1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 327 delay); 328 } 329 330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 331 { 332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 333 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 334 delay); 335 } 336 337 /* load up dqs config settings */ 338 static void scc_mgr_load_dqs(uint32_t dqs) 339 { 340 writel(dqs, &sdr_scc_mgr->dqs_ena); 341 } 342 343 /* load up dqs io config settings */ 344 static void scc_mgr_load_dqs_io(void) 345 { 346 writel(0, &sdr_scc_mgr->dqs_io_ena); 347 } 348 349 /* load up dq config settings */ 350 static void scc_mgr_load_dq(uint32_t dq_in_group) 351 { 352 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 353 } 354 355 /* load up dm config settings */ 356 static void scc_mgr_load_dm(uint32_t dm) 357 { 358 writel(dm, &sdr_scc_mgr->dm_ena); 359 } 360 361 /** 362 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 363 * @off: Base offset in SCC Manager space 364 * @grp: Read/Write group 365 * @val: Value to be set 366 * @update: If non-zero, trigger SCC Manager update for all ranks 367 * 368 * This function sets the SCC Manager (Scan Chain Control Manager) register 369 * and optionally triggers the SCC update for all ranks. 370 */ 371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 372 const int update) 373 { 374 u32 r; 375 376 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 377 r += NUM_RANKS_PER_SHADOW_REG) { 378 scc_mgr_set(off, grp, val); 379 380 if (update || (r == 0)) { 381 writel(grp, &sdr_scc_mgr->dqs_ena); 382 writel(0, &sdr_scc_mgr->update); 383 } 384 } 385 } 386 387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 388 { 389 /* 390 * USER although the h/w doesn't support different phases per 391 * shadow register, for simplicity our scc manager modeling 392 * keeps different phase settings per shadow reg, and it's 393 * important for us to keep them in sync to match h/w. 394 * for efficiency, the scan chain update should occur only 395 * once to sr0. 396 */ 397 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 398 read_group, phase, 0); 399 } 400 401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 402 uint32_t phase) 403 { 404 /* 405 * USER although the h/w doesn't support different phases per 406 * shadow register, for simplicity our scc manager modeling 407 * keeps different phase settings per shadow reg, and it's 408 * important for us to keep them in sync to match h/w. 409 * for efficiency, the scan chain update should occur only 410 * once to sr0. 411 */ 412 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 413 write_group, phase, 0); 414 } 415 416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 417 uint32_t delay) 418 { 419 /* 420 * In shadow register mode, the T11 settings are stored in 421 * registers in the core, which are updated by the DQS_ENA 422 * signals. Not issuing the SCC_MGR_UPD command allows us to 423 * save lots of rank switching overhead, by calling 424 * select_shadow_regs_for_update with update_scan_chains 425 * set to 0. 426 */ 427 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 428 read_group, delay, 1); 429 writel(0, &sdr_scc_mgr->update); 430 } 431 432 /** 433 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 434 * @write_group: Write group 435 * @delay: Delay value 436 * 437 * This function sets the OCT output delay in SCC manager. 438 */ 439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 440 { 441 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 443 const int base = write_group * ratio; 444 int i; 445 /* 446 * Load the setting in the SCC manager 447 * Although OCT affects only write data, the OCT delay is controlled 448 * by the DQS logic block which is instantiated once per read group. 449 * For protocols where a write group consists of multiple read groups, 450 * the setting must be set multiple times. 451 */ 452 for (i = 0; i < ratio; i++) 453 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 454 } 455 456 /** 457 * scc_mgr_set_hhp_extras() - Set HHP extras. 458 * 459 * Load the fixed setting in the SCC manager HHP extras. 460 */ 461 static void scc_mgr_set_hhp_extras(void) 462 { 463 /* 464 * Load the fixed setting in the SCC manager 465 * bits: 0:0 = 1'b1 - DQS bypass 466 * bits: 1:1 = 1'b1 - DQ bypass 467 * bits: 4:2 = 3'b001 - rfifo_mode 468 * bits: 6:5 = 2'b01 - rfifo clock_select 469 * bits: 7:7 = 1'b0 - separate gating from ungating setting 470 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 471 */ 472 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 473 (1 << 2) | (1 << 1) | (1 << 0); 474 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 475 SCC_MGR_HHP_GLOBALS_OFFSET | 476 SCC_MGR_HHP_EXTRAS_OFFSET; 477 478 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 479 __func__, __LINE__); 480 writel(value, addr); 481 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 482 __func__, __LINE__); 483 } 484 485 /** 486 * scc_mgr_zero_all() - Zero all DQS config 487 * 488 * Zero all DQS config. 489 */ 490 static void scc_mgr_zero_all(void) 491 { 492 int i, r; 493 494 /* 495 * USER Zero all DQS config settings, across all groups and all 496 * shadow registers 497 */ 498 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 499 r += NUM_RANKS_PER_SHADOW_REG) { 500 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 501 /* 502 * The phases actually don't exist on a per-rank basis, 503 * but there's no harm updating them several times, so 504 * let's keep the code simple. 505 */ 506 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 507 scc_mgr_set_dqs_en_phase(i, 0); 508 scc_mgr_set_dqs_en_delay(i, 0); 509 } 510 511 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 512 scc_mgr_set_dqdqs_output_phase(i, 0); 513 /* Arria V/Cyclone V don't have out2. */ 514 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 515 } 516 } 517 518 /* Multicast to all DQS group enables. */ 519 writel(0xff, &sdr_scc_mgr->dqs_ena); 520 writel(0, &sdr_scc_mgr->update); 521 } 522 523 /** 524 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 525 * @write_group: Write group 526 * 527 * Set bypass mode and trigger SCC update. 528 */ 529 static void scc_set_bypass_mode(const u32 write_group) 530 { 531 /* Multicast to all DQ enables. */ 532 writel(0xff, &sdr_scc_mgr->dq_ena); 533 writel(0xff, &sdr_scc_mgr->dm_ena); 534 535 /* Update current DQS IO enable. */ 536 writel(0, &sdr_scc_mgr->dqs_io_ena); 537 538 /* Update the DQS logic. */ 539 writel(write_group, &sdr_scc_mgr->dqs_ena); 540 541 /* Hit update. */ 542 writel(0, &sdr_scc_mgr->update); 543 } 544 545 /** 546 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 547 * @write_group: Write group 548 * 549 * Load DQS settings for Write Group, do not trigger SCC update. 550 */ 551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 552 { 553 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 554 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 555 const int base = write_group * ratio; 556 int i; 557 /* 558 * Load the setting in the SCC manager 559 * Although OCT affects only write data, the OCT delay is controlled 560 * by the DQS logic block which is instantiated once per read group. 561 * For protocols where a write group consists of multiple read groups, 562 * the setting must be set multiple times. 563 */ 564 for (i = 0; i < ratio; i++) 565 writel(base + i, &sdr_scc_mgr->dqs_ena); 566 } 567 568 /** 569 * scc_mgr_zero_group() - Zero all configs for a group 570 * 571 * Zero DQ, DM, DQS and OCT configs for a group. 572 */ 573 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 574 { 575 int i, r; 576 577 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 578 r += NUM_RANKS_PER_SHADOW_REG) { 579 /* Zero all DQ config settings. */ 580 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 581 scc_mgr_set_dq_out1_delay(i, 0); 582 if (!out_only) 583 scc_mgr_set_dq_in_delay(i, 0); 584 } 585 586 /* Multicast to all DQ enables. */ 587 writel(0xff, &sdr_scc_mgr->dq_ena); 588 589 /* Zero all DM config settings. */ 590 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 591 scc_mgr_set_dm_out1_delay(i, 0); 592 593 /* Multicast to all DM enables. */ 594 writel(0xff, &sdr_scc_mgr->dm_ena); 595 596 /* Zero all DQS IO settings. */ 597 if (!out_only) 598 scc_mgr_set_dqs_io_in_delay(0); 599 600 /* Arria V/Cyclone V don't have out2. */ 601 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 602 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 603 scc_mgr_load_dqs_for_write_group(write_group); 604 605 /* Multicast to all DQS IO enables (only 1 in total). */ 606 writel(0, &sdr_scc_mgr->dqs_io_ena); 607 608 /* Hit update to zero everything. */ 609 writel(0, &sdr_scc_mgr->update); 610 } 611 } 612 613 /* 614 * apply and load a particular input delay for the DQ pins in a group 615 * group_bgn is the index of the first dq pin (in the write group) 616 */ 617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 618 { 619 uint32_t i, p; 620 621 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 622 scc_mgr_set_dq_in_delay(p, delay); 623 scc_mgr_load_dq(p); 624 } 625 } 626 627 /** 628 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 629 * @delay: Delay value 630 * 631 * Apply and load a particular output delay for the DQ pins in a group. 632 */ 633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 634 { 635 int i; 636 637 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 638 scc_mgr_set_dq_out1_delay(i, delay); 639 scc_mgr_load_dq(i); 640 } 641 } 642 643 /* apply and load a particular output delay for the DM pins in a group */ 644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 645 { 646 uint32_t i; 647 648 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 649 scc_mgr_set_dm_out1_delay(i, delay1); 650 scc_mgr_load_dm(i); 651 } 652 } 653 654 655 /* apply and load delay on both DQS and OCT out1 */ 656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 657 uint32_t delay) 658 { 659 scc_mgr_set_dqs_out1_delay(delay); 660 scc_mgr_load_dqs_io(); 661 662 scc_mgr_set_oct_out1_delay(write_group, delay); 663 scc_mgr_load_dqs_for_write_group(write_group); 664 } 665 666 /** 667 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 668 * @write_group: Write group 669 * @delay: Delay value 670 * 671 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 672 */ 673 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 674 const u32 delay) 675 { 676 u32 i, new_delay; 677 678 /* DQ shift */ 679 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 680 scc_mgr_load_dq(i); 681 682 /* DM shift */ 683 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 684 scc_mgr_load_dm(i); 685 686 /* DQS shift */ 687 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 688 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 689 debug_cond(DLEVEL == 1, 690 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 691 __func__, __LINE__, write_group, delay, new_delay, 692 IO_IO_OUT2_DELAY_MAX, 693 new_delay - IO_IO_OUT2_DELAY_MAX); 694 new_delay -= IO_IO_OUT2_DELAY_MAX; 695 scc_mgr_set_dqs_out1_delay(new_delay); 696 } 697 698 scc_mgr_load_dqs_io(); 699 700 /* OCT shift */ 701 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 702 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 703 debug_cond(DLEVEL == 1, 704 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 705 __func__, __LINE__, write_group, delay, 706 new_delay, IO_IO_OUT2_DELAY_MAX, 707 new_delay - IO_IO_OUT2_DELAY_MAX); 708 new_delay -= IO_IO_OUT2_DELAY_MAX; 709 scc_mgr_set_oct_out1_delay(write_group, new_delay); 710 } 711 712 scc_mgr_load_dqs_for_write_group(write_group); 713 } 714 715 /* 716 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 717 * and to all ranks 718 */ 719 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 720 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 721 { 722 uint32_t r; 723 724 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 725 r += NUM_RANKS_PER_SHADOW_REG) { 726 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 727 writel(0, &sdr_scc_mgr->update); 728 } 729 } 730 731 /* optimization used to recover some slots in ddr3 inst_rom */ 732 /* could be applied to other protocols if we wanted to */ 733 static void set_jump_as_return(void) 734 { 735 /* 736 * to save space, we replace return with jump to special shared 737 * RETURN instruction so we set the counter to large value so that 738 * we always jump 739 */ 740 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 741 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 742 } 743 744 /* 745 * should always use constants as argument to ensure all computations are 746 * performed at compile time 747 */ 748 static void delay_for_n_mem_clocks(const uint32_t clocks) 749 { 750 uint32_t afi_clocks; 751 uint8_t inner = 0; 752 uint8_t outer = 0; 753 uint16_t c_loop = 0; 754 755 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 756 757 758 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 759 /* scale (rounding up) to get afi clocks */ 760 761 /* 762 * Note, we don't bother accounting for being off a little bit 763 * because of a few extra instructions in outer loops 764 * Note, the loops have a test at the end, and do the test before 765 * the decrement, and so always perform the loop 766 * 1 time more than the counter value 767 */ 768 if (afi_clocks == 0) { 769 ; 770 } else if (afi_clocks <= 0x100) { 771 inner = afi_clocks-1; 772 outer = 0; 773 c_loop = 0; 774 } else if (afi_clocks <= 0x10000) { 775 inner = 0xff; 776 outer = (afi_clocks-1) >> 8; 777 c_loop = 0; 778 } else { 779 inner = 0xff; 780 outer = 0xff; 781 c_loop = (afi_clocks-1) >> 16; 782 } 783 784 /* 785 * rom