1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 /** 1290 * rw_mgr_incr_vfifo() - Increase VFIFO value 1291 * @grp: Read/Write group 1292 * 1293 * Increase VFIFO value. 1294 */ 1295 static void rw_mgr_incr_vfifo(const u32 grp) 1296 { 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1298 } 1299 1300 /** 1301 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1302 * @grp: Read/Write group 1303 * 1304 * Decrease VFIFO value. 1305 */ 1306 static void rw_mgr_decr_vfifo(const u32 grp) 1307 { 1308 u32 i; 1309 1310 for (i = 0; i < VFIFO_SIZE - 1; i++) 1311 rw_mgr_incr_vfifo(grp); 1312 } 1313 1314 /** 1315 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1316 * @grp: Read/Write group 1317 * 1318 * Push VFIFO until a failing read happens. 1319 */ 1320 static int find_vfifo_failing_read(const u32 grp) 1321 { 1322 u32 v, ret, bit_chk, fail_cnt = 0; 1323 1324 for (v = 0; v < VFIFO_SIZE; v++) { 1325 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1326 __func__, __LINE__, v); 1327 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1328 PASS_ONE_BIT, &bit_chk, 0); 1329 if (!ret) { 1330 fail_cnt++; 1331 1332 if (fail_cnt == 2) 1333 return v; 1334 } 1335 1336 /* Fiddle with FIFO. */ 1337 rw_mgr_incr_vfifo(grp); 1338 } 1339 1340 /* No failing read found! Something must have gone wrong. */ 1341 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1342 return 0; 1343 } 1344 1345 /** 1346 * sdr_find_phase_delay() - Find DQS enable phase or delay 1347 * @working: If 1, look for working phase/delay, if 0, look for non-working 1348 * @delay: If 1, look for delay, if 0, look for phase 1349 * @grp: Read/Write group 1350 * @work: Working window position 1351 * @work_inc: Working window increment 1352 * @pd: DQS Phase/Delay Iterator 1353 * 1354 * Find working or non-working DQS enable phase setting. 1355 */ 1356 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1357 u32 *work, const u32 work_inc, u32 *pd) 1358 { 1359 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1360 u32 ret, bit_chk; 1361 1362 for (; *pd <= max; (*pd)++) { 1363 if (delay) 1364 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1365 else 1366 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1367 1368 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1369 PASS_ONE_BIT, &bit_chk, 0); 1370 if (!working) 1371 ret = !ret; 1372 1373 if (ret) 1374 return 0; 1375 1376 if (work) 1377 *work += work_inc; 1378 } 1379 1380 return -EINVAL; 1381 } 1382 /** 1383 * sdr_find_phase() - Find DQS enable phase 1384 * @working: If 1, look for working phase, if 0, look for non-working phase 1385 * @grp: Read/Write group 1386 * @work: Working window position 1387 * @i: Iterator 1388 * @p: DQS Phase Iterator 1389 * 1390 * Find working or non-working DQS enable phase setting. 1391 */ 1392 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1393 u32 *i, u32 *p) 1394 { 1395 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1396 int ret; 1397 1398 for (; *i < end; (*i)++) { 1399 if (working) 1400 *p = 0; 1401 1402 ret = sdr_find_phase_delay(working, 0, grp, work, 1403 IO_DELAY_PER_OPA_TAP, p); 1404 if (!ret) 1405 return 0; 1406 1407 if (*p > IO_DQS_EN_PHASE_MAX) { 1408 /* Fiddle with FIFO. */ 1409 rw_mgr_incr_vfifo(grp); 1410 if (!working) 1411 *p = 0; 1412 } 1413 } 1414 1415 return -EINVAL; 1416 } 1417 1418 /** 1419 * sdr_working_phase() - Find working DQS enable phase 1420 * @grp: Read/Write group 1421 * @work_bgn: Working window start position 1422 * @d: dtaps output value 1423 * @p: DQS Phase Iterator 1424 * @i: Iterator 1425 * 1426 * Find working DQS enable phase setting. 1427 */ 1428 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1429 u32 *p, u32 *i) 1430 { 1431 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1432 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1433 int ret; 1434 1435 *work_bgn = 0; 1436 1437 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1438 *i = 0; 1439 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1440 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1441 if (!ret) 1442 return 0; 1443 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1444 } 1445 1446 /* Cannot find working solution */ 1447 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1448 __func__, __LINE__); 1449 return -EINVAL; 1450 } 1451 1452 /** 1453 * sdr_backup_phase() - Find DQS enable backup phase 1454 * @grp: Read/Write group 1455 * @work_bgn: Working window start position 1456 * @p: DQS Phase Iterator 1457 * 1458 * Find DQS enable backup phase setting. 1459 */ 1460 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1461 { 1462 u32 tmp_delay, bit_chk, d; 1463 int ret; 1464 1465 /* Special case code for backing up a phase */ 1466 if (*p == 0) { 1467 *p = IO_DQS_EN_PHASE_MAX; 1468 rw_mgr_decr_vfifo(grp); 1469 } else { 1470 (*p)--; 1471 } 1472 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1473 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1474 1475 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1476 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1477 1478 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1479 PASS_ONE_BIT, &bit_chk, 0); 1480 if (ret) { 1481 *work_bgn = tmp_delay; 1482 break; 1483 } 1484 1485 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1486 } 1487 1488 /* Restore VFIFO to old state before we decremented it (if needed). */ 1489 (*p)++; 1490 if (*p > IO_DQS_EN_PHASE_MAX) { 1491 *p = 0; 1492 rw_mgr_incr_vfifo(grp); 1493 } 1494 1495 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1496 } 1497 1498 /** 1499 * sdr_nonworking_phase() - Find non-working DQS enable phase 1500 * @grp: Read/Write group 1501 * @work_end: Working window end position 1502 * @p: DQS Phase Iterator 1503 * @i: Iterator 1504 * 1505 * Find non-working DQS enable phase setting. 1506 */ 1507 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1508 { 1509 int ret; 1510 1511 (*p)++; 1512 *work_end += IO_DELAY_PER_OPA_TAP; 1513 if (*p > IO_DQS_EN_PHASE_MAX) { 1514 /* Fiddle with FIFO. */ 1515 *p = 0; 1516 rw_mgr_incr_vfifo(grp); 1517 } 1518 1519 ret = sdr_find_phase(0, grp, work_end, i, p); 1520 if (ret) { 1521 /* Cannot see edge of failing read. */ 1522 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1523 __func__, __LINE__); 1524 } 1525 1526 return ret; 1527 } 1528 1529 /** 1530 * sdr_find_window_center() - Find center of the working DQS window. 1531 * @grp: Read/Write group 1532 * @work_bgn: First working settings 1533 * @work_end: Last working settings 1534 * 1535 * Find center of the working DQS enable window. 1536 */ 1537 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1538 const u32 work_end) 1539 { 1540 u32 bit_chk, work_mid; 1541 int tmp_delay = 0; 1542 int i, p, d; 1543 1544 work_mid = (work_bgn + work_end) / 2; 1545 1546 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1547 work_bgn, work_end, work_mid); 1548 /* Get the middle delay to be less than a VFIFO delay */ 1549 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1550 1551 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1552 work_mid %= tmp_delay; 1553 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1554 1555 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1556 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1557 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1558 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1559 1560 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1561 1562 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1563 if (d > IO_DQS_EN_DELAY_MAX) 1564 d = IO_DQS_EN_DELAY_MAX; 1565 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1566 1567 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1568 1569 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1570 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1571 1572 /* 1573 * push vfifo until we can successfully calibrate. We can do this 1574 * because the largest possible margin in 1 VFIFO cycle. 1575 */ 1576 for (i = 0; i < VFIFO_SIZE; i++) { 1577 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1578 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1579 PASS_ONE_BIT, 1580 &bit_chk, 0)) { 1581 debug_cond(DLEVEL == 2, 1582 "%s:%d center: found: ptap=%u dtap=%u\n", 1583 __func__, __LINE__, p, d); 1584 return 0; 1585 } 1586 1587 /* Fiddle with FIFO. */ 1588 rw_mgr_incr_vfifo(grp); 1589 } 1590 1591 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1592 __func__, __LINE__); 1593 return -EINVAL; 1594 } 1595 1596 static u32 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1597 { 1598 u32 d, p, i; 1599 u32 dtaps_per_ptap; 1600 u32 work_bgn, work_end; 1601 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1602 int ret; 1603 1604 debug("%s:%d %u\n", __func__, __LINE__, grp); 1605 1606 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1607 1608 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1609 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1610 1611 /* Step 0: Determine number of delay taps for each phase tap. */ 1612 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1613 1614 /* Step 1: First push vfifo until we get a failing read. */ 1615 find_vfifo_failing_read(grp); 1616 1617 /* Step 2: Find first working phase, increment in ptaps. */ 1618 work_bgn = 0; 1619 if (sdr_working_phase(grp, &work_bgn, &d, &p, &i)) 1620 return 0; 1621 1622 work_end = work_bgn; 1623 1624 /* 1625 * If d is 0 then the working window covers a phase tap and we can 1626 * follow the old procedure. Otherwise, we've found the beginning 1627 * and we need to increment the dtaps until we find the end. 1628 */ 1629 if (d == 0) { 1630 /* 1631 * Step 3a: If we have room, back off by one and 1632 * increment in dtaps. 