xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 5cb1b50870ec69c7f6dbf038ce228470694016bb)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 static void initialize(void)
117 {
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* USER calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136 		param->read_correct_mask_vg  = ((uint32_t)1 <<
137 			(RW_MGR_MEM_DQ_PER_READ_DQS /
138 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139 		param->write_correct_mask_vg = ((uint32_t)1 <<
140 			(RW_MGR_MEM_DQ_PER_READ_DQS /
141 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142 		param->read_correct_mask     = ((uint32_t)1 <<
143 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144 		param->write_correct_mask    = ((uint32_t)1 <<
145 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146 		param->dm_correct_mask       = ((uint32_t)1 <<
147 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148 			- 1;
149 	}
150 }
151 
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154 	uint32_t odt_mask_0 = 0;
155 	uint32_t odt_mask_1 = 0;
156 	uint32_t cs_and_odt_mask;
157 
158 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160 			/*
161 			 * 1 Rank
162 			 * Read: ODT = 0
163 			 * Write: ODT = 1
164 			 */
165 			odt_mask_0 = 0x0;
166 			odt_mask_1 = 0x1;
167 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168 			/* 2 Ranks */
169 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170 				/* - Dual-Slot , Single-Rank
171 				 * (1 chip-select per DIMM)
172 				 * OR
173 				 * - RDIMM, 4 total CS (2 CS per DIMM)
174 				 * means 2 DIMM
175 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
176 				 * both single rank
177 				 * with 2 CS each (special for RDIMM)
178 				 * Read: Turn on ODT on the opposite rank
179 				 * Write: Turn on ODT on all ranks
180 				 */
181 				odt_mask_0 = 0x3 & ~(1 << rank);
182 				odt_mask_1 = 0x3;
183 			} else {
184 				/*
185 				 * USER - Single-Slot , Dual-rank DIMMs
186 				 * (2 chip-selects per DIMM)
187 				 * USER Read: Turn on ODT off on all ranks
188 				 * USER Write: Turn on ODT on active rank
189 				 */
190 				odt_mask_0 = 0x0;
191 				odt_mask_1 = 0x3 & (1 << rank);
192 			}
193 		} else {
194 			/* 4 Ranks
195 			 * Read:
196 			 * ----------+-----------------------+
197 			 *           |                       |
198 			 *           |         ODT           |
199 			 * Read From +-----------------------+
200 			 *   Rank    |  3  |  2  |  1  |  0  |
201 			 * ----------+-----+-----+-----+-----+
202 			 *     0     |  0  |  1  |  0  |  0  |
203 			 *     1     |  1  |  0  |  0  |  0  |
204 			 *     2     |  0  |  0  |  0  |  1  |
205 			 *     3     |  0  |  0  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *
208 			 * Write:
209 			 * ----------+-----------------------+
210 			 *           |                       |
211 			 *           |         ODT           |
212 			 * Write To  +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  1  |
216 			 *     1     |  1  |  0  |  1  |  0  |
217 			 *     2     |  0  |  1  |  0  |  1  |
218 			 *     3     |  1  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 */
221 			switch (rank) {
222 			case 0:
223 				odt_mask_0 = 0x4;
224 				odt_mask_1 = 0x5;
225 				break;
226 			case 1:
227 				odt_mask_0 = 0x8;
228 				odt_mask_1 = 0xA;
229 				break;
230 			case 2:
231 				odt_mask_0 = 0x1;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 3:
235 				odt_mask_0 = 0x2;
236 				odt_mask_1 = 0xA;
237 				break;
238 			}
239 		}
240 	} else {
241 		odt_mask_0 = 0x0;
242 		odt_mask_1 = 0x0;
243 	}
244 
245 	cs_and_odt_mask =
246 		(0xFF & ~(1 << rank)) |
247 		((0xFF & odt_mask_0) << 8) |
248 		((0xFF & odt_mask_1) << 16);
249 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252 
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:	Base offset in SCC Manager space
256  * @grp:	Read/Write group
257  * @val:	Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265 
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273 	/*
274 	 * Clear register file for HPS. 16 (2^4) is the size of the
275 	 * full register file in the scc mgr:
276 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
278 	 */
279 	int i;
280 
281 	for (i = 0; i < 16; i++) {
282 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283 			   __func__, __LINE__, i);
284 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285 	}
286 }
287 
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292 
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297 
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302 
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307 
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311 		    delay);
312 }
313 
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318 
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327 		    delay);
328 }
329 
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334 		    delay);
335 }
336 
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340 	writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342 
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346 	writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348 
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354 
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358 	writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360 
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:	Base offset in SCC Manager space
364  * @grp:	Read/Write group
365  * @val:	Value to be set
366  * @update:	If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372 				  const int update)
373 {
374 	u32 r;
375 
376 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377 	     r += NUM_RANKS_PER_SHADOW_REG) {
378 		scc_mgr_set(off, grp, val);
379 
380 		if (update || (r == 0)) {
381 			writel(grp, &sdr_scc_mgr->dqs_ena);
382 			writel(0, &sdr_scc_mgr->update);
383 		}
384 	}
385 }
386 
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389 	/*
390 	 * USER although the h/w doesn't support different phases per
391 	 * shadow register, for simplicity our scc manager modeling
392 	 * keeps different phase settings per shadow reg, and it's
393 	 * important for us to keep them in sync to match h/w.
394 	 * for efficiency, the scan chain update should occur only
395 	 * once to sr0.
396 	 */
397 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398 			      read_group, phase, 0);
399 }
400 
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402 						     uint32_t phase)
403 {
404 	/*
405 	 * USER although the h/w doesn't support different phases per
406 	 * shadow register, for simplicity our scc manager modeling
407 	 * keeps different phase settings per shadow reg, and it's
408 	 * important for us to keep them in sync to match h/w.
409 	 * for efficiency, the scan chain update should occur only
410 	 * once to sr0.
411 	 */
412 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413 			      write_group, phase, 0);
414 }
415 
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417 					       uint32_t delay)
418 {
419 	/*
420 	 * In shadow register mode, the T11 settings are stored in
421 	 * registers in the core, which are updated by the DQS_ENA
422 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 	 * save lots of rank switching overhead, by calling
424 	 * select_shadow_regs_for_update with update_scan_chains
425 	 * set to 0.
426 	 */
427 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428 			      read_group, delay, 1);
429 	writel(0, &sdr_scc_mgr->update);
430 }
431 
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:	Write group
435  * @delay:		Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443 	const int base = write_group * ratio;
444 	int i;
445 	/*
446 	 * Load the setting in the SCC manager
447 	 * Although OCT affects only write data, the OCT delay is controlled
448 	 * by the DQS logic block which is instantiated once per read group.
449 	 * For protocols where a write group consists of multiple read groups,
450 	 * the setting must be set multiple times.
451 	 */
452 	for (i = 0; i < ratio; i++)
453 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455 
456 /**
457  * scc_mgr_set_hhp_extras() - Set HHP extras.
458  *
459  * Load the fixed setting in the SCC manager HHP extras.
460  */
461 static void scc_mgr_set_hhp_extras(void)
462 {
463 	/*
464 	 * Load the fixed setting in the SCC manager
465 	 * bits: 0:0 = 1'b1	- DQS bypass
466 	 * bits: 1:1 = 1'b1	- DQ bypass
467 	 * bits: 4:2 = 3'b001	- rfifo_mode
468 	 * bits: 6:5 = 2'b01	- rfifo clock_select
469 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
470 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
471 	 */
472 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
473 			  (1 << 2) | (1 << 1) | (1 << 0);
474 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
475 			 SCC_MGR_HHP_GLOBALS_OFFSET |
476 			 SCC_MGR_HHP_EXTRAS_OFFSET;
477 
478 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
479 		   __func__, __LINE__);
480 	writel(value, addr);
481 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
482 		   __func__, __LINE__);
483 }
484 
485 /**
486  * scc_mgr_zero_all() - Zero all DQS config
487  *
488  * Zero all DQS config.
489  */
490 static void scc_mgr_zero_all(void)
491 {
492 	int i, r;
493 
494 	/*
495 	 * USER Zero all DQS config settings, across all groups and all
496 	 * shadow registers
497 	 */
498 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
499 	     r += NUM_RANKS_PER_SHADOW_REG) {
500 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
501 			/*
502 			 * The phases actually don't exist on a per-rank basis,
503 			 * but there's no harm updating them several times, so
504 			 * let's keep the code simple.
505 			 */
506 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
507 			scc_mgr_set_dqs_en_phase(i, 0);
508 			scc_mgr_set_dqs_en_delay(i, 0);
509 		}
510 
511 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
512 			scc_mgr_set_dqdqs_output_phase(i, 0);
513 			/* Arria V/Cyclone V don't have out2. */
514 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
515 		}
516 	}
517 
518 	/* Multicast to all DQS group enables. */
519 	writel(0xff, &sdr_scc_mgr->dqs_ena);
520 	writel(0, &sdr_scc_mgr->update);
521 }
522 
523 /**
524  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
525  * @write_group:	Write group
526  *
527  * Set bypass mode and trigger SCC update.
528  */
529 static void scc_set_bypass_mode(const u32 write_group)
530 {
531 	/* Multicast to all DQ enables. */
532 	writel(0xff, &sdr_scc_mgr->dq_ena);
533 	writel(0xff, &sdr_scc_mgr->dm_ena);
534 
535 	/* Update current DQS IO enable. */
536 	writel(0, &sdr_scc_mgr->dqs_io_ena);
537 
538 	/* Update the DQS logic. */
539 	writel(write_group, &sdr_scc_mgr->dqs_ena);
540 
541 	/* Hit update. */
542 	writel(0, &sdr_scc_mgr->update);
543 }
544 
545 /**
546  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
547  * @write_group:	Write group
548  *
549  * Load DQS settings for Write Group, do not trigger SCC update.
550  */
551 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
552 {
553 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
554 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
555 	const int base = write_group * ratio;
556 	int i;
557 	/*
558 	 * Load the setting in the SCC manager
559 	 * Although OCT affects only write data, the OCT delay is controlled
560 	 * by the DQS logic block which is instantiated once per read group.
561 	 * For protocols where a write group consists of multiple read groups,
562 	 * the setting must be set multiple times.
563 	 */
564 	for (i = 0; i < ratio; i++)
565 		writel(base + i, &sdr_scc_mgr->dqs_ena);
566 }
567 
568 /**
569  * scc_mgr_zero_group() - Zero all configs for a group
570  *
571  * Zero DQ, DM, DQS and OCT configs for a group.
572  */
573 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
574 {
575 	int i, r;
576 
577 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
578 	     r += NUM_RANKS_PER_SHADOW_REG) {
579 		/* Zero all DQ config settings. */
580 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
581 			scc_mgr_set_dq_out1_delay(i, 0);
582 			if (!out_only)
583 				scc_mgr_set_dq_in_delay(i, 0);
584 		}
585 
586 		/* Multicast to all DQ enables. */
587 		writel(0xff, &sdr_scc_mgr->dq_ena);
588 
589 		/* Zero all DM config settings. */
590 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
591 			scc_mgr_set_dm_out1_delay(i, 0);
592 
593 		/* Multicast to all DM enables. */
594 		writel(0xff, &sdr_scc_mgr->dm_ena);
595 
596 		/* Zero all DQS IO settings. */
597 		if (!out_only)
598 			scc_mgr_set_dqs_io_in_delay(0);
599 
600 		/* Arria V/Cyclone V don't have out2. */
601 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
602 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
603 		scc_mgr_load_dqs_for_write_group(write_group);
604 
605 		/* Multicast to all DQS IO enables (only 1 in total). */
606 		writel(0, &sdr_scc_mgr->dqs_io_ena);
607 
608 		/* Hit update to zero everything. */
609 		writel(0, &sdr_scc_mgr->update);
610 	}
611 }
612 
613 /*
614  * apply and load a particular input delay for the DQ pins in a group
615  * group_bgn is the index of the first dq pin (in the write group)
616  */
617 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
618 {
619 	uint32_t i, p;
620 
621 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
622 		scc_mgr_set_dq_in_delay(p, delay);
623 		scc_mgr_load_dq(p);
624 	}
625 }
626 
627 /**
628  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
629  * @delay:		Delay value
630  *
631  * Apply and load a particular output delay for the DQ pins in a group.
