1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group, 325 uint32_t delay) 326 { 327 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 328 delay); 329 } 330 331 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 332 { 333 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 334 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 335 delay); 336 } 337 338 /* load up dqs config settings */ 339 static void scc_mgr_load_dqs(uint32_t dqs) 340 { 341 writel(dqs, &sdr_scc_mgr->dqs_ena); 342 } 343 344 /* load up dqs io config settings */ 345 static void scc_mgr_load_dqs_io(void) 346 { 347 writel(0, &sdr_scc_mgr->dqs_io_ena); 348 } 349 350 /* load up dq config settings */ 351 static void scc_mgr_load_dq(uint32_t dq_in_group) 352 { 353 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 354 } 355 356 /* load up dm config settings */ 357 static void scc_mgr_load_dm(uint32_t dm) 358 { 359 writel(dm, &sdr_scc_mgr->dm_ena); 360 } 361 362 /** 363 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 364 * @off: Base offset in SCC Manager space 365 * @grp: Read/Write group 366 * @val: Value to be set 367 * @update: If non-zero, trigger SCC Manager update for all ranks 368 * 369 * This function sets the SCC Manager (Scan Chain Control Manager) register 370 * and optionally triggers the SCC update for all ranks. 371 */ 372 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 373 const int update) 374 { 375 u32 r; 376 377 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 378 r += NUM_RANKS_PER_SHADOW_REG) { 379 scc_mgr_set(off, grp, val); 380 381 if (update || (r == 0)) { 382 writel(grp, &sdr_scc_mgr->dqs_ena); 383 writel(0, &sdr_scc_mgr->update); 384 } 385 } 386 } 387 388 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 389 { 390 /* 391 * USER although the h/w doesn't support different phases per 392 * shadow register, for simplicity our scc manager modeling 393 * keeps different phase settings per shadow reg, and it's 394 * important for us to keep them in sync to match h/w. 395 * for efficiency, the scan chain update should occur only 396 * once to sr0. 397 */ 398 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 399 read_group, phase, 0); 400 } 401 402 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 403 uint32_t phase) 404 { 405 /* 406 * USER although the h/w doesn't support different phases per 407 * shadow register, for simplicity our scc manager modeling 408 * keeps different phase settings per shadow reg, and it's 409 * important for us to keep them in sync to match h/w. 410 * for efficiency, the scan chain update should occur only 411 * once to sr0. 412 */ 413 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 414 write_group, phase, 0); 415 } 416 417 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 418 uint32_t delay) 419 { 420 /* 421 * In shadow register mode, the T11 settings are stored in 422 * registers in the core, which are updated by the DQS_ENA 423 * signals. Not issuing the SCC_MGR_UPD command allows us to 424 * save lots of rank switching overhead, by calling 425 * select_shadow_regs_for_update with update_scan_chains 426 * set to 0. 427 */ 428 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 429 read_group, delay, 1); 430 writel(0, &sdr_scc_mgr->update); 431 } 432 433 /** 434 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 435 * @write_group: Write group 436 * @delay: Delay value 437 * 438 * This function sets the OCT output delay in SCC manager. 439 */ 440 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 441 { 442 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 443 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 444 const int base = write_group * ratio; 445 int i; 446 /* 447 * Load the setting in the SCC manager 448 * Although OCT affects only write data, the OCT delay is controlled 449 * by the DQS logic block which is instantiated once per read group. 450 * For protocols where a write group consists of multiple read groups, 451 * the setting must be set multiple times. 452 */ 453 for (i = 0; i < ratio; i++) 454 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 455 } 456 457 static void scc_mgr_set_hhp_extras(void) 458 { 459 /* 460 * Load the fixed setting in the SCC manager 461 * bits: 0:0 = 1'b1 - dqs bypass 462 * bits: 1:1 = 1'b1 - dq bypass 463 * bits: 4:2 = 3'b001 - rfifo_mode 464 * bits: 6:5 = 2'b01 - rfifo clock_select 465 * bits: 7:7 = 1'b0 - separate gating from ungating setting 466 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 467 */ 468 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 469 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 470 471 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 472 } 473 474 /* 475 * USER Zero all DQS config 476 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 477 */ 478 static void scc_mgr_zero_all(void) 479 { 480 uint32_t i, r; 481 482 /* 483 * USER Zero all DQS config settings, across all groups and all 484 * shadow registers 485 */ 486 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 487 NUM_RANKS_PER_SHADOW_REG) { 488 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 489 /* 490 * The phases actually don't exist on a per-rank basis, 491 * but there's no harm updating them several times, so 492 * let's keep the code simple. 493 */ 494 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 495 scc_mgr_set_dqs_en_phase(i, 0); 496 scc_mgr_set_dqs_en_delay(i, 0); 497 } 498 499 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 500 scc_mgr_set_dqdqs_output_phase(i, 0); 501 /* av/cv don't have out2 */ 502 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 503 } 504 } 505 506 /* multicast to all DQS group enables */ 507 writel(0xff, &sdr_scc_mgr->dqs_ena); 508 writel(0, &sdr_scc_mgr->update); 509 } 510 511 /** 512 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 513 * @write_group: Write group 514 * 515 * Set bypass mode and trigger SCC update. 516 */ 517 static void scc_set_bypass_mode(const u32 write_group) 518 { 519 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 520 if (write_group == 0) { 521 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 522 __LINE__); 523 scc_mgr_set_hhp_extras(); 524 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 525 __func__, __LINE__); 526 } 527 528 /* Multicast to all DQ enables. */ 529 writel(0xff, &sdr_scc_mgr->dq_ena); 530 writel(0xff, &sdr_scc_mgr->dm_ena); 531 532 /* Update current DQS IO enable. */ 533 writel(0, &sdr_scc_mgr->dqs_io_ena); 534 535 /* Update the DQS logic. */ 536 writel(write_group, &sdr_scc_mgr->dqs_ena); 537 538 /* Hit update. */ 539 writel(0, &sdr_scc_mgr->update); 540 } 541 542 /** 543 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 544 * @write_group: Write group 545 * 546 * Load DQS settings for Write Group, do not trigger SCC update. 547 */ 548 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 549 { 550 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 551 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 552 const int base = write_group * ratio; 553 int i; 554 /* 555 * Load the setting in the SCC manager 556 * Although OCT affects only write data, the OCT delay is controlled 557 * by the DQS logic block which is instantiated once per read group. 558 * For protocols where a write group consists of multiple read groups, 559 * the setting must be set multiple times. 560 */ 561 for (i = 0; i < ratio; i++) 562 writel(base + i, &sdr_scc_mgr->dqs_ena); 563 } 564 565 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 566 int32_t out_only) 567 { 568 uint32_t i, r; 569 570 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 571 NUM_RANKS_PER_SHADOW_REG) { 572 /* Zero all DQ config settings */ 573 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 574 scc_mgr_set_dq_out1_delay(i, 0); 575 if (!out_only) 576 scc_mgr_set_dq_in_delay(i, 0); 577 } 578 579 /* multicast to all DQ enables */ 580 writel(0xff, &sdr_scc_mgr->dq_ena); 581 582 /* Zero all DM config settings */ 583 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 584 scc_mgr_set_dm_out1_delay(i, 0); 585 } 586 587 /* multicast to all DM enables */ 588 writel(0xff, &sdr_scc_mgr->dm_ena); 589 590 /* zero all DQS io settings */ 591 if (!out_only) 592 scc_mgr_set_dqs_io_in_delay(write_group, 0); 593 /* av/cv don't have out2 */ 594 scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE); 595 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 596 scc_mgr_load_dqs_for_write_group(write_group); 597 598 /* multicast to all DQS IO enables (only 1) */ 599 writel(0, &sdr_scc_mgr->dqs_io_ena); 600 601 /* hit update to zero everything */ 602 writel(0, &sdr_scc_mgr->update); 603 } 604 } 605 606 /* 607 * apply and load a particular input delay for the DQ pins in a group 608 * group_bgn is the index of the first dq pin (in the write group) 609 */ 610 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, 611 uint32_t group_bgn, uint32_t delay) 612 { 613 uint32_t i, p; 614 615 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 616 scc_mgr_set_dq_in_delay(p, delay); 617 scc_mgr_load_dq(p); 618 } 619 } 620 621 /* apply and load a particular output delay for the DQ pins in a group */ 622 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, 623 uint32_t group_bgn, 624 uint32_t delay1) 625 { 626 uint32_t i, p; 627 628 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 629 scc_mgr_set_dq_out1_delay(i, delay1); 630 scc_mgr_load_dq(i); 631 } 632 } 633 634 /* apply and load a particular output delay for the DM pins in a group */ 635 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, 636 uint32_t delay1) 637 { 638 uint32_t i; 639 640 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 641 scc_mgr_set_dm_out1_delay(i, delay1); 642 scc_mgr_load_dm(i); 643 } 644 } 645 646 647 /* apply and load delay on both DQS and OCT out1 */ 648 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 649 uint32_t delay) 650 { 651 scc_mgr_set_dqs_out1_delay(write_group, delay); 652 scc_mgr_load_dqs_io(); 653 654 scc_mgr_set_oct_out1_delay(write_group, delay); 655 scc_mgr_load_dqs_for_write_group(write_group); 656 } 657 658 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 659 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 660 uint32_t group_bgn, 661 uint32_t delay) 662 { 663 uint32_t i, p, new_delay; 664 665 /* dq shift */ 666 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 667 new_delay = READ_SCC_DQ_OUT2_DELAY; 668 new_delay += delay; 669 670 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 671 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 672 %u > %lu => %lu", __func__, __LINE__, 673 write_group, group_bgn, delay, i, p, new_delay, 674 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 675 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 676 new_delay = IO_IO_OUT2_DELAY_MAX; 677 } 678 679 scc_mgr_load_dq(i); 680 } 681 682 /* dm shift */ 683 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 684 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 685 new_delay += delay; 686 687 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 688 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 689 %u > %lu => %lu\n", __func__, __LINE__, 690 write_group, group_bgn, delay, i, new_delay, 691 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 692 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 693 new_delay = IO_IO_OUT2_DELAY_MAX; 694 } 695 696 scc_mgr_load_dm(i); 697 } 698 699 /* dqs shift */ 700 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 701 new_delay += delay; 702 703 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 704 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 705 " adding %u to OUT1\n", __func__, __LINE__, 706 write_group, group_bgn, delay, new_delay, 707 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 708 new_delay - IO_IO_OUT2_DELAY_MAX); 709 scc_mgr_set_dqs_out1_delay(write_group, new_delay - 710 IO_IO_OUT2_DELAY_MAX); 711 new_delay = IO_IO_OUT2_DELAY_MAX; 712 } 713 714 scc_mgr_load_dqs_io(); 715 716 /* oct shift */ 717 new_delay = READ_SCC_OCT_OUT2_DELAY; 718 new_delay += delay; 719 720 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 721 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 722 " adding %u to OUT1\n", __func__, __LINE__, 723 write_group, group_bgn, delay, new_delay, 724 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 725 new_delay - IO_IO_OUT2_DELAY_MAX); 726 scc_mgr_set_oct_out1_delay(write_group, new_delay - 727 IO_IO_OUT2_DELAY_MAX); 728 new_delay = IO_IO_OUT2_DELAY_MAX; 729 } 730 731 scc_mgr_load_dqs_for_write_group(write_group); 732 } 733 734 /* 735 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 736 * and to all ranks 737 */ 738 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 739 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 740 { 741 uint32_t r; 742 743 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 744 r += NUM_RANKS_PER_SHADOW_REG) { 745 scc_mgr_apply_group_all_out_delay_add(write_group, 746 group_bgn, delay); 747 writel(0, &sdr_scc_mgr->update); 748 } 749 } 750 751 /* optimization used to recover some slots in ddr3 inst_rom */ 752 /* could be applied to other protocols if we wanted to */ 753 static void set_jump_as_return(void) 754 { 755 /* 756 * to save space, we replace return with jump to special shared 757 * RETURN instruction so we set the counter to large value so that 758 * we always jump 759 */ 760 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 761 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 762 } 763 764 /* 765 * should always use constants as argument to ensure all computations are 766 * performed at compile time 767 */ 768 static void delay_for_n_mem_clocks(const uint32_t clocks) 769 { 770 uint32_t afi_clocks; 771 uint8_t inner = 0; 772 