xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 4b0ac26a15a74664e51b49f1698fc42776edd3bc)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123 	u32 ratio;
124 
125 	debug("%s:%d\n", __func__, __LINE__);
126 	/* Calibration has control over path to memory */
127 	/*
128 	 * In Hard PHY this is a 2-bit control:
129 	 * 0: AFI Mux Select
130 	 * 1: DDIO Mux Select
131 	 */
132 	writel(0x3, &phy_mgr_cfg->mux_sel);
133 
134 	/* USER memory clock is not stable we begin initialization  */
135 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
136 
137 	/* USER calibration status all set to zero */
138 	writel(0, &phy_mgr_cfg->cal_status);
139 
140 	writel(0, &phy_mgr_cfg->cal_debug_info);
141 
142 	/* Init params only if we do NOT skip calibration. */
143 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144 		return;
145 
146 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148 	param->read_correct_mask_vg = (1 << ratio) - 1;
149 	param->write_correct_mask_vg = (1 << ratio) - 1;
150 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152 	ratio = RW_MGR_MEM_DATA_WIDTH /
153 		RW_MGR_MEM_DATA_MASK_WIDTH;
154 	param->dm_correct_mask = (1 << ratio) - 1;
155 }
156 
157 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
158 {
159 	uint32_t odt_mask_0 = 0;
160 	uint32_t odt_mask_1 = 0;
161 	uint32_t cs_and_odt_mask;
162 
163 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
164 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
165 			/*
166 			 * 1 Rank
167 			 * Read: ODT = 0
168 			 * Write: ODT = 1
169 			 */
170 			odt_mask_0 = 0x0;
171 			odt_mask_1 = 0x1;
172 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
173 			/* 2 Ranks */
174 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
175 				/* - Dual-Slot , Single-Rank
176 				 * (1 chip-select per DIMM)
177 				 * OR
178 				 * - RDIMM, 4 total CS (2 CS per DIMM)
179 				 * means 2 DIMM
180 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
181 				 * both single rank
182 				 * with 2 CS each (special for RDIMM)
183 				 * Read: Turn on ODT on the opposite rank
184 				 * Write: Turn on ODT on all ranks
185 				 */
186 				odt_mask_0 = 0x3 & ~(1 << rank);
187 				odt_mask_1 = 0x3;
188 			} else {
189 				/*
190 				 * USER - Single-Slot , Dual-rank DIMMs
191 				 * (2 chip-selects per DIMM)
192 				 * USER Read: Turn on ODT off on all ranks
193 				 * USER Write: Turn on ODT on active rank
194 				 */
195 				odt_mask_0 = 0x0;
196 				odt_mask_1 = 0x3 & (1 << rank);
197 			}
198 		} else {
199 			/* 4 Ranks
200 			 * Read:
201 			 * ----------+-----------------------+
202 			 *           |                       |
203 			 *           |         ODT           |
204 			 * Read From +-----------------------+
205 			 *   Rank    |  3  |  2  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *     0     |  0  |  1  |  0  |  0  |
208 			 *     1     |  1  |  0  |  0  |  0  |
209 			 *     2     |  0  |  0  |  0  |  1  |
210 			 *     3     |  0  |  0  |  1  |  0  |
211 			 * ----------+-----+-----+-----+-----+
212 			 *
213 			 * Write:
214 			 * ----------+-----------------------+
215 			 *           |                       |
216 			 *           |         ODT           |
217 			 * Write To  +-----------------------+
218 			 *   Rank    |  3  |  2  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *     0     |  0  |  1  |  0  |  1  |
221 			 *     1     |  1  |  0  |  1  |  0  |
222 			 *     2     |  0  |  1  |  0  |  1  |
223 			 *     3     |  1  |  0  |  1  |  0  |
224 			 * ----------+-----+-----+-----+-----+
225 			 */
226 			switch (rank) {
227 			case 0:
228 				odt_mask_0 = 0x4;
229 				odt_mask_1 = 0x5;
230 				break;
231 			case 1:
232 				odt_mask_0 = 0x8;
233 				odt_mask_1 = 0xA;
234 				break;
235 			case 2:
236 				odt_mask_0 = 0x1;
237 				odt_mask_1 = 0x5;
238 				break;
239 			case 3:
240 				odt_mask_0 = 0x2;
241 				odt_mask_1 = 0xA;
242 				break;
243 			}
244 		}
245 	} else {
246 		odt_mask_0 = 0x0;
247 		odt_mask_1 = 0x0;
248 	}
249 
250 	cs_and_odt_mask =
251 		(0xFF & ~(1 << rank)) |
252 		((0xFF & odt_mask_0) << 8) |
253 		((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /*
758  * should always use constants as argument to ensure all computations are
759  * performed at compile time
760  */
761 static void delay_for_n_mem_clocks(const uint32_t clocks)
762 {
763 	uint32_t afi_clocks;
764 	uint8_t inner = 0;
765 	uint8_t outer = 0;
766 	uint16_t c_loop = 0;
767 
768 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
769 
770 
771 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
772 	/* scale (rounding up) to get afi clocks */
773 
774 	/*
775 	 * Note, we don't bother accounting for being off a little bit
776 	 * because of a few extra instructions in outer loops
777 	 * Note, the loops have a test at the end, and do the test before
778 	 * the decrement, and so always perform the loop
779 	 * 1 time more than the counter value
780 	 */
781 	if (afi_clocks == 0) {
782 		;
783 	} else if (afi_clocks <= 0x100) {
784 		inner = afi_clocks-1;
785 		outer = 0;
786 		c_loop = 0;
787 	} else if (afi_clocks <= 0x10000) {
788 		inner = 0xff;
789 		outer = (afi_clocks-1) >> 8;
790 		c_loop = 0;
791 	} else {
792 		inner = 0xff;
793 		outer = 0xff;
794 		c_loop = (afi_clocks-1) >> 16;
795 	}
796 
797 	/*
798 	 * rom instructions are structured as follows:
799 	 *
800 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
801 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
802 	 *                return
803 	 *
804 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
805 	 * TARGET_B is set to IDLE_LOOP2 as well
806 	 *
807 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
808 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
809 	 *
810 	 * a little confusing, but it helps save precious space in the inst_rom
811 	 * and sequencer rom and keeps the delays more accurate and reduces
812 	 * overhead
813 	 */
814 	if (afi_clocks <= 0x100) {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr1);
817 
818 		writel(RW_MGR_IDLE_LOOP1,
819 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
820 
821 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
822 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
823 	} else {
824 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
825 			&sdr_rw_load_mgr_regs->load_cntr0);
826 
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
828 			&sdr_rw_load_mgr_regs->load_cntr1);
829 
830 		writel(RW_MGR_IDLE_LOOP2,
831 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
835 
836 		/* hack to get around compiler not being smart enough */
837 		if (afi_clocks <= 0x10000) {
838 			/* only need to run once */
839 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
840 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
841 		} else {
842 			do {
843 				writel(RW_MGR_IDLE_LOOP2,
844 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
845 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
846 			} while (c_loop-- != 0);
847 		}
848 	}
849 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
850 }
851 
852 /**
853  * rw_mgr_mem_init_load_regs() - Load instruction registers
854  * @cntr0:	Counter 0 value
855  * @cntr1:	Counter 1 value
856  * @cntr2:	Counter 2 value
857  * @jump:	Jump instruction value
858  *
859  * Load instruction registers.