632  */
633 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
634 {
635 	int i;
636 
637 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
638 		scc_mgr_set_dq_out1_delay(i, delay);
639 		scc_mgr_load_dq(i);
640 	}
641 }
642 
643 /* apply and load a particular output delay for the DM pins in a group */
644 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
645 {
646 	uint32_t i;
647 
648 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
649 		scc_mgr_set_dm_out1_delay(i, delay1);
650 		scc_mgr_load_dm(i);
651 	}
652 }
653 
654 
655 /* apply and load delay on both DQS and OCT out1 */
656 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
657 						    uint32_t delay)
658 {
659 	scc_mgr_set_dqs_out1_delay(delay);
660 	scc_mgr_load_dqs_io();
661 
662 	scc_mgr_set_oct_out1_delay(write_group, delay);
663 	scc_mgr_load_dqs_for_write_group(write_group);
664 }
665 
666 /**
667  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
668  * @write_group:	Write group
669  * @delay:		Delay value
670  *
671  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
672  */
673 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
674 						  const u32 delay)
675 {
676 	u32 i, new_delay;
677 
678 	/* DQ shift */
679 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
680 		scc_mgr_load_dq(i);
681 
682 	/* DM shift */
683 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
684 		scc_mgr_load_dm(i);
685 
686 	/* DQS shift */
687 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
688 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
689 		debug_cond(DLEVEL == 1,
690 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
691 			   __func__, __LINE__, write_group, delay, new_delay,
692 			   IO_IO_OUT2_DELAY_MAX,
693 			   new_delay - IO_IO_OUT2_DELAY_MAX);
694 		new_delay -= IO_IO_OUT2_DELAY_MAX;
695 		scc_mgr_set_dqs_out1_delay(new_delay);
696 	}
697 
698 	scc_mgr_load_dqs_io();
699 
700 	/* OCT shift */
701 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
702 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
703 		debug_cond(DLEVEL == 1,
704 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
705 			   __func__, __LINE__, write_group, delay,
706 			   new_delay, IO_IO_OUT2_DELAY_MAX,
707 			   new_delay - IO_IO_OUT2_DELAY_MAX);
708 		new_delay -= IO_IO_OUT2_DELAY_MAX;
709 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
710 	}
711 
712 	scc_mgr_load_dqs_for_write_group(write_group);
713 }
714 
715 /*
716  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
717  * and to all ranks
718  */
719 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
720 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
721 {
722 	uint32_t r;
723 
724 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
725 		r += NUM_RANKS_PER_SHADOW_REG) {
726 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
727 		writel(0, &sdr_scc_mgr->update);
728 	}
729 }
730 
731 /* optimization used to recover some slots in ddr3 inst_rom */
732 /* could be applied to other protocols if we wanted to */
733 static void set_jump_as_return(void)
734 {
735 	/*
736 	 * to save space, we replace return with jump to special shared
737 	 * RETURN instruction so we set the counter to large value so that
738 	 * we always jump
739 	 */
740 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
741 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
742 }
743 
744 /*
745  * should always use constants as argument to ensure all computations are
746  * performed at compile time
747  */
748 static void delay_for_n_mem_clocks(const uint32_t clocks)
749 {
750 	uint32_t afi_clocks;
751 	uint8_t inner = 0;
752 	uint8_t outer = 0;
753 	uint16_t c_loop = 0;
754 
755 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
756 
757 
758 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
759 	/* scale (rounding up) to get afi clocks */
760 
761 	/*
762 	 * Note, we don't bother accounting for being off a little bit
763 	 * because of a few extra instructions in outer loops
764 	 * Note, the loops have a test at the end, and do the test before
765 	 * the decrement, and so always perform the loop
766 	 * 1 time more than the counter value
767 	 */
768 	if (afi_clocks == 0) {
769 		;
770 	} else if (afi_clocks <= 0x100) {
771 		inner = afi_clocks-1;
772 		outer = 0;
773 		c_loop = 0;
774 	} else if (afi_clocks <= 0x10000) {
775 		inner = 0xff;
776 		outer = (afi_clocks-1) >> 8;
777 		c_loop = 0;
778 	} else {
779 		inner = 0xff;
780 		outer = 0xff;
781 		c_loop = (afi_clocks-1) >> 16;
782 	}
783 
784 	/*
785 	 * rom instructions are structured as follows:
786 	 *
787 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
788 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
789 	 *                return
790 	 *
791 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
792 	 * TARGET_B is set to IDLE_LOOP2 as well
793 	 *
794 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
795 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
796 	 *
797 	 * a little confusing, but it helps save precious space in the inst_rom
798 	 * and sequencer rom and keeps the delays more accurate and reduces
799 	 * overhead
800 	 */
801 	if (afi_clocks <= 0x100) {
802 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
803 			&sdr_rw_load_mgr_regs->load_cntr1);
804 
805 		writel(RW_MGR_IDLE_LOOP1,
806 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
807 
808 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
809 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
810 	} else {
811 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
812 			&sdr_rw_load_mgr_regs->load_cntr0);
813 
814 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
815 			&sdr_rw_load_mgr_regs->load_cntr1);
816 
817 		writel(RW_MGR_IDLE_LOOP2,
818 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
819 
820 		writel(RW_MGR_IDLE_LOOP2,
821 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
822 
823 		/* hack to get around compiler not being smart enough */
824 		if (afi_clocks <= 0x10000) {
825 			/* only need to run once */
826 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
827 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
828 		} else {
829 			do {
830 				writel(RW_MGR_IDLE_LOOP2,
831 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
832 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
833 			} while (c_loop-- != 0);
834 		}
835 	}
836 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
837 }
838 
839 static void rw_mgr_mem_initialize(void)
840 {
841 	uint32_t r;
842 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
843 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
844 
845 	debug("%s:%d\n", __func__, __LINE__);
846 
847 	/* The reset / cke part of initialization is broadcasted to all ranks */
848 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
850 
851 	/*
852 	 * Here's how you load register for a loop
853 	 * Counters are located @ 0x800
854 	 * Jump address are located @ 0xC00
855 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
856 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
857 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
858 	 * significant bits
859 	 */
860 
861 	/* start with memory RESET activated */
862 
863 	/* tINIT = 200us */
864 
865 	/*
866 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
867 	 * If a and b are the number of iteration in 2 nested loops
868 	 * it takes the following number of cycles to complete the operation:
869 	 * number_of_cycles = ((2 + n) * a + 2) * b
870 	 * where n is the number of instruction in the inner loop
871 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
872 	 * b = 6A
873 	 */
874 
875 	/* Load counters */
876 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
877 	       &sdr_rw_load_mgr_regs->load_cntr0);
878 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
879 	       &sdr_rw_load_mgr_regs->load_cntr1);
880 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
881 	       &sdr_rw_load_mgr_regs->load_cntr2);
882 
883 	/* Load jump address */
884 	writel(RW_MGR_INIT_RESET_0_CKE_0,
885 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
886 	writel(RW_MGR_INIT_RESET_0_CKE_0,
887 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
888 	writel(RW_MGR_INIT_RESET_0_CKE_0,
889 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
890 
891 	/* Execute count instruction */
892 	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
893 
894 	/* indicate that memory is stable */
895 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
896 
897 	/*
898 	 * transition the RESET to high
899 	 * Wait for 500us
900 	 */
901 
902 	/*
903 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
904 	 * If a and b are the number of iteration in 2 nested loops
905 	 * it takes the following number of cycles to complete the operation
906 	 * number_of_cycles = ((2 + n) * a + 2) * b
907 	 * where n is the number of instruction in the inner loop
908 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
909 	 * b = FF
910 	 */
911 
912 	/* Load counters */
913 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
914 	       &sdr_rw_load_mgr_regs->load_cntr0);
915 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
916 	       &sdr_rw_load_mgr_regs->load_cntr1);
917 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
918 	       &sdr_rw_load_mgr_regs->load_cntr2);
919 
920 	/* Load jump address */
921 	writel(RW_MGR_INIT_RESET_1_CKE_0,
922 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
923 	writel(RW_MGR_INIT_RESET_1_CKE_0,
924 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
925 	writel(RW_MGR_INIT_RESET_1_CKE_0,
926 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
927 
928 	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
929 
930 	/* bring up clock enable */
931 
932 	/* tXRP < 250 ck cycles */
933 	delay_for_n_mem_clocks(250);
934 
935 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
936 		if (param->skip_ranks[r]) {
937 			/* request to skip the rank */
938 			continue;
939 		}
940 
941 		/* set rank */
942 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
943 
944 		/*
945 		 * USER Use Mirror-ed commands for odd ranks if address
946 		 * mirrorring is on
947 		 */
948 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
949 			set_jump_as_return();
950 			writel(RW_MGR_MRS2_MIRR, grpaddr);
951 			delay_for_n_mem_clocks(4);
952 			set_jump_as_return();
953 			writel(RW_MGR_MRS3_MIRR, grpaddr);
954 			delay_for_n_mem_clocks(4);
955 			set_jump_as_return();
956 			writel(RW_MGR_MRS1_MIRR, grpaddr);
957 			delay_for_n_mem_clocks(4);
958 			set_jump_as_return();
959 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
960 		} else {
961 			set_jump_as_return();
962 			writel(RW_MGR_MRS2, grpaddr);
963 			delay_for_n_mem_clocks(4);
964 			set_jump_as_return();
965 			writel(RW_MGR_MRS3, grpaddr);
966 			delay_for_n_mem_clocks(4);
967 			set_jump_as_return();
968 			writel(RW_MGR_MRS1, grpaddr);
969 			set_jump_as_return();
970 			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
971 		}
972 		set_jump_as_return();
973 		writel(RW_MGR_ZQCL, grpaddr);
974 
975 		/* tZQinit = tDLLK = 512 ck cycles */
976 		delay_for_n_mem_clocks(512);
977 	}
978 }
979 
980 /*
981  * At the end of calibration we have to program the user settings in, and
982  * USER  hand off the memory to the user.
983  */
984 static void rw_mgr_mem_handoff(void)
985 {
986 	uint32_t r;
987 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
988 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
989 
990 	debug("%s:%d\n", __func__, __LINE__);
991 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
992 		if (param->skip_ranks[r])
993 			/* request to skip the rank */
994 			continue;
995 		/* set rank */
996 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
997 
998 		/* precharge all banks ... */
999 		writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1000 
1001 		/* load up MR settings specified by user */
1002 
1003 		/*
1004 		 * Use Mirror-ed commands for odd ranks if address
1005 		 * mirrorring is on
1006 		 */
1007 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1008 			set_jump_as_return();
1009 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1010 			delay_for_n_mem_clocks(4);
1011 			set_jump_as_return();
1012 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1013 			delay_for_n_mem_clocks(4);
1014 			set_jump_as_return();
1015 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1016 			delay_for_n_mem_clocks(4);
1017 			set_jump_as_return();
1018 			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1019 		} else {
1020 			set_jump_as_return();
1021 			writel(RW_MGR_MRS2, grpaddr);
1022 			delay_for_n_mem_clocks(4);
1023 			set_jump_as_return();
1024 			writel(RW_MGR_MRS3, grpaddr);
1025 			delay_for_n_mem_clocks(4);
1026 			set_jump_as_return();
1027 			writel(RW_MGR_MRS1, grpaddr);
1028 			delay_for_n_mem_clocks(4);
1029 			set_jump_as_return();
1030 			writel(RW_MGR_MRS0_USER, grpaddr);
1031 		}
1032 		/*
1033 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 		 * other commands, but we will have plenty of NIOS cycles before
1035 		 * actual handoff so its okay.
1036 		 */
1037 	}
1038 }
1039 
1040 /*
1041  * performs a guaranteed read on the patterns we are going to use during a
1042  * read test to ensure memory works
1043  */
1044 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1045 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1046 	uint32_t all_ranks)
1047 {
1048 	uint32_t r, vg;
1049 	uint32_t correct_mask_vg;
1050 	uint32_t tmp_bit_chk;
1051 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1052 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1053 	uint32_t addr;
1054 	uint32_t base_rw_mgr;
1055 
1056 	*bit_chk = param->read_correct_mask;
1057 	correct_mask_vg = param->read_correct_mask_vg;
1058 
1059 	for (r = rank_bgn; r < rank_end; r++) {
1060 		if (param->skip_ranks[r])
1061 			/* request to skip the rank */
1062 			continue;
1063 
1064 		/* set rank */
1065 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1066 
1067 		/* Load up a constant bursts of read commands */
1068 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1069 		writel(RW_MGR_GUARANTEED_READ,
1070 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1071 
1072 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1073 		writel(RW_MGR_GUARANTEED_READ_CONT,
1074 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1075 
1076 		tmp_bit_chk = 0;
1077 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1078 			/* reset the fifos to get pointers to known state */
1079 
1080 			writel(0, &phy_mgr_cmd->fifo_reset);
1081 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1082 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1083 
1084 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1085 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1086 
1087 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1088 			writel(RW_MGR_GUARANTEED_READ, addr +
1089 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1090 				vg) << 2));
1091 
1092 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1093 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1094 
1095 			if (vg == 0)
1096 				break;
1097 		}
1098 		*bit_chk &= tmp_bit_chk;
1099 	}
1100 
1101 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1102 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1103 
1104 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1105 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1106 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1107 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1108 	return *bit_chk == param->read_correct_mask;
1109 }
1110 
1111 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1112 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1113 {
1114 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1115 		num_tries, bit_chk, 1);
1116 }
1117 
1118 /* load up the patterns we are going to use during a read test */
1119 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1120 	uint32_t all_ranks)
1121 {
1122 	uint32_t r;
1123 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1124 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1125 
1126 	debug("%s:%d\n", __func__, __LINE__);
1127 	for (r = rank_bgn; r < rank_end; r++) {
1128 		if (param->skip_ranks[r])
1129 			/* request to skip the rank */
1130 			continue;
1131 
1132 		/* set rank */
1133 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1134 
1135 		/* Load up a constant bursts */
1136 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1137 
1138 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1139 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1140 
1141 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1142 
1143 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1144 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1145 
1146 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1147 
1148 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1149 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1150 
1151 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1152 
1153 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1154 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1155 
1156 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1157 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1158 	}
1159 
1160 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1161 }
1162 
1163 /*
1164  * try a read and see if it returns correct data back. has dummy reads
1165  * inserted into the mix used to align dqs enable. has more thorough checks
1166  * than the regular read test.