uint8_t outer = 0; 773 uint16_t c_loop = 0; 774 775 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 776 777 778 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 779 /* scale (rounding up) to get afi clocks */ 780 781 /* 782 * Note, we don't bother accounting for being off a little bit 783 * because of a few extra instructions in outer loops 784 * Note, the loops have a test at the end, and do the test before 785 * the decrement, and so always perform the loop 786 * 1 time more than the counter value 787 */ 788 if (afi_clocks == 0) { 789 ; 790 } else if (afi_clocks <= 0x100) { 791 inner = afi_clocks-1; 792 outer = 0; 793 c_loop = 0; 794 } else if (afi_clocks <= 0x10000) { 795 inner = 0xff; 796 outer = (afi_clocks-1) >> 8; 797 c_loop = 0; 798 } else { 799 inner = 0xff; 800 outer = 0xff; 801 c_loop = (afi_clocks-1) >> 16; 802 } 803 804 /* 805 * rom instructions are structured as follows: 806 * 807 * IDLE_LOOP2: jnz cntr0, TARGET_A 808 * IDLE_LOOP1: jnz cntr1, TARGET_B 809 * return 810 * 811 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 812 * TARGET_B is set to IDLE_LOOP2 as well 813 * 814 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 815 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 816 * 817 * a little confusing, but it helps save precious space in the inst_rom 818 * and sequencer rom and keeps the delays more accurate and reduces 819 * overhead 820 */ 821 if (afi_clocks <= 0x100) { 822 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 823 &sdr_rw_load_mgr_regs->load_cntr1); 824 825 writel(RW_MGR_IDLE_LOOP1, 826 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 827 828 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 829 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 830 } else { 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 832 &sdr_rw_load_mgr_regs->load_cntr0); 833 834 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 835 &sdr_rw_load_mgr_regs->load_cntr1); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 839 840 writel(RW_MGR_IDLE_LOOP2, 841 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 842 843 /* hack to get around compiler not being smart enough */ 844 if (afi_clocks <= 0x10000) { 845 /* only need to run once */ 846 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 847 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 848 } else { 849 do { 850 writel(RW_MGR_IDLE_LOOP2, 851 SDR_PHYGRP_RWMGRGRP_ADDRESS | 852 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 853 } while (c_loop-- != 0); 854 } 855 } 856 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 857 } 858 859 static void rw_mgr_mem_initialize(void) 860 { 861 uint32_t r; 862 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 863 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 864 865 debug("%s:%d\n", __func__, __LINE__); 866 867 /* The reset / cke part of initialization is broadcasted to all ranks */ 868 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 869 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 870 871 /* 872 * Here's how you load register for a loop 873 * Counters are located @ 0x800 874 * Jump address are located @ 0xC00 875 * For both, registers 0 to 3 are selected using bits 3 and 2, like 876 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 877 * I know this ain't pretty, but Avalon bus throws away the 2 least 878 * significant bits 879 */ 880 881 /* start with memory RESET activated */ 882 883 /* tINIT = 200us */ 884 885 /* 886 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 887 * If a and b are the number of iteration in 2 nested loops 888 * it takes the following number of cycles to complete the operation: 889 * number_of_cycles = ((2 + n) * a + 2) * b 890 * where n is the number of instruction in the inner loop 891 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 892 * b = 6A 893 */ 894 895 /* Load counters */ 896 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 897 &sdr_rw_load_mgr_regs->load_cntr0); 898 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 899 &sdr_rw_load_mgr_regs->load_cntr1); 900 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 901 &sdr_rw_load_mgr_regs->load_cntr2); 902 903 /* Load jump address */ 904 writel(RW_MGR_INIT_RESET_0_CKE_0, 905 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 906 writel(RW_MGR_INIT_RESET_0_CKE_0, 907 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 908 writel(RW_MGR_INIT_RESET_0_CKE_0, 909 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 910 911 /* Execute count instruction */ 912 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 913 914 /* indicate that memory is stable */ 915 writel(1, &phy_mgr_cfg->reset_mem_stbl); 916 917 /* 918 * transition the RESET to high 919 * Wait for 500us 920 */ 921 922 /* 923 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 924 * If a and b are the number of iteration in 2 nested loops 925 * it takes the following number of cycles to complete the operation 926 * number_of_cycles = ((2 + n) * a + 2) * b 927 * where n is the number of instruction in the inner loop 928 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 929 * b = FF 930 */ 931 932 /* Load counters */ 933 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 934 &sdr_rw_load_mgr_regs->load_cntr0); 935 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 936 &sdr_rw_load_mgr_regs->load_cntr1); 937 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 938 &sdr_rw_load_mgr_regs->load_cntr2); 939 940 /* Load jump address */ 941 writel(RW_MGR_INIT_RESET_1_CKE_0, 942 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 943 writel(RW_MGR_INIT_RESET_1_CKE_0, 944 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 945 writel(RW_MGR_INIT_RESET_1_CKE_0, 946 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 947 948 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 949 950 /* bring up clock enable */ 951 952 /* tXRP < 250 ck cycles */ 953 delay_for_n_mem_clocks(250); 954 955 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 956 if (param->skip_ranks[r]) { 957 /* request to skip the rank */ 958 continue; 959 } 960 961 /* set rank */ 962 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 963 964 /* 965 * USER Use Mirror-ed commands for odd ranks if address 966 * mirrorring is on 967 */ 968 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 969 set_jump_as_return(); 970 writel(RW_MGR_MRS2_MIRR, grpaddr); 971 delay_for_n_mem_clocks(4); 972 set_jump_as_return(); 973 writel(RW_MGR_MRS3_MIRR, grpaddr); 974 delay_for_n_mem_clocks(4); 975 set_jump_as_return(); 976 writel(RW_MGR_MRS1_MIRR, grpaddr); 977 delay_for_n_mem_clocks(4); 978 set_jump_as_return(); 979 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 980 } else { 981 set_jump_as_return(); 982 writel(RW_MGR_MRS2, grpaddr); 983 delay_for_n_mem_clocks(4); 984 set_jump_as_return(); 985 writel(RW_MGR_MRS3, grpaddr); 986 delay_for_n_mem_clocks(4); 987 set_jump_as_return(); 988 writel(RW_MGR_MRS1, grpaddr); 989 set_jump_as_return(); 990 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 991 } 992 set_jump_as_return(); 993 writel(RW_MGR_ZQCL, grpaddr); 994 995 /* tZQinit = tDLLK = 512 ck cycles */ 996 delay_for_n_mem_clocks(512); 997 } 998 } 999 1000 /* 1001 * At the end of calibration we have to program the user settings in, and 1002 * USER hand off the memory to the user. 1003 */ 1004 static void rw_mgr_mem_handoff(void) 1005 { 1006 uint32_t r; 1007 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1008 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1009 1010 debug("%s:%d\n", __func__, __LINE__); 1011 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1012 if (param->skip_ranks[r]) 1013 /* request to skip the rank */ 1014 continue; 1015 /* set rank */ 1016 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1017 1018 /* precharge all banks ... */ 1019 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1020 1021 /* load up MR settings specified by user */ 1022 1023 /* 1024 * Use Mirror-ed commands for odd ranks if address 1025 * mirrorring is on 1026 */ 1027 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1028 set_jump_as_return(); 1029 writel(RW_MGR_MRS2_MIRR, grpaddr); 1030 delay_for_n_mem_clocks(4); 1031 set_jump_as_return(); 1032 writel(RW_MGR_MRS3_MIRR, grpaddr); 1033 delay_for_n_mem_clocks(4); 1034 set_jump_as_return(); 1035 writel(RW_MGR_MRS1_MIRR, grpaddr); 1036 delay_for_n_mem_clocks(4); 1037 set_jump_as_return(); 1038 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1039 } else { 1040 set_jump_as_return(); 1041 writel(RW_MGR_MRS2, grpaddr); 1042 delay_for_n_mem_clocks(4); 1043 set_jump_as_return(); 1044 writel(RW_MGR_MRS3, grpaddr); 1045 delay_for_n_mem_clocks(4); 1046 set_jump_as_return(); 1047 writel(RW_MGR_MRS1, grpaddr); 1048 delay_for_n_mem_clocks(4); 1049 set_jump_as_return(); 1050 writel(RW_MGR_MRS0_USER, grpaddr); 1051 } 1052 /* 1053 * USER need to wait tMOD (12CK or 15ns) time before issuing 1054 * other commands, but we will have plenty of NIOS cycles before 1055 * actual handoff so its okay. 1056 */ 1057 } 1058 } 1059 1060 /* 1061 * performs a guaranteed read on the patterns we are going to use during a 1062 * read test to ensure memory works 1063 */ 1064 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1065 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1066 uint32_t all_ranks) 1067 { 1068 uint32_t r, vg; 1069 uint32_t correct_mask_vg; 1070 uint32_t tmp_bit_chk; 1071 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1072 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1073 uint32_t addr; 1074 uint32_t base_rw_mgr; 1075 1076 *bit_chk = param->read_correct_mask; 1077 correct_mask_vg = param->read_correct_mask_vg; 1078 1079 for (r = rank_bgn; r < rank_end; r++) { 1080 if (param->skip_ranks[r]) 1081 /* request to skip the rank */ 1082 continue; 1083 1084 /* set rank */ 1085 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1086 1087 /* Load up a constant bursts of read commands */ 1088 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1089 writel(RW_MGR_GUARANTEED_READ, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1091 1092 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1093 writel(RW_MGR_GUARANTEED_READ_CONT, 1094 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1095 1096 tmp_bit_chk = 0; 1097 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1098 /* reset the fifos to get pointers to known state */ 1099 1100 writel(0, &phy_mgr_cmd->fifo_reset); 1101 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1102 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1103 1104 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1105 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1106 1107 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1108 writel(RW_MGR_GUARANTEED_READ, addr + 1109 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1110 vg) << 2)); 1111 1112 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1113 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1114 1115 if (vg == 0) 1116 break; 1117 } 1118 *bit_chk &= tmp_bit_chk; 1119 } 1120 1121 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1122 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1123 1124 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1125 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1126 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1127 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1128 return *bit_chk == param->read_correct_mask; 1129 } 1130 1131 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1132 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1133 { 1134 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1135 num_tries, bit_chk, 1); 1136 } 1137 1138 /* load up the patterns we are going to use during a read test */ 1139 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1140 uint32_t all_ranks) 1141 { 1142 uint32_t r; 1143 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1144 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1145 1146 debug("%s:%d\n", __func__, __LINE__); 1147 for (r = rank_bgn; r < rank_end; r++) { 1148 if (param->skip_ranks[r]) 1149 /* request to skip the rank */ 1150 continue; 1151 1152 /* set rank */ 1153 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1154 1155 /* Load up a constant bursts */ 1156 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1157 1158 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1159 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1160 1161 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1162 1163 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1165 1166 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1167 1168 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1169 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1170 1171 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1172 1173 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1174 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1175 1176 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1177 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1178 } 1179 1180 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1181 } 1182 1183 /* 1184 * try a read and see if it returns correct data back. has dummy reads 1185 * inserted into the mix used to align dqs enable. has more thorough checks 1186 * than the regular read test. 1187 */ 1188 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1189 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1190 uint32_t all_groups, uint32_t all_ranks) 1191 { 1192 uint32_t r, vg; 1193 uint32_t correct_mask_vg; 1194 uint32_t tmp_bit_chk; 1195 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1196 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1197 