1633 */ 1634 sdr_backup_phase(grp, &work_bgn, &p); 1635 1636 /* 1637 * Step 4a: go forward from working phase to non working 1638 * phase, increment in ptaps. 1639 */ 1640 if (sdr_nonworking_phase(grp, &work_end, &p, &i)) 1641 return 0; 1642 1643 /* Step 5a: Back off one from last, increment in dtaps. */ 1644 1645 /* Special case code for backing up a phase */ 1646 if (p == 0) { 1647 p = IO_DQS_EN_PHASE_MAX; 1648 rw_mgr_decr_vfifo(grp); 1649 } else { 1650 p = p - 1; 1651 } 1652 1653 work_end -= IO_DELAY_PER_OPA_TAP; 1654 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1655 1656 d = 0; 1657 1658 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1659 __func__, __LINE__, p); 1660 } 1661 1662 /* The dtap increment to find the failing edge is done here. */ 1663 sdr_find_phase_delay(0, 1, grp, &work_end, 1664 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1665 1666 /* Go back to working dtap */ 1667 if (d != 0) 1668 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1669 1670 debug_cond(DLEVEL == 2, 1671 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1672 __func__, __LINE__, p, d - 1, work_end); 1673 1674 if (work_end < work_bgn) { 1675 /* nil range */ 1676 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1677 __func__, __LINE__); 1678 return 0; 1679 } 1680 1681 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1682 __func__, __LINE__, work_bgn, work_end); 1683 1684 /* 1685 * We need to calculate the number of dtaps that equal a ptap. 1686 * To do that we'll back up a ptap and re-find the edge of the 1687 * window using dtaps 1688 */ 1689 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1690 __func__, __LINE__); 1691 1692 /* Special case code for backing up a phase */ 1693 if (p == 0) { 1694 p = IO_DQS_EN_PHASE_MAX; 1695 rw_mgr_decr_vfifo(grp); 1696 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1697 __func__, __LINE__, p); 1698 } else { 1699 p = p - 1; 1700 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1701 __func__, __LINE__, p); 1702 } 1703 1704 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1705 1706 /* 1707 * Increase dtap until we first see a passing read (in case the 1708 * window is smaller than a ptap), and then a failing read to 1709 * mark the edge of the window again. 1710 */ 1711 1712 /* Find a passing read. */ 1713 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1714 __func__, __LINE__); 1715 1716 initial_failing_dtap = d; 1717 1718 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1719 if (found_passing_read) { 1720 /* Find a failing read. */ 1721 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1722 __func__, __LINE__); 1723 d++; 1724 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1725 &d); 1726 } else { 1727 debug_cond(DLEVEL == 1, 1728 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1729 __func__, __LINE__); 1730 } 1731 1732 /* 1733 * The dynamically calculated dtaps_per_ptap is only valid if we 1734 * found a passing/failing read. If we didn't, it means d hit the max 1735 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1736 * statically calculated value. 1737 */ 1738 if (found_passing_read && found_failing_read) 1739 dtaps_per_ptap = d - initial_failing_dtap; 1740 1741 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1742 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1743 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1744 1745 /* Step 6: Find the centre of the window. */ 1746 if (sdr_find_window_centre(grp, work_bgn, work_end)) 1747 return 0; 1748 1749 return 1; 1750 } 1751 1752 /* per-bit deskew DQ and center */ 1753 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1754 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1755 uint32_t use_read_test, uint32_t update_fom) 1756 { 1757 uint32_t i, p, d, min_index; 1758 /* 1759 * Store these as signed since there are comparisons with 1760 * signed numbers. 1761 */ 1762 uint32_t bit_chk; 1763 uint32_t sticky_bit_chk; 1764 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1765 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1766 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1767 int32_t mid; 1768 int32_t orig_mid_min, mid_min; 1769 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1770 final_dqs_en; 1771 int32_t dq_margin, dqs_margin; 1772 uint32_t stop; 1773 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1774 uint32_t addr; 1775 1776 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1777 1778 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1779 start_dqs = readl(addr + (read_group << 2)); 1780 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1781 start_dqs_en = readl(addr + ((read_group << 2) 1782 - IO_DQS_EN_DELAY_OFFSET)); 1783 1784 /* set the left and right edge of each bit to an illegal value */ 1785 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1786 sticky_bit_chk = 0; 1787 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1788 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1789 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1790 } 1791 1792 /* Search for the left edge of the window for each bit */ 1793 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1794 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1795 1796 writel(0, &sdr_scc_mgr->update); 1797 1798 /* 1799 * Stop searching when the read test doesn't pass AND when 1800 * we've seen a passing read on every bit. 1801 */ 1802 if (use_read_test) { 1803 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1804 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1805 &bit_chk, 0, 0); 1806 } else { 1807 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1808 0, PASS_ONE_BIT, 1809 &bit_chk, 0); 1810 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1811 (read_group - (write_group * 1812 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1813 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1814 stop = (bit_chk == 0); 1815 } 1816 sticky_bit_chk = sticky_bit_chk | bit_chk; 1817 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1818 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1819 && %u", __func__, __LINE__, d, 1820 sticky_bit_chk, 1821 param->read_correct_mask, stop); 1822 1823 if (stop == 1) { 1824 break; 1825 } else { 1826 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1827 if (bit_chk & 1) { 1828 /* Remember a passing test as the 1829 left_edge */ 1830 left_edge[i] = d; 1831 } else { 1832 /* If a left edge has not been seen yet, 1833 then a future passing test will mark 1834 this edge as the right edge */ 1835 if (left_edge[i] == 1836 IO_IO_IN_DELAY_MAX + 1) { 1837 right_edge[i] = -(d + 1); 1838 } 1839 } 1840 bit_chk = bit_chk >> 1; 1841 } 1842 } 1843 } 1844 1845 /* Reset DQ delay chains to 0 */ 1846 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1847 sticky_bit_chk = 0; 1848 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1849 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1850 %d right_edge[%u]: %d\n", __func__, __LINE__, 1851 i, left_edge[i], i, right_edge[i]); 1852 1853 /* 1854 * Check for cases where we haven't found the left edge, 1855 * which makes our assignment of the the right edge invalid. 1856 * Reset it to the illegal value. 1857 */ 1858 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1859 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1860 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1861 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1862 right_edge[%u]: %d\n", __func__, __LINE__, 1863 i, right_edge[i]); 1864 } 1865 1866 /* 1867 * Reset sticky bit (except for bits where we have seen 1868 * both the left and right edge). 1869 */ 1870 sticky_bit_chk = sticky_bit_chk << 1; 1871 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1872 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1873 sticky_bit_chk = sticky_bit_chk | 1; 1874 } 1875 1876 if (i == 0) 1877 break; 1878 } 1879 1880 /* Search for the right edge of the window for each bit */ 1881 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1882 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1883 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1884 uint32_t delay = d + start_dqs_en; 1885 if (delay > IO_DQS_EN_DELAY_MAX) 1886 delay = IO_DQS_EN_DELAY_MAX; 1887 scc_mgr_set_dqs_en_delay(read_group, delay); 1888 } 1889 scc_mgr_load_dqs(read_group); 1890 1891 writel(0, &sdr_scc_mgr->update); 1892 1893 /* 1894 * Stop searching when the read test doesn't pass AND when 1895 * we've seen a passing read on every bit. 1896 */ 1897 if (use_read_test) { 1898 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1899 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1900 &bit_chk, 0, 0); 1901 } else { 1902 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1903 0, PASS_ONE_BIT, 1904 &bit_chk, 0); 1905 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1906 (read_group - (write_group * 1907 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1908 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1909 stop = (bit_chk == 0); 1910 } 1911 sticky_bit_chk = sticky_bit_chk | bit_chk; 1912 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1913 1914 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1915 %u && %u", __func__, __LINE__, d, 1916 sticky_bit_chk, param->read_correct_mask, stop); 1917 1918 if (stop == 1) { 1919 break; 1920 } else { 1921 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1922 if (bit_chk & 1) { 1923 /* Remember a passing test as 1924 the right_edge */ 1925 right_edge[i] = d; 1926 } else { 1927 if (d != 0) { 1928 /* If a right edge has not been 1929 seen yet, then a future passing 1930 test will mark this edge as the 1931 left edge */ 1932 if (right_edge[i] == 1933 IO_IO_IN_DELAY_MAX + 1) { 1934 left_edge[i] = -(d + 1); 1935 } 1936 } else { 1937 /* d = 0 failed, but it passed 1938 when testing the left edge, 1939 so it must be marginal, 1940 set it to -1 */ 1941 if (right_edge[i] == 1942 IO_IO_IN_DELAY_MAX + 1 && 1943 left_edge[i] != 1944 IO_IO_IN_DELAY_MAX 1945 + 1) { 1946 right_edge[i] = -1; 1947 } 1948 /* If a right edge has not been 1949 seen yet, then a future passing 1950 test will mark this edge as the 1951 left edge */ 1952 else if (right_edge[i] == 1953 IO_IO_IN_DELAY_MAX + 1954 1) { 1955 left_edge[i] = -(d + 1); 1956 } 1957 } 1958 } 1959 1960 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1961 d=%u]: ", __func__, __LINE__, d); 1962 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1963 (int)(bit_chk & 1), i, left_edge[i]); 1964 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1965 right_edge[i]); 1966 bit_chk = bit_chk >> 1; 1967 } 1968 } 1969 } 1970 1971 /* Check that all bits have a window */ 1972 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1973 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1974 %d right_edge[%u]: %d", __func__, __LINE__, 1975 i, left_edge[i], i, right_edge[i]); 1976 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1977 == IO_IO_IN_DELAY_MAX + 1)) { 1978 /* 1979 * Restore delay chain settings before letting the loop 1980 * in rw_mgr_mem_calibrate_vfifo to retry different 1981 * dqs/ck relationships. 