xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 5ff825b8537445344ef10b3d73cb060522bd2817)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17 
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20 
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23 
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26 
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29 
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32 
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35 
36 static struct socfpga_data_mgr *data_mgr =
37 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38 
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41 
42 #define DELTA_D		1
43 
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55 
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59 
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61 	STATIC_SKIP_DELAY_LOOPS)
62 
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65 
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74 
75 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
76 
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78 	((non_skip_value) & skip_delay_mask)
79 
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83 
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85 	uint32_t write_group, uint32_t use_dm,
86 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87 
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89 	uint32_t substage)
90 {
91 	/*
92 	 * Only set the global stage if there was not been any other
93 	 * failing group
94 	 */
95 	if (gbl->error_stage == CAL_STAGE_NIL)	{
96 		gbl->error_substage = substage;
97 		gbl->error_stage = stage;
98 		gbl->error_group = group;
99 	}
100 }
101 
102 static void reg_file_set_group(u16 set_group)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
105 }
106 
107 static void reg_file_set_stage(u8 set_stage)
108 {
109 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
110 }
111 
112 static void reg_file_set_sub_stage(u8 set_sub_stage)
113 {
114 	set_sub_stage &= 0xff;
115 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
116 }
117 
118 static void initialize(void)
119 {
120 	debug("%s:%d\n", __func__, __LINE__);
121 	/* USER calibration has control over path to memory */
122 	/*
123 	 * In Hard PHY this is a 2-bit control:
124 	 * 0: AFI Mux Select
125 	 * 1: DDIO Mux Select
126 	 */
127 	writel(0x3, &phy_mgr_cfg->mux_sel);
128 
129 	/* USER memory clock is not stable we begin initialization  */
130 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
131 
132 	/* USER calibration status all set to zero */
133 	writel(0, &phy_mgr_cfg->cal_status);
134 
135 	writel(0, &phy_mgr_cfg->cal_debug_info);
136 
137 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
138 		param->read_correct_mask_vg  = ((uint32_t)1 <<
139 			(RW_MGR_MEM_DQ_PER_READ_DQS /
140 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
141 		param->write_correct_mask_vg = ((uint32_t)1 <<
142 			(RW_MGR_MEM_DQ_PER_READ_DQS /
143 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
144 		param->read_correct_mask     = ((uint32_t)1 <<
145 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
146 		param->write_correct_mask    = ((uint32_t)1 <<
147 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
148 		param->dm_correct_mask       = ((uint32_t)1 <<
149 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
150 			- 1;
151 	}
152 }
153 
154 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
155 {
156 	uint32_t odt_mask_0 = 0;
157 	uint32_t odt_mask_1 = 0;
158 	uint32_t cs_and_odt_mask;
159 
160 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
161 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
162 			/*
163 			 * 1 Rank
164 			 * Read: ODT = 0
165 			 * Write: ODT = 1
166 			 */
167 			odt_mask_0 = 0x0;
168 			odt_mask_1 = 0x1;
169 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
170 			/* 2 Ranks */
171 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
172 				/* - Dual-Slot , Single-Rank
173 				 * (1 chip-select per DIMM)
174 				 * OR
175 				 * - RDIMM, 4 total CS (2 CS per DIMM)
176 				 * means 2 DIMM
177 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
178 				 * both single rank
179 				 * with 2 CS each (special for RDIMM)
180 				 * Read: Turn on ODT on the opposite rank
181 				 * Write: Turn on ODT on all ranks
182 				 */
183 				odt_mask_0 = 0x3 & ~(1 << rank);
184 				odt_mask_1 = 0x3;
185 			} else {
186 				/*
187 				 * USER - Single-Slot , Dual-rank DIMMs
188 				 * (2 chip-selects per DIMM)
189 				 * USER Read: Turn on ODT off on all ranks
190 				 * USER Write: Turn on ODT on active rank
191 				 */
192 				odt_mask_0 = 0x0;
193 				odt_mask_1 = 0x3 & (1 << rank);
194 			}
195 		} else {
196 			/* 4 Ranks
197 			 * Read:
198 			 * ----------+-----------------------+
199 			 *           |                       |
200 			 *           |         ODT           |
201 			 * Read From +-----------------------+
202 			 *   Rank    |  3  |  2  |  1  |  0  |
203 			 * ----------+-----+-----+-----+-----+
204 			 *     0     |  0  |  1  |  0  |  0  |
205 			 *     1     |  1  |  0  |  0  |  0  |
206 			 *     2     |  0  |  0  |  0  |  1  |
207 			 *     3     |  0  |  0  |  1  |  0  |
208 			 * ----------+-----+-----+-----+-----+
209 			 *
210 			 * Write:
211 			 * ----------+-----------------------+
212 			 *           |                       |
213 			 *           |         ODT           |
214 			 * Write To  +-----------------------+
215 			 *   Rank    |  3  |  2  |  1  |  0  |
216 			 * ----------+-----+-----+-----+-----+
217 			 *     0     |  0  |  1  |  0  |  1  |
218 			 *     1     |  1  |  0  |  1  |  0  |
219 			 *     2     |  0  |  1  |  0  |  1  |
220 			 *     3     |  1  |  0  |  1  |  0  |
221 			 * ----------+-----+-----+-----+-----+
222 			 */
223 			switch (rank) {
224 			case 0:
225 				odt_mask_0 = 0x4;
226 				odt_mask_1 = 0x5;
227 				break;
228 			case 1:
229 				odt_mask_0 = 0x8;
230 				odt_mask_1 = 0xA;
231 				break;
232 			case 2:
233 				odt_mask_0 = 0x1;
234 				odt_mask_1 = 0x5;
235 				break;
236 			case 3:
237 				odt_mask_0 = 0x2;
238 				odt_mask_1 = 0xA;
239 				break;
240 			}
241 		}
242 	} else {
243 		odt_mask_0 = 0x0;
244 		odt_mask_1 = 0x0;
245 	}
246 
247 	cs_and_odt_mask =
248 		(0xFF & ~(1 << rank)) |
249 		((0xFF & odt_mask_0) << 8) |
250 		((0xFF & odt_mask_1) << 16);
251 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
252 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
253 }
254 
255 static void scc_mgr_initialize(void)
256 {
257 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET;
258 
259 	/*
260 	 * Clear register file for HPS
261 	 * 16 (2^4) is the size of the full register file in the scc mgr:
262 	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
263 	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
264 	 */
265 	uint32_t i;
266 	for (i = 0; i < 16; i++) {
267 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
268 			   __func__, __LINE__, i);
269 		writel(0, addr + (i << 2));
270 	}
271 }
272 
273 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
274 {
275 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET;
276 
277 	/* Load the setting in the SCC manager */
278 	writel(phase, addr + (write_group << 2));
279 }
280 
281 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
282 {
283 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
284 
285 	/* Load the setting in the SCC manager */
286 	writel(delay, addr + (read_group << 2));
287 }
288 
289 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
290 {
291 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET;
292 
293 	/* Load the setting in the SCC manager */
294 	writel(phase, addr + (read_group << 2));
295 }
296 
297 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
298 {
299 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET;
300 
301 	/* Load the setting in the SCC manager */
302 	writel(delay + IO_DQS_EN_DELAY_OFFSET, addr + (read_group << 2));
303 }
304 
305 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay)
306 {
307 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
308 
309 	writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
310 }
311 
312 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
313 {
314 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
315 
316 	/* Load the setting in the SCC manager */
317 	writel(delay, addr + (dq_in_group << 2));
318 }
319 
320 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
321 {
322 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
323 
324 	/* Load the setting in the SCC manager */
325 	writel(delay, addr + (dq_in_group << 2));
326 }
327 
328 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
329 					      uint32_t delay)
330 {
331 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
332 
333 	/* Load the setting in the SCC manager */
334 	writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
335 }
336 
337 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
338 {
339 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
340 
341 	/* Load the setting in the SCC manager */
342 	writel(delay, addr + ((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
343 }
344 
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348 	writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350 
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354 	writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356 
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362 
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366 	writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368 
369 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
370 					       uint32_t phase)
371 {
372 	uint32_t r;
373 	uint32_t update_scan_chains;
374 
375 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
376 	     r += NUM_RANKS_PER_SHADOW_REG) {
377 		/*
378 		 * USER although the h/w doesn't support different phases per
379 		 * shadow register, for simplicity our scc manager modeling
380 		 * keeps different phase settings per shadow reg, and it's
381 		 * important for us to keep them in sync to match h/w.
382 		 * for efficiency, the scan chain update should occur only
383 		 * once to sr0.
384 		 */
385 		update_scan_chains = (r == 0) ? 1 : 0;
386 
387 		scc_mgr_set_dqs_en_phase(read_group, phase);
388 
389 		if (update_scan_chains) {
390 			writel(read_group, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
397 						     uint32_t phase)
398 {
399 	uint32_t r;
400 	uint32_t update_scan_chains;
401 
402 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
403 	     r += NUM_RANKS_PER_SHADOW_REG) {
404 		/*
405 		 * USER although the h/w doesn't support different phases per
406 		 * shadow register, for simplicity our scc manager modeling
407 		 * keeps different phase settings per shadow reg, and it's
408 		 * important for us to keep them in sync to match h/w.
409 		 * for efficiency, the scan chain update should occur only
410 		 * once to sr0.
411 		 */
412 		update_scan_chains = (r == 0) ? 1 : 0;
413 
414 		scc_mgr_set_dqdqs_output_phase(write_group, phase);
415 
416 		if (update_scan_chains) {
417 			writel(write_group, &sdr_scc_mgr->dqs_ena);
418 			writel(0, &sdr_scc_mgr->update);
419 		}
420 	}
421 }
422 
423 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
424 					       uint32_t delay)
425 {
426 	uint32_t r;
427 
428 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
429 		r += NUM_RANKS_PER_SHADOW_REG) {
430 		scc_mgr_set_dqs_en_delay(read_group, delay);
431 
432 		writel(read_group, &sdr_scc_mgr->dqs_ena);
433 		/*
434 		 * In shadow register mode, the T11 settings are stored in
435 		 * registers in the core, which are updated by the DQS_ENA
436 		 * signals. Not issuing the SCC_MGR_UPD command allows us to
437 		 * save lots of rank switching overhead, by calling
438 		 * select_shadow_regs_for_update with update_scan_chains
439 		 * set to 0.
440 		 */
441 		writel(0, &sdr_scc_mgr->update);
442 	}
443 	/*
444 	 * In shadow register mode, the T11 settings are stored in
445 	 * registers in the core, which are updated by the DQS_ENA
446 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
447 	 * save lots of rank switching overhead, by calling
448 	 * select_shadow_regs_for_update with update_scan_chains
449 	 * set to 0.
450 	 */
451 	writel(0, &sdr_scc_mgr->update);
452 }
453 
454 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
455 {
456 	uint32_t read_group;
457 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
458 
459 	/*
460 	 * Load the setting in the SCC manager
461 	 * Although OCT affects only write data, the OCT delay is controlled
462 	 * by the DQS logic block which is instantiated once per read group.
463 	 * For protocols where a write group consists of multiple read groups,
464 	 * the setting must be set multiple times.
465 	 */
466 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
467 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
468 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
469 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
470 		writel(delay, addr + (read_group << 2));
471 }
472 
473 static void scc_mgr_set_hhp_extras(void)
474 {
475 	/*
476 	 * Load the fixed setting in the SCC manager
477 	 * bits: 0:0 = 1'b1   - dqs bypass
478 	 * bits: 1:1 = 1'b1   - dq bypass
479 	 * bits: 4:2 = 3'b001   - rfifo_mode
480 	 * bits: 6:5 = 2'b01  - rfifo clock_select
481 	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
482 	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
483 	 */
484 	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
485 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
486 
487 	writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
488 }
489 
490 /*
491  * USER Zero all DQS config
492  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
493  */
494 static void scc_mgr_zero_all(void)
495 {
496 	uint32_t i, r;
497 
498 	/*
499 	 * USER Zero all DQS config settings, across all groups and all
500 	 * shadow registers
501 	 */
502 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
503 	     NUM_RANKS_PER_SHADOW_REG) {
504 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
505 			/*
506 			 * The phases actually don't exist on a per-rank basis,
507 			 * but there's no harm updating them several times, so
508 			 * let's keep the code simple.
509 			 */
510 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
511 			scc_mgr_set_dqs_en_phase(i, 0);
512 			scc_mgr_set_dqs_en_delay(i, 0);
513 		}
514 
515 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
516 			scc_mgr_set_dqdqs_output_phase(i, 0);
517 			/* av/cv don't have out2 */
518 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
519 		}
520 	}
521 
522 	/* multicast to all DQS group enables */
523 	writel(0xff, &sdr_scc_mgr->dqs_ena);
524 	writel(0, &sdr_scc_mgr->update);
525 }
526 
527 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
528 {
529 	/* mode = 0 : Do NOT bypass - Half Rate Mode */
530 	/* mode = 1 : Bypass - Full Rate Mode */
531 
532 	/* only need to set once for all groups, pins, dq, dqs, dm */
533 	if (write_group == 0) {
534 		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
535 			   __LINE__);
536 		scc_mgr_set_hhp_extras();
537 		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
538 			  __func__, __LINE__);
539 	}
540 	/* multicast to all DQ enables */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* update current DQS IO enable */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* update the DQS logic */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* hit update */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
555 {
556 	uint32_t read_group;
557 	uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
558 	/*
559 	 * Although OCT affects only write data, the OCT delay is controlled
560 	 * by the DQS logic block which is instantiated once per read group.