860  */
861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
862 {
863 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
864 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
865 
866 	/* Load counters */
867 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
868 	       &sdr_rw_load_mgr_regs->load_cntr0);
869 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
870 	       &sdr_rw_load_mgr_regs->load_cntr1);
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
872 	       &sdr_rw_load_mgr_regs->load_cntr2);
873 
874 	/* Load jump address */
875 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
876 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
877 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
878 
879 	/* Execute count instruction */
880 	writel(jump, grpaddr);
881 }
882 
883 /**
884  * rw_mgr_mem_load_user() - Load user calibration values
885  * @fin1:	Final instruction 1
886  * @fin2:	Final instruction 2
887  * @precharge:	If 1, precharge the banks at the end
888  *
889  * Load user calibration values and optionally precharge the banks.
890  */
891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
892 				 const int precharge)
893 {
894 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
895 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
896 	u32 r;
897 
898 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
899 		if (param->skip_ranks[r]) {
900 			/* request to skip the rank */
901 			continue;
902 		}
903 
904 		/* set rank */
905 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
906 
907 		/* precharge all banks ... */
908 		if (precharge)
909 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
910 
911 		/*
912 		 * USER Use Mirror-ed commands for odd ranks if address
913 		 * mirrorring is on
914 		 */
915 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
916 			set_jump_as_return();
917 			writel(RW_MGR_MRS2_MIRR, grpaddr);
918 			delay_for_n_mem_clocks(4);
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS3_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS1_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(fin1, grpaddr);
927 		} else {
928 			set_jump_as_return();
929 			writel(RW_MGR_MRS2, grpaddr);
930 			delay_for_n_mem_clocks(4);
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS3, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS1, grpaddr);
936 			set_jump_as_return();
937 			writel(fin2, grpaddr);
938 		}
939 
940 		if (precharge)
941 			continue;
942 
943 		set_jump_as_return();
944 		writel(RW_MGR_ZQCL, grpaddr);
945 
946 		/* tZQinit = tDLLK = 512 ck cycles */
947 		delay_for_n_mem_clocks(512);
948 	}
949 }
950 
951 static void rw_mgr_mem_initialize(void)
952 {
953 	debug("%s:%d\n", __func__, __LINE__);
954 
955 	/* The reset / cke part of initialization is broadcasted to all ranks */
956 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
957 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
958 
959 	/*
960 	 * Here's how you load register for a loop
961 	 * Counters are located @ 0x800
962 	 * Jump address are located @ 0xC00
963 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
964 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
965 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
966 	 * significant bits
967 	 */
968 
969 	/* start with memory RESET activated */
970 
971 	/* tINIT = 200us */
972 
973 	/*
974 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
975 	 * If a and b are the number of iteration in 2 nested loops
976 	 * it takes the following number of cycles to complete the operation:
977 	 * number_of_cycles = ((2 + n) * a + 2) * b
978 	 * where n is the number of instruction in the inner loop
979 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
980 	 * b = 6A
981 	 */
982 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
983 				  SEQ_TINIT_CNTR2_VAL,
984 				  RW_MGR_INIT_RESET_0_CKE_0);
985 
986 	/* indicate that memory is stable */
987 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
988 
989 	/*
990 	 * transition the RESET to high
991 	 * Wait for 500us
992 	 */
993 
994 	/*
995 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
996 	 * If a and b are the number of iteration in 2 nested loops
997 	 * it takes the following number of cycles to complete the operation
998 	 * number_of_cycles = ((2 + n) * a + 2) * b
999 	 * where n is the number of instruction in the inner loop
1000 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1001 	 * b = FF
1002 	 */
1003 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1004 				  SEQ_TRESET_CNTR2_VAL,
1005 				  RW_MGR_INIT_RESET_1_CKE_0);
1006 
1007 	/* bring up clock enable */
1008 
1009 	/* tXRP < 250 ck cycles */
1010 	delay_for_n_mem_clocks(250);
1011 
1012 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1013 			     0);
1014 }
1015 
1016 /*
1017  * At the end of calibration we have to program the user settings in, and
1018  * USER  hand off the memory to the user.
1019  */
1020 static void rw_mgr_mem_handoff(void)
1021 {
1022 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1023 	/*
1024 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1025 	 * other commands, but we will have plenty of NIOS cycles before
1026 	 * actual handoff so its okay.
