint32_t stop; 1865 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1866 uint32_t addr; 1867 1868 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1869 1870 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1871 start_dqs = readl(addr + (read_group << 2)); 1872 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1873 start_dqs_en = readl(addr + ((read_group << 2) 1874 - IO_DQS_EN_DELAY_OFFSET)); 1875 1876 /* set the left and right edge of each bit to an illegal value */ 1877 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1878 sticky_bit_chk = 0; 1879 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1880 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1881 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1882 } 1883 1884 /* Search for the left edge of the window for each bit */ 1885 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1886 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1887 1888 writel(0, &sdr_scc_mgr->update); 1889 1890 /* 1891 * Stop searching when the read test doesn't pass AND when 1892 * we've seen a passing read on every bit. 1893 */ 1894 if (use_read_test) { 1895 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1896 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1897 &bit_chk, 0, 0); 1898 } else { 1899 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1900 0, PASS_ONE_BIT, 1901 &bit_chk, 0); 1902 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1903 (read_group - (write_group * 1904 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1905 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1906 stop = (bit_chk == 0); 1907 } 1908 sticky_bit_chk = sticky_bit_chk | bit_chk; 1909 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1910 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1911 && %u", __func__, __LINE__, d, 1912 sticky_bit_chk, 1913 param->read_correct_mask, stop); 1914 1915 if (stop == 1) { 1916 break; 1917 } else { 1918 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1919 if (bit_chk & 1) { 1920 /* Remember a passing test as the 1921 left_edge */ 1922 left_edge[i] = d; 1923 } else { 1924 /* If a left edge has not been seen yet, 1925 then a future passing test will mark 1926 this edge as the right edge */ 1927 if (left_edge[i] == 1928 IO_IO_IN_DELAY_MAX + 1) { 1929 right_edge[i] = -(d + 1); 1930 } 1931 } 1932 bit_chk = bit_chk >> 1; 1933 } 1934 } 1935 } 1936 1937 /* Reset DQ delay chains to 0 */ 1938 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1939 sticky_bit_chk = 0; 1940 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1941 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1942 %d right_edge[%u]: %d\n", __func__, __LINE__, 1943 i, left_edge[i], i, right_edge[i]); 1944 1945 /* 1946 * Check for cases where we haven't found the left edge, 1947 * which makes our assignment of the the right edge invalid. 1948 * Reset it to the illegal value. 1949 */ 1950 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1951 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1952 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1953 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1954 right_edge[%u]: %d\n", __func__, __LINE__, 1955 i, right_edge[i]); 1956 } 1957 1958 /* 1959 * Reset sticky bit (except for bits where we have seen 1960 * both the left and right edge). 1961 */ 1962 sticky_bit_chk = sticky_bit_chk << 1; 1963 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1964 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1965 sticky_bit_chk = sticky_bit_chk | 1; 1966 } 1967 1968 if (i == 0) 1969 break; 1970 } 1971 1972 /* Search for the right edge of the window for each bit */ 1973 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1974 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1975 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1976 uint32_t delay = d + start_dqs_en; 1977 if (delay > IO_DQS_EN_DELAY_MAX) 1978 delay = IO_DQS_EN_DELAY_MAX; 1979 scc_mgr_set_dqs_en_delay(read_group, delay); 1980 } 1981 scc_mgr_load_dqs(read_group); 1982 1983 writel(0, &sdr_scc_mgr->update); 1984 1985 /* 1986 * Stop searching when the read test doesn't pass AND when 1987 * we've seen a passing read on every bit. 1988 */ 1989 if (use_read_test) { 1990 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1991 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1992 &bit_chk, 0, 0); 1993 } else { 1994 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1995 0, PASS_ONE_BIT, 1996 &bit_chk, 0); 1997 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1998 (read_group - (write_group * 1999 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2000 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2001 stop = (bit_chk == 0); 2002 } 2003 sticky_bit_chk = sticky_bit_chk | bit_chk; 2004 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2005 2006 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2007 %u && %u", __func__, __LINE__, d, 2008 sticky_bit_chk, param->read_correct_mask, stop); 2009 2010 if (stop == 1) { 2011 break; 2012 } else { 2013 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2014 if (bit_chk & 1) { 2015 /* Remember a passing test as 2016 the right_edge */ 2017 right_edge[i] = d; 2018 } else { 2019 if (d != 0) { 2020 /* If a right edge has not been 2021 seen yet, then a future passing 2022 test will mark this edge as the 2023 left edge */ 2024 if (right_edge[i] == 2025 IO_IO_IN_DELAY_MAX + 1) { 2026 left_edge[i] = -(d + 1); 2027 } 2028 } else { 2029 /* d = 0 failed, but it passed 2030 when testing the left edge, 2031 so it must be marginal, 2032 set it to -1 */ 2033 if (right_edge[i] == 2034 IO_IO_IN_DELAY_MAX + 1 && 2035 left_edge[i] != 2036 IO_IO_IN_DELAY_MAX 2037 + 1) { 2038 right_edge[i] = -1; 2039 } 2040 /* If a right edge has not been 2041 seen yet, then a future passing 2042 test will mark this edge as the 2043 left edge */ 2044 else if (right_edge[i] == 2045 IO_IO_IN_DELAY_MAX + 2046 1) { 2047 left_edge[i] = -(d + 1); 2048 } 2049 } 2050 } 2051 2052 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2053 d=%u]: ", __func__, __LINE__, d); 2054 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2055 (int)(bit_chk & 1), i, left_edge[i]); 2056 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2057 right_edge[i]); 2058 bit_chk = bit_chk >> 1; 2059 } 2060 } 2061 } 2062 2063 /* Check that all bits have a window */ 2064 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2065 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2066 %d right_edge[%u]: %d", __func__, __LINE__, 2067 i, left_edge[i], i, right_edge[i]); 2068 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2069 == IO_IO_IN_DELAY_MAX + 1)) { 2070 /* 2071 * Restore delay chain settings before letting the loop 2072 * in rw_mgr_mem_calibrate_vfifo to retry different 2073 * dqs/ck relationships. 2074 */ 2075 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2076 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2077 scc_mgr_set_dqs_en_delay(read_group, 2078 start_dqs_en); 2079 } 2080 scc_mgr_load_dqs(read_group); 2081 writel(0, &sdr_scc_mgr->update); 2082 2083 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2084 find edge [%u]: %d %d", __func__, __LINE__, 2085 i, left_edge[i], right_edge[i]); 2086 if (use_read_test) { 2087 set_failing_group_stage(read_group * 2088 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2089 CAL_STAGE_VFIFO, 2090 CAL_SUBSTAGE_VFIFO_CENTER); 2091 } else { 2092 set_failing_group_stage(read_group * 2093 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2094 CAL_STAGE_VFIFO_AFTER_WRITES, 2095 CAL_SUBSTAGE_VFIFO_CENTER); 2096 } 2097 return 0; 2098 } 2099 } 2100 2101 /* Find middle of window for each DQ bit */ 2102 mid_min = left_edge[0] - right_edge[0]; 2103 min_index = 0; 2104 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2105 mid = left_edge[i] - right_edge[i]; 2106 if (mid < mid_min) { 2107 mid_min = mid; 2108 min_index = i; 2109 } 2110 } 2111 2112 /* 2113 * -mid_min/2 represents the amount that we need to move DQS. 2114 * If mid_min is odd and positive we'll need to add one to 2115 * make sure the rounding in further calculations is correct 2116 * (always bias to the right), so just add 1 for all positive values. 