instructions are structured as follows: 786 * 787 * IDLE_LOOP2: jnz cntr0, TARGET_A 788 * IDLE_LOOP1: jnz cntr1, TARGET_B 789 * return 790 * 791 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 792 * TARGET_B is set to IDLE_LOOP2 as well 793 * 794 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 795 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 796 * 797 * a little confusing, but it helps save precious space in the inst_rom 798 * and sequencer rom and keeps the delays more accurate and reduces 799 * overhead 800 */ 801 if (afi_clocks <= 0x100) { 802 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 803 &sdr_rw_load_mgr_regs->load_cntr1); 804 805 writel(RW_MGR_IDLE_LOOP1, 806 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 807 808 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 809 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 810 } else { 811 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 812 &sdr_rw_load_mgr_regs->load_cntr0); 813 814 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 815 &sdr_rw_load_mgr_regs->load_cntr1); 816 817 writel(RW_MGR_IDLE_LOOP2, 818 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 819 820 writel(RW_MGR_IDLE_LOOP2, 821 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 822 823 /* hack to get around compiler not being smart enough */ 824 if (afi_clocks <= 0x10000) { 825 /* only need to run once */ 826 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 827 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 828 } else { 829 do { 830 writel(RW_MGR_IDLE_LOOP2, 831 SDR_PHYGRP_RWMGRGRP_ADDRESS | 832 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 833 } while (c_loop-- != 0); 834 } 835 } 836 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 837 } 838 839 static void rw_mgr_mem_initialize(void) 840 { 841 uint32_t r; 842 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 843 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 844 845 debug("%s:%d\n", __func__, __LINE__); 846 847 /* The reset / cke part of initialization is broadcasted to all ranks */ 848 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 850 851 /* 852 * Here's how you load register for a loop 853 * Counters are located @ 0x800 854 * Jump address are located @ 0xC00 855 * For both, registers 0 to 3 are selected using bits 3 and 2, like 856 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 857 * I know this ain't pretty, but Avalon bus throws away the 2 least 858 * significant bits 859 */ 860 861 /* start with memory RESET activated */ 862 863 /* tINIT = 200us */ 864 865 /* 866 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 867 * If a and b are the number of iteration in 2 nested loops 868 * it takes the following number of cycles to complete the operation: 869 * number_of_cycles = ((2 + n) * a + 2) * b 870 * where n is the number of instruction in the inner loop 871 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 872 * b = 6A 873 */ 874 875 /* Load counters */ 876 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 877 &sdr_rw_load_mgr_regs->load_cntr0); 878 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 879 &sdr_rw_load_mgr_regs->load_cntr1); 880 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 881 &sdr_rw_load_mgr_regs->load_cntr2); 882 883 /* Load jump address */ 884 writel(RW_MGR_INIT_RESET_0_CKE_0, 885 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 886 writel(RW_MGR_INIT_RESET_0_CKE_0, 887 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 888 writel(RW_MGR_INIT_RESET_0_CKE_0, 889 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 890 891 /* Execute count instruction */ 892 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 893 894 /* indicate that memory is stable */ 895 writel(1, &phy_mgr_cfg->reset_mem_stbl); 896 897 /* 898 * transition the RESET to high 899 * Wait for 500us 900 */ 901 902 /* 903 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 904 * If a and b are the number of iteration in 2 nested loops 905 * it takes the following number of cycles to complete the operation 906 * number_of_cycles = ((2 + n) * a + 2) * b 907 * where n is the number of instruction in the inner loop 908 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 909 * b = FF 910 */ 911 912 /* Load counters */ 913 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 914 &sdr_rw_load_mgr_regs->load_cntr0); 915 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 916 &sdr_rw_load_mgr_regs->load_cntr1); 917 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 918 &sdr_rw_load_mgr_regs->load_cntr2); 919 920 /* Load jump address */ 921 writel(RW_MGR_INIT_RESET_1_CKE_0, 922 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 923 writel(RW_MGR_INIT_RESET_1_CKE_0, 924 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 925 writel(RW_MGR_INIT_RESET_1_CKE_0, 926 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 927 928 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 929 930 /* bring up clock enable */ 931 932 /* tXRP < 250 ck cycles */ 933 delay_for_n_mem_clocks(250); 934 935 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 936 if (param->skip_ranks[r]) { 937 /* request to skip the rank */ 938 continue; 939 } 940 941 /* set rank */ 942 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 943 944 /* 945 * USER Use Mirror-ed commands for odd ranks if address 946 * mirrorring is on 947 */ 948 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 949 set_jump_as_return(); 950 writel(RW_MGR_MRS2_MIRR, grpaddr); 951 delay_for_n_mem_clocks(4); 952 set_jump_as_return(); 953 writel(RW_MGR_MRS3_MIRR, grpaddr); 954 delay_for_n_mem_clocks(4); 955 set_jump_as_return(); 956 writel(RW_MGR_MRS1_MIRR, grpaddr); 957 delay_for_n_mem_clocks(4); 958 set_jump_as_return(); 959 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 960 } else { 961 set_jump_as_return(); 962 writel(RW_MGR_MRS2, grpaddr); 963 delay_for_n_mem_clocks(4); 964 set_jump_as_return(); 965 writel(RW_MGR_MRS3, grpaddr); 966 delay_for_n_mem_clocks(4); 967 set_jump_as_return(); 968 writel(RW_MGR_MRS1, grpaddr); 969 set_jump_as_return(); 970 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 971 } 972 set_jump_as_return(); 973 writel(RW_MGR_ZQCL, grpaddr); 974 975 /* tZQinit = tDLLK = 512 ck cycles */ 976 delay_for_n_mem_clocks(512); 977 } 978 } 979 980 /* 981 * At the end of calibration we have to program the user settings in, and 982 * USER hand off the memory to the user. 983 */ 984 static void rw_mgr_mem_handoff(void) 985 { 986 uint32_t r; 987 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 988 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 989 990 debug("%s:%d\n", __func__, __LINE__); 991 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 992 if (param->skip_ranks[r]) 993 /* request to skip the rank */ 994 continue; 995 /* set rank */ 996 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 997 998 /* precharge all banks ... */ 999 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1000 1001 /* load up MR settings specified by user */ 1002 1003 /* 1004 * Use Mirror-ed commands for odd ranks if address 1005 * mirrorring is on 1006 */ 1007 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1008 set_jump_as_return(); 1009 writel(RW_MGR_MRS2_MIRR, grpaddr); 1010 delay_for_n_mem_clocks(4); 1011 set_jump_as_return(); 1012 writel(RW_MGR_MRS3_MIRR, grpaddr); 1013 delay_for_n_mem_clocks(4); 1014 set_jump_as_return(); 1015 writel(RW_MGR_MRS1_MIRR, grpaddr); 1016 delay_for_n_mem_clocks(4); 1017 set_jump_as_return(); 1018 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1019 } else { 1020 set_jump_as_return(); 1021 writel(RW_MGR_MRS2, grpaddr); 1022 delay_for_n_mem_clocks(4); 1023 set_jump_as_return(); 1024 writel(RW_MGR_MRS3, grpaddr); 1025 delay_for_n_mem_clocks(4); 1026 set_jump_as_return(); 1027 writel(RW_MGR_MRS1, grpaddr); 1028 delay_for_n_mem_clocks(4); 1029 set_jump_as_return(); 1030 writel(RW_MGR_MRS0_USER, grpaddr); 1031 } 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 } 1039 1040 /* 1041 * performs a guaranteed read on the patterns we are going to use during a 1042 * read test to ensure memory works 1043 */ 1044 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1045 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1046 uint32_t all_ranks) 1047 { 1048 uint32_t r, vg; 1049 uint32_t correct_mask_vg; 1050 uint32_t tmp_bit_chk; 1051 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1052 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1053 uint32_t addr; 1054 uint32_t base_rw_mgr; 1055 1056 *bit_chk = param->read_correct_mask; 1057 correct_mask_vg = param->read_correct_mask_vg; 1058 1059 for (r = rank_bgn; r < rank_end; r++) { 1060 if (param->skip_ranks[r]) 1061 /* request to skip the rank */ 1062 continue; 1063 1064 /* set rank */ 1065 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1066 1067 /* Load up a constant bursts of read commands */ 1068 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1069 writel(RW_MGR_GUARANTEED_READ, 1070 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1071 1072 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1073 writel(RW_MGR_GUARANTEED_READ_CONT, 1074 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1075 1076 tmp_bit_chk = 0; 1077 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1078 /* reset the fifos to get pointers to known state */ 1079 1080 writel(0, &phy_mgr_cmd->fifo_reset); 1081 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1082 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1083 1084 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1085 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1086 1087 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1088 writel(RW_MGR_GUARANTEED_READ, addr + 1089 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1090 vg) << 2)); 1091 1092 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1093 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1094 1095 if (vg == 0) 1096 break; 1097 } 1098 *bit_chk &= tmp_bit_chk; 1099 } 1100 1101 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1102 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1103 1104 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1105 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1106 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1107 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1108 return *bit_chk == param->read_correct_mask; 1109 } 1110 1111 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1112 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1113 { 1114 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1115 num_tries, bit_chk, 1); 1116 } 1117 1118 /* load up the patterns we are going to use during a read test */ 1119 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1120 uint32_t all_ranks) 1121 { 1122 uint32_t r; 1123 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1124 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1125 1126 debug("%s:%d\n", __func__, __LINE__); 1127 for (r = rank_bgn; r < rank_end; r++) { 1128 if (param->skip_ranks[r]) 1129 /* request to skip the rank */ 1130 continue; 1131 1132 /* set rank */ 1133 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1134 1135 /* Load up a constant bursts */ 1136 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1137 1138 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1140 1141 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1142 1143 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1144 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1145 1146 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1147 1148 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1149 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1150 1151 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1152 1153 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1154 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1155 1156 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1157 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1158 } 1159 1160 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1161 } 1162 1163 /* 1164 * try a read and see if it returns correct data back. has dummy reads 1165 * inserted into the mix used to align dqs enable. has more thorough checks 1166 * than the regular read test. 1167 */ 1168 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1169 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1170 uint32_t all_groups, uint32_t all_ranks) 1171 { 1172 uint32_t r, vg; 1173 uint32_t correct_mask_vg; 1174 uint32_t tmp_bit_chk; 1175 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1176 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1177 uint32_t addr; 1178 uint32_t base_rw_mgr; 1179 1180 *bit_chk = param->read_correct_mask; 1181 correct_mask_vg = param->read_correct_mask_vg; 1182 1183 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1184 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1185 1186 for (r = rank_bgn; r < rank_end; r++) { 1187 if (param->skip_ranks[r]) 1188 /* request to skip the rank */ 1189 continue; 1190 1191 /* set rank */ 1192 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1193 1194 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1195 1196 writel(RW_MGR_READ_B2B_WAIT1, 1197 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1198 1199 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1200 writel(RW_MGR_READ_B2B_WAIT2, 1201 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1202 1203 if (quick_read_mode) 1204 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1205 /* need at least