1027 	 */
1028 }
1029 
1030 /*
1031  * performs a guaranteed read on the patterns we are going to use during a
1032  * read test to ensure memory works
1033  */
1034 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1035 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1036 	uint32_t all_ranks)
1037 {
1038 	uint32_t r, vg;
1039 	uint32_t correct_mask_vg;
1040 	uint32_t tmp_bit_chk;
1041 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1042 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1043 	uint32_t addr;
1044 	uint32_t base_rw_mgr;
1045 
1046 	*bit_chk = param->read_correct_mask;
1047 	correct_mask_vg = param->read_correct_mask_vg;
1048 
1049 	for (r = rank_bgn; r < rank_end; r++) {
1050 		if (param->skip_ranks[r])
1051 			/* request to skip the rank */
1052 			continue;
1053 
1054 		/* set rank */
1055 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1056 
1057 		/* Load up a constant bursts of read commands */
1058 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1059 		writel(RW_MGR_GUARANTEED_READ,
1060 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1061 
1062 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1063 		writel(RW_MGR_GUARANTEED_READ_CONT,
1064 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1065 
1066 		tmp_bit_chk = 0;
1067 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1068 			/* reset the fifos to get pointers to known state */
1069 
1070 			writel(0, &phy_mgr_cmd->fifo_reset);
1071 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1072 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1073 
1074 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1075 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1076 
1077 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1078 			writel(RW_MGR_GUARANTEED_READ, addr +
1079 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1080 				vg) << 2));
1081 
1082 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1083 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1084 
1085 			if (vg == 0)
1086 				break;
1087 		}
1088 		*bit_chk &= tmp_bit_chk;
1089 	}
1090 
1091 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1092 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1093 
1094 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1095 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1096 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1097 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1098 	return *bit_chk == param->read_correct_mask;
1099 }
1100 
1101 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1102 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1103 {
1104 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1105 		num_tries, bit_chk, 1);
1106 }
1107 
1108 /* load up the patterns we are going to use during a read test */
1109 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1110 	uint32_t all_ranks)
1111 {
1112 	uint32_t r;
1113 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1114 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1115 
1116 	debug("%s:%d\n", __func__, __LINE__);
1117 	for (r = rank_bgn; r < rank_end; r++) {
1118 		if (param->skip_ranks[r])
1119 			/* request to skip the rank */
1120 			continue;
1121 
1122 		/* set rank */
1123 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1124 
1125 		/* Load up a constant bursts */
1126 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1127 
1128 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1129 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1130 
1131 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1132 
1133 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1134 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1135 
1136 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1137 
1138 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1139 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1140 
1141 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1142 
1143 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1144 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1145 
1146 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1147 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1148 	}
1149 
1150 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1151 }
1152 
1153 /*
1154  * try a read and see if it returns correct data back. has dummy reads
1155  * inserted into the mix used to align dqs enable. has more thorough checks
1156  * than the regular read test.
1157  */
1158 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1159 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1160 	uint32_t all_groups, uint32_t all_ranks)
1161 {
1162 	uint32_t r, vg;
1163 	uint32_t correct_mask_vg;
1164 	uint32_t tmp_bit_chk;
1165 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1166 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1167 	uint32_t addr;
1168 	uint32_t base_rw_mgr;
1169 
1170 	*bit_chk = param->read_correct_mask;
1171 	correct_mask_vg = param->read_correct_mask_vg;
1172 
1173 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1174 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1175 
1176 	for (r = rank_bgn; r < rank_end; r++) {
1177 		if (param->skip_ranks[r])
1178 			/* request to skip the rank */
1179 			continue;
1180 
1181 		/* set rank */
1182 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1183 
1184 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1185 
1186 		writel(RW_MGR_READ_B2B_WAIT1,
1187 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1188 
1189 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1190 		writel(RW_MGR_READ_B2B_WAIT2,
1191 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1192 
1193 		if (quick_read_mode)
1194 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1195 			/* need at least two (1+1) reads to capture failures */
1196 		else if (all_groups)
1197 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1198 		else
1199 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1200 
1201 		writel(RW_MGR_READ_B2B,
1202 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1203 		if (all_groups)
1204 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1205 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1206 			       &sdr_rw_load_mgr_regs->load_cntr3);
1207 		else
1208 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1209 
1210 		writel(RW_MGR_READ_B2B,
1211 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1212 
1213 		tmp_bit_chk = 0;
1214 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1215 			/* reset the fifos to get pointers to known state */
1216 			writel(0, &phy_mgr_cmd->fifo_reset);
1217 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1218 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1219 
1220 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1221 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1222 
1223 			if (all_groups)
1224 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1225 			else
1226 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1227 
1228 			writel(RW_MGR_READ_B2B, addr +
1229 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1230 			       vg) << 2));
1231 
1232 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1233 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1234 
1235 			if (vg == 0)
1236 				break;
1237 		}
1238 		*bit_chk &= tmp_bit_chk;
1239 	}
1240 
1241 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1242 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1243 
1244 	if (all_correct) {
1245 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1246 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1247 			   (%u == %u) => %lu", __func__, __LINE__, group,
1248 			   all_groups, *bit_chk, param->read_correct_mask,
1249 			   (long unsigned int)(*bit_chk ==
1250 			   param->read_correct_mask));
1251 		return *bit_chk == param->read_correct_mask;
1252 	} else	{
1253 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1254 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1255 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1256 			   group, all_groups, *bit_chk, (long unsigned int)0,
1257 			   (long unsigned int)(*bit_chk != 0x00));
1258 		return *bit_chk != 0x00;
1259 	}
1260 }
1261 
1262 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1263 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1264 	uint32_t all_groups)
1265 {
1266 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1267 					      bit_chk, all_groups, 1);
1268 }
1269 
1270 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1271 {
1272 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1273 	(*v)++;
1274 }
1275 
1276 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1277 {
1278 	uint32_t i;
1279 
1280 	for (i = 0; i < VFIFO_SIZE-1; i++)
1281 		rw_mgr_incr_vfifo(grp, v);
1282 }
1283 
1284 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1285 {
1286 	uint32_t  v;
1287 	uint32_t fail_cnt = 0;
1288 	uint32_t test_status;
1289 
1290 	for (v = 0; v < VFIFO_SIZE; ) {
1291 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1292 			   __func__, __LINE__, v);
1293 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1294 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1295 		if (!test_status) {
1296 			fail_cnt++;
1297 
1298 			if (fail_cnt == 2)
1299 				break;
1300 		}
1301 
1302 		/* fiddle with FIFO */
1303 		rw_mgr_incr_vfifo(grp, &v);
1304 	}
1305 
1306 	if (v >= VFIFO_SIZE) {
1307 		/* no failing read found!! Something must have gone wrong */
1308 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1309 			   __func__, __LINE__);
1310 		return 0;
1311 	} else {
1312 		return v;
1313 	}
1314 }
1315 
1316 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1317 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1318 			      uint32_t *v, uint32_t *d, uint32_t *p,
1319 			      uint32_t *i, uint32_t *max_working_cnt)
1320 {
1321 	uint32_t found_begin = 0;
1322 	uint32_t tmp_delay = 0;
1323 	uint32_t test_status;
1324 
1325 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1326 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1327 		*work_bgn = tmp_delay;
1328 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1329 
1330 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1331 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1332 				IO_DELAY_PER_OPA_TAP) {
1333 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1334 
1335 				test_status =
1336 				rw_mgr_mem_calibrate_read_test_all_ranks
1337 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1338 
1339 				if (test_status) {
1340 					*max_working_cnt = 1;
1341 					found_begin = 1;
1342 					break;
1343 				}
1344 			}
1345 
1346 			if (found_begin)
1347 				break;
1348 
1349 			if (*p > IO_DQS_EN_PHASE_MAX)
1350 				/* fiddle with FIFO */
1351 				rw_mgr_incr_vfifo(*grp, v);
1352 		}
1353 
1354 		if (found_begin)
1355 			break;
1356 	}
1357 
1358 	if (*i >= VFIFO_SIZE) {
1359 		/* cannot find working solution */
1360 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1361 			   ptap/dtap\n", __func__, __LINE__);
1362 		return 0;
1363 	} else {
1364 		return 1;
1365 	}
1366 }
1367 
1368 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1369 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1370 			     uint32_t *p, uint32_t *max_working_cnt)
1371 {
1372 	uint32_t found_begin = 0;
1373 	uint32_t tmp_delay;
1374 
1375 	/* Special case code for backing up a phase */
1376 	if (*p == 0) {
1377 		*p = IO_DQS_EN_PHASE_MAX;
1378 		rw_mgr_decr_vfifo(*grp, v);
1379 	} else {
1380 		(*p)--;
1381 	}
1382 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1383 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1384 
1385 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1386 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1387 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1388 
1389 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1390 							     PASS_ONE_BIT,
1391 							     bit_chk, 0)) {
1392 			found_begin = 1;
1393 			*work_bgn = tmp_delay;
1394 			break;
1395 		}
1396 	}
1397 
1398 	/* We have found a working dtap before the ptap found above */
1399 	if (found_begin == 1)
1400 		(*max_working_cnt)++;
1401 
1402 	/*
1403 	 * Restore VFIFO to old state before we decremented it
1404 	 * (if needed).
