xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 5735540fd97f0d3167e34f4280f375126aedccd1)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 /**
1290  * rw_mgr_incr_vfifo() - Increase VFIFO value
1291  * @grp:	Read/Write group
1292  *
1293  * Increase VFIFO value.
1294  */
1295 static void rw_mgr_incr_vfifo(const u32 grp)
1296 {
1297 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1298 }
1299 
1300 /**
1301  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1302  * @grp:	Read/Write group
1303  *
1304  * Decrease VFIFO value.
1305  */
1306 static void rw_mgr_decr_vfifo(const u32 grp)
1307 {
1308 	u32 i;
1309 
1310 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1311 		rw_mgr_incr_vfifo(grp);
1312 }
1313 
1314 /**
1315  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1316  * @grp:	Read/Write group
1317  *
1318  * Push VFIFO until a failing read happens.
1319  */
1320 static int find_vfifo_failing_read(const u32 grp)
1321 {
1322 	u32 v, ret, bit_chk, fail_cnt = 0;
1323 
1324 	for (v = 0; v < VFIFO_SIZE; v++) {
1325 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1326 			   __func__, __LINE__, v);
1327 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1328 						PASS_ONE_BIT, &bit_chk, 0);
1329 		if (!ret) {
1330 			fail_cnt++;
1331 
1332 			if (fail_cnt == 2)
1333 				return v;
1334 		}
1335 
1336 		/* Fiddle with FIFO. */
1337 		rw_mgr_incr_vfifo(grp);
1338 	}
1339 
1340 	/* No failing read found! Something must have gone wrong. */
1341 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1342 	return 0;
1343 }
1344 
1345 /**
1346  * sdr_find_phase_delay() - Find DQS enable phase or delay
1347  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1348  * @delay:	If 1, look for delay, if 0, look for phase
1349  * @grp:	Read/Write group
1350  * @work:	Working window position
1351  * @work_inc:	Working window increment
1352  * @pd:		DQS Phase/Delay Iterator
1353  *
1354  * Find working or non-working DQS enable phase setting.
1355  */
1356 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1357 				u32 *work, const u32 work_inc, u32 *pd)
1358 {
1359 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1360 	u32 ret, bit_chk;
1361 
1362 	for (; *pd <= max; (*pd)++) {
1363 		if (delay)
1364 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1365 		else
1366 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1367 
1368 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1369 					PASS_ONE_BIT, &bit_chk, 0);
1370 		if (!working)
1371 			ret = !ret;
1372 
1373 		if (ret)
1374 			return 0;
1375 
1376 		if (work)
1377 			*work += work_inc;
1378 	}
1379 
1380 	return -EINVAL;
1381 }
1382 /**
1383  * sdr_find_phase() - Find DQS enable phase
1384  * @working:	If 1, look for working phase, if 0, look for non-working phase
1385  * @grp:	Read/Write group
1386  * @work:	Working window position
1387  * @i:		Iterator
1388  * @p:		DQS Phase Iterator
1389  *
1390  * Find working or non-working DQS enable phase setting.
1391  */
1392 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1393 			  u32 *i, u32 *p)
1394 {
1395 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1396 	int ret;
1397 
1398 	for (; *i < end; (*i)++) {
1399 		if (working)
1400 			*p = 0;
1401 
1402 		ret = sdr_find_phase_delay(working, 0, grp, work,
1403 					   IO_DELAY_PER_OPA_TAP, p);
1404 		if (!ret)
1405 			return 0;
1406 
1407 		if (*p > IO_DQS_EN_PHASE_MAX) {
1408 			/* Fiddle with FIFO. */
1409 			rw_mgr_incr_vfifo(grp);
1410 			if (!working)
1411 				*p = 0;
1412 		}
1413 	}
1414 
1415 	return -EINVAL;
1416 }
1417 
1418 /**
1419  * sdr_working_phase() - Find working DQS enable phase
1420  * @grp:	Read/Write group
1421  * @work_bgn:	Working window start position
1422  * @d:		dtaps output value
1423  * @p:		DQS Phase Iterator
1424  * @i:		Iterator
1425  *
1426  * Find working DQS enable phase setting.
1427  */
1428 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1429 			     u32 *p, u32 *i)
1430 {
1431 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1432 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1433 	int ret;
1434 
1435 	*work_bgn = 0;
1436 
1437 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1438 		*i = 0;
1439 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1440 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1441 		if (!ret)
1442 			return 0;
1443 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1444 	}
1445 
1446 	/* Cannot find working solution */
1447 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1448 		   __func__, __LINE__);
1449 	return -EINVAL;
1450 }
1451 
1452 /**
1453  * sdr_backup_phase() - Find DQS enable backup phase
1454  * @grp:	Read/Write group
1455  * @work_bgn:	Working window start position
1456  * @p:		DQS Phase Iterator
1457  *
1458  * Find DQS enable backup phase setting.
1459  */
1460 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1461 {
1462 	u32 tmp_delay, bit_chk, d;
1463 	int ret;
1464 
1465 	/* Special case code for backing up a phase */
1466 	if (*p == 0) {
1467 		*p = IO_DQS_EN_PHASE_MAX;
1468 		rw_mgr_decr_vfifo(grp);
1469 	} else {
1470 		(*p)--;
1471 	}
1472 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1473 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1474 
1475 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1476 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1477 
1478 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1479 					PASS_ONE_BIT, &bit_chk, 0);
1480 		if (ret) {
1481 			*work_bgn = tmp_delay;
1482 			break;
1483 		}
1484 
1485 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1486 	}
1487 
1488 	/* Restore VFIFO to old state before we decremented it (if needed). */
1489 	(*p)++;
1490 	if (*p > IO_DQS_EN_PHASE_MAX) {
1491 		*p = 0;
1492 		rw_mgr_incr_vfifo(grp);
1493 	}
1494 
1495 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1496 }
1497 
1498 /**
1499  * sdr_nonworking_phase() - Find non-working DQS enable phase
1500  * @grp:	Read/Write group
1501  * @work_end:	Working window end position
1502  * @p:		DQS Phase Iterator
1503  * @i:		Iterator
1504  *
1505  * Find non-working DQS enable phase setting.
1506  */
1507 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1508 {
1509 	int ret;
1510 
1511 	(*p)++;
1512 	*work_end += IO_DELAY_PER_OPA_TAP;
1513 	if (*p > IO_DQS_EN_PHASE_MAX) {
1514 		/* Fiddle with FIFO. */
1515 		*p = 0;
1516 		rw_mgr_incr_vfifo(grp);
1517 	}
1518 
1519 	ret = sdr_find_phase(0, grp, work_end, i, p);
1520 	if (ret) {
1521 		/* Cannot see edge of failing read. */
1522 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1523 			   __func__, __LINE__);
1524 	}
1525 
1526 	return ret;
1527 }
1528 
1529 /**
1530  * sdr_find_window_center() - Find center of the working DQS window.
1531  * @grp:	Read/Write group
1532  * @work_bgn:	First working settings
1533  * @work_end:	Last working settings
1534  *
1535  * Find center of the working DQS enable window.
1536  */
1537 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1538 				  const u32 work_end)
1539 {
1540 	u32 bit_chk, work_mid;
1541 	int tmp_delay = 0;
1542 	int i, p, d;
1543 
1544 	work_mid = (work_bgn + work_end) / 2;
1545 
1546 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1547 		   work_bgn, work_end, work_mid);
1548 	/* Get the middle delay to be less than a VFIFO delay */
1549 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1550 
1551 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1552 	work_mid %= tmp_delay;
1553 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1554 
1555 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1556 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1557 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1558 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1559 
1560 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1561 
1562 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1563 	if (d > IO_DQS_EN_DELAY_MAX)
1564 		d = IO_DQS_EN_DELAY_MAX;
1565 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1566 
1567 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1568 
1569 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1570 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1571 
1572 	/*
1573 	 * push vfifo until we can successfully calibrate. We can do this
1574 	 * because the largest possible margin in 1 VFIFO cycle.
1575 	 */
1576 	for (i = 0; i < VFIFO_SIZE; i++) {
1577 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1578 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1579 							     PASS_ONE_BIT,
1580 							     &bit_chk, 0)) {
1581 			debug_cond(DLEVEL == 2,
1582 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1583 				   __func__, __LINE__, p, d);
1584 			return 0;
1585 		}
1586 
1587 		/* Fiddle with FIFO. */
1588 		rw_mgr_incr_vfifo(grp);
1589 	}
1590 
1591 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1592 		   __func__, __LINE__);
1593 	return -EINVAL;
1594 }
1595 
1596 static u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1597 {
1598 	u32 d, p, i;
1599 	u32 dtaps_per_ptap;
1600 	u32 work_bgn, work_end;
1601 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1602 	int ret;
1603 
1604 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1605 
1606 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1607 
1608 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1609 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1610 
1611 	/* Step 0: Determine number of delay taps for each phase tap. */
1612 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1613 
1614 	/* Step 1: First push vfifo until we get a failing read. */
1615 	find_vfifo_failing_read(grp);
1616 
1617 	/* Step 2: Find first working phase, increment in ptaps. */
1618 	work_bgn = 0;
1619 	if (sdr_working_phase(grp, &work_bgn, &d, &p, &i))
1620 		return 0;
1621 
1622 	work_end = work_bgn;
1623 
1624 	/*
1625 	 * If d is 0 then the working window covers a phase tap and we can
1626 	 * follow the old procedure. Otherwise, we've found the beginning
1627 	 * and we need to increment the dtaps until we find the end.