561 	 * For protocols where a write group consists of multiple read groups,
562 	 * the setting must be scanned multiple times.
563 	 */
564 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
565 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
566 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
567 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
568 		writel(read_group, addr);
569 }
570 
571 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
572 			       int32_t out_only)
573 {
574 	uint32_t i, r;
575 
576 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
577 		NUM_RANKS_PER_SHADOW_REG) {
578 		/* Zero all DQ config settings */
579 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
580 			scc_mgr_set_dq_out1_delay(i, 0);
581 			if (!out_only)
582 				scc_mgr_set_dq_in_delay(i, 0);
583 		}
584 
585 		/* multicast to all DQ enables */
586 		writel(0xff, &sdr_scc_mgr->dq_ena);
587 
588 		/* Zero all DM config settings */
589 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
590 			scc_mgr_set_dm_out1_delay(i, 0);
591 		}
592 
593 		/* multicast to all DM enables */
594 		writel(0xff, &sdr_scc_mgr->dm_ena);
595 
596 		/* zero all DQS io settings */
597 		if (!out_only)
598 			scc_mgr_set_dqs_io_in_delay(write_group, 0);
599 		/* av/cv don't have out2 */
600 		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
601 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
602 		scc_mgr_load_dqs_for_write_group(write_group);
603 
604 		/* multicast to all DQS IO enables (only 1) */
605 		writel(0, &sdr_scc_mgr->dqs_io_ena);
606 
607 		/* hit update to zero everything */
608 		writel(0, &sdr_scc_mgr->update);
609 	}
610 }
611 
612 /*
613  * apply and load a particular input delay for the DQ pins in a group
614  * group_bgn is the index of the first dq pin (in the write group)
615  */
616 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
617 					    uint32_t group_bgn, uint32_t delay)
618 {
619 	uint32_t i, p;
620 
621 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
622 		scc_mgr_set_dq_in_delay(p, delay);
623 		scc_mgr_load_dq(p);
624 	}
625 }
626 
627 /* apply and load a particular output delay for the DQ pins in a group */
628 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
629 					      uint32_t group_bgn,
630 					      uint32_t delay1)
631 {
632 	uint32_t i, p;
633 
634 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
635 		scc_mgr_set_dq_out1_delay(i, delay1);
636 		scc_mgr_load_dq(i);
637 	}
638 }
639 
640 /* apply and load a particular output delay for the DM pins in a group */
641 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
642 					      uint32_t delay1)
643 {
644 	uint32_t i;
645 
646 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
647 		scc_mgr_set_dm_out1_delay(i, delay1);
648 		scc_mgr_load_dm(i);
649 	}
650 }
651 
652 
653 /* apply and load delay on both DQS and OCT out1 */
654 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
655 						    uint32_t delay)
656 {
657 	scc_mgr_set_dqs_out1_delay(write_group, delay);
658 	scc_mgr_load_dqs_io();
659 
660 	scc_mgr_set_oct_out1_delay(write_group, delay);
661 	scc_mgr_load_dqs_for_write_group(write_group);
662 }
663 
664 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
665 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
666 						  uint32_t group_bgn,
667 						  uint32_t delay)
668 {
669 	uint32_t i, p, new_delay;
670 
671 	/* dq shift */
672 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
673 		new_delay = READ_SCC_DQ_OUT2_DELAY;
674 		new_delay += delay;
675 
676 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
677 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
678 				   %u > %lu => %lu", __func__, __LINE__,
679 				   write_group, group_bgn, delay, i, p, new_delay,
680 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
681 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
682 			new_delay = IO_IO_OUT2_DELAY_MAX;
683 		}
684 
685 		scc_mgr_load_dq(i);
686 	}
687 
688 	/* dm shift */
689 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
690 		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
691 		new_delay += delay;
692 
693 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
695 				   %u > %lu => %lu\n",  __func__, __LINE__,
696 				   write_group, group_bgn, delay, i, new_delay,
697 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
698 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
699 			new_delay = IO_IO_OUT2_DELAY_MAX;
700 		}
701 
702 		scc_mgr_load_dm(i);
703 	}
704 
705 	/* dqs shift */
706 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
707 	new_delay += delay;
708 
709 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
710 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
711 			   " adding %u to OUT1\n", __func__, __LINE__,
712 			   write_group, group_bgn, delay, new_delay,
713 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
714 			   new_delay - IO_IO_OUT2_DELAY_MAX);
715 		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
716 					   IO_IO_OUT2_DELAY_MAX);
717 		new_delay = IO_IO_OUT2_DELAY_MAX;
718 	}
719 
720 	scc_mgr_load_dqs_io();
721 
722 	/* oct shift */
723 	new_delay = READ_SCC_OCT_OUT2_DELAY;
724 	new_delay += delay;
725 
726 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
727 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
728 			   " adding %u to OUT1\n", __func__, __LINE__,
729 			   write_group, group_bgn, delay, new_delay,
730 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
731 			   new_delay - IO_IO_OUT2_DELAY_MAX);
732 		scc_mgr_set_oct_out1_delay(write_group, new_delay -
733 					   IO_IO_OUT2_DELAY_MAX);
734 		new_delay = IO_IO_OUT2_DELAY_MAX;
735 	}
736 
737 	scc_mgr_load_dqs_for_write_group(write_group);
738 }
739 
740 /*
741  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
742  * and to all ranks
743  */
744 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
745 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
746 {
747 	uint32_t r;
748 
749 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
750 		r += NUM_RANKS_PER_SHADOW_REG) {
751 		scc_mgr_apply_group_all_out_delay_add(write_group,
752 						      group_bgn, delay);
753 		writel(0, &sdr_scc_mgr->update);
754 	}
755 }
756 
757 /* optimization used to recover some slots in ddr3 inst_rom */
758 /* could be applied to other protocols if we wanted to */
759 static void set_jump_as_return(void)
760 {
761 	/*
762 	 * to save space, we replace return with jump to special shared
763 	 * RETURN instruction so we set the counter to large value so that
764 	 * we always jump
765 	 */
766 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
767 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
768 }
769 
770 /*
771  * should always use constants as argument to ensure all computations are
772  * performed at compile time
773  */
774 static void delay_for_n_mem_clocks(const uint32_t clocks)
775 {
776 	uint32_t afi_clocks;
777 	uint8_t inner = 0;
778 	uint8_t outer = 0;
779 	uint16_t c_loop = 0;
780 
781 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
782 
783 
784 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
785 	/* scale (rounding up) to get afi clocks */
786 
787 	/*
788 	 * Note, we don't bother accounting for being off a little bit
789 	 * because of a few extra instructions in outer loops
790 	 * Note, the loops have a test at the end, and do the test before
791 	 * the decrement, and so always perform the loop
792 	 * 1 time more than the counter value
793 	 */
794 	if (afi_clocks == 0) {
795 		;
796 	} else if (afi_clocks <= 0x100) {
797 		inner = afi_clocks-1;
798 		outer = 0;
799 		c_loop = 0;
800 	} else if (afi_clocks <= 0x10000) {
801 		inner = 0xff;
802 		outer = (afi_clocks-1) >> 8;
803 		c_loop = 0;
804 	} else {
805 		inner = 0xff;
806 		outer = 0xff;
807 		c_loop = (afi_clocks-1) >> 16;
808 	}
809 
810 	/*
811 	 * rom instructions are structured as follows:
812 	 *
813 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
814 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
815 	 *                return
816 	 *
817 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
818 	 * TARGET_B is set to IDLE_LOOP2 as well
819 	 *
820 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
821 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
822 	 *
823 	 * a little confusing, but it helps save precious space in the inst_rom
824 	 * and sequencer rom and keeps the delays more accurate and reduces
825 	 * overhead
826 	 */
827 	if (afi_clocks <= 0x100) {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr1);
830 
831 		writel(RW_MGR_IDLE_LOOP1,
832 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
833 
834 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
835 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
836 	} else {
837 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
838 			&sdr_rw_load_mgr_regs->load_cntr0);
839 
840 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
841 			&sdr_rw_load_mgr_regs->load_cntr1);
842 
843 		writel(RW_MGR_IDLE_LOOP2,
844 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
845 
846 		writel(RW_MGR_IDLE_LOOP2,
847 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
848 
849 		/* hack to get around compiler not being smart enough */
850 		if (afi_clocks <= 0x10000) {
851 			/* only need to run once */
852 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
853 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
854 		} else {
855 			do {
856 				writel(RW_MGR_IDLE_LOOP2,
857 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
858 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
859 			} while (c_loop-- != 0);
860 		}
861 	}
862 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
863 }
864 
865 static void rw_mgr_mem_initialize(void)
866 {
867 	uint32_t r;
868 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
869 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
870 
871 	debug("%s:%d\n", __func__, __LINE__);
872 
873 	/* The reset / cke part of initialization is broadcasted to all ranks */
874 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
875 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
876 
877 	/*
878 	 * Here's how you load register for a loop
879 	 * Counters are located @ 0x800
880 	 * Jump address are located @ 0xC00
881 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
882 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
883 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
884 	 * significant bits
885 	 */
886 
887 	/* start with memory RESET activated */
888 
889 	/* tINIT = 200us */
890 
891 	/*
892 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
893 	 * If a and b are the number of iteration in 2 nested loops
894 	 * it takes the following number of cycles to complete the operation:
895 	 * number_of_cycles = ((2 + n) * a + 2) * b
896 	 * where n is the number of instruction in the inner loop
897 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
898 	 * b = 6A
899 	 */
900 
901 	/* Load counters */
902 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
903 	       &sdr_rw_load_mgr_regs->load_cntr0);
904 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
905 	       &sdr_rw_load_mgr_regs->load_cntr1);
906 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
907 	       &sdr_rw_load_mgr_regs->load_cntr2);
908 
909 	/* Load jump address */
910 	writel(RW_MGR_INIT_RESET_0_CKE_0,
911 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
912 	writel(RW_MGR_INIT_RESET_0_CKE_0,
913 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
914 	writel(RW_MGR_INIT_RESET_0_CKE_0,
915 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
916 
917 	/* Execute count instruction */
918 	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
919 
920 	/* indicate that memory is stable */
921 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
922 
923 	/*
924 	 * transition the RESET to high
925 	 * Wait for 500us
926 	 */
927 
928 	/*
929 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
930 	 * If a and b are the number of iteration in 2 nested loops
931 	 * it takes the following number of cycles to complete the operation
932 	 * number_of_cycles = ((2 + n) * a + 2) * b
933 	 * where n is the number of instruction in the inner loop
934 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
935 	 * b = FF
936 	 */
937 
938 	/* Load counters */
939 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
940 	       &sdr_rw_load_mgr_regs->load_cntr0);
941 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
942 	       &sdr_rw_load_mgr_regs->load_cntr1);
943 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
944 	       &sdr_rw_load_mgr_regs->load_cntr2);
945 
946 	/* Load jump address */
947 	writel(RW_MGR_INIT_RESET_1_CKE_0,
948 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
949 	writel(RW_MGR_INIT_RESET_1_CKE_0,
950 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
951 	writel(RW_MGR_INIT_RESET_1_CKE_0,
952 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
953 
954 	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
955 
956 	/* bring up clock enable */
957 
958 	/* tXRP < 250 ck cycles */
959 	delay_for_n_mem_clocks(250);
960 
961 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
962 		if (param->skip_ranks[r]) {
963 			/* request to skip the rank */
964 			continue;
965 		}
966 
967 		/* set rank */
968 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
969 
970 		/*
971 		 * USER Use Mirror-ed commands for odd ranks if address
972 		 * mirrorring is on
973 		 */
974 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
975 			set_jump_as_return();
976 			writel(RW_MGR_MRS2_MIRR, grpaddr);
977 			delay_for_n_mem_clocks(4);
978 			set_jump_as_return();
979 			writel(RW_MGR_MRS3_MIRR, grpaddr);
980 			delay_for_n_mem_clocks(4);
981 			set_jump_as_return();
982 			writel(RW_MGR_MRS1_MIRR, grpaddr);
983 			delay_for_n_mem_clocks(4);
984 			set_jump_as_return();
985 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
986 		} else {
987 			set_jump_as_return();
988 			writel(RW_MGR_MRS2, grpaddr);
989 			delay_for_n_mem_clocks(4);
990 			set_jump_as_return();
991 			writel(RW_MGR_MRS3, grpaddr);
992 			delay_for_n_mem_clocks(4);
993 			set_jump_as_return();
994 			writel(RW_MGR_MRS1, grpaddr);
995 			set_jump_as_return();
996 			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
997 		}
998 		set_jump_as_return();
999 		writel(RW_MGR_ZQCL, grpaddr);
1000 
1001 		/* tZQinit = tDLLK = 512 ck cycles */
1002 		delay_for_n_mem_clocks(512);
1003 	}
1004 }
1005 
1006 /*
1007  * At the end of calibration we have to program the user settings in, and
1008  * USER  hand off the memory to the user.