1405 	 */
1406 	(*p)++;
1407 	if (*p > IO_DQS_EN_PHASE_MAX) {
1408 		*p = 0;
1409 		rw_mgr_incr_vfifo(*grp, v);
1410 	}
1411 
1412 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1413 }
1414 
1415 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1416 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1417 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1418 			     uint32_t *work_end)
1419 {
1420 	uint32_t found_end = 0;
1421 
1422 	(*p)++;
1423 	*work_end += IO_DELAY_PER_OPA_TAP;
1424 	if (*p > IO_DQS_EN_PHASE_MAX) {
1425 		/* fiddle with FIFO */
1426 		*p = 0;
1427 		rw_mgr_incr_vfifo(*grp, v);
1428 	}
1429 
1430 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1431 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1432 			+= IO_DELAY_PER_OPA_TAP) {
1433 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1434 
1435 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1436 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1437 				found_end = 1;
1438 				break;
1439 			} else {
1440 				(*max_working_cnt)++;
1441 			}
1442 		}
1443 
1444 		if (found_end)
1445 			break;
1446 
1447 		if (*p > IO_DQS_EN_PHASE_MAX) {
1448 			/* fiddle with FIFO */
1449 			rw_mgr_incr_vfifo(*grp, v);
1450 			*p = 0;
1451 		}
1452 	}
1453 
1454 	if (*i >= VFIFO_SIZE + 1) {
1455 		/* cannot see edge of failing read */
1456 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1457 			   failed\n", __func__, __LINE__);
1458 		return 0;
1459 	} else {
1460 		return 1;
1461 	}
1462 }
1463 
1464 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1465 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1466 				  uint32_t *p, uint32_t *work_mid,
1467 				  uint32_t *work_end)
1468 {
1469 	int i;
1470 	int tmp_delay = 0;
1471 
1472 	*work_mid = (*work_bgn + *work_end) / 2;
1473 
1474 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1475 		   *work_bgn, *work_end, *work_mid);
1476 	/* Get the middle delay to be less than a VFIFO delay */
1477 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1478 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1479 		;
1480 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1481 	while (*work_mid > tmp_delay)
1482 		*work_mid -= tmp_delay;
1483 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1484 
1485 	tmp_delay = 0;
1486 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1487 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1488 		;
1489 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1490 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1491 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1492 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1493 		;
1494 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1495 
1496 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1497 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1498 
1499 	/*
1500 	 * push vfifo until we can successfully calibrate. We can do this
1501 	 * because the largest possible margin in 1 VFIFO cycle.
1502 	 */
1503 	for (i = 0; i < VFIFO_SIZE; i++) {
1504 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1505 			   *v);
1506 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1507 							     PASS_ONE_BIT,
1508 							     bit_chk, 0)) {
1509 			break;
1510 		}
1511 
1512 		/* fiddle with FIFO */
1513 		rw_mgr_incr_vfifo(*grp, v);
1514 	}
1515 
1516 	if (i >= VFIFO_SIZE) {
1517 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1518 			   failed\n", __func__, __LINE__);
1519 		return 0;
1520 	} else {
1521 		return 1;
1522 	}
1523 }
1524 
1525 /* find a good dqs enable to use */
1526 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1527 {
1528 	uint32_t v, d, p, i;
1529 	uint32_t max_working_cnt;
1530 	uint32_t bit_chk;
1531 	uint32_t dtaps_per_ptap;
1532 	uint32_t work_bgn, work_mid, work_end;
1533 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1534 
1535 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1536 
1537 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1538 
1539 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1540 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1541 
1542 	/* ************************************************************** */
1543 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1544 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1545 
1546 	/* ********************************************************* */
1547 	/* * Step 1 : First push vfifo until we get a failing read * */
1548 	v = find_vfifo_read(grp, &bit_chk);
1549 
1550 	max_working_cnt = 0;
1551 
1552 	/* ******************************************************** */
1553 	/* * step 2: find first working phase, increment in ptaps * */
1554 	work_bgn = 0;
1555 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1556 				&p, &i, &max_working_cnt) == 0)
1557 		return 0;
1558 
1559 	work_end = work_bgn;
1560 
1561 	/*
1562 	 * If d is 0 then the working window covers a phase tap and
1563 	 * we can follow the old procedure otherwise, we've found the beginning,
1564 	 * and we need to increment the dtaps until we find the end.