1167  */
1168 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1169 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1170 	uint32_t all_groups, uint32_t all_ranks)
1171 {
1172 	uint32_t r, vg;
1173 	uint32_t correct_mask_vg;
1174 	uint32_t tmp_bit_chk;
1175 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1176 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1177 	uint32_t addr;
1178 	uint32_t base_rw_mgr;
1179 
1180 	*bit_chk = param->read_correct_mask;
1181 	correct_mask_vg = param->read_correct_mask_vg;
1182 
1183 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1184 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1185 
1186 	for (r = rank_bgn; r < rank_end; r++) {
1187 		if (param->skip_ranks[r])
1188 			/* request to skip the rank */
1189 			continue;
1190 
1191 		/* set rank */
1192 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1193 
1194 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1195 
1196 		writel(RW_MGR_READ_B2B_WAIT1,
1197 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1198 
1199 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1200 		writel(RW_MGR_READ_B2B_WAIT2,
1201 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1202 
1203 		if (quick_read_mode)
1204 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1205 			/* need at least two (1+1) reads to capture failures */
1206 		else if (all_groups)
1207 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1208 		else
1209 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1210 
1211 		writel(RW_MGR_READ_B2B,
1212 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1213 		if (all_groups)
1214 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1215 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1216 			       &sdr_rw_load_mgr_regs->load_cntr3);
1217 		else
1218 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1222 
1223 		tmp_bit_chk = 0;
1224 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1225 			/* reset the fifos to get pointers to known state */
1226 			writel(0, &phy_mgr_cmd->fifo_reset);
1227 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1228 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1229 
1230 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1231 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1232 
1233 			if (all_groups)
1234 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1235 			else
1236 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1237 
1238 			writel(RW_MGR_READ_B2B, addr +
1239 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1240 			       vg) << 2));
1241 
1242 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1243 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1244 
1245 			if (vg == 0)
1246 				break;
1247 		}
1248 		*bit_chk &= tmp_bit_chk;
1249 	}
1250 
1251 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1252 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1253 
1254 	if (all_correct) {
1255 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1256 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1257 			   (%u == %u) => %lu", __func__, __LINE__, group,
1258 			   all_groups, *bit_chk, param->read_correct_mask,
1259 			   (long unsigned int)(*bit_chk ==
1260 			   param->read_correct_mask));
1261 		return *bit_chk == param->read_correct_mask;
1262 	} else	{
1263 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1264 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1265 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1266 			   group, all_groups, *bit_chk, (long unsigned int)0,
1267 			   (long unsigned int)(*bit_chk != 0x00));
1268 		return *bit_chk != 0x00;
1269 	}
1270 }
1271 
1272 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1273 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1274 	uint32_t all_groups)
1275 {
1276 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1277 					      bit_chk, all_groups, 1);
1278 }
1279 
1280 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1281 {
1282 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1283 	(*v)++;
1284 }
1285 
1286 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1287 {
1288 	uint32_t i;
1289 
1290 	for (i = 0; i < VFIFO_SIZE-1; i++)
1291 		rw_mgr_incr_vfifo(grp, v);
1292 }
1293 
1294 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1295 {
1296 	uint32_t  v;
1297 	uint32_t fail_cnt = 0;
1298 	uint32_t test_status;
1299 
1300 	for (v = 0; v < VFIFO_SIZE; ) {
1301 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1302 			   __func__, __LINE__, v);
1303 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1304 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1305 		if (!test_status) {
1306 			fail_cnt++;
1307 
1308 			if (fail_cnt == 2)
1309 				break;
1310 		}
1311 
1312 		/* fiddle with FIFO */
1313 		rw_mgr_incr_vfifo(grp, &v);
1314 	}
1315 
1316 	if (v >= VFIFO_SIZE) {
1317 		/* no failing read found!! Something must have gone wrong */
1318 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1319 			   __func__, __LINE__);
1320 		return 0;
1321 	} else {
1322 		return v;
1323 	}
1324 }
1325 
1326 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1327 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1328 			      uint32_t *v, uint32_t *d, uint32_t *p,
1329 			      uint32_t *i, uint32_t *max_working_cnt)
1330 {
1331 	uint32_t found_begin = 0;
1332 	uint32_t tmp_delay = 0;
1333 	uint32_t test_status;
1334 
1335 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1336 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1337 		*work_bgn = tmp_delay;
1338 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1339 
1340 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1341 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1342 				IO_DELAY_PER_OPA_TAP) {
1343 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1344 
1345 				test_status =
1346 				rw_mgr_mem_calibrate_read_test_all_ranks
1347 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1348 
1349 				if (test_status) {
1350 					*max_working_cnt = 1;
1351 					found_begin = 1;
1352 					break;
1353 				}
1354 			}
1355 
1356 			if (found_begin)
1357 				break;
1358 
1359 			if (*p > IO_DQS_EN_PHASE_MAX)
1360 				/* fiddle with FIFO */
1361 				rw_mgr_incr_vfifo(*grp, v);
1362 		}
1363 
1364 		if (found_begin)
1365 			break;
1366 	}
1367 
1368 	if (*i >= VFIFO_SIZE) {
1369 		/* cannot find working solution */
1370 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1371 			   ptap/dtap\n", __func__, __LINE__);
1372 		return 0;
1373 	} else {
1374 		return 1;
1375 	}
1376 }
1377 
1378 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1379 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1380 			     uint32_t *p, uint32_t *max_working_cnt)
1381 {
1382 	uint32_t found_begin = 0;
1383 	uint32_t tmp_delay;
1384 
1385 	/* Special case code for backing up a phase */
1386 	if (*p == 0) {
1387 		*p = IO_DQS_EN_PHASE_MAX;
1388 		rw_mgr_decr_vfifo(*grp, v);
1389 	} else {
1390 		(*p)--;
1391 	}
1392 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1393 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1394 
1395 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1396 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1397 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1398 
1399 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1400 							     PASS_ONE_BIT,
1401 							     bit_chk, 0)) {
1402 			found_begin = 1;
1403 			*work_bgn = tmp_delay;
1404 			break;
1405 		}
1406 	}
1407 
1408 	/* We have found a working dtap before the ptap found above */
1409 	if (found_begin == 1)
1410 		(*max_working_cnt)++;
1411 
1412 	/*
1413 	 * Restore VFIFO to old state before we decremented it
1414 	 * (if needed).
1415 	 */
1416 	(*p)++;
1417 	if (*p > IO_DQS_EN_PHASE_MAX) {
1418 		*p = 0;
1419 		rw_mgr_incr_vfifo(*grp, v);
1420 	}
1421 
1422 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1423 }
1424 
1425 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1426 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1427 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1428 			     uint32_t *work_end)
1429 {
1430 	uint32_t found_end = 0;
1431 
1432 	(*p)++;
1433 	*work_end += IO_DELAY_PER_OPA_TAP;
1434 	if (*p > IO_DQS_EN_PHASE_MAX) {
1435 		/* fiddle with FIFO */
1436 		*p = 0;
1437 		rw_mgr_incr_vfifo(*grp, v);
1438 	}
1439 
1440 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1441 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1442 			+= IO_DELAY_PER_OPA_TAP) {
1443 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1444 
1445 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1446 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1447 				found_end = 1;
1448 				break;
1449 			} else {
1450 				(*max_working_cnt)++;
1451 			}
1452 		}
1453 
1454 		if (found_end)
1455 			break;
1456 
1457 		if (*p > IO_DQS_EN_PHASE_MAX) {
1458 			/* fiddle with FIFO */
1459 			rw_mgr_incr_vfifo(*grp, v);
1460 			*p = 0;
1461 		}
1462 	}
1463 
1464 	if (*i >= VFIFO_SIZE + 1) {
1465 		/* cannot see edge of failing read */
1466 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1467 			   failed\n", __func__, __LINE__);
1468 		return 0;
1469 	} else {
1470 		return 1;
1471 	}
1472 }
1473 
1474 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1475 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1476 				  uint32_t *p, uint32_t *work_mid,
1477 				  uint32_t *work_end)
1478 {
1479 	int i;
1480 	int tmp_delay = 0;
1481 
1482 	*work_mid = (*work_bgn + *work_end) / 2;
1483 
1484 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1485 		   *work_bgn, *work_end, *work_mid);
1486 	/* Get the middle delay to be less than a VFIFO delay */
1487 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1488 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1489 		;
1490 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1491 	while (*work_mid > tmp_delay)
1492 		*work_mid -= tmp_delay;
1493 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1494 
1495 	tmp_delay = 0;
1496 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1497 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1498 		;
1499 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1500 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1501 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1502 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1503 		;
1504 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1505 
1506 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1507 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1508 
1509 	/*
1510 	 * push vfifo until we can successfully calibrate. We can do this
1511 	 * because the largest possible margin in 1 VFIFO cycle.
1512 	 */
1513 	for (i = 0; i < VFIFO_SIZE; i++) {
1514 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1515 			   *v);
1516 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1517 							     PASS_ONE_BIT,
1518 							     bit_chk, 0)) {
1519 			break;
1520 		}
1521 
1522 		/* fiddle with FIFO */
1523 		rw_mgr_incr_vfifo(*grp, v);
1524 	}
1525 
1526 	if (i >= VFIFO_SIZE) {
1527 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1528 			   failed\n", __func__, __LINE__);
1529 		return 0;
1530 	} else {
1531 		return 1;
1532 	}
1533 }
1534 
1535 /* find a good dqs enable to use */
1536 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1537 {
1538 	uint32_t v, d, p, i;
1539 	uint32_t max_working_cnt;
1540 	uint32_t bit_chk;
1541 	uint32_t dtaps_per_ptap;
1542 	uint32_t work_bgn, work_mid, work_end;
1543 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1544 
1545 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1546 
1547 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1548 
1549 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1550 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1551 
1552 	/* ************************************************************** */
1553 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1554 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1555 
1556 	/* ********************************************************* */
1557 	/* * Step 1 : First push vfifo until we get a failing read * */
1558 	v = find_vfifo_read(grp, &bit_chk);
1559 
1560 	max_working_cnt = 0;
1561 
1562 	/* ******************************************************** */
1563 	/* * step 2: find first working phase, increment in ptaps * */
1564 	work_bgn = 0;
1565 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1566 				&p, &i, &max_working_cnt) == 0)
1567 		return 0;
1568 
1569 	work_end = work_bgn;
1570 
1571 	/*
1572 	 * If d is 0 then the working window covers a phase tap and
1573 	 * we can follow the old procedure otherwise, we've found the beginning,
1574 	 * and we need to increment the dtaps until we find the end.