two (1+1) reads to capture failures */ 1206 else if (all_groups) 1207 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1208 else 1209 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1210 1211 writel(RW_MGR_READ_B2B, 1212 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1213 if (all_groups) 1214 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1215 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1216 &sdr_rw_load_mgr_regs->load_cntr3); 1217 else 1218 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1222 1223 tmp_bit_chk = 0; 1224 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1225 /* reset the fifos to get pointers to known state */ 1226 writel(0, &phy_mgr_cmd->fifo_reset); 1227 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1228 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1229 1230 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1231 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1232 1233 if (all_groups) 1234 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1235 else 1236 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1237 1238 writel(RW_MGR_READ_B2B, addr + 1239 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1240 vg) << 2)); 1241 1242 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1243 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1244 1245 if (vg == 0) 1246 break; 1247 } 1248 *bit_chk &= tmp_bit_chk; 1249 } 1250 1251 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1252 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1253 1254 if (all_correct) { 1255 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1256 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1257 (%u == %u) => %lu", __func__, __LINE__, group, 1258 all_groups, *bit_chk, param->read_correct_mask, 1259 (long unsigned int)(*bit_chk == 1260 param->read_correct_mask)); 1261 return *bit_chk == param->read_correct_mask; 1262 } else { 1263 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1264 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1265 (%u != %lu) => %lu\n", __func__, __LINE__, 1266 group, all_groups, *bit_chk, (long unsigned int)0, 1267 (long unsigned int)(*bit_chk != 0x00)); 1268 return *bit_chk != 0x00; 1269 } 1270 } 1271 1272 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1273 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1274 uint32_t all_groups) 1275 { 1276 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1277 bit_chk, all_groups, 1); 1278 } 1279 1280 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1281 { 1282 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1283 (*v)++; 1284 } 1285 1286 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1287 { 1288 uint32_t i; 1289 1290 for (i = 0; i < VFIFO_SIZE-1; i++) 1291 rw_mgr_incr_vfifo(grp, v); 1292 } 1293 1294 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1295 { 1296 uint32_t v; 1297 uint32_t fail_cnt = 0; 1298 uint32_t test_status; 1299 1300 for (v = 0; v < VFIFO_SIZE; ) { 1301 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1302 __func__, __LINE__, v); 1303 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1304 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1305 if (!test_status) { 1306 fail_cnt++; 1307 1308 if (fail_cnt == 2) 1309 break; 1310 } 1311 1312 /* fiddle with FIFO */ 1313 rw_mgr_incr_vfifo(grp, &v); 1314 } 1315 1316 if (v >= VFIFO_SIZE) { 1317 /* no failing read found!! Something must have gone wrong */ 1318 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1319 __func__, __LINE__); 1320 return 0; 1321 } else { 1322 return v; 1323 } 1324 } 1325 1326 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1327 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1328 uint32_t *v, uint32_t *d, uint32_t *p, 1329 uint32_t *i, uint32_t *max_working_cnt) 1330 { 1331 uint32_t found_begin = 0; 1332 uint32_t tmp_delay = 0; 1333 uint32_t test_status; 1334 1335 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1336 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1337 *work_bgn = tmp_delay; 1338 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1339 1340 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1341 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1342 IO_DELAY_PER_OPA_TAP) { 1343 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1344 1345 test_status = 1346 rw_mgr_mem_calibrate_read_test_all_ranks 1347 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1348 1349 if (test_status) { 1350 *max_working_cnt = 1; 1351 found_begin = 1; 1352 break; 1353 } 1354 } 1355 1356 if (found_begin) 1357 break; 1358 1359 if (*p > IO_DQS_EN_PHASE_MAX) 1360 /* fiddle with FIFO */ 1361 rw_mgr_incr_vfifo(*grp, v); 1362 } 1363 1364 if (found_begin) 1365 break; 1366 } 1367 1368 if (*i >= VFIFO_SIZE) { 1369 /* cannot find working solution */ 1370 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1371 ptap/dtap\n", __func__, __LINE__); 1372 return 0; 1373 } else { 1374 return 1; 1375 } 1376 } 1377 1378 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1379 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1380 uint32_t *p, uint32_t *max_working_cnt) 1381 { 1382 uint32_t found_begin = 0; 1383 uint32_t tmp_delay; 1384 1385 /* Special case code for backing up a phase */ 1386 if (*p == 0) { 1387 *p = IO_DQS_EN_PHASE_MAX; 1388 rw_mgr_decr_vfifo(*grp, v); 1389 } else { 1390 (*p)--; 1391 } 1392 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1393 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1394 1395 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1396 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1397 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1398 1399 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1400 PASS_ONE_BIT, 1401 bit_chk, 0)) { 1402 found_begin = 1; 1403 *work_bgn = tmp_delay; 1404 break; 1405 } 1406 } 1407 1408 /* We have found a working dtap before the ptap found above */ 1409 if (found_begin == 1) 1410 (*max_working_cnt)++; 1411 1412 /* 1413 * Restore VFIFO to old state before we decremented it 1414 * (if needed). 1415 */ 1416 (*p)++; 1417 if (*p > IO_DQS_EN_PHASE_MAX) { 1418 *p = 0; 1419 rw_mgr_incr_vfifo(*grp, v); 1420 } 1421 1422 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1423 } 1424 1425 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1426 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1427 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1428 uint32_t *work_end) 1429 { 1430 uint32_t found_end = 0; 1431 1432 (*p)++; 1433 *work_end += IO_DELAY_PER_OPA_TAP; 1434 if (*p > IO_DQS_EN_PHASE_MAX) { 1435 /* fiddle with FIFO */ 1436 *p = 0; 1437 rw_mgr_incr_vfifo(*grp, v); 1438 } 1439 1440 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1441 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1442 += IO_DELAY_PER_OPA_TAP) { 1443 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1444 1445 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1446 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1447 found_end = 1; 1448 break; 1449 } else { 1450 (*max_working_cnt)++; 1451 } 1452 } 1453 1454 if (found_end) 1455 break; 1456 1457 if (*p > IO_DQS_EN_PHASE_MAX) { 1458 /* fiddle with FIFO */ 1459 rw_mgr_incr_vfifo(*grp, v); 1460 *p = 0; 1461 } 1462 } 1463 1464 if (*i >= VFIFO_SIZE + 1) { 1465 /* cannot see edge of failing read */ 1466 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1467 failed\n", __func__, __LINE__); 1468 return 0; 1469 } else { 1470 return 1; 1471 } 1472 } 1473 1474 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1475 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1476 uint32_t *p, uint32_t *work_mid, 1477 uint32_t *work_end) 1478 { 1479 int i; 1480 int tmp_delay = 0; 1481 1482 *work_mid = (*work_bgn + *work_end) / 2; 1483 1484 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1485 *work_bgn, *work_end, *work_mid); 1486 /* Get the middle delay to be less than a VFIFO delay */ 1487 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1488 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1489 ; 1490 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1491 while (*work_mid > tmp_delay) 1492 *work_mid -= tmp_delay; 1493 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1494 1495 tmp_delay = 0; 1496 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1497 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1498 ; 1499 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1500 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1501 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1502 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1503 ; 1504 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1505 1506 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1507 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1508 1509 /* 1510 * push vfifo until we can successfully calibrate. We can do this 1511 * because the largest possible margin in 1 VFIFO cycle. 1512 */ 1513 for (i = 0; i < VFIFO_SIZE; i++) { 1514 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1515 *v); 1516 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1517 PASS_ONE_BIT, 1518 bit_chk, 0)) { 1519 break; 1520 } 1521 1522 /* fiddle with FIFO */ 1523 rw_mgr_incr_vfifo(*grp, v); 1524 } 1525 1526 if (i >= VFIFO_SIZE) { 1527 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1528 failed\n", __func__, __LINE__); 1529 return 0; 1530 } else { 1531 return 1; 1532 } 1533 } 1534 1535 /* find a good dqs enable to use */ 1536 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1537 { 1538 uint32_t v, d, p, i; 1539 uint32_t max_working_cnt; 1540 uint32_t bit_chk; 1541 uint32_t dtaps_per_ptap; 1542 uint32_t work_bgn, work_mid, work_end; 1543 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1544 1545 debug("%s:%d %u\n", __func__, __LINE__, grp); 1546 1547 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1548 1549 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1550 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1551 1552 /* ************************************************************** */ 1553 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1554 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1555 1556 /* ********************************************************* */ 1557 /* * Step 1 : First push vfifo until we get a failing read * */ 1558 v = find_vfifo_read(grp, &bit_chk); 1559 1560 max_working_cnt = 0; 1561 1562 /* ******************************************************** */ 1563 /* * step 2: find first working phase, increment in ptaps * */ 1564 work_bgn = 0; 1565 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1566 &p, &i, &max_working_cnt) == 0) 1567 return 0; 1568 1569 work_end = work_bgn; 1570 1571 /* 1572 * If d is 0 then the working window covers a phase tap and 1573 * we can follow the old procedure otherwise, we've found the beginning, 1574 * and we need to increment the dtaps until we find the end. 1575 */ 1576 if (d == 0) { 1577 /* ********************************************************* */ 1578 /* * step 3a: if we have room, back off by one and 1579 increment in dtaps * */ 1580 1581 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1582 &max_working_cnt); 1583 1584 /* ********************************************************* */ 1585 /* * step 4a: go forward from working phase to non working 1586 phase, increment in ptaps * */ 1587 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1588 &i, &max_working_cnt, &work_end) == 0) 1589 return 0; 1590 1591 /* ********************************************************* */ 1592 /* * step 5a: back off one from last, increment in dtaps * */ 1593 1594 /* Special case code for backing up a phase */ 1595 if (p == 0) { 1596 p = IO_DQS_EN_PHASE_MAX; 1597 rw_mgr_decr_vfifo(grp, &v); 1598 } else { 1599 p = p - 1; 1600 } 1601 1602 work_end -= IO_DELAY_PER_OPA_TAP; 1603 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1604 1605 /* * The actual increment of dtaps is done outside of 1606 the if/else loop to share code */ 1607 d = 0; 1608 1609 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1610 vfifo=%u ptap=%u\n", __func__, __LINE__, 1611 v, p); 1612 } else { 1613 /* ******************************************************* */ 1614 /* * step 3-5b: Find the right edge of the window using 1615 delay taps * */ 1616 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1617 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1618 v, p, d, work_bgn); 1619 1620 work_end = work_bgn; 1621 1622 /* * The actual increment of dtaps is done outside of the 1623 if/else loop to share code */ 1624 1625 /* Only here to counterbalance a subtract later on which is 1626 not needed if this branch of the algorithm is taken */ 1627 max_working_cnt++; 1628 } 1629 1630 /* The dtap increment to find the failing edge is done here */ 1631 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1632 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1633 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1634 end-2: dtap=%u\n", __func__, __LINE__, d); 1635 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1636 1637 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1638 PASS_ONE_BIT, 1639 &bit_chk, 0)) { 1640 break; 1641 } 1642 } 1643 1644 /* Go back to working dtap */ 1645 if (d != 0) 1646 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1647 1648 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1649 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1650 v, p, d-1, work_end); 1651 1652 if (work_end < work_bgn) { 1653 /* nil range */ 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1655 failed\n", __func__, __LINE__); 1656 return 