1628 	 */
1629 	if (d == 0) {
1630 		/*
1631 		 * Step 3a: If we have room, back off by one and
1632 		 *          increment in dtaps.
1633 		 */
1634 		sdr_backup_phase(grp, &work_bgn, &p);
1635 
1636 		/*
1637 		 * Step 4a: go forward from working phase to non working
1638 		 * phase, increment in ptaps.
1639 		 */
1640 		if (sdr_nonworking_phase(grp, &work_end, &p, &i))
1641 			return 0;
1642 
1643 		/* Step 5a: Back off one from last, increment in dtaps. */
1644 
1645 		/* Special case code for backing up a phase */
1646 		if (p == 0) {
1647 			p = IO_DQS_EN_PHASE_MAX;
1648 			rw_mgr_decr_vfifo(grp);
1649 		} else {
1650 			p = p - 1;
1651 		}
1652 
1653 		work_end -= IO_DELAY_PER_OPA_TAP;
1654 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1655 
1656 		d = 0;
1657 
1658 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1659 			   __func__, __LINE__, p);
1660 	}
1661 
1662 	/* The dtap increment to find the failing edge is done here. */
1663 	sdr_find_phase_delay(0, 1, grp, &work_end,
1664 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1665 
1666 	/* Go back to working dtap */
1667 	if (d != 0)
1668 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1669 
1670 	debug_cond(DLEVEL == 2,
1671 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1672 		   __func__, __LINE__, p, d - 1, work_end);
1673 
1674 	if (work_end < work_bgn) {
1675 		/* nil range */
1676 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1677 			   __func__, __LINE__);
1678 		return 0;
1679 	}
1680 
1681 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1682 		   __func__, __LINE__, work_bgn, work_end);
1683 
1684 	/*
1685 	 * We need to calculate the number of dtaps that equal a ptap.
1686 	 * To do that we'll back up a ptap and re-find the edge of the
1687 	 * window using dtaps
1688 	 */
1689 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1690 		   __func__, __LINE__);
1691 
1692 	/* Special case code for backing up a phase */
1693 	if (p == 0) {
1694 		p = IO_DQS_EN_PHASE_MAX;
1695 		rw_mgr_decr_vfifo(grp);
1696 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1697 			   __func__, __LINE__, p);
1698 	} else {
1699 		p = p - 1;
1700 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1701 			   __func__, __LINE__, p);
1702 	}
1703 
1704 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1705 
1706 	/*
1707 	 * Increase dtap until we first see a passing read (in case the
1708 	 * window is smaller than a ptap), and then a failing read to
1709 	 * mark the edge of the window again.
1710 	 */
1711 
1712 	/* Find a passing read. */
1713 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1714 		   __func__, __LINE__);
1715 
1716 	initial_failing_dtap = d;
1717 
1718 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1719 	if (found_passing_read) {
1720 		/* Find a failing read. */
1721 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1722 			   __func__, __LINE__);
1723 		d++;
1724 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1725 							   &d);
1726 	} else {
1727 		debug_cond(DLEVEL == 1,
1728 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1729 			   __func__, __LINE__);
1730 	}
1731 
1732 	/*
1733 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1734 	 * found a passing/failing read. If we didn't, it means d hit the max
1735 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1736 	 * statically calculated value.
1737 	 */
1738 	if (found_passing_read && found_failing_read)
1739 		dtaps_per_ptap = d - initial_failing_dtap;
1740 
1741 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1742 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1743 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1744 
1745 	/* Step 6: Find the centre of the window. */
1746 	if (sdr_find_window_centre(grp, work_bgn, work_end))
1747 		return 0;
1748 
1749 	return 1;
1750 }
1751 
1752 /* per-bit deskew DQ and center */
1753 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1754 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1755 	uint32_t use_read_test, uint32_t update_fom)
1756 {
1757 	uint32_t i, p, d, min_index;
1758 	/*
1759 	 * Store these as signed since there are comparisons with
1760 	 * signed numbers.
1761 	 */
1762 	uint32_t bit_chk;
1763 	uint32_t sticky_bit_chk;
1764 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1765 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1766 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1767 	int32_t mid;
1768 	int32_t orig_mid_min, mid_min;
1769 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1770 		final_dqs_en;
1771 	int32_t dq_margin, dqs_margin;
1772 	uint32_t stop;
1773 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1774 	uint32_t addr;
1775 
1776 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1777 
1778 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1779 	start_dqs = readl(addr + (read_group << 2));
1780 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1781 		start_dqs_en = readl(addr + ((read_group << 2)
1782 				     - IO_DQS_EN_DELAY_OFFSET));
1783 
1784 	/* set the left and right edge of each bit to an illegal value */
1785 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1786 	sticky_bit_chk = 0;
1787 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1788 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1789 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1790 	}
1791 
1792 	/* Search for the left edge of the window for each bit */
1793 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1794 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1795 
1796 		writel(0, &sdr_scc_mgr->update);
1797 
1798 		/*
1799 		 * Stop searching when the read test doesn't pass AND when
1800 		 * we've seen a passing read on every bit.
1801 		 */
1802 		if (use_read_test) {
1803 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1804 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1805 				&bit_chk, 0, 0);
1806 		} else {
1807 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1808 							0, PASS_ONE_BIT,
1809 							&bit_chk, 0);
1810 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1811 				(read_group - (write_group *
1812 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1813 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1814 			stop = (bit_chk == 0);
1815 		}
1816 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1817 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1818 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1819 			   && %u", __func__, __LINE__, d,
1820 			   sticky_bit_chk,
1821 			param->read_correct_mask, stop);
1822 
1823 		if (stop == 1) {
1824 			break;
1825 		} else {
1826 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1827 				if (bit_chk & 1) {
1828 					/* Remember a passing test as the
1829 					left_edge */
1830 					left_edge[i] = d;
1831 				} else {
1832 					/* If a left edge has not been seen yet,
1833 					then a future passing test will mark
1834 					this edge as the right edge */
1835 					if (left_edge[i] ==
1836 						IO_IO_IN_DELAY_MAX + 1) {
1837 						right_edge[i] = -(d + 1);
1838 					}
1839 				}
1840 				bit_chk = bit_chk >> 1;
1841 			}
1842 		}
1843 	}
1844 
1845 	/* Reset DQ delay chains to 0 */
1846 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1847 	sticky_bit_chk = 0;
1848 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1849 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1850 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1851 			   i, left_edge[i], i, right_edge[i]);
1852 
1853 		/*
1854 		 * Check for cases where we haven't found the left edge,
1855 		 * which makes our assignment of the the right edge invalid.
1856 		 * Reset it to the illegal value.
1857 		 */
1858 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1859 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1860 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1861 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1862 				   right_edge[%u]: %d\n", __func__, __LINE__,
1863 				   i, right_edge[i]);
1864 		}
1865 
1866 		/*
1867 		 * Reset sticky bit (except for bits where we have seen
1868 		 * both the left and right edge).
1869 		 */
1870 		sticky_bit_chk = sticky_bit_chk << 1;
1871 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1872 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1873 			sticky_bit_chk = sticky_bit_chk | 1;
1874 		}
1875 
1876 		if (i == 0)
1877 			break;
1878 	}
1879 
1880 	/* Search for the right edge of the window for each bit */
1881 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1882 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1883 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1884 			uint32_t delay = d + start_dqs_en;
1885 			if (delay > IO_DQS_EN_DELAY_MAX)
1886 				delay = IO_DQS_EN_DELAY_MAX;
1887 			scc_mgr_set_dqs_en_delay(read_group, delay);
1888 		}
1889 		scc_mgr_load_dqs(read_group);
1890 
1891 		writel(0, &sdr_scc_mgr->update);
1892 
1893 		/*
1894 		 * Stop searching when the read test doesn't pass AND when
1895 		 * we've seen a passing read on every bit.