uint32_t addr; 1198 uint32_t base_rw_mgr; 1199 1200 *bit_chk = param->read_correct_mask; 1201 correct_mask_vg = param->read_correct_mask_vg; 1202 1203 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1204 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1205 1206 for (r = rank_bgn; r < rank_end; r++) { 1207 if (param->skip_ranks[r]) 1208 /* request to skip the rank */ 1209 continue; 1210 1211 /* set rank */ 1212 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1213 1214 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1215 1216 writel(RW_MGR_READ_B2B_WAIT1, 1217 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1218 1219 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1220 writel(RW_MGR_READ_B2B_WAIT2, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1222 1223 if (quick_read_mode) 1224 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1225 /* need at least two (1+1) reads to capture failures */ 1226 else if (all_groups) 1227 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1228 else 1229 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1230 1231 writel(RW_MGR_READ_B2B, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1233 if (all_groups) 1234 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1235 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1236 &sdr_rw_load_mgr_regs->load_cntr3); 1237 else 1238 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1239 1240 writel(RW_MGR_READ_B2B, 1241 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1242 1243 tmp_bit_chk = 0; 1244 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1245 /* reset the fifos to get pointers to known state */ 1246 writel(0, &phy_mgr_cmd->fifo_reset); 1247 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1248 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1249 1250 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1251 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1252 1253 if (all_groups) 1254 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1255 else 1256 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1257 1258 writel(RW_MGR_READ_B2B, addr + 1259 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1260 vg) << 2)); 1261 1262 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1263 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1264 1265 if (vg == 0) 1266 break; 1267 } 1268 *bit_chk &= tmp_bit_chk; 1269 } 1270 1271 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1272 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1273 1274 if (all_correct) { 1275 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1276 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1277 (%u == %u) => %lu", __func__, __LINE__, group, 1278 all_groups, *bit_chk, param->read_correct_mask, 1279 (long unsigned int)(*bit_chk == 1280 param->read_correct_mask)); 1281 return *bit_chk == param->read_correct_mask; 1282 } else { 1283 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1284 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1285 (%u != %lu) => %lu\n", __func__, __LINE__, 1286 group, all_groups, *bit_chk, (long unsigned int)0, 1287 (long unsigned int)(*bit_chk != 0x00)); 1288 return *bit_chk != 0x00; 1289 } 1290 } 1291 1292 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1293 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1294 uint32_t all_groups) 1295 { 1296 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1297 bit_chk, all_groups, 1); 1298 } 1299 1300 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1301 { 1302 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1303 (*v)++; 1304 } 1305 1306 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1307 { 1308 uint32_t i; 1309 1310 for (i = 0; i < VFIFO_SIZE-1; i++) 1311 rw_mgr_incr_vfifo(grp, v); 1312 } 1313 1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1315 { 1316 uint32_t v; 1317 uint32_t fail_cnt = 0; 1318 uint32_t test_status; 1319 1320 for (v = 0; v < VFIFO_SIZE; ) { 1321 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1322 __func__, __LINE__, v); 1323 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1324 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1325 if (!test_status) { 1326 fail_cnt++; 1327 1328 if (fail_cnt == 2) 1329 break; 1330 } 1331 1332 /* fiddle with FIFO */ 1333 rw_mgr_incr_vfifo(grp, &v); 1334 } 1335 1336 if (v >= VFIFO_SIZE) { 1337 /* no failing read found!! Something must have gone wrong */ 1338 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1339 __func__, __LINE__); 1340 return 0; 1341 } else { 1342 return v; 1343 } 1344 } 1345 1346 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1347 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1348 uint32_t *v, uint32_t *d, uint32_t *p, 1349 uint32_t *i, uint32_t *max_working_cnt) 1350 { 1351 uint32_t found_begin = 0; 1352 uint32_t tmp_delay = 0; 1353 uint32_t test_status; 1354 1355 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1356 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1357 *work_bgn = tmp_delay; 1358 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1359 1360 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1361 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1362 IO_DELAY_PER_OPA_TAP) { 1363 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1364 1365 test_status = 1366 rw_mgr_mem_calibrate_read_test_all_ranks 1367 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1368 1369 if (test_status) { 1370 *max_working_cnt = 1; 1371 found_begin = 1; 1372 break; 1373 } 1374 } 1375 1376 if (found_begin) 1377 break; 1378 1379 if (*p > IO_DQS_EN_PHASE_MAX) 1380 /* fiddle with FIFO */ 1381 rw_mgr_incr_vfifo(*grp, v); 1382 } 1383 1384 if (found_begin) 1385 break; 1386 } 1387 1388 if (*i >= VFIFO_SIZE) { 1389 /* cannot find working solution */ 1390 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1391 ptap/dtap\n", __func__, __LINE__); 1392 return 0; 1393 } else { 1394 return 1; 1395 } 1396 } 1397 1398 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1399 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1400 uint32_t *p, uint32_t *max_working_cnt) 1401 { 1402 uint32_t found_begin = 0; 1403 uint32_t tmp_delay; 1404 1405 /* Special case code for backing up a phase */ 1406 if (*p == 0) { 1407 *p = IO_DQS_EN_PHASE_MAX; 1408 rw_mgr_decr_vfifo(*grp, v); 1409 } else { 1410 (*p)--; 1411 } 1412 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1413 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1414 1415 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1416 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1417 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1418 1419 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1420 PASS_ONE_BIT, 1421 bit_chk, 0)) { 1422 found_begin = 1; 1423 *work_bgn = tmp_delay; 1424 break; 1425 } 1426 } 1427 1428 /* We have found a working dtap before the ptap found above */ 1429 if (found_begin == 1) 1430 (*max_working_cnt)++; 1431 1432 /* 1433 * Restore VFIFO to old state before we decremented it 1434 * (if needed). 1435 */ 1436 (*p)++; 1437 if (*p > IO_DQS_EN_PHASE_MAX) { 1438 *p = 0; 1439 rw_mgr_incr_vfifo(*grp, v); 1440 } 1441 1442 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1443 } 1444 1445 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1446 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1447 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1448 uint32_t *work_end) 1449 { 1450 uint32_t found_end = 0; 1451 1452 (*p)++; 1453 *work_end += IO_DELAY_PER_OPA_TAP; 1454 if (*p > IO_DQS_EN_PHASE_MAX) { 1455 /* fiddle with FIFO */ 1456 *p = 0; 1457 rw_mgr_incr_vfifo(*grp, v); 1458 } 1459 1460 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1461 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1462 += IO_DELAY_PER_OPA_TAP) { 1463 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1464 1465 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1466 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1467 found_end = 1; 1468 break; 1469 } else { 1470 (*max_working_cnt)++; 1471 } 1472 } 1473 1474 if (found_end) 1475 break; 1476 1477 if (*p > IO_DQS_EN_PHASE_MAX) { 1478 /* fiddle with FIFO */ 1479 rw_mgr_incr_vfifo(*grp, v); 1480 *p = 0; 1481 } 1482 } 1483 1484 if (*i >= VFIFO_SIZE + 1) { 1485 /* cannot see edge of failing read */ 1486 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1487 failed\n", __func__, __LINE__); 1488 return 0; 1489 } else { 1490 return 1; 1491 } 1492 } 1493 1494 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1495 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1496 uint32_t *p, uint32_t *work_mid, 1497 uint32_t *work_end) 1498 { 1499 int i; 1500 int tmp_delay = 0; 1501 1502 *work_mid = (*work_bgn + *work_end) / 2; 1503 1504 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1505 *work_bgn, *work_end, *work_mid); 1506 /* Get the middle delay to be less than a VFIFO delay */ 1507 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1508 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1509 ; 1510 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1511 while (*work_mid > tmp_delay) 1512 *work_mid -= tmp_delay; 1513 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1514 1515 tmp_delay = 0; 1516 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1517 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1518 ; 1519 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1520 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1521 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1522 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1523 ; 1524 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1525 1526 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1527 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1528 1529 /* 1530 * push vfifo until we can successfully calibrate. We can do this 1531 * because the largest possible margin in 1 VFIFO cycle. 1532 */ 1533 for (i = 0; i < VFIFO_SIZE; i++) { 1534 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1535 *v); 1536 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1537 PASS_ONE_BIT, 1538 bit_chk, 0)) { 1539 break; 1540 } 1541 1542 /* fiddle with FIFO */ 1543 rw_mgr_incr_vfifo(*grp, v); 1544 } 1545 1546 if (i >= VFIFO_SIZE) { 1547 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1548 failed\n", __func__, __LINE__); 1549 return 0; 1550 } else { 1551 return 1; 1552 } 1553 } 1554 1555 /* find a good dqs enable to use */ 1556 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1557 { 1558 uint32_t v, d, p, i; 1559 uint32_t max_working_cnt; 1560 uint32_t bit_chk; 1561 uint32_t dtaps_per_ptap; 1562 uint32_t work_bgn, work_mid, work_end; 1563 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1564 1565 debug("%s:%d %u\n", __func__, __LINE__, grp); 1566 1567 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1568 1569 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1570 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1571 1572 /* ************************************************************** */ 1573 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1574 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1575 1576 /* ********************************************************* */ 1577 /* * Step 1 : First push vfifo until we get a failing read * */ 1578 v = find_vfifo_read(grp, &bit_chk); 1579 1580 max_working_cnt = 0; 1581 1582 /* ******************************************************** */ 1583 /* * step 2: find first working phase, increment in ptaps * */ 1584 work_bgn = 0; 1585 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1586 &p, &i, &max_working_cnt) == 0) 1587 return 0; 1588 1589 work_end = work_bgn; 1590 1591 /* 1592 * If d is 0 then the working window covers a phase tap and 1593 * we can follow the old procedure otherwise, we've found the beginning, 1594 * and we need to increment the dtaps until we find the end. 1595 */ 1596 if (d == 0) { 1597 /* ********************************************************* */ 1598 /* * step 3a: if we have room, back off by one and 1599 increment in dtaps * */ 1600 1601 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1602 &max_working_cnt); 1603 1604 /* ********************************************************* */ 1605 /* * step 4a: go forward from working phase to non working 1606 phase, increment in ptaps * */ 1607 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1608 &i, &max_working_cnt, &work_end) == 0) 1609 return 0; 1610 1611 /* ********************************************************* */ 1612 /* * step 5a: back off one from last, increment in dtaps * */ 1613 1614 /* Special case code for backing up a phase */ 1615 if (p == 0) { 1616 p = IO_DQS_EN_PHASE_MAX; 1617 rw_mgr_decr_vfifo(grp, &v); 1618 } else { 1619 p = p - 1; 1620 } 1621 1622 work_end -= IO_DELAY_PER_OPA_TAP; 1623 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1624 1625 /* * The actual increment of dtaps is done outside of 1626 the if/else loop to share code */ 1627 d = 0; 1628 1629 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1630 vfifo=%u ptap=%u\n", __func__, __LINE__, 1631 v, p); 1632 } else { 1633 /* ******************************************************* */ 1634 /* * step 3-5b: Find the right edge of the window using 1635 delay taps * */ 1636 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1637 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1638 v, p, d, work_bgn); 1639 1640 work_end = work_bgn; 1641 1642 /* * The actual increment of dtaps is done outside of the 1643 if/else loop to share code */ 1644 1645 /* Only here to counterbalance a subtract later on which is 1646 not needed if this branch of the algorithm is taken */ 1647 max_working_cnt++; 1648 } 1649 1650 /* The dtap increment to find