0; 1657 } 1658 1659 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1660 __func__, __LINE__, work_bgn, work_end); 1661 1662 /* *************************************************************** */ 1663 /* 1664 * * We need to calculate the number of dtaps that equal a ptap 1665 * * To do that we'll back up a ptap and re-find the edge of the 1666 * * window using dtaps 1667 */ 1668 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1670 for tracking\n", __func__, __LINE__); 1671 1672 /* Special case code for backing up a phase */ 1673 if (p == 0) { 1674 p = IO_DQS_EN_PHASE_MAX; 1675 rw_mgr_decr_vfifo(grp, &v); 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1677 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1678 v, p); 1679 } else { 1680 p = p - 1; 1681 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1682 phase only: v=%u p=%u", __func__, __LINE__, 1683 v, p); 1684 } 1685 1686 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1687 1688 /* 1689 * Increase dtap until we first see a passing read (in case the 1690 * window is smaller than a ptap), 1691 * and then a failing read to mark the edge of the window again 1692 */ 1693 1694 /* Find a passing read */ 1695 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1696 __func__, __LINE__); 1697 found_passing_read = 0; 1698 found_failing_read = 0; 1699 initial_failing_dtap = d; 1700 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1701 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1702 read d=%u\n", __func__, __LINE__, d); 1703 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1704 1705 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1706 PASS_ONE_BIT, 1707 &bit_chk, 0)) { 1708 found_passing_read = 1; 1709 break; 1710 } 1711 } 1712 1713 if (found_passing_read) { 1714 /* Find a failing read */ 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1716 read\n", __func__, __LINE__); 1717 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1718 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1719 testing read d=%u\n", __func__, __LINE__, d); 1720 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1721 1722 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1723 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1724 found_failing_read = 1; 1725 break; 1726 } 1727 } 1728 } else { 1729 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1730 calculate dtaps", __func__, __LINE__); 1731 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1732 } 1733 1734 /* 1735 * The dynamically calculated dtaps_per_ptap is only valid if we 1736 * found a passing/failing read. If we didn't, it means d hit the max 1737 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1738 * statically calculated value. 1739 */ 1740 if (found_passing_read && found_failing_read) 1741 dtaps_per_ptap = d - initial_failing_dtap; 1742 1743 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1744 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1745 - %u = %u", __func__, __LINE__, d, 1746 initial_failing_dtap, dtaps_per_ptap); 1747 1748 /* ******************************************** */ 1749 /* * step 6: Find the centre of the window * */ 1750 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1751 &work_mid, &work_end) == 0) 1752 return 0; 1753 1754 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1755 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1756 v, p-1, d); 1757 return 1; 1758 } 1759 1760 /* 1761 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1762 * dq_in_delay values 1763 */ 1764 static uint32_t 1765 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1766 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1767 { 1768 uint32_t found; 1769 uint32_t i; 1770 uint32_t p; 1771 uint32_t d; 1772 uint32_t r; 1773 1774 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1775 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1776 /* we start at zero, so have one less dq to devide among */ 1777 1778 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1779 test_bgn); 1780 1781 /* try different dq_in_delays since the dq path is shorter than dqs */ 1782 1783 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1784 r += NUM_RANKS_PER_SHADOW_REG) { 1785 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1786 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1787 vfifo_find_dqs_", __func__, __LINE__); 1788 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1789 write_group, read_group); 1790 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1791 scc_mgr_set_dq_in_delay(p, d); 1792 scc_mgr_load_dq(p); 1793 } 1794 writel(0, &sdr_scc_mgr->update); 1795 } 1796 1797 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1798 1799 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1800 en_phase_sweep_dq", __func__, __LINE__); 1801 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1802 chain to zero\n", write_group, read_group, found); 1803 1804 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1805 r += NUM_RANKS_PER_SHADOW_REG) { 1806 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1807 i++, p++) { 1808 scc_mgr_set_dq_in_delay(p, 0); 1809 scc_mgr_load_dq(p); 1810 } 1811 writel(0, &sdr_scc_mgr->update); 1812 } 1813 1814 return found; 1815 } 1816 1817 /* per-bit deskew DQ and center */ 1818 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1819 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1820 uint32_t use_read_test, uint32_t update_fom) 1821 { 1822 uint32_t i, p, d, min_index; 1823 /* 1824 * Store these as signed since there are comparisons with 1825 * signed numbers. 1826 */ 1827 uint32_t bit_chk; 1828 uint32_t sticky_bit_chk; 1829 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1830 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1831 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1832 int32_t mid; 1833 int32_t orig_mid_min, mid_min; 1834 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1835 final_dqs_en; 1836 int32_t dq_margin, dqs_margin; 1837 uint32_t stop; 1838 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1839 uint32_t addr; 1840 1841 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1842 1843 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1844 start_dqs = readl(addr + (read_group << 2)); 1845 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1846 start_dqs_en = readl(addr + ((read_group << 2) 1847 - IO_DQS_EN_DELAY_OFFSET)); 1848 1849 /* set the left and right edge of each bit to an illegal value */ 1850 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1851 sticky_bit_chk = 0; 1852 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1853 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1854 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1855 } 1856 1857 /* Search for the left edge of the window for each bit */ 1858 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1859 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1860 1861 writel(0, &sdr_scc_mgr->update); 1862 1863 /* 1864 * Stop searching when the read test doesn't pass AND when 1865 * we've seen a passing read on every bit. 1866 */ 1867 if (use_read_test) { 1868 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1869 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1870 &bit_chk, 0, 0); 1871 } else { 1872 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1873 0, PASS_ONE_BIT, 1874 &bit_chk, 0); 1875 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1876 (read_group - (write_group * 1877 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1878 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1879 stop = (bit_chk == 0); 1880 } 1881 sticky_bit_chk = sticky_bit_chk | bit_chk; 1882 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1883 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1884 && %u", __func__, __LINE__, d, 1885 sticky_bit_chk, 1886 param->read_correct_mask, stop); 1887 1888 if (stop == 1) { 1889 break; 1890 } else { 1891 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1892 if (bit_chk & 1) { 1893 /* Remember a passing test as the 1894 left_edge */ 1895 left_edge[i] = d; 1896 } else { 1897 /* If a left edge has not been seen yet, 1898 then a future passing test will mark 1899 this edge as the right edge */ 1900 if (left_edge[i] == 1901 IO_IO_IN_DELAY_MAX + 1) { 1902 right_edge[i] = -(d + 1); 1903 } 1904 } 1905 bit_chk = bit_chk >> 1; 1906 } 1907 } 1908 } 1909 1910 /* Reset DQ delay chains to 0 */ 1911 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1912 sticky_bit_chk = 0; 1913 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1914 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1915 %d right_edge[%u]: %d\n", __func__, __LINE__, 1916 i, left_edge[i], i, right_edge[i]); 1917 1918 /* 1919 * Check for cases where we haven't found the left edge, 1920 * which makes our assignment of the the right edge invalid. 1921 * Reset it to the illegal value. 1922 */ 1923 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1924 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1925 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1926 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1927 right_edge[%u]: %d\n", __func__, __LINE__, 1928 i, right_edge[i]); 1929 } 1930 1931 /* 1932 * Reset sticky bit (except for bits where we have seen 1933 * both the left and right edge). 1934 */ 1935 sticky_bit_chk = sticky_bit_chk << 1; 1936 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1937 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1938 sticky_bit_chk = sticky_bit_chk | 1; 1939 } 1940 1941 if (i == 0) 1942 break; 1943 } 1944 1945 /* Search for the right edge of the window for each bit */ 1946 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1947 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1948 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1949 uint32_t delay = d + start_dqs_en; 1950 if (delay > IO_DQS_EN_DELAY_MAX) 1951 delay = IO_DQS_EN_DELAY_MAX; 1952 scc_mgr_set_dqs_en_delay(read_group, delay); 1953 } 1954 scc_mgr_load_dqs(read_group); 1955 1956 writel(0, &sdr_scc_mgr->update); 1957 1958 /* 1959 * Stop searching when the read test doesn't pass AND when 1960 * we've seen a passing read on every bit. 1961 */ 1962 if (use_read_test) { 1963 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1964 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1965 &bit_chk, 0, 0); 1966 } else { 1967 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1968 0, PASS_ONE_BIT, 1969 &bit_chk, 0); 1970 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1971 (read_group - (write_group * 1972 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1973 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1974 stop = (bit_chk == 0); 1975 } 1976 sticky_bit_chk = sticky_bit_chk | bit_chk; 1977 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1978 1979 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1980 %u && %u", __func__, __LINE__, d, 1981 sticky_bit_chk, param->read_correct_mask, stop); 1982 1983 if (stop == 1) { 1984 break; 1985 } else { 1986 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1987 if (bit_chk & 1) { 1988 /* Remember a passing test as 1989 the right_edge */ 1990 right_edge[i] = d; 1991 } else { 1992 if (d != 0) { 1993 /* If a right edge has not been 1994 seen yet, then a future passing 1995 test will mark this edge as the 1996 left edge */ 1997 if (right_edge[i] == 1998 IO_IO_IN_DELAY_MAX + 1) { 1999 left_edge[i] = -(d + 1); 2000 } 2001 } else { 2002 /* d = 0 failed, but it passed 2003 when testing the left edge, 2004 so it must be marginal, 2005 set it to -1 */ 2006 if (right_edge[i] == 2007 IO_IO_IN_DELAY_MAX + 1 && 2008 left_edge[i] != 2009 IO_IO_IN_DELAY_MAX 2010 + 1) { 2011 right_edge[i] = -1; 2012 } 2013 /* If a right edge has not been 2014 seen yet, then a future passing 2015 test will mark this edge as the 2016 left edge */ 2017 else if (right_edge[i] == 2018 IO_IO_IN_DELAY_MAX + 2019 1) { 2020 left_edge[i] = -(d + 1); 2021 } 2022 } 2023 } 2024 2025 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2026 d=%u]: ", __func__, __LINE__, d); 2027 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2028 (int)(bit_chk & 1), i, left_edge[i]); 2029 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2030 right_edge[i]); 2031 bit_chk = bit_chk >> 1; 2032 } 2033 } 2034 } 2035 2036 /* Check that all bits have a window */ 2037 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2038 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2039 %d right_edge[%u]: %d", __func__, __LINE__, 2040 i, left_edge[i], i, right_edge[i]); 2041 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2042 == IO_IO_IN_DELAY_MAX + 1)) { 2043 /* 2044 * Restore delay chain settings before letting the loop 2045 * in rw_mgr_mem_calibrate_vfifo to retry different 2046 * dqs/ck relationships. 2047 */ 2048 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2049 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2050 scc_mgr_set_dqs_en_delay(read_group, 2051 start_dqs_en); 2052 } 2053 scc_mgr_load_dqs(read_group); 2054 writel(0, &sdr_scc_mgr->update); 2055 2056 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2057 find edge [%u]: %d %d", __func__, __LINE__, 2058 i, left_edge[i], right_edge[i]); 2059 if (use_read_test) { 2060 set_failing_group_stage(read_group * 2061 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2062 CAL_STAGE_VFIFO, 2063 CAL_SUBSTAGE_VFIFO_CENTER); 2064 } else { 2065 set_failing_group_stage(read_group * 2066 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2067 CAL_STAGE_VFIFO_AFTER_WRITES, 2068 CAL_SUBSTAGE_VFIFO_CENTER); 2069 } 2070 return 0; 2071 } 2072 } 2073 2074 /* Find middle of window for each DQ bit */ 2075 mid_min = left_edge[0] - right_edge[0]; 2076 min_index = 0; 2077 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2078 mid = left_edge[i] - right_edge[i]; 2079 if (mid < mid_min) { 2080 mid_min = mid; 2081 min_index = i; 2082 } 2083 } 2084 2085 /* 2086 * -mid_min/2 represents the amount that we need to move DQS. 2087 * If mid_min is odd and positive we'll need to add one to 2088 * make sure the rounding in further calculations is correct 2089 * (always bias to the right), so just add 1 for all positive values. 