1896 		 */
1897 		if (use_read_test) {
1898 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1899 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1900 				&bit_chk, 0, 0);
1901 		} else {
1902 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1903 							0, PASS_ONE_BIT,
1904 							&bit_chk, 0);
1905 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1906 				(read_group - (write_group *
1907 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1908 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1909 			stop = (bit_chk == 0);
1910 		}
1911 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1912 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1913 
1914 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1915 			   %u && %u", __func__, __LINE__, d,
1916 			   sticky_bit_chk, param->read_correct_mask, stop);
1917 
1918 		if (stop == 1) {
1919 			break;
1920 		} else {
1921 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1922 				if (bit_chk & 1) {
1923 					/* Remember a passing test as
1924 					the right_edge */
1925 					right_edge[i] = d;
1926 				} else {
1927 					if (d != 0) {
1928 						/* If a right edge has not been
1929 						seen yet, then a future passing
1930 						test will mark this edge as the
1931 						left edge */
1932 						if (right_edge[i] ==
1933 						IO_IO_IN_DELAY_MAX + 1) {
1934 							left_edge[i] = -(d + 1);
1935 						}
1936 					} else {
1937 						/* d = 0 failed, but it passed
1938 						when testing the left edge,
1939 						so it must be marginal,
1940 						set it to -1 */
1941 						if (right_edge[i] ==
1942 							IO_IO_IN_DELAY_MAX + 1 &&
1943 							left_edge[i] !=
1944 							IO_IO_IN_DELAY_MAX
1945 							+ 1) {
1946 							right_edge[i] = -1;
1947 						}
1948 						/* If a right edge has not been
1949 						seen yet, then a future passing
1950 						test will mark this edge as the
1951 						left edge */
1952 						else if (right_edge[i] ==
1953 							IO_IO_IN_DELAY_MAX +
1954 							1) {
1955 							left_edge[i] = -(d + 1);
1956 						}
1957 					}
1958 				}
1959 
1960 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1961 					   d=%u]: ", __func__, __LINE__, d);
1962 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1963 					   (int)(bit_chk & 1), i, left_edge[i]);
1964 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1965 					   right_edge[i]);
1966 				bit_chk = bit_chk >> 1;
1967 			}
1968 		}
1969 	}
1970 
1971 	/* Check that all bits have a window */
1972 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1973 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1974 			   %d right_edge[%u]: %d", __func__, __LINE__,
1975 			   i, left_edge[i], i, right_edge[i]);
1976 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1977 			== IO_IO_IN_DELAY_MAX + 1)) {
1978 			/*
1979 			 * Restore delay chain settings before letting the loop
1980 			 * in rw_mgr_mem_calibrate_vfifo to retry different
1981 			 * dqs/ck relationships.
1982 			 */
1983 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1984 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1985 				scc_mgr_set_dqs_en_delay(read_group,
1986 							 start_dqs_en);
1987 			}
1988 			scc_mgr_load_dqs(read_group);
1989 			writel(0, &sdr_scc_mgr->update);
1990 
1991 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1992 				   find edge [%u]: %d %d", __func__, __LINE__,
1993 				   i, left_edge[i], right_edge[i]);
1994 			if (use_read_test) {
1995 				set_failing_group_stage(read_group *
1996 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
1997 					CAL_STAGE_VFIFO,
1998 					CAL_SUBSTAGE_VFIFO_CENTER);
1999 			} else {
2000 				set_failing_group_stage(read_group *
2001 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2002 					CAL_STAGE_VFIFO_AFTER_WRITES,
2003 					CAL_SUBSTAGE_VFIFO_CENTER);
2004 			}
2005 			return 0;
2006 		}
2007 	}
2008 
2009 	/* Find middle of window for each DQ bit */
2010 	mid_min = left_edge[0] - right_edge[0];
2011 	min_index = 0;
2012 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2013 		mid = left_edge[i] - right_edge[i];
2014 		if (mid < mid_min) {
2015 			mid_min = mid;
2016 			min_index = i;
2017 		}
2018 	}
2019 
2020 	/*
2021 	 * -mid_min/2 represents the amount that we need to move DQS.
2022 	 * If mid_min is odd and positive we'll need to add one to
2023 	 * make sure the rounding in further calculations is correct
2024 	 * (always bias to the right), so just add 1 for all positive values.
2025 	 */
2026 	if (mid_min > 0)
2027 		mid_min++;
2028 
2029 	mid_min = mid_min / 2;
2030 
2031 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2032 		   __func__, __LINE__, mid_min, min_index);
2033 
2034 	/* Determine the amount we can change DQS (which is -mid_min) */
2035 	orig_mid_min = mid_min;
2036 	new_dqs = start_dqs - mid_min;
2037 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2038 		new_dqs = IO_DQS_IN_DELAY_MAX;
2039 	else if (new_dqs < 0)
2040 		new_dqs = 0;
2041 
2042 	mid_min = start_dqs - new_dqs;
2043 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2044 		   mid_min, new_dqs);
2045 
2046 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2047 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2048 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2049 		else if (start_dqs_en - mid_min < 0)
2050 			mid_min += start_dqs_en - mid_min;
2051 	}
2052 	new_dqs = start_dqs - mid_min;
2053 
2054 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2055 		   new_dqs=%d mid_min=%d\n", start_dqs,
2056 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2057 		   new_dqs, mid_min);
2058 
2059 	/* Initialize data for export structures */
2060 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2061 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2062 
2063 	/* add delay to bring centre of all DQ windows to the same "level" */
2064 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2065 		/* Use values before divide by 2 to reduce round off error */
2066 		shift_dq = (left_edge[i] - right_edge[i] -
2067 			(left_edge[min_index] - right_edge[min_index]))/2  +
2068 			(orig_mid_min - mid_min);
2069 
2070 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2071 			   shift_dq[%u]=%d\n", i, shift_dq);
2072 
2073 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2074 		temp_dq_in_delay1 = readl(addr + (p << 2));
2075 		temp_dq_in_delay2 = readl(addr + (i << 2));
2076 
2077 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2078 			(int32_t)IO_IO_IN_DELAY_MAX) {
2079 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2080 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2081 			shift_dq = -(int32_t)temp_dq_in_delay1;
2082 		}
2083 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2084 			   shift_dq[%u]=%d\n", i, shift_dq);
2085 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2086 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2087 		scc_mgr_load_dq(p);
2088 
2089 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2090 			   left_edge[i] - shift_dq + (-mid_min),
2091 			   right_edge[i] + shift_dq - (-mid_min));
2092 		/* To determine values for export structures */
2093 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2094 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2095 
2096 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2097 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2098 	}
2099 
2100 	final_dqs = new_dqs;
2101 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2102 		final_dqs_en = start_dqs_en - mid_min;
2103 
2104 	/* Move DQS-en */
2105 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2106 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2107 		scc_mgr_load_dqs(read_group);
2108 	}
2109 
2110 	/* Move DQS */
2111 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2112 	scc_mgr_load_dqs(read_group);
2113 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2114 		   dqs_margin=%d", __func__, __LINE__,
2115 		   dq_margin, dqs_margin);
2116 
2117 	/*
2118 	 * Do not remove this line as it makes sure all of our decisions
2119 	 * have been applied. Apply the update bit.
2120 	 */
2121 	writel(0, &sdr_scc_mgr->update);
2122 
2123 	return (dq_margin >= 0) && (dqs_margin >= 0);
2124 }
2125 
2126 /**
2127  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2128  * @rw_group:	Read/Write Group
2129  * @phase:	DQ/DQS phase
2130  *
2131  * Because initially no communication ca be reliably performed with the memory
2132  * device, the sequencer uses a guaranteed write mechanism to write data into
2133  * the memory device.
2134  */
2135 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2136 						 const u32 phase)
2137 {
2138 	int ret;
2139 
2140 	/* Set a particular DQ/DQS phase. */
2141 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2142 
2143 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2144 		   __func__, __LINE__, rw_group, phase);
2145 
2146 	/*
2147 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2148 	 * Load up the patterns used by read calibration using the
2149 	 * current DQDQS phase.
2150 	 */
2151 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2152 
2153 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2154 		return 0;
2155 
2156 	/*
2157 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2158 	 * Back-to-Back reads of the patterns used for calibration.
2159 	 */
2160 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2161 	if (ret)
2162 		debug_cond(DLEVEL == 1,
2163 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2164 			   __func__, __LINE__, rw_group, phase);
2165 	return ret;
2166 }
2167 
2168 /**
2169  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2170  * @rw_group:	Read/Write Group
2171  * @test_bgn:	Rank at which the test begins
2172  *
2173  * DQS enable calibration ensures reliable capture of the DQ signal without
2174  * glitches on the DQS line.
2175  */
2176 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2177 						       const u32 test_bgn)
2178 {
2179 	/*
2180 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2181 	 * DQS and DQS Eanble Signal Relationships.
2182 	 */
2183 
2184 	/* We start at zero, so have one less dq to devide among */
2185 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2186 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2187 	int found;
2188 	u32 i, p, d, r;
2189 
2190 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2191 
2192 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2193 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2194 	     r += NUM_RANKS_PER_SHADOW_REG) {
2195 		for (i = 0, p = test_bgn, d = 0;
2196 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2197 		     i++, p++, d += delay_step) {
2198 			debug_cond(DLEVEL == 1,
2199 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2200 				   __func__, __LINE__, rw_group, r, i, p, d);
2201 
2202 			scc_mgr_set_dq_in_delay(p, d);
2203 			scc_mgr_load_dq(p);
2204 		}
2205 
2206 		writel(0, &sdr_scc_mgr->update);
2207 	}
2208 
2209 	/*
2210 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2211 	 * dq_in_delay values
2212 	 */
2213 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2214 
2215 	debug_cond(DLEVEL == 1,
2216 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2217 		   __func__, __LINE__, rw_group, found);
2218 
2219 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2220 	     r += NUM_RANKS_PER_SHADOW_REG) {
2221 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2222 		writel(0, &sdr_scc_mgr->update);
2223 	}
2224 
2225 	if (!found)
2226 		return -EINVAL;
2227 
2228 	return 0;
2229 
2230 }
2231 
2232 /**
2233  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2234  * @rw_group:		Read/Write Group
2235  * @test_bgn:		Rank at which the test begins
2236  * @use_read_test:	Perform a read test
2237  * @update_fom:		Update FOM
2238  *
2239  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2240  * within a group.