1575 	 */
1576 	if (d == 0) {
1577 		/* ********************************************************* */
1578 		/* * step 3a: if we have room, back off by one and
1579 		increment in dtaps * */
1580 
1581 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1582 				 &max_working_cnt);
1583 
1584 		/* ********************************************************* */
1585 		/* * step 4a: go forward from working phase to non working
1586 		phase, increment in ptaps * */
1587 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1588 					 &i, &max_working_cnt, &work_end) == 0)
1589 			return 0;
1590 
1591 		/* ********************************************************* */
1592 		/* * step 5a:  back off one from last, increment in dtaps  * */
1593 
1594 		/* Special case code for backing up a phase */
1595 		if (p == 0) {
1596 			p = IO_DQS_EN_PHASE_MAX;
1597 			rw_mgr_decr_vfifo(grp, &v);
1598 		} else {
1599 			p = p - 1;
1600 		}
1601 
1602 		work_end -= IO_DELAY_PER_OPA_TAP;
1603 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1604 
1605 		/* * The actual increment of dtaps is done outside of
1606 		the if/else loop to share code */
1607 		d = 0;
1608 
1609 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1610 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1611 			   v, p);
1612 	} else {
1613 		/* ******************************************************* */
1614 		/* * step 3-5b:  Find the right edge of the window using
1615 		delay taps   * */
1616 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1617 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1618 			   v, p, d, work_bgn);
1619 
1620 		work_end = work_bgn;
1621 
1622 		/* * The actual increment of dtaps is done outside of the
1623 		if/else loop to share code */
1624 
1625 		/* Only here to counterbalance a subtract later on which is
1626 		not needed if this branch of the algorithm is taken */
1627 		max_working_cnt++;
1628 	}
1629 
1630 	/* The dtap increment to find the failing edge is done here */
1631 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1632 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1633 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1634 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1635 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1636 
1637 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1638 								      PASS_ONE_BIT,
1639 								      &bit_chk, 0)) {
1640 				break;
1641 			}
1642 	}
1643 
1644 	/* Go back to working dtap */
1645 	if (d != 0)
1646 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1647 
1648 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1649 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1650 		   v, p, d-1, work_end);
1651 
1652 	if (work_end < work_bgn) {
1653 		/* nil range */
1654 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1655 			   failed\n", __func__, __LINE__);
1656 		return 0;
1657 	}
1658 
1659 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1660 		   __func__, __LINE__, work_bgn, work_end);
1661 
1662 	/* *************************************************************** */
1663 	/*
1664 	 * * We need to calculate the number of dtaps that equal a ptap
1665 	 * * To do that we'll back up a ptap and re-find the edge of the
1666 	 * * window using dtaps
1667 	 */
1668 
1669 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1670 		   for tracking\n", __func__, __LINE__);
1671 
1672 	/* Special case code for backing up a phase */
1673 	if (p == 0) {
1674 		p = IO_DQS_EN_PHASE_MAX;
1675 		rw_mgr_decr_vfifo(grp, &v);
1676 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1677 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1678 			   v, p);
1679 	} else {
1680 		p = p - 1;
1681 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1682 			   phase only: v=%u p=%u", __func__, __LINE__,
1683 			   v, p);
1684 	}
1685 
1686 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1687 
1688 	/*
1689 	 * Increase dtap until we first see a passing read (in case the
1690 	 * window is smaller than a ptap),
1691 	 * and then a failing read to mark the edge of the window again
1692 	 */
1693 
1694 	/* Find a passing read */
1695 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1696 		   __func__, __LINE__);
1697 	found_passing_read = 0;
1698 	found_failing_read = 0;
1699 	initial_failing_dtap = d;
1700 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1701 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1702 			   read d=%u\n", __func__, __LINE__, d);
1703 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1704 
1705 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1706 							     PASS_ONE_BIT,
1707 							     &bit_chk, 0)) {
1708 			found_passing_read = 1;
1709 			break;
1710 		}
1711 	}
1712 
1713 	if (found_passing_read) {
1714 		/* Find a failing read */
1715 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1716 			   read\n", __func__, __LINE__);
1717 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1718 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1719 				   testing read d=%u\n", __func__, __LINE__, d);
1720 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1721 
1722 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1723 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1724 				found_failing_read = 1;
1725 				break;
1726 			}
1727 		}
1728 	} else {
1729 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1730 			   calculate dtaps", __func__, __LINE__);
1731 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1732 	}
1733 
1734 	/*
1735 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1736 	 * found a passing/failing read. If we didn't, it means d hit the max
1737 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1738 	 * statically calculated value.
1739 	 */
1740 	if (found_passing_read && found_failing_read)
1741 		dtaps_per_ptap = d - initial_failing_dtap;
1742 
1743 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1744 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1745 		   - %u = %u",  __func__, __LINE__, d,
1746 		   initial_failing_dtap, dtaps_per_ptap);
1747 
1748 	/* ******************************************** */
1749 	/* * step 6:  Find the centre of the window   * */
1750 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1751 				   &work_mid, &work_end) == 0)
1752 		return 0;
1753 
1754 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1755 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1756 		   v, p-1, d);
1757 	return 1;
1758 }
1759 
1760 /*
1761  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1762  * dq_in_delay values
1763  */
1764 static uint32_t
1765 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1766 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1767 {
1768 	uint32_t found;
1769 	uint32_t i;
1770 	uint32_t p;
1771 	uint32_t d;
1772 	uint32_t r;
1773 
1774 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1775 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1776 		/* we start at zero, so have one less dq to devide among */
1777 
1778 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1779 	      test_bgn);
1780 
1781 	/* try different dq_in_delays since the dq path is shorter than dqs */
1782 
1783 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1784 	     r += NUM_RANKS_PER_SHADOW_REG) {
1785 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1786 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1787 				   vfifo_find_dqs_", __func__, __LINE__);
1788 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1789 			       write_group, read_group);
1790 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1791 			scc_mgr_set_dq_in_delay(p, d);
1792 			scc_mgr_load_dq(p);
1793 		}
1794 		writel(0, &sdr_scc_mgr->update);
1795 	}
1796 
1797 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1798 
1799 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1800 		   en_phase_sweep_dq", __func__, __LINE__);
1801 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1802 		   chain to zero\n", write_group, read_group, found);
1803 
1804 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1805 	     r += NUM_RANKS_PER_SHADOW_REG) {
1806 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1807 			i++, p++) {
1808 			scc_mgr_set_dq_in_delay(p, 0);
1809 			scc_mgr_load_dq(p);
1810 		}
1811 		writel(0, &sdr_scc_mgr->update);
1812 	}
1813 
1814 	return found;
1815 }
1816 
1817 /* per-bit deskew DQ and center */
1818 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1819 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1820 	uint32_t use_read_test, uint32_t update_fom)
1821 {
1822 	uint32_t i, p, d, min_index;
1823 	/*
1824 	 * Store these as signed since there are comparisons with
1825 	 * signed numbers.
1826 	 */
1827 	uint32_t bit_chk;
1828 	uint32_t sticky_bit_chk;
1829 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1830 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1831 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1832 	int32_t mid;
1833 	int32_t orig_mid_min, mid_min;
1834 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1835 		final_dqs_en;
1836 	int32_t dq_margin, dqs_margin;
1837 	uint32_t stop;
1838 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1839 	uint32_t addr;
1840 
1841 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1842 
1843 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1844 	start_dqs = readl(addr + (read_group << 2));
1845 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1846 		start_dqs_en = readl(addr + ((read_group << 2)
1847 				     - IO_DQS_EN_DELAY_OFFSET));
1848 
1849 	/* set the left and right edge of each bit to an illegal value */
1850 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1851 	sticky_bit_chk = 0;
1852 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1853 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1854 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1855 	}
1856 
1857 	/* Search for the left edge of the window for each bit */
1858 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1859 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1860 
1861 		writel(0, &sdr_scc_mgr->update);
1862 
1863 		/*
1864 		 * Stop searching when the read test doesn't pass AND when
1865 		 * we've seen a passing read on every bit.
1866 		 */
1867 		if (use_read_test) {
1868 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1869 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1870 				&bit_chk, 0, 0);
1871 		} else {
1872 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1873 							0, PASS_ONE_BIT,
1874 							&bit_chk, 0);
1875 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1876 				(read_group - (write_group *
1877 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1878 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1879 			stop = (bit_chk == 0);
1880 		}
1881 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1882 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1883 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1884 			   && %u", __func__, __LINE__, d,
1885 			   sticky_bit_chk,
1886 			param->read_correct_mask, stop);
1887 
1888 		if (stop == 1) {
1889 			break;
1890 		} else {
1891 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1892 				if (bit_chk & 1) {
1893 					/* Remember a passing test as the
1894 					left_edge */
1895 					left_edge[i] = d;
1896 				} else {
1897 					/* If a left edge has not been seen yet,
1898 					then a future passing test will mark
1899 					this edge as the right edge */
1900 					if (left_edge[i] ==
1901 						IO_IO_IN_DELAY_MAX + 1) {
1902 						right_edge[i] = -(d + 1);
1903 					}
1904 				}
1905 				bit_chk = bit_chk >> 1;
1906 			}
1907 		}
1908 	}
1909 
1910 	/* Reset DQ delay chains to 0 */
1911 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1912 	sticky_bit_chk = 0;
1913 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1914 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1915 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1916 			   i, left_edge[i], i, right_edge[i]);
1917 
1918 		/*
1919 		 * Check for cases where we haven't found the left edge,
1920 		 * which makes our assignment of the the right edge invalid.
1921 		 * Reset it to the illegal value.
1922 		 */
1923 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1924 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1925 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1926 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1927 				   right_edge[%u]: %d\n", __func__, __LINE__,
1928 				   i, right_edge[i]);
1929 		}
1930 
1931 		/*
1932 		 * Reset sticky bit (except for bits where we have seen
1933 		 * both the left and right edge).
1934 		 */
1935 		sticky_bit_chk = sticky_bit_chk << 1;
1936 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1937 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1938 			sticky_bit_chk = sticky_bit_chk | 1;
1939 		}
1940 
1941 		if (i == 0)
1942 			break;
1943 	}
1944 
1945 	/* Search for the right edge of the window for each bit */
1946 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1947 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1948 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1949 			uint32_t delay = d + start_dqs_en;
1950 			if (delay > IO_DQS_EN_DELAY_MAX)
1951 				delay = IO_DQS_EN_DELAY_MAX;
1952 			scc_mgr_set_dqs_en_delay(read_group, delay);
1953 		}
1954 		scc_mgr_load_dqs(read_group);
1955 
1956 		writel(0, &sdr_scc_mgr->update);
1957 
1958 		/*
1959 		 * Stop searching when the read test doesn't pass AND when
1960 		 * we've seen a passing read on every bit.
1961 		 */
1962 		if (use_read_test) {
1963 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1964 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1965 				&bit_chk, 0, 0);
1966 		} else {
1967 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1968 							0, PASS_ONE_BIT,
1969 							&bit_chk, 0);
1970 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1971 				(read_group - (write_group *
1972 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1973 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1974 			stop = (bit_chk == 0);
1975 		}
1976 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1977 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1978 
1979 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1980 			   %u && %u", __func__, __LINE__, d,
1981 			   sticky_bit_chk, param->read_correct_mask, stop);
1982 
1983 		if (stop == 1) {
1984 			break;
1985 		} else {
1986 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1987 				if (bit_chk & 1) {
1988 					/* Remember a passing test as
1989 					the right_edge */
1990 					right_edge[i] = d;
1991 				} else {
1992 					if (d != 0) {
1993 						/* If a right edge has not been
1994 						seen yet, then a future passing
1995 						test will mark this edge as the
1996 						left edge */
1997 						if (right_edge[i] ==
1998 						IO_IO_IN_DELAY_MAX + 1) {
1999 							left_edge[i] = -(d + 1);
2000 						}
2001 					} else {
2002 						/* d = 0 failed, but it passed
2003 						when testing the left edge,
2004 						so it must be marginal,
2005 						set it to -1 */
2006 						if (right_edge[i] ==
2007 							IO_IO_IN_DELAY_MAX + 1 &&
2008 							left_edge[i] !=
2009 							IO_IO_IN_DELAY_MAX
2010 							+ 1) {
2011 							right_edge[i] = -1;
2012 						}
2013 						/* If a right edge has not been
2014 						seen yet, then a future passing
2015 						test will mark this edge as the
2016 						left edge */
2017 						else if (right_edge[i] ==
2018 							IO_IO_IN_DELAY_MAX +
2019 							1) {
2020 							left_edge[i] = -(d + 1);
2021 						}
2022 					}
2023 				}
2024 
2025 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2026 					   d=%u]: ", __func__, __LINE__, d);
2027 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2028 					   (int)(bit_chk & 1), i, left_edge[i]);
2029 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2030 					   right_edge[i]);
2031 				bit_chk = bit_chk >> 1;
2032 			}
2033 		}
2034 	}
2035 
2036 	/* Check that all bits have a window */
2037 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2038 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2039 			   %d right_edge[%u]: %d", __func__, __LINE__,
2040 			   i, left_edge[i], i, right_edge[i]);
2041 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2042 			== IO_IO_IN_DELAY_MAX + 1)) {
2043 			/*
2044 			 * Restore delay chain settings before letting the loop
2045 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2046 			 * dqs/ck relationships.