the failing edge is done here */ 1651 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1652 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1653 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1654 end-2: dtap=%u\n", __func__, __LINE__, d); 1655 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1656 1657 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1658 PASS_ONE_BIT, 1659 &bit_chk, 0)) { 1660 break; 1661 } 1662 } 1663 1664 /* Go back to working dtap */ 1665 if (d != 0) 1666 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1669 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1670 v, p, d-1, work_end); 1671 1672 if (work_end < work_bgn) { 1673 /* nil range */ 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1675 failed\n", __func__, __LINE__); 1676 return 0; 1677 } 1678 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1680 __func__, __LINE__, work_bgn, work_end); 1681 1682 /* *************************************************************** */ 1683 /* 1684 * * We need to calculate the number of dtaps that equal a ptap 1685 * * To do that we'll back up a ptap and re-find the edge of the 1686 * * window using dtaps 1687 */ 1688 1689 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1690 for tracking\n", __func__, __LINE__); 1691 1692 /* Special case code for backing up a phase */ 1693 if (p == 0) { 1694 p = IO_DQS_EN_PHASE_MAX; 1695 rw_mgr_decr_vfifo(grp, &v); 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1697 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1698 v, p); 1699 } else { 1700 p = p - 1; 1701 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1702 phase only: v=%u p=%u", __func__, __LINE__, 1703 v, p); 1704 } 1705 1706 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1707 1708 /* 1709 * Increase dtap until we first see a passing read (in case the 1710 * window is smaller than a ptap), 1711 * and then a failing read to mark the edge of the window again 1712 */ 1713 1714 /* Find a passing read */ 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1716 __func__, __LINE__); 1717 found_passing_read = 0; 1718 found_failing_read = 0; 1719 initial_failing_dtap = d; 1720 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1721 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1722 read d=%u\n", __func__, __LINE__, d); 1723 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1724 1725 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1726 PASS_ONE_BIT, 1727 &bit_chk, 0)) { 1728 found_passing_read = 1; 1729 break; 1730 } 1731 } 1732 1733 if (found_passing_read) { 1734 /* Find a failing read */ 1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1736 read\n", __func__, __LINE__); 1737 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1738 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1739 testing read d=%u\n", __func__, __LINE__, d); 1740 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1741 1742 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1743 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1744 found_failing_read = 1; 1745 break; 1746 } 1747 } 1748 } else { 1749 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1750 calculate dtaps", __func__, __LINE__); 1751 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1752 } 1753 1754 /* 1755 * The dynamically calculated dtaps_per_ptap is only valid if we 1756 * found a passing/failing read. If we didn't, it means d hit the max 1757 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1758 * statically calculated value. 1759 */ 1760 if (found_passing_read && found_failing_read) 1761 dtaps_per_ptap = d - initial_failing_dtap; 1762 1763 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1764 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1765 - %u = %u", __func__, __LINE__, d, 1766 initial_failing_dtap, dtaps_per_ptap); 1767 1768 /* ******************************************** */ 1769 /* * step 6: Find the centre of the window * */ 1770 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1771 &work_mid, &work_end) == 0) 1772 return 0; 1773 1774 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1775 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1776 v, p-1, d); 1777 return 1; 1778 } 1779 1780 /* 1781 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1782 * dq_in_delay values 1783 */ 1784 static uint32_t 1785 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1786 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1787 { 1788 uint32_t found; 1789 uint32_t i; 1790 uint32_t p; 1791 uint32_t d; 1792 uint32_t r; 1793 1794 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1795 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1796 /* we start at zero, so have one less dq to devide among */ 1797 1798 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1799 test_bgn); 1800 1801 /* try different dq_in_delays since the dq path is shorter than dqs */ 1802 1803 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1804 r += NUM_RANKS_PER_SHADOW_REG) { 1805 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1806 i++, p++, d += delay_step) { 1807 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1808 vfifo_find_dqs_", __func__, __LINE__); 1809 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1810 write_group, read_group); 1811 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1812 scc_mgr_set_dq_in_delay(p, d); 1813 scc_mgr_load_dq(p); 1814 } 1815 writel(0, &sdr_scc_mgr->update); 1816 } 1817 1818 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1819 1820 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1821 en_phase_sweep_dq", __func__, __LINE__); 1822 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1823 chain to zero\n", write_group, read_group, found); 1824 1825 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1826 r += NUM_RANKS_PER_SHADOW_REG) { 1827 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1828 i++, p++) { 1829 scc_mgr_set_dq_in_delay(p, 0); 1830 scc_mgr_load_dq(p); 1831 } 1832 writel(0, &sdr_scc_mgr->update); 1833 } 1834 1835 return found; 1836 } 1837 1838 /* per-bit deskew DQ and center */ 1839 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1840 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1841 uint32_t use_read_test, uint32_t update_fom) 1842 { 1843 uint32_t i, p, d, min_index; 1844 /* 1845 * Store these as signed since there are comparisons with 1846 * signed numbers. 1847 */ 1848 uint32_t bit_chk; 1849 uint32_t sticky_bit_chk; 1850 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1851 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1852 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1853 int32_t mid; 1854 int32_t orig_mid_min, mid_min; 1855 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1856 final_dqs_en; 1857 int32_t dq_margin, dqs_margin; 1858 uint32_t stop; 1859 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1860 uint32_t addr; 1861 1862 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1863 1864 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1865 start_dqs = readl(addr + (read_group << 2)); 1866 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1867 start_dqs_en = readl(addr + ((read_group << 2) 1868 - IO_DQS_EN_DELAY_OFFSET)); 1869 1870 /* set the left and right edge of each bit to an illegal value */ 1871 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1872 sticky_bit_chk = 0; 1873 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1874 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1875 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1876 } 1877 1878 /* Search for the left edge of the window for each bit */ 1879 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1880 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1881 1882 writel(0, &sdr_scc_mgr->update); 1883 1884 /* 1885 * Stop searching when the read test doesn't pass AND when 1886 * we've seen a passing read on every bit. 1887 */ 1888 if (use_read_test) { 1889 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1890 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1891 &bit_chk, 0, 0); 1892 } else { 1893 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1894 0, PASS_ONE_BIT, 1895 &bit_chk, 0); 1896 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1897 (read_group - (write_group * 1898 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1899 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1900 stop = (bit_chk == 0); 1901 } 1902 sticky_bit_chk = sticky_bit_chk | bit_chk; 1903 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1904 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1905 && %u", __func__, __LINE__, d, 1906 sticky_bit_chk, 1907 param->read_correct_mask, stop); 1908 1909 if (stop == 1) { 1910 break; 1911 } else { 1912 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1913 if (bit_chk & 1) { 1914 /* Remember a passing test as the 1915 left_edge */ 1916 left_edge[i] = d; 1917 } else { 1918 /* If a left edge has not been seen yet, 1919 then a future passing test will mark 1920 this edge as the right edge */ 1921 if (left_edge[i] == 1922 IO_IO_IN_DELAY_MAX + 1) { 1923 right_edge[i] = -(d + 1); 1924 } 1925 } 1926 bit_chk = bit_chk >> 1; 1927 } 1928 } 1929 } 1930 1931 /* Reset DQ delay chains to 0 */ 1932 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0); 1933 sticky_bit_chk = 0; 1934 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1935 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1936 %d right_edge[%u]: %d\n", __func__, __LINE__, 1937 i, left_edge[i], i, right_edge[i]); 1938 1939 /* 1940 * Check for cases where we haven't found the left edge, 1941 * which makes our assignment of the the right edge invalid. 1942 * Reset it to the illegal value. 1943 */ 1944 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1945 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1946 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1947 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1948 right_edge[%u]: %d\n", __func__, __LINE__, 1949 i, right_edge[i]); 1950 } 1951 1952 /* 1953 * Reset sticky bit (except for bits where we have seen 1954 * both the left and right edge). 1955 */ 1956 sticky_bit_chk = sticky_bit_chk << 1; 1957 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1958 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1959 sticky_bit_chk = sticky_bit_chk | 1; 1960 } 1961 1962 if (i == 0) 1963 break; 1964 } 1965 1966 /* Search for the right edge of the window for each bit */ 1967 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1968 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1969 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1970 uint32_t delay = d + start_dqs_en; 1971 if (delay > IO_DQS_EN_DELAY_MAX) 1972 delay = IO_DQS_EN_DELAY_MAX; 1973 scc_mgr_set_dqs_en_delay(read_group, delay); 1974 } 1975 scc_mgr_load_dqs(read_group); 1976 1977 writel(0, &sdr_scc_mgr->update); 1978 1979 /* 1980 * Stop searching when the read test doesn't pass AND when 1981 * we've seen a passing read on every bit. 1982 */ 1983 if (use_read_test) { 1984 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1985 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1986 &bit_chk, 0, 0); 1987 } else { 1988 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1989 0, PASS_ONE_BIT, 1990 &bit_chk, 0); 1991 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1992 (read_group - (write_group * 1993 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1994 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1995 stop = (bit_chk == 0); 1996 } 1997 sticky_bit_chk = sticky_bit_chk | bit_chk; 1998 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1999 2000 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2001 %u && %u", __func__, __LINE__, d, 2002 sticky_bit_chk, param->read_correct_mask, stop); 2003 2004 if (stop == 1) { 2005 break; 2006 } else { 2007 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2008 if (bit_chk & 1) { 2009 /* Remember a passing test as 2010 the right_edge */ 2011 right_edge[i] = d; 2012 } else { 2013 if (d != 0) { 2014 /* If a right edge has not been 2015 seen yet, then a future passing 2016 test will mark this edge as the 2017 left edge */ 2018 if (right_edge[i] == 2019 IO_IO_IN_DELAY_MAX + 1) { 2020 left_edge[i] = -(d + 1); 2021 } 2022 } else { 2023 /* d = 0 failed, but it passed 2024 when testing the left edge, 2025 so it must be marginal, 2026 set it to -1 */ 2027 if (right_edge[i] == 2028 IO_IO_IN_DELAY_MAX + 1 && 2029 left_edge[i] != 2030 IO_IO_IN_DELAY_MAX 2031 + 1) { 2032 right_edge[i] = -1; 2033 } 2034 /* If a right edge has not been 2035 seen yet, then a future passing 2036 test will mark this edge as the 2037 left edge */ 2038 else if (right_edge[i] == 2039 IO_IO_IN_DELAY_MAX + 2040 1) { 2041 left_edge[i] = -(d + 1); 2042 } 2043 } 2044 } 2045 2046 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2047 d=%u]: ", __func__, __LINE__, d); 2048 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2049 (int)(bit_chk & 1), i, left_edge[i]); 2050 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2051 right_edge[i]); 2052 bit_chk = bit_chk >> 1; 2053 } 2054 } 2055 } 2056 2057 /* Check that all bits have a window */ 2058 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2059 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2060 %d right_edge[%u]: %d", __func__, __LINE__, 2061 i, left_edge[i], i, right_edge[i]); 2062 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2063 == IO_IO_IN_DELAY_MAX + 1)) { 2064 /* 2065 * Restore delay chain settings before letting the loop 2066 * in rw_mgr_mem_calibrate_vfifo to retry different 2067 * dqs/ck relationships. 