2117 */ 2118 if (mid_min > 0) 2119 mid_min++; 2120 2121 mid_min = mid_min / 2; 2122 2123 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2124 __func__, __LINE__, mid_min, min_index); 2125 2126 /* Determine the amount we can change DQS (which is -mid_min) */ 2127 orig_mid_min = mid_min; 2128 new_dqs = start_dqs - mid_min; 2129 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2130 new_dqs = IO_DQS_IN_DELAY_MAX; 2131 else if (new_dqs < 0) 2132 new_dqs = 0; 2133 2134 mid_min = start_dqs - new_dqs; 2135 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2136 mid_min, new_dqs); 2137 2138 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2139 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2140 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2141 else if (start_dqs_en - mid_min < 0) 2142 mid_min += start_dqs_en - mid_min; 2143 } 2144 new_dqs = start_dqs - mid_min; 2145 2146 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2147 new_dqs=%d mid_min=%d\n", start_dqs, 2148 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2149 new_dqs, mid_min); 2150 2151 /* Initialize data for export structures */ 2152 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2153 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2154 2155 /* add delay to bring centre of all DQ windows to the same "level" */ 2156 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2157 /* Use values before divide by 2 to reduce round off error */ 2158 shift_dq = (left_edge[i] - right_edge[i] - 2159 (left_edge[min_index] - right_edge[min_index]))/2 + 2160 (orig_mid_min - mid_min); 2161 2162 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2163 shift_dq[%u]=%d\n", i, shift_dq); 2164 2165 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2166 temp_dq_in_delay1 = readl(addr + (p << 2)); 2167 temp_dq_in_delay2 = readl(addr + (i << 2)); 2168 2169 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2170 (int32_t)IO_IO_IN_DELAY_MAX) { 2171 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2172 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2173 shift_dq = -(int32_t)temp_dq_in_delay1; 2174 } 2175 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2176 shift_dq[%u]=%d\n", i, shift_dq); 2177 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2178 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2179 scc_mgr_load_dq(p); 2180 2181 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2182 left_edge[i] - shift_dq + (-mid_min), 2183 right_edge[i] + shift_dq - (-mid_min)); 2184 /* To determine values for export structures */ 2185 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2186 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2187 2188 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2189 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2190 } 2191 2192 final_dqs = new_dqs; 2193 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2194 final_dqs_en = start_dqs_en - mid_min; 2195 2196 /* Move DQS-en */ 2197 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2198 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2199 scc_mgr_load_dqs(read_group); 2200 } 2201 2202 /* Move DQS */ 2203 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2204 scc_mgr_load_dqs(read_group); 2205 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2206 dqs_margin=%d", __func__, __LINE__, 2207 dq_margin, dqs_margin); 2208 2209 /* 2210 * Do not remove this line as it makes sure all of our decisions 2211 * have been applied. Apply the update bit. 2212 */ 2213 writel(0, &sdr_scc_mgr->update); 2214 2215 return (dq_margin >= 0) && (dqs_margin >= 0); 2216 } 2217 2218 /* 2219 * calibrate the read valid prediction FIFO. 2220 * 2221 * - read valid prediction will consist of finding a good DQS enable phase, 2222 * DQS enable delay, DQS input phase, and DQS input delay. 2223 * - we also do a per-bit deskew on the DQ lines. 2224 */ 2225 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2226 uint32_t test_bgn) 2227 { 2228 uint32_t p, d, rank_bgn, sr; 2229 uint32_t dtaps_per_ptap; 2230 uint32_t tmp_delay; 2231 uint32_t bit_chk; 2232 uint32_t grp_calibrated; 2233 uint32_t write_group, write_test_bgn; 2234 uint32_t failed_substage; 2235 2236 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2237 2238 /* update info for sims */ 2239 reg_file_set_stage(CAL_STAGE_VFIFO); 2240 2241 write_group = read_group; 2242 write_test_bgn = test_bgn; 2243 2244 /* USER Determine number of delay taps for each phase tap */ 2245 dtaps_per_ptap = 0; 2246 tmp_delay = 0; 2247 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2248 dtaps_per_ptap++; 2249 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2250 } 2251 dtaps_per_ptap--; 2252 tmp_delay = 0; 2253 2254 /* update info for sims */ 2255 reg_file_set_group(read_group); 2256 2257 grp_calibrated = 0; 2258 2259 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2260 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2261 2262 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2263 /* 2264 * In RLDRAMX we may be messing the delay of pins in 2265 * the same write group but outside of the current read 2266 * the group, but that's ok because we haven't 2267 * calibrated output side yet. 2268 */ 2269 if (d > 0) { 2270 scc_mgr_apply_group_all_out_delay_add_all_ranks 2271 (write_group, write_test_bgn, d); 2272 } 2273 2274 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2275 p++) { 2276 /* set a particular dqdqs phase */ 2277 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2278 2279 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2280 p=%u d=%u\n", __func__, __LINE__, 2281 read_group, p, d); 2282 2283 /* 2284 * Load up the patterns used by read calibration 2285 * using current DQDQS phase. 2286 */ 2287 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2288 if (!(gbl->phy_debug_mode_flags & 2289 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2290 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2291 (read_group, 1, &bit_chk)) { 2292 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2293 __func__, __LINE__); 2294 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2295 read_group, p, d); 2296 break; 2297 } 2298 } 2299 2300 /* case:56390 */ 2301 grp_calibrated = 1; 2302 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2303 (write_group, read_group, test_bgn)) { 2304 /* 2305 * USER Read per-bit deskew can be done on a 2306 * per shadow register basis. 2307 */ 2308 for (rank_bgn = 0, sr = 0; 2309 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2310 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2311 ++sr) { 2312 /* 2313 * Determine if this set of ranks 2314 * should be skipped entirely. 2315 */ 2316 if (!param->skip_shadow_regs[sr]) { 2317 /* 2318 * If doing read after write 2319 * calibration, do not update 2320 * FOM, now - do it then. 2321 */ 2322 if (!rw_mgr_mem_calibrate_vfifo_center 2323 (rank_bgn, write_group, 2324 read_group, test_bgn, 1, 0)) { 2325 grp_calibrated = 0; 2326 failed_substage = 2327 CAL_SUBSTAGE_VFIFO_CENTER; 2328 } 2329 } 2330 } 2331 } else { 2332 grp_calibrated = 0; 2333 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2334 } 2335 } 2336 } 2337 2338 if (grp_calibrated == 0) { 2339 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2340 failed_substage); 2341 return 0; 2342 } 2343 2344 /* 2345 * Reset the delay chains back to zero if they have moved > 1 2346 * (check for > 1 because loop will increase d even when pass in 2347 * first case). 