2047 			 */
2048 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2049 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2050 				scc_mgr_set_dqs_en_delay(read_group,
2051 							 start_dqs_en);
2052 			}
2053 			scc_mgr_load_dqs(read_group);
2054 			writel(0, &sdr_scc_mgr->update);
2055 
2056 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2057 				   find edge [%u]: %d %d", __func__, __LINE__,
2058 				   i, left_edge[i], right_edge[i]);
2059 			if (use_read_test) {
2060 				set_failing_group_stage(read_group *
2061 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2062 					CAL_STAGE_VFIFO,
2063 					CAL_SUBSTAGE_VFIFO_CENTER);
2064 			} else {
2065 				set_failing_group_stage(read_group *
2066 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2067 					CAL_STAGE_VFIFO_AFTER_WRITES,
2068 					CAL_SUBSTAGE_VFIFO_CENTER);
2069 			}
2070 			return 0;
2071 		}
2072 	}
2073 
2074 	/* Find middle of window for each DQ bit */
2075 	mid_min = left_edge[0] - right_edge[0];
2076 	min_index = 0;
2077 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2078 		mid = left_edge[i] - right_edge[i];
2079 		if (mid < mid_min) {
2080 			mid_min = mid;
2081 			min_index = i;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * -mid_min/2 represents the amount that we need to move DQS.
2087 	 * If mid_min is odd and positive we'll need to add one to
2088 	 * make sure the rounding in further calculations is correct
2089 	 * (always bias to the right), so just add 1 for all positive values.
2090 	 */
2091 	if (mid_min > 0)
2092 		mid_min++;
2093 
2094 	mid_min = mid_min / 2;
2095 
2096 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2097 		   __func__, __LINE__, mid_min, min_index);
2098 
2099 	/* Determine the amount we can change DQS (which is -mid_min) */
2100 	orig_mid_min = mid_min;
2101 	new_dqs = start_dqs - mid_min;
2102 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2103 		new_dqs = IO_DQS_IN_DELAY_MAX;
2104 	else if (new_dqs < 0)
2105 		new_dqs = 0;
2106 
2107 	mid_min = start_dqs - new_dqs;
2108 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2109 		   mid_min, new_dqs);
2110 
2111 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2112 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2113 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2114 		else if (start_dqs_en - mid_min < 0)
2115 			mid_min += start_dqs_en - mid_min;
2116 	}
2117 	new_dqs = start_dqs - mid_min;
2118 
2119 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2120 		   new_dqs=%d mid_min=%d\n", start_dqs,
2121 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2122 		   new_dqs, mid_min);
2123 
2124 	/* Initialize data for export structures */
2125 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2126 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2127 
2128 	/* add delay to bring centre of all DQ windows to the same "level" */
2129 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2130 		/* Use values before divide by 2 to reduce round off error */
2131 		shift_dq = (left_edge[i] - right_edge[i] -
2132 			(left_edge[min_index] - right_edge[min_index]))/2  +
2133 			(orig_mid_min - mid_min);
2134 
2135 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2136 			   shift_dq[%u]=%d\n", i, shift_dq);
2137 
2138 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2139 		temp_dq_in_delay1 = readl(addr + (p << 2));
2140 		temp_dq_in_delay2 = readl(addr + (i << 2));
2141 
2142 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2143 			(int32_t)IO_IO_IN_DELAY_MAX) {
2144 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2145 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2146 			shift_dq = -(int32_t)temp_dq_in_delay1;
2147 		}
2148 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2149 			   shift_dq[%u]=%d\n", i, shift_dq);
2150 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2151 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2152 		scc_mgr_load_dq(p);
2153 
2154 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2155 			   left_edge[i] - shift_dq + (-mid_min),
2156 			   right_edge[i] + shift_dq - (-mid_min));
2157 		/* To determine values for export structures */
2158 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2159 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2160 
2161 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2162 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2163 	}
2164 
2165 	final_dqs = new_dqs;
2166 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2167 		final_dqs_en = start_dqs_en - mid_min;
2168 
2169 	/* Move DQS-en */
2170 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2171 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2172 		scc_mgr_load_dqs(read_group);
2173 	}
2174 
2175 	/* Move DQS */
2176 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2177 	scc_mgr_load_dqs(read_group);
2178 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2179 		   dqs_margin=%d", __func__, __LINE__,
2180 		   dq_margin, dqs_margin);
2181 
2182 	/*
2183 	 * Do not remove this line as it makes sure all of our decisions
2184 	 * have been applied. Apply the update bit.
2185 	 */
2186 	writel(0, &sdr_scc_mgr->update);
2187 
2188 	return (dq_margin >= 0) && (dqs_margin >= 0);
2189 }
2190 
2191 /*
2192  * calibrate the read valid prediction FIFO.
2193  *
2194  *  - read valid prediction will consist of finding a good DQS enable phase,
2195  * DQS enable delay, DQS input phase, and DQS input delay.
2196  *  - we also do a per-bit deskew on the DQ lines.
2197  */
2198 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2199 					   uint32_t test_bgn)
2200 {
2201 	uint32_t p, d, rank_bgn, sr;
2202 	uint32_t dtaps_per_ptap;
2203 	uint32_t tmp_delay;
2204 	uint32_t bit_chk;
2205 	uint32_t grp_calibrated;
2206 	uint32_t write_group, write_test_bgn;
2207 	uint32_t failed_substage;
2208 
2209 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2210 
2211 	/* update info for sims */
2212 	reg_file_set_stage(CAL_STAGE_VFIFO);
2213 
2214 	write_group = read_group;
2215 	write_test_bgn = test_bgn;
2216 
2217 	/* USER Determine number of delay taps for each phase tap */
2218 	dtaps_per_ptap = 0;
2219 	tmp_delay = 0;
2220 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2221 		dtaps_per_ptap++;
2222 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2223 	}
2224 	dtaps_per_ptap--;
2225 	tmp_delay = 0;
2226 
2227 	/* update info for sims */
2228 	reg_file_set_group(read_group);
2229 
2230 	grp_calibrated = 0;
2231 
2232 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2233 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2234 
2235 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2236 		/*
2237 		 * In RLDRAMX we may be messing the delay of pins in
2238 		 * the same write group but outside of the current read
2239 		 * the group, but that's ok because we haven't
2240 		 * calibrated output side yet.
2241 		 */
2242 		if (d > 0) {
2243 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2244 			(write_group, write_test_bgn, d);
2245 		}
2246 
2247 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2248 			p++) {
2249 			/* set a particular dqdqs phase */
2250 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2251 
2252 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2253 				   p=%u d=%u\n", __func__, __LINE__,
2254 				   read_group, p, d);
2255 
2256 			/*
2257 			 * Load up the patterns used by read calibration
2258 			 * using current DQDQS phase.
2259 			 */
2260 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2261 			if (!(gbl->phy_debug_mode_flags &
2262 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2263 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2264 				    (read_group, 1, &bit_chk)) {
2265 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2266 						   __func__, __LINE__);
2267 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2268 						   read_group, p, d);
2269 					break;
2270 				}
2271 			}
2272 
2273 /* case:56390 */
2274 			grp_calibrated = 1;
2275 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2276 		    (write_group, read_group, test_bgn)) {
2277 				/*
2278 				 * USER Read per-bit deskew can be done on a
2279 				 * per shadow register basis.
2280 				 */
2281 				for (rank_bgn = 0, sr = 0;
2282 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2283 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2284 					++sr) {
2285 					/*
2286 					 * Determine if this set of ranks
2287 					 * should be skipped entirely.
2288 					 */
2289 					if (!param->skip_shadow_regs[sr]) {
2290 						/*
2291 						 * If doing read after write
2292 						 * calibration, do not update
2293 						 * FOM, now - do it then.
2294 						 */
2295 					if (!rw_mgr_mem_calibrate_vfifo_center
2296 						(rank_bgn, write_group,
2297 						read_group, test_bgn, 1, 0)) {
2298 							grp_calibrated = 0;
2299 							failed_substage =
2300 						CAL_SUBSTAGE_VFIFO_CENTER;
2301 						}
2302 					}
2303 				}
2304 			} else {
2305 				grp_calibrated = 0;
2306 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2307 			}
2308 		}
2309 	}
2310 
2311 	if (grp_calibrated == 0) {
2312 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2313 					failed_substage);
2314 		return 0;
2315 	}
2316 
2317 	/*
2318 	 * Reset the delay chains back to zero if they have moved > 1
2319 	 * (check for > 1 because loop will increase d even when pass in
2320 	 * first case).
2321 	 */
2322 	if (d > 2)
2323 		scc_mgr_zero_group(write_group, 1);
2324 
2325 	return 1;
2326 }
2327 
2328 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2329 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2330 					       uint32_t test_bgn)
2331 {
2332 	uint32_t rank_bgn, sr;
2333 	uint32_t grp_calibrated;
2334 	uint32_t write_group;
2335 
2336 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2337 
2338 	/* update info for sims */
2339 
2340 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2341 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2342 
2343 	write_group = read_group;
2344 
2345 	/* update info for sims */
2346 	reg_file_set_group(read_group);
2347 
2348 	grp_calibrated = 1;
2349 	/* Read per-bit deskew can be done on a per shadow register basis */
2350 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2351 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2352 		/* Determine if this set of ranks should be skipped entirely */
2353 		if (!param->skip_shadow_regs[sr]) {
2354 		/* This is the last calibration round, update FOM here */
2355 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2356 								write_group,
2357 								read_group,
2358 								test_bgn, 0,
2359 								1)) {
2360 				grp_calibrated = 0;
2361 			}
2362 		}
2363 	}
2364 
2365 
2366 	if (grp_calibrated == 0) {
2367 		set_failing_group_stage(write_group,
2368 					CAL_STAGE_VFIFO_AFTER_WRITES,
2369 					CAL_SUBSTAGE_VFIFO_CENTER);
2370 		return 0;
2371 	}
2372 
2373 	return 1;
2374 }
2375 
2376 /* Calibrate LFIFO to find smallest read latency */
2377 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2378 {
2379 	uint32_t found_one;
2380 	uint32_t bit_chk;
2381 
2382 	debug("%s:%d\n", __func__, __LINE__);
2383 
2384 	/* update info for sims */
2385 	reg_file_set_stage(CAL_STAGE_LFIFO);
2386 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2387 
2388 	/* Load up the patterns used by read calibration for all ranks */
2389 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2390 	found_one = 0;
2391 
2392 	do {
2393 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2394 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2395 			   __func__, __LINE__, gbl->curr_read_lat);
2396 
2397 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2398 							      NUM_READ_TESTS,
2399 							      PASS_ALL_BITS,
2400 							      &bit_chk, 1)) {
2401 			break;
2402 		}
2403 
2404 		found_one = 1;
2405 		/* reduce read latency and see if things are working */
2406 		/* correctly */
2407 		gbl->curr_read_lat--;
2408 	} while (gbl->curr_read_lat > 0);
2409 
2410 	/* reset the fifos to get pointers to known state */
2411 
2412 	writel(0, &phy_mgr_cmd->fifo_reset);
2413 
2414 	if (found_one) {
2415 		/* add a fudge factor to the read latency that was determined */
2416 		gbl->curr_read_lat += 2;
2417 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2418 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2419 			   read_lat=%u\n", __func__, __LINE__,
2420 			   gbl->curr_read_lat);
2421 		return 1;
2422 	} else {
2423 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2424 					CAL_SUBSTAGE_READ_LATENCY);
2425 
2426 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2427 			   read_lat=%u\n", __func__, __LINE__,
2428 			   gbl->curr_read_lat);
2429 		return 0;
2430 	}
2431 }
2432 
2433 /*
2434  * issue write test command.
2435  * two variants are provided. one that just tests a write pattern and
2436  * another that tests datamask functionality.
2437  */
2438 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2439 						  uint32_t test_dm)
2440 {
2441 	uint32_t mcc_instruction;
2442 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2443 		ENABLE_SUPER_QUICK_CALIBRATION);
2444 	uint32_t rw_wl_nop_cycles;
2445 	uint32_t addr;
2446 
2447 	/*
2448 	 * Set counter and jump addresses for the right
2449 	 * number of NOP cycles.
2450 	 * The number of supported NOP cycles can range from -1 to infinity
2451 	 * Three different cases are handled:
2452 	 *
2453 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2454 	 *    mechanism will be used to insert the right number of NOPs
2455 	 *
2456 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2457 	 *    issuing the write command will jump straight to the
2458 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2459 	 *    data (for RLD), skipping
2460 	 *    the NOP micro-instruction all together
2461 	 *
2462 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2463 	 *    turned on in the same micro-instruction that issues the write
2464 	 *    command. Then we need
2465 	 *    to directly jump to the micro-instruction that sends out the data
2466 	 *
2467 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2468 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2469 	 *       write-read operations.