1565 	 */
1566 	if (d == 0) {
1567 		/* ********************************************************* */
1568 		/* * step 3a: if we have room, back off by one and
1569 		increment in dtaps * */
1570 
1571 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1572 				 &max_working_cnt);
1573 
1574 		/* ********************************************************* */
1575 		/* * step 4a: go forward from working phase to non working
1576 		phase, increment in ptaps * */
1577 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1578 					 &i, &max_working_cnt, &work_end) == 0)
1579 			return 0;
1580 
1581 		/* ********************************************************* */
1582 		/* * step 5a:  back off one from last, increment in dtaps  * */
1583 
1584 		/* Special case code for backing up a phase */
1585 		if (p == 0) {
1586 			p = IO_DQS_EN_PHASE_MAX;
1587 			rw_mgr_decr_vfifo(grp, &v);
1588 		} else {
1589 			p = p - 1;
1590 		}
1591 
1592 		work_end -= IO_DELAY_PER_OPA_TAP;
1593 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1594 
1595 		/* * The actual increment of dtaps is done outside of
1596 		the if/else loop to share code */
1597 		d = 0;
1598 
1599 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1600 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1601 			   v, p);
1602 	} else {
1603 		/* ******************************************************* */
1604 		/* * step 3-5b:  Find the right edge of the window using
1605 		delay taps   * */
1606 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1607 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1608 			   v, p, d, work_bgn);
1609 
1610 		work_end = work_bgn;
1611 
1612 		/* * The actual increment of dtaps is done outside of the
1613 		if/else loop to share code */
1614 
1615 		/* Only here to counterbalance a subtract later on which is
1616 		not needed if this branch of the algorithm is taken */
1617 		max_working_cnt++;
1618 	}
1619 
1620 	/* The dtap increment to find the failing edge is done here */
1621 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1622 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1623 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1624 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1625 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1626 
1627 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1628 								      PASS_ONE_BIT,
1629 								      &bit_chk, 0)) {
1630 				break;
1631 			}
1632 	}
1633 
1634 	/* Go back to working dtap */
1635 	if (d != 0)
1636 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1637 
1638 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1639 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1640 		   v, p, d-1, work_end);
1641 
1642 	if (work_end < work_bgn) {
1643 		/* nil range */
1644 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1645 			   failed\n", __func__, __LINE__);
1646 		return 0;
1647 	}
1648 
1649 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1650 		   __func__, __LINE__, work_bgn, work_end);
1651 
1652 	/* *************************************************************** */
1653 	/*
1654 	 * * We need to calculate the number of dtaps that equal a ptap
1655 	 * * To do that we'll back up a ptap and re-find the edge of the
1656 	 * * window using dtaps
1657 	 */
1658 
1659 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1660 		   for tracking\n", __func__, __LINE__);
1661 
1662 	/* Special case code for backing up a phase */
1663 	if (p == 0) {
1664 		p = IO_DQS_EN_PHASE_MAX;
1665 		rw_mgr_decr_vfifo(grp, &v);
1666 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1667 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1668 			   v, p);
1669 	} else {
1670 		p = p - 1;
1671 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1672 			   phase only: v=%u p=%u", __func__, __LINE__,
1673 			   v, p);
1674 	}
1675 
1676 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1677 
1678 	/*
1679 	 * Increase dtap until we first see a passing read (in case the
1680 	 * window is smaller than a ptap),
1681 	 * and then a failing read to mark the edge of the window again
1682 	 */
1683 
1684 	/* Find a passing read */
1685 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1686 		   __func__, __LINE__);
1687 	found_passing_read = 0;
1688 	found_failing_read = 0;
1689 	initial_failing_dtap = d;
1690 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1691 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1692 			   read d=%u\n", __func__, __LINE__, d);
1693 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1694 
1695 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1696 							     PASS_ONE_BIT,
1697 							     &bit_chk, 0)) {
1698 			found_passing_read = 1;
1699 			break;
1700 		}
1701 	}
1702 
1703 	if (found_passing_read) {
1704 		/* Find a failing read */
1705 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1706 			   read\n", __func__, __LINE__);
1707 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1708 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1709 				   testing read d=%u\n", __func__, __LINE__, d);
1710 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1711 
1712 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1713 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1714 				found_failing_read = 1;
1715 				break;
1716 			}
1717 		}
1718 	} else {
1719 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1720 			   calculate dtaps", __func__, __LINE__);
1721 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1722 	}
1723 
1724 	/*
1725 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1726 	 * found a passing/failing read. If we didn't, it means d hit the max
1727 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1728 	 * statically calculated value.
1729 	 */
1730 	if (found_passing_read && found_failing_read)
1731 		dtaps_per_ptap = d - initial_failing_dtap;
1732 
1733 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1734 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1735 		   - %u = %u",  __func__, __LINE__, d,
1736 		   initial_failing_dtap, dtaps_per_ptap);
1737 
1738 	/* ******************************************** */
1739 	/* * step 6:  Find the centre of the window   * */
1740 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1741 				   &work_mid, &work_end) == 0)
1742 		return 0;
1743 
1744 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1745 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1746 		   v, p-1, d);
1747 	return 1;
1748 }
1749 
1750 /*
1751  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1752  * dq_in_delay values
1753  */
1754 static uint32_t
1755 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1756 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1757 {
1758 	uint32_t found;
1759 	uint32_t i;
1760 	uint32_t p;
1761 	uint32_t d;
1762 	uint32_t r;
1763 
1764 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1765 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1766 		/* we start at zero, so have one less dq to devide among */
1767 
1768 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1769 	      test_bgn);
1770 
1771 	/* try different dq_in_delays since the dq path is shorter than dqs */
1772 
1773 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1774 	     r += NUM_RANKS_PER_SHADOW_REG) {
1775 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1776 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1777 				   vfifo_find_dqs_", __func__, __LINE__);
1778 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1779 			       write_group, read_group);
1780 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1781 			scc_mgr_set_dq_in_delay(p, d);
1782 			scc_mgr_load_dq(p);
1783 		}
1784 		writel(0, &sdr_scc_mgr->update);
1785 	}
1786 
1787 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1788 
1789 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1790 		   en_phase_sweep_dq", __func__, __LINE__);
1791 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1792 		   chain to zero\n", write_group, read_group, found);
1793 
1794 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1795 	     r += NUM_RANKS_PER_SHADOW_REG) {
1796 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1797 			i++, p++) {
1798 			scc_mgr_set_dq_in_delay(p, 0);
1799 			scc_mgr_load_dq(p);
1800 		}
1801 		writel(0, &sdr_scc_mgr->update);
1802 	}
1803 
1804 	return found;
1805 }
1806 
1807 /* per-bit deskew DQ and center */
1808 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1809 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1810 	uint32_t use_read_test, uint32_t update_fom)
1811 {
1812 	uint32_t i, p, d, min_index;
1813 	/*
1814 	 * Store these as signed since there are comparisons with
1815 	 * signed numbers.