2348 */ 2349 if (d > 2) 2350 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2351 2352 return 1; 2353 } 2354 2355 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2356 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2357 uint32_t test_bgn) 2358 { 2359 uint32_t rank_bgn, sr; 2360 uint32_t grp_calibrated; 2361 uint32_t write_group; 2362 2363 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2364 2365 /* update info for sims */ 2366 2367 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2368 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2369 2370 write_group = read_group; 2371 2372 /* update info for sims */ 2373 reg_file_set_group(read_group); 2374 2375 grp_calibrated = 1; 2376 /* Read per-bit deskew can be done on a per shadow register basis */ 2377 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2378 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2379 /* Determine if this set of ranks should be skipped entirely */ 2380 if (!param->skip_shadow_regs[sr]) { 2381 /* This is the last calibration round, update FOM here */ 2382 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2383 write_group, 2384 read_group, 2385 test_bgn, 0, 2386 1)) { 2387 grp_calibrated = 0; 2388 } 2389 } 2390 } 2391 2392 2393 if (grp_calibrated == 0) { 2394 set_failing_group_stage(write_group, 2395 CAL_STAGE_VFIFO_AFTER_WRITES, 2396 CAL_SUBSTAGE_VFIFO_CENTER); 2397 return 0; 2398 } 2399 2400 return 1; 2401 } 2402 2403 /* Calibrate LFIFO to find smallest read latency */ 2404 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2405 { 2406 uint32_t found_one; 2407 uint32_t bit_chk; 2408 2409 debug("%s:%d\n", __func__, __LINE__); 2410 2411 /* update info for sims */ 2412 reg_file_set_stage(CAL_STAGE_LFIFO); 2413 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2414 2415 /* Load up the patterns used by read calibration for all ranks */ 2416 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2417 found_one = 0; 2418 2419 do { 2420 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2421 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2422 __func__, __LINE__, gbl->curr_read_lat); 2423 2424 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2425 NUM_READ_TESTS, 2426 PASS_ALL_BITS, 2427 &bit_chk, 1)) { 2428 break; 2429 } 2430 2431 found_one = 1; 2432 /* reduce read latency and see if things are working */ 2433 /* correctly */ 2434 gbl->curr_read_lat--; 2435 } while (gbl->curr_read_lat > 0); 2436 2437 /* reset the fifos to get pointers to known state */ 2438 2439 writel(0, &phy_mgr_cmd->fifo_reset); 2440 2441 if (found_one) { 2442 /* add a fudge factor to the read latency that was determined */ 2443 gbl->curr_read_lat += 2; 2444 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2445 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2446 read_lat=%u\n", __func__, __LINE__, 2447 gbl->curr_read_lat); 2448 return 1; 2449 } else { 2450 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2451 CAL_SUBSTAGE_READ_LATENCY); 2452 2453 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2454 read_lat=%u\n", __func__, __LINE__, 2455 gbl->curr_read_lat); 2456 return 0; 2457 } 2458 } 2459 2460 /* 2461 * issue write test command. 2462 * two variants are provided. one that just tests a write pattern and 2463 * another that tests datamask functionality. 2464 */ 2465 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2466 uint32_t test_dm) 2467 { 2468 uint32_t mcc_instruction; 2469 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2470 ENABLE_SUPER_QUICK_CALIBRATION); 2471 uint32_t rw_wl_nop_cycles; 2472 uint32_t addr; 2473 2474 /* 2475 * Set counter and jump addresses for the right 2476 * number of NOP cycles. 2477 * The number of supported NOP cycles can range from -1 to infinity 2478 * Three different cases are handled: 2479 * 2480 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2481 * mechanism will be used to insert the right number of NOPs 2482 * 2483 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2484 * issuing the write command will jump straight to the 2485 * micro-instruction that turns on DQS (for DDRx), or outputs write 2486 * data (for RLD), skipping 2487 * the NOP micro-instruction all together 2488 * 2489 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2490 * turned on in the same micro-instruction that issues the write 2491 * command. Then we need 2492 * to directly jump to the micro-instruction that sends out the data 2493 * 2494 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2495 * (2 and 3). One jump-counter (0) is used to perform multiple 2496 * write-read operations. 2497 * one counter left to issue this command in "multiple-group" mode 2498 */ 2499 2500 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2501 2502 if (rw_wl_nop_cycles == -1) { 2503 /* 2504 * CNTR 2 - We want to execute the special write operation that 2505 * turns on DQS right away and then skip directly to the 2506 * instruction that sends out the data. We set the counter to a 2507 * large number so that the jump is always taken. 2508 */ 2509 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2510 2511 /* CNTR 3 - Not used */ 2512 if (test_dm) { 2513 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2514 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2515 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2516 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2517 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2518 } else { 2519 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2520 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2521 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2522 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2523 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2524 } 2525 } else if (rw_wl_nop_cycles == 0) { 2526 /* 2527 * CNTR 2 - We want to skip the NOP operation and go straight 2528 * to the DQS enable instruction. We set the counter to a large 2529 * number so that the jump is always taken. 2530 */ 2531 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2532 2533 /* CNTR 3 - Not used */ 2534 if (test_dm) { 2535 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2536 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2537 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2538 } else { 2539 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2540 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2542 } 2543 } else { 2544 /* 2545 * CNTR 2 - In this case we want to execute the next instruction 2546 * and NOT take the jump. So we set the counter to 0. The jump 2547 * address doesn't count. 2548 */ 2549 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2550 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2551 2552 /* 2553 * CNTR 3 - Set the nop counter to the number of cycles we 2554 * need to loop for, minus 1. 