2241  */
2242 static int
2243 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2244 				      const int use_read_test,
2245 				      const int update_fom)
2246 
2247 {
2248 	int ret, grp_calibrated;
2249 	u32 rank_bgn, sr;
2250 
2251 	/*
2252 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2253 	 * Read per-bit deskew can be done on a per shadow register basis.
2254 	 */
2255 	grp_calibrated = 1;
2256 	for (rank_bgn = 0, sr = 0;
2257 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2258 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2259 		/* Check if this set of ranks should be skipped entirely. */
2260 		if (param->skip_shadow_regs[sr])
2261 			continue;
2262 
2263 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2264 							rw_group, test_bgn,
2265 							use_read_test,
2266 							update_fom);
2267 		if (ret)
2268 			continue;
2269 
2270 		grp_calibrated = 0;
2271 	}
2272 
2273 	if (!grp_calibrated)
2274 		return -EIO;
2275 
2276 	return 0;
2277 }
2278 
2279 /**
2280  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2281  * @rw_group:		Read/Write Group
2282  * @test_bgn:		Rank at which the test begins
2283  *
2284  * Stage 1: Calibrate the read valid prediction FIFO.
2285  *
2286  * This function implements UniPHY calibration Stage 1, as explained in
2287  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2288  *
2289  * - read valid prediction will consist of finding:
2290  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2291  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2292  *  - we also do a per-bit deskew on the DQ lines.
2293  */
2294 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2295 {
2296 	uint32_t p, d;
2297 	uint32_t dtaps_per_ptap;
2298 	uint32_t failed_substage;
2299 
2300 	int ret;
2301 
2302 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2303 
2304 	/* Update info for sims */
2305 	reg_file_set_group(rw_group);
2306 	reg_file_set_stage(CAL_STAGE_VFIFO);
2307 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2308 
2309 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2310 
2311 	/* USER Determine number of delay taps for each phase tap. */
2312 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2313 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2314 
2315 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2316 		/*
2317 		 * In RLDRAMX we may be messing the delay of pins in
2318 		 * the same write rw_group but outside of the current read
2319 		 * the rw_group, but that's ok because we haven't calibrated
2320 		 * output side yet.
2321 		 */
2322 		if (d > 0) {
2323 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2324 								rw_group, d);
2325 		}
2326 
2327 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2328 			/* 1) Guaranteed Write */
2329 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2330 			if (ret)
2331 				break;
2332 
2333 			/* 2) DQS Enable Calibration */
2334 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2335 									  test_bgn);
2336 			if (ret) {
2337 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2338 				continue;
2339 			}
2340 
2341 			/* 3) Centering DQ/DQS */
2342 			/*
2343 			 * If doing read after write calibration, do not update
2344 			 * FOM now. Do it then.
2345 			 */
2346 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2347 								test_bgn, 1, 0);
2348 			if (ret) {
2349 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2350 				continue;
2351 			}
2352 
2353 			/* All done. */
2354 			goto cal_done_ok;
2355 		}
2356 	}
2357 
2358 	/* Calibration Stage 1 failed. */
2359 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2360 	return 0;
2361 
2362 	/* Calibration Stage 1 completed OK. */
2363 cal_done_ok:
2364 	/*
2365 	 * Reset the delay chains back to zero if they have moved > 1
2366 	 * (check for > 1 because loop will increase d even when pass in
2367 	 * first case).
2368 	 */
2369 	if (d > 2)
2370 		scc_mgr_zero_group(rw_group, 1);
2371 
2372 	return 1;
2373 }
2374 
2375 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2376 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2377 					       uint32_t test_bgn)
2378 {
2379 	uint32_t rank_bgn, sr;
2380 	uint32_t grp_calibrated;
2381 	uint32_t write_group;
2382 
2383 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2384 
2385 	/* update info for sims */
2386 
2387 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2388 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2389 
2390 	write_group = read_group;
2391 
2392 	/* update info for sims */
2393 	reg_file_set_group(read_group);
2394 
2395 	grp_calibrated = 1;
2396 	/* Read per-bit deskew can be done on a per shadow register basis */
2397 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2398 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2399 		/* Determine if this set of ranks should be skipped entirely */
2400 		if (!param->skip_shadow_regs[sr]) {
2401 		/* This is the last calibration round, update FOM here */
2402 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2403 								write_group,
2404 								read_group,
2405 								test_bgn, 0,
2406 								1)) {
2407 				grp_calibrated = 0;
2408 			}
2409 		}
2410 	}
2411 
2412 
2413 	if (grp_calibrated == 0) {
2414 		set_failing_group_stage(write_group,
2415 					CAL_STAGE_VFIFO_AFTER_WRITES,
2416 					CAL_SUBSTAGE_VFIFO_CENTER);
2417 		return 0;
2418 	}
2419 
2420 	return 1;
2421 }
2422 
2423 /* Calibrate LFIFO to find smallest read latency */
2424 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2425 {
2426 	uint32_t found_one;
2427 	uint32_t bit_chk;
2428 
2429 	debug("%s:%d\n", __func__, __LINE__);
2430 
2431 	/* update info for sims */
2432 	reg_file_set_stage(CAL_STAGE_LFIFO);
2433 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2434 
2435 	/* Load up the patterns used by read calibration for all ranks */
2436 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2437 	found_one = 0;
2438 
2439 	do {
2440 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2441 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2442 			   __func__, __LINE__, gbl->curr_read_lat);
2443 
2444 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2445 							      NUM_READ_TESTS,
2446 							      PASS_ALL_BITS,
2447 							      &bit_chk, 1)) {
2448 			break;
2449 		}
2450 
2451 		found_one = 1;
2452 		/* reduce read latency and see if things are working */
2453 		/* correctly */
2454 		gbl->curr_read_lat--;
2455 	} while (gbl->curr_read_lat > 0);
2456 
2457 	/* reset the fifos to get pointers to known state */
2458 
2459 	writel(0, &phy_mgr_cmd->fifo_reset);
2460 
2461 	if (found_one) {
2462 		/* add a fudge factor to the read latency that was determined */
2463 		gbl->curr_read_lat += 2;
2464 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2465 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2466 			   read_lat=%u\n", __func__, __LINE__,
2467 			   gbl->curr_read_lat);
2468 		return 1;
2469 	} else {
2470 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2471 					CAL_SUBSTAGE_READ_LATENCY);
2472 
2473 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2474 			   read_lat=%u\n", __func__, __LINE__,
2475 			   gbl->curr_read_lat);
2476 		return 0;
2477 	}
2478 }
2479 
2480 /*
2481  * issue write test command.
2482  * two variants are provided. one that just tests a write pattern and
2483  * another that tests datamask functionality.
2484  */
2485 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2486 						  uint32_t test_dm)
2487 {
2488 	uint32_t mcc_instruction;
2489 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2490 		ENABLE_SUPER_QUICK_CALIBRATION);
2491 	uint32_t rw_wl_nop_cycles;
2492 	uint32_t addr;
2493 
2494 	/*
2495 	 * Set counter and jump addresses for the right
2496 	 * number of NOP cycles.
2497 	 * The number of supported NOP cycles can range from -1 to infinity
2498 	 * Three different cases are handled:
2499 	 *
2500 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2501 	 *    mechanism will be used to insert the right number of NOPs
2502 	 *
2503 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2504 	 *    issuing the write command will jump straight to the
2505 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2506 	 *    data (for RLD), skipping
2507 	 *    the NOP micro-instruction all together
2508 	 *
2509 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2510 	 *    turned on in the same micro-instruction that issues the write
2511 	 *    command. Then we need
2512 	 *    to directly jump to the micro-instruction that sends out the data
2513 	 *
2514 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2515 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2516 	 *       write-read operations.
2517 	 *       one counter left to issue this command in "multiple-group" mode
2518 	 */
2519 
2520 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2521 
2522 	if (rw_wl_nop_cycles == -1) {
2523 		/*
2524 		 * CNTR 2 - We want to execute the special write operation that
2525 		 * turns on DQS right away and then skip directly to the
2526 		 * instruction that sends out the data. We set the counter to a
2527 		 * large number so that the jump is always taken.
2528 		 */
2529 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2530 
2531 		/* CNTR 3 - Not used */
2532 		if (test_dm) {
2533 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2534 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2535 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2536 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2537 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2538 		} else {
2539 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2540 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2541 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2542 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2543 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2544 		}
2545 	} else if (rw_wl_nop_cycles == 0) {
2546 		/*
2547 		 * CNTR 2 - We want to skip the NOP operation and go straight
2548 		 * to the DQS enable instruction. We set the counter to a large
2549 		 * number so that the jump is always taken.