2068 */ 2069 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2070 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2071 scc_mgr_set_dqs_en_delay(read_group, 2072 start_dqs_en); 2073 } 2074 scc_mgr_load_dqs(read_group); 2075 writel(0, &sdr_scc_mgr->update); 2076 2077 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2078 find edge [%u]: %d %d", __func__, __LINE__, 2079 i, left_edge[i], right_edge[i]); 2080 if (use_read_test) { 2081 set_failing_group_stage(read_group * 2082 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2083 CAL_STAGE_VFIFO, 2084 CAL_SUBSTAGE_VFIFO_CENTER); 2085 } else { 2086 set_failing_group_stage(read_group * 2087 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2088 CAL_STAGE_VFIFO_AFTER_WRITES, 2089 CAL_SUBSTAGE_VFIFO_CENTER); 2090 } 2091 return 0; 2092 } 2093 } 2094 2095 /* Find middle of window for each DQ bit */ 2096 mid_min = left_edge[0] - right_edge[0]; 2097 min_index = 0; 2098 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2099 mid = left_edge[i] - right_edge[i]; 2100 if (mid < mid_min) { 2101 mid_min = mid; 2102 min_index = i; 2103 } 2104 } 2105 2106 /* 2107 * -mid_min/2 represents the amount that we need to move DQS. 2108 * If mid_min is odd and positive we'll need to add one to 2109 * make sure the rounding in further calculations is correct 2110 * (always bias to the right), so just add 1 for all positive values. 2111 */ 2112 if (mid_min > 0) 2113 mid_min++; 2114 2115 mid_min = mid_min / 2; 2116 2117 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2118 __func__, __LINE__, mid_min, min_index); 2119 2120 /* Determine the amount we can change DQS (which is -mid_min) */ 2121 orig_mid_min = mid_min; 2122 new_dqs = start_dqs - mid_min; 2123 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2124 new_dqs = IO_DQS_IN_DELAY_MAX; 2125 else if (new_dqs < 0) 2126 new_dqs = 0; 2127 2128 mid_min = start_dqs - new_dqs; 2129 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2130 mid_min, new_dqs); 2131 2132 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2133 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2134 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2135 else if (start_dqs_en - mid_min < 0) 2136 mid_min += start_dqs_en - mid_min; 2137 } 2138 new_dqs = start_dqs - mid_min; 2139 2140 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2141 new_dqs=%d mid_min=%d\n", start_dqs, 2142 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2143 new_dqs, mid_min); 2144 2145 /* Initialize data for export structures */ 2146 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2147 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2148 2149 /* add delay to bring centre of all DQ windows to the same "level" */ 2150 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2151 /* Use values before divide by 2 to reduce round off error */ 2152 shift_dq = (left_edge[i] - right_edge[i] - 2153 (left_edge[min_index] - right_edge[min_index]))/2 + 2154 (orig_mid_min - mid_min); 2155 2156 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2157 shift_dq[%u]=%d\n", i, shift_dq); 2158 2159 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2160 temp_dq_in_delay1 = readl(addr + (p << 2)); 2161 temp_dq_in_delay2 = readl(addr + (i << 2)); 2162 2163 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2164 (int32_t)IO_IO_IN_DELAY_MAX) { 2165 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2166 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2167 shift_dq = -(int32_t)temp_dq_in_delay1; 2168 } 2169 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2170 shift_dq[%u]=%d\n", i, shift_dq); 2171 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2172 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2173 scc_mgr_load_dq(p); 2174 2175 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2176 left_edge[i] - shift_dq + (-mid_min), 2177 right_edge[i] + shift_dq - (-mid_min)); 2178 /* To determine values for export structures */ 2179 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2180 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2181 2182 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2183 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2184 } 2185 2186 final_dqs = new_dqs; 2187 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2188 final_dqs_en = start_dqs_en - mid_min; 2189 2190 /* Move DQS-en */ 2191 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2192 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2193 scc_mgr_load_dqs(read_group); 2194 } 2195 2196 /* Move DQS */ 2197 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2198 scc_mgr_load_dqs(read_group); 2199 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2200 dqs_margin=%d", __func__, __LINE__, 2201 dq_margin, dqs_margin); 2202 2203 /* 2204 * Do not remove this line as it makes sure all of our decisions 2205 * have been applied. Apply the update bit. 2206 */ 2207 writel(0, &sdr_scc_mgr->update); 2208 2209 return (dq_margin >= 0) && (dqs_margin >= 0); 2210 } 2211 2212 /* 2213 * calibrate the read valid prediction FIFO. 2214 * 2215 * - read valid prediction will consist of finding a good DQS enable phase, 2216 * DQS enable delay, DQS input phase, and DQS input delay. 2217 * - we also do a per-bit deskew on the DQ lines. 2218 */ 2219 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2220 uint32_t test_bgn) 2221 { 2222 uint32_t p, d, rank_bgn, sr; 2223 uint32_t dtaps_per_ptap; 2224 uint32_t tmp_delay; 2225 uint32_t bit_chk; 2226 uint32_t grp_calibrated; 2227 uint32_t write_group, write_test_bgn; 2228 uint32_t failed_substage; 2229 2230 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2231 2232 /* update info for sims */ 2233 reg_file_set_stage(CAL_STAGE_VFIFO); 2234 2235 write_group = read_group; 2236 write_test_bgn = test_bgn; 2237 2238 /* USER Determine number of delay taps for each phase tap */ 2239 dtaps_per_ptap = 0; 2240 tmp_delay = 0; 2241 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2242 dtaps_per_ptap++; 2243 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2244 } 2245 dtaps_per_ptap--; 2246 tmp_delay = 0; 2247 2248 /* update info for sims */ 2249 reg_file_set_group(read_group); 2250 2251 grp_calibrated = 0; 2252 2253 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2254 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2255 2256 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2257 /* 2258 * In RLDRAMX we may be messing the delay of pins in 2259 * the same write group but outside of the current read 2260 * the group, but that's ok because we haven't 2261 * calibrated output side yet. 2262 */ 2263 if (d > 0) { 2264 scc_mgr_apply_group_all_out_delay_add_all_ranks 2265 (write_group, write_test_bgn, d); 2266 } 2267 2268 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2269 p++) { 2270 /* set a particular dqdqs phase */ 2271 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2272 2273 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2274 p=%u d=%u\n", __func__, __LINE__, 2275 read_group, p, d); 2276 2277 /* 2278 * Load up the patterns used by read calibration 2279 * using current DQDQS phase. 2280 */ 2281 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2282 if (!(gbl->phy_debug_mode_flags & 2283 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2284 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2285 (read_group, 1, &bit_chk)) { 2286 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2287 __func__, __LINE__); 2288 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2289 read_group, p, d); 2290 break; 2291 } 2292 } 2293 2294 /* case:56390 */ 2295 grp_calibrated = 1; 2296 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2297 (write_group, read_group, test_bgn)) { 2298 /* 2299 * USER Read per-bit deskew can be done on a 2300 * per shadow register basis. 2301 */ 2302 for (rank_bgn = 0, sr = 0; 2303 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2304 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2305 ++sr) { 2306 /* 2307 * Determine if this set of ranks 2308 * should be skipped entirely. 2309 */ 2310 if (!param->skip_shadow_regs[sr]) { 2311 /* 2312 * If doing read after write 2313 * calibration, do not update 2314 * FOM, now - do it then. 2315 */ 2316 if (!rw_mgr_mem_calibrate_vfifo_center 2317 (rank_bgn, write_group, 2318 read_group, test_bgn, 1, 0)) { 2319 grp_calibrated = 0; 2320 failed_substage = 2321 CAL_SUBSTAGE_VFIFO_CENTER; 2322 } 2323 } 2324 } 2325 } else { 2326 grp_calibrated = 0; 2327 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2328 } 2329 } 2330 } 2331 2332 if (grp_calibrated == 0) { 2333 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2334 failed_substage); 2335 return 0; 2336 } 2337 2338 /* 2339 * Reset the delay chains back to zero if they have moved > 1 2340 * (check for > 1 because loop will increase d even when pass in 2341 * first case). 2342 */ 2343 if (d > 2) 2344 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2345 2346 return 1; 2347 } 2348 2349 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2350 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2351 uint32_t test_bgn) 2352 { 2353 uint32_t rank_bgn, sr; 2354 uint32_t grp_calibrated; 2355 uint32_t write_group; 2356 2357 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2358 2359 /* update info for sims */ 2360 2361 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2362 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2363 2364 write_group = read_group; 2365 2366 /* update info for sims */ 2367 reg_file_set_group(read_group); 2368 2369 grp_calibrated = 1; 2370 /* Read per-bit deskew can be done on a per shadow register basis */ 2371 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2372 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2373 /* Determine if this set of ranks should be skipped entirely */ 2374 if (!param->skip_shadow_regs[sr]) { 2375 /* This is the last calibration round, update FOM here */ 2376 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2377 write_group, 2378 read_group, 2379 test_bgn, 0, 2380 1)) { 2381 grp_calibrated = 0; 2382 } 2383 } 2384 } 2385 2386 2387 if (grp_calibrated == 0) { 2388 set_failing_group_stage(write_group, 2389 CAL_STAGE_VFIFO_AFTER_WRITES, 2390 CAL_SUBSTAGE_VFIFO_CENTER); 2391 return 0; 2392 } 2393 2394 return 1; 2395 } 2396 2397 /* Calibrate LFIFO to find smallest read latency */ 2398 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2399 { 2400 uint32_t found_one; 2401 uint32_t bit_chk; 2402 2403 debug("%s:%d\n", __func__, __LINE__); 2404 2405 /* update info for sims */ 2406 reg_file_set_stage(CAL_STAGE_LFIFO); 2407 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2408 2409 /* Load up the patterns used by read calibration for all ranks */ 2410 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2411 found_one = 0; 2412 2413 do { 2414 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2415 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2416 __func__, __LINE__, gbl->curr_read_lat); 2417 2418 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2419 NUM_READ_TESTS, 2420 PASS_ALL_BITS, 2421 &bit_chk, 1)) { 2422 break; 2423 } 2424 2425 found_one = 1; 2426 /* reduce read latency and see if things are working */ 2427 /* correctly */ 2428 gbl->curr_read_lat--; 2429 } while (gbl->curr_read_lat > 0); 2430 2431 /* reset the fifos to get pointers to known state */ 2432 2433 writel(0, &phy_mgr_cmd->fifo_reset); 2434 2435 if (found_one) { 2436 /* add a fudge factor to the read latency that was determined */ 2437 gbl->curr_read_lat += 2; 2438 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2439 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2440 read_lat=%u\n", __func__, __LINE__, 2441 gbl->curr_read_lat); 2442 return 1; 2443 } else { 2444 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2445 CAL_SUBSTAGE_READ_LATENCY); 2446 2447 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2448 read_lat=%u\n", __func__, __LINE__, 2449 gbl->curr_read_lat); 2450 return 0; 2451 } 2452 } 2453 2454 /* 2455 * issue write test command. 2456 * two variants are provided. one that just tests a write pattern and 2457 * another that tests datamask functionality. 2458 */ 2459 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2460 uint32_t test_dm) 2461 { 2462 uint32_t mcc_instruction; 2463 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2464 ENABLE_SUPER_QUICK_CALIBRATION); 2465 uint32_t rw_wl_nop_cycles; 2466 uint32_t addr; 2467 2468 /* 2469 * Set counter and jump addresses for the right 2470 * number of NOP cycles. 2471 * The number of supported NOP cycles can range from -1 to infinity 2472 * Three different cases are handled: 2473 * 2474 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2475 * mechanism will be used to insert the right number of NOPs 2476 * 2477 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2478 * issuing the write command will jump straight to the 2479 * micro-instruction that turns on DQS (for DDRx), or outputs write 2480 * data (for RLD), skipping 2481 * the NOP micro-instruction all together 2482 * 2483 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2484 * turned on in the same micro-instruction that issues the write 2485 * command. Then we need 2486 * to directly jump to the micro-instruction that sends out the data 2487 * 2488 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2489 * (2 and 3). One jump-counter (0) is used to perform multiple 2490 * write-read operations. 2491 * one counter left to issue this command in "multiple-group" mode 2492 */ 2493 2494 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2495 2496 if (rw_wl_nop_cycles == -1) { 2497 /* 2498 * CNTR 2 - We want to execute the special write operation that 2499 * turns on DQS right away and then skip directly to the 2500 * instruction that sends out the data. We set the counter to a 2501 * large number so that the jump is always taken. 