2090 */ 2091 if (mid_min > 0) 2092 mid_min++; 2093 2094 mid_min = mid_min / 2; 2095 2096 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2097 __func__, __LINE__, mid_min, min_index); 2098 2099 /* Determine the amount we can change DQS (which is -mid_min) */ 2100 orig_mid_min = mid_min; 2101 new_dqs = start_dqs - mid_min; 2102 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2103 new_dqs = IO_DQS_IN_DELAY_MAX; 2104 else if (new_dqs < 0) 2105 new_dqs = 0; 2106 2107 mid_min = start_dqs - new_dqs; 2108 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2109 mid_min, new_dqs); 2110 2111 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2112 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2113 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2114 else if (start_dqs_en - mid_min < 0) 2115 mid_min += start_dqs_en - mid_min; 2116 } 2117 new_dqs = start_dqs - mid_min; 2118 2119 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2120 new_dqs=%d mid_min=%d\n", start_dqs, 2121 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2122 new_dqs, mid_min); 2123 2124 /* Initialize data for export structures */ 2125 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2126 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2127 2128 /* add delay to bring centre of all DQ windows to the same "level" */ 2129 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2130 /* Use values before divide by 2 to reduce round off error */ 2131 shift_dq = (left_edge[i] - right_edge[i] - 2132 (left_edge[min_index] - right_edge[min_index]))/2 + 2133 (orig_mid_min - mid_min); 2134 2135 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2136 shift_dq[%u]=%d\n", i, shift_dq); 2137 2138 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2139 temp_dq_in_delay1 = readl(addr + (p << 2)); 2140 temp_dq_in_delay2 = readl(addr + (i << 2)); 2141 2142 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2143 (int32_t)IO_IO_IN_DELAY_MAX) { 2144 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2145 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2146 shift_dq = -(int32_t)temp_dq_in_delay1; 2147 } 2148 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2149 shift_dq[%u]=%d\n", i, shift_dq); 2150 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2151 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2152 scc_mgr_load_dq(p); 2153 2154 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2155 left_edge[i] - shift_dq + (-mid_min), 2156 right_edge[i] + shift_dq - (-mid_min)); 2157 /* To determine values for export structures */ 2158 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2159 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2160 2161 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2162 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2163 } 2164 2165 final_dqs = new_dqs; 2166 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2167 final_dqs_en = start_dqs_en - mid_min; 2168 2169 /* Move DQS-en */ 2170 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2171 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2172 scc_mgr_load_dqs(read_group); 2173 } 2174 2175 /* Move DQS */ 2176 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2177 scc_mgr_load_dqs(read_group); 2178 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2179 dqs_margin=%d", __func__, __LINE__, 2180 dq_margin, dqs_margin); 2181 2182 /* 2183 * Do not remove this line as it makes sure all of our decisions 2184 * have been applied. Apply the update bit. 2185 */ 2186 writel(0, &sdr_scc_mgr->update); 2187 2188 return (dq_margin >= 0) && (dqs_margin >= 0); 2189 } 2190 2191 /* 2192 * calibrate the read valid prediction FIFO. 2193 * 2194 * - read valid prediction will consist of finding a good DQS enable phase, 2195 * DQS enable delay, DQS input phase, and DQS input delay. 2196 * - we also do a per-bit deskew on the DQ lines. 2197 */ 2198 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2199 uint32_t test_bgn) 2200 { 2201 uint32_t p, d, rank_bgn, sr; 2202 uint32_t dtaps_per_ptap; 2203 uint32_t tmp_delay; 2204 uint32_t bit_chk; 2205 uint32_t grp_calibrated; 2206 uint32_t write_group, write_test_bgn; 2207 uint32_t failed_substage; 2208 2209 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2210 2211 /* update info for sims */ 2212 reg_file_set_stage(CAL_STAGE_VFIFO); 2213 2214 write_group = read_group; 2215 write_test_bgn = test_bgn; 2216 2217 /* USER Determine number of delay taps for each phase tap */ 2218 dtaps_per_ptap = 0; 2219 tmp_delay = 0; 2220 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2221 dtaps_per_ptap++; 2222 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2223 } 2224 dtaps_per_ptap--; 2225 tmp_delay = 0; 2226 2227 /* update info for sims */ 2228 reg_file_set_group(read_group); 2229 2230 grp_calibrated = 0; 2231 2232 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2233 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2234 2235 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2236 /* 2237 * In RLDRAMX we may be messing the delay of pins in 2238 * the same write group but outside of the current read 2239 * the group, but that's ok because we haven't 2240 * calibrated output side yet. 2241 */ 2242 if (d > 0) { 2243 scc_mgr_apply_group_all_out_delay_add_all_ranks 2244 (write_group, write_test_bgn, d); 2245 } 2246 2247 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2248 p++) { 2249 /* set a particular dqdqs phase */ 2250 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2251 2252 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2253 p=%u d=%u\n", __func__, __LINE__, 2254 read_group, p, d); 2255 2256 /* 2257 * Load up the patterns used by read calibration 2258 * using current DQDQS phase. 2259 */ 2260 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2261 if (!(gbl->phy_debug_mode_flags & 2262 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2263 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2264 (read_group, 1, &bit_chk)) { 2265 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2266 __func__, __LINE__); 2267 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2268 read_group, p, d); 2269 break; 2270 } 2271 } 2272 2273 /* case:56390 */ 2274 grp_calibrated = 1; 2275 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2276 (write_group, read_group, test_bgn)) { 2277 /* 2278 * USER Read per-bit deskew can be done on a 2279 * per shadow register basis. 2280 */ 2281 for (rank_bgn = 0, sr = 0; 2282 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2283 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2284 ++sr) { 2285 /* 2286 * Determine if this set of ranks 2287 * should be skipped entirely. 2288 */ 2289 if (!param->skip_shadow_regs[sr]) { 2290 /* 2291 * If doing read after write 2292 * calibration, do not update 2293 * FOM, now - do it then. 2294 */ 2295 if (!rw_mgr_mem_calibrate_vfifo_center 2296 (rank_bgn, write_group, 2297 read_group, test_bgn, 1, 0)) { 2298 grp_calibrated = 0; 2299 failed_substage = 2300 CAL_SUBSTAGE_VFIFO_CENTER; 2301 } 2302 } 2303 } 2304 } else { 2305 grp_calibrated = 0; 2306 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2307 } 2308 } 2309 } 2310 2311 if (grp_calibrated == 0) { 2312 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2313 failed_substage); 2314 return 0; 2315 } 2316 2317 /* 2318 * Reset the delay chains back to zero if they have moved > 1 2319 * (check for > 1 because loop will increase d even when pass in 2320 * first case). 2321 */ 2322 if (d > 2) 2323 scc_mgr_zero_group(write_group, 1); 2324 2325 return 1; 2326 } 2327 2328 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2329 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2330 uint32_t test_bgn) 2331 { 2332 uint32_t rank_bgn, sr; 2333 uint32_t grp_calibrated; 2334 uint32_t write_group; 2335 2336 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2337 2338 /* update info for sims */ 2339 2340 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2341 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2342 2343 write_group = read_group; 2344 2345 /* update info for sims */ 2346 reg_file_set_group(read_group); 2347 2348 grp_calibrated = 1; 2349 /* Read per-bit deskew can be done on a per shadow register basis */ 2350 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2351 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2352 /* Determine if this set of ranks should be skipped entirely */ 2353 if (!param->skip_shadow_regs[sr]) { 2354 /* This is the last calibration round, update FOM here */ 2355 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2356 write_group, 2357 read_group, 2358 test_bgn, 0, 2359 1)) { 2360 grp_calibrated = 0; 2361 } 2362 } 2363 } 2364 2365 2366 if (grp_calibrated == 0) { 2367 set_failing_group_stage(write_group, 2368 CAL_STAGE_VFIFO_AFTER_WRITES, 2369 CAL_SUBSTAGE_VFIFO_CENTER); 2370 return 0; 2371 } 2372 2373 return 1; 2374 } 2375 2376 /* Calibrate LFIFO to find smallest read latency */ 2377 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2378 { 2379 uint32_t found_one; 2380 uint32_t bit_chk; 2381 2382 debug("%s:%d\n", __func__, __LINE__); 2383 2384 /* update info for sims */ 2385 reg_file_set_stage(CAL_STAGE_LFIFO); 2386 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2387 2388 /* Load up the patterns used by read calibration for all ranks */ 2389 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2390 found_one = 0; 2391 2392 do { 2393 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2394 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2395 __func__, __LINE__, gbl->curr_read_lat); 2396 2397 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2398 NUM_READ_TESTS, 2399 PASS_ALL_BITS, 2400 &bit_chk, 1)) { 2401 break; 2402 } 2403 2404 found_one = 1; 2405 /* reduce read latency and see if things are working */ 2406 /* correctly */ 2407 gbl->curr_read_lat--; 2408 } while (gbl->curr_read_lat > 0); 2409 2410 /* reset the fifos to get pointers to known state */ 2411 2412 writel(0, &phy_mgr_cmd->fifo_reset); 2413 2414 if (found_one) { 2415 /* add a fudge factor to the read latency that was determined */ 2416 gbl->curr_read_lat += 2; 2417 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2418 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2419 read_lat=%u\n", __func__, __LINE__, 2420 gbl->curr_read_lat); 2421 return 1; 2422 } else { 2423 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2424 CAL_SUBSTAGE_READ_LATENCY); 2425 2426 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2427 read_lat=%u\n", __func__, __LINE__, 2428 gbl->curr_read_lat); 2429 return 0; 2430 } 2431 } 2432 2433 /* 2434 * issue write test command. 2435 * two variants are provided. one that just tests a write pattern and 2436 * another that tests datamask functionality. 2437 */ 2438 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2439 uint32_t test_dm) 2440 { 2441 uint32_t mcc_instruction; 2442 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2443 ENABLE_SUPER_QUICK_CALIBRATION); 2444 uint32_t rw_wl_nop_cycles; 2445 uint32_t addr; 2446 2447 /* 2448 * Set counter and jump addresses for the right 2449 * number of NOP cycles. 2450 * The number of supported NOP cycles can range from -1 to infinity 2451 * Three different cases are handled: 2452 * 2453 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2454 * mechanism will be used to insert the right number of NOPs 2455 * 2456 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2457 * issuing the write command will jump straight to the 2458 * micro-instruction that turns on DQS (for DDRx), or outputs write 2459 * data (for RLD), skipping 2460 * the NOP micro-instruction all together 2461 * 2462 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2463 * turned on in the same micro-instruction that issues the write 2464 * command. Then we need 2465 * to directly jump to the micro-instruction that sends out the data 2466 * 2467 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2468 * (2 and 3). One jump-counter (0) is used to perform multiple 2469 * write-read operations. 2470 * one counter left to issue this command in "multiple-group" mode 2471 */ 2472 2473 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2474 2475 if (rw_wl_nop_cycles == -1) { 2476 /* 2477 * CNTR 2 - We want to execute the special write operation that 2478 * turns on DQS right away and then skip directly to the 2479 * instruction that sends out the data. We set the counter to a 2480 * large number so that the jump is always taken. 2481 */ 2482 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2483 2484 /* CNTR 3 - Not used */ 2485 if (test_dm) { 2486 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2487 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2488 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2489 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2490 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2491 } else { 2492 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2493 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2494 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2495 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2496 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2497 } 2498 } else if (rw_wl_nop_cycles == 0) { 2499 /* 2500 * CNTR 2 - We want to skip the NOP operation and go straight 2501 * to the DQS enable instruction. We set the counter to a large 2502 * number so that the jump is always taken. 