2550 		 */
2551 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2552 
2553 		/* CNTR 3 - Not used */
2554 		if (test_dm) {
2555 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2556 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2557 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2558 		} else {
2559 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2560 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2561 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2562 		}
2563 	} else {
2564 		/*
2565 		 * CNTR 2 - In this case we want to execute the next instruction
2566 		 * and NOT take the jump. So we set the counter to 0. The jump
2567 		 * address doesn't count.
2568 		 */
2569 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2570 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2571 
2572 		/*
2573 		 * CNTR 3 - Set the nop counter to the number of cycles we
2574 		 * need to loop for, minus 1.
2575 		 */
2576 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2577 		if (test_dm) {
2578 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2579 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2580 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2581 		} else {
2582 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2583 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2584 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2585 		}
2586 	}
2587 
2588 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2589 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2590 
2591 	if (quick_write_mode)
2592 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2593 	else
2594 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2595 
2596 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2597 
2598 	/*
2599 	 * CNTR 1 - This is used to ensure enough time elapses
2600 	 * for read data to come back.
2601 	 */
2602 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2603 
2604 	if (test_dm) {
2605 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2606 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2607 	} else {
2608 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2609 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2610 	}
2611 
2612 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2613 	writel(mcc_instruction, addr + (group << 2));
2614 }
2615 
2616 /* Test writes, can check for a single bit pass or multiple bit pass */
2617 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2618 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2619 	uint32_t *bit_chk, uint32_t all_ranks)
2620 {
2621 	uint32_t r;
2622 	uint32_t correct_mask_vg;
2623 	uint32_t tmp_bit_chk;
2624 	uint32_t vg;
2625 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2626 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2627 	uint32_t addr_rw_mgr;
2628 	uint32_t base_rw_mgr;
2629 
2630 	*bit_chk = param->write_correct_mask;
2631 	correct_mask_vg = param->write_correct_mask_vg;
2632 
2633 	for (r = rank_bgn; r < rank_end; r++) {
2634 		if (param->skip_ranks[r]) {
2635 			/* request to skip the rank */
2636 			continue;
2637 		}
2638 
2639 		/* set rank */
2640 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2641 
2642 		tmp_bit_chk = 0;
2643 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2644 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2645 			/* reset the fifos to get pointers to known state */
2646 			writel(0, &phy_mgr_cmd->fifo_reset);
2647 
2648 			tmp_bit_chk = tmp_bit_chk <<
2649 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2650 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2651 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2652 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2653 				use_dm);
2654 
2655 			base_rw_mgr = readl(addr_rw_mgr);
2656 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2657 			if (vg == 0)
2658 				break;
2659 		}
2660 		*bit_chk &= tmp_bit_chk;
2661 	}
2662 
2663 	if (all_correct) {
2664 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2665 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2666 			   %u => %lu", write_group, use_dm,
2667 			   *bit_chk, param->write_correct_mask,
2668 			   (long unsigned int)(*bit_chk ==
2669 			   param->write_correct_mask));
2670 		return *bit_chk == param->write_correct_mask;
2671 	} else {
2672 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2673 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2674 		       write_group, use_dm, *bit_chk);
2675 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2676 			(long unsigned int)(*bit_chk != 0));
2677 		return *bit_chk != 0x00;
2678 	}
2679 }
2680 
2681 /*
2682  * center all windows. do per-bit-deskew to possibly increase size of
2683  * certain windows.
2684  */
2685 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2686 	uint32_t write_group, uint32_t test_bgn)
2687 {
2688 	uint32_t i, p, min_index;
2689 	int32_t d;
2690 	/*
2691 	 * Store these as signed since there are comparisons with
2692 	 * signed numbers.
2693 	 */
2694 	uint32_t bit_chk;
2695 	uint32_t sticky_bit_chk;
2696 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2697 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2698 	int32_t mid;
2699 	int32_t mid_min, orig_mid_min;
2700 	int32_t new_dqs, start_dqs, shift_dq;
2701 	int32_t dq_margin, dqs_margin, dm_margin;
2702 	uint32_t stop;
2703 	uint32_t temp_dq_out1_delay;
2704 	uint32_t addr;
2705 
2706 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2707 
2708 	dm_margin = 0;
2709 
2710 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2711 	start_dqs = readl(addr +
2712 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2713 
2714 	/* per-bit deskew */
2715 
2716 	/*
2717 	 * set the left and right edge of each bit to an illegal value
2718 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2719 	 */
2720 	sticky_bit_chk = 0;
2721 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2722 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2723 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2724 	}
2725 
2726 	/* Search for the left edge of the window for each bit */
2727 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2728 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2729 
2730 		writel(0, &sdr_scc_mgr->update);
2731 
2732 		/*
2733 		 * Stop searching when the read test doesn't pass AND when
2734 		 * we've seen a passing read on every bit.
2735 		 */
2736 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2737 			0, PASS_ONE_BIT, &bit_chk, 0);
2738 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2739 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2740 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2741 			   == %u && %u [bit_chk= %u ]\n",
2742 			d, sticky_bit_chk, param->write_correct_mask,
2743 			stop, bit_chk);
2744 
2745 		if (stop == 1) {
2746 			break;
2747 		} else {
2748 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2749 				if (bit_chk & 1) {
2750 					/*
2751 					 * Remember a passing test as the
2752 					 * left_edge.
2753 					 */
2754 					left_edge[i] = d;
2755 				} else {
2756 					/*
2757 					 * If a left edge has not been seen
2758 					 * yet, then a future passing test will
2759 					 * mark this edge as the right edge.
2760 					 */
2761 					if (left_edge[i] ==
2762 						IO_IO_OUT1_DELAY_MAX + 1) {
2763 						right_edge[i] = -(d + 1);
2764 					}
2765 				}
2766 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2767 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2768 					   (int)(bit_chk & 1), i, left_edge[i]);
2769 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2770 				       right_edge[i]);
2771 				bit_chk = bit_chk >> 1;
2772 			}
2773 		}
2774 	}
2775 
2776 	/* Reset DQ delay chains to 0 */
2777 	scc_mgr_apply_group_dq_out1_delay(0);
2778 	sticky_bit_chk = 0;
2779 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2780 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2781 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2782 			   i, left_edge[i], i, right_edge[i]);
2783 
2784 		/*
2785 		 * Check for cases where we haven't found the left edge,
2786 		 * which makes our assignment of the the right edge invalid.
2787 		 * Reset it to the illegal value.
2788 		 */
2789 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2790 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2791 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2792 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2793 				   right_edge[%u]: %d\n", __func__, __LINE__,
2794 				   i, right_edge[i]);
2795 		}
2796 
2797 		/*
2798 		 * Reset sticky bit (except for bits where we have
2799 		 * seen the left edge).
2800 		 */
2801 		sticky_bit_chk = sticky_bit_chk << 1;
2802 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2803 			sticky_bit_chk = sticky_bit_chk | 1;
2804 
2805 		if (i == 0)
2806 			break;
2807 	}
2808 
2809 	/* Search for the right edge of the window for each bit */
2810 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2811 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2812 							d + start_dqs);
2813 
2814 		writel(0, &sdr_scc_mgr->update);
2815 
2816 		/*
2817 		 * Stop searching when the read test doesn't pass AND when
2818 		 * we've seen a passing read on every bit.
2819 		 */
2820 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2821 			0, PASS_ONE_BIT, &bit_chk, 0);
2822 
2823 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2824 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2825 
2826 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2827 			   %u && %u\n", d, sticky_bit_chk,
2828 			   param->write_correct_mask, stop);
2829 
2830 		if (stop == 1) {
2831 			if (d == 0) {
2832 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2833 					i++) {
2834 					/* d = 0 failed, but it passed when
2835 					testing the left edge, so it must be
2836 					marginal, set it to -1 */
2837 					if (right_edge[i] ==
2838 						IO_IO_OUT1_DELAY_MAX + 1 &&
2839 						left_edge[i] !=
2840 						IO_IO_OUT1_DELAY_MAX + 1) {
2841 						right_edge[i] = -1;
2842 					}
2843 				}
2844 			}
2845 			break;
2846 		} else {
2847 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2848 				if (bit_chk & 1) {
2849 					/*
2850 					 * Remember a passing test as
2851 					 * the right_edge.
2852 					 */
2853 					right_edge[i] = d;
2854 				} else {
2855 					if (d != 0) {
2856 						/*
2857 						 * If a right edge has not
2858 						 * been seen yet, then a future
2859 						 * passing test will mark this
2860 						 * edge as the left edge.
2861 						 */
2862 						if (right_edge[i] ==
2863 						    IO_IO_OUT1_DELAY_MAX + 1)
2864 							left_edge[i] = -(d + 1);
2865 					} else {
2866 						/*
2867 						 * d = 0 failed, but it passed
2868 						 * when testing the left edge,
2869 						 * so it must be marginal, set
2870 						 * it to -1.