2555 */ 2556 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2557 if (test_dm) { 2558 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2559 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2561 } else { 2562 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2564 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2565 } 2566 } 2567 2568 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2569 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2570 2571 if (quick_write_mode) 2572 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2573 else 2574 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2575 2576 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2577 2578 /* 2579 * CNTR 1 - This is used to ensure enough time elapses 2580 * for read data to come back. 2581 */ 2582 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2583 2584 if (test_dm) { 2585 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2586 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2587 } else { 2588 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2589 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2590 } 2591 2592 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2593 writel(mcc_instruction, addr + (group << 2)); 2594 } 2595 2596 /* Test writes, can check for a single bit pass or multiple bit pass */ 2597 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2598 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2599 uint32_t *bit_chk, uint32_t all_ranks) 2600 { 2601 uint32_t r; 2602 uint32_t correct_mask_vg; 2603 uint32_t tmp_bit_chk; 2604 uint32_t vg; 2605 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2606 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2607 uint32_t addr_rw_mgr; 2608 uint32_t base_rw_mgr; 2609 2610 *bit_chk = param->write_correct_mask; 2611 correct_mask_vg = param->write_correct_mask_vg; 2612 2613 for (r = rank_bgn; r < rank_end; r++) { 2614 if (param->skip_ranks[r]) { 2615 /* request to skip the rank */ 2616 continue; 2617 } 2618 2619 /* set rank */ 2620 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2621 2622 tmp_bit_chk = 0; 2623 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2624 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2625 /* reset the fifos to get pointers to known state */ 2626 writel(0, &phy_mgr_cmd->fifo_reset); 2627 2628 tmp_bit_chk = tmp_bit_chk << 2629 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2630 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2631 rw_mgr_mem_calibrate_write_test_issue(write_group * 2632 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2633 use_dm); 2634 2635 base_rw_mgr = readl(addr_rw_mgr); 2636 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2637 if (vg == 0) 2638 break; 2639 } 2640 *bit_chk &= tmp_bit_chk; 2641 } 2642 2643 if (all_correct) { 2644 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2645 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2646 %u => %lu", write_group, use_dm, 2647 *bit_chk, param->write_correct_mask, 2648 (long unsigned int)(*bit_chk == 2649 param->write_correct_mask)); 2650 return *bit_chk == param->write_correct_mask; 2651 } else { 2652 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2653 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2654 write_group, use_dm, *bit_chk); 2655 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2656 (long unsigned int)(*bit_chk != 0)); 2657 return *bit_chk != 0x00; 2658 } 2659 } 2660 2661 /* 2662 * center all windows. do per-bit-deskew to possibly increase size of 2663 * certain windows. 2664 */ 2665 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2666 uint32_t write_group, uint32_t test_bgn) 2667 { 2668 uint32_t i, p, min_index; 2669 int32_t d; 2670 /* 2671 * Store these as signed since there are comparisons with 2672 * signed numbers. 2673 */ 2674 uint32_t bit_chk; 2675 uint32_t sticky_bit_chk; 2676 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2677 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2678 int32_t mid; 2679 int32_t mid_min, orig_mid_min; 2680 int32_t new_dqs, start_dqs, shift_dq; 2681 int32_t dq_margin, dqs_margin, dm_margin; 2682 uint32_t stop; 2683 uint32_t temp_dq_out1_delay; 2684 uint32_t addr; 2685 2686 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2687 2688 dm_margin = 0; 2689 2690 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2691 start_dqs = readl(addr + 2692 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2693 2694 /* per-bit deskew */ 2695 2696 /* 2697 * set the left and right edge of each bit to an illegal value 2698 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2699 */ 2700 sticky_bit_chk = 0; 2701 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2702 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2703 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2704 } 2705 2706 /* Search for the left edge of the window for each bit */ 2707 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2708 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2709 2710 writel(0, &sdr_scc_mgr->update); 2711 2712 /* 2713 * Stop searching when the read test doesn't pass AND when 2714 * we've seen a passing read on every bit. 2715 */ 2716 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2717 0, PASS_ONE_BIT, &bit_chk, 0); 2718 sticky_bit_chk = sticky_bit_chk | bit_chk; 2719 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2720 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2721 == %u && %u [bit_chk= %u ]\n", 2722 d, sticky_bit_chk, param->write_correct_mask, 2723 stop, bit_chk); 2724 2725 if (stop == 1) { 2726 break; 2727 } else { 2728 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2729 if (bit_chk & 1) { 2730 /* 2731 * Remember a passing test as the 2732 * left_edge. 2733 */ 2734 left_edge[i] = d; 2735 } else { 2736 /* 2737 * If a left edge has not been seen 2738 * yet, then a future passing test will 2739 * mark this edge as the right edge. 2740 */ 2741 if (left_edge[i] == 2742 IO_IO_OUT1_DELAY_MAX + 1) { 2743 right_edge[i] = -(d + 1); 2744 } 2745 } 2746 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2747 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2748 (int)(bit_chk & 1), i, left_edge[i]); 2749 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2750 right_edge[i]); 2751 bit_chk = bit_chk >> 1; 2752 } 2753 } 2754 } 2755 2756 /* Reset DQ delay chains to 0 */ 2757 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2758 sticky_bit_chk = 0; 2759 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2760 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2761 %d right_edge[%u]: %d\n", __func__, __LINE__, 2762 i, left_edge[i], i, right_edge[i]); 2763 2764 /* 2765 * Check for cases where we haven't found the left edge, 2766 * which makes our assignment of the the right edge invalid. 2767 * Reset it to the illegal value. 2768 */ 2769 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2770 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2771 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2772 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2773 right_edge[%u]: %d\n", __func__, __LINE__, 2774 i, right_edge[i]); 2775 } 2776 2777 /* 2778 * Reset sticky bit (except for bits where we have 2779 * seen the left edge). 2780 */ 2781 sticky_bit_chk = sticky_bit_chk << 1; 2782 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2783 sticky_bit_chk = sticky_bit_chk | 1; 2784 2785 if (i == 0) 2786 break; 2787 } 2788 2789 /* Search for the right edge of the window for each bit */ 2790 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2791 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2792 d + start_dqs); 2793 2794 writel(0, &sdr_scc_mgr->update); 2795 2796 /* 2797 * Stop searching when the read test doesn't pass AND when 2798 * we've seen a passing read on every bit. 2799 */ 2800 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2801 0, PASS_ONE_BIT, &bit_chk, 0); 2802 2803 sticky_bit_chk = sticky_bit_chk | bit_chk; 2804 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2805 2806 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2807 %u && %u\n", d, sticky_bit_chk, 2808 param->write_correct_mask, stop); 2809 2810 if (stop == 1) { 2811 if (d == 0) { 2812 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2813 i++) { 2814 /* d = 0 failed, but it passed when 2815 testing the left edge, so it must be 2816 marginal, set it to -1 */ 2817 if (right_edge[i] == 2818 IO_IO_OUT1_DELAY_MAX + 1 && 2819 left_edge[i] != 2820 IO_IO_OUT1_DELAY_MAX + 1) { 2821 right_edge[i] = -1; 2822 } 2823 } 2824 } 2825 break; 2826 } else { 2827 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2828 if (bit_chk & 1) { 2829 /* 2830 * Remember a passing test as 2831 * the right_edge. 2832 */ 2833 right_edge[i] = d; 2834 } else { 2835 if (d != 0) { 2836 /* 2837 * If a right edge has not 2838 * been seen yet, then a future 2839 * passing test will mark this 2840 * edge as the left edge. 2841 */ 2842 if (right_edge[i] == 2843 IO_IO_OUT1_DELAY_MAX + 1) 2844 left_edge[i] = -(d + 1); 2845 } else { 2846 /* 2847 * d = 0 failed, but it passed 2848 * when testing the left edge, 2849 * so it must be marginal, set 2850 * it to -1. 