2470 	 *       one counter left to issue this command in "multiple-group" mode
2471 	 */
2472 
2473 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2474 
2475 	if (rw_wl_nop_cycles == -1) {
2476 		/*
2477 		 * CNTR 2 - We want to execute the special write operation that
2478 		 * turns on DQS right away and then skip directly to the
2479 		 * instruction that sends out the data. We set the counter to a
2480 		 * large number so that the jump is always taken.
2481 		 */
2482 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2483 
2484 		/* CNTR 3 - Not used */
2485 		if (test_dm) {
2486 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2487 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2488 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2489 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2490 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2491 		} else {
2492 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2493 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2494 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2495 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2496 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2497 		}
2498 	} else if (rw_wl_nop_cycles == 0) {
2499 		/*
2500 		 * CNTR 2 - We want to skip the NOP operation and go straight
2501 		 * to the DQS enable instruction. We set the counter to a large
2502 		 * number so that the jump is always taken.
2503 		 */
2504 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2505 
2506 		/* CNTR 3 - Not used */
2507 		if (test_dm) {
2508 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2509 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2510 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2511 		} else {
2512 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2513 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2514 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2515 		}
2516 	} else {
2517 		/*
2518 		 * CNTR 2 - In this case we want to execute the next instruction
2519 		 * and NOT take the jump. So we set the counter to 0. The jump
2520 		 * address doesn't count.
2521 		 */
2522 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2523 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2524 
2525 		/*
2526 		 * CNTR 3 - Set the nop counter to the number of cycles we
2527 		 * need to loop for, minus 1.
2528 		 */
2529 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2530 		if (test_dm) {
2531 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2532 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2533 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2534 		} else {
2535 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2536 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2537 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2538 		}
2539 	}
2540 
2541 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2542 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2543 
2544 	if (quick_write_mode)
2545 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2546 	else
2547 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2548 
2549 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2550 
2551 	/*
2552 	 * CNTR 1 - This is used to ensure enough time elapses
2553 	 * for read data to come back.
2554 	 */
2555 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2556 
2557 	if (test_dm) {
2558 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2559 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2560 	} else {
2561 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2562 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2563 	}
2564 
2565 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2566 	writel(mcc_instruction, addr + (group << 2));
2567 }
2568 
2569 /* Test writes, can check for a single bit pass or multiple bit pass */
2570 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2571 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2572 	uint32_t *bit_chk, uint32_t all_ranks)
2573 {
2574 	uint32_t r;
2575 	uint32_t correct_mask_vg;
2576 	uint32_t tmp_bit_chk;
2577 	uint32_t vg;
2578 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2579 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2580 	uint32_t addr_rw_mgr;
2581 	uint32_t base_rw_mgr;
2582 
2583 	*bit_chk = param->write_correct_mask;
2584 	correct_mask_vg = param->write_correct_mask_vg;
2585 
2586 	for (r = rank_bgn; r < rank_end; r++) {
2587 		if (param->skip_ranks[r]) {
2588 			/* request to skip the rank */
2589 			continue;
2590 		}
2591 
2592 		/* set rank */
2593 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2594 
2595 		tmp_bit_chk = 0;
2596 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2597 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2598 			/* reset the fifos to get pointers to known state */
2599 			writel(0, &phy_mgr_cmd->fifo_reset);
2600 
2601 			tmp_bit_chk = tmp_bit_chk <<
2602 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2603 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2604 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2605 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2606 				use_dm);
2607 
2608 			base_rw_mgr = readl(addr_rw_mgr);
2609 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2610 			if (vg == 0)
2611 				break;
2612 		}
2613 		*bit_chk &= tmp_bit_chk;
2614 	}
2615 
2616 	if (all_correct) {
2617 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2618 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2619 			   %u => %lu", write_group, use_dm,
2620 			   *bit_chk, param->write_correct_mask,
2621 			   (long unsigned int)(*bit_chk ==
2622 			   param->write_correct_mask));
2623 		return *bit_chk == param->write_correct_mask;
2624 	} else {
2625 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2626 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2627 		       write_group, use_dm, *bit_chk);
2628 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2629 			(long unsigned int)(*bit_chk != 0));
2630 		return *bit_chk != 0x00;
2631 	}
2632 }
2633 
2634 /*
2635  * center all windows. do per-bit-deskew to possibly increase size of
2636  * certain windows.
2637  */
2638 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2639 	uint32_t write_group, uint32_t test_bgn)
2640 {
2641 	uint32_t i, p, min_index;
2642 	int32_t d;
2643 	/*
2644 	 * Store these as signed since there are comparisons with
2645 	 * signed numbers.
2646 	 */
2647 	uint32_t bit_chk;
2648 	uint32_t sticky_bit_chk;
2649 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2650 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2651 	int32_t mid;
2652 	int32_t mid_min, orig_mid_min;
2653 	int32_t new_dqs, start_dqs, shift_dq;
2654 	int32_t dq_margin, dqs_margin, dm_margin;
2655 	uint32_t stop;
2656 	uint32_t temp_dq_out1_delay;
2657 	uint32_t addr;
2658 
2659 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2660 
2661 	dm_margin = 0;
2662 
2663 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2664 	start_dqs = readl(addr +
2665 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2666 
2667 	/* per-bit deskew */
2668 
2669 	/*
2670 	 * set the left and right edge of each bit to an illegal value
2671 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2672 	 */
2673 	sticky_bit_chk = 0;
2674 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2675 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2676 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2677 	}
2678 
2679 	/* Search for the left edge of the window for each bit */
2680 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2681 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2682 
2683 		writel(0, &sdr_scc_mgr->update);
2684 
2685 		/*
2686 		 * Stop searching when the read test doesn't pass AND when
2687 		 * we've seen a passing read on every bit.
2688 		 */
2689 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2690 			0, PASS_ONE_BIT, &bit_chk, 0);
2691 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2692 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2693 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2694 			   == %u && %u [bit_chk= %u ]\n",
2695 			d, sticky_bit_chk, param->write_correct_mask,
2696 			stop, bit_chk);
2697 
2698 		if (stop == 1) {
2699 			break;
2700 		} else {
2701 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2702 				if (bit_chk & 1) {
2703 					/*
2704 					 * Remember a passing test as the
2705 					 * left_edge.
2706 					 */
2707 					left_edge[i] = d;
2708 				} else {
2709 					/*
2710 					 * If a left edge has not been seen
2711 					 * yet, then a future passing test will
2712 					 * mark this edge as the right edge.
2713 					 */
2714 					if (left_edge[i] ==
2715 						IO_IO_OUT1_DELAY_MAX + 1) {
2716 						right_edge[i] = -(d + 1);
2717 					}
2718 				}
2719 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2720 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2721 					   (int)(bit_chk & 1), i, left_edge[i]);
2722 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2723 				       right_edge[i]);
2724 				bit_chk = bit_chk >> 1;
2725 			}
2726 		}
2727 	}
2728 
2729 	/* Reset DQ delay chains to 0 */
2730 	scc_mgr_apply_group_dq_out1_delay(0);
2731 	sticky_bit_chk = 0;
2732 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2733 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2734 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2735 			   i, left_edge[i], i, right_edge[i]);
2736 
2737 		/*
2738 		 * Check for cases where we haven't found the left edge,
2739 		 * which makes our assignment of the the right edge invalid.
2740 		 * Reset it to the illegal value.
2741 		 */
2742 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2743 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2744 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2745 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2746 				   right_edge[%u]: %d\n", __func__, __LINE__,
2747 				   i, right_edge[i]);
2748 		}
2749 
2750 		/*
2751 		 * Reset sticky bit (except for bits where we have
2752 		 * seen the left edge).
2753 		 */
2754 		sticky_bit_chk = sticky_bit_chk << 1;
2755 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2756 			sticky_bit_chk = sticky_bit_chk | 1;
2757 
2758 		if (i == 0)
2759 			break;
2760 	}
2761 
2762 	/* Search for the right edge of the window for each bit */
2763 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2764 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2765 							d + start_dqs);
2766 
2767 		writel(0, &sdr_scc_mgr->update);
2768 
2769 		/*
2770 		 * Stop searching when the read test doesn't pass AND when
2771 		 * we've seen a passing read on every bit.
2772 		 */
2773 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2774 			0, PASS_ONE_BIT, &bit_chk, 0);
2775 
2776 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2777 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2778 
2779 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2780 			   %u && %u\n", d, sticky_bit_chk,
2781 			   param->write_correct_mask, stop);
2782 
2783 		if (stop == 1) {
2784 			if (d == 0) {
2785 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2786 					i++) {
2787 					/* d = 0 failed, but it passed when
2788 					testing the left edge, so it must be
2789 					marginal, set it to -1 */
2790 					if (right_edge[i] ==
2791 						IO_IO_OUT1_DELAY_MAX + 1 &&
2792 						left_edge[i] !=
2793 						IO_IO_OUT1_DELAY_MAX + 1) {
2794 						right_edge[i] = -1;
2795 					}
2796 				}
2797 			}
2798 			break;
2799 		} else {
2800 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2801 				if (bit_chk & 1) {
2802 					/*
2803 					 * Remember a passing test as
2804 					 * the right_edge.
2805 					 */
2806 					right_edge[i] = d;
2807 				} else {
2808 					if (d != 0) {
2809 						/*
2810 						 * If a right edge has not
2811 						 * been seen yet, then a future
2812 						 * passing test will mark this
2813 						 * edge as the left edge.
2814 						 */
2815 						if (right_edge[i] ==
2816 						    IO_IO_OUT1_DELAY_MAX + 1)
2817 							left_edge[i] = -(d + 1);
2818 					} else {
2819 						/*
2820 						 * d = 0 failed, but it passed
2821 						 * when testing the left edge,
2822 						 * so it must be marginal, set
2823 						 * it to -1.
2824 						 */
2825 						if (right_edge[i] ==
2826 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2827 						    left_edge[i] !=
2828 						    IO_IO_OUT1_DELAY_MAX + 1)
2829 							right_edge[i] = -1;
2830 						/*
2831 						 * If a right edge has not been
2832 						 * seen yet, then a future
2833 						 * passing test will mark this
2834 						 * edge as the left edge.
2835 						 */
2836 						else if (right_edge[i] ==
2837 							IO_IO_OUT1_DELAY_MAX +
2838 							1)
2839 							left_edge[i] = -(d + 1);
2840 					}
2841 				}
2842 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2843 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2844 					   (int)(bit_chk & 1), i, left_edge[i]);
2845 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2846 					   right_edge[i]);
2847 				bit_chk = bit_chk >> 1;
2848 			}
2849 		}
2850 	}
2851 
2852 	/* Check that all bits have a window */
2853 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2854 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2855 			   %d right_edge[%u]: %d", __func__, __LINE__,
2856 			   i, left_edge[i], i, right_edge[i]);
2857 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2858 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2859 			set_failing_group_stage(test_bgn + i,
2860 						CAL_STAGE_WRITES,
2861 						CAL_SUBSTAGE_WRITES_CENTER);
2862 			return 0;
2863 		}
2864 	}
2865 
2866 	/* Find middle of window for each DQ bit */
2867 	mid_min = left_edge[0] - right_edge[0];
2868 	min_index = 0;
2869 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2870 		mid = left_edge[i] - right_edge[i];
2871 		if (mid < mid_min) {
2872 			mid_min = mid;
2873 			min_index = i;
2874 		}
2875 	}
2876 
2877 	/*
2878 	 * -mid_min/2 represents the amount that we need to move DQS.
2879 	 * If mid_min is odd and positive we'll need to add one to
2880 	 * make sure the rounding in further calculations is correct
2881 	 * (always bias to the right), so just add 1 for all positive values.