2502 */ 2503 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2504 2505 /* CNTR 3 - Not used */ 2506 if (test_dm) { 2507 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2508 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2509 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2510 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2511 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2512 } else { 2513 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2514 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2515 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2516 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2517 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2518 } 2519 } else if (rw_wl_nop_cycles == 0) { 2520 /* 2521 * CNTR 2 - We want to skip the NOP operation and go straight 2522 * to the DQS enable instruction. We set the counter to a large 2523 * number so that the jump is always taken. 2524 */ 2525 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2526 2527 /* CNTR 3 - Not used */ 2528 if (test_dm) { 2529 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2530 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2531 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2532 } else { 2533 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2534 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2535 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2536 } 2537 } else { 2538 /* 2539 * CNTR 2 - In this case we want to execute the next instruction 2540 * and NOT take the jump. So we set the counter to 0. The jump 2541 * address doesn't count. 2542 */ 2543 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2544 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2545 2546 /* 2547 * CNTR 3 - Set the nop counter to the number of cycles we 2548 * need to loop for, minus 1. 2549 */ 2550 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2551 if (test_dm) { 2552 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2553 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2554 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2555 } else { 2556 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2557 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2558 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2559 } 2560 } 2561 2562 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2563 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2564 2565 if (quick_write_mode) 2566 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2567 else 2568 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2569 2570 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2571 2572 /* 2573 * CNTR 1 - This is used to ensure enough time elapses 2574 * for read data to come back. 2575 */ 2576 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2577 2578 if (test_dm) { 2579 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2580 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2581 } else { 2582 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2583 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2584 } 2585 2586 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2587 writel(mcc_instruction, addr + (group << 2)); 2588 } 2589 2590 /* Test writes, can check for a single bit pass or multiple bit pass */ 2591 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2592 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2593 uint32_t *bit_chk, uint32_t all_ranks) 2594 { 2595 uint32_t r; 2596 uint32_t correct_mask_vg; 2597 uint32_t tmp_bit_chk; 2598 uint32_t vg; 2599 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2600 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2601 uint32_t addr_rw_mgr; 2602 uint32_t base_rw_mgr; 2603 2604 *bit_chk = param->write_correct_mask; 2605 correct_mask_vg = param->write_correct_mask_vg; 2606 2607 for (r = rank_bgn; r < rank_end; r++) { 2608 if (param->skip_ranks[r]) { 2609 /* request to skip the rank */ 2610 continue; 2611 } 2612 2613 /* set rank */ 2614 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2615 2616 tmp_bit_chk = 0; 2617 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2618 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2619 /* reset the fifos to get pointers to known state */ 2620 writel(0, &phy_mgr_cmd->fifo_reset); 2621 2622 tmp_bit_chk = tmp_bit_chk << 2623 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2624 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2625 rw_mgr_mem_calibrate_write_test_issue(write_group * 2626 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2627 use_dm); 2628 2629 base_rw_mgr = readl(addr_rw_mgr); 2630 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2631 if (vg == 0) 2632 break; 2633 } 2634 *bit_chk &= tmp_bit_chk; 2635 } 2636 2637 if (all_correct) { 2638 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2639 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2640 %u => %lu", write_group, use_dm, 2641 *bit_chk, param->write_correct_mask, 2642 (long unsigned int)(*bit_chk == 2643 param->write_correct_mask)); 2644 return *bit_chk == param->write_correct_mask; 2645 } else { 2646 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2647 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2648 write_group, use_dm, *bit_chk); 2649 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2650 (long unsigned int)(*bit_chk != 0)); 2651 return *bit_chk != 0x00; 2652 } 2653 } 2654 2655 /* 2656 * center all windows. do per-bit-deskew to possibly increase size of 2657 * certain windows. 2658 */ 2659 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2660 uint32_t write_group, uint32_t test_bgn) 2661 { 2662 uint32_t i, p, min_index; 2663 int32_t d; 2664 /* 2665 * Store these as signed since there are comparisons with 2666 * signed numbers. 2667 */ 2668 uint32_t bit_chk; 2669 uint32_t sticky_bit_chk; 2670 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2671 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2672 int32_t mid; 2673 int32_t mid_min, orig_mid_min; 2674 int32_t new_dqs, start_dqs, shift_dq; 2675 int32_t dq_margin, dqs_margin, dm_margin; 2676 uint32_t stop; 2677 uint32_t temp_dq_out1_delay; 2678 uint32_t addr; 2679 2680 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2681 2682 dm_margin = 0; 2683 2684 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2685 start_dqs = readl(addr + 2686 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2687 2688 /* per-bit deskew */ 2689 2690 /* 2691 * set the left and right edge of each bit to an illegal value 2692 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2693 */ 2694 sticky_bit_chk = 0; 2695 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2696 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2697 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2698 } 2699 2700 /* Search for the left edge of the window for each bit */ 2701 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2702 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d); 2703 2704 writel(0, &sdr_scc_mgr->update); 2705 2706 /* 2707 * Stop searching when the read test doesn't pass AND when 2708 * we've seen a passing read on every bit. 2709 */ 2710 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2711 0, PASS_ONE_BIT, &bit_chk, 0); 2712 sticky_bit_chk = sticky_bit_chk | bit_chk; 2713 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2714 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2715 == %u && %u [bit_chk= %u ]\n", 2716 d, sticky_bit_chk, param->write_correct_mask, 2717 stop, bit_chk); 2718 2719 if (stop == 1) { 2720 break; 2721 } else { 2722 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2723 if (bit_chk & 1) { 2724 /* 2725 * Remember a passing test as the 2726 * left_edge. 2727 */ 2728 left_edge[i] = d; 2729 } else { 2730 /* 2731 * If a left edge has not been seen 2732 * yet, then a future passing test will 2733 * mark this edge as the right edge. 2734 */ 2735 if (left_edge[i] == 2736 IO_IO_OUT1_DELAY_MAX + 1) { 2737 right_edge[i] = -(d + 1); 2738 } 2739 } 2740 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2741 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2742 (int)(bit_chk & 1), i, left_edge[i]); 2743 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2744 right_edge[i]); 2745 bit_chk = bit_chk >> 1; 2746 } 2747 } 2748 } 2749 2750 /* Reset DQ delay chains to 0 */ 2751 scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0); 2752 sticky_bit_chk = 0; 2753 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2754 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2755 %d right_edge[%u]: %d\n", __func__, __LINE__, 2756 i, left_edge[i], i, right_edge[i]); 2757 2758 /* 2759 * Check for cases where we haven't found the left edge, 2760 * which makes our assignment of the the right edge invalid. 2761 * Reset it to the illegal value. 2762 */ 2763 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2764 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2765 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2766 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2767 right_edge[%u]: %d\n", __func__, __LINE__, 2768 i, right_edge[i]); 2769 } 2770 2771 /* 2772 * Reset sticky bit (except for bits where we have 2773 * seen the left edge). 2774 */ 2775 sticky_bit_chk = sticky_bit_chk << 1; 2776 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2777 sticky_bit_chk = sticky_bit_chk | 1; 2778 2779 if (i == 0) 2780 break; 2781 } 2782 2783 /* Search for the right edge of the window for each bit */ 2784 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2785 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2786 d + start_dqs); 2787 2788 writel(0, &sdr_scc_mgr->update); 2789 2790 /* 2791 * Stop searching when the read test doesn't pass AND when 2792 * we've seen a passing read on every bit. 2793 */ 2794 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2795 0, PASS_ONE_BIT, &bit_chk, 0); 2796 2797 sticky_bit_chk = sticky_bit_chk | bit_chk; 2798 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2799 2800 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2801 %u && %u\n", d, sticky_bit_chk, 2802 param->write_correct_mask, stop); 2803 2804 if (stop == 1) { 2805 if (d == 0) { 2806 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2807 i++) { 2808 /* d = 0 failed, but it passed when 2809 testing the left edge, so it must be 2810 marginal, set it to -1 */ 2811 if (right_edge[i] == 2812 IO_IO_OUT1_DELAY_MAX + 1 && 2813 left_edge[i] != 2814 IO_IO_OUT1_DELAY_MAX + 1) { 2815 right_edge[i] = -1; 2816 } 2817 } 2818 } 2819 break; 2820 } else { 2821 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2822 if (bit_chk & 1) { 2823 /* 2824 * Remember a passing test as 2825 * the right_edge. 2826 */ 2827 right_edge[i] = d; 2828 } else { 2829 if (d != 0) { 2830 /* 2831 * If a right edge has not 2832 * been seen yet, then a future 2833 * passing test will mark this 2834 * edge as the left edge. 2835 */ 2836 if (right_edge[i] == 2837 IO_IO_OUT1_DELAY_MAX + 1) 2838 left_edge[i] = -(d + 1); 2839 } else { 2840 /* 2841 * d = 0 failed, but it passed 2842 * when testing the left edge, 2843 * so it must be marginal, set 2844 * it to -1. 2845 */ 2846 if (right_edge[i] == 2847 IO_IO_OUT1_DELAY_MAX + 1 && 2848 left_edge[i] != 2849 IO_IO_OUT1_DELAY_MAX + 1) 2850 right_edge[i] = -1; 2851 /* 2852 * If a right edge has not been 2853 * seen yet, then a future 2854 * passing test will mark this 2855 * edge as the left edge. 2856 */ 2857 else if (right_edge[i] == 2858 IO_IO_OUT1_DELAY_MAX + 2859 1) 2860 left_edge[i] = -(d + 1); 2861 } 2862 } 2863 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2864 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2865 (int)(bit_chk & 1), i, left_edge[i]); 2866 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2867 right_edge[i]); 2868 bit_chk = bit_chk >> 1; 2869 } 2870 } 2871 } 2872 2873 /* Check that all bits have a window */ 2874 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2875 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2876 %d right_edge[%u]: %d", __func__, __LINE__, 2877 i, left_edge[i], i, right_edge[i]); 2878 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2879 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2880 set_failing_group_stage(test_bgn + i, 2881 CAL_STAGE_WRITES, 2882 CAL_SUBSTAGE_WRITES_CENTER); 2883 return 0; 2884 } 2885 } 2886 2887 /* Find middle of window for each DQ bit */ 2888 mid_min = left_edge[0] - right_edge[0]; 2889 min_index = 0; 2890 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2891 mid = left_edge[i] - right_edge[i]; 2892 if (mid < mid_min) { 2893 mid_min = mid; 2894 min_index = i; 2895 } 2896 } 2897 2898 /* 2899 * -mid_min/2 represents the amount that we need to move DQS. 2900 * If mid_min is odd and positive we'll need to add one to 2901 * make sure the rounding in further calculations is correct 2902 * (always bias to the right), so just add 1 for all positive values. 