1982 */ 1983 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 1984 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1985 scc_mgr_set_dqs_en_delay(read_group, 1986 start_dqs_en); 1987 } 1988 scc_mgr_load_dqs(read_group); 1989 writel(0, &sdr_scc_mgr->update); 1990 1991 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 1992 find edge [%u]: %d %d", __func__, __LINE__, 1993 i, left_edge[i], right_edge[i]); 1994 if (use_read_test) { 1995 set_failing_group_stage(read_group * 1996 RW_MGR_MEM_DQ_PER_READ_DQS + i, 1997 CAL_STAGE_VFIFO, 1998 CAL_SUBSTAGE_VFIFO_CENTER); 1999 } else { 2000 set_failing_group_stage(read_group * 2001 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2002 CAL_STAGE_VFIFO_AFTER_WRITES, 2003 CAL_SUBSTAGE_VFIFO_CENTER); 2004 } 2005 return 0; 2006 } 2007 } 2008 2009 /* Find middle of window for each DQ bit */ 2010 mid_min = left_edge[0] - right_edge[0]; 2011 min_index = 0; 2012 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2013 mid = left_edge[i] - right_edge[i]; 2014 if (mid < mid_min) { 2015 mid_min = mid; 2016 min_index = i; 2017 } 2018 } 2019 2020 /* 2021 * -mid_min/2 represents the amount that we need to move DQS. 2022 * If mid_min is odd and positive we'll need to add one to 2023 * make sure the rounding in further calculations is correct 2024 * (always bias to the right), so just add 1 for all positive values. 2025 */ 2026 if (mid_min > 0) 2027 mid_min++; 2028 2029 mid_min = mid_min / 2; 2030 2031 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2032 __func__, __LINE__, mid_min, min_index); 2033 2034 /* Determine the amount we can change DQS (which is -mid_min) */ 2035 orig_mid_min = mid_min; 2036 new_dqs = start_dqs - mid_min; 2037 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2038 new_dqs = IO_DQS_IN_DELAY_MAX; 2039 else if (new_dqs < 0) 2040 new_dqs = 0; 2041 2042 mid_min = start_dqs - new_dqs; 2043 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2044 mid_min, new_dqs); 2045 2046 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2047 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2048 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2049 else if (start_dqs_en - mid_min < 0) 2050 mid_min += start_dqs_en - mid_min; 2051 } 2052 new_dqs = start_dqs - mid_min; 2053 2054 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2055 new_dqs=%d mid_min=%d\n", start_dqs, 2056 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2057 new_dqs, mid_min); 2058 2059 /* Initialize data for export structures */ 2060 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2061 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2062 2063 /* add delay to bring centre of all DQ windows to the same "level" */ 2064 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2065 /* Use values before divide by 2 to reduce round off error */ 2066 shift_dq = (left_edge[i] - right_edge[i] - 2067 (left_edge[min_index] - right_edge[min_index]))/2 + 2068 (orig_mid_min - mid_min); 2069 2070 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2071 shift_dq[%u]=%d\n", i, shift_dq); 2072 2073 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2074 temp_dq_in_delay1 = readl(addr + (p << 2)); 2075 temp_dq_in_delay2 = readl(addr + (i << 2)); 2076 2077 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2078 (int32_t)IO_IO_IN_DELAY_MAX) { 2079 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2080 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2081 shift_dq = -(int32_t)temp_dq_in_delay1; 2082 } 2083 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2084 shift_dq[%u]=%d\n", i, shift_dq); 2085 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2086 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2087 scc_mgr_load_dq(p); 2088 2089 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2090 left_edge[i] - shift_dq + (-mid_min), 2091 right_edge[i] + shift_dq - (-mid_min)); 2092 /* To determine values for export structures */ 2093 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2094 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2095 2096 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2097 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2098 } 2099 2100 final_dqs = new_dqs; 2101 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2102 final_dqs_en = start_dqs_en - mid_min; 2103 2104 /* Move DQS-en */ 2105 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2106 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2107 scc_mgr_load_dqs(read_group); 2108 } 2109 2110 /* Move DQS */ 2111 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2112 scc_mgr_load_dqs(read_group); 2113 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2114 dqs_margin=%d", __func__, __LINE__, 2115 dq_margin, dqs_margin); 2116 2117 /* 2118 * Do not remove this line as it makes sure all of our decisions 2119 * have been applied. Apply the update bit. 2120 */ 2121 writel(0, &sdr_scc_mgr->update); 2122 2123 return (dq_margin >= 0) && (dqs_margin >= 0); 2124 } 2125 2126 /** 2127 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2128 * @rw_group: Read/Write Group 2129 * @phase: DQ/DQS phase 2130 * 2131 * Because initially no communication ca be reliably performed with the memory 2132 * device, the sequencer uses a guaranteed write mechanism to write data into 2133 * the memory device. 2134 */ 2135 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2136 const u32 phase) 2137 { 2138 int ret; 2139 2140 /* Set a particular DQ/DQS phase. */ 2141 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2142 2143 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2144 __func__, __LINE__, rw_group, phase); 2145 2146 /* 2147 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2148 * Load up the patterns used by read calibration using the 2149 * current DQDQS phase. 2150 */ 2151 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2152 2153 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2154 return 0; 2155 2156 /* 2157 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2158 * Back-to-Back reads of the patterns used for calibration. 2159 */ 2160 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2161 if (ret) 2162 debug_cond(DLEVEL == 1, 2163 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2164 __func__, __LINE__, rw_group, phase); 2165 return ret; 2166 } 2167 2168 /** 2169 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2170 * @rw_group: Read/Write Group 2171 * @test_bgn: Rank at which the test begins 2172 * 2173 * DQS enable calibration ensures reliable capture of the DQ signal without 2174 * glitches on the DQS line. 2175 */ 2176 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2177 const u32 test_bgn) 2178 { 2179 /* 2180 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2181 * DQS and DQS Eanble Signal Relationships. 2182 */ 2183 2184 /* We start at zero, so have one less dq to devide among */ 2185 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2186 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2187 int found; 2188 u32 i, p, d, r; 2189 2190 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2191 2192 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2193 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2194 r += NUM_RANKS_PER_SHADOW_REG) { 2195 for (i = 0, p = test_bgn, d = 0; 2196 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2197 i++, p++, d += delay_step) { 2198 debug_cond(DLEVEL == 1, 2199 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2200 __func__, __LINE__, rw_group, r, i, p, d); 2201 2202 scc_mgr_set_dq_in_delay(p, d); 2203 scc_mgr_load_dq(p); 2204 } 2205 2206 writel(0, &sdr_scc_mgr->update); 2207 } 2208 2209 /* 2210 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2211 * dq_in_delay values 2212 */ 2213 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2214 2215 debug_cond(DLEVEL == 1, 2216 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2217 __func__, __LINE__, rw_group, found); 2218 2219 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2220 r += NUM_RANKS_PER_SHADOW_REG) { 2221 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2222 writel(0, &sdr_scc_mgr->update); 2223 } 2224 2225 if (!found) 2226 return -EINVAL; 2227 2228 return 0; 2229 2230 } 2231 2232 /** 2233 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2234 * @rw_group: Read/Write Group 2235 * @test_bgn: Rank at which the test begins 2236 * @use_read_test: Perform a read test 2237 * @update_fom: Update FOM 2238 * 2239 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2240 * within a group. 