1009  */
1010 static void rw_mgr_mem_handoff(void)
1011 {
1012 	uint32_t r;
1013 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1014 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1015 
1016 	debug("%s:%d\n", __func__, __LINE__);
1017 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1018 		if (param->skip_ranks[r])
1019 			/* request to skip the rank */
1020 			continue;
1021 		/* set rank */
1022 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1023 
1024 		/* precharge all banks ... */
1025 		writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1026 
1027 		/* load up MR settings specified by user */
1028 
1029 		/*
1030 		 * Use Mirror-ed commands for odd ranks if address
1031 		 * mirrorring is on
1032 		 */
1033 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1034 			set_jump_as_return();
1035 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1036 			delay_for_n_mem_clocks(4);
1037 			set_jump_as_return();
1038 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1039 			delay_for_n_mem_clocks(4);
1040 			set_jump_as_return();
1041 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1042 			delay_for_n_mem_clocks(4);
1043 			set_jump_as_return();
1044 			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1045 		} else {
1046 			set_jump_as_return();
1047 			writel(RW_MGR_MRS2, grpaddr);
1048 			delay_for_n_mem_clocks(4);
1049 			set_jump_as_return();
1050 			writel(RW_MGR_MRS3, grpaddr);
1051 			delay_for_n_mem_clocks(4);
1052 			set_jump_as_return();
1053 			writel(RW_MGR_MRS1, grpaddr);
1054 			delay_for_n_mem_clocks(4);
1055 			set_jump_as_return();
1056 			writel(RW_MGR_MRS0_USER, grpaddr);
1057 		}
1058 		/*
1059 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1060 		 * other commands, but we will have plenty of NIOS cycles before
1061 		 * actual handoff so its okay.
1062 		 */
1063 	}
1064 }
1065 
1066 /*
1067  * performs a guaranteed read on the patterns we are going to use during a
1068  * read test to ensure memory works
1069  */
1070 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1071 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1072 	uint32_t all_ranks)
1073 {
1074 	uint32_t r, vg;
1075 	uint32_t correct_mask_vg;
1076 	uint32_t tmp_bit_chk;
1077 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1078 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1079 	uint32_t addr;
1080 	uint32_t base_rw_mgr;
1081 
1082 	*bit_chk = param->read_correct_mask;
1083 	correct_mask_vg = param->read_correct_mask_vg;
1084 
1085 	for (r = rank_bgn; r < rank_end; r++) {
1086 		if (param->skip_ranks[r])
1087 			/* request to skip the rank */
1088 			continue;
1089 
1090 		/* set rank */
1091 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1092 
1093 		/* Load up a constant bursts of read commands */
1094 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1095 		writel(RW_MGR_GUARANTEED_READ,
1096 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1097 
1098 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1099 		writel(RW_MGR_GUARANTEED_READ_CONT,
1100 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1101 
1102 		tmp_bit_chk = 0;
1103 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1104 			/* reset the fifos to get pointers to known state */
1105 
1106 			writel(0, &phy_mgr_cmd->fifo_reset);
1107 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1108 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1109 
1110 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1111 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1112 
1113 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1114 			writel(RW_MGR_GUARANTEED_READ, addr +
1115 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1116 				vg) << 2));
1117 
1118 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1119 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1120 
1121 			if (vg == 0)
1122 				break;
1123 		}
1124 		*bit_chk &= tmp_bit_chk;
1125 	}
1126 
1127 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1128 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1129 
1130 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1131 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1132 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1133 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1134 	return *bit_chk == param->read_correct_mask;
1135 }
1136 
1137 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1138 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1139 {
1140 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1141 		num_tries, bit_chk, 1);
1142 }
1143 
1144 /* load up the patterns we are going to use during a read test */
1145 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1146 	uint32_t all_ranks)
1147 {
1148 	uint32_t r;
1149 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1150 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1151 
1152 	debug("%s:%d\n", __func__, __LINE__);
1153 	for (r = rank_bgn; r < rank_end; r++) {
1154 		if (param->skip_ranks[r])
1155 			/* request to skip the rank */
1156 			continue;
1157 
1158 		/* set rank */
1159 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1160 
1161 		/* Load up a constant bursts */
1162 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1163 
1164 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1165 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1166 
1167 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1168 
1169 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1170 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1171 
1172 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1173 
1174 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1175 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1176 
1177 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1178 
1179 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1180 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1181 
1182 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1183 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1184 	}
1185 
1186 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1187 }
1188 
1189 /*
1190  * try a read and see if it returns correct data back. has dummy reads
1191  * inserted into the mix used to align dqs enable. has more thorough checks
1192  * than the regular read test.
1193  */
1194 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1195 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1196 	uint32_t all_groups, uint32_t all_ranks)
1197 {
1198 	uint32_t r, vg;
1199 	uint32_t correct_mask_vg;
1200 	uint32_t tmp_bit_chk;
1201 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1202 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1203 	uint32_t addr;
1204 	uint32_t base_rw_mgr;
1205 
1206 	*bit_chk = param->read_correct_mask;
1207 	correct_mask_vg = param->read_correct_mask_vg;
1208 
1209 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1210 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1211 
1212 	for (r = rank_bgn; r < rank_end; r++) {
1213 		if (param->skip_ranks[r])
1214 			/* request to skip the rank */
1215 			continue;
1216 
1217 		/* set rank */
1218 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1219 
1220 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1221 
1222 		writel(RW_MGR_READ_B2B_WAIT1,
1223 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1224 
1225 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1226 		writel(RW_MGR_READ_B2B_WAIT2,
1227 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1228 
1229 		if (quick_read_mode)
1230 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1231 			/* need at least two (1+1) reads to capture failures */
1232 		else if (all_groups)
1233 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1234 		else
1235 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1236 
1237 		writel(RW_MGR_READ_B2B,
1238 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1239 		if (all_groups)
1240 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1241 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1242 			       &sdr_rw_load_mgr_regs->load_cntr3);
1243 		else
1244 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1245 
1246 		writel(RW_MGR_READ_B2B,
1247 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1248 
1249 		tmp_bit_chk = 0;
1250 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1251 			/* reset the fifos to get pointers to known state */
1252 			writel(0, &phy_mgr_cmd->fifo_reset);
1253 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1254 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1255 
1256 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1257 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1258 
1259 			if (all_groups)
1260 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1261 			else
1262 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1263 
1264 			writel(RW_MGR_READ_B2B, addr +
1265 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1266 			       vg) << 2));
1267 
1268 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1269 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1270 
1271 			if (vg == 0)
1272 				break;
1273 		}
1274 		*bit_chk &= tmp_bit_chk;
1275 	}
1276 
1277 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1278 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1279 
1280 	if (all_correct) {
1281 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1282 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1283 			   (%u == %u) => %lu", __func__, __LINE__, group,
1284 			   all_groups, *bit_chk, param->read_correct_mask,
1285 			   (long unsigned int)(*bit_chk ==
1286 			   param->read_correct_mask));
1287 		return *bit_chk == param->read_correct_mask;
1288 	} else	{
1289 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1291 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1292 			   group, all_groups, *bit_chk, (long unsigned int)0,
1293 			   (long unsigned int)(*bit_chk != 0x00));
1294 		return *bit_chk != 0x00;
1295 	}
1296 }
1297 
1298 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1299 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1300 	uint32_t all_groups)
1301 {
1302 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1303 					      bit_chk, all_groups, 1);
1304 }
1305 
1306 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1307 {
1308 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1309 	(*v)++;
1310 }
1311 
1312 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1313 {
1314 	uint32_t i;
1315 
1316 	for (i = 0; i < VFIFO_SIZE-1; i++)
1317 		rw_mgr_incr_vfifo(grp, v);
1318 }
1319 
1320 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1321 {
1322 	uint32_t  v;
1323 	uint32_t fail_cnt = 0;
1324 	uint32_t test_status;
1325 
1326 	for (v = 0; v < VFIFO_SIZE; ) {
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1328 			   __func__, __LINE__, v);
1329 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1330 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1331 		if (!test_status) {
1332 			fail_cnt++;
1333 
1334 			if (fail_cnt == 2)
1335 				break;
1336 		}
1337 
1338 		/* fiddle with FIFO */
1339 		rw_mgr_incr_vfifo(grp, &v);
1340 	}
1341 
1342 	if (v >= VFIFO_SIZE) {
1343 		/* no failing read found!! Something must have gone wrong */
1344 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1345 			   __func__, __LINE__);
1346 		return 0;
1347 	} else {
1348 		return v;
1349 	}
1350 }
1351 
1352 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1353 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1354 			      uint32_t *v, uint32_t *d, uint32_t *p,
1355 			      uint32_t *i, uint32_t *max_working_cnt)
1356 {
1357 	uint32_t found_begin = 0;
1358 	uint32_t tmp_delay = 0;
1359 	uint32_t test_status;
1360 
1361 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1362 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1363 		*work_bgn = tmp_delay;
1364 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1365 
1366 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1367 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1368 				IO_DELAY_PER_OPA_TAP) {
1369 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1370 
1371 				test_status =
1372 				rw_mgr_mem_calibrate_read_test_all_ranks
1373 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1374 
1375 				if (test_status) {
1376 					*max_working_cnt = 1;
1377 					found_begin = 1;
1378 					break;
1379 				}
1380 			}
1381 
1382 			if (found_begin)
1383 				break;
1384 
1385 			if (*p > IO_DQS_EN_PHASE_MAX)
1386 				/* fiddle with FIFO */
1387 				rw_mgr_incr_vfifo(*grp, v);
1388 		}
1389 
1390 		if (found_begin)
1391 			break;
1392 	}
1393 
1394 	if (*i >= VFIFO_SIZE) {
1395 		/* cannot find working solution */
1396 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1397 			   ptap/dtap\n", __func__, __LINE__);
1398 		return 0;
1399 	} else {
1400 		return 1;
1401 	}
1402 }
1403 
1404 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1405 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1406 			     uint32_t *p, uint32_t *max_working_cnt)
1407 {
1408 	uint32_t found_begin = 0;
1409 	uint32_t tmp_delay;
1410 
1411 	/* Special case code for backing up a phase */
1412 	if (*p == 0) {
1413 		*p = IO_DQS_EN_PHASE_MAX;
1414 		rw_mgr_decr_vfifo(*grp, v);
1415 	} else {
1416 		(*p)--;
1417 	}
1418 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1419 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1420 
1421 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1422 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1423 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1424 
1425 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1426 							     PASS_ONE_BIT,
1427 							     bit_chk, 0)) {
1428 			found_begin = 1;
1429 			*work_bgn = tmp_delay;
1430 			break;
1431 		}
1432 	}
1433 
1434 	/* We have found a working dtap before the ptap found above */
1435 	if (found_begin == 1)
1436 		(*max_working_cnt)++;
1437 
1438 	/*
1439 	 * Restore VFIFO to old state before we decremented it
1440 	 * (if needed).
1441 	 */
1442 	(*p)++;
1443 	if (*p > IO_DQS_EN_PHASE_MAX) {
1444 		*p = 0;
1445 		rw_mgr_incr_vfifo(*grp, v);
1446 	}
1447 
1448 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1449 }
1450 
1451 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1452 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1453 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1454 			     uint32_t *work_end)
1455 {
1456 	uint32_t found_end = 0;
1457 
1458 	(*p)++;
1459 	*work_end += IO_DELAY_PER_OPA_TAP;
1460 	if (*p > IO_DQS_EN_PHASE_MAX) {
1461 		/* fiddle with FIFO */
1462 		*p = 0;
1463 		rw_mgr_incr_vfifo(*grp, v);
1464 	}
1465 
1466 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1467 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1468 			+= IO_DELAY_PER_OPA_TAP) {
1469 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1470 
1471 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1472 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1473 				found_end = 1;
1474 				break;
1475 			} else {
1476 				(*max_working_cnt)++;
1477 			}
1478 		}
1479 
1480 		if (found_end)
1481 			break;
1482 
1483 		if (*p > IO_DQS_EN_PHASE_MAX) {
1484 			/* fiddle with FIFO */
1485 			rw_mgr_incr_vfifo(*grp, v);
1486 			*p = 0;
1487 		}
1488 	}
1489 
1490 	if (*i >= VFIFO_SIZE + 1) {
1491 		/* cannot see edge of failing read */
1492 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1493 			   failed\n", __func__, __LINE__);
1494 		return 0;
1495 	} else {
1496 		return 1;
1497 	}
1498 }
1499 
1500 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1501 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1502 				  uint32_t *p, uint32_t *work_mid,
1503 				  uint32_t *work_end)
1504 {
1505 	int i;
1506 	int tmp_delay = 0;
1507 
1508 	*work_mid = (*work_bgn + *work_end) / 2;
1509 
1510 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1511 		   *work_bgn, *work_end, *work_mid);
1512 	/* Get the middle delay to be less than a VFIFO delay */
1513 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1514 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1515 		;
1516 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1517 	while (*work_mid > tmp_delay)
1518 		*work_mid -= tmp_delay;
1519 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1520 
1521 	tmp_delay = 0;
1522 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1523 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1524 		;
1525 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1526 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1527 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1528 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1529 		;
1530 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1531 
1532 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1533 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1534 
1535 	/*
1536 	 * push vfifo until we can successfully calibrate. We can do this
1537 	 * because the largest possible margin in 1 VFIFO cycle.