2903 */ 2904 if (mid_min > 0) 2905 mid_min++; 2906 mid_min = mid_min / 2; 2907 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2908 __LINE__, mid_min); 2909 2910 /* Determine the amount we can change DQS (which is -mid_min) */ 2911 orig_mid_min = mid_min; 2912 new_dqs = start_dqs; 2913 mid_min = 0; 2914 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2915 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2916 /* Initialize data for export structures */ 2917 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2918 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2919 2920 /* add delay to bring centre of all DQ windows to the same "level" */ 2921 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2922 /* Use values before divide by 2 to reduce round off error */ 2923 shift_dq = (left_edge[i] - right_edge[i] - 2924 (left_edge[min_index] - right_edge[min_index]))/2 + 2925 (orig_mid_min - mid_min); 2926 2927 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2928 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2929 2930 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2931 temp_dq_out1_delay = readl(addr + (i << 2)); 2932 if (shift_dq + (int32_t)temp_dq_out1_delay > 2933 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2934 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2935 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2936 shift_dq = -(int32_t)temp_dq_out1_delay; 2937 } 2938 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2939 i, shift_dq); 2940 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2941 scc_mgr_load_dq(i); 2942 2943 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2944 left_edge[i] - shift_dq + (-mid_min), 2945 right_edge[i] + shift_dq - (-mid_min)); 2946 /* To determine values for export structures */ 2947 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2948 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2949 2950 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2951 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2952 } 2953 2954 /* Move DQS */ 2955 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2956 writel(0, &sdr_scc_mgr->update); 2957 2958 /* Centre DM */ 2959 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2960 2961 /* 2962 * set the left and right edge of each bit to an illegal value, 2963 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2964 */ 2965 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2966 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2967 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2968 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2969 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2970 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2971 int32_t win_best = 0; 2972 2973 /* Search for the/part of the window with DM shift */ 2974 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2975 scc_mgr_apply_group_dm_out1_delay(write_group, d); 2976 writel(0, &sdr_scc_mgr->update); 2977 2978 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2979 PASS_ALL_BITS, &bit_chk, 2980 0)) { 2981 /* USE Set current end of the window */ 2982 end_curr = -d; 2983 /* 2984 * If a starting edge of our window has not been seen 2985 * this is our current start of the DM window. 2986 */ 2987 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2988 bgn_curr = -d; 2989 2990 /* 2991 * If current window is bigger than best seen. 2992 * Set best seen to be current window. 2993 */ 2994 if ((end_curr-bgn_curr+1) > win_best) { 2995 win_best = end_curr-bgn_curr+1; 2996 bgn_best = bgn_curr; 2997 end_best = end_curr; 2998 } 2999 } else { 3000 /* We just saw a failing test. Reset temp edge */ 3001 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3002 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3003 } 3004 } 3005 3006 3007 /* Reset DM delay chains to 0 */ 3008 scc_mgr_apply_group_dm_out1_delay(write_group, 0); 3009 3010 /* 3011 * Check to see if the current window nudges up aganist 0 delay. 3012 * If so we need to continue the search by shifting DQS otherwise DQS 3013 * search begins as a new search. */ 3014 if (end_curr != 0) { 3015 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3016 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3017 } 3018 3019 /* Search for the/part of the window with DQS shifts */ 3020 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3021 /* 3022 * Note: This only shifts DQS, so are we limiting ourselve to 3023 * width of DQ unnecessarily. 3024 */ 3025 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3026 d + new_dqs); 3027 3028 writel(0, &sdr_scc_mgr->update); 3029 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3030 PASS_ALL_BITS, &bit_chk, 3031 0)) { 3032 /* USE Set current end of the window */ 3033 end_curr = d; 3034 /* 3035 * If a beginning edge of our window has not been seen 3036 * this is our current begin of the DM window. 3037 */ 3038 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3039 bgn_curr = d; 3040 3041 /* 3042 * If current window is bigger than best seen. Set best 3043 * seen to be current window. 3044 */ 3045 if ((end_curr-bgn_curr+1) > win_best) { 3046 win_best = end_curr-bgn_curr+1; 3047 bgn_best = bgn_curr; 3048 end_best = end_curr; 3049 } 3050 } else { 3051 /* We just saw a failing test. Reset temp edge */ 3052 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3053 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3054 3055 /* Early exit optimization: if ther remaining delay 3056 chain space is less than already seen largest window 3057 we can exit */ 3058 if ((win_best-1) > 3059 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3060 break; 3061 } 3062 } 3063 } 3064 3065 /* assign left and right edge for cal and reporting; */ 3066 left_edge[0] = -1*bgn_best; 3067 right_edge[0] = end_best; 3068 3069 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3070 __LINE__, left_edge[0], right_edge[0]); 3071 3072 /* Move DQS (back to orig) */ 3073 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3074 3075 /* Move DM */ 3076 3077 /* Find middle of window for the DM bit */ 3078 mid = (left_edge[0] - right_edge[0]) / 2; 3079 3080 /* only move right, since we are not moving DQS/DQ */ 3081 if (mid < 0) 3082 mid = 0; 3083 3084 /* dm_marign should fail if we never find a window */ 3085 if (win_best == 0) 3086 dm_margin = -1; 3087 else 3088 dm_margin = left_edge[0] - mid; 3089 3090 scc_mgr_apply_group_dm_out1_delay(write_group, mid); 3091 writel(0, &sdr_scc_mgr->update); 3092 3093 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3094 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3095 right_edge[0], mid, dm_margin); 3096 /* Export values */ 3097 gbl->fom_out += dq_margin + dqs_margin; 3098 3099 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3100 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3101 dq_margin, dqs_margin, dm_margin); 3102 3103 /* 3104 * Do not remove this line as it makes sure all of our 3105 * decisions have been applied. 3106 */ 3107 writel(0, &sdr_scc_mgr->update); 3108 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3109 } 3110 3111 /* calibrate the write operations */ 3112 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3113 uint32_t test_bgn) 3114 { 3115 /* update info for sims */ 3116 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3117 3118 reg_file_set_stage(CAL_STAGE_WRITES); 3119 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3120 3121 reg_file_set_group(g); 3122 3123 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3124 set_failing_group_stage(g, CAL_STAGE_WRITES, 3125 CAL_SUBSTAGE_WRITES_CENTER); 3126 return 0; 3127 } 3128 3129 return 1; 3130 } 3131 3132 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3133 static void mem_precharge_and_activate(void) 3134 { 3135 uint32_t r; 3136 3137 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3138 if (param->skip_ranks[r]) { 3139 /* request to skip the rank */ 3140 continue; 3141 } 3142 3143 /* set rank */ 3144 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3145 3146 /* precharge all banks ... */ 3147 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3148 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3149 3150 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3151 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3152 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3153 3154 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3155 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3156 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3157 3158 /* activate rows */ 3159 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3160 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3161 } 3162 } 3163 3164 /* Configure various memory related parameters. */ 3165 static void mem_config(void) 3166 { 3167 uint32_t rlat, wlat; 3168 uint32_t rw_wl_nop_cycles; 3169 uint32_t max_latency; 3170 3171 debug("%s:%d\n", __func__, __LINE__); 3172 /* read in write and read latency */ 3173 wlat = readl(&data_mgr->t_wl_add); 3174 wlat += readl(&data_mgr->mem_t_add); 3175 3176 /* WL for hard phy does not include additive latency */ 3177 3178 /* 3179 * add addtional write latency to offset the address/command extra 3180 * clock cycle. We change the AC mux setting causing AC to be delayed 3181 * by one mem clock cycle. Only do this for DDR3 3182 */ 3183 wlat = wlat + 1; 3184 3185 rlat = readl(&data_mgr->t_rl_add); 3186 3187 rw_wl_nop_cycles = wlat - 2; 3188 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3189 3190 /* 3191 * For AV/CV, lfifo is hardened and always runs at full rate so 3192 * max latency in AFI clocks, used here, is correspondingly smaller. 3193 */ 3194 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3195 /* configure for a burst length of 8 */ 3196 3197 /* write latency */ 3198 /* Adjust Write Latency for Hard PHY */ 3199 wlat = wlat + 1; 3200 3201 /* set a pretty high read latency initially */ 3202 gbl->curr_read_lat = rlat + 16; 3203 3204 if (gbl->curr_read_lat > max_latency) 3205 gbl->curr_read_lat = max_latency; 3206 3207 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3208 3209 /* advertise write latency */ 3210 gbl->curr_write_lat = wlat; 3211 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3212 3213 /* initialize bit slips */ 3214 mem_precharge_and_activate(); 3215 } 3216 3217 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3218 static void mem_skip_calibrate(void) 3219 { 3220 uint32_t vfifo_offset; 3221 uint32_t i, j, r; 3222 3223 debug("%s:%d\n", __func__, __LINE__); 3224 /* Need to update every shadow register set used by the interface */ 3225 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3226 r += NUM_RANKS_PER_SHADOW_REG) { 3227 /* 3228 * Set output phase alignment settings appropriate for 3229 * skip calibration. 3230 */ 3231 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3232 scc_mgr_set_dqs_en_phase(i, 0); 3233 #if IO_DLL_CHAIN_LENGTH == 6 3234 scc_mgr_set_dqdqs_output_phase(i, 6); 3235 #else 3236 scc_mgr_set_dqdqs_output_phase(i, 7); 3237 #endif 3238 /* 3239 * Case:33398 3240 * 3241 * Write data arrives to the I/O two cycles before write 3242 * latency is reached (720 deg). 3243 * -> due to bit-slip in a/c bus 3244 * -> to allow board skew where dqs is longer than ck 3245 * -> how often can this happen!? 3246 * -> can claim back some ptaps for high freq 3247 * support if we can relax this, but i digress... 3248 * 3249 * The write_clk leads mem_ck by 90 deg 3250 * The minimum ptap of the OPA is 180 deg 3251 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3252 * The write_clk is always delayed by 2 ptaps 3253 * 3254 * Hence, to make DQS aligned to CK, we need to delay 3255 * DQS by: 3256 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3257 * 3258 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3259 * gives us the number of ptaps, which simplies to: 3260 * 3261 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3262 */ 3263 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3264 IO_DLL_CHAIN_LENGTH - 2)); 3265 } 3266 writel(0xff, &sdr_scc_mgr->dqs_ena); 3267 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3268 3269 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3270 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3271 SCC_MGR_GROUP_COUNTER_OFFSET); 3272 } 3273 writel(0xff, &sdr_scc_mgr->dq_ena); 3274 writel(0xff, &sdr_scc_mgr->dm_ena); 3275 writel(0, &sdr_scc_mgr->update); 3276 } 3277 3278 /* Compensate for simulation model behaviour */ 3279 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3280 scc_mgr_set_dqs_bus_in_delay(i, 10); 3281 scc_mgr_load_dqs(i); 3282 } 3283 writel(0, &sdr_scc_mgr->update); 3284 3285 /* 3286 * ArriaV has hard FIFOs that can only be initialized by incrementing 3287 * in sequencer. 3288 */ 3289 vfifo_offset = CALIB_VFIFO_OFFSET; 3290 for (j = 0; j < vfifo_offset; j++) { 3291 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3292 } 3293 writel(0, &phy_mgr_cmd->fifo_reset); 3294 3295 /* 3296 * For ACV with hard lfifo, we get the skip-cal setting from 3297 * generation-time constant. 3298 */ 3299 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3300 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3301 } 3302 3303 /* Memory calibration entry point */ 3304 static uint32_t mem_calibrate(void) 3305 { 3306 uint32_t i; 3307 uint32_t rank_bgn, sr; 3308 uint32_t write_group, write_test_bgn; 3309 uint32_t read_group, read_test_bgn; 3310 uint32_t run_groups, current_run; 3311 uint32_t failing_groups = 0; 3312 uint32_t group_failed = 0; 3313 uint32_t sr_failed = 0; 3314 3315 debug("%s:%d\n", __func__, __LINE__); 3316 /* Initialize the data settings */ 3317 3318 gbl->error_substage = CAL_SUBSTAGE_NIL; 3319 gbl->error_stage = CAL_STAGE_NIL; 3320 gbl->error_group = 0xff; 3321 gbl->fom_in = 0; 3322 gbl->fom_out = 0; 3323 3324 mem_config(); 3325 3326 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3327 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3328 SCC_MGR_GROUP_COUNTER_OFFSET); 3329 scc_set_bypass_mode(i); 3330 } 3331 3332 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3333 /* 3334 * Set VFIFO and LFIFO to instant-on settings in skip 3335 * calibration mode. 3336 */ 3337 mem_skip_calibrate(); 3338 } else { 3339 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3340 /* 3341 * Zero all delay chain/phase settings for all 3342 * groups and all shadow register sets. 3343 */ 3344 scc_mgr_zero_all(); 3345 3346 run_groups = ~param->skip_groups; 3347 3348 for (write_group = 0, write_test_bgn = 0; write_group 3349 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3350 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3351 /* Initialized the group failure */ 3352 group_failed = 0; 3353 3354 current_run = run_groups & ((1 << 3355 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3356 run_groups = run_groups >> 3357 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3358 3359 if (current_run == 0) 3360 continue; 3361 3362 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3363 SCC_MGR_GROUP_COUNTER_OFFSET); 3364 scc_mgr_zero_group(write_group, write_test_bgn, 3365 0); 3366 3367 for (read_group = write_group * 3368 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3369 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3370 read_test_bgn = 0; 3371 read_group < (write_group + 1) * 3372 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3373 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3374 group_failed == 0; 3375 read_group++, read_test_bgn += 3376 RW_MGR_MEM_DQ_PER_READ_DQS) { 3377 /* Calibrate the VFIFO */ 3378 if (!