2241 */ 2242 static int 2243 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2244 const int use_read_test, 2245 const int update_fom) 2246 2247 { 2248 int ret, grp_calibrated; 2249 u32 rank_bgn, sr; 2250 2251 /* 2252 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2253 * Read per-bit deskew can be done on a per shadow register basis. 2254 */ 2255 grp_calibrated = 1; 2256 for (rank_bgn = 0, sr = 0; 2257 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2258 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2259 /* Check if this set of ranks should be skipped entirely. */ 2260 if (param->skip_shadow_regs[sr]) 2261 continue; 2262 2263 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2264 rw_group, test_bgn, 2265 use_read_test, 2266 update_fom); 2267 if (ret) 2268 continue; 2269 2270 grp_calibrated = 0; 2271 } 2272 2273 if (!grp_calibrated) 2274 return -EIO; 2275 2276 return 0; 2277 } 2278 2279 /** 2280 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2281 * @rw_group: Read/Write Group 2282 * @test_bgn: Rank at which the test begins 2283 * 2284 * Stage 1: Calibrate the read valid prediction FIFO. 2285 * 2286 * This function implements UniPHY calibration Stage 1, as explained in 2287 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2288 * 2289 * - read valid prediction will consist of finding: 2290 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2291 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2292 * - we also do a per-bit deskew on the DQ lines. 2293 */ 2294 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2295 { 2296 uint32_t p, d; 2297 uint32_t dtaps_per_ptap; 2298 uint32_t failed_substage; 2299 2300 int ret; 2301 2302 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2303 2304 /* Update info for sims */ 2305 reg_file_set_group(rw_group); 2306 reg_file_set_stage(CAL_STAGE_VFIFO); 2307 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2308 2309 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2310 2311 /* USER Determine number of delay taps for each phase tap. */ 2312 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2313 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2314 2315 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2316 /* 2317 * In RLDRAMX we may be messing the delay of pins in 2318 * the same write rw_group but outside of the current read 2319 * the rw_group, but that's ok because we haven't calibrated 2320 * output side yet. 2321 */ 2322 if (d > 0) { 2323 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2324 rw_group, d); 2325 } 2326 2327 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2328 /* 1) Guaranteed Write */ 2329 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2330 if (ret) 2331 break; 2332 2333 /* 2) DQS Enable Calibration */ 2334 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2335 test_bgn); 2336 if (ret) { 2337 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2338 continue; 2339 } 2340 2341 /* 3) Centering DQ/DQS */ 2342 /* 2343 * If doing read after write calibration, do not update 2344 * FOM now. Do it then. 2345 */ 2346 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2347 test_bgn, 1, 0); 2348 if (ret) { 2349 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2350 continue; 2351 } 2352 2353 /* All done. */ 2354 goto cal_done_ok; 2355 } 2356 } 2357 2358 /* Calibration Stage 1 failed. */ 2359 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2360 return 0; 2361 2362 /* Calibration Stage 1 completed OK. */ 2363 cal_done_ok: 2364 /* 2365 * Reset the delay chains back to zero if they have moved > 1 2366 * (check for > 1 because loop will increase d even when pass in 2367 * first case). 2368 */ 2369 if (d > 2) 2370 scc_mgr_zero_group(rw_group, 1); 2371 2372 return 1; 2373 } 2374 2375 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2376 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2377 uint32_t test_bgn) 2378 { 2379 uint32_t rank_bgn, sr; 2380 uint32_t grp_calibrated; 2381 uint32_t write_group; 2382 2383 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2384 2385 /* update info for sims */ 2386 2387 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2388 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2389 2390 write_group = read_group; 2391 2392 /* update info for sims */ 2393 reg_file_set_group(read_group); 2394 2395 grp_calibrated = 1; 2396 /* Read per-bit deskew can be done on a per shadow register basis */ 2397 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2398 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2399 /* Determine if this set of ranks should be skipped entirely */ 2400 if (!param->skip_shadow_regs[sr]) { 2401 /* This is the last calibration round, update FOM here */ 2402 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2403 write_group, 2404 read_group, 2405 test_bgn, 0, 2406 1)) { 2407 grp_calibrated = 0; 2408 } 2409 } 2410 } 2411 2412 2413 if (grp_calibrated == 0) { 2414 set_failing_group_stage(write_group, 2415 CAL_STAGE_VFIFO_AFTER_WRITES, 2416 CAL_SUBSTAGE_VFIFO_CENTER); 2417 return 0; 2418 } 2419 2420 return 1; 2421 } 2422 2423 /* Calibrate LFIFO to find smallest read latency */ 2424 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2425 { 2426 uint32_t found_one; 2427 uint32_t bit_chk; 2428 2429 debug("%s:%d\n", __func__, __LINE__); 2430 2431 /* update info for sims */ 2432 reg_file_set_stage(CAL_STAGE_LFIFO); 2433 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2434 2435 /* Load up the patterns used by read calibration for all ranks */ 2436 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2437 found_one = 0; 2438 2439 do { 2440 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2441 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2442 __func__, __LINE__, gbl->curr_read_lat); 2443 2444 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2445 NUM_READ_TESTS, 2446 PASS_ALL_BITS, 2447 &bit_chk, 1)) { 2448 break; 2449 } 2450 2451 found_one = 1; 2452 /* reduce read latency and see if things are working */ 2453 /* correctly */ 2454 gbl->curr_read_lat--; 2455 } while (gbl->curr_read_lat > 0); 2456 2457 /* reset the fifos to get pointers to known state */ 2458 2459 writel(0, &phy_mgr_cmd->fifo_reset); 2460 2461 if (found_one) { 2462 /* add a fudge factor to the read latency that was determined */ 2463 gbl->curr_read_lat += 2; 2464 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2465 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2466 read_lat=%u\n", __func__, __LINE__, 2467 gbl->curr_read_lat); 2468 return 1; 2469 } else { 2470 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2471 CAL_SUBSTAGE_READ_LATENCY); 2472 2473 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2474 read_lat=%u\n", __func__, __LINE__, 2475 gbl->curr_read_lat); 2476 return 0; 2477 } 2478 } 2479 2480 /* 2481 * issue write test command. 2482 * two variants are provided. one that just tests a write pattern and 2483 * another that tests datamask functionality. 2484 */ 2485 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2486 uint32_t test_dm) 2487 { 2488 uint32_t mcc_instruction; 2489 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2490 ENABLE_SUPER_QUICK_CALIBRATION); 2491 uint32_t rw_wl_nop_cycles; 2492 uint32_t addr; 2493 2494 /* 2495 * Set counter and jump addresses for the right 2496 * number of NOP cycles. 2497 * The number of supported NOP cycles can range from -1 to infinity 2498 * Three different cases are handled: 2499 * 2500 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2501 * mechanism will be used to insert the right number of NOPs 2502 * 2503 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2504 * issuing the write command will jump straight to the 2505 * micro-instruction that turns on DQS (for DDRx), or outputs write 2506 * data (for RLD), skipping 2507 * the NOP micro-instruction all together 2508 * 2509 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2510 * turned on in the same micro-instruction that issues the write 2511 * command. Then we need 2512 * to directly jump to the micro-instruction that sends out the data 2513 * 2514 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2515 * (2 and 3). One jump-counter (0) is used to perform multiple 2516 * write-read operations. 2517 * one counter left to issue this command in "multiple-group" mode 2518 */ 2519 2520 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2521 2522 if (rw_wl_nop_cycles == -1) { 2523 /* 2524 * CNTR 2 - We want to execute the special write operation that 2525 * turns on DQS right away and then skip directly to the 2526 * instruction that sends out the data. We set the counter to a 2527 * large number so that the jump is always taken. 2528 */ 2529 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2530 2531 /* CNTR 3 - Not used */ 2532 if (test_dm) { 2533 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2534 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2535 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2536 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2537 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2538 } else { 2539 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2540 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2542 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2543 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2544 } 2545 } else if (rw_wl_nop_cycles == 0) { 2546 /* 2547 * CNTR 2 - We want to skip the NOP operation and go straight 2548 * to the DQS enable instruction. We set the counter to a large 2549 * number so that the jump is always taken. 