1816 	 */
1817 	uint32_t bit_chk;
1818 	uint32_t sticky_bit_chk;
1819 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1820 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1821 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1822 	int32_t mid;
1823 	int32_t orig_mid_min, mid_min;
1824 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1825 		final_dqs_en;
1826 	int32_t dq_margin, dqs_margin;
1827 	uint32_t stop;
1828 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1829 	uint32_t addr;
1830 
1831 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1832 
1833 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1834 	start_dqs = readl(addr + (read_group << 2));
1835 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1836 		start_dqs_en = readl(addr + ((read_group << 2)
1837 				     - IO_DQS_EN_DELAY_OFFSET));
1838 
1839 	/* set the left and right edge of each bit to an illegal value */
1840 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1841 	sticky_bit_chk = 0;
1842 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1843 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1844 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1845 	}
1846 
1847 	/* Search for the left edge of the window for each bit */
1848 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1849 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1850 
1851 		writel(0, &sdr_scc_mgr->update);
1852 
1853 		/*
1854 		 * Stop searching when the read test doesn't pass AND when
1855 		 * we've seen a passing read on every bit.
1856 		 */
1857 		if (use_read_test) {
1858 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1859 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1860 				&bit_chk, 0, 0);
1861 		} else {
1862 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1863 							0, PASS_ONE_BIT,
1864 							&bit_chk, 0);
1865 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1866 				(read_group - (write_group *
1867 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1868 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1869 			stop = (bit_chk == 0);
1870 		}
1871 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1872 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1873 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1874 			   && %u", __func__, __LINE__, d,
1875 			   sticky_bit_chk,
1876 			param->read_correct_mask, stop);
1877 
1878 		if (stop == 1) {
1879 			break;
1880 		} else {
1881 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1882 				if (bit_chk & 1) {
1883 					/* Remember a passing test as the
1884 					left_edge */
1885 					left_edge[i] = d;
1886 				} else {
1887 					/* If a left edge has not been seen yet,
1888 					then a future passing test will mark
1889 					this edge as the right edge */
1890 					if (left_edge[i] ==
1891 						IO_IO_IN_DELAY_MAX + 1) {
1892 						right_edge[i] = -(d + 1);
1893 					}
1894 				}
1895 				bit_chk = bit_chk >> 1;
1896 			}
1897 		}
1898 	}
1899 
1900 	/* Reset DQ delay chains to 0 */
1901 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1902 	sticky_bit_chk = 0;
1903 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1904 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1905 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1906 			   i, left_edge[i], i, right_edge[i]);
1907 
1908 		/*
1909 		 * Check for cases where we haven't found the left edge,
1910 		 * which makes our assignment of the the right edge invalid.
1911 		 * Reset it to the illegal value.
1912 		 */
1913 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1914 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1915 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1916 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1917 				   right_edge[%u]: %d\n", __func__, __LINE__,
1918 				   i, right_edge[i]);
1919 		}
1920 
1921 		/*
1922 		 * Reset sticky bit (except for bits where we have seen
1923 		 * both the left and right edge).
1924 		 */
1925 		sticky_bit_chk = sticky_bit_chk << 1;
1926 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1927 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1928 			sticky_bit_chk = sticky_bit_chk | 1;
1929 		}
1930 
1931 		if (i == 0)
1932 			break;
1933 	}
1934 
1935 	/* Search for the right edge of the window for each bit */
1936 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1937 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1938 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1939 			uint32_t delay = d + start_dqs_en;
1940 			if (delay > IO_DQS_EN_DELAY_MAX)
1941 				delay = IO_DQS_EN_DELAY_MAX;
1942 			scc_mgr_set_dqs_en_delay(read_group, delay);
1943 		}
1944 		scc_mgr_load_dqs(read_group);
1945 
1946 		writel(0, &sdr_scc_mgr->update);
1947 
1948 		/*
1949 		 * Stop searching when the read test doesn't pass AND when
1950 		 * we've seen a passing read on every bit.
1951 		 */
1952 		if (use_read_test) {
1953 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1954 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1955 				&bit_chk, 0, 0);
1956 		} else {
1957 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1958 							0, PASS_ONE_BIT,
1959 							&bit_chk, 0);
1960 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1961 				(read_group - (write_group *
1962 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1963 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1964 			stop = (bit_chk == 0);
1965 		}
1966 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1967 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1968 
1969 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1970 			   %u && %u", __func__, __LINE__, d,
1971 			   sticky_bit_chk, param->read_correct_mask, stop);
1972 
1973 		if (stop == 1) {
1974 			break;
1975 		} else {
1976 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1977 				if (bit_chk & 1) {
1978 					/* Remember a passing test as
1979 					the right_edge */
1980 					right_edge[i] = d;
1981 				} else {
1982 					if (d != 0) {
1983 						/* If a right edge has not been
1984 						seen yet, then a future passing
1985 						test will mark this edge as the
1986 						left edge */
1987 						if (right_edge[i] ==
1988 						IO_IO_IN_DELAY_MAX + 1) {
1989 							left_edge[i] = -(d + 1);
1990 						}
1991 					} else {
1992 						/* d = 0 failed, but it passed
1993 						when testing the left edge,
1994 						so it must be marginal,
1995 						set it to -1 */
1996 						if (right_edge[i] ==
1997 							IO_IO_IN_DELAY_MAX + 1 &&
1998 							left_edge[i] !=
1999 							IO_IO_IN_DELAY_MAX
2000 							+ 1) {
2001 							right_edge[i] = -1;
2002 						}
2003 						/* If a right edge has not been
2004 						seen yet, then a future passing
2005 						test will mark this edge as the
2006 						left edge */
2007 						else if (right_edge[i] ==
2008 							IO_IO_IN_DELAY_MAX +
2009 							1) {
2010 							left_edge[i] = -(d + 1);
2011 						}
2012 					}
2013 				}
2014 
2015 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2016 					   d=%u]: ", __func__, __LINE__, d);
2017 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2018 					   (int)(bit_chk & 1), i, left_edge[i]);
2019 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2020 					   right_edge[i]);
2021 				bit_chk = bit_chk >> 1;
2022 			}
2023 		}
2024 	}
2025 
2026 	/* Check that all bits have a window */
2027 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2028 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2029 			   %d right_edge[%u]: %d", __func__, __LINE__,
2030 			   i, left_edge[i], i, right_edge[i]);
2031 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2032 			== IO_IO_IN_DELAY_MAX + 1)) {
2033 			/*
2034 			 * Restore delay chain settings before letting the loop
2035 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2036 			 * dqs/ck relationships.