1538 	 */
1539 	for (i = 0; i < VFIFO_SIZE; i++) {
1540 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1541 			   *v);
1542 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1543 							     PASS_ONE_BIT,
1544 							     bit_chk, 0)) {
1545 			break;
1546 		}
1547 
1548 		/* fiddle with FIFO */
1549 		rw_mgr_incr_vfifo(*grp, v);
1550 	}
1551 
1552 	if (i >= VFIFO_SIZE) {
1553 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1554 			   failed\n", __func__, __LINE__);
1555 		return 0;
1556 	} else {
1557 		return 1;
1558 	}
1559 }
1560 
1561 /* find a good dqs enable to use */
1562 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1563 {
1564 	uint32_t v, d, p, i;
1565 	uint32_t max_working_cnt;
1566 	uint32_t bit_chk;
1567 	uint32_t dtaps_per_ptap;
1568 	uint32_t work_bgn, work_mid, work_end;
1569 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1570 
1571 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1572 
1573 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1574 
1575 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1576 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1577 
1578 	/* ************************************************************** */
1579 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1580 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1581 
1582 	/* ********************************************************* */
1583 	/* * Step 1 : First push vfifo until we get a failing read * */
1584 	v = find_vfifo_read(grp, &bit_chk);
1585 
1586 	max_working_cnt = 0;
1587 
1588 	/* ******************************************************** */
1589 	/* * step 2: find first working phase, increment in ptaps * */
1590 	work_bgn = 0;
1591 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1592 				&p, &i, &max_working_cnt) == 0)
1593 		return 0;
1594 
1595 	work_end = work_bgn;
1596 
1597 	/*
1598 	 * If d is 0 then the working window covers a phase tap and
1599 	 * we can follow the old procedure otherwise, we've found the beginning,
1600 	 * and we need to increment the dtaps until we find the end.
1601 	 */
1602 	if (d == 0) {
1603 		/* ********************************************************* */
1604 		/* * step 3a: if we have room, back off by one and
1605 		increment in dtaps * */
1606 
1607 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1608 				 &max_working_cnt);
1609 
1610 		/* ********************************************************* */
1611 		/* * step 4a: go forward from working phase to non working
1612 		phase, increment in ptaps * */
1613 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1614 					 &i, &max_working_cnt, &work_end) == 0)
1615 			return 0;
1616 
1617 		/* ********************************************************* */
1618 		/* * step 5a:  back off one from last, increment in dtaps  * */
1619 
1620 		/* Special case code for backing up a phase */
1621 		if (p == 0) {
1622 			p = IO_DQS_EN_PHASE_MAX;
1623 			rw_mgr_decr_vfifo(grp, &v);
1624 		} else {
1625 			p = p - 1;
1626 		}
1627 
1628 		work_end -= IO_DELAY_PER_OPA_TAP;
1629 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1630 
1631 		/* * The actual increment of dtaps is done outside of
1632 		the if/else loop to share code */
1633 		d = 0;
1634 
1635 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1636 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1637 			   v, p);
1638 	} else {
1639 		/* ******************************************************* */
1640 		/* * step 3-5b:  Find the right edge of the window using
1641 		delay taps   * */
1642 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1643 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1644 			   v, p, d, work_bgn);
1645 
1646 		work_end = work_bgn;
1647 
1648 		/* * The actual increment of dtaps is done outside of the
1649 		if/else loop to share code */
1650 
1651 		/* Only here to counterbalance a subtract later on which is
1652 		not needed if this branch of the algorithm is taken */
1653 		max_working_cnt++;
1654 	}
1655 
1656 	/* The dtap increment to find the failing edge is done here */
1657 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1658 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1659 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1660 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1661 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1662 
1663 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1664 								      PASS_ONE_BIT,
1665 								      &bit_chk, 0)) {
1666 				break;
1667 			}
1668 	}
1669 
1670 	/* Go back to working dtap */
1671 	if (d != 0)
1672 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1673 
1674 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1675 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1676 		   v, p, d-1, work_end);
1677 
1678 	if (work_end < work_bgn) {
1679 		/* nil range */
1680 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1681 			   failed\n", __func__, __LINE__);
1682 		return 0;
1683 	}
1684 
1685 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1686 		   __func__, __LINE__, work_bgn, work_end);
1687 
1688 	/* *************************************************************** */
1689 	/*
1690 	 * * We need to calculate the number of dtaps that equal a ptap
1691 	 * * To do that we'll back up a ptap and re-find the edge of the
1692 	 * * window using dtaps
1693 	 */
1694 
1695 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1696 		   for tracking\n", __func__, __LINE__);
1697 
1698 	/* Special case code for backing up a phase */
1699 	if (p == 0) {
1700 		p = IO_DQS_EN_PHASE_MAX;
1701 		rw_mgr_decr_vfifo(grp, &v);
1702 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1703 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1704 			   v, p);
1705 	} else {
1706 		p = p - 1;
1707 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1708 			   phase only: v=%u p=%u", __func__, __LINE__,
1709 			   v, p);
1710 	}
1711 
1712 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1713 
1714 	/*
1715 	 * Increase dtap until we first see a passing read (in case the
1716 	 * window is smaller than a ptap),
1717 	 * and then a failing read to mark the edge of the window again
1718 	 */
1719 
1720 	/* Find a passing read */
1721 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1722 		   __func__, __LINE__);
1723 	found_passing_read = 0;
1724 	found_failing_read = 0;
1725 	initial_failing_dtap = d;
1726 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1727 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1728 			   read d=%u\n", __func__, __LINE__, d);
1729 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1730 
1731 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1732 							     PASS_ONE_BIT,
1733 							     &bit_chk, 0)) {
1734 			found_passing_read = 1;
1735 			break;
1736 		}
1737 	}
1738 
1739 	if (found_passing_read) {
1740 		/* Find a failing read */
1741 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1742 			   read\n", __func__, __LINE__);
1743 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1744 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1745 				   testing read d=%u\n", __func__, __LINE__, d);
1746 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1747 
1748 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1749 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1750 				found_failing_read = 1;
1751 				break;
1752 			}
1753 		}
1754 	} else {
1755 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1756 			   calculate dtaps", __func__, __LINE__);
1757 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1758 	}
1759 
1760 	/*
1761 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1762 	 * found a passing/failing read. If we didn't, it means d hit the max
1763 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1764 	 * statically calculated value.
1765 	 */
1766 	if (found_passing_read && found_failing_read)
1767 		dtaps_per_ptap = d - initial_failing_dtap;
1768 
1769 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1770 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1771 		   - %u = %u",  __func__, __LINE__, d,
1772 		   initial_failing_dtap, dtaps_per_ptap);
1773 
1774 	/* ******************************************** */
1775 	/* * step 6:  Find the centre of the window   * */
1776 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1777 				   &work_mid, &work_end) == 0)
1778 		return 0;
1779 
1780 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1781 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1782 		   v, p-1, d);
1783 	return 1;
1784 }
1785 
1786 /*
1787  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1788  * dq_in_delay values
1789  */
1790 static uint32_t
1791 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1792 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1793 {
1794 	uint32_t found;
1795 	uint32_t i;
1796 	uint32_t p;
1797 	uint32_t d;
1798 	uint32_t r;
1799 
1800 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1801 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1802 		/* we start at zero, so have one less dq to devide among */
1803 
1804 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1805 	      test_bgn);
1806 
1807 	/* try different dq_in_delays since the dq path is shorter than dqs */
1808 
1809 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1810 	     r += NUM_RANKS_PER_SHADOW_REG) {
1811 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1812 			i++, p++, d += delay_step) {
1813 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1814 				   vfifo_find_dqs_", __func__, __LINE__);
1815 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1816 			       write_group, read_group);
1817 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1818 			scc_mgr_set_dq_in_delay(p, d);
1819 			scc_mgr_load_dq(p);
1820 		}
1821 		writel(0, &sdr_scc_mgr->update);
1822 	}
1823 
1824 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1825 
1826 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1827 		   en_phase_sweep_dq", __func__, __LINE__);
1828 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1829 		   chain to zero\n", write_group, read_group, found);
1830 
1831 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1832 	     r += NUM_RANKS_PER_SHADOW_REG) {
1833 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1834 			i++, p++) {
1835 			scc_mgr_set_dq_in_delay(p, 0);
1836 			scc_mgr_load_dq(p);
1837 		}
1838 		writel(0, &sdr_scc_mgr->update);
1839 	}
1840 
1841 	return found;
1842 }
1843 
1844 /* per-bit deskew DQ and center */
1845 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1846 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1847 	uint32_t use_read_test, uint32_t update_fom)
1848 {
1849 	uint32_t i, p, d, min_index;
1850 	/*
1851 	 * Store these as signed since there are comparisons with
1852 	 * signed numbers.
1853 	 */
1854 	uint32_t bit_chk;
1855 	uint32_t sticky_bit_chk;
1856 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1857 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1858 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1859 	int32_t mid;
1860 	int32_t orig_mid_min, mid_min;
1861 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1862 		final_dqs_en;
1863 	int32_t dq_margin, dqs_margin;
1864 	uint32_t stop;
1865 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1866 	uint32_t addr;
1867 
1868 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1869 
1870 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1871 	start_dqs = readl(addr + (read_group << 2));
1872 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1873 		start_dqs_en = readl(addr + ((read_group << 2)
1874 				     - IO_DQS_EN_DELAY_OFFSET));
1875 
1876 	/* set the left and right edge of each bit to an illegal value */
1877 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1878 	sticky_bit_chk = 0;
1879 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1880 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1881 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1882 	}
1883 
1884 	/* Search for the left edge of the window for each bit */
1885 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1886 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1887 
1888 		writel(0, &sdr_scc_mgr->update);
1889 
1890 		/*
1891 		 * Stop searching when the read test doesn't pass AND when
1892 		 * we've seen a passing read on every bit.
1893 		 */
1894 		if (use_read_test) {
1895 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1896 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1897 				&bit_chk, 0, 0);
1898 		} else {
1899 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1900 							0, PASS_ONE_BIT,
1901 							&bit_chk, 0);
1902 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1903 				(read_group - (write_group *
1904 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1905 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1906 			stop = (bit_chk == 0);
1907 		}
1908 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1909 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1910 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1911 			   && %u", __func__, __LINE__, d,
1912 			   sticky_bit_chk,
1913 			param->read_correct_mask, stop);
1914 
1915 		if (stop == 1) {
1916 			break;
1917 		} else {
1918 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1919 				if (bit_chk & 1) {
1920 					/* Remember a passing test as the
1921 					left_edge */
1922 					left_edge[i] = d;
1923 				} else {
1924 					/* If a left edge has not been seen yet,
1925 					then a future passing test will mark
1926 					this edge as the right edge */
1927 					if (left_edge[i] ==
1928 						IO_IO_IN_DELAY_MAX + 1) {
1929 						right_edge[i] = -(d + 1);
1930 					}
1931 				}
1932 				bit_chk = bit_chk >> 1;
1933 			}
1934 		}
1935 	}
1936 
1937 	/* Reset DQ delay chains to 0 */
1938 	scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1939 	sticky_bit_chk = 0;
1940 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1941 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1942 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1943 			   i, left_edge[i], i, right_edge[i]);
1944 
1945 		/*
1946 		 * Check for cases where we haven't found the left edge,
1947 		 * which makes our assignment of the the right edge invalid.
1948 		 * Reset it to the illegal value.
1949 		 */
1950 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1951 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1952 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1953 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1954 				   right_edge[%u]: %d\n", __func__, __LINE__,
1955 				   i, right_edge[i]);
1956 		}
1957 
1958 		/*
1959 		 * Reset sticky bit (except for bits where we have seen
1960 		 * both the left and right edge).
1961 		 */
1962 		sticky_bit_chk = sticky_bit_chk << 1;
1963 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1964 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1965 			sticky_bit_chk = sticky_bit_chk | 1;
1966 		}
1967 
1968 		if (i == 0)
1969 			break;
1970 	}
1971 
1972 	/* Search for the right edge of the window for each bit */
1973 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1974 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1975 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1976 			uint32_t delay = d + start_dqs_en;
1977 			if (delay > IO_DQS_EN_DELAY_MAX)
1978 				delay = IO_DQS_EN_DELAY_MAX;
1979 			scc_mgr_set_dqs_en_delay(read_group, delay);
1980 		}
1981 		scc_mgr_load_dqs(read_group);
1982 
1983 		writel(0, &sdr_scc_mgr->update);
1984 
1985 		/*
1986 		 * Stop searching when the read test doesn't pass AND when
1987 		 * we've seen a passing read on every bit.