2550 */ 2551 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2552 2553 /* CNTR 3 - Not used */ 2554 if (test_dm) { 2555 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2556 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2557 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2558 } else { 2559 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2560 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2562 } 2563 } else { 2564 /* 2565 * CNTR 2 - In this case we want to execute the next instruction 2566 * and NOT take the jump. So we set the counter to 0. The jump 2567 * address doesn't count. 2568 */ 2569 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2570 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2571 2572 /* 2573 * CNTR 3 - Set the nop counter to the number of cycles we 2574 * need to loop for, minus 1. 2575 */ 2576 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2577 if (test_dm) { 2578 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2579 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2580 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2581 } else { 2582 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2583 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2584 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2585 } 2586 } 2587 2588 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2589 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2590 2591 if (quick_write_mode) 2592 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2593 else 2594 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2595 2596 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2597 2598 /* 2599 * CNTR 1 - This is used to ensure enough time elapses 2600 * for read data to come back. 2601 */ 2602 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2603 2604 if (test_dm) { 2605 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2606 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2607 } else { 2608 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2609 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2610 } 2611 2612 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2613 writel(mcc_instruction, addr + (group << 2)); 2614 } 2615 2616 /* Test writes, can check for a single bit pass or multiple bit pass */ 2617 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2618 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2619 uint32_t *bit_chk, uint32_t all_ranks) 2620 { 2621 uint32_t r; 2622 uint32_t correct_mask_vg; 2623 uint32_t tmp_bit_chk; 2624 uint32_t vg; 2625 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2626 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2627 uint32_t addr_rw_mgr; 2628 uint32_t base_rw_mgr; 2629 2630 *bit_chk = param->write_correct_mask; 2631 correct_mask_vg = param->write_correct_mask_vg; 2632 2633 for (r = rank_bgn; r < rank_end; r++) { 2634 if (param->skip_ranks[r]) { 2635 /* request to skip the rank */ 2636 continue; 2637 } 2638 2639 /* set rank */ 2640 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2641 2642 tmp_bit_chk = 0; 2643 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2644 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2645 /* reset the fifos to get pointers to known state */ 2646 writel(0, &phy_mgr_cmd->fifo_reset); 2647 2648 tmp_bit_chk = tmp_bit_chk << 2649 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2650 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2651 rw_mgr_mem_calibrate_write_test_issue(write_group * 2652 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2653 use_dm); 2654 2655 base_rw_mgr = readl(addr_rw_mgr); 2656 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2657 if (vg == 0) 2658 break; 2659 } 2660 *bit_chk &= tmp_bit_chk; 2661 } 2662 2663 if (all_correct) { 2664 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2665 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2666 %u => %lu", write_group, use_dm, 2667 *bit_chk, param->write_correct_mask, 2668 (long unsigned int)(*bit_chk == 2669 param->write_correct_mask)); 2670 return *bit_chk == param->write_correct_mask; 2671 } else { 2672 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2673 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2674 write_group, use_dm, *bit_chk); 2675 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2676 (long unsigned int)(*bit_chk != 0)); 2677 return *bit_chk != 0x00; 2678 } 2679 } 2680 2681 /* 2682 * center all windows. do per-bit-deskew to possibly increase size of 2683 * certain windows. 2684 */ 2685 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2686 uint32_t write_group, uint32_t test_bgn) 2687 { 2688 uint32_t i, p, min_index; 2689 int32_t d; 2690 /* 2691 * Store these as signed since there are comparisons with 2692 * signed numbers. 2693 */ 2694 uint32_t bit_chk; 2695 uint32_t sticky_bit_chk; 2696 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2697 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2698 int32_t mid; 2699 int32_t mid_min, orig_mid_min; 2700 int32_t new_dqs, start_dqs, shift_dq; 2701 int32_t dq_margin, dqs_margin, dm_margin; 2702 uint32_t stop; 2703 uint32_t temp_dq_out1_delay; 2704 uint32_t addr; 2705 2706 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2707 2708 dm_margin = 0; 2709 2710 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2711 start_dqs = readl(addr + 2712 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2713 2714 /* per-bit deskew */ 2715 2716 /* 2717 * set the left and right edge of each bit to an illegal value 2718 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2719 */ 2720 sticky_bit_chk = 0; 2721 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2722 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2723 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2724 } 2725 2726 /* Search for the left edge of the window for each bit */ 2727 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2728 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2729 2730 writel(0, &sdr_scc_mgr->update); 2731 2732 /* 2733 * Stop searching when the read test doesn't pass AND when 2734 * we've seen a passing read on every bit. 2735 */ 2736 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2737 0, PASS_ONE_BIT, &bit_chk, 0); 2738 sticky_bit_chk = sticky_bit_chk | bit_chk; 2739 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2740 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2741 == %u && %u [bit_chk= %u ]\n", 2742 d, sticky_bit_chk, param->write_correct_mask, 2743 stop, bit_chk); 2744 2745 if (stop == 1) { 2746 break; 2747 } else { 2748 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2749 if (bit_chk & 1) { 2750 /* 2751 * Remember a passing test as the 2752 * left_edge. 2753 */ 2754 left_edge[i] = d; 2755 } else { 2756 /* 2757 * If a left edge has not been seen 2758 * yet, then a future passing test will 2759 * mark this edge as the right edge. 2760 */ 2761 if (left_edge[i] == 2762 IO_IO_OUT1_DELAY_MAX + 1) { 2763 right_edge[i] = -(d + 1); 2764 } 2765 } 2766 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2767 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2768 (int)(bit_chk & 1), i, left_edge[i]); 2769 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2770 right_edge[i]); 2771 bit_chk = bit_chk >> 1; 2772 } 2773 } 2774 } 2775 2776 /* Reset DQ delay chains to 0 */ 2777 scc_mgr_apply_group_dq_out1_delay(0); 2778 sticky_bit_chk = 0; 2779 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2780 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2781 %d right_edge[%u]: %d\n", __func__, __LINE__, 2782 i, left_edge[i], i, right_edge[i]); 2783 2784 /* 2785 * Check for cases where we haven't found the left edge, 2786 * which makes our assignment of the the right edge invalid. 2787 * Reset it to the illegal value. 2788 */ 2789 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2790 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2791 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2792 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2793 right_edge[%u]: %d\n", __func__, __LINE__, 2794 i, right_edge[i]); 2795 } 2796 2797 /* 2798 * Reset sticky bit (except for bits where we have 2799 * seen the left edge). 2800 */ 2801 sticky_bit_chk = sticky_bit_chk << 1; 2802 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2803 sticky_bit_chk = sticky_bit_chk | 1; 2804 2805 if (i == 0) 2806 break; 2807 } 2808 2809 /* Search for the right edge of the window for each bit */ 2810 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2811 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2812 d + start_dqs); 2813 2814 writel(0, &sdr_scc_mgr->update); 2815 2816 /* 2817 * Stop searching when the read test doesn't pass AND when 2818 * we've seen a passing read on every bit. 2819 */ 2820 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2821 0, PASS_ONE_BIT, &bit_chk, 0); 2822 2823 sticky_bit_chk = sticky_bit_chk | bit_chk; 2824 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2825 2826 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2827 %u && %u\n", d, sticky_bit_chk, 2828 param->write_correct_mask, stop); 2829 2830 if (stop == 1) { 2831 if (d == 0) { 2832 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2833 i++) { 2834 /* d = 0 failed, but it passed when 2835 testing the left edge, so it must be 2836 marginal, set it to -1 */ 2837 if (right_edge[i] == 2838 IO_IO_OUT1_DELAY_MAX + 1 && 2839 left_edge[i] != 2840 IO_IO_OUT1_DELAY_MAX + 1) { 2841 right_edge[i] = -1; 2842 } 2843 } 2844 } 2845 break; 2846 } else { 2847 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2848 if (bit_chk & 1) { 2849 /* 2850 * Remember a passing test as 2851 * the right_edge. 2852 */ 2853 right_edge[i] = d; 2854 } else { 2855 if (d != 0) { 2856 /* 2857 * If a right edge has not 2858 * been seen yet, then a future 2859 * passing test will mark this 2860 * edge as the left edge. 2861 */ 2862 if (right_edge[i] == 2863 IO_IO_OUT1_DELAY_MAX + 1) 2864 left_edge[i] = -(d + 1); 2865 } else { 2866 /* 2867 * d = 0 failed, but it passed 2868 * when testing the left edge, 2869 * so it must be marginal, set 2870 * it to -1. 