2882 	 */
2883 	if (mid_min > 0)
2884 		mid_min++;
2885 	mid_min = mid_min / 2;
2886 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2887 		   __LINE__, mid_min);
2888 
2889 	/* Determine the amount we can change DQS (which is -mid_min) */
2890 	orig_mid_min = mid_min;
2891 	new_dqs = start_dqs;
2892 	mid_min = 0;
2893 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2894 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2895 	/* Initialize data for export structures */
2896 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2897 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2898 
2899 	/* add delay to bring centre of all DQ windows to the same "level" */
2900 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2901 		/* Use values before divide by 2 to reduce round off error */
2902 		shift_dq = (left_edge[i] - right_edge[i] -
2903 			(left_edge[min_index] - right_edge[min_index]))/2  +
2904 		(orig_mid_min - mid_min);
2905 
2906 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2907 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2908 
2909 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2910 		temp_dq_out1_delay = readl(addr + (i << 2));
2911 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2912 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2913 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2914 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2915 			shift_dq = -(int32_t)temp_dq_out1_delay;
2916 		}
2917 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2918 			   i, shift_dq);
2919 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2920 		scc_mgr_load_dq(i);
2921 
2922 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2923 			   left_edge[i] - shift_dq + (-mid_min),
2924 			   right_edge[i] + shift_dq - (-mid_min));
2925 		/* To determine values for export structures */
2926 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2927 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2928 
2929 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2930 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2931 	}
2932 
2933 	/* Move DQS */
2934 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2935 	writel(0, &sdr_scc_mgr->update);
2936 
2937 	/* Centre DM */
2938 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2939 
2940 	/*
2941 	 * set the left and right edge of each bit to an illegal value,
2942 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2943 	 */
2944 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2945 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2946 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2947 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2948 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2949 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2950 	int32_t win_best = 0;
2951 
2952 	/* Search for the/part of the window with DM shift */
2953 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2954 		scc_mgr_apply_group_dm_out1_delay(d);
2955 		writel(0, &sdr_scc_mgr->update);
2956 
2957 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2958 						    PASS_ALL_BITS, &bit_chk,
2959 						    0)) {
2960 			/* USE Set current end of the window */
2961 			end_curr = -d;
2962 			/*
2963 			 * If a starting edge of our window has not been seen
2964 			 * this is our current start of the DM window.
2965 			 */
2966 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2967 				bgn_curr = -d;
2968 
2969 			/*
2970 			 * If current window is bigger than best seen.
2971 			 * Set best seen to be current window.
2972 			 */
2973 			if ((end_curr-bgn_curr+1) > win_best) {
2974 				win_best = end_curr-bgn_curr+1;
2975 				bgn_best = bgn_curr;
2976 				end_best = end_curr;
2977 			}
2978 		} else {
2979 			/* We just saw a failing test. Reset temp edge */
2980 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2981 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2982 			}
2983 		}
2984 
2985 
2986 	/* Reset DM delay chains to 0 */
2987 	scc_mgr_apply_group_dm_out1_delay(0);
2988 
2989 	/*
2990 	 * Check to see if the current window nudges up aganist 0 delay.
2991 	 * If so we need to continue the search by shifting DQS otherwise DQS
2992 	 * search begins as a new search. */
2993 	if (end_curr != 0) {
2994 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2995 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2996 	}
2997 
2998 	/* Search for the/part of the window with DQS shifts */
2999 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3000 		/*
3001 		 * Note: This only shifts DQS, so are we limiting ourselve to
3002 		 * width of DQ unnecessarily.
3003 		 */
3004 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3005 							d + new_dqs);
3006 
3007 		writel(0, &sdr_scc_mgr->update);
3008 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3009 						    PASS_ALL_BITS, &bit_chk,
3010 						    0)) {
3011 			/* USE Set current end of the window */
3012 			end_curr = d;
3013 			/*
3014 			 * If a beginning edge of our window has not been seen
3015 			 * this is our current begin of the DM window.
3016 			 */
3017 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3018 				bgn_curr = d;
3019 
3020 			/*
3021 			 * If current window is bigger than best seen. Set best
3022 			 * seen to be current window.
3023 			 */
3024 			if ((end_curr-bgn_curr+1) > win_best) {
3025 				win_best = end_curr-bgn_curr+1;
3026 				bgn_best = bgn_curr;
3027 				end_best = end_curr;
3028 			}
3029 		} else {
3030 			/* We just saw a failing test. Reset temp edge */
3031 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3032 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3033 
3034 			/* Early exit optimization: if ther remaining delay
3035 			chain space is less than already seen largest window
3036 			we can exit */
3037 			if ((win_best-1) >
3038 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3039 					break;
3040 				}
3041 			}
3042 		}
3043 
3044 	/* assign left and right edge for cal and reporting; */
3045 	left_edge[0] = -1*bgn_best;
3046 	right_edge[0] = end_best;
3047 
3048 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3049 		   __LINE__, left_edge[0], right_edge[0]);
3050 
3051 	/* Move DQS (back to orig) */
3052 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3053 
3054 	/* Move DM */
3055 
3056 	/* Find middle of window for the DM bit */
3057 	mid = (left_edge[0] - right_edge[0]) / 2;
3058 
3059 	/* only move right, since we are not moving DQS/DQ */
3060 	if (mid < 0)
3061 		mid = 0;
3062 
3063 	/* dm_marign should fail if we never find a window */
3064 	if (win_best == 0)
3065 		dm_margin = -1;
3066 	else
3067 		dm_margin = left_edge[0] - mid;
3068 
3069 	scc_mgr_apply_group_dm_out1_delay(mid);
3070 	writel(0, &sdr_scc_mgr->update);
3071 
3072 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3073 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3074 		   right_edge[0], mid, dm_margin);
3075 	/* Export values */
3076 	gbl->fom_out += dq_margin + dqs_margin;
3077 
3078 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3079 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3080 		   dq_margin, dqs_margin, dm_margin);
3081 
3082 	/*
3083 	 * Do not remove this line as it makes sure all of our
3084 	 * decisions have been applied.
3085 	 */
3086 	writel(0, &sdr_scc_mgr->update);
3087 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3088 }
3089 
3090 /* calibrate the write operations */
3091 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3092 	uint32_t test_bgn)
3093 {
3094 	/* update info for sims */
3095 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3096 
3097 	reg_file_set_stage(CAL_STAGE_WRITES);
3098 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3099 
3100 	reg_file_set_group(g);
3101 
3102 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3103 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3104 					CAL_SUBSTAGE_WRITES_CENTER);
3105 		return 0;
3106 	}
3107 
3108 	return 1;
3109 }
3110 
3111 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3112 static void mem_precharge_and_activate(void)
3113 {
3114 	uint32_t r;
3115 
3116 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3117 		if (param->skip_ranks[r]) {
3118 			/* request to skip the rank */
3119 			continue;
3120 		}
3121 
3122 		/* set rank */
3123 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3124 
3125 		/* precharge all banks ... */
3126 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3127 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3128 
3129 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3130 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3131 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3132 
3133 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3134 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3135 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3136 
3137 		/* activate rows */
3138 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3139 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3140 	}
3141 }
3142 
3143 /* Configure various memory related parameters. */
3144 static void mem_config(void)
3145 {
3146 	uint32_t rlat, wlat;
3147 	uint32_t rw_wl_nop_cycles;
3148 	uint32_t max_latency;
3149 
3150 	debug("%s:%d\n", __func__, __LINE__);
3151 	/* read in write and read latency */
3152 	wlat = readl(&data_mgr->t_wl_add);
3153 	wlat += readl(&data_mgr->mem_t_add);
3154 
3155 	/* WL for hard phy does not include additive latency */
3156 
3157 	/*
3158 	 * add addtional write latency to offset the address/command extra
3159 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3160 	 * by one mem clock cycle. Only do this for DDR3
3161 	 */
3162 	wlat = wlat + 1;
3163 
3164 	rlat = readl(&data_mgr->t_rl_add);
3165 
3166 	rw_wl_nop_cycles = wlat - 2;
3167 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3168 
3169 	/*
3170 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3171 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3172 	 */
3173 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3174 	/* configure for a burst length of 8 */
3175 
3176 	/* write latency */
3177 	/* Adjust Write Latency for Hard PHY */
3178 	wlat = wlat + 1;
3179 
3180 	/* set a pretty high read latency initially */
3181 	gbl->curr_read_lat = rlat + 16;
3182 
3183 	if (gbl->curr_read_lat > max_latency)
3184 		gbl->curr_read_lat = max_latency;
3185 
3186 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3187 
3188 	/* advertise write latency */
3189 	gbl->curr_write_lat = wlat;
3190 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3191 
3192 	/* initialize bit slips */
3193 	mem_precharge_and_activate();
3194 }
3195 
3196 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3197 static void mem_skip_calibrate(void)
3198 {
3199 	uint32_t vfifo_offset;
3200 	uint32_t i, j, r;
3201 
3202 	debug("%s:%d\n", __func__, __LINE__);
3203 	/* Need to update every shadow register set used by the interface */
3204 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3205 		r += NUM_RANKS_PER_SHADOW_REG) {
3206 		/*
3207 		 * Set output phase alignment settings appropriate for
3208 		 * skip calibration.
3209 		 */
3210 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3211 			scc_mgr_set_dqs_en_phase(i, 0);
3212 #if IO_DLL_CHAIN_LENGTH == 6
3213 			scc_mgr_set_dqdqs_output_phase(i, 6);
3214 #else
3215 			scc_mgr_set_dqdqs_output_phase(i, 7);
3216 #endif
3217 			/*
3218 			 * Case:33398
3219 			 *
3220 			 * Write data arrives to the I/O two cycles before write
3221 			 * latency is reached (720 deg).
3222 			 *   -> due to bit-slip in a/c bus
3223 			 *   -> to allow board skew where dqs is longer than ck
3224 			 *      -> how often can this happen!?
3225 			 *      -> can claim back some ptaps for high freq
3226 			 *       support if we can relax this, but i digress...
3227 			 *
3228 			 * The write_clk leads mem_ck by 90 deg
3229 			 * The minimum ptap of the OPA is 180 deg
3230 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3231 			 * The write_clk is always delayed by 2 ptaps
3232 			 *
3233 			 * Hence, to make DQS aligned to CK, we need to delay
3234 			 * DQS by:
3235 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3236 			 *
3237 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3238 			 * gives us the number of ptaps, which simplies to:
3239 			 *
3240 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3241 			 */
3242 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3243 				IO_DLL_CHAIN_LENGTH - 2));
3244 		}
3245 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3246 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3247 
3248 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3249 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3250 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3251 		}
3252 		writel(0xff, &sdr_scc_mgr->dq_ena);
3253 		writel(0xff, &sdr_scc_mgr->dm_ena);
3254 		writel(0, &sdr_scc_mgr->update);
3255 	}
3256 
3257 	/* Compensate for simulation model behaviour */
3258 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3259 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3260 		scc_mgr_load_dqs(i);
3261 	}
3262 	writel(0, &sdr_scc_mgr->update);
3263 
3264 	/*
3265 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3266 	 * in sequencer.
3267 	 */
3268 	vfifo_offset = CALIB_VFIFO_OFFSET;
3269 	for (j = 0; j < vfifo_offset; j++) {
3270 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3271 	}
3272 	writel(0, &phy_mgr_cmd->fifo_reset);
3273 
3274 	/*
3275 	 * For ACV with hard lfifo, we get the skip-cal setting from
3276 	 * generation-time constant.
3277 	 */
3278 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3279 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3280 }
3281 
3282 /* Memory calibration entry point */
3283 static uint32_t mem_calibrate(void)
3284 {
3285 	uint32_t i;
3286 	uint32_t rank_bgn, sr;
3287 	uint32_t write_group, write_test_bgn;
3288 	uint32_t read_group, read_test_bgn;
3289 	uint32_t run_groups, current_run;
3290 	uint32_t failing_groups = 0;
3291 	uint32_t group_failed = 0;
3292 	uint32_t sr_failed = 0;
3293 
3294 	debug("%s:%d\n", __func__, __LINE__);
3295 	/* Initialize the data settings */
3296 
3297 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3298 	gbl->error_stage = CAL_STAGE_NIL;
3299 	gbl->error_group = 0xff;
3300 	gbl->fom_in = 0;
3301 	gbl->fom_out = 0;
3302 
3303 	mem_config();
3304 
3305 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3306 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3307 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3308 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3309 		if (i == 0)
3310 			scc_mgr_set_hhp_extras();
3311 
3312 		scc_set_bypass_mode(i);
3313 	}
3314 
3315 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3316 		/*
3317 		 * Set VFIFO and LFIFO to instant-on settings in skip
3318 		 * calibration mode.
3319 		 */
3320 		mem_skip_calibrate();
3321 	} else {
3322 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3323 			/*
3324 			 * Zero all delay chain/phase settings for all
3325 			 * groups and all shadow register sets.