2851 */ 2852 if (right_edge[i] == 2853 IO_IO_OUT1_DELAY_MAX + 1 && 2854 left_edge[i] != 2855 IO_IO_OUT1_DELAY_MAX + 1) 2856 right_edge[i] = -1; 2857 /* 2858 * If a right edge has not been 2859 * seen yet, then a future 2860 * passing test will mark this 2861 * edge as the left edge. 2862 */ 2863 else if (right_edge[i] == 2864 IO_IO_OUT1_DELAY_MAX + 2865 1) 2866 left_edge[i] = -(d + 1); 2867 } 2868 } 2869 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2870 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2871 (int)(bit_chk & 1), i, left_edge[i]); 2872 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2873 right_edge[i]); 2874 bit_chk = bit_chk >> 1; 2875 } 2876 } 2877 } 2878 2879 /* Check that all bits have a window */ 2880 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2881 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2882 %d right_edge[%u]: %d", __func__, __LINE__, 2883 i, left_edge[i], i, right_edge[i]); 2884 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2885 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2886 set_failing_group_stage(test_bgn + i, 2887 CAL_STAGE_WRITES, 2888 CAL_SUBSTAGE_WRITES_CENTER); 2889 return 0; 2890 } 2891 } 2892 2893 /* Find middle of window for each DQ bit */ 2894 mid_min = left_edge[0] - right_edge[0]; 2895 min_index = 0; 2896 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2897 mid = left_edge[i] - right_edge[i]; 2898 if (mid < mid_min) { 2899 mid_min = mid; 2900 min_index = i; 2901 } 2902 } 2903 2904 /* 2905 * -mid_min/2 represents the amount that we need to move DQS. 2906 * If mid_min is odd and positive we'll need to add one to 2907 * make sure the rounding in further calculations is correct 2908 * (always bias to the right), so just add 1 for all positive values. 2909 */ 2910 if (mid_min > 0) 2911 mid_min++; 2912 mid_min = mid_min / 2; 2913 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2914 __LINE__, mid_min); 2915 2916 /* Determine the amount we can change DQS (which is -mid_min) */ 2917 orig_mid_min = mid_min; 2918 new_dqs = start_dqs; 2919 mid_min = 0; 2920 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2921 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2922 /* Initialize data for export structures */ 2923 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2924 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2925 2926 /* add delay to bring centre of all DQ windows to the same "level" */ 2927 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2928 /* Use values before divide by 2 to reduce round off error */ 2929 shift_dq = (left_edge[i] - right_edge[i] - 2930 (left_edge[min_index] - right_edge[min_index]))/2 + 2931 (orig_mid_min - mid_min); 2932 2933 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2934 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2935 2936 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2937 temp_dq_out1_delay = readl(addr + (i << 2)); 2938 if (shift_dq + (int32_t)temp_dq_out1_delay > 2939 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2940 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2941 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2942 shift_dq = -(int32_t)temp_dq_out1_delay; 2943 } 2944 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2945 i, shift_dq); 2946 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2947 scc_mgr_load_dq(i); 2948 2949 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2950 left_edge[i] - shift_dq + (-mid_min), 2951 right_edge[i] + shift_dq - (-mid_min)); 2952 /* To determine values for export structures */ 2953 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2954 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2955 2956 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2957 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2958 } 2959 2960 /* Move DQS */ 2961 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2962 writel(0, &sdr_scc_mgr->update); 2963 2964 /* Centre DM */ 2965 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2966 2967 /* 2968 * set the left and right edge of each bit to an illegal value, 2969 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2970 */ 2971 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2972 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2973 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2974 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2975 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2976 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2977 int32_t win_best = 0; 2978 2979 /* Search for the/part of the window with DM shift */ 2980 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2981 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2982 writel(0, &sdr_scc_mgr->update); 2983 2984 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2985 PASS_ALL_BITS, &bit_chk, 2986 0)) { 2987 /* USE Set current end of the window */ 2988 end_curr = -d; 2989 /* 2990 * If a starting edge of our window has not been seen 2991 * this is our current start of the DM window. 2992 */ 2993 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2994 bgn_curr = -d; 2995 2996 /* 2997 * If current window is bigger than best seen. 2998 * Set best seen to be current window. 2999 */ 3000 if ((end_curr-bgn_curr+1) > win_best) { 3001 win_best = end_curr-bgn_curr+1; 3002 bgn_best = bgn_curr; 3003 end_best = end_curr; 3004 } 3005 } else { 3006 /* We just saw a failing test. Reset temp edge */ 3007 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3008 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3009 } 3010 } 3011 3012 3013 /* Reset DM delay chains to 0 */ 3014 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3015 3016 /* 3017 * Check to see if the current window nudges up aganist 0 delay. 3018 * If so we need to continue the search by shifting DQS otherwise DQS 3019 * search begins as a new search. */ 3020 if (end_curr != 0) { 3021 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3022 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3023 } 3024 3025 /* Search for the/part of the window with DQS shifts */ 3026 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3027 /* 3028 * Note: This only shifts DQS, so are we limiting ourselve to 3029 * width of DQ unnecessarily. 3030 */ 3031 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3032 d + new_dqs); 3033 3034 writel(0, &sdr_scc_mgr->update); 3035 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3036 PASS_ALL_BITS, &bit_chk, 3037 0)) { 3038 /* USE Set current end of the window */ 3039 end_curr = d; 3040 /* 3041 * If a beginning edge of our window has not been seen 3042 * this is our current begin of the DM window. 3043 */ 3044 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3045 bgn_curr = d; 3046 3047 /* 3048 * If current window is bigger than best seen. Set best 3049 * seen to be current window. 