2037 			 */
2038 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2039 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2040 				scc_mgr_set_dqs_en_delay(read_group,
2041 							 start_dqs_en);
2042 			}
2043 			scc_mgr_load_dqs(read_group);
2044 			writel(0, &sdr_scc_mgr->update);
2045 
2046 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2047 				   find edge [%u]: %d %d", __func__, __LINE__,
2048 				   i, left_edge[i], right_edge[i]);
2049 			if (use_read_test) {
2050 				set_failing_group_stage(read_group *
2051 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2052 					CAL_STAGE_VFIFO,
2053 					CAL_SUBSTAGE_VFIFO_CENTER);
2054 			} else {
2055 				set_failing_group_stage(read_group *
2056 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2057 					CAL_STAGE_VFIFO_AFTER_WRITES,
2058 					CAL_SUBSTAGE_VFIFO_CENTER);
2059 			}
2060 			return 0;
2061 		}
2062 	}
2063 
2064 	/* Find middle of window for each DQ bit */
2065 	mid_min = left_edge[0] - right_edge[0];
2066 	min_index = 0;
2067 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2068 		mid = left_edge[i] - right_edge[i];
2069 		if (mid < mid_min) {
2070 			mid_min = mid;
2071 			min_index = i;
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * -mid_min/2 represents the amount that we need to move DQS.
2077 	 * If mid_min is odd and positive we'll need to add one to
2078 	 * make sure the rounding in further calculations is correct
2079 	 * (always bias to the right), so just add 1 for all positive values.
2080 	 */
2081 	if (mid_min > 0)
2082 		mid_min++;
2083 
2084 	mid_min = mid_min / 2;
2085 
2086 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2087 		   __func__, __LINE__, mid_min, min_index);
2088 
2089 	/* Determine the amount we can change DQS (which is -mid_min) */
2090 	orig_mid_min = mid_min;
2091 	new_dqs = start_dqs - mid_min;
2092 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2093 		new_dqs = IO_DQS_IN_DELAY_MAX;
2094 	else if (new_dqs < 0)
2095 		new_dqs = 0;
2096 
2097 	mid_min = start_dqs - new_dqs;
2098 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2099 		   mid_min, new_dqs);
2100 
2101 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2102 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2103 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2104 		else if (start_dqs_en - mid_min < 0)
2105 			mid_min += start_dqs_en - mid_min;
2106 	}
2107 	new_dqs = start_dqs - mid_min;
2108 
2109 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2110 		   new_dqs=%d mid_min=%d\n", start_dqs,
2111 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2112 		   new_dqs, mid_min);
2113 
2114 	/* Initialize data for export structures */
2115 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2116 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2117 
2118 	/* add delay to bring centre of all DQ windows to the same "level" */
2119 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2120 		/* Use values before divide by 2 to reduce round off error */
2121 		shift_dq = (left_edge[i] - right_edge[i] -
2122 			(left_edge[min_index] - right_edge[min_index]))/2  +
2123 			(orig_mid_min - mid_min);
2124 
2125 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2126 			   shift_dq[%u]=%d\n", i, shift_dq);
2127 
2128 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2129 		temp_dq_in_delay1 = readl(addr + (p << 2));
2130 		temp_dq_in_delay2 = readl(addr + (i << 2));
2131 
2132 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2133 			(int32_t)IO_IO_IN_DELAY_MAX) {
2134 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2135 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2136 			shift_dq = -(int32_t)temp_dq_in_delay1;
2137 		}
2138 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2139 			   shift_dq[%u]=%d\n", i, shift_dq);
2140 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2141 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2142 		scc_mgr_load_dq(p);
2143 
2144 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2145 			   left_edge[i] - shift_dq + (-mid_min),
2146 			   right_edge[i] + shift_dq - (-mid_min));
2147 		/* To determine values for export structures */
2148 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2149 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2150 
2151 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2152 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2153 	}
2154 
2155 	final_dqs = new_dqs;
2156 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2157 		final_dqs_en = start_dqs_en - mid_min;
2158 
2159 	/* Move DQS-en */
2160 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2161 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2162 		scc_mgr_load_dqs(read_group);
2163 	}
2164 
2165 	/* Move DQS */
2166 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2167 	scc_mgr_load_dqs(read_group);
2168 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2169 		   dqs_margin=%d", __func__, __LINE__,
2170 		   dq_margin, dqs_margin);
2171 
2172 	/*
2173 	 * Do not remove this line as it makes sure all of our decisions
2174 	 * have been applied. Apply the update bit.
2175 	 */
2176 	writel(0, &sdr_scc_mgr->update);
2177 
2178 	return (dq_margin >= 0) && (dqs_margin >= 0);
2179 }
2180 
2181 /*
2182  * calibrate the read valid prediction FIFO.
2183  *
2184  *  - read valid prediction will consist of finding a good DQS enable phase,
2185  * DQS enable delay, DQS input phase, and DQS input delay.
2186  *  - we also do a per-bit deskew on the DQ lines.
2187  */
2188 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2189 					   uint32_t test_bgn)
2190 {
2191 	uint32_t p, d, rank_bgn, sr;
2192 	uint32_t dtaps_per_ptap;
2193 	uint32_t bit_chk;
2194 	uint32_t grp_calibrated;
2195 	uint32_t write_group, write_test_bgn;
2196 	uint32_t failed_substage;
2197 
2198 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2199 
2200 	/* update info for sims */
2201 	reg_file_set_stage(CAL_STAGE_VFIFO);
2202 
2203 	write_group = read_group;
2204 	write_test_bgn = test_bgn;
2205 
2206 	/* USER Determine number of delay taps for each phase tap */
2207 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2208 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2209 
2210 	/* update info for sims */
2211 	reg_file_set_group(read_group);
2212 
2213 	grp_calibrated = 0;
2214 
2215 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2216 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2217 
2218 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2219 		/*
2220 		 * In RLDRAMX we may be messing the delay of pins in
2221 		 * the same write group but outside of the current read
2222 		 * the group, but that's ok because we haven't
2223 		 * calibrated output side yet.
2224 		 */
2225 		if (d > 0) {
2226 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2227 								write_group, d);
2228 		}
2229 
2230 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2231 			p++) {
2232 			/* set a particular dqdqs phase */
2233 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2234 
2235 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2236 				   p=%u d=%u\n", __func__, __LINE__,
2237 				   read_group, p, d);
2238 
2239 			/*
2240 			 * Load up the patterns used by read calibration
2241 			 * using current DQDQS phase.