2871 						 */
2872 						if (right_edge[i] ==
2873 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2874 						    left_edge[i] !=
2875 						    IO_IO_OUT1_DELAY_MAX + 1)
2876 							right_edge[i] = -1;
2877 						/*
2878 						 * If a right edge has not been
2879 						 * seen yet, then a future
2880 						 * passing test will mark this
2881 						 * edge as the left edge.
2882 						 */
2883 						else if (right_edge[i] ==
2884 							IO_IO_OUT1_DELAY_MAX +
2885 							1)
2886 							left_edge[i] = -(d + 1);
2887 					}
2888 				}
2889 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2890 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2891 					   (int)(bit_chk & 1), i, left_edge[i]);
2892 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2893 					   right_edge[i]);
2894 				bit_chk = bit_chk >> 1;
2895 			}
2896 		}
2897 	}
2898 
2899 	/* Check that all bits have a window */
2900 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2901 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2902 			   %d right_edge[%u]: %d", __func__, __LINE__,
2903 			   i, left_edge[i], i, right_edge[i]);
2904 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2905 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2906 			set_failing_group_stage(test_bgn + i,
2907 						CAL_STAGE_WRITES,
2908 						CAL_SUBSTAGE_WRITES_CENTER);
2909 			return 0;
2910 		}
2911 	}
2912 
2913 	/* Find middle of window for each DQ bit */
2914 	mid_min = left_edge[0] - right_edge[0];
2915 	min_index = 0;
2916 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2917 		mid = left_edge[i] - right_edge[i];
2918 		if (mid < mid_min) {
2919 			mid_min = mid;
2920 			min_index = i;
2921 		}
2922 	}
2923 
2924 	/*
2925 	 * -mid_min/2 represents the amount that we need to move DQS.
2926 	 * If mid_min is odd and positive we'll need to add one to
2927 	 * make sure the rounding in further calculations is correct
2928 	 * (always bias to the right), so just add 1 for all positive values.
2929 	 */
2930 	if (mid_min > 0)
2931 		mid_min++;
2932 	mid_min = mid_min / 2;
2933 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2934 		   __LINE__, mid_min);
2935 
2936 	/* Determine the amount we can change DQS (which is -mid_min) */
2937 	orig_mid_min = mid_min;
2938 	new_dqs = start_dqs;
2939 	mid_min = 0;
2940 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2941 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2942 	/* Initialize data for export structures */
2943 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2944 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2945 
2946 	/* add delay to bring centre of all DQ windows to the same "level" */
2947 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2948 		/* Use values before divide by 2 to reduce round off error */
2949 		shift_dq = (left_edge[i] - right_edge[i] -
2950 			(left_edge[min_index] - right_edge[min_index]))/2  +
2951 		(orig_mid_min - mid_min);
2952 
2953 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2954 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2955 
2956 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2957 		temp_dq_out1_delay = readl(addr + (i << 2));
2958 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2959 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2960 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2961 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2962 			shift_dq = -(int32_t)temp_dq_out1_delay;
2963 		}
2964 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2965 			   i, shift_dq);
2966 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2967 		scc_mgr_load_dq(i);
2968 
2969 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2970 			   left_edge[i] - shift_dq + (-mid_min),
2971 			   right_edge[i] + shift_dq - (-mid_min));
2972 		/* To determine values for export structures */
2973 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2974 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2975 
2976 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2977 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2978 	}
2979 
2980 	/* Move DQS */
2981 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2982 	writel(0, &sdr_scc_mgr->update);
2983 
2984 	/* Centre DM */
2985 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2986 
2987 	/*
2988 	 * set the left and right edge of each bit to an illegal value,
2989 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2990 	 */
2991 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2992 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2993 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2994 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2995 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2996 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2997 	int32_t win_best = 0;
2998 
2999 	/* Search for the/part of the window with DM shift */
3000 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3001 		scc_mgr_apply_group_dm_out1_delay(d);
3002 		writel(0, &sdr_scc_mgr->update);
3003 
3004 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3005 						    PASS_ALL_BITS, &bit_chk,
3006 						    0)) {
3007 			/* USE Set current end of the window */
3008 			end_curr = -d;
3009 			/*
3010 			 * If a starting edge of our window has not been seen
3011 			 * this is our current start of the DM window.
3012 			 */
3013 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3014 				bgn_curr = -d;
3015 
3016 			/*
3017 			 * If current window is bigger than best seen.
3018 			 * Set best seen to be current window.
3019 			 */
3020 			if ((end_curr-bgn_curr+1) > win_best) {
3021 				win_best = end_curr-bgn_curr+1;
3022 				bgn_best = bgn_curr;
3023 				end_best = end_curr;
3024 			}
3025 		} else {
3026 			/* We just saw a failing test. Reset temp edge */
3027 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3028 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3029 			}
3030 		}
3031 
3032 
3033 	/* Reset DM delay chains to 0 */
3034 	scc_mgr_apply_group_dm_out1_delay(0);
3035 
3036 	/*
3037 	 * Check to see if the current window nudges up aganist 0 delay.
3038 	 * If so we need to continue the search by shifting DQS otherwise DQS
3039 	 * search begins as a new search. */
3040 	if (end_curr != 0) {
3041 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3042 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3043 	}
3044 
3045 	/* Search for the/part of the window with DQS shifts */
3046 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3047 		/*
3048 		 * Note: This only shifts DQS, so are we limiting ourselve to
3049 		 * width of DQ unnecessarily.
3050 		 */
3051 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3052 							d + new_dqs);
3053 
3054 		writel(0, &sdr_scc_mgr->update);
3055 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3056 						    PASS_ALL_BITS, &bit_chk,
3057 						    0)) {
3058 			/* USE Set current end of the window */
3059 			end_curr = d;
3060 			/*
3061 			 * If a beginning edge of our window has not been seen
3062 			 * this is our current begin of the DM window.
3063 			 */
3064 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3065 				bgn_curr = d;
3066 
3067 			/*
3068 			 * If current window is bigger than best seen. Set best
3069 			 * seen to be current window.
3070 			 */
3071 			if ((end_curr-bgn_curr+1) > win_best) {
3072 				win_best = end_curr-bgn_curr+1;
3073 				bgn_best = bgn_curr;
3074 				end_best = end_curr;
3075 			}
3076 		} else {
3077 			/* We just saw a failing test. Reset temp edge */
3078 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3079 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3080 
3081 			/* Early exit optimization: if ther remaining delay
3082 			chain space is less than already seen largest window
3083 			we can exit */
3084 			if ((win_best-1) >
3085 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3086 					break;
3087 				}
3088 			}
3089 		}
3090 
3091 	/* assign left and right edge for cal and reporting; */
3092 	left_edge[0] = -1*bgn_best;
3093 	right_edge[0] = end_best;
3094 
3095 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3096 		   __LINE__, left_edge[0], right_edge[0]);
3097 
3098 	/* Move DQS (back to orig) */
3099 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3100 
3101 	/* Move DM */
3102 
3103 	/* Find middle of window for the DM bit */
3104 	mid = (left_edge[0] - right_edge[0]) / 2;
3105 
3106 	/* only move right, since we are not moving DQS/DQ */
3107 	if (mid < 0)
3108 		mid = 0;
3109 
3110 	/* dm_marign should fail if we never find a window */
3111 	if (win_best == 0)
3112 		dm_margin = -1;
3113 	else
3114 		dm_margin = left_edge[0] - mid;
3115 
3116 	scc_mgr_apply_group_dm_out1_delay(mid);
3117 	writel(0, &sdr_scc_mgr->update);
3118 
3119 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3120 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3121 		   right_edge[0], mid, dm_margin);
3122 	/* Export values */
3123 	gbl->fom_out += dq_margin + dqs_margin;
3124 
3125 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3126 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3127 		   dq_margin, dqs_margin, dm_margin);
3128 
3129 	/*
3130 	 * Do not remove this line as it makes sure all of our
3131 	 * decisions have been applied.
3132 	 */
3133 	writel(0, &sdr_scc_mgr->update);
3134 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3135 }
3136 
3137 /* calibrate the write operations */
3138 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3139 	uint32_t test_bgn)
3140 {
3141 	/* update info for sims */
3142 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3143 
3144 	reg_file_set_stage(CAL_STAGE_WRITES);
3145 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3146 
3147 	reg_file_set_group(g);
3148 
3149 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3150 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3151 					CAL_SUBSTAGE_WRITES_CENTER);
3152 		return 0;
3153 	}
3154 
3155 	return 1;
3156 }
3157 
3158 /**
3159  * mem_precharge_and_activate() - Precharge all banks and activate
3160  *
3161  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3162  */
3163 static void mem_precharge_and_activate(void)
3164 {
3165 	int r;
3166 
3167 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3168 		/* Test if the rank should be skipped. */
3169 		if (param->skip_ranks[r])
3170 			continue;
3171 
3172 		/* Set rank. */
3173 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3174 
3175 		/* Precharge all banks. */
3176 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3177 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3178 
3179 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3180 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3181 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3182 
3183 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3184 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3185 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3186 
3187 		/* Activate rows. */
3188 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3189 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3190 	}
3191 }
3192 
3193 /**
3194  * mem_init_latency() - Configure memory RLAT and WLAT settings
3195  *
3196  * Configure memory RLAT and WLAT parameters.