2503 */ 2504 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2505 2506 /* CNTR 3 - Not used */ 2507 if (test_dm) { 2508 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2509 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2510 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2511 } else { 2512 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2513 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2514 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2515 } 2516 } else { 2517 /* 2518 * CNTR 2 - In this case we want to execute the next instruction 2519 * and NOT take the jump. So we set the counter to 0. The jump 2520 * address doesn't count. 2521 */ 2522 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2523 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2524 2525 /* 2526 * CNTR 3 - Set the nop counter to the number of cycles we 2527 * need to loop for, minus 1. 2528 */ 2529 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2530 if (test_dm) { 2531 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2532 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2533 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2534 } else { 2535 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2536 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2537 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2538 } 2539 } 2540 2541 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2542 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2543 2544 if (quick_write_mode) 2545 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2546 else 2547 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2548 2549 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2550 2551 /* 2552 * CNTR 1 - This is used to ensure enough time elapses 2553 * for read data to come back. 2554 */ 2555 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2556 2557 if (test_dm) { 2558 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2559 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2560 } else { 2561 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2562 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2563 } 2564 2565 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2566 writel(mcc_instruction, addr + (group << 2)); 2567 } 2568 2569 /* Test writes, can check for a single bit pass or multiple bit pass */ 2570 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2571 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2572 uint32_t *bit_chk, uint32_t all_ranks) 2573 { 2574 uint32_t r; 2575 uint32_t correct_mask_vg; 2576 uint32_t tmp_bit_chk; 2577 uint32_t vg; 2578 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2579 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2580 uint32_t addr_rw_mgr; 2581 uint32_t base_rw_mgr; 2582 2583 *bit_chk = param->write_correct_mask; 2584 correct_mask_vg = param->write_correct_mask_vg; 2585 2586 for (r = rank_bgn; r < rank_end; r++) { 2587 if (param->skip_ranks[r]) { 2588 /* request to skip the rank */ 2589 continue; 2590 } 2591 2592 /* set rank */ 2593 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2594 2595 tmp_bit_chk = 0; 2596 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2597 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2598 /* reset the fifos to get pointers to known state */ 2599 writel(0, &phy_mgr_cmd->fifo_reset); 2600 2601 tmp_bit_chk = tmp_bit_chk << 2602 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2603 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2604 rw_mgr_mem_calibrate_write_test_issue(write_group * 2605 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2606 use_dm); 2607 2608 base_rw_mgr = readl(addr_rw_mgr); 2609 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2610 if (vg == 0) 2611 break; 2612 } 2613 *bit_chk &= tmp_bit_chk; 2614 } 2615 2616 if (all_correct) { 2617 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2618 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2619 %u => %lu", write_group, use_dm, 2620 *bit_chk, param->write_correct_mask, 2621 (long unsigned int)(*bit_chk == 2622 param->write_correct_mask)); 2623 return *bit_chk == param->write_correct_mask; 2624 } else { 2625 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2626 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2627 write_group, use_dm, *bit_chk); 2628 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2629 (long unsigned int)(*bit_chk != 0)); 2630 return *bit_chk != 0x00; 2631 } 2632 } 2633 2634 /* 2635 * center all windows. do per-bit-deskew to possibly increase size of 2636 * certain windows. 2637 */ 2638 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2639 uint32_t write_group, uint32_t test_bgn) 2640 { 2641 uint32_t i, p, min_index; 2642 int32_t d; 2643 /* 2644 * Store these as signed since there are comparisons with 2645 * signed numbers. 2646 */ 2647 uint32_t bit_chk; 2648 uint32_t sticky_bit_chk; 2649 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2650 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2651 int32_t mid; 2652 int32_t mid_min, orig_mid_min; 2653 int32_t new_dqs, start_dqs, shift_dq; 2654 int32_t dq_margin, dqs_margin, dm_margin; 2655 uint32_t stop; 2656 uint32_t temp_dq_out1_delay; 2657 uint32_t addr; 2658 2659 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2660 2661 dm_margin = 0; 2662 2663 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2664 start_dqs = readl(addr + 2665 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2666 2667 /* per-bit deskew */ 2668 2669 /* 2670 * set the left and right edge of each bit to an illegal value 2671 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2672 */ 2673 sticky_bit_chk = 0; 2674 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2675 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2676 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2677 } 2678 2679 /* Search for the left edge of the window for each bit */ 2680 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2681 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2682 2683 writel(0, &sdr_scc_mgr->update); 2684 2685 /* 2686 * Stop searching when the read test doesn't pass AND when 2687 * we've seen a passing read on every bit. 2688 */ 2689 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2690 0, PASS_ONE_BIT, &bit_chk, 0); 2691 sticky_bit_chk = sticky_bit_chk | bit_chk; 2692 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2693 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2694 == %u && %u [bit_chk= %u ]\n", 2695 d, sticky_bit_chk, param->write_correct_mask, 2696 stop, bit_chk); 2697 2698 if (stop == 1) { 2699 break; 2700 } else { 2701 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2702 if (bit_chk & 1) { 2703 /* 2704 * Remember a passing test as the 2705 * left_edge. 2706 */ 2707 left_edge[i] = d; 2708 } else { 2709 /* 2710 * If a left edge has not been seen 2711 * yet, then a future passing test will 2712 * mark this edge as the right edge. 2713 */ 2714 if (left_edge[i] == 2715 IO_IO_OUT1_DELAY_MAX + 1) { 2716 right_edge[i] = -(d + 1); 2717 } 2718 } 2719 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2720 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2721 (int)(bit_chk & 1), i, left_edge[i]); 2722 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2723 right_edge[i]); 2724 bit_chk = bit_chk >> 1; 2725 } 2726 } 2727 } 2728 2729 /* Reset DQ delay chains to 0 */ 2730 scc_mgr_apply_group_dq_out1_delay(0); 2731 sticky_bit_chk = 0; 2732 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2733 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2734 %d right_edge[%u]: %d\n", __func__, __LINE__, 2735 i, left_edge[i], i, right_edge[i]); 2736 2737 /* 2738 * Check for cases where we haven't found the left edge, 2739 * which makes our assignment of the the right edge invalid. 2740 * Reset it to the illegal value. 2741 */ 2742 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2743 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2744 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2745 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2746 right_edge[%u]: %d\n", __func__, __LINE__, 2747 i, right_edge[i]); 2748 } 2749 2750 /* 2751 * Reset sticky bit (except for bits where we have 2752 * seen the left edge). 2753 */ 2754 sticky_bit_chk = sticky_bit_chk << 1; 2755 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2756 sticky_bit_chk = sticky_bit_chk | 1; 2757 2758 if (i == 0) 2759 break; 2760 } 2761 2762 /* Search for the right edge of the window for each bit */ 2763 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2764 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2765 d + start_dqs); 2766 2767 writel(0, &sdr_scc_mgr->update); 2768 2769 /* 2770 * Stop searching when the read test doesn't pass AND when 2771 * we've seen a passing read on every bit. 2772 */ 2773 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2774 0, PASS_ONE_BIT, &bit_chk, 0); 2775 2776 sticky_bit_chk = sticky_bit_chk | bit_chk; 2777 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2778 2779 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2780 %u && %u\n", d, sticky_bit_chk, 2781 param->write_correct_mask, stop); 2782 2783 if (stop == 1) { 2784 if (d == 0) { 2785 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2786 i++) { 2787 /* d = 0 failed, but it passed when 2788 testing the left edge, so it must be 2789 marginal, set it to -1 */ 2790 if (right_edge[i] == 2791 IO_IO_OUT1_DELAY_MAX + 1 && 2792 left_edge[i] != 2793 IO_IO_OUT1_DELAY_MAX + 1) { 2794 right_edge[i] = -1; 2795 } 2796 } 2797 } 2798 break; 2799 } else { 2800 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2801 if (bit_chk & 1) { 2802 /* 2803 * Remember a passing test as 2804 * the right_edge. 2805 */ 2806 right_edge[i] = d; 2807 } else { 2808 if (d != 0) { 2809 /* 2810 * If a right edge has not 2811 * been seen yet, then a future 2812 * passing test will mark this 2813 * edge as the left edge. 2814 */ 2815 if (right_edge[i] == 2816 IO_IO_OUT1_DELAY_MAX + 1) 2817 left_edge[i] = -(d + 1); 2818 } else { 2819 /* 2820 * d = 0 failed, but it passed 2821 * when testing the left edge, 2822 * so it must be marginal, set 2823 * it to -1. 2824 */ 2825 if (right_edge[i] == 2826 IO_IO_OUT1_DELAY_MAX + 1 && 2827 left_edge[i] != 2828 IO_IO_OUT1_DELAY_MAX + 1) 2829 right_edge[i] = -1; 2830 /* 2831 * If a right edge has not been 2832 * seen yet, then a future 2833 * passing test will mark this 2834 * edge as the left edge. 2835 */ 2836 else if (right_edge[i] == 2837 IO_IO_OUT1_DELAY_MAX + 2838 1) 2839 left_edge[i] = -(d + 1); 2840 } 2841 } 2842 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2843 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2844 (int)(bit_chk & 1), i, left_edge[i]); 2845 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2846 right_edge[i]); 2847 bit_chk = bit_chk >> 1; 2848 } 2849 } 2850 } 2851 2852 /* Check that all bits have a window */ 2853 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2854 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2855 %d right_edge[%u]: %d", __func__, __LINE__, 2856 i, left_edge[i], i, right_edge[i]); 2857 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2858 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2859 set_failing_group_stage(test_bgn + i, 2860 CAL_STAGE_WRITES, 2861 CAL_SUBSTAGE_WRITES_CENTER); 2862 return 0; 2863 } 2864 } 2865 2866 /* Find middle of window for each DQ bit */ 2867 mid_min = left_edge[0] - right_edge[0]; 2868 min_index = 0; 2869 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2870 mid = left_edge[i] - right_edge[i]; 2871 if (mid < mid_min) { 2872 mid_min = mid; 2873 min_index = i; 2874 } 2875 } 2876 2877 /* 2878 * -mid_min/2 represents the amount that we need to move DQS. 2879 * If mid_min is odd and positive we'll need to add one to 2880 * make sure the rounding in further calculations is correct 2881 * (always bias to the right), so just add 1 for all positive values. 