2871 */ 2872 if (right_edge[i] == 2873 IO_IO_OUT1_DELAY_MAX + 1 && 2874 left_edge[i] != 2875 IO_IO_OUT1_DELAY_MAX + 1) 2876 right_edge[i] = -1; 2877 /* 2878 * If a right edge has not been 2879 * seen yet, then a future 2880 * passing test will mark this 2881 * edge as the left edge. 2882 */ 2883 else if (right_edge[i] == 2884 IO_IO_OUT1_DELAY_MAX + 2885 1) 2886 left_edge[i] = -(d + 1); 2887 } 2888 } 2889 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2890 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2891 (int)(bit_chk & 1), i, left_edge[i]); 2892 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2893 right_edge[i]); 2894 bit_chk = bit_chk >> 1; 2895 } 2896 } 2897 } 2898 2899 /* Check that all bits have a window */ 2900 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2901 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2902 %d right_edge[%u]: %d", __func__, __LINE__, 2903 i, left_edge[i], i, right_edge[i]); 2904 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2905 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2906 set_failing_group_stage(test_bgn + i, 2907 CAL_STAGE_WRITES, 2908 CAL_SUBSTAGE_WRITES_CENTER); 2909 return 0; 2910 } 2911 } 2912 2913 /* Find middle of window for each DQ bit */ 2914 mid_min = left_edge[0] - right_edge[0]; 2915 min_index = 0; 2916 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2917 mid = left_edge[i] - right_edge[i]; 2918 if (mid < mid_min) { 2919 mid_min = mid; 2920 min_index = i; 2921 } 2922 } 2923 2924 /* 2925 * -mid_min/2 represents the amount that we need to move DQS. 2926 * If mid_min is odd and positive we'll need to add one to 2927 * make sure the rounding in further calculations is correct 2928 * (always bias to the right), so just add 1 for all positive values. 2929 */ 2930 if (mid_min > 0) 2931 mid_min++; 2932 mid_min = mid_min / 2; 2933 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2934 __LINE__, mid_min); 2935 2936 /* Determine the amount we can change DQS (which is -mid_min) */ 2937 orig_mid_min = mid_min; 2938 new_dqs = start_dqs; 2939 mid_min = 0; 2940 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2941 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2942 /* Initialize data for export structures */ 2943 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2944 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2945 2946 /* add delay to bring centre of all DQ windows to the same "level" */ 2947 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2948 /* Use values before divide by 2 to reduce round off error */ 2949 shift_dq = (left_edge[i] - right_edge[i] - 2950 (left_edge[min_index] - right_edge[min_index]))/2 + 2951 (orig_mid_min - mid_min); 2952 2953 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2954 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2955 2956 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2957 temp_dq_out1_delay = readl(addr + (i << 2)); 2958 if (shift_dq + (int32_t)temp_dq_out1_delay > 2959 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2960 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2961 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2962 shift_dq = -(int32_t)temp_dq_out1_delay; 2963 } 2964 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2965 i, shift_dq); 2966 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2967 scc_mgr_load_dq(i); 2968 2969 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2970 left_edge[i] - shift_dq + (-mid_min), 2971 right_edge[i] + shift_dq - (-mid_min)); 2972 /* To determine values for export structures */ 2973 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2974 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2975 2976 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2977 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2978 } 2979 2980 /* Move DQS */ 2981 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2982 writel(0, &sdr_scc_mgr->update); 2983 2984 /* Centre DM */ 2985 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2986 2987 /* 2988 * set the left and right edge of each bit to an illegal value, 2989 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2990 */ 2991 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2992 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2993 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2994 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2995 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2996 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2997 int32_t win_best = 0; 2998 2999 /* Search for the/part of the window with DM shift */ 3000 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3001 scc_mgr_apply_group_dm_out1_delay(d); 3002 writel(0, &sdr_scc_mgr->update); 3003 3004 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3005 PASS_ALL_BITS, &bit_chk, 3006 0)) { 3007 /* USE Set current end of the window */ 3008 end_curr = -d; 3009 /* 3010 * If a starting edge of our window has not been seen 3011 * this is our current start of the DM window. 3012 */ 3013 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3014 bgn_curr = -d; 3015 3016 /* 3017 * If current window is bigger than best seen. 3018 * Set best seen to be current window. 3019 */ 3020 if ((end_curr-bgn_curr+1) > win_best) { 3021 win_best = end_curr-bgn_curr+1; 3022 bgn_best = bgn_curr; 3023 end_best = end_curr; 3024 } 3025 } else { 3026 /* We just saw a failing test. Reset temp edge */ 3027 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3028 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3029 } 3030 } 3031 3032 3033 /* Reset DM delay chains to 0 */ 3034 scc_mgr_apply_group_dm_out1_delay(0); 3035 3036 /* 3037 * Check to see if the current window nudges up aganist 0 delay. 3038 * If so we need to continue the search by shifting DQS otherwise DQS 3039 * search begins as a new search. */ 3040 if (end_curr != 0) { 3041 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3042 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3043 } 3044 3045 /* Search for the/part of the window with DQS shifts */ 3046 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3047 /* 3048 * Note: This only shifts DQS, so are we limiting ourselve to 3049 * width of DQ unnecessarily. 3050 */ 3051 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3052 d + new_dqs); 3053 3054 writel(0, &sdr_scc_mgr->update); 3055 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3056 PASS_ALL_BITS, &bit_chk, 3057 0)) { 3058 /* USE Set current end of the window */ 3059 end_curr = d; 3060 /* 3061 * If a beginning edge of our window has not been seen 3062 * this is our current begin of the DM window. 3063 */ 3064 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3065 bgn_curr = d; 3066 3067 /* 3068 * If current window is bigger than best seen. Set best 3069 * seen to be current window. 3070 */ 3071 if ((end_curr-bgn_curr+1) > win_best) { 3072 win_best = end_curr-bgn_curr+1; 3073 bgn_best = bgn_curr; 3074 end_best = end_curr; 3075 } 3076 } else { 3077 /* We just saw a failing test. Reset temp edge */ 3078 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3079 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3080 3081 /* Early exit optimization: if ther remaining delay 3082 chain space is less than already seen largest window 3083 we can exit */ 3084 if ((win_best-1) > 3085 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3086 break; 3087 } 3088 } 3089 } 3090 3091 /* assign left and right edge for cal and reporting; */ 3092 left_edge[0] = -1*bgn_best; 3093 right_edge[0] = end_best; 3094 3095 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3096 __LINE__, left_edge[0], right_edge[0]); 3097 3098 /* Move DQS (back to orig) */ 3099 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3100 3101 /* Move DM */ 3102 3103 /* Find middle of window for the DM bit */ 3104 mid = (left_edge[0] - right_edge[0]) / 2; 3105 3106 /* only move right, since we are not moving DQS/DQ */ 3107 if (mid < 0) 3108 mid = 0; 3109 3110 /* dm_marign should fail if we never find a window */ 3111 if (win_best == 0) 3112 dm_margin = -1; 3113 else 3114 dm_margin = left_edge[0] - mid; 3115 3116 scc_mgr_apply_group_dm_out1_delay(mid); 3117 writel(0, &sdr_scc_mgr->update); 3118 3119 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3120 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3121 right_edge[0], mid, dm_margin); 3122 /* Export values */ 3123 gbl->fom_out += dq_margin + dqs_margin; 3124 3125 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3126 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3127 dq_margin, dqs_margin, dm_margin); 3128 3129 /* 3130 * Do not remove this line as it makes sure all of our 3131 * decisions have been applied. 