3197  */
3198 static void mem_init_latency(void)
3199 {
3200 	/*
3201 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3202 	 * so max latency in AFI clocks, used here, is correspondingly
3203 	 * smaller.
3204 	 */
3205 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3206 	u32 rlat, wlat;
3207 
3208 	debug("%s:%d\n", __func__, __LINE__);
3209 
3210 	/*
3211 	 * Read in write latency.
3212 	 * WL for Hard PHY does not include additive latency.
3213 	 */
3214 	wlat = readl(&data_mgr->t_wl_add);
3215 	wlat += readl(&data_mgr->mem_t_add);
3216 
3217 	gbl->rw_wl_nop_cycles = wlat - 1;
3218 
3219 	/* Read in readl latency. */
3220 	rlat = readl(&data_mgr->t_rl_add);
3221 
3222 	/* Set a pretty high read latency initially. */
3223 	gbl->curr_read_lat = rlat + 16;
3224 	if (gbl->curr_read_lat > max_latency)
3225 		gbl->curr_read_lat = max_latency;
3226 
3227 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3228 
3229 	/* Advertise write latency. */
3230 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3231 }
3232 
3233 /**
3234  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3235  *
3236  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3237  */
3238 static void mem_skip_calibrate(void)
3239 {
3240 	uint32_t vfifo_offset;
3241 	uint32_t i, j, r;
3242 
3243 	debug("%s:%d\n", __func__, __LINE__);
3244 	/* Need to update every shadow register set used by the interface */
3245 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3246 	     r += NUM_RANKS_PER_SHADOW_REG) {
3247 		/*
3248 		 * Set output phase alignment settings appropriate for
3249 		 * skip calibration.
3250 		 */
3251 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3252 			scc_mgr_set_dqs_en_phase(i, 0);
3253 #if IO_DLL_CHAIN_LENGTH == 6
3254 			scc_mgr_set_dqdqs_output_phase(i, 6);
3255 #else
3256 			scc_mgr_set_dqdqs_output_phase(i, 7);
3257 #endif
3258 			/*
3259 			 * Case:33398
3260 			 *
3261 			 * Write data arrives to the I/O two cycles before write
3262 			 * latency is reached (720 deg).
3263 			 *   -> due to bit-slip in a/c bus
3264 			 *   -> to allow board skew where dqs is longer than ck
3265 			 *      -> how often can this happen!?
3266 			 *      -> can claim back some ptaps for high freq
3267 			 *       support if we can relax this, but i digress...
3268 			 *
3269 			 * The write_clk leads mem_ck by 90 deg
3270 			 * The minimum ptap of the OPA is 180 deg
3271 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3272 			 * The write_clk is always delayed by 2 ptaps
3273 			 *
3274 			 * Hence, to make DQS aligned to CK, we need to delay
3275 			 * DQS by:
3276 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3277 			 *
3278 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3279 			 * gives us the number of ptaps, which simplies to:
3280 			 *
3281 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3282 			 */
3283 			scc_mgr_set_dqdqs_output_phase(i,
3284 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3285 		}
3286 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3287 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3288 
3289 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3290 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3291 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3292 		}
3293 		writel(0xff, &sdr_scc_mgr->dq_ena);
3294 		writel(0xff, &sdr_scc_mgr->dm_ena);
3295 		writel(0, &sdr_scc_mgr->update);
3296 	}
3297 
3298 	/* Compensate for simulation model behaviour */
3299 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3300 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3301 		scc_mgr_load_dqs(i);
3302 	}
3303 	writel(0, &sdr_scc_mgr->update);
3304 
3305 	/*
3306 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3307 	 * in sequencer.
3308 	 */
3309 	vfifo_offset = CALIB_VFIFO_OFFSET;
3310 	for (j = 0; j < vfifo_offset; j++)
3311 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3312 	writel(0, &phy_mgr_cmd->fifo_reset);
3313 
3314 	/*
3315 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3316 	 * setting from generation-time constant.
3317 	 */
3318 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3319 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3320 }
3321 
3322 /**
3323  * mem_calibrate() - Memory calibration entry point.
3324  *
3325  * Perform memory calibration.
3326  */
3327 static uint32_t mem_calibrate(void)
3328 {
3329 	uint32_t i;
3330 	uint32_t rank_bgn, sr;
3331 	uint32_t write_group, write_test_bgn;
3332 	uint32_t read_group, read_test_bgn;
3333 	uint32_t run_groups, current_run;
3334 	uint32_t failing_groups = 0;
3335 	uint32_t group_failed = 0;
3336 
3337 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3338 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3339 
3340 	debug("%s:%d\n", __func__, __LINE__);
3341 
3342 	/* Initialize the data settings */
3343 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3344 	gbl->error_stage = CAL_STAGE_NIL;
3345 	gbl->error_group = 0xff;
3346 	gbl->fom_in = 0;
3347 	gbl->fom_out = 0;
3348 
3349 	/* Initialize WLAT and RLAT. */
3350 	mem_init_latency();
3351 
3352 	/* Initialize bit slips. */
3353 	mem_precharge_and_activate();
3354 
3355 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3356 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3357 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3358 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3359 		if (i == 0)
3360 			scc_mgr_set_hhp_extras();
3361 
3362 		scc_set_bypass_mode(i);
3363 	}
3364 
3365 	/* Calibration is skipped. */
3366 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3367 		/*
3368 		 * Set VFIFO and LFIFO to instant-on settings in skip
3369 		 * calibration mode.
3370 		 */
3371 		mem_skip_calibrate();
3372 
3373 		/*
3374 		 * Do not remove this line as it makes sure all of our
3375 		 * decisions have been applied.
3376 		 */
3377 		writel(0, &sdr_scc_mgr->update);
3378 		return 1;
3379 	}
3380 
3381 	/* Calibration is not skipped. */
3382 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3383 		/*
3384 		 * Zero all delay chain/phase settings for all
3385 		 * groups and all shadow register sets.
3386 		 */
3387 		scc_mgr_zero_all();
3388 
3389 		run_groups = ~param->skip_groups;
3390 
3391 		for (write_group = 0, write_test_bgn = 0; write_group
3392 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3393 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3394 
3395 			/* Initialize the group failure */
3396 			group_failed = 0;
3397 
3398 			current_run = run_groups & ((1 <<
3399 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3400 			run_groups = run_groups >>
3401 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3402 
3403 			if (current_run == 0)
3404 				continue;
3405 
3406 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3407 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3408 			scc_mgr_zero_group(write_group, 0);
3409 
3410 			for (read_group = write_group * rwdqs_ratio,
3411 			     read_test_bgn = 0;
3412 			     read_group < (write_group + 1) * rwdqs_ratio;
3413 			     read_group++,
3414 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3415 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3416 					continue;
3417 
3418 				/* Calibrate the VFIFO */
3419 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3420 							       read_test_bgn))
3421 					continue;
3422 
3423 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3424 					return 0;
3425 
3426 				/* The group failed, we're done. */
3427 				goto grp_failed;
3428 			}
3429 
3430 			/* Calibrate the output side */
3431 			for (rank_bgn = 0, sr = 0;
3432 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3433 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3434 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3435 					continue;
3436 
3437 				/* Not needed in quick mode! */
3438 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3439 					continue;
3440 
3441 				/*
3442 				 * Determine if this set of ranks
3443 				 * should be skipped entirely.
3444 				 */
3445 				if (param->skip_shadow_regs[sr])
3446 					continue;
3447 
3448 				/* Calibrate WRITEs */
3449 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3450 						write_group, write_test_bgn))
3451 					continue;
3452 
3453 				group_failed = 1;
3454 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3455 					return 0;
3456 			}
3457 
3458 			/* Some group failed, we're done. */
3459 			if (group_failed)
3460 				goto grp_failed;
3461 
3462 			for (read_group = write_group * rwdqs_ratio,
3463 			     read_test_bgn = 0;
3464 			     read_group < (write_group + 1) * rwdqs_ratio;
3465 			     read_group++,
3466 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3467 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3468 					continue;
3469 
3470 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3471 								read_test_bgn))
3472 					continue;
3473 
3474 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3475 					return 0;
3476 
3477 				/* The group failed, we're done. */
3478 				goto grp_failed;
3479 			}
3480 
3481 			/* No group failed, continue as usual. */
3482 			continue;
3483 
3484 grp_failed:		/* A group failed, increment the counter. */
3485 			failing_groups++;
3486 		}
3487 
3488 		/*
3489 		 * USER If there are any failing groups then report
3490 		 * the failure.
3491 		 */
3492 		if (failing_groups != 0)
3493 			return 0;
3494 
3495 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3496 			continue;
3497 
3498 		/*
3499 		 * If we're skipping groups as part of debug,
3500 		 * don't calibrate LFIFO.