3326 			 */
3327 			scc_mgr_zero_all();
3328 
3329 			run_groups = ~param->skip_groups;
3330 
3331 			for (write_group = 0, write_test_bgn = 0; write_group
3332 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3333 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3334 				/* Initialized the group failure */
3335 				group_failed = 0;
3336 
3337 				current_run = run_groups & ((1 <<
3338 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3339 				run_groups = run_groups >>
3340 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3341 
3342 				if (current_run == 0)
3343 					continue;
3344 
3345 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3346 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3347 				scc_mgr_zero_group(write_group, 0);
3348 
3349 				for (read_group = write_group *
3350 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3351 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3352 					read_test_bgn = 0;
3353 					read_group < (write_group + 1) *
3354 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3355 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3356 					group_failed == 0;
3357 					read_group++, read_test_bgn +=
3358 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3359 					/* Calibrate the VFIFO */
3360 					if (!((STATIC_CALIB_STEPS) &
3361 						CALIB_SKIP_VFIFO)) {
3362 						if (!rw_mgr_mem_calibrate_vfifo
3363 							(read_group,
3364 							read_test_bgn)) {
3365 							group_failed = 1;
3366 
3367 							if (!(gbl->
3368 							phy_debug_mode_flags &
3369 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3370 								return 0;
3371 							}
3372 						}
3373 					}
3374 				}
3375 
3376 				/* Calibrate the output side */
3377 				if (group_failed == 0)	{
3378 					for (rank_bgn = 0, sr = 0; rank_bgn
3379 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3380 						rank_bgn +=
3381 						NUM_RANKS_PER_SHADOW_REG,
3382 						++sr) {
3383 						sr_failed = 0;
3384 						if (!((STATIC_CALIB_STEPS) &
3385 						CALIB_SKIP_WRITES)) {
3386 							if ((STATIC_CALIB_STEPS)
3387 						& CALIB_SKIP_DELAY_SWEEPS) {
3388 						/* not needed in quick mode! */
3389 							} else {
3390 						/*
3391 						 * Determine if this set of
3392 						 * ranks should be skipped
3393 						 * entirely.
3394 						 */
3395 					if (!param->skip_shadow_regs[sr]) {
3396 						if (!rw_mgr_mem_calibrate_writes
3397 						(rank_bgn, write_group,
3398 						write_test_bgn)) {
3399 							sr_failed = 1;
3400 							if (!(gbl->
3401 							phy_debug_mode_flags &
3402 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3403 								return 0;
3404 									}
3405 									}
3406 								}
3407 							}
3408 						}
3409 						if (sr_failed != 0)
3410 							group_failed = 1;
3411 					}
3412 				}
3413 
3414 				if (group_failed == 0) {
3415 					for (read_group = write_group *
3416 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3417 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3418 					read_test_bgn = 0;
3419 						read_group < (write_group + 1)
3420 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3421 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3422 						group_failed == 0;
3423 						read_group++, read_test_bgn +=
3424 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3425 						if (!((STATIC_CALIB_STEPS) &
3426 							CALIB_SKIP_WRITES)) {
3427 					if (!rw_mgr_mem_calibrate_vfifo_end
3428 						(read_group, read_test_bgn)) {
3429 							group_failed = 1;
3430 
3431 						if (!(gbl->phy_debug_mode_flags
3432 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3433 								return 0;
3434 								}
3435 							}
3436 						}
3437 					}
3438 				}
3439 
3440 				if (group_failed != 0)
3441 					failing_groups++;
3442 			}
3443 
3444 			/*
3445 			 * USER If there are any failing groups then report
3446 			 * the failure.
3447 			 */
3448 			if (failing_groups != 0)
3449 				return 0;
3450 
3451 			/* Calibrate the LFIFO */
3452 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3453 				/*
3454 				 * If we're skipping groups as part of debug,
3455 				 * don't calibrate LFIFO.
3456 				 */
3457 				if (param->skip_groups == 0) {
3458 					if (!rw_mgr_mem_calibrate_lfifo())
3459 						return 0;
3460 				}
3461 			}
3462 		}
3463 	}
3464 
3465 	/*
3466 	 * Do not remove this line as it makes sure all of our decisions
3467 	 * have been applied.
3468 	 */
3469 	writel(0, &sdr_scc_mgr->update);
3470 	return 1;
3471 }
3472 
3473 static uint32_t run_mem_calibrate(void)
3474 {
3475 	uint32_t pass;
3476 	uint32_t debug_info;
3477 
3478 	debug("%s:%d\n", __func__, __LINE__);
3479 
3480 	/* Reset pass/fail status shown on afi_cal_success/fail */
3481 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3482 
3483 	/* stop tracking manger */
3484 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3485 
3486 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3487 
3488 	initialize();
3489 	rw_mgr_mem_initialize();
3490 
3491 	pass = mem_calibrate();
3492 
3493 	mem_precharge_and_activate();
3494 	writel(0, &phy_mgr_cmd->fifo_reset);
3495 
3496 	/*
3497 	 * Handoff:
3498 	 * Don't return control of the PHY back to AFI when in debug mode.
3499 	 */
3500 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3501 		rw_mgr_mem_handoff();
3502 		/*
3503 		 * In Hard PHY this is a 2-bit control:
3504 		 * 0: AFI Mux Select
3505 		 * 1: DDIO Mux Select
3506 		 */
3507 		writel(0x2, &phy_mgr_cfg->mux_sel);
3508 	}
3509 
3510 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3511 
3512 	if (pass) {
3513 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3514 
3515 		gbl->fom_in /= 2;
3516 		gbl->fom_out /= 2;
3517 
3518 		if (gbl->fom_in > 0xff)
3519 			gbl->fom_in = 0xff;
3520 
3521 		if (gbl->fom_out > 0xff)
3522 			gbl->fom_out = 0xff;
3523 
3524 		/* Update the FOM in the register file */
3525 		debug_info = gbl->fom_in;
3526 		debug_info |= gbl->fom_out << 8;
3527 		writel(debug_info, &sdr_reg_file->fom);
3528 
3529 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3530 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3531 	} else {
3532 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3533 
3534 		debug_info = gbl->error_stage;
3535 		debug_info |= gbl->error_substage << 8;
3536 		debug_info |= gbl->error_group << 16;
3537 
3538 		writel(debug_info, &sdr_reg_file->failing_stage);
3539 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3540 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3541 
3542 		/* Update the failing group/stage in the register file */
3543 		debug_info = gbl->error_stage;
3544 		debug_info |= gbl->error_substage << 8;
3545 		debug_info |= gbl->error_group << 16;
3546 		writel(debug_info, &sdr_reg_file->failing_stage);
3547 	}
3548 
3549 	return pass;
3550 }
3551 
3552 /**
3553  * hc_initialize_rom_data() - Initialize ROM data
3554  *
3555  * Initialize ROM data.
3556  */
3557 static void hc_initialize_rom_data(void)
3558 {
3559 	u32 i, addr;
3560 
3561 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3562 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3563 		writel(inst_rom_init[i], addr + (i << 2));
3564 
3565 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3566 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3567 		writel(ac_rom_init[i], addr + (i << 2));
3568 }
3569 
3570 /**
3571  * initialize_reg_file() - Initialize SDR register file
3572  *
3573  * Initialize SDR register file.
3574  */
3575 static void initialize_reg_file(void)
3576 {
3577 	/* Initialize the register file with the correct data */
3578 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3579 	writel(0, &sdr_reg_file->debug_data_addr);
3580 	writel(0, &sdr_reg_file->cur_stage);
3581 	writel(0, &sdr_reg_file->fom);
3582 	writel(0, &sdr_reg_file->failing_stage);
3583 	writel(0, &sdr_reg_file->debug1);
3584 	writel(0, &sdr_reg_file->debug2);
3585 }
3586 
3587 /**
3588  * initialize_hps_phy() - Initialize HPS PHY
3589  *
3590  * Initialize HPS PHY.
3591  */
3592 static void initialize_hps_phy(void)
3593 {
3594 	uint32_t reg;
3595 	/*
3596 	 * Tracking also gets configured here because it's in the
3597 	 * same register.
3598 	 */
3599 	uint32_t trk_sample_count = 7500;
3600 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3601 	/*
3602 	 * Format is number of outer loops in the 16 MSB, sample
3603 	 * count in 16 LSB.
3604 	 */
3605 
3606 	reg = 0;
3607 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3608 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3609 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3610 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3611 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3612 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3613 	/*
3614 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3615 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3616 	 */
3617 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3618 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3619 		trk_sample_count);
3620 	writel(reg, &sdr_ctrl->phy_ctrl0);
3621 
3622 	reg = 0;
3623 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3624 		trk_sample_count >>
3625 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3626 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3627 		trk_long_idle_sample_count);
3628 	writel(reg, &sdr_ctrl->phy_ctrl1);
3629 
3630 	reg = 0;
3631 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3632 		trk_long_idle_sample_count >>
3633 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3634 	writel(reg, &sdr_ctrl->phy_ctrl2);
3635 }
3636 
3637 static void initialize_tracking(void)
3638 {
3639 	uint32_t concatenated_longidle = 0x0;
3640 	uint32_t concatenated_delays = 0x0;
3641 	uint32_t concatenated_rw_addr = 0x0;
3642 	uint32_t concatenated_refresh = 0x0;
3643 	uint32_t trk_sample_count = 7500;
3644 	uint32_t dtaps_per_ptap;
3645 	uint32_t tmp_delay;
3646 
3647 	/*
3648 	 * compute usable version of value in case we skip full
3649 	 * computation later
3650 	 */
3651 	dtaps_per_ptap = 0;
3652 	tmp_delay = 0;
3653 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3654 		dtaps_per_ptap++;
3655 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3656 	}
3657 	dtaps_per_ptap--;
3658 
3659 	concatenated_longidle = concatenated_longidle ^ 10;
3660 		/*longidle outer loop */
3661 	concatenated_longidle = concatenated_longidle << 16;
3662 	concatenated_longidle = concatenated_longidle ^ 100;
3663 		/*longidle sample count */
3664 	concatenated_delays = concatenated_delays ^ 243;
3665 		/* trfc, worst case of 933Mhz 4Gb */
3666 	concatenated_delays = concatenated_delays << 8;
3667 	concatenated_delays = concatenated_delays ^ 14;
3668 		/* trcd, worst case */
3669 	concatenated_delays = concatenated_delays << 8;
3670 	concatenated_delays = concatenated_delays ^ 10;
3671 		/* vfifo wait */
3672 	concatenated_delays = concatenated_delays << 8;
3673 	concatenated_delays = concatenated_delays ^ 4;
3674 		/* mux delay */
3675 
3676 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3677 	concatenated_rw_addr = concatenated_rw_addr << 8;
3678 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3679 	concatenated_rw_addr = concatenated_rw_addr << 8;
3680 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3681 	concatenated_rw_addr = concatenated_rw_addr << 8;
3682 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3683 
3684 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3685 	concatenated_refresh = concatenated_refresh << 24;
3686 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3687 
3688 	/* Initialize the register file with the correct data */
3689 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3690 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3691 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3692 	writel(concatenated_delays, &sdr_reg_file->delays);
3693 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3694 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3695 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3696 }
3697 
3698 int sdram_calibration_full(void)
3699 {
3700 	struct param_type my_param;
3701 	struct gbl_type my_gbl;
3702 	uint32_t pass;
3703 	uint32_t i;
3704 
3705 	param = &my_param;
3706 	gbl = &my_gbl;
3707 
3708 	/* Initialize the debug mode flags */
3709 	gbl->phy_debug_mode_flags = 0;
3710 	/* Set the calibration enabled by default */
3711 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3712 	/*
3713 	 * Only sweep all groups (regardless of fail state) by default
3714 	 * Set enabled read test by default.
3715 	 */
3716 #if DISABLE_GUARANTEED_READ
3717 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3718 #endif
3719 	/* Initialize the register file */
3720 	initialize_reg_file();
3721 
3722 	/* Initialize any PHY CSR */
3723 	initialize_hps_phy();
3724 
3725 	scc_mgr_initialize();
3726 
3727 	initialize_tracking();
3728 
3729 	/* USER Enable all ranks, groups */
3730 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3731 		param->skip_ranks[i] = 0;
3732 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3733 		param->skip_shadow_regs[i] = 0;
3734 	param->skip_groups = 0;
3735 
3736 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3737 
3738 	debug("%s:%d\n", __func__, __LINE__);
3739 	debug_cond(DLEVEL == 1,
3740 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3741 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3742 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3743 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3744 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3745 	debug_cond(DLEVEL == 1,
3746 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3747 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3748 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3749 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3750 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3751 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3752 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3753 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3754 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3755 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3756 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3757 		   IO_IO_OUT2_DELAY_MAX);
3758 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3759 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3760 
3761 	hc_initialize_rom_data();
3762 
3763 	/* update info for sims */
3764 	reg_file_set_stage(CAL_STAGE_NIL);
3765 	reg_file_set_group(0);
3766 
3767 	/*
3768 	 * Load global needed for those actions that require
3769 	 * some dynamic calibration support.
3770 	 */
3771 	dyn_calib_steps = STATIC_CALIB_STEPS;
3772 	/*
3773 	 * Load global to allow dynamic selection of delay loop settings
3774 	 * based on calibration mode.
3775 	 */
3776 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3777 		skip_delay_mask = 0xff;
3778 	else
3779 		skip_delay_mask = 0x0;
3780 
3781 	pass = run_mem_calibrate();
3782 
3783 	printf("%s: Calibration complete\n", __FILE__);
3784 	return pass;
3785 }
3786