3132 */ 3133 writel(0, &sdr_scc_mgr->update); 3134 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3135 } 3136 3137 /* calibrate the write operations */ 3138 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3139 uint32_t test_bgn) 3140 { 3141 /* update info for sims */ 3142 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3143 3144 reg_file_set_stage(CAL_STAGE_WRITES); 3145 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3146 3147 reg_file_set_group(g); 3148 3149 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3150 set_failing_group_stage(g, CAL_STAGE_WRITES, 3151 CAL_SUBSTAGE_WRITES_CENTER); 3152 return 0; 3153 } 3154 3155 return 1; 3156 } 3157 3158 /** 3159 * mem_precharge_and_activate() - Precharge all banks and activate 3160 * 3161 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3162 */ 3163 static void mem_precharge_and_activate(void) 3164 { 3165 int r; 3166 3167 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3168 /* Test if the rank should be skipped. */ 3169 if (param->skip_ranks[r]) 3170 continue; 3171 3172 /* Set rank. */ 3173 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3174 3175 /* Precharge all banks. */ 3176 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3177 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3178 3179 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3180 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3181 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3182 3183 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3184 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3185 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3186 3187 /* Activate rows. */ 3188 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3189 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3190 } 3191 } 3192 3193 /** 3194 * mem_init_latency() - Configure memory RLAT and WLAT settings 3195 * 3196 * Configure memory RLAT and WLAT parameters. 3197 */ 3198 static void mem_init_latency(void) 3199 { 3200 /* 3201 * For AV/CV, LFIFO is hardened and always runs at full rate 3202 * so max latency in AFI clocks, used here, is correspondingly 3203 * smaller. 3204 */ 3205 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3206 u32 rlat, wlat; 3207 3208 debug("%s:%d\n", __func__, __LINE__); 3209 3210 /* 3211 * Read in write latency. 3212 * WL for Hard PHY does not include additive latency. 3213 */ 3214 wlat = readl(&data_mgr->t_wl_add); 3215 wlat += readl(&data_mgr->mem_t_add); 3216 3217 gbl->rw_wl_nop_cycles = wlat - 1; 3218 3219 /* Read in readl latency. */ 3220 rlat = readl(&data_mgr->t_rl_add); 3221 3222 /* Set a pretty high read latency initially. */ 3223 gbl->curr_read_lat = rlat + 16; 3224 if (gbl->curr_read_lat > max_latency) 3225 gbl->curr_read_lat = max_latency; 3226 3227 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3228 3229 /* Advertise write latency. */ 3230 writel(wlat, &phy_mgr_cfg->afi_wlat); 3231 } 3232 3233 /** 3234 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3235 * 3236 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3237 */ 3238 static void mem_skip_calibrate(void) 3239 { 3240 uint32_t vfifo_offset; 3241 uint32_t i, j, r; 3242 3243 debug("%s:%d\n", __func__, __LINE__); 3244 /* Need to update every shadow register set used by the interface */ 3245 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3246 r += NUM_RANKS_PER_SHADOW_REG) { 3247 /* 3248 * Set output phase alignment settings appropriate for 3249 * skip calibration. 3250 */ 3251 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3252 scc_mgr_set_dqs_en_phase(i, 0); 3253 #if IO_DLL_CHAIN_LENGTH == 6 3254 scc_mgr_set_dqdqs_output_phase(i, 6); 3255 #else 3256 scc_mgr_set_dqdqs_output_phase(i, 7); 3257 #endif 3258 /* 3259 * Case:33398 3260 * 3261 * Write data arrives to the I/O two cycles before write 3262 * latency is reached (720 deg). 3263 * -> due to bit-slip in a/c bus 3264 * -> to allow board skew where dqs is longer than ck 3265 * -> how often can this happen!? 3266 * -> can claim back some ptaps for high freq 3267 * support if we can relax this, but i digress... 3268 * 3269 * The write_clk leads mem_ck by 90 deg 3270 * The minimum ptap of the OPA is 180 deg 3271 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3272 * The write_clk is always delayed by 2 ptaps 3273 * 3274 * Hence, to make DQS aligned to CK, we need to delay 3275 * DQS by: 3276 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3277 * 3278 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3279 * gives us the number of ptaps, which simplies to: 3280 * 3281 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3282 */ 3283 scc_mgr_set_dqdqs_output_phase(i, 3284 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3285 } 3286 writel(0xff, &sdr_scc_mgr->dqs_ena); 3287 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3288 3289 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3290 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3291 SCC_MGR_GROUP_COUNTER_OFFSET); 3292 } 3293 writel(0xff, &sdr_scc_mgr->dq_ena); 3294 writel(0xff, &sdr_scc_mgr->dm_ena); 3295 writel(0, &sdr_scc_mgr->update); 3296 } 3297 3298 /* Compensate for simulation model behaviour */ 3299 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3300 scc_mgr_set_dqs_bus_in_delay(i, 10); 3301 scc_mgr_load_dqs(i); 3302 } 3303 writel(0, &sdr_scc_mgr->update); 3304 3305 /* 3306 * ArriaV has hard FIFOs that can only be initialized by incrementing 3307 * in sequencer. 3308 */ 3309 vfifo_offset = CALIB_VFIFO_OFFSET; 3310 for (j = 0; j < vfifo_offset; j++) 3311 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3312 writel(0, &phy_mgr_cmd->fifo_reset); 3313 3314 /* 3315 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3316 * setting from generation-time constant. 3317 */ 3318 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3319 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3320 } 3321 3322 /** 3323 * mem_calibrate() - Memory calibration entry point. 3324 * 3325 * Perform memory calibration. 3326 */ 3327 static uint32_t mem_calibrate(void) 3328 { 3329 uint32_t i; 3330 uint32_t rank_bgn, sr; 3331 uint32_t write_group, write_test_bgn; 3332 uint32_t read_group, read_test_bgn; 3333 uint32_t run_groups, current_run; 3334 uint32_t failing_groups = 0; 3335 uint32_t group_failed = 0; 3336 3337 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3338 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3339 3340 debug("%s:%d\n", __func__, __LINE__); 3341 3342 /* Initialize the data settings */ 3343 gbl->error_substage = CAL_SUBSTAGE_NIL; 3344 gbl->error_stage = CAL_STAGE_NIL; 3345 gbl->error_group = 0xff; 3346 gbl->fom_in = 0; 3347 gbl->fom_out = 0; 3348 3349 /* Initialize WLAT and RLAT. */ 3350 mem_init_latency(); 3351 3352 /* Initialize bit slips. */ 3353 mem_precharge_and_activate(); 3354 3355 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3356 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3357 SCC_MGR_GROUP_COUNTER_OFFSET); 3358 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3359 if (i == 0) 3360 scc_mgr_set_hhp_extras(); 3361 3362 scc_set_bypass_mode(i); 3363 } 3364 3365 /* Calibration is skipped. */ 3366 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3367 /* 3368 * Set VFIFO and LFIFO to instant-on settings in skip 3369 * calibration mode. 3370 */ 3371 mem_skip_calibrate(); 3372 3373 /* 3374 * Do not remove this line as it makes sure all of our 3375 * decisions have been applied. 3376 */ 3377 writel(0, &sdr_scc_mgr->update); 3378 return 1; 3379 } 3380 3381 /* Calibration is not skipped. */ 3382 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3383 /* 3384 * Zero all delay chain/phase settings for all 3385 * groups and all shadow register sets. 3386 */ 3387 scc_mgr_zero_all(); 3388 3389 run_groups = ~param->skip_groups; 3390 3391 for (write_group = 0, write_test_bgn = 0; write_group 3392 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3393 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3394 3395 /* Initialize the group failure */ 3396 group_failed = 0; 3397 3398 current_run = run_groups & ((1 << 3399 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3400 run_groups = run_groups >> 3401 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3402 3403 if (current_run == 0) 3404 continue; 3405 3406 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3407 SCC_MGR_GROUP_COUNTER_OFFSET); 3408 scc_mgr_zero_group(write_group, 0); 3409 3410 for (read_group = write_group * rwdqs_ratio, 3411 read_test_bgn = 0; 3412 read_group < (write_group + 1) * rwdqs_ratio; 3413 read_group++, 3414 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3415 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3416 continue; 3417 3418 /* Calibrate the VFIFO */ 3419 if (rw_mgr_mem_calibrate_vfifo(read_group, 3420 read_test_bgn)) 3421 continue; 3422 3423 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3424 return 0; 3425 3426 /* The group failed, we're done. */ 3427 goto grp_failed; 3428 } 3429 3430 /* Calibrate the output side */ 3431 for (rank_bgn = 0, sr = 0; 3432 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3433 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3434 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3435 continue; 3436 3437 /* Not needed in quick mode! */ 3438 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3439 continue; 3440 3441 /* 3442 * Determine if this set of ranks 3443 * should be skipped entirely. 3444 */ 3445 if (param->skip_shadow_regs[sr]) 3446 continue; 3447 3448 /* Calibrate WRITEs */ 3449 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3450 write_group, write_test_bgn)) 3451 continue; 3452 3453 group_failed = 1; 3454 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3455 return 0; 3456 } 3457 3458 /* Some group failed, we're done. */ 3459 if (group_failed) 3460 goto grp_failed; 3461 3462 for (read_group = write_group * rwdqs_ratio, 3463 read_test_bgn = 0; 3464 read_group < (write_group + 1) * rwdqs_ratio; 3465 read_group++, 3466 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3467 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3468 continue; 3469 3470 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3471 read_test_bgn)) 3472 continue; 3473 3474 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3475 return 0; 3476 3477 /* The group failed, we're done. */ 3478 goto grp_failed; 3479 } 3480 3481 /* No group failed, continue as usual. */ 3482 continue; 3483 3484 grp_failed: /* A group failed, increment the counter. */ 3485 failing_groups++; 3486 } 3487 3488 /* 3489 * USER If there are any failing groups then report 3490 * the failure. 