2882 */ 2883 if (mid_min > 0) 2884 mid_min++; 2885 mid_min = mid_min / 2; 2886 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2887 __LINE__, mid_min); 2888 2889 /* Determine the amount we can change DQS (which is -mid_min) */ 2890 orig_mid_min = mid_min; 2891 new_dqs = start_dqs; 2892 mid_min = 0; 2893 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2894 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2895 /* Initialize data for export structures */ 2896 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2897 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2898 2899 /* add delay to bring centre of all DQ windows to the same "level" */ 2900 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2901 /* Use values before divide by 2 to reduce round off error */ 2902 shift_dq = (left_edge[i] - right_edge[i] - 2903 (left_edge[min_index] - right_edge[min_index]))/2 + 2904 (orig_mid_min - mid_min); 2905 2906 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2907 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2908 2909 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2910 temp_dq_out1_delay = readl(addr + (i << 2)); 2911 if (shift_dq + (int32_t)temp_dq_out1_delay > 2912 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2913 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2914 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2915 shift_dq = -(int32_t)temp_dq_out1_delay; 2916 } 2917 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2918 i, shift_dq); 2919 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2920 scc_mgr_load_dq(i); 2921 2922 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2923 left_edge[i] - shift_dq + (-mid_min), 2924 right_edge[i] + shift_dq - (-mid_min)); 2925 /* To determine values for export structures */ 2926 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2927 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2928 2929 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2930 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2931 } 2932 2933 /* Move DQS */ 2934 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2935 writel(0, &sdr_scc_mgr->update); 2936 2937 /* Centre DM */ 2938 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2939 2940 /* 2941 * set the left and right edge of each bit to an illegal value, 2942 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2943 */ 2944 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2945 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2946 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2947 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2948 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2949 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2950 int32_t win_best = 0; 2951 2952 /* Search for the/part of the window with DM shift */ 2953 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2954 scc_mgr_apply_group_dm_out1_delay(d); 2955 writel(0, &sdr_scc_mgr->update); 2956 2957 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2958 PASS_ALL_BITS, &bit_chk, 2959 0)) { 2960 /* USE Set current end of the window */ 2961 end_curr = -d; 2962 /* 2963 * If a starting edge of our window has not been seen 2964 * this is our current start of the DM window. 2965 */ 2966 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2967 bgn_curr = -d; 2968 2969 /* 2970 * If current window is bigger than best seen. 2971 * Set best seen to be current window. 2972 */ 2973 if ((end_curr-bgn_curr+1) > win_best) { 2974 win_best = end_curr-bgn_curr+1; 2975 bgn_best = bgn_curr; 2976 end_best = end_curr; 2977 } 2978 } else { 2979 /* We just saw a failing test. Reset temp edge */ 2980 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2981 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2982 } 2983 } 2984 2985 2986 /* Reset DM delay chains to 0 */ 2987 scc_mgr_apply_group_dm_out1_delay(0); 2988 2989 /* 2990 * Check to see if the current window nudges up aganist 0 delay. 2991 * If so we need to continue the search by shifting DQS otherwise DQS 2992 * search begins as a new search. */ 2993 if (end_curr != 0) { 2994 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2995 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2996 } 2997 2998 /* Search for the/part of the window with DQS shifts */ 2999 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3000 /* 3001 * Note: This only shifts DQS, so are we limiting ourselve to 3002 * width of DQ unnecessarily. 3003 */ 3004 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3005 d + new_dqs); 3006 3007 writel(0, &sdr_scc_mgr->update); 3008 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3009 PASS_ALL_BITS, &bit_chk, 3010 0)) { 3011 /* USE Set current end of the window */ 3012 end_curr = d; 3013 /* 3014 * If a beginning edge of our window has not been seen 3015 * this is our current begin of the DM window. 3016 */ 3017 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3018 bgn_curr = d; 3019 3020 /* 3021 * If current window is bigger than best seen. Set best 3022 * seen to be current window. 3023 */ 3024 if ((end_curr-bgn_curr+1) > win_best) { 3025 win_best = end_curr-bgn_curr+1; 3026 bgn_best = bgn_curr; 3027 end_best = end_curr; 3028 } 3029 } else { 3030 /* We just saw a failing test. Reset temp edge */ 3031 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3033 3034 /* Early exit optimization: if ther remaining delay 3035 chain space is less than already seen largest window 3036 we can exit */ 3037 if ((win_best-1) > 3038 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3039 break; 3040 } 3041 } 3042 } 3043 3044 /* assign left and right edge for cal and reporting; */ 3045 left_edge[0] = -1*bgn_best; 3046 right_edge[0] = end_best; 3047 3048 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3049 __LINE__, left_edge[0], right_edge[0]); 3050 3051 /* Move DQS (back to orig) */ 3052 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3053 3054 /* Move DM */ 3055 3056 /* Find middle of window for the DM bit */ 3057 mid = (left_edge[0] - right_edge[0]) / 2; 3058 3059 /* only move right, since we are not moving DQS/DQ */ 3060 if (mid < 0) 3061 mid = 0; 3062 3063 /* dm_marign should fail if we never find a window */ 3064 if (win_best == 0) 3065 dm_margin = -1; 3066 else 3067 dm_margin = left_edge[0] - mid; 3068 3069 scc_mgr_apply_group_dm_out1_delay(mid); 3070 writel(0, &sdr_scc_mgr->update); 3071 3072 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3073 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3074 right_edge[0], mid, dm_margin); 3075 /* Export values */ 3076 gbl->fom_out += dq_margin + dqs_margin; 3077 3078 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3079 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3080 dq_margin, dqs_margin, dm_margin); 3081 3082 /* 3083 * Do not remove this line as it makes sure all of our 3084 * decisions have been applied. 3085 */ 3086 writel(0, &sdr_scc_mgr->update); 3087 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3088 } 3089 3090 /* calibrate the write operations */ 3091 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3092 uint32_t test_bgn) 3093 { 3094 /* update info for sims */ 3095 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3096 3097 reg_file_set_stage(CAL_STAGE_WRITES); 3098 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3099 3100 reg_file_set_group(g); 3101 3102 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3103 set_failing_group_stage(g, CAL_STAGE_WRITES, 3104 CAL_SUBSTAGE_WRITES_CENTER); 3105 return 0; 3106 } 3107 3108 return 1; 3109 } 3110 3111 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3112 static void mem_precharge_and_activate(void) 3113 { 3114 uint32_t r; 3115 3116 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3117 if (param->skip_ranks[r]) { 3118 /* request to skip the rank */ 3119 continue; 3120 } 3121 3122 /* set rank */ 3123 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3124 3125 /* precharge all banks ... */ 3126 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3127 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3128 3129 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3130 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3131 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3132 3133 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3134 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3135 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3136 3137 /* activate rows */ 3138 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3139 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3140 } 3141 } 3142 3143 /* Configure various memory related parameters. */ 3144 static void mem_config(void) 3145 { 3146 uint32_t rlat, wlat; 3147 uint32_t rw_wl_nop_cycles; 3148 uint32_t max_latency; 3149 3150 debug("%s:%d\n", __func__, __LINE__); 3151 /* read in write and read latency */ 3152 wlat = readl(&data_mgr->t_wl_add); 3153 wlat += readl(&data_mgr->mem_t_add); 3154 3155 /* WL for hard phy does not include additive latency */ 3156 3157 /* 3158 * add addtional write latency to offset the address/command extra 3159 * clock cycle. We change the AC mux setting causing AC to be delayed 3160 * by one mem clock cycle. Only do this for DDR3 3161 */ 3162 wlat = wlat + 1; 3163 3164 rlat = readl(&data_mgr->t_rl_add); 3165 3166 rw_wl_nop_cycles = wlat - 2; 3167 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3168 3169 /* 3170 * For AV/CV, lfifo is hardened and always runs at full rate so 3171 * max latency in AFI clocks, used here, is correspondingly smaller. 3172 */ 3173 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3174 /* configure for a burst length of 8 */ 3175 3176 /* write latency */ 3177 /* Adjust Write Latency for Hard PHY */ 3178 wlat = wlat + 1; 3179 3180 /* set a pretty high read latency initially */ 3181 gbl->curr_read_lat = rlat + 16; 3182 3183 if (gbl->curr_read_lat > max_latency) 3184 gbl->curr_read_lat = max_latency; 3185 3186 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3187 3188 /* advertise write latency */ 3189 gbl->curr_write_lat = wlat; 3190 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3191 3192 /* initialize bit slips */ 3193 mem_precharge_and_activate(); 3194 } 3195 3196 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3197 static void mem_skip_calibrate(void) 3198 { 3199 uint32_t vfifo_offset; 3200 uint32_t i, j, r; 3201 3202 debug("%s:%d\n", __func__, __LINE__); 3203 /* Need to update every shadow register set used by the interface */ 3204 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3205 r += NUM_RANKS_PER_SHADOW_REG) { 3206 /* 3207 * Set output phase alignment settings appropriate for 3208 * skip calibration. 3209 */ 3210 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3211 scc_mgr_set_dqs_en_phase(i, 0); 3212 #if IO_DLL_CHAIN_LENGTH == 6 3213 scc_mgr_set_dqdqs_output_phase(i, 6); 3214 #else 3215 scc_mgr_set_dqdqs_output_phase(i, 7); 3216 #endif 3217 /* 3218 * Case:33398 3219 * 3220 * Write data arrives to the I/O two cycles before write 3221 * latency is reached (720 deg). 3222 * -> due to bit-slip in a/c bus 3223 * -> to allow board skew where dqs is longer than ck 3224 * -> how often can this happen!? 3225 * -> can claim back some ptaps for high freq 3226 * support if we can relax this, but i digress... 3227 * 3228 * The write_clk leads mem_ck by 90 deg 3229 * The minimum ptap of the OPA is 180 deg 3230 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3231 * The write_clk is always delayed by 2 ptaps 3232 * 3233 * Hence, to make DQS aligned to CK, we need to delay 3234 * DQS by: 3235 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3236 * 3237 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3238 * gives us the number of ptaps, which simplies to: 3239 * 3240 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3241 */ 3242 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3243 IO_DLL_CHAIN_LENGTH - 2)); 3244 } 3245 writel(0xff, &sdr_scc_mgr->dqs_ena); 3246 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3247 3248 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3249 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3250 SCC_MGR_GROUP_COUNTER_OFFSET); 3251 } 3252 writel(0xff, &sdr_scc_mgr->dq_ena); 3253 writel(0xff, &sdr_scc_mgr->dm_ena); 3254 writel(0, &sdr_scc_mgr->update); 3255 } 3256 3257 /* Compensate for simulation model behaviour */ 3258 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3259 scc_mgr_set_dqs_bus_in_delay(i, 10); 3260 scc_mgr_load_dqs(i); 3261 } 3262 writel(0, &sdr_scc_mgr->update); 3263 3264 /* 3265 * ArriaV has hard FIFOs that can only be initialized by incrementing 3266 * in sequencer. 3267 */ 3268 vfifo_offset = CALIB_VFIFO_OFFSET; 3269 for (j = 0; j < vfifo_offset; j++) { 3270 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3271 } 3272 writel(0, &phy_mgr_cmd->fifo_reset); 3273 3274 /* 3275 * For ACV with hard lfifo, we get the skip-cal setting from 3276 * generation-time constant. 3277 */ 3278 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3279 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3280 } 3281 3282 /* Memory calibration entry point */ 3283 static uint32_t mem_calibrate(void) 3284 { 3285 uint32_t i; 3286 uint32_t rank_bgn, sr; 3287 uint32_t write_group, write_test_bgn; 3288 uint32_t read_group, read_test_bgn; 3289 uint32_t run_groups, current_run; 3290 uint32_t failing_groups = 0; 3291 uint32_t group_failed = 0; 3292 uint32_t sr_failed = 0; 3293 3294 debug("%s:%d\n", __func__, __LINE__); 3295 /* Initialize the data settings */ 3296 3297 gbl->error_substage = CAL_SUBSTAGE_NIL; 3298 gbl->error_stage = CAL_STAGE_NIL; 3299 gbl->error_group = 0xff; 3300 gbl->fom_in = 0; 3301 gbl->fom_out = 0; 3302 3303 mem_config(); 3304 3305 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3306 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3307 SCC_MGR_GROUP_COUNTER_OFFSET); 3308 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3309 if (i == 0) 3310 scc_mgr_set_hhp_extras(); 3311 3312 scc_set_bypass_mode(i); 3313 } 3314 3315 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3316 /* 3317 * Set VFIFO and LFIFO to instant-on settings in skip 3318 * calibration mode. 3319 */ 3320 mem_skip_calibrate(); 3321 } else { 3322 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3323 /* 3324 * Zero all delay chain/phase settings for all 3325 * groups and all shadow register sets. 3326 */ 3327 scc_mgr_zero_all(); 3328 3329 run_groups = ~param->skip_groups; 3330 3331 for (write_group = 0, write_test_bgn = 0; write_group 3332 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3333 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3334 /* Initialized the group failure */ 3335 group_failed = 0; 3336 3337 current_run = run_groups & ((1 << 3338 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3339 run_groups = run_groups >> 3340 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3341 3342 if (current_run == 0) 3343 continue; 3344 3345 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3346 SCC_MGR_GROUP_COUNTER_OFFSET); 3347 scc_mgr_zero_group(write_group, 0); 3348 3349 for (read_group = write_group * 3350 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3351 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3352 read_test_bgn = 0; 3353 read_group < (write_group + 1) * 3354 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3355 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3356 group_failed == 0; 3357 read_group++, read_test_bgn += 3358 RW_MGR_MEM_DQ_PER_READ_DQS) { 3359 /* Calibrate the VFIFO */ 3360 if (!