1988 		 */
1989 		if (use_read_test) {
1990 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1991 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1992 				&bit_chk, 0, 0);
1993 		} else {
1994 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1995 							0, PASS_ONE_BIT,
1996 							&bit_chk, 0);
1997 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1998 				(read_group - (write_group *
1999 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2000 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2001 			stop = (bit_chk == 0);
2002 		}
2003 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2004 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2005 
2006 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2007 			   %u && %u", __func__, __LINE__, d,
2008 			   sticky_bit_chk, param->read_correct_mask, stop);
2009 
2010 		if (stop == 1) {
2011 			break;
2012 		} else {
2013 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2014 				if (bit_chk & 1) {
2015 					/* Remember a passing test as
2016 					the right_edge */
2017 					right_edge[i] = d;
2018 				} else {
2019 					if (d != 0) {
2020 						/* If a right edge has not been
2021 						seen yet, then a future passing
2022 						test will mark this edge as the
2023 						left edge */
2024 						if (right_edge[i] ==
2025 						IO_IO_IN_DELAY_MAX + 1) {
2026 							left_edge[i] = -(d + 1);
2027 						}
2028 					} else {
2029 						/* d = 0 failed, but it passed
2030 						when testing the left edge,
2031 						so it must be marginal,
2032 						set it to -1 */
2033 						if (right_edge[i] ==
2034 							IO_IO_IN_DELAY_MAX + 1 &&
2035 							left_edge[i] !=
2036 							IO_IO_IN_DELAY_MAX
2037 							+ 1) {
2038 							right_edge[i] = -1;
2039 						}
2040 						/* If a right edge has not been
2041 						seen yet, then a future passing
2042 						test will mark this edge as the
2043 						left edge */
2044 						else if (right_edge[i] ==
2045 							IO_IO_IN_DELAY_MAX +
2046 							1) {
2047 							left_edge[i] = -(d + 1);
2048 						}
2049 					}
2050 				}
2051 
2052 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2053 					   d=%u]: ", __func__, __LINE__, d);
2054 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2055 					   (int)(bit_chk & 1), i, left_edge[i]);
2056 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2057 					   right_edge[i]);
2058 				bit_chk = bit_chk >> 1;
2059 			}
2060 		}
2061 	}
2062 
2063 	/* Check that all bits have a window */
2064 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2065 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2066 			   %d right_edge[%u]: %d", __func__, __LINE__,
2067 			   i, left_edge[i], i, right_edge[i]);
2068 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2069 			== IO_IO_IN_DELAY_MAX + 1)) {
2070 			/*
2071 			 * Restore delay chain settings before letting the loop
2072 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2073 			 * dqs/ck relationships.
2074 			 */
2075 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2076 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2077 				scc_mgr_set_dqs_en_delay(read_group,
2078 							 start_dqs_en);
2079 			}
2080 			scc_mgr_load_dqs(read_group);
2081 			writel(0, &sdr_scc_mgr->update);
2082 
2083 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2084 				   find edge [%u]: %d %d", __func__, __LINE__,
2085 				   i, left_edge[i], right_edge[i]);
2086 			if (use_read_test) {
2087 				set_failing_group_stage(read_group *
2088 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2089 					CAL_STAGE_VFIFO,
2090 					CAL_SUBSTAGE_VFIFO_CENTER);
2091 			} else {
2092 				set_failing_group_stage(read_group *
2093 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2094 					CAL_STAGE_VFIFO_AFTER_WRITES,
2095 					CAL_SUBSTAGE_VFIFO_CENTER);
2096 			}
2097 			return 0;
2098 		}
2099 	}
2100 
2101 	/* Find middle of window for each DQ bit */
2102 	mid_min = left_edge[0] - right_edge[0];
2103 	min_index = 0;
2104 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2105 		mid = left_edge[i] - right_edge[i];
2106 		if (mid < mid_min) {
2107 			mid_min = mid;
2108 			min_index = i;
2109 		}
2110 	}
2111 
2112 	/*
2113 	 * -mid_min/2 represents the amount that we need to move DQS.
2114 	 * If mid_min is odd and positive we'll need to add one to
2115 	 * make sure the rounding in further calculations is correct
2116 	 * (always bias to the right), so just add 1 for all positive values.
2117 	 */
2118 	if (mid_min > 0)
2119 		mid_min++;
2120 
2121 	mid_min = mid_min / 2;
2122 
2123 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2124 		   __func__, __LINE__, mid_min, min_index);
2125 
2126 	/* Determine the amount we can change DQS (which is -mid_min) */
2127 	orig_mid_min = mid_min;
2128 	new_dqs = start_dqs - mid_min;
2129 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2130 		new_dqs = IO_DQS_IN_DELAY_MAX;
2131 	else if (new_dqs < 0)
2132 		new_dqs = 0;
2133 
2134 	mid_min = start_dqs - new_dqs;
2135 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2136 		   mid_min, new_dqs);
2137 
2138 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2139 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2140 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2141 		else if (start_dqs_en - mid_min < 0)
2142 			mid_min += start_dqs_en - mid_min;
2143 	}
2144 	new_dqs = start_dqs - mid_min;
2145 
2146 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2147 		   new_dqs=%d mid_min=%d\n", start_dqs,
2148 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2149 		   new_dqs, mid_min);
2150 
2151 	/* Initialize data for export structures */
2152 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2153 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2154 
2155 	/* add delay to bring centre of all DQ windows to the same "level" */
2156 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2157 		/* Use values before divide by 2 to reduce round off error */
2158 		shift_dq = (left_edge[i] - right_edge[i] -
2159 			(left_edge[min_index] - right_edge[min_index]))/2  +
2160 			(orig_mid_min - mid_min);
2161 
2162 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2163 			   shift_dq[%u]=%d\n", i, shift_dq);
2164 
2165 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2166 		temp_dq_in_delay1 = readl(addr + (p << 2));
2167 		temp_dq_in_delay2 = readl(addr + (i << 2));
2168 
2169 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2170 			(int32_t)IO_IO_IN_DELAY_MAX) {
2171 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2172 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2173 			shift_dq = -(int32_t)temp_dq_in_delay1;
2174 		}
2175 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2176 			   shift_dq[%u]=%d\n", i, shift_dq);
2177 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2178 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2179 		scc_mgr_load_dq(p);
2180 
2181 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2182 			   left_edge[i] - shift_dq + (-mid_min),
2183 			   right_edge[i] + shift_dq - (-mid_min));
2184 		/* To determine values for export structures */
2185 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2186 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2187 
2188 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2189 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2190 	}
2191 
2192 	final_dqs = new_dqs;
2193 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2194 		final_dqs_en = start_dqs_en - mid_min;
2195 
2196 	/* Move DQS-en */
2197 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2198 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2199 		scc_mgr_load_dqs(read_group);
2200 	}
2201 
2202 	/* Move DQS */
2203 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2204 	scc_mgr_load_dqs(read_group);
2205 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2206 		   dqs_margin=%d", __func__, __LINE__,
2207 		   dq_margin, dqs_margin);
2208 
2209 	/*
2210 	 * Do not remove this line as it makes sure all of our decisions
2211 	 * have been applied. Apply the update bit.
2212 	 */
2213 	writel(0, &sdr_scc_mgr->update);
2214 
2215 	return (dq_margin >= 0) && (dqs_margin >= 0);
2216 }
2217 
2218 /*
2219  * calibrate the read valid prediction FIFO.
2220  *
2221  *  - read valid prediction will consist of finding a good DQS enable phase,
2222  * DQS enable delay, DQS input phase, and DQS input delay.
2223  *  - we also do a per-bit deskew on the DQ lines.
2224  */
2225 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2226 					   uint32_t test_bgn)
2227 {
2228 	uint32_t p, d, rank_bgn, sr;
2229 	uint32_t dtaps_per_ptap;
2230 	uint32_t tmp_delay;
2231 	uint32_t bit_chk;
2232 	uint32_t grp_calibrated;
2233 	uint32_t write_group, write_test_bgn;
2234 	uint32_t failed_substage;
2235 
2236 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2237 
2238 	/* update info for sims */
2239 	reg_file_set_stage(CAL_STAGE_VFIFO);
2240 
2241 	write_group = read_group;
2242 	write_test_bgn = test_bgn;
2243 
2244 	/* USER Determine number of delay taps for each phase tap */
2245 	dtaps_per_ptap = 0;
2246 	tmp_delay = 0;
2247 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2248 		dtaps_per_ptap++;
2249 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2250 	}
2251 	dtaps_per_ptap--;
2252 	tmp_delay = 0;
2253 
2254 	/* update info for sims */
2255 	reg_file_set_group(read_group);
2256 
2257 	grp_calibrated = 0;
2258 
2259 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2260 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2261 
2262 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2263 		/*
2264 		 * In RLDRAMX we may be messing the delay of pins in
2265 		 * the same write group but outside of the current read
2266 		 * the group, but that's ok because we haven't
2267 		 * calibrated output side yet.
2268 		 */
2269 		if (d > 0) {
2270 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2271 			(write_group, write_test_bgn, d);
2272 		}
2273 
2274 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2275 			p++) {
2276 			/* set a particular dqdqs phase */
2277 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2278 
2279 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2280 				   p=%u d=%u\n", __func__, __LINE__,
2281 				   read_group, p, d);
2282 
2283 			/*
2284 			 * Load up the patterns used by read calibration
2285 			 * using current DQDQS phase.
2286 			 */
2287 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2288 			if (!(gbl->phy_debug_mode_flags &
2289 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2290 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2291 				    (read_group, 1, &bit_chk)) {
2292 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2293 						   __func__, __LINE__);
2294 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2295 						   read_group, p, d);
2296 					break;
2297 				}
2298 			}
2299 
2300 /* case:56390 */
2301 			grp_calibrated = 1;
2302 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2303 		    (write_group, read_group, test_bgn)) {
2304 				/*
2305 				 * USER Read per-bit deskew can be done on a
2306 				 * per shadow register basis.
2307 				 */
2308 				for (rank_bgn = 0, sr = 0;
2309 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2310 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2311 					++sr) {
2312 					/*
2313 					 * Determine if this set of ranks
2314 					 * should be skipped entirely.
2315 					 */
2316 					if (!param->skip_shadow_regs[sr]) {
2317 						/*
2318 						 * If doing read after write
2319 						 * calibration, do not update
2320 						 * FOM, now - do it then.
2321 						 */
2322 					if (!rw_mgr_mem_calibrate_vfifo_center
2323 						(rank_bgn, write_group,
2324 						read_group, test_bgn, 1, 0)) {
2325 							grp_calibrated = 0;
2326 							failed_substage =
2327 						CAL_SUBSTAGE_VFIFO_CENTER;
2328 						}
2329 					}
2330 				}
2331 			} else {
2332 				grp_calibrated = 0;
2333 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2334 			}
2335 		}
2336 	}
2337 
2338 	if (grp_calibrated == 0) {
2339 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2340 					failed_substage);
2341 		return 0;
2342 	}
2343 
2344 	/*
2345 	 * Reset the delay chains back to zero if they have moved > 1
2346 	 * (check for > 1 because loop will increase d even when pass in
2347 	 * first case).
2348 	 */
2349 	if (d > 2)
2350 		scc_mgr_zero_group(write_group, write_test_bgn, 1);
2351 
2352 	return 1;
2353 }
2354 
2355 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2356 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2357 					       uint32_t test_bgn)
2358 {
2359 	uint32_t rank_bgn, sr;
2360 	uint32_t grp_calibrated;
2361 	uint32_t write_group;
2362 
2363 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2364 
2365 	/* update info for sims */
2366 
2367 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2368 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2369 
2370 	write_group = read_group;
2371 
2372 	/* update info for sims */
2373 	reg_file_set_group(read_group);
2374 
2375 	grp_calibrated = 1;
2376 	/* Read per-bit deskew can be done on a per shadow register basis */
2377 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2378 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2379 		/* Determine if this set of ranks should be skipped entirely */
2380 		if (!param->skip_shadow_regs[sr]) {
2381 		/* This is the last calibration round, update FOM here */
2382 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2383 								write_group,
2384 								read_group,
2385 								test_bgn, 0,
2386 								1)) {
2387 				grp_calibrated = 0;
2388 			}
2389 		}
2390 	}
2391 
2392 
2393 	if (grp_calibrated == 0) {
2394 		set_failing_group_stage(write_group,
2395 					CAL_STAGE_VFIFO_AFTER_WRITES,
2396 					CAL_SUBSTAGE_VFIFO_CENTER);
2397 		return 0;
2398 	}
2399 
2400 	return 1;
2401 }
2402 
2403 /* Calibrate LFIFO to find smallest read latency */
2404 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2405 {
2406 	uint32_t found_one;
2407 	uint32_t bit_chk;
2408 
2409 	debug("%s:%d\n", __func__, __LINE__);
2410 
2411 	/* update info for sims */
2412 	reg_file_set_stage(CAL_STAGE_LFIFO);
2413 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2414 
2415 	/* Load up the patterns used by read calibration for all ranks */
2416 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2417 	found_one = 0;
2418 
2419 	do {
2420 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2421 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2422 			   __func__, __LINE__, gbl->curr_read_lat);
2423 
2424 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2425 							      NUM_READ_TESTS,
2426 							      PASS_ALL_BITS,
2427 							      &bit_chk, 1)) {
2428 			break;
2429 		}
2430 
2431 		found_one = 1;
2432 		/* reduce read latency and see if things are working */
2433 		/* correctly */
2434 		gbl->curr_read_lat--;
2435 	} while (gbl->curr_read_lat > 0);
2436 
2437 	/* reset the fifos to get pointers to known state */
2438 
2439 	writel(0, &phy_mgr_cmd->fifo_reset);
2440 
2441 	if (found_one) {
2442 		/* add a fudge factor to the read latency that was determined */
2443 		gbl->curr_read_lat += 2;
2444 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2445 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2446 			   read_lat=%u\n", __func__, __LINE__,
2447 			   gbl->curr_read_lat);
2448 		return 1;
2449 	} else {
2450 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2451 					CAL_SUBSTAGE_READ_LATENCY);
2452 
2453 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2454 			   read_lat=%u\n", __func__, __LINE__,
2455 			   gbl->curr_read_lat);
2456 		return 0;
2457 	}
2458 }
2459 
2460 /*
2461  * issue write test command.