((STATIC_CALIB_STEPS) & 3379 CALIB_SKIP_VFIFO)) { 3380 if (!rw_mgr_mem_calibrate_vfifo 3381 (read_group, 3382 read_test_bgn)) { 3383 group_failed = 1; 3384 3385 if (!(gbl-> 3386 phy_debug_mode_flags & 3387 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3388 return 0; 3389 } 3390 } 3391 } 3392 } 3393 3394 /* Calibrate the output side */ 3395 if (group_failed == 0) { 3396 for (rank_bgn = 0, sr = 0; rank_bgn 3397 < RW_MGR_MEM_NUMBER_OF_RANKS; 3398 rank_bgn += 3399 NUM_RANKS_PER_SHADOW_REG, 3400 ++sr) { 3401 sr_failed = 0; 3402 if (!((STATIC_CALIB_STEPS) & 3403 CALIB_SKIP_WRITES)) { 3404 if ((STATIC_CALIB_STEPS) 3405 & CALIB_SKIP_DELAY_SWEEPS) { 3406 /* not needed in quick mode! */ 3407 } else { 3408 /* 3409 * Determine if this set of 3410 * ranks should be skipped 3411 * entirely. 3412 */ 3413 if (!param->skip_shadow_regs[sr]) { 3414 if (!rw_mgr_mem_calibrate_writes 3415 (rank_bgn, write_group, 3416 write_test_bgn)) { 3417 sr_failed = 1; 3418 if (!(gbl-> 3419 phy_debug_mode_flags & 3420 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3421 return 0; 3422 } 3423 } 3424 } 3425 } 3426 } 3427 if (sr_failed != 0) 3428 group_failed = 1; 3429 } 3430 } 3431 3432 if (group_failed == 0) { 3433 for (read_group = write_group * 3434 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3435 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3436 read_test_bgn = 0; 3437 read_group < (write_group + 1) 3438 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3439 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3440 group_failed == 0; 3441 read_group++, read_test_bgn += 3442 RW_MGR_MEM_DQ_PER_READ_DQS) { 3443 if (!((STATIC_CALIB_STEPS) & 3444 CALIB_SKIP_WRITES)) { 3445 if (!rw_mgr_mem_calibrate_vfifo_end 3446 (read_group, read_test_bgn)) { 3447 group_failed = 1; 3448 3449 if (!(gbl->phy_debug_mode_flags 3450 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3451 return 0; 3452 } 3453 } 3454 } 3455 } 3456 } 3457 3458 if (group_failed != 0) 3459 failing_groups++; 3460 } 3461 3462 /* 3463 * USER If there are any failing groups then report 3464 * the failure. 3465 */ 3466 if (failing_groups != 0) 3467 return 0; 3468 3469 /* Calibrate the LFIFO */ 3470 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3471 /* 3472 * If we're skipping groups as part of debug, 3473 * don't calibrate LFIFO. 3474 */ 3475 if (param->skip_groups == 0) { 3476 if (!rw_mgr_mem_calibrate_lfifo()) 3477 return 0; 3478 } 3479 } 3480 } 3481 } 3482 3483 /* 3484 * Do not remove this line as it makes sure all of our decisions 3485 * have been applied. 3486 */ 3487 writel(0, &sdr_scc_mgr->update); 3488 return 1; 3489 } 3490 3491 static uint32_t run_mem_calibrate(void) 3492 { 3493 uint32_t pass; 3494 uint32_t debug_info; 3495 3496 debug("%s:%d\n", __func__, __LINE__); 3497 3498 /* Reset pass/fail status shown on afi_cal_success/fail */ 3499 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3500 3501 /* stop tracking manger */ 3502 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3503 3504 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3505 3506 initialize(); 3507 rw_mgr_mem_initialize(); 3508 3509 pass = mem_calibrate(); 3510 3511 mem_precharge_and_activate(); 3512 writel(0, &phy_mgr_cmd->fifo_reset); 3513 3514 /* 3515 * Handoff: 3516 * Don't return control of the PHY back to AFI when in debug mode. 3517 */ 3518 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3519 rw_mgr_mem_handoff(); 3520 /* 3521 * In Hard PHY this is a 2-bit control: 3522 * 0: AFI Mux Select 3523 * 1: DDIO Mux Select 3524 */ 3525 writel(0x2, &phy_mgr_cfg->mux_sel); 3526 } 3527 3528 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3529 3530 if (pass) { 3531 printf("%s: CALIBRATION PASSED\n", __FILE__); 3532 3533 gbl->fom_in /= 2; 3534 gbl->fom_out /= 2; 3535 3536 if (gbl->fom_in > 0xff) 3537 gbl->fom_in = 0xff; 3538 3539 if (gbl->fom_out > 0xff) 3540 gbl->fom_out = 0xff; 3541 3542 /* Update the FOM in the register file */ 3543 debug_info = gbl->fom_in; 3544 debug_info |= gbl->fom_out << 8; 3545 writel(debug_info, &sdr_reg_file->fom); 3546 3547 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3548 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3549 } else { 3550 printf("%s: CALIBRATION FAILED\n", __FILE__); 3551 3552 debug_info = gbl->error_stage; 3553 debug_info |= gbl->error_substage << 8; 3554 debug_info |= gbl->error_group << 16; 3555 3556 writel(debug_info, &sdr_reg_file->failing_stage); 3557 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3558 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3559 3560 /* Update the failing group/stage in the register file */ 3561 debug_info = gbl->error_stage; 3562 debug_info |= gbl->error_substage << 8; 3563 debug_info |= gbl->error_group << 16; 3564 writel(debug_info, &sdr_reg_file->failing_stage); 3565 } 3566 3567 return pass; 3568 } 3569 3570 /** 3571 * hc_initialize_rom_data() - Initialize ROM data 3572 * 3573 * Initialize ROM data. 3574 */ 3575 static void hc_initialize_rom_data(void) 3576 { 3577 u32 i, addr; 3578 3579 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3580 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3581 writel(inst_rom_init[i], addr + (i << 2)); 3582 3583 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3584 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3585 writel(ac_rom_init[i], addr + (i << 2)); 3586 } 3587 3588 /** 3589 * initialize_reg_file() - Initialize SDR register file 3590 * 3591 * Initialize SDR register file. 3592 */ 3593 static void initialize_reg_file(void) 3594 { 3595 /* Initialize the register file with the correct data */ 3596 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3597 writel(0, &sdr_reg_file->debug_data_addr); 3598 writel(0, &sdr_reg_file->cur_stage); 3599 writel(0, &sdr_reg_file->fom); 3600 writel(0, &sdr_reg_file->failing_stage); 3601 writel(0, &sdr_reg_file->debug1); 3602 writel(0, &sdr_reg_file->debug2); 3603 } 3604 3605 /** 3606 * initialize_hps_phy() - Initialize HPS PHY 3607 * 3608 * Initialize HPS PHY. 3609 */ 3610 static void initialize_hps_phy(void) 3611 { 3612 uint32_t reg; 3613 /* 3614 * Tracking also gets configured here because it's in the 3615 * same register. 3616 */ 3617 uint32_t trk_sample_count = 7500; 3618 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3619 /* 3620 * Format is number of outer loops in the 16 MSB, sample 3621 * count in 16 LSB. 3622 */ 3623 3624 reg = 0; 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3630 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3631 /* 3632 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3633 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3634 */ 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3637 trk_sample_count); 3638 writel(reg, &sdr_ctrl->phy_ctrl0); 3639 3640 reg = 0; 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3642 trk_sample_count >> 3643 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3644 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3645 trk_long_idle_sample_count); 3646 writel(reg, &sdr_ctrl->phy_ctrl1); 3647 3648 reg = 0; 3649 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3650 trk_long_idle_sample_count >> 3651 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3652 writel(reg, &sdr_ctrl->phy_ctrl2); 3653 } 3654 3655 static void initialize_tracking(void) 3656 { 3657 uint32_t concatenated_longidle = 0x0; 3658 uint32_t concatenated_delays = 0x0; 3659 uint32_t concatenated_rw_addr = 0x0; 3660 uint32_t concatenated_refresh = 0x0; 3661 uint32_t trk_sample_count = 7500; 3662 uint32_t dtaps_per_ptap; 3663 uint32_t tmp_delay; 3664 3665 /* 3666 * compute usable version of value in case we skip full 3667 * computation later 3668 */ 3669 dtaps_per_ptap = 0; 3670 tmp_delay = 0; 3671 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3672 dtaps_per_ptap++; 3673 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3674 } 3675 dtaps_per_ptap--; 3676 3677 concatenated_longidle = concatenated_longidle ^ 10; 3678 /*longidle outer loop */ 3679 concatenated_longidle = concatenated_longidle << 16; 3680 concatenated_longidle = concatenated_longidle ^ 100; 3681 /*longidle sample count */ 3682 concatenated_delays = concatenated_delays ^ 243; 3683 /* trfc, worst case of 933Mhz 4Gb */ 3684 concatenated_delays = concatenated_delays << 8; 3685 concatenated_delays = concatenated_delays ^ 14; 3686 /* trcd, worst case */ 3687 concatenated_delays = concatenated_delays << 8; 3688 concatenated_delays = concatenated_delays ^ 10; 3689 /* vfifo wait */ 3690 concatenated_delays = concatenated_delays << 8; 3691 concatenated_delays = concatenated_delays ^ 4; 3692 /* mux delay */ 3693 3694 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3695 concatenated_rw_addr = concatenated_rw_addr << 8; 3696 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3697 concatenated_rw_addr = concatenated_rw_addr << 8; 3698 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3699 concatenated_rw_addr = concatenated_rw_addr << 8; 3700 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3701 3702 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3703 concatenated_refresh = concatenated_refresh << 24; 3704 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3705 3706 /* Initialize the register file with the correct data */ 3707 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3708 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3709 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3710 writel(concatenated_delays, &sdr_reg_file->delays); 3711 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3712 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3713 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3714 } 3715 3716 int sdram_calibration_full(void) 3717 { 3718 struct param_type my_param; 3719 struct gbl_type my_gbl; 3720 uint32_t pass; 3721 uint32_t i; 3722 3723 param = &my_param; 3724 gbl = &my_gbl; 3725 3726 /* Initialize the debug mode flags */ 3727 gbl->phy_debug_mode_flags = 0; 3728 /* Set the calibration enabled by default */ 3729 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3730 /* 3731 * Only sweep all groups (regardless of fail state) by default 3732 * Set enabled read test by default. 3733 */ 3734 #if DISABLE_GUARANTEED_READ 3735 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3736 #endif 3737 /* Initialize the register file */ 3738 initialize_reg_file(); 3739 3740 /* Initialize any PHY CSR */ 3741 initialize_hps_phy(); 3742 3743 scc_mgr_initialize(); 3744 3745 initialize_tracking(); 3746 3747 /* USER Enable all ranks, groups */ 3748 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3749 param->skip_ranks[i] = 0; 3750 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3751 param->skip_shadow_regs[i] = 0; 3752 param->skip_groups = 0; 3753 3754 printf("%s: Preparing to start memory calibration\n", __FILE__); 3755 3756 debug("%s:%d\n", __func__, __LINE__); 3757 debug_cond(DLEVEL == 1, 3758 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3759 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3760 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3761 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3762 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3763 debug_cond(DLEVEL == 1, 3764 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3765 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3766 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3767 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3768 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3769 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3770 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3771 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3772 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3773 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3774 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3775 IO_IO_OUT2_DELAY_MAX); 3776 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3777 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3778 3779 hc_initialize_rom_data(); 3780 3781 /* update info for sims */ 3782 reg_file_set_stage(CAL_STAGE_NIL); 3783 reg_file_set_group(0); 3784 3785 /* 3786 * Load global needed for those actions that require 3787 * some dynamic calibration support. 3788 */ 3789 dyn_calib_steps = STATIC_CALIB_STEPS; 3790 /* 3791 * Load global to allow dynamic selection of delay loop settings 3792 * based on calibration mode. 3793 */ 3794 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3795 skip_delay_mask = 0xff; 3796 else 3797 skip_delay_mask = 0x0; 3798 3799 pass = run_mem_calibrate(); 3800 3801 printf("%s: Calibration complete\n", __FILE__); 3802 return pass; 3803 } 3804