((STATIC_CALIB_STEPS) & 3361 CALIB_SKIP_VFIFO)) { 3362 if (!rw_mgr_mem_calibrate_vfifo 3363 (read_group, 3364 read_test_bgn)) { 3365 group_failed = 1; 3366 3367 if (!(gbl-> 3368 phy_debug_mode_flags & 3369 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3370 return 0; 3371 } 3372 } 3373 } 3374 } 3375 3376 /* Calibrate the output side */ 3377 if (group_failed == 0) { 3378 for (rank_bgn = 0, sr = 0; rank_bgn 3379 < RW_MGR_MEM_NUMBER_OF_RANKS; 3380 rank_bgn += 3381 NUM_RANKS_PER_SHADOW_REG, 3382 ++sr) { 3383 sr_failed = 0; 3384 if (!((STATIC_CALIB_STEPS) & 3385 CALIB_SKIP_WRITES)) { 3386 if ((STATIC_CALIB_STEPS) 3387 & CALIB_SKIP_DELAY_SWEEPS) { 3388 /* not needed in quick mode! */ 3389 } else { 3390 /* 3391 * Determine if this set of 3392 * ranks should be skipped 3393 * entirely. 3394 */ 3395 if (!param->skip_shadow_regs[sr]) { 3396 if (!rw_mgr_mem_calibrate_writes 3397 (rank_bgn, write_group, 3398 write_test_bgn)) { 3399 sr_failed = 1; 3400 if (!(gbl-> 3401 phy_debug_mode_flags & 3402 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3403 return 0; 3404 } 3405 } 3406 } 3407 } 3408 } 3409 if (sr_failed != 0) 3410 group_failed = 1; 3411 } 3412 } 3413 3414 if (group_failed == 0) { 3415 for (read_group = write_group * 3416 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3417 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3418 read_test_bgn = 0; 3419 read_group < (write_group + 1) 3420 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3421 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3422 group_failed == 0; 3423 read_group++, read_test_bgn += 3424 RW_MGR_MEM_DQ_PER_READ_DQS) { 3425 if (!((STATIC_CALIB_STEPS) & 3426 CALIB_SKIP_WRITES)) { 3427 if (!rw_mgr_mem_calibrate_vfifo_end 3428 (read_group, read_test_bgn)) { 3429 group_failed = 1; 3430 3431 if (!(gbl->phy_debug_mode_flags 3432 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3433 return 0; 3434 } 3435 } 3436 } 3437 } 3438 } 3439 3440 if (group_failed != 0) 3441 failing_groups++; 3442 } 3443 3444 /* 3445 * USER If there are any failing groups then report 3446 * the failure. 3447 */ 3448 if (failing_groups != 0) 3449 return 0; 3450 3451 /* Calibrate the LFIFO */ 3452 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3453 /* 3454 * If we're skipping groups as part of debug, 3455 * don't calibrate LFIFO. 3456 */ 3457 if (param->skip_groups == 0) { 3458 if (!rw_mgr_mem_calibrate_lfifo()) 3459 return 0; 3460 } 3461 } 3462 } 3463 } 3464 3465 /* 3466 * Do not remove this line as it makes sure all of our decisions 3467 * have been applied. 3468 */ 3469 writel(0, &sdr_scc_mgr->update); 3470 return 1; 3471 } 3472 3473 static uint32_t run_mem_calibrate(void) 3474 { 3475 uint32_t pass; 3476 uint32_t debug_info; 3477 3478 debug("%s:%d\n", __func__, __LINE__); 3479 3480 /* Reset pass/fail status shown on afi_cal_success/fail */ 3481 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3482 3483 /* stop tracking manger */ 3484 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3485 3486 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3487 3488 initialize(); 3489 rw_mgr_mem_initialize(); 3490 3491 pass = mem_calibrate(); 3492 3493 mem_precharge_and_activate(); 3494 writel(0, &phy_mgr_cmd->fifo_reset); 3495 3496 /* 3497 * Handoff: 3498 * Don't return control of the PHY back to AFI when in debug mode. 3499 */ 3500 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3501 rw_mgr_mem_handoff(); 3502 /* 3503 * In Hard PHY this is a 2-bit control: 3504 * 0: AFI Mux Select 3505 * 1: DDIO Mux Select 3506 */ 3507 writel(0x2, &phy_mgr_cfg->mux_sel); 3508 } 3509 3510 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3511 3512 if (pass) { 3513 printf("%s: CALIBRATION PASSED\n", __FILE__); 3514 3515 gbl->fom_in /= 2; 3516 gbl->fom_out /= 2; 3517 3518 if (gbl->fom_in > 0xff) 3519 gbl->fom_in = 0xff; 3520 3521 if (gbl->fom_out > 0xff) 3522 gbl->fom_out = 0xff; 3523 3524 /* Update the FOM in the register file */ 3525 debug_info = gbl->fom_in; 3526 debug_info |= gbl->fom_out << 8; 3527 writel(debug_info, &sdr_reg_file->fom); 3528 3529 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3530 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3531 } else { 3532 printf("%s: CALIBRATION FAILED\n", __FILE__); 3533 3534 debug_info = gbl->error_stage; 3535 debug_info |= gbl->error_substage << 8; 3536 debug_info |= gbl->error_group << 16; 3537 3538 writel(debug_info, &sdr_reg_file->failing_stage); 3539 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3540 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3541 3542 /* Update the failing group/stage in the register file */ 3543 debug_info = gbl->error_stage; 3544 debug_info |= gbl->error_substage << 8; 3545 debug_info |= gbl->error_group << 16; 3546 writel(debug_info, &sdr_reg_file->failing_stage); 3547 } 3548 3549 return pass; 3550 } 3551 3552 /** 3553 * hc_initialize_rom_data() - Initialize ROM data 3554 * 3555 * Initialize ROM data. 3556 */ 3557 static void hc_initialize_rom_data(void) 3558 { 3559 u32 i, addr; 3560 3561 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3562 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3563 writel(inst_rom_init[i], addr + (i << 2)); 3564 3565 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3566 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3567 writel(ac_rom_init[i], addr + (i << 2)); 3568 } 3569 3570 /** 3571 * initialize_reg_file() - Initialize SDR register file 3572 * 3573 * Initialize SDR register file. 3574 */ 3575 static void initialize_reg_file(void) 3576 { 3577 /* Initialize the register file with the correct data */ 3578 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3579 writel(0, &sdr_reg_file->debug_data_addr); 3580 writel(0, &sdr_reg_file->cur_stage); 3581 writel(0, &sdr_reg_file->fom); 3582 writel(0, &sdr_reg_file->failing_stage); 3583 writel(0, &sdr_reg_file->debug1); 3584 writel(0, &sdr_reg_file->debug2); 3585 } 3586 3587 /** 3588 * initialize_hps_phy() - Initialize HPS PHY 3589 * 3590 * Initialize HPS PHY. 3591 */ 3592 static void initialize_hps_phy(void) 3593 { 3594 uint32_t reg; 3595 /* 3596 * Tracking also gets configured here because it's in the 3597 * same register. 3598 */ 3599 uint32_t trk_sample_count = 7500; 3600 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3601 /* 3602 * Format is number of outer loops in the 16 MSB, sample 3603 * count in 16 LSB. 3604 */ 3605 3606 reg = 0; 3607 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3608 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3609 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3610 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3611 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3612 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3613 /* 3614 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3615 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3616 */ 3617 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3618 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3619 trk_sample_count); 3620 writel(reg, &sdr_ctrl->phy_ctrl0); 3621 3622 reg = 0; 3623 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3624 trk_sample_count >> 3625 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3627 trk_long_idle_sample_count); 3628 writel(reg, &sdr_ctrl->phy_ctrl1); 3629 3630 reg = 0; 3631 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3632 trk_long_idle_sample_count >> 3633 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3634 writel(reg, &sdr_ctrl->phy_ctrl2); 3635 } 3636 3637 static void initialize_tracking(void) 3638 { 3639 uint32_t concatenated_longidle = 0x0; 3640 uint32_t concatenated_delays = 0x0; 3641 uint32_t concatenated_rw_addr = 0x0; 3642 uint32_t concatenated_refresh = 0x0; 3643 uint32_t trk_sample_count = 7500; 3644 uint32_t dtaps_per_ptap; 3645 uint32_t tmp_delay; 3646 3647 /* 3648 * compute usable version of value in case we skip full 3649 * computation later 3650 */ 3651 dtaps_per_ptap = 0; 3652 tmp_delay = 0; 3653 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3654 dtaps_per_ptap++; 3655 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3656 } 3657 dtaps_per_ptap--; 3658 3659 concatenated_longidle = concatenated_longidle ^ 10; 3660 /*longidle outer loop */ 3661 concatenated_longidle = concatenated_longidle << 16; 3662 concatenated_longidle = concatenated_longidle ^ 100; 3663 /*longidle sample count */ 3664 concatenated_delays = concatenated_delays ^ 243; 3665 /* trfc, worst case of 933Mhz 4Gb */ 3666 concatenated_delays = concatenated_delays << 8; 3667 concatenated_delays = concatenated_delays ^ 14; 3668 /* trcd, worst case */ 3669 concatenated_delays = concatenated_delays << 8; 3670 concatenated_delays = concatenated_delays ^ 10; 3671 /* vfifo wait */ 3672 concatenated_delays = concatenated_delays << 8; 3673 concatenated_delays = concatenated_delays ^ 4; 3674 /* mux delay */ 3675 3676 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3677 concatenated_rw_addr = concatenated_rw_addr << 8; 3678 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3679 concatenated_rw_addr = concatenated_rw_addr << 8; 3680 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3681 concatenated_rw_addr = concatenated_rw_addr << 8; 3682 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3683 3684 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3685 concatenated_refresh = concatenated_refresh << 24; 3686 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3687 3688 /* Initialize the register file with the correct data */ 3689 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3690 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3691 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3692 writel(concatenated_delays, &sdr_reg_file->delays); 3693 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3694 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3695 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3696 } 3697 3698 int sdram_calibration_full(void) 3699 { 3700 struct param_type my_param; 3701 struct gbl_type my_gbl; 3702 uint32_t pass; 3703 uint32_t i; 3704 3705 param = &my_param; 3706 gbl = &my_gbl; 3707 3708 /* Initialize the debug mode flags */ 3709 gbl->phy_debug_mode_flags = 0; 3710 /* Set the calibration enabled by default */ 3711 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3712 /* 3713 * Only sweep all groups (regardless of fail state) by default 3714 * Set enabled read test by default. 3715 */ 3716 #if DISABLE_GUARANTEED_READ 3717 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3718 #endif 3719 /* Initialize the register file */ 3720 initialize_reg_file(); 3721 3722 /* Initialize any PHY CSR */ 3723 initialize_hps_phy(); 3724 3725 scc_mgr_initialize(); 3726 3727 initialize_tracking(); 3728 3729 /* USER Enable all ranks, groups */ 3730 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3731 param->skip_ranks[i] = 0; 3732 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3733 param->skip_shadow_regs[i] = 0; 3734 param->skip_groups = 0; 3735 3736 printf("%s: Preparing to start memory calibration\n", __FILE__); 3737 3738 debug("%s:%d\n", __func__, __LINE__); 3739 debug_cond(DLEVEL == 1, 3740 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3741 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3742 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3743 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3744 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3745 debug_cond(DLEVEL == 1, 3746 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3747 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3748 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3749 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3750 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3751 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3752 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3753 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3754 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3755 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3756 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3757 IO_IO_OUT2_DELAY_MAX); 3758 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3759 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3760 3761 hc_initialize_rom_data(); 3762 3763 /* update info for sims */ 3764 reg_file_set_stage(CAL_STAGE_NIL); 3765 reg_file_set_group(0); 3766 3767 /* 3768 * Load global needed for those actions that require 3769 * some dynamic calibration support. 3770 */ 3771 dyn_calib_steps = STATIC_CALIB_STEPS; 3772 /* 3773 * Load global to allow dynamic selection of delay loop settings 3774 * based on calibration mode. 3775 */ 3776 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3777 skip_delay_mask = 0xff; 3778 else 3779 skip_delay_mask = 0x0; 3780 3781 pass = run_mem_calibrate(); 3782 3783 printf("%s: Calibration complete\n", __FILE__); 3784 return pass; 3785 } 3786