2462  * two variants are provided. one that just tests a write pattern and
2463  * another that tests datamask functionality.
2464  */
2465 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2466 						  uint32_t test_dm)
2467 {
2468 	uint32_t mcc_instruction;
2469 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2470 		ENABLE_SUPER_QUICK_CALIBRATION);
2471 	uint32_t rw_wl_nop_cycles;
2472 	uint32_t addr;
2473 
2474 	/*
2475 	 * Set counter and jump addresses for the right
2476 	 * number of NOP cycles.
2477 	 * The number of supported NOP cycles can range from -1 to infinity
2478 	 * Three different cases are handled:
2479 	 *
2480 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2481 	 *    mechanism will be used to insert the right number of NOPs
2482 	 *
2483 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2484 	 *    issuing the write command will jump straight to the
2485 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2486 	 *    data (for RLD), skipping
2487 	 *    the NOP micro-instruction all together
2488 	 *
2489 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2490 	 *    turned on in the same micro-instruction that issues the write
2491 	 *    command. Then we need
2492 	 *    to directly jump to the micro-instruction that sends out the data
2493 	 *
2494 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2495 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2496 	 *       write-read operations.
2497 	 *       one counter left to issue this command in "multiple-group" mode
2498 	 */
2499 
2500 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2501 
2502 	if (rw_wl_nop_cycles == -1) {
2503 		/*
2504 		 * CNTR 2 - We want to execute the special write operation that
2505 		 * turns on DQS right away and then skip directly to the
2506 		 * instruction that sends out the data. We set the counter to a
2507 		 * large number so that the jump is always taken.
2508 		 */
2509 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2510 
2511 		/* CNTR 3 - Not used */
2512 		if (test_dm) {
2513 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2514 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2515 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2516 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2517 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2518 		} else {
2519 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2520 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2521 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2522 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2523 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2524 		}
2525 	} else if (rw_wl_nop_cycles == 0) {
2526 		/*
2527 		 * CNTR 2 - We want to skip the NOP operation and go straight
2528 		 * to the DQS enable instruction. We set the counter to a large
2529 		 * number so that the jump is always taken.
2530 		 */
2531 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2532 
2533 		/* CNTR 3 - Not used */
2534 		if (test_dm) {
2535 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2536 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2537 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2538 		} else {
2539 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2540 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2541 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2542 		}
2543 	} else {
2544 		/*
2545 		 * CNTR 2 - In this case we want to execute the next instruction
2546 		 * and NOT take the jump. So we set the counter to 0. The jump
2547 		 * address doesn't count.
2548 		 */
2549 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2550 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2551 
2552 		/*
2553 		 * CNTR 3 - Set the nop counter to the number of cycles we
2554 		 * need to loop for, minus 1.
2555 		 */
2556 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2557 		if (test_dm) {
2558 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2559 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2560 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561 		} else {
2562 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2563 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2564 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2565 		}
2566 	}
2567 
2568 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2569 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2570 
2571 	if (quick_write_mode)
2572 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2573 	else
2574 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2575 
2576 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2577 
2578 	/*
2579 	 * CNTR 1 - This is used to ensure enough time elapses
2580 	 * for read data to come back.
2581 	 */
2582 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2583 
2584 	if (test_dm) {
2585 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2586 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2587 	} else {
2588 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2589 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2590 	}
2591 
2592 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2593 	writel(mcc_instruction, addr + (group << 2));
2594 }
2595 
2596 /* Test writes, can check for a single bit pass or multiple bit pass */
2597 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2598 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2599 	uint32_t *bit_chk, uint32_t all_ranks)
2600 {
2601 	uint32_t r;
2602 	uint32_t correct_mask_vg;
2603 	uint32_t tmp_bit_chk;
2604 	uint32_t vg;
2605 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2606 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2607 	uint32_t addr_rw_mgr;
2608 	uint32_t base_rw_mgr;
2609 
2610 	*bit_chk = param->write_correct_mask;
2611 	correct_mask_vg = param->write_correct_mask_vg;
2612 
2613 	for (r = rank_bgn; r < rank_end; r++) {
2614 		if (param->skip_ranks[r]) {
2615 			/* request to skip the rank */
2616 			continue;
2617 		}
2618 
2619 		/* set rank */
2620 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2621 
2622 		tmp_bit_chk = 0;
2623 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2624 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2625 			/* reset the fifos to get pointers to known state */
2626 			writel(0, &phy_mgr_cmd->fifo_reset);
2627 
2628 			tmp_bit_chk = tmp_bit_chk <<
2629 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2630 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2631 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2632 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2633 				use_dm);
2634 
2635 			base_rw_mgr = readl(addr_rw_mgr);
2636 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2637 			if (vg == 0)
2638 				break;
2639 		}
2640 		*bit_chk &= tmp_bit_chk;
2641 	}
2642 
2643 	if (all_correct) {
2644 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2645 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2646 			   %u => %lu", write_group, use_dm,
2647 			   *bit_chk, param->write_correct_mask,
2648 			   (long unsigned int)(*bit_chk ==
2649 			   param->write_correct_mask));
2650 		return *bit_chk == param->write_correct_mask;
2651 	} else {
2652 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2653 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2654 		       write_group, use_dm, *bit_chk);
2655 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2656 			(long unsigned int)(*bit_chk != 0));
2657 		return *bit_chk != 0x00;
2658 	}
2659 }
2660 
2661 /*
2662  * center all windows. do per-bit-deskew to possibly increase size of
2663  * certain windows.
2664  */
2665 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2666 	uint32_t write_group, uint32_t test_bgn)
2667 {
2668 	uint32_t i, p, min_index;
2669 	int32_t d;
2670 	/*
2671 	 * Store these as signed since there are comparisons with
2672 	 * signed numbers.
2673 	 */
2674 	uint32_t bit_chk;
2675 	uint32_t sticky_bit_chk;
2676 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2677 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2678 	int32_t mid;
2679 	int32_t mid_min, orig_mid_min;
2680 	int32_t new_dqs, start_dqs, shift_dq;
2681 	int32_t dq_margin, dqs_margin, dm_margin;
2682 	uint32_t stop;
2683 	uint32_t temp_dq_out1_delay;
2684 	uint32_t addr;
2685 
2686 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2687 
2688 	dm_margin = 0;
2689 
2690 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2691 	start_dqs = readl(addr +
2692 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2693 
2694 	/* per-bit deskew */
2695 
2696 	/*
2697 	 * set the left and right edge of each bit to an illegal value
2698 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2699 	 */
2700 	sticky_bit_chk = 0;
2701 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2702 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2703 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2704 	}
2705 
2706 	/* Search for the left edge of the window for each bit */
2707 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2708 		scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2709 
2710 		writel(0, &sdr_scc_mgr->update);
2711 
2712 		/*
2713 		 * Stop searching when the read test doesn't pass AND when
2714 		 * we've seen a passing read on every bit.
2715 		 */
2716 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2717 			0, PASS_ONE_BIT, &bit_chk, 0);
2718 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2719 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2720 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2721 			   == %u && %u [bit_chk= %u ]\n",
2722 			d, sticky_bit_chk, param->write_correct_mask,
2723 			stop, bit_chk);
2724 
2725 		if (stop == 1) {
2726 			break;
2727 		} else {
2728 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2729 				if (bit_chk & 1) {
2730 					/*
2731 					 * Remember a passing test as the
2732 					 * left_edge.
2733 					 */
2734 					left_edge[i] = d;
2735 				} else {
2736 					/*
2737 					 * If a left edge has not been seen
2738 					 * yet, then a future passing test will
2739 					 * mark this edge as the right edge.
2740 					 */
2741 					if (left_edge[i] ==
2742 						IO_IO_OUT1_DELAY_MAX + 1) {
2743 						right_edge[i] = -(d + 1);
2744 					}
2745 				}
2746 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2747 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2748 					   (int)(bit_chk & 1), i, left_edge[i]);
2749 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2750 				       right_edge[i]);
2751 				bit_chk = bit_chk >> 1;
2752 			}
2753 		}
2754 	}
2755 
2756 	/* Reset DQ delay chains to 0 */
2757 	scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2758 	sticky_bit_chk = 0;
2759 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2760 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2761 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2762 			   i, left_edge[i], i, right_edge[i]);
2763 
2764 		/*
2765 		 * Check for cases where we haven't found the left edge,
2766 		 * which makes our assignment of the the right edge invalid.
2767 		 * Reset it to the illegal value.
2768 		 */
2769 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2770 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2771 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2772 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2773 				   right_edge[%u]: %d\n", __func__, __LINE__,
2774 				   i, right_edge[i]);
2775 		}
2776 
2777 		/*
2778 		 * Reset sticky bit (except for bits where we have
2779 		 * seen the left edge).
2780 		 */
2781 		sticky_bit_chk = sticky_bit_chk << 1;
2782 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2783 			sticky_bit_chk = sticky_bit_chk | 1;
2784 
2785 		if (i == 0)
2786 			break;
2787 	}
2788 
2789 	/* Search for the right edge of the window for each bit */
2790 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2791 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2792 							d + start_dqs);
2793 
2794 		writel(0, &sdr_scc_mgr->update);
2795 
2796 		/*
2797 		 * Stop searching when the read test doesn't pass AND when
2798 		 * we've seen a passing read on every bit.
2799 		 */
2800 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2801 			0, PASS_ONE_BIT, &bit_chk, 0);
2802 
2803 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2804 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2805 
2806 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2807 			   %u && %u\n", d, sticky_bit_chk,
2808 			   param->write_correct_mask, stop);
2809 
2810 		if (stop == 1) {
2811 			if (d == 0) {
2812 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2813 					i++) {
2814 					/* d = 0 failed, but it passed when
2815 					testing the left edge, so it must be
2816 					marginal, set it to -1 */
2817 					if (right_edge[i] ==
2818 						IO_IO_OUT1_DELAY_MAX + 1 &&
2819 						left_edge[i] !=
2820 						IO_IO_OUT1_DELAY_MAX + 1) {
2821 						right_edge[i] = -1;
2822 					}
2823 				}
2824 			}
2825 			break;
2826 		} else {
2827 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2828 				if (bit_chk & 1) {
2829 					/*
2830 					 * Remember a passing test as
2831 					 * the right_edge.
2832 					 */
2833 					right_edge[i] = d;
2834 				} else {
2835 					if (d != 0) {
2836 						/*
2837 						 * If a right edge has not
2838 						 * been seen yet, then a future
2839 						 * passing test will mark this
2840 						 * edge as the left edge.
2841 						 */
2842 						if (right_edge[i] ==
2843 						    IO_IO_OUT1_DELAY_MAX + 1)
2844 							left_edge[i] = -(d + 1);
2845 					} else {
2846 						/*
2847 						 * d = 0 failed, but it passed
2848 						 * when testing the left edge,
2849 						 * so it must be marginal, set
2850 						 * it to -1.
2851 						 */
2852 						if (right_edge[i] ==
2853 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2854 						    left_edge[i] !=
2855 						    IO_IO_OUT1_DELAY_MAX + 1)
2856 							right_edge[i] = -1;
2857 						/*
2858 						 * If a right edge has not been
2859 						 * seen yet, then a future
2860 						 * passing test will mark this
2861 						 * edge as the left edge.
2862 						 */
2863 						else if (right_edge[i] ==
2864 							IO_IO_OUT1_DELAY_MAX +
2865 							1)
2866 							left_edge[i] = -(d + 1);
2867 					}
2868 				}
2869 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2870 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2871 					   (int)(bit_chk & 1), i, left_edge[i]);
2872 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2873 					   right_edge[i]);
2874 				bit_chk = bit_chk >> 1;
2875 			}
2876 		}
2877 	}
2878 
2879 	/* Check that all bits have a window */
2880 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2881 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2882 			   %d right_edge[%u]: %d", __func__, __LINE__,
2883 			   i, left_edge[i], i, right_edge[i]);
2884 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2885 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2886 			set_failing_group_stage(test_bgn + i,
2887 						CAL_STAGE_WRITES,
2888 						CAL_SUBSTAGE_WRITES_CENTER);
2889 			return 0;
2890 		}
2891 	}
2892 
2893 	/* Find middle of window for each DQ bit */
2894 	mid_min = left_edge[0] - right_edge[0];
2895 	min_index = 0;
2896 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2897 		mid = left_edge[i] - right_edge[i];
2898 		if (mid < mid_min) {
2899 			mid_min = mid;
2900 			min_index = i;
2901 		}
2902 	}
2903 
2904 	/*
2905 	 * -mid_min/2 represents the amount that we need to move DQS.