3050 */ 3051 if ((end_curr-bgn_curr+1) > win_best) { 3052 win_best = end_curr-bgn_curr+1; 3053 bgn_best = bgn_curr; 3054 end_best = end_curr; 3055 } 3056 } else { 3057 /* We just saw a failing test. Reset temp edge */ 3058 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3059 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3060 3061 /* Early exit optimization: if ther remaining delay 3062 chain space is less than already seen largest window 3063 we can exit */ 3064 if ((win_best-1) > 3065 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3066 break; 3067 } 3068 } 3069 } 3070 3071 /* assign left and right edge for cal and reporting; */ 3072 left_edge[0] = -1*bgn_best; 3073 right_edge[0] = end_best; 3074 3075 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3076 __LINE__, left_edge[0], right_edge[0]); 3077 3078 /* Move DQS (back to orig) */ 3079 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3080 3081 /* Move DM */ 3082 3083 /* Find middle of window for the DM bit */ 3084 mid = (left_edge[0] - right_edge[0]) / 2; 3085 3086 /* only move right, since we are not moving DQS/DQ */ 3087 if (mid < 0) 3088 mid = 0; 3089 3090 /* dm_marign should fail if we never find a window */ 3091 if (win_best == 0) 3092 dm_margin = -1; 3093 else 3094 dm_margin = left_edge[0] - mid; 3095 3096 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3097 writel(0, &sdr_scc_mgr->update); 3098 3099 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3100 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3101 right_edge[0], mid, dm_margin); 3102 /* Export values */ 3103 gbl->fom_out += dq_margin + dqs_margin; 3104 3105 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3106 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3107 dq_margin, dqs_margin, dm_margin); 3108 3109 /* 3110 * Do not remove this line as it makes sure all of our 3111 * decisions have been applied. 3112 */ 3113 writel(0, &sdr_scc_mgr->update); 3114 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3115 } 3116 3117 /* calibrate the write operations */ 3118 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3119 uint32_t test_bgn) 3120 { 3121 /* update info for sims */ 3122 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3123 3124 reg_file_set_stage(CAL_STAGE_WRITES); 3125 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3126 3127 reg_file_set_group(g); 3128 3129 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3130 set_failing_group_stage(g, CAL_STAGE_WRITES, 3131 CAL_SUBSTAGE_WRITES_CENTER); 3132 return 0; 3133 } 3134 3135 return 1; 3136 } 3137 3138 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3139 static void mem_precharge_and_activate(void) 3140 { 3141 uint32_t r; 3142 3143 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3144 if (param->skip_ranks[r]) { 3145 /* request to skip the rank */ 3146 continue; 3147 } 3148 3149 /* set rank */ 3150 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3151 3152 /* precharge all banks ... */ 3153 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3154 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3155 3156 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3157 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3158 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3159 3160 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3161 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3162 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3163 3164 /* activate rows */ 3165 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3167 } 3168 } 3169 3170 /* Configure various memory related parameters. */ 3171 static void mem_config(void) 3172 { 3173 uint32_t rlat, wlat; 3174 uint32_t rw_wl_nop_cycles; 3175 uint32_t max_latency; 3176 3177 debug("%s:%d\n", __func__, __LINE__); 3178 /* read in write and read latency */ 3179 wlat = readl(&data_mgr->t_wl_add); 3180 wlat += readl(&data_mgr->mem_t_add); 3181 3182 /* WL for hard phy does not include additive latency */ 3183 3184 /* 3185 * add addtional write latency to offset the address/command extra 3186 * clock cycle. We change the AC mux setting causing AC to be delayed 3187 * by one mem clock cycle. Only do this for DDR3 3188 */ 3189 wlat = wlat + 1; 3190 3191 rlat = readl(&data_mgr->t_rl_add); 3192 3193 rw_wl_nop_cycles = wlat - 2; 3194 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3195 3196 /* 3197 * For AV/CV, lfifo is hardened and always runs at full rate so 3198 * max latency in AFI clocks, used here, is correspondingly smaller. 3199 */ 3200 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3201 /* configure for a burst length of 8 */ 3202 3203 /* write latency */ 3204 /* Adjust Write Latency for Hard PHY */ 3205 wlat = wlat + 1; 3206 3207 /* set a pretty high read latency initially */ 3208 gbl->curr_read_lat = rlat + 16; 3209 3210 if (gbl->curr_read_lat > max_latency) 3211 gbl->curr_read_lat = max_latency; 3212 3213 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3214 3215 /* advertise write latency */ 3216 gbl->curr_write_lat = wlat; 3217 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3218 3219 /* initialize bit slips */ 3220 mem_precharge_and_activate(); 3221 } 3222 3223 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3224 static void mem_skip_calibrate(void) 3225 { 3226 uint32_t vfifo_offset; 3227 uint32_t i, j, r; 3228 3229 debug("%s:%d\n", __func__, __LINE__); 3230 /* Need to update every shadow register set used by the interface */ 3231 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3232 r += NUM_RANKS_PER_SHADOW_REG) { 3233 /* 3234 * Set output phase alignment settings appropriate for 3235 * skip calibration. 3236 */ 3237 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3238 scc_mgr_set_dqs_en_phase(i, 0); 3239 #if IO_DLL_CHAIN_LENGTH == 6 3240 scc_mgr_set_dqdqs_output_phase(i, 6); 3241 #else 3242 scc_mgr_set_dqdqs_output_phase(i, 7); 3243 #endif 3244 /* 3245 * Case:33398 3246 * 3247 * Write data arrives to the I/O two cycles before write 3248 * latency is reached (720 deg). 3249 * -> due to bit-slip in a/c bus 3250 * -> to allow board skew where dqs is longer than ck 3251 * -> how often can this happen!? 3252 * -> can claim back some ptaps for high freq 3253 * support if we can relax this, but i digress... 3254 * 3255 * The write_clk leads mem_ck by 90 deg 3256 * The minimum ptap of the OPA is 180 deg 3257 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3258 * The write_clk is always delayed by 2 ptaps 3259 * 3260 * Hence, to make DQS aligned to CK, we need to delay 3261 * DQS by: 3262 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3263 * 3264 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3265 * gives us the number of ptaps, which simplies to: 3266 * 3267 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3268 */ 3269 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3270 IO_DLL_CHAIN_LENGTH - 2)); 3271 } 3272 writel(0xff, &sdr_scc_mgr->dqs_ena); 3273 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3274 3275 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3276 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3277 SCC_MGR_GROUP_COUNTER_OFFSET); 3278 } 3279 writel(0xff, &sdr_scc_mgr->dq_ena); 3280 writel(0xff, &sdr_scc_mgr->dm_ena); 3281 writel(0, &sdr_scc_mgr->update); 3282 } 3283 3284 /* Compensate for simulation model behaviour */ 3285 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3286 scc_mgr_set_dqs_bus_in_delay(i, 10); 3287 scc_mgr_load_dqs(i); 3288 } 3289 writel(0, &sdr_scc_mgr->update); 3290 3291 /* 3292 * ArriaV has hard FIFOs that can only be initialized by incrementing 3293 * in sequencer. 3294 */ 3295 vfifo_offset = CALIB_VFIFO_OFFSET; 3296 for (j = 0; j < vfifo_offset; j++) { 3297 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3298 } 3299 writel(0, &phy_mgr_cmd->fifo_reset); 3300 3301 /* 3302 * For ACV with hard lfifo, we get the skip-cal setting from 3303 * generation-time constant. 