3491 */ 3492 if (failing_groups != 0) 3493 return 0; 3494 3495 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3496 continue; 3497 3498 /* 3499 * If we're skipping groups as part of debug, 3500 * don't calibrate LFIFO. 3501 */ 3502 if (param->skip_groups != 0) 3503 continue; 3504 3505 /* Calibrate the LFIFO */ 3506 if (!rw_mgr_mem_calibrate_lfifo()) 3507 return 0; 3508 } 3509 3510 /* 3511 * Do not remove this line as it makes sure all of our decisions 3512 * have been applied. 3513 */ 3514 writel(0, &sdr_scc_mgr->update); 3515 return 1; 3516 } 3517 3518 /** 3519 * run_mem_calibrate() - Perform memory calibration 3520 * 3521 * This function triggers the entire memory calibration procedure. 3522 */ 3523 static int run_mem_calibrate(void) 3524 { 3525 int pass; 3526 3527 debug("%s:%d\n", __func__, __LINE__); 3528 3529 /* Reset pass/fail status shown on afi_cal_success/fail */ 3530 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3531 3532 /* Stop tracking manager. */ 3533 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3534 3535 phy_mgr_initialize(); 3536 rw_mgr_mem_initialize(); 3537 3538 /* Perform the actual memory calibration. */ 3539 pass = mem_calibrate(); 3540 3541 mem_precharge_and_activate(); 3542 writel(0, &phy_mgr_cmd->fifo_reset); 3543 3544 /* Handoff. */ 3545 rw_mgr_mem_handoff(); 3546 /* 3547 * In Hard PHY this is a 2-bit control: 3548 * 0: AFI Mux Select 3549 * 1: DDIO Mux Select 3550 */ 3551 writel(0x2, &phy_mgr_cfg->mux_sel); 3552 3553 /* Start tracking manager. */ 3554 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3555 3556 return pass; 3557 } 3558 3559 /** 3560 * debug_mem_calibrate() - Report result of memory calibration 3561 * @pass: Value indicating whether calibration passed or failed 3562 * 3563 * This function reports the results of the memory calibration 3564 * and writes debug information into the register file. 3565 */ 3566 static void debug_mem_calibrate(int pass) 3567 { 3568 uint32_t debug_info; 3569 3570 if (pass) { 3571 printf("%s: CALIBRATION PASSED\n", __FILE__); 3572 3573 gbl->fom_in /= 2; 3574 gbl->fom_out /= 2; 3575 3576 if (gbl->fom_in > 0xff) 3577 gbl->fom_in = 0xff; 3578 3579 if (gbl->fom_out > 0xff) 3580 gbl->fom_out = 0xff; 3581 3582 /* Update the FOM in the register file */ 3583 debug_info = gbl->fom_in; 3584 debug_info |= gbl->fom_out << 8; 3585 writel(debug_info, &sdr_reg_file->fom); 3586 3587 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3588 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3589 } else { 3590 printf("%s: CALIBRATION FAILED\n", __FILE__); 3591 3592 debug_info = gbl->error_stage; 3593 debug_info |= gbl->error_substage << 8; 3594 debug_info |= gbl->error_group << 16; 3595 3596 writel(debug_info, &sdr_reg_file->failing_stage); 3597 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3598 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3599 3600 /* Update the failing group/stage in the register file */ 3601 debug_info = gbl->error_stage; 3602 debug_info |= gbl->error_substage << 8; 3603 debug_info |= gbl->error_group << 16; 3604 writel(debug_info, &sdr_reg_file->failing_stage); 3605 } 3606 3607 printf("%s: Calibration complete\n", __FILE__); 3608 } 3609 3610 /** 3611 * hc_initialize_rom_data() - Initialize ROM data 3612 * 3613 * Initialize ROM data. 3614 */ 3615 static void hc_initialize_rom_data(void) 3616 { 3617 u32 i, addr; 3618 3619 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3620 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3621 writel(inst_rom_init[i], addr + (i << 2)); 3622 3623 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3624 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3625 writel(ac_rom_init[i], addr + (i << 2)); 3626 } 3627 3628 /** 3629 * initialize_reg_file() - Initialize SDR register file 3630 * 3631 * Initialize SDR register file. 3632 */ 3633 static void initialize_reg_file(void) 3634 { 3635 /* Initialize the register file with the correct data */ 3636 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3637 writel(0, &sdr_reg_file->debug_data_addr); 3638 writel(0, &sdr_reg_file->cur_stage); 3639 writel(0, &sdr_reg_file->fom); 3640 writel(0, &sdr_reg_file->failing_stage); 3641 writel(0, &sdr_reg_file->debug1); 3642 writel(0, &sdr_reg_file->debug2); 3643 } 3644 3645 /** 3646 * initialize_hps_phy() - Initialize HPS PHY 3647 * 3648 * Initialize HPS PHY. 3649 */ 3650 static void initialize_hps_phy(void) 3651 { 3652 uint32_t reg; 3653 /* 3654 * Tracking also gets configured here because it's in the 3655 * same register. 3656 */ 3657 uint32_t trk_sample_count = 7500; 3658 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3659 /* 3660 * Format is number of outer loops in the 16 MSB, sample 3661 * count in 16 LSB. 3662 */ 3663 3664 reg = 0; 3665 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3666 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3667 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3671 /* 3672 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3673 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3674 */ 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3677 trk_sample_count); 3678 writel(reg, &sdr_ctrl->phy_ctrl0); 3679 3680 reg = 0; 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3682 trk_sample_count >> 3683 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3685 trk_long_idle_sample_count); 3686 writel(reg, &sdr_ctrl->phy_ctrl1); 3687 3688 reg = 0; 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3690 trk_long_idle_sample_count >> 3691 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3692 writel(reg, &sdr_ctrl->phy_ctrl2); 3693 } 3694 3695 /** 3696 * initialize_tracking() - Initialize tracking 3697 * 3698 * Initialize the register file with usable initial data. 3699 */ 3700 static void initialize_tracking(void) 3701 { 3702 /* 3703 * Initialize the register file with the correct data. 3704 * Compute usable version of value in case we skip full 3705 * computation later. 3706 */ 3707 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3708 &sdr_reg_file->dtaps_per_ptap); 3709 3710 /* trk_sample_count */ 3711 writel(7500, &sdr_reg_file->trk_sample_count); 3712 3713 /* longidle outer loop [15:0] */ 3714 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3715 3716 /* 3717 * longidle sample count [31:24] 3718 * trfc, worst case of 933Mhz 4Gb [23:16] 3719 * trcd, worst case [15:8] 3720 * vfifo wait [7:0] 3721 */ 3722 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3723 &sdr_reg_file->delays); 3724 3725 /* mux delay */ 3726 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3727 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3728 &sdr_reg_file->trk_rw_mgr_addr); 3729 3730 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3731 &sdr_reg_file->trk_read_dqs_width); 3732 3733 /* trefi [7:0] */ 3734 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3735 &sdr_reg_file->trk_rfsh); 3736 } 3737 3738 int sdram_calibration_full(void) 3739 { 3740 struct param_type my_param; 3741 struct gbl_type my_gbl; 3742 uint32_t pass; 3743 3744 memset(&my_param, 0, sizeof(my_param)); 3745 memset(&my_gbl, 0, sizeof(my_gbl)); 3746 3747 param = &my_param; 3748 gbl = &my_gbl; 3749 3750 /* Set the calibration enabled by default */ 3751 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3752 /* 3753 * Only sweep all groups (regardless of fail state) by default 3754 * Set enabled read test by default. 3755 */ 3756 #if DISABLE_GUARANTEED_READ 3757 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3758 #endif 3759 /* Initialize the register file */ 3760 initialize_reg_file(); 3761 3762 /* Initialize any PHY CSR */ 3763 initialize_hps_phy(); 3764 3765 scc_mgr_initialize(); 3766 3767 initialize_tracking(); 3768 3769 printf("%s: Preparing to start memory calibration\n", __FILE__); 3770 3771 debug("%s:%d\n", __func__, __LINE__); 3772 debug_cond(DLEVEL == 1, 3773 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3774 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3775 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3776 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3777 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3778 debug_cond(DLEVEL == 1, 3779 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3780 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3781 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3782 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3783 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3784 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3785 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3786 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3787 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3788 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3789 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3790 IO_IO_OUT2_DELAY_MAX); 3791 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3792 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3793 3794 hc_initialize_rom_data(); 3795 3796 /* update info for sims */ 3797 reg_file_set_stage(CAL_STAGE_NIL); 3798 reg_file_set_group(0); 3799 3800 /* 3801 * Load global needed for those actions that require 3802 * some dynamic calibration support. 3803 */ 3804 dyn_calib_steps = STATIC_CALIB_STEPS; 3805 /* 3806 * Load global to allow dynamic selection of delay loop settings 3807 * based on calibration mode. 3808 */ 3809 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3810 skip_delay_mask = 0xff; 3811 else 3812 skip_delay_mask = 0x0; 3813 3814 pass = run_mem_calibrate(); 3815 debug_mem_calibrate(pass); 3816 return pass; 3817 } 3818