2906 	 * If mid_min is odd and positive we'll need to add one to
2907 	 * make sure the rounding in further calculations is correct
2908 	 * (always bias to the right), so just add 1 for all positive values.
2909 	 */
2910 	if (mid_min > 0)
2911 		mid_min++;
2912 	mid_min = mid_min / 2;
2913 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2914 		   __LINE__, mid_min);
2915 
2916 	/* Determine the amount we can change DQS (which is -mid_min) */
2917 	orig_mid_min = mid_min;
2918 	new_dqs = start_dqs;
2919 	mid_min = 0;
2920 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2921 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2922 	/* Initialize data for export structures */
2923 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2924 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2925 
2926 	/* add delay to bring centre of all DQ windows to the same "level" */
2927 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2928 		/* Use values before divide by 2 to reduce round off error */
2929 		shift_dq = (left_edge[i] - right_edge[i] -
2930 			(left_edge[min_index] - right_edge[min_index]))/2  +
2931 		(orig_mid_min - mid_min);
2932 
2933 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2934 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2935 
2936 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2937 		temp_dq_out1_delay = readl(addr + (i << 2));
2938 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2939 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2940 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2941 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2942 			shift_dq = -(int32_t)temp_dq_out1_delay;
2943 		}
2944 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2945 			   i, shift_dq);
2946 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2947 		scc_mgr_load_dq(i);
2948 
2949 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2950 			   left_edge[i] - shift_dq + (-mid_min),
2951 			   right_edge[i] + shift_dq - (-mid_min));
2952 		/* To determine values for export structures */
2953 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2954 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2955 
2956 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2957 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2958 	}
2959 
2960 	/* Move DQS */
2961 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2962 	writel(0, &sdr_scc_mgr->update);
2963 
2964 	/* Centre DM */
2965 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2966 
2967 	/*
2968 	 * set the left and right edge of each bit to an illegal value,
2969 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2970 	 */
2971 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2972 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2973 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2974 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2975 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2976 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2977 	int32_t win_best = 0;
2978 
2979 	/* Search for the/part of the window with DM shift */
2980 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2981 		scc_mgr_apply_group_dm_out1_delay(write_group, d);
2982 		writel(0, &sdr_scc_mgr->update);
2983 
2984 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2985 						    PASS_ALL_BITS, &bit_chk,
2986 						    0)) {
2987 			/* USE Set current end of the window */
2988 			end_curr = -d;
2989 			/*
2990 			 * If a starting edge of our window has not been seen
2991 			 * this is our current start of the DM window.
2992 			 */
2993 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2994 				bgn_curr = -d;
2995 
2996 			/*
2997 			 * If current window is bigger than best seen.
2998 			 * Set best seen to be current window.
2999 			 */
3000 			if ((end_curr-bgn_curr+1) > win_best) {
3001 				win_best = end_curr-bgn_curr+1;
3002 				bgn_best = bgn_curr;
3003 				end_best = end_curr;
3004 			}
3005 		} else {
3006 			/* We just saw a failing test. Reset temp edge */
3007 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3008 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3009 			}
3010 		}
3011 
3012 
3013 	/* Reset DM delay chains to 0 */
3014 	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3015 
3016 	/*
3017 	 * Check to see if the current window nudges up aganist 0 delay.
3018 	 * If so we need to continue the search by shifting DQS otherwise DQS
3019 	 * search begins as a new search. */
3020 	if (end_curr != 0) {
3021 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3022 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3023 	}
3024 
3025 	/* Search for the/part of the window with DQS shifts */
3026 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3027 		/*
3028 		 * Note: This only shifts DQS, so are we limiting ourselve to
3029 		 * width of DQ unnecessarily.
3030 		 */
3031 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3032 							d + new_dqs);
3033 
3034 		writel(0, &sdr_scc_mgr->update);
3035 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3036 						    PASS_ALL_BITS, &bit_chk,
3037 						    0)) {
3038 			/* USE Set current end of the window */
3039 			end_curr = d;
3040 			/*
3041 			 * If a beginning edge of our window has not been seen
3042 			 * this is our current begin of the DM window.
3043 			 */
3044 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3045 				bgn_curr = d;
3046 
3047 			/*
3048 			 * If current window is bigger than best seen. Set best
3049 			 * seen to be current window.
3050 			 */
3051 			if ((end_curr-bgn_curr+1) > win_best) {
3052 				win_best = end_curr-bgn_curr+1;
3053 				bgn_best = bgn_curr;
3054 				end_best = end_curr;
3055 			}
3056 		} else {
3057 			/* We just saw a failing test. Reset temp edge */
3058 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060 
3061 			/* Early exit optimization: if ther remaining delay
3062 			chain space is less than already seen largest window
3063 			we can exit */
3064 			if ((win_best-1) >
3065 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3066 					break;
3067 				}
3068 			}
3069 		}
3070 
3071 	/* assign left and right edge for cal and reporting; */
3072 	left_edge[0] = -1*bgn_best;
3073 	right_edge[0] = end_best;
3074 
3075 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3076 		   __LINE__, left_edge[0], right_edge[0]);
3077 
3078 	/* Move DQS (back to orig) */
3079 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3080 
3081 	/* Move DM */
3082 
3083 	/* Find middle of window for the DM bit */
3084 	mid = (left_edge[0] - right_edge[0]) / 2;
3085 
3086 	/* only move right, since we are not moving DQS/DQ */
3087 	if (mid < 0)
3088 		mid = 0;
3089 
3090 	/* dm_marign should fail if we never find a window */
3091 	if (win_best == 0)
3092 		dm_margin = -1;
3093 	else
3094 		dm_margin = left_edge[0] - mid;
3095 
3096 	scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3097 	writel(0, &sdr_scc_mgr->update);
3098 
3099 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3100 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3101 		   right_edge[0], mid, dm_margin);
3102 	/* Export values */
3103 	gbl->fom_out += dq_margin + dqs_margin;
3104 
3105 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3106 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3107 		   dq_margin, dqs_margin, dm_margin);
3108 
3109 	/*
3110 	 * Do not remove this line as it makes sure all of our
3111 	 * decisions have been applied.
3112 	 */
3113 	writel(0, &sdr_scc_mgr->update);
3114 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3115 }
3116 
3117 /* calibrate the write operations */
3118 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3119 	uint32_t test_bgn)
3120 {
3121 	/* update info for sims */
3122 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3123 
3124 	reg_file_set_stage(CAL_STAGE_WRITES);
3125 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3126 
3127 	reg_file_set_group(g);
3128 
3129 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3130 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3131 					CAL_SUBSTAGE_WRITES_CENTER);
3132 		return 0;
3133 	}
3134 
3135 	return 1;
3136 }
3137 
3138 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3139 static void mem_precharge_and_activate(void)
3140 {
3141 	uint32_t r;
3142 
3143 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3144 		if (param->skip_ranks[r]) {
3145 			/* request to skip the rank */
3146 			continue;
3147 		}
3148 
3149 		/* set rank */
3150 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3151 
3152 		/* precharge all banks ... */
3153 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3154 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3155 
3156 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3157 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3158 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3159 
3160 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3161 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3162 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3163 
3164 		/* activate rows */
3165 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3167 	}
3168 }
3169 
3170 /* Configure various memory related parameters. */
3171 static void mem_config(void)
3172 {
3173 	uint32_t rlat, wlat;
3174 	uint32_t rw_wl_nop_cycles;
3175 	uint32_t max_latency;
3176 
3177 	debug("%s:%d\n", __func__, __LINE__);
3178 	/* read in write and read latency */
3179 	wlat = readl(&data_mgr->t_wl_add);
3180 	wlat += readl(&data_mgr->mem_t_add);
3181 
3182 	/* WL for hard phy does not include additive latency */
3183 
3184 	/*
3185 	 * add addtional write latency to offset the address/command extra
3186 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3187 	 * by one mem clock cycle. Only do this for DDR3
3188 	 */
3189 	wlat = wlat + 1;
3190 
3191 	rlat = readl(&data_mgr->t_rl_add);
3192 
3193 	rw_wl_nop_cycles = wlat - 2;
3194 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3195 
3196 	/*
3197 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3198 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3199 	 */
3200 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3201 	/* configure for a burst length of 8 */
3202 
3203 	/* write latency */
3204 	/* Adjust Write Latency for Hard PHY */
3205 	wlat = wlat + 1;
3206 
3207 	/* set a pretty high read latency initially */
3208 	gbl->curr_read_lat = rlat + 16;
3209 
3210 	if (gbl->curr_read_lat > max_latency)
3211 		gbl->curr_read_lat = max_latency;
3212 
3213 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3214 
3215 	/* advertise write latency */
3216 	gbl->curr_write_lat = wlat;
3217 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3218 
3219 	/* initialize bit slips */
3220 	mem_precharge_and_activate();
3221 }
3222 
3223 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3224 static void mem_skip_calibrate(void)
3225 {
3226 	uint32_t vfifo_offset;
3227 	uint32_t i, j, r;
3228 
3229 	debug("%s:%d\n", __func__, __LINE__);
3230 	/* Need to update every shadow register set used by the interface */
3231 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3232 		r += NUM_RANKS_PER_SHADOW_REG) {
3233 		/*
3234 		 * Set output phase alignment settings appropriate for
3235 		 * skip calibration.
3236 		 */
3237 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3238 			scc_mgr_set_dqs_en_phase(i, 0);
3239 #if IO_DLL_CHAIN_LENGTH == 6
3240 			scc_mgr_set_dqdqs_output_phase(i, 6);
3241 #else
3242 			scc_mgr_set_dqdqs_output_phase(i, 7);
3243 #endif
3244 			/*
3245 			 * Case:33398
3246 			 *
3247 			 * Write data arrives to the I/O two cycles before write
3248 			 * latency is reached (720 deg).
3249 			 *   -> due to bit-slip in a/c bus
3250 			 *   -> to allow board skew where dqs is longer than ck
3251 			 *      -> how often can this happen!?
3252 			 *      -> can claim back some ptaps for high freq
3253 			 *       support if we can relax this, but i digress...
3254 			 *
3255 			 * The write_clk leads mem_ck by 90 deg
3256 			 * The minimum ptap of the OPA is 180 deg
3257 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3258 			 * The write_clk is always delayed by 2 ptaps
3259 			 *
3260 			 * Hence, to make DQS aligned to CK, we need to delay
3261 			 * DQS by:
3262 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3263 			 *
3264 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3265 			 * gives us the number of ptaps, which simplies to:
3266 			 *
3267 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3268 			 */
3269 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3270 				IO_DLL_CHAIN_LENGTH - 2));
3271 		}
3272 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3273 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3274 
3275 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3276 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3277 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3278 		}
3279 		writel(0xff, &sdr_scc_mgr->dq_ena);
3280 		writel(0xff, &sdr_scc_mgr->dm_ena);
3281 		writel(0, &sdr_scc_mgr->update);
3282 	}
3283 
3284 	/* Compensate for simulation model behaviour */
3285 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3286 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3287 		scc_mgr_load_dqs(i);
3288 	}
3289 	writel(0, &sdr_scc_mgr->update);
3290 
3291 	/*
3292 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3293 	 * in sequencer.
3294 	 */
3295 	vfifo_offset = CALIB_VFIFO_OFFSET;
3296 	for (j = 0; j < vfifo_offset; j++) {
3297 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3298 	}
3299 	writel(0, &phy_mgr_cmd->fifo_reset);
3300 
3301 	/*
3302 	 * For ACV with hard lfifo, we get the skip-cal setting from
3303 	 * generation-time constant.
3304 	 */
3305 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3306 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3307 }
3308 
3309 /* Memory calibration entry point */
3310 static uint32_t mem_calibrate(void)
3311 {
3312 	uint32_t i;
3313 	uint32_t rank_bgn, sr;
3314 	uint32_t write_group, write_test_bgn;
3315 	uint32_t read_group, read_test_bgn;
3316 	uint32_t run_groups, current_run;
3317 	uint32_t failing_groups = 0;
3318 	uint32_t group_failed = 0;
3319 	uint32_t sr_failed = 0;
3320 
3321 	debug("%s:%d\n", __func__, __LINE__);
3322 	/* Initialize the data settings */
3323 
3324 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3325 	gbl->error_stage = CAL_STAGE_NIL;
3326 	gbl->error_group = 0xff;
3327 	gbl->fom_in = 0;
3328 	gbl->fom_out = 0;
3329 
3330 	mem_config();
3331 
3332 	uint32_t bypass_mode = 0x1;
3333 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3334 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3335 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3336 		scc_set_bypass_mode(i, bypass_mode);
3337 	}
3338 
3339 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3340 		/*
3341 		 * Set VFIFO and LFIFO to instant-on settings in skip
3342 		 * calibration mode.
3343 		 */
3344 		mem_skip_calibrate();
3345 	} else {
3346 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3347 			/*
3348 			 * Zero all delay chain/phase settings for all
3349 			 * groups and all shadow register sets.