3304 */ 3305 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3306 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3307 } 3308 3309 /* Memory calibration entry point */ 3310 static uint32_t mem_calibrate(void) 3311 { 3312 uint32_t i; 3313 uint32_t rank_bgn, sr; 3314 uint32_t write_group, write_test_bgn; 3315 uint32_t read_group, read_test_bgn; 3316 uint32_t run_groups, current_run; 3317 uint32_t failing_groups = 0; 3318 uint32_t group_failed = 0; 3319 uint32_t sr_failed = 0; 3320 3321 debug("%s:%d\n", __func__, __LINE__); 3322 /* Initialize the data settings */ 3323 3324 gbl->error_substage = CAL_SUBSTAGE_NIL; 3325 gbl->error_stage = CAL_STAGE_NIL; 3326 gbl->error_group = 0xff; 3327 gbl->fom_in = 0; 3328 gbl->fom_out = 0; 3329 3330 mem_config(); 3331 3332 uint32_t bypass_mode = 0x1; 3333 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3334 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3335 SCC_MGR_GROUP_COUNTER_OFFSET); 3336 scc_set_bypass_mode(i, bypass_mode); 3337 } 3338 3339 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3340 /* 3341 * Set VFIFO and LFIFO to instant-on settings in skip 3342 * calibration mode. 3343 */ 3344 mem_skip_calibrate(); 3345 } else { 3346 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3347 /* 3348 * Zero all delay chain/phase settings for all 3349 * groups and all shadow register sets. 3350 */ 3351 scc_mgr_zero_all(); 3352 3353 run_groups = ~param->skip_groups; 3354 3355 for (write_group = 0, write_test_bgn = 0; write_group 3356 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3357 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3358 /* Initialized the group failure */ 3359 group_failed = 0; 3360 3361 current_run = run_groups & ((1 << 3362 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3363 run_groups = run_groups >> 3364 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3365 3366 if (current_run == 0) 3367 continue; 3368 3369 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3370 SCC_MGR_GROUP_COUNTER_OFFSET); 3371 scc_mgr_zero_group(write_group, write_test_bgn, 3372 0); 3373 3374 for (read_group = write_group * 3375 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3376 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3377 read_test_bgn = 0; 3378 read_group < (write_group + 1) * 3379 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3380 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3381 group_failed == 0; 3382 read_group++, read_test_bgn += 3383 RW_MGR_MEM_DQ_PER_READ_DQS) { 3384 /* Calibrate the VFIFO */ 3385 if (!((STATIC_CALIB_STEPS) & 3386 CALIB_SKIP_VFIFO)) { 3387 if (!rw_mgr_mem_calibrate_vfifo 3388 (read_group, 3389 read_test_bgn)) { 3390 group_failed = 1; 3391 3392 if (!(gbl-> 3393 phy_debug_mode_flags & 3394 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3395 return 0; 3396 } 3397 } 3398 } 3399 } 3400 3401 /* Calibrate the output side */ 3402 if (group_failed == 0) { 3403 for (rank_bgn = 0, sr = 0; rank_bgn 3404 < RW_MGR_MEM_NUMBER_OF_RANKS; 3405 rank_bgn += 3406 NUM_RANKS_PER_SHADOW_REG, 3407 ++sr) { 3408 sr_failed = 0; 3409 if (!((STATIC_CALIB_STEPS) & 3410 CALIB_SKIP_WRITES)) { 3411 if ((STATIC_CALIB_STEPS) 3412 & CALIB_SKIP_DELAY_SWEEPS) { 3413 /* not needed in quick mode! */ 3414 } else { 3415 /* 3416 * Determine if this set of 3417 * ranks should be skipped 3418 * entirely. 3419 */ 3420 if (!param->skip_shadow_regs[sr]) { 3421 if (!rw_mgr_mem_calibrate_writes 3422 (rank_bgn, write_group, 3423 write_test_bgn)) { 3424 sr_failed = 1; 3425 if (!(gbl-> 3426 phy_debug_mode_flags & 3427 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3428 return 0; 3429 } 3430 } 3431 } 3432 } 3433 } 3434 if (sr_failed != 0) 3435 group_failed = 1; 3436 } 3437 } 3438 3439 if (group_failed == 0) { 3440 for (read_group = write_group * 3441 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3443 read_test_bgn = 0; 3444 read_group < (write_group + 1) 3445 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3446 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3447 group_failed == 0; 3448 read_group++, read_test_bgn += 3449 RW_MGR_MEM_DQ_PER_READ_DQS) { 3450 if (!((STATIC_CALIB_STEPS) & 3451 CALIB_SKIP_WRITES)) { 3452 if (!rw_mgr_mem_calibrate_vfifo_end 3453 (read_group, read_test_bgn)) { 3454 group_failed = 1; 3455 3456 if (!(gbl->phy_debug_mode_flags 3457 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3458 return 0; 3459 } 3460 } 3461 } 3462 } 3463 } 3464 3465 if (group_failed != 0) 3466 failing_groups++; 3467 } 3468 3469 /* 3470 * USER If there are any failing groups then report 3471 * the failure. 3472 */ 3473 if (failing_groups != 0) 3474 return 0; 3475 3476 /* Calibrate the LFIFO */ 3477 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3478 /* 3479 * If we're skipping groups as part of debug, 3480 * don't calibrate LFIFO. 3481 */ 3482 if (param->skip_groups == 0) { 3483 if (!rw_mgr_mem_calibrate_lfifo()) 3484 return 0; 3485 } 3486 } 3487 } 3488 } 3489 3490 /* 3491 * Do not remove this line as it makes sure all of our decisions 3492 * have been applied. 3493 */ 3494 writel(0, &sdr_scc_mgr->update); 3495 return 1; 3496 } 3497 3498 static uint32_t run_mem_calibrate(void) 3499 { 3500 uint32_t pass; 3501 uint32_t debug_info; 3502 3503 debug("%s:%d\n", __func__, __LINE__); 3504 3505 /* Reset pass/fail status shown on afi_cal_success/fail */ 3506 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3507 3508 /* stop tracking manger */ 3509 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3510 3511 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3512 3513 initialize(); 3514 rw_mgr_mem_initialize(); 3515 3516 pass = mem_calibrate(); 3517 3518 mem_precharge_and_activate(); 3519 writel(0, &phy_mgr_cmd->fifo_reset); 3520 3521 /* 3522 * Handoff: 3523 * Don't return control of the PHY back to AFI when in debug mode. 3524 */ 3525 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3526 rw_mgr_mem_handoff(); 3527 /* 3528 * In Hard PHY this is a 2-bit control: 3529 * 0: AFI Mux Select 3530 * 1: DDIO Mux Select 3531 */ 3532 writel(0x2, &phy_mgr_cfg->mux_sel); 3533 } 3534 3535 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3536 3537 if (pass) { 3538 printf("%s: CALIBRATION PASSED\n", __FILE__); 3539 3540 gbl->fom_in /= 2; 3541 gbl->fom_out /= 2; 3542 3543 if (gbl->fom_in > 0xff) 3544 gbl->fom_in = 0xff; 3545 3546 if (gbl->fom_out > 0xff) 3547 gbl->fom_out = 0xff; 3548 3549 /* Update the FOM in the register file */ 3550 debug_info = gbl->fom_in; 3551 debug_info |= gbl->fom_out << 8; 3552 writel(debug_info, &sdr_reg_file->fom); 3553 3554 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3555 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3556 } else { 3557 printf("%s: CALIBRATION FAILED\n", __FILE__); 3558 3559 debug_info = gbl->error_stage; 3560 debug_info |= gbl->error_substage << 8; 3561 debug_info |= gbl->error_group << 16; 3562 3563 writel(debug_info, &sdr_reg_file->failing_stage); 3564 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3565 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3566 3567 /* Update the failing group/stage in the register file */ 3568 debug_info = gbl->error_stage; 3569 debug_info |= gbl->error_substage << 8; 3570 debug_info |= gbl->error_group << 16; 3571 writel(debug_info, &sdr_reg_file->failing_stage); 3572 } 3573 3574 return pass; 3575 } 3576 3577 /** 3578 * hc_initialize_rom_data() - Initialize ROM data 3579 * 3580 * Initialize ROM data. 3581 */ 3582 static void hc_initialize_rom_data(void) 3583 { 3584 u32 i, addr; 3585 3586 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3587 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3588 writel(inst_rom_init[i], addr + (i << 2)); 3589 3590 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3591 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3592 writel(ac_rom_init[i], addr + (i << 2)); 3593 } 3594 3595 /** 3596 * initialize_reg_file() - Initialize SDR register file 3597 * 3598 * Initialize SDR register file. 3599 */ 3600 static void initialize_reg_file(void) 3601 { 3602 /* Initialize the register file with the correct data */ 3603 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3604 writel(0, &sdr_reg_file->debug_data_addr); 3605 writel(0, &sdr_reg_file->cur_stage); 3606 writel(0, &sdr_reg_file->fom); 3607 writel(0, &sdr_reg_file->failing_stage); 3608 writel(0, &sdr_reg_file->debug1); 3609 writel(0, &sdr_reg_file->debug2); 3610 } 3611 3612 /** 3613 * initialize_hps_phy() - Initialize HPS PHY 3614 * 3615 * Initialize HPS PHY. 3616 */ 3617 static void initialize_hps_phy(void) 3618 { 3619 uint32_t reg; 3620 /* 3621 * Tracking also gets configured here because it's in the 3622 * same register. 