3501 		 */
3502 		if (param->skip_groups != 0)
3503 			continue;
3504 
3505 		/* Calibrate the LFIFO */
3506 		if (!rw_mgr_mem_calibrate_lfifo())
3507 			return 0;
3508 	}
3509 
3510 	/*
3511 	 * Do not remove this line as it makes sure all of our decisions
3512 	 * have been applied.
3513 	 */
3514 	writel(0, &sdr_scc_mgr->update);
3515 	return 1;
3516 }
3517 
3518 /**
3519  * run_mem_calibrate() - Perform memory calibration
3520  *
3521  * This function triggers the entire memory calibration procedure.
3522  */
3523 static int run_mem_calibrate(void)
3524 {
3525 	int pass;
3526 
3527 	debug("%s:%d\n", __func__, __LINE__);
3528 
3529 	/* Reset pass/fail status shown on afi_cal_success/fail */
3530 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3531 
3532 	/* Stop tracking manager. */
3533 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3534 
3535 	phy_mgr_initialize();
3536 	rw_mgr_mem_initialize();
3537 
3538 	/* Perform the actual memory calibration. */
3539 	pass = mem_calibrate();
3540 
3541 	mem_precharge_and_activate();
3542 	writel(0, &phy_mgr_cmd->fifo_reset);
3543 
3544 	/* Handoff. */
3545 	rw_mgr_mem_handoff();
3546 	/*
3547 	 * In Hard PHY this is a 2-bit control:
3548 	 * 0: AFI Mux Select
3549 	 * 1: DDIO Mux Select
3550 	 */
3551 	writel(0x2, &phy_mgr_cfg->mux_sel);
3552 
3553 	/* Start tracking manager. */
3554 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3555 
3556 	return pass;
3557 }
3558 
3559 /**
3560  * debug_mem_calibrate() - Report result of memory calibration
3561  * @pass:	Value indicating whether calibration passed or failed
3562  *
3563  * This function reports the results of the memory calibration
3564  * and writes debug information into the register file.
3565  */
3566 static void debug_mem_calibrate(int pass)
3567 {
3568 	uint32_t debug_info;
3569 
3570 	if (pass) {
3571 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3572 
3573 		gbl->fom_in /= 2;
3574 		gbl->fom_out /= 2;
3575 
3576 		if (gbl->fom_in > 0xff)
3577 			gbl->fom_in = 0xff;
3578 
3579 		if (gbl->fom_out > 0xff)
3580 			gbl->fom_out = 0xff;
3581 
3582 		/* Update the FOM in the register file */
3583 		debug_info = gbl->fom_in;
3584 		debug_info |= gbl->fom_out << 8;
3585 		writel(debug_info, &sdr_reg_file->fom);
3586 
3587 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3588 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3589 	} else {
3590 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3591 
3592 		debug_info = gbl->error_stage;
3593 		debug_info |= gbl->error_substage << 8;
3594 		debug_info |= gbl->error_group << 16;
3595 
3596 		writel(debug_info, &sdr_reg_file->failing_stage);
3597 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3598 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3599 
3600 		/* Update the failing group/stage in the register file */
3601 		debug_info = gbl->error_stage;
3602 		debug_info |= gbl->error_substage << 8;
3603 		debug_info |= gbl->error_group << 16;
3604 		writel(debug_info, &sdr_reg_file->failing_stage);
3605 	}
3606 
3607 	printf("%s: Calibration complete\n", __FILE__);
3608 }
3609 
3610 /**
3611  * hc_initialize_rom_data() - Initialize ROM data
3612  *
3613  * Initialize ROM data.
3614  */
3615 static void hc_initialize_rom_data(void)
3616 {
3617 	u32 i, addr;
3618 
3619 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3620 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3621 		writel(inst_rom_init[i], addr + (i << 2));
3622 
3623 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3624 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3625 		writel(ac_rom_init[i], addr + (i << 2));
3626 }
3627 
3628 /**
3629  * initialize_reg_file() - Initialize SDR register file
3630  *
3631  * Initialize SDR register file.
3632  */
3633 static void initialize_reg_file(void)
3634 {
3635 	/* Initialize the register file with the correct data */
3636 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3637 	writel(0, &sdr_reg_file->debug_data_addr);
3638 	writel(0, &sdr_reg_file->cur_stage);
3639 	writel(0, &sdr_reg_file->fom);
3640 	writel(0, &sdr_reg_file->failing_stage);
3641 	writel(0, &sdr_reg_file->debug1);
3642 	writel(0, &sdr_reg_file->debug2);
3643 }
3644 
3645 /**
3646  * initialize_hps_phy() - Initialize HPS PHY
3647  *
3648  * Initialize HPS PHY.
3649  */
3650 static void initialize_hps_phy(void)
3651 {
3652 	uint32_t reg;
3653 	/*
3654 	 * Tracking also gets configured here because it's in the
3655 	 * same register.
3656 	 */
3657 	uint32_t trk_sample_count = 7500;
3658 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3659 	/*
3660 	 * Format is number of outer loops in the 16 MSB, sample
3661 	 * count in 16 LSB.
3662 	 */
3663 
3664 	reg = 0;
3665 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3666 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3667 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3668 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3669 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3671 	/*
3672 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3673 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3674 	 */
3675 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3676 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3677 		trk_sample_count);
3678 	writel(reg, &sdr_ctrl->phy_ctrl0);
3679 
3680 	reg = 0;
3681 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3682 		trk_sample_count >>
3683 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3684 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3685 		trk_long_idle_sample_count);
3686 	writel(reg, &sdr_ctrl->phy_ctrl1);
3687 
3688 	reg = 0;
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3690 		trk_long_idle_sample_count >>
3691 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3692 	writel(reg, &sdr_ctrl->phy_ctrl2);
3693 }
3694 
3695 /**
3696  * initialize_tracking() - Initialize tracking
3697  *
3698  * Initialize the register file with usable initial data.
3699  */
3700 static void initialize_tracking(void)
3701 {
3702 	/*
3703 	 * Initialize the register file with the correct data.
3704 	 * Compute usable version of value in case we skip full
3705 	 * computation later.
3706 	 */
3707 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3708 	       &sdr_reg_file->dtaps_per_ptap);
3709 
3710 	/* trk_sample_count */
3711 	writel(7500, &sdr_reg_file->trk_sample_count);
3712 
3713 	/* longidle outer loop [15:0] */
3714 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3715 
3716 	/*
3717 	 * longidle sample count [31:24]
3718 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3719 	 * trcd, worst case [15:8]
3720 	 * vfifo wait [7:0]
3721 	 */
3722 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3723 	       &sdr_reg_file->delays);
3724 
3725 	/* mux delay */
3726 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3727 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3728 	       &sdr_reg_file->trk_rw_mgr_addr);
3729 
3730 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3731 	       &sdr_reg_file->trk_read_dqs_width);
3732 
3733 	/* trefi [7:0] */
3734 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3735 	       &sdr_reg_file->trk_rfsh);
3736 }
3737 
3738 int sdram_calibration_full(void)
3739 {
3740 	struct param_type my_param;
3741 	struct gbl_type my_gbl;
3742 	uint32_t pass;
3743 
3744 	memset(&my_param, 0, sizeof(my_param));
3745 	memset(&my_gbl, 0, sizeof(my_gbl));
3746 
3747 	param = &my_param;
3748 	gbl = &my_gbl;
3749 
3750 	/* Set the calibration enabled by default */
3751 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3752 	/*
3753 	 * Only sweep all groups (regardless of fail state) by default
3754 	 * Set enabled read test by default.
3755 	 */
3756 #if DISABLE_GUARANTEED_READ
3757 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3758 #endif
3759 	/* Initialize the register file */
3760 	initialize_reg_file();
3761 
3762 	/* Initialize any PHY CSR */
3763 	initialize_hps_phy();
3764 
3765 	scc_mgr_initialize();
3766 
3767 	initialize_tracking();
3768 
3769 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3770 
3771 	debug("%s:%d\n", __func__, __LINE__);
3772 	debug_cond(DLEVEL == 1,
3773 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3774 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3775 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3776 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3777 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3778 	debug_cond(DLEVEL == 1,
3779 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3780 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3781 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3782 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3783 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3784 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3785 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3786 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3787 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3788 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3789 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3790 		   IO_IO_OUT2_DELAY_MAX);
3791 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3792 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3793 
3794 	hc_initialize_rom_data();
3795 
3796 	/* update info for sims */
3797 	reg_file_set_stage(CAL_STAGE_NIL);
3798 	reg_file_set_group(0);
3799 
3800 	/*
3801 	 * Load global needed for those actions that require
3802 	 * some dynamic calibration support.
3803 	 */
3804 	dyn_calib_steps = STATIC_CALIB_STEPS;
3805 	/*
3806 	 * Load global to allow dynamic selection of delay loop settings
3807 	 * based on calibration mode.
3808 	 */
3809 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3810 		skip_delay_mask = 0xff;
3811 	else
3812 		skip_delay_mask = 0x0;
3813 
3814 	pass = run_mem_calibrate();
3815 	debug_mem_calibrate(pass);
3816 	return pass;
3817 }
3818