3350 			 */
3351 			scc_mgr_zero_all();
3352 
3353 			run_groups = ~param->skip_groups;
3354 
3355 			for (write_group = 0, write_test_bgn = 0; write_group
3356 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3357 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3358 				/* Initialized the group failure */
3359 				group_failed = 0;
3360 
3361 				current_run = run_groups & ((1 <<
3362 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3363 				run_groups = run_groups >>
3364 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3365 
3366 				if (current_run == 0)
3367 					continue;
3368 
3369 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3370 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3371 				scc_mgr_zero_group(write_group, write_test_bgn,
3372 						   0);
3373 
3374 				for (read_group = write_group *
3375 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3376 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3377 					read_test_bgn = 0;
3378 					read_group < (write_group + 1) *
3379 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3380 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3381 					group_failed == 0;
3382 					read_group++, read_test_bgn +=
3383 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3384 					/* Calibrate the VFIFO */
3385 					if (!((STATIC_CALIB_STEPS) &
3386 						CALIB_SKIP_VFIFO)) {
3387 						if (!rw_mgr_mem_calibrate_vfifo
3388 							(read_group,
3389 							read_test_bgn)) {
3390 							group_failed = 1;
3391 
3392 							if (!(gbl->
3393 							phy_debug_mode_flags &
3394 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3395 								return 0;
3396 							}
3397 						}
3398 					}
3399 				}
3400 
3401 				/* Calibrate the output side */
3402 				if (group_failed == 0)	{
3403 					for (rank_bgn = 0, sr = 0; rank_bgn
3404 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3405 						rank_bgn +=
3406 						NUM_RANKS_PER_SHADOW_REG,
3407 						++sr) {
3408 						sr_failed = 0;
3409 						if (!((STATIC_CALIB_STEPS) &
3410 						CALIB_SKIP_WRITES)) {
3411 							if ((STATIC_CALIB_STEPS)
3412 						& CALIB_SKIP_DELAY_SWEEPS) {
3413 						/* not needed in quick mode! */
3414 							} else {
3415 						/*
3416 						 * Determine if this set of
3417 						 * ranks should be skipped
3418 						 * entirely.
3419 						 */
3420 					if (!param->skip_shadow_regs[sr]) {
3421 						if (!rw_mgr_mem_calibrate_writes
3422 						(rank_bgn, write_group,
3423 						write_test_bgn)) {
3424 							sr_failed = 1;
3425 							if (!(gbl->
3426 							phy_debug_mode_flags &
3427 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3428 								return 0;
3429 									}
3430 									}
3431 								}
3432 							}
3433 						}
3434 						if (sr_failed != 0)
3435 							group_failed = 1;
3436 					}
3437 				}
3438 
3439 				if (group_failed == 0) {
3440 					for (read_group = write_group *
3441 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3442 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3443 					read_test_bgn = 0;
3444 						read_group < (write_group + 1)
3445 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3446 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3447 						group_failed == 0;
3448 						read_group++, read_test_bgn +=
3449 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3450 						if (!((STATIC_CALIB_STEPS) &
3451 							CALIB_SKIP_WRITES)) {
3452 					if (!rw_mgr_mem_calibrate_vfifo_end
3453 						(read_group, read_test_bgn)) {
3454 							group_failed = 1;
3455 
3456 						if (!(gbl->phy_debug_mode_flags
3457 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3458 								return 0;
3459 								}
3460 							}
3461 						}
3462 					}
3463 				}
3464 
3465 				if (group_failed != 0)
3466 					failing_groups++;
3467 			}
3468 
3469 			/*
3470 			 * USER If there are any failing groups then report
3471 			 * the failure.
3472 			 */
3473 			if (failing_groups != 0)
3474 				return 0;
3475 
3476 			/* Calibrate the LFIFO */
3477 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3478 				/*
3479 				 * If we're skipping groups as part of debug,
3480 				 * don't calibrate LFIFO.
3481 				 */
3482 				if (param->skip_groups == 0) {
3483 					if (!rw_mgr_mem_calibrate_lfifo())
3484 						return 0;
3485 				}
3486 			}
3487 		}
3488 	}
3489 
3490 	/*
3491 	 * Do not remove this line as it makes sure all of our decisions
3492 	 * have been applied.
3493 	 */
3494 	writel(0, &sdr_scc_mgr->update);
3495 	return 1;
3496 }
3497 
3498 static uint32_t run_mem_calibrate(void)
3499 {
3500 	uint32_t pass;
3501 	uint32_t debug_info;
3502 
3503 	debug("%s:%d\n", __func__, __LINE__);
3504 
3505 	/* Reset pass/fail status shown on afi_cal_success/fail */
3506 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3507 
3508 	/* stop tracking manger */
3509 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3510 
3511 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3512 
3513 	initialize();
3514 	rw_mgr_mem_initialize();
3515 
3516 	pass = mem_calibrate();
3517 
3518 	mem_precharge_and_activate();
3519 	writel(0, &phy_mgr_cmd->fifo_reset);
3520 
3521 	/*
3522 	 * Handoff:
3523 	 * Don't return control of the PHY back to AFI when in debug mode.
3524 	 */
3525 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3526 		rw_mgr_mem_handoff();
3527 		/*
3528 		 * In Hard PHY this is a 2-bit control:
3529 		 * 0: AFI Mux Select
3530 		 * 1: DDIO Mux Select
3531 		 */
3532 		writel(0x2, &phy_mgr_cfg->mux_sel);
3533 	}
3534 
3535 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3536 
3537 	if (pass) {
3538 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3539 
3540 		gbl->fom_in /= 2;
3541 		gbl->fom_out /= 2;
3542 
3543 		if (gbl->fom_in > 0xff)
3544 			gbl->fom_in = 0xff;
3545 
3546 		if (gbl->fom_out > 0xff)
3547 			gbl->fom_out = 0xff;
3548 
3549 		/* Update the FOM in the register file */
3550 		debug_info = gbl->fom_in;
3551 		debug_info |= gbl->fom_out << 8;
3552 		writel(debug_info, &sdr_reg_file->fom);
3553 
3554 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3555 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3556 	} else {
3557 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3558 
3559 		debug_info = gbl->error_stage;
3560 		debug_info |= gbl->error_substage << 8;
3561 		debug_info |= gbl->error_group << 16;
3562 
3563 		writel(debug_info, &sdr_reg_file->failing_stage);
3564 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3565 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3566 
3567 		/* Update the failing group/stage in the register file */
3568 		debug_info = gbl->error_stage;
3569 		debug_info |= gbl->error_substage << 8;
3570 		debug_info |= gbl->error_group << 16;
3571 		writel(debug_info, &sdr_reg_file->failing_stage);
3572 	}
3573 
3574 	return pass;
3575 }
3576 
3577 /**
3578  * hc_initialize_rom_data() - Initialize ROM data
3579  *
3580  * Initialize ROM data.
3581  */
3582 static void hc_initialize_rom_data(void)
3583 {
3584 	u32 i, addr;
3585 
3586 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3587 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3588 		writel(inst_rom_init[i], addr + (i << 2));
3589 
3590 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3591 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3592 		writel(ac_rom_init[i], addr + (i << 2));
3593 }
3594 
3595 /**
3596  * initialize_reg_file() - Initialize SDR register file
3597  *
3598  * Initialize SDR register file.
3599  */
3600 static void initialize_reg_file(void)
3601 {
3602 	/* Initialize the register file with the correct data */
3603 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3604 	writel(0, &sdr_reg_file->debug_data_addr);
3605 	writel(0, &sdr_reg_file->cur_stage);
3606 	writel(0, &sdr_reg_file->fom);
3607 	writel(0, &sdr_reg_file->failing_stage);
3608 	writel(0, &sdr_reg_file->debug1);
3609 	writel(0, &sdr_reg_file->debug2);
3610 }
3611 
3612 /**
3613  * initialize_hps_phy() - Initialize HPS PHY
3614  *
3615  * Initialize HPS PHY.
3616  */
3617 static void initialize_hps_phy(void)
3618 {
3619 	uint32_t reg;
3620 	/*
3621 	 * Tracking also gets configured here because it's in the
3622 	 * same register.
3623 	 */
3624 	uint32_t trk_sample_count = 7500;
3625 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3626 	/*
3627 	 * Format is number of outer loops in the 16 MSB, sample
3628 	 * count in 16 LSB.
3629 	 */
3630 
3631 	reg = 0;
3632 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3633 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3634 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3636 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3637 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3638 	/*
3639 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3640 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3641 	 */
3642 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3643 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3644 		trk_sample_count);
3645 	writel(reg, &sdr_ctrl->phy_ctrl0);
3646 
3647 	reg = 0;
3648 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3649 		trk_sample_count >>
3650 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3651 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3652 		trk_long_idle_sample_count);
3653 	writel(reg, &sdr_ctrl->phy_ctrl1);
3654 
3655 	reg = 0;
3656 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3657 		trk_long_idle_sample_count >>
3658 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3659 	writel(reg, &sdr_ctrl->phy_ctrl2);
3660 }
3661 
3662 static void initialize_tracking(void)
3663 {
3664 	uint32_t concatenated_longidle = 0x0;
3665 	uint32_t concatenated_delays = 0x0;
3666 	uint32_t concatenated_rw_addr = 0x0;
3667 	uint32_t concatenated_refresh = 0x0;
3668 	uint32_t trk_sample_count = 7500;
3669 	uint32_t dtaps_per_ptap;
3670 	uint32_t tmp_delay;
3671 
3672 	/*
3673 	 * compute usable version of value in case we skip full
3674 	 * computation later
3675 	 */
3676 	dtaps_per_ptap = 0;
3677 	tmp_delay = 0;
3678 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3679 		dtaps_per_ptap++;
3680 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3681 	}
3682 	dtaps_per_ptap--;
3683 
3684 	concatenated_longidle = concatenated_longidle ^ 10;
3685 		/*longidle outer loop */
3686 	concatenated_longidle = concatenated_longidle << 16;
3687 	concatenated_longidle = concatenated_longidle ^ 100;
3688 		/*longidle sample count */
3689 	concatenated_delays = concatenated_delays ^ 243;
3690 		/* trfc, worst case of 933Mhz 4Gb */
3691 	concatenated_delays = concatenated_delays << 8;
3692 	concatenated_delays = concatenated_delays ^ 14;
3693 		/* trcd, worst case */
3694 	concatenated_delays = concatenated_delays << 8;
3695 	concatenated_delays = concatenated_delays ^ 10;
3696 		/* vfifo wait */
3697 	concatenated_delays = concatenated_delays << 8;
3698 	concatenated_delays = concatenated_delays ^ 4;
3699 		/* mux delay */
3700 
3701 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3702 	concatenated_rw_addr = concatenated_rw_addr << 8;
3703 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3704 	concatenated_rw_addr = concatenated_rw_addr << 8;
3705 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3706 	concatenated_rw_addr = concatenated_rw_addr << 8;
3707 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3708 
3709 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3710 	concatenated_refresh = concatenated_refresh << 24;
3711 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3712 
3713 	/* Initialize the register file with the correct data */
3714 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3715 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3716 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3717 	writel(concatenated_delays, &sdr_reg_file->delays);
3718 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3719 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3720 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3721 }
3722 
3723 int sdram_calibration_full(void)
3724 {
3725 	struct param_type my_param;
3726 	struct gbl_type my_gbl;
3727 	uint32_t pass;
3728 	uint32_t i;
3729 
3730 	param = &my_param;
3731 	gbl = &my_gbl;
3732 
3733 	/* Initialize the debug mode flags */
3734 	gbl->phy_debug_mode_flags = 0;
3735 	/* Set the calibration enabled by default */
3736 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3737 	/*
3738 	 * Only sweep all groups (regardless of fail state) by default
3739 	 * Set enabled read test by default.
3740 	 */
3741 #if DISABLE_GUARANTEED_READ
3742 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3743 #endif
3744 	/* Initialize the register file */
3745 	initialize_reg_file();
3746 
3747 	/* Initialize any PHY CSR */
3748 	initialize_hps_phy();
3749 
3750 	scc_mgr_initialize();
3751 
3752 	initialize_tracking();
3753 
3754 	/* USER Enable all ranks, groups */
3755 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3756 		param->skip_ranks[i] = 0;
3757 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3758 		param->skip_shadow_regs[i] = 0;
3759 	param->skip_groups = 0;
3760 
3761 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3762 
3763 	debug("%s:%d\n", __func__, __LINE__);
3764 	debug_cond(DLEVEL == 1,
3765 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3766 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3767 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3768 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3769 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3770 	debug_cond(DLEVEL == 1,
3771 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3772 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3773 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3774 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3775 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3776 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3777 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3778 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3779 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3780 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3781 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3782 		   IO_IO_OUT2_DELAY_MAX);
3783 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3784 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3785 
3786 	hc_initialize_rom_data();
3787 
3788 	/* update info for sims */
3789 	reg_file_set_stage(CAL_STAGE_NIL);
3790 	reg_file_set_group(0);
3791 
3792 	/*
3793 	 * Load global needed for those actions that require
3794 	 * some dynamic calibration support.
3795 	 */
3796 	dyn_calib_steps = STATIC_CALIB_STEPS;
3797 	/*
3798 	 * Load global to allow dynamic selection of delay loop settings
3799 	 * based on calibration mode.
3800 	 */
3801 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3802 		skip_delay_mask = 0xff;
3803 	else
3804 		skip_delay_mask = 0x0;
3805 
3806 	pass = run_mem_calibrate();
3807 
3808 	printf("%s: Calibration complete\n", __FILE__);
3809 	return pass;
3810 }
3811