3623 */ 3624 uint32_t trk_sample_count = 7500; 3625 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3626 /* 3627 * Format is number of outer loops in the 16 MSB, sample 3628 * count in 16 LSB. 3629 */ 3630 3631 reg = 0; 3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3634 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3637 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3638 /* 3639 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3640 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3641 */ 3642 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3643 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3644 trk_sample_count); 3645 writel(reg, &sdr_ctrl->phy_ctrl0); 3646 3647 reg = 0; 3648 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3649 trk_sample_count >> 3650 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3651 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3652 trk_long_idle_sample_count); 3653 writel(reg, &sdr_ctrl->phy_ctrl1); 3654 3655 reg = 0; 3656 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3657 trk_long_idle_sample_count >> 3658 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3659 writel(reg, &sdr_ctrl->phy_ctrl2); 3660 } 3661 3662 static void initialize_tracking(void) 3663 { 3664 uint32_t concatenated_longidle = 0x0; 3665 uint32_t concatenated_delays = 0x0; 3666 uint32_t concatenated_rw_addr = 0x0; 3667 uint32_t concatenated_refresh = 0x0; 3668 uint32_t trk_sample_count = 7500; 3669 uint32_t dtaps_per_ptap; 3670 uint32_t tmp_delay; 3671 3672 /* 3673 * compute usable version of value in case we skip full 3674 * computation later 3675 */ 3676 dtaps_per_ptap = 0; 3677 tmp_delay = 0; 3678 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3679 dtaps_per_ptap++; 3680 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3681 } 3682 dtaps_per_ptap--; 3683 3684 concatenated_longidle = concatenated_longidle ^ 10; 3685 /*longidle outer loop */ 3686 concatenated_longidle = concatenated_longidle << 16; 3687 concatenated_longidle = concatenated_longidle ^ 100; 3688 /*longidle sample count */ 3689 concatenated_delays = concatenated_delays ^ 243; 3690 /* trfc, worst case of 933Mhz 4Gb */ 3691 concatenated_delays = concatenated_delays << 8; 3692 concatenated_delays = concatenated_delays ^ 14; 3693 /* trcd, worst case */ 3694 concatenated_delays = concatenated_delays << 8; 3695 concatenated_delays = concatenated_delays ^ 10; 3696 /* vfifo wait */ 3697 concatenated_delays = concatenated_delays << 8; 3698 concatenated_delays = concatenated_delays ^ 4; 3699 /* mux delay */ 3700 3701 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3702 concatenated_rw_addr = concatenated_rw_addr << 8; 3703 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3704 concatenated_rw_addr = concatenated_rw_addr << 8; 3705 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3706 concatenated_rw_addr = concatenated_rw_addr << 8; 3707 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3708 3709 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3710 concatenated_refresh = concatenated_refresh << 24; 3711 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3712 3713 /* Initialize the register file with the correct data */ 3714 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3715 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3716 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3717 writel(concatenated_delays, &sdr_reg_file->delays); 3718 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3719 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3720 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3721 } 3722 3723 int sdram_calibration_full(void) 3724 { 3725 struct param_type my_param; 3726 struct gbl_type my_gbl; 3727 uint32_t pass; 3728 uint32_t i; 3729 3730 param = &my_param; 3731 gbl = &my_gbl; 3732 3733 /* Initialize the debug mode flags */ 3734 gbl->phy_debug_mode_flags = 0; 3735 /* Set the calibration enabled by default */ 3736 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3737 /* 3738 * Only sweep all groups (regardless of fail state) by default 3739 * Set enabled read test by default. 3740 */ 3741 #if DISABLE_GUARANTEED_READ 3742 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3743 #endif 3744 /* Initialize the register file */ 3745 initialize_reg_file(); 3746 3747 /* Initialize any PHY CSR */ 3748 initialize_hps_phy(); 3749 3750 scc_mgr_initialize(); 3751 3752 initialize_tracking(); 3753 3754 /* USER Enable all ranks, groups */ 3755 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3756 param->skip_ranks[i] = 0; 3757 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3758 param->skip_shadow_regs[i] = 0; 3759 param->skip_groups = 0; 3760 3761 printf("%s: Preparing to start memory calibration\n", __FILE__); 3762 3763 debug("%s:%d\n", __func__, __LINE__); 3764 debug_cond(DLEVEL == 1, 3765 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3766 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3767 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3768 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3769 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3770 debug_cond(DLEVEL == 1, 3771 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3772 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3773 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3774 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3775 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3776 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3777 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3778 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3779 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3780 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3781 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3782 IO_IO_OUT2_DELAY_MAX); 3783 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3784 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3785 3786 hc_initialize_rom_data(); 3787 3788 /* update info for sims */ 3789 reg_file_set_stage(CAL_STAGE_NIL); 3790 reg_file_set_group(0); 3791 3792 /* 3793 * Load global needed for those actions that require 3794 * some dynamic calibration support. 3795 */ 3796 dyn_calib_steps = STATIC_CALIB_STEPS; 3797 /* 3798 * Load global to allow dynamic selection of delay loop settings 3799 * based on calibration mode. 3800 */ 3801 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3802 skip_delay_mask = 0xff; 3803 else 3804 skip_delay_mask = 0x0; 3805 3806 pass = run_mem_calibrate(); 3807 3808 printf("%s: Calibration complete\n", __FILE__); 3809 return pass; 3810 } 3811