2242 			 */
2243 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2244 			if (!(gbl->phy_debug_mode_flags &
2245 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2246 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2247 				    (read_group, 1, &bit_chk)) {
2248 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2249 						   __func__, __LINE__);
2250 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2251 						   read_group, p, d);
2252 					break;
2253 				}
2254 			}
2255 
2256 /* case:56390 */
2257 			grp_calibrated = 1;
2258 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2259 		    (write_group, read_group, test_bgn)) {
2260 				/*
2261 				 * USER Read per-bit deskew can be done on a
2262 				 * per shadow register basis.
2263 				 */
2264 				for (rank_bgn = 0, sr = 0;
2265 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2266 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2267 					++sr) {
2268 					/*
2269 					 * Determine if this set of ranks
2270 					 * should be skipped entirely.
2271 					 */
2272 					if (!param->skip_shadow_regs[sr]) {
2273 						/*
2274 						 * If doing read after write
2275 						 * calibration, do not update
2276 						 * FOM, now - do it then.
2277 						 */
2278 					if (!rw_mgr_mem_calibrate_vfifo_center
2279 						(rank_bgn, write_group,
2280 						read_group, test_bgn, 1, 0)) {
2281 							grp_calibrated = 0;
2282 							failed_substage =
2283 						CAL_SUBSTAGE_VFIFO_CENTER;
2284 						}
2285 					}
2286 				}
2287 			} else {
2288 				grp_calibrated = 0;
2289 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2290 			}
2291 		}
2292 	}
2293 
2294 	if (grp_calibrated == 0) {
2295 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2296 					failed_substage);
2297 		return 0;
2298 	}
2299 
2300 	/*
2301 	 * Reset the delay chains back to zero if they have moved > 1
2302 	 * (check for > 1 because loop will increase d even when pass in
2303 	 * first case).
2304 	 */
2305 	if (d > 2)
2306 		scc_mgr_zero_group(write_group, 1);
2307 
2308 	return 1;
2309 }
2310 
2311 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2312 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2313 					       uint32_t test_bgn)
2314 {
2315 	uint32_t rank_bgn, sr;
2316 	uint32_t grp_calibrated;
2317 	uint32_t write_group;
2318 
2319 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2320 
2321 	/* update info for sims */
2322 
2323 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2324 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2325 
2326 	write_group = read_group;
2327 
2328 	/* update info for sims */
2329 	reg_file_set_group(read_group);
2330 
2331 	grp_calibrated = 1;
2332 	/* Read per-bit deskew can be done on a per shadow register basis */
2333 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2334 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2335 		/* Determine if this set of ranks should be skipped entirely */
2336 		if (!param->skip_shadow_regs[sr]) {
2337 		/* This is the last calibration round, update FOM here */
2338 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2339 								write_group,
2340 								read_group,
2341 								test_bgn, 0,
2342 								1)) {
2343 				grp_calibrated = 0;
2344 			}
2345 		}
2346 	}
2347 
2348 
2349 	if (grp_calibrated == 0) {
2350 		set_failing_group_stage(write_group,
2351 					CAL_STAGE_VFIFO_AFTER_WRITES,
2352 					CAL_SUBSTAGE_VFIFO_CENTER);
2353 		return 0;
2354 	}
2355 
2356 	return 1;
2357 }
2358 
2359 /* Calibrate LFIFO to find smallest read latency */
2360 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2361 {
2362 	uint32_t found_one;
2363 	uint32_t bit_chk;
2364 
2365 	debug("%s:%d\n", __func__, __LINE__);
2366 
2367 	/* update info for sims */
2368 	reg_file_set_stage(CAL_STAGE_LFIFO);
2369 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2370 
2371 	/* Load up the patterns used by read calibration for all ranks */
2372 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2373 	found_one = 0;
2374 
2375 	do {
2376 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2377 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2378 			   __func__, __LINE__, gbl->curr_read_lat);
2379 
2380 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2381 							      NUM_READ_TESTS,
2382 							      PASS_ALL_BITS,
2383 							      &bit_chk, 1)) {
2384 			break;
2385 		}
2386 
2387 		found_one = 1;
2388 		/* reduce read latency and see if things are working */
2389 		/* correctly */
2390 		gbl->curr_read_lat--;
2391 	} while (gbl->curr_read_lat > 0);
2392 
2393 	/* reset the fifos to get pointers to known state */
2394 
2395 	writel(0, &phy_mgr_cmd->fifo_reset);
2396 
2397 	if (found_one) {
2398 		/* add a fudge factor to the read latency that was determined */
2399 		gbl->curr_read_lat += 2;
2400 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2401 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2402 			   read_lat=%u\n", __func__, __LINE__,
2403 			   gbl->curr_read_lat);
2404 		return 1;
2405 	} else {
2406 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2407 					CAL_SUBSTAGE_READ_LATENCY);
2408 
2409 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2410 			   read_lat=%u\n", __func__, __LINE__,
2411 			   gbl->curr_read_lat);
2412 		return 0;
2413 	}
2414 }
2415 
2416 /*
2417  * issue write test command.
2418  * two variants are provided. one that just tests a write pattern and
2419  * another that tests datamask functionality.
2420  */
2421 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2422 						  uint32_t test_dm)
2423 {
2424 	uint32_t mcc_instruction;
2425 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2426 		ENABLE_SUPER_QUICK_CALIBRATION);
2427 	uint32_t rw_wl_nop_cycles;
2428 	uint32_t addr;
2429 
2430 	/*
2431 	 * Set counter and jump addresses for the right
2432 	 * number of NOP cycles.
2433 	 * The number of supported NOP cycles can range from -1 to infinity
2434 	 * Three different cases are handled:
2435 	 *
2436 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2437 	 *    mechanism will be used to insert the right number of NOPs
2438 	 *
2439 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2440 	 *    issuing the write command will jump straight to the
2441 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2442 	 *    data (for RLD), skipping
2443 	 *    the NOP micro-instruction all together
2444 	 *
2445 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2446 	 *    turned on in the same micro-instruction that issues the write
2447 	 *    command. Then we need
2448 	 *    to directly jump to the micro-instruction that sends out the data
2449 	 *
2450 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2451 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2452 	 *       write-read operations.
2453 	 *       one counter left to issue this command in "multiple-group" mode
2454 	 */
2455 
2456 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2457 
2458 	if (rw_wl_nop_cycles == -1) {
2459 		/*
2460 		 * CNTR 2 - We want to execute the special write operation that
2461 		 * turns on DQS right away and then skip directly to the
2462 		 * instruction that sends out the data. We set the counter to a
2463 		 * large number so that the jump is always taken.
2464 		 */
2465 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2466 
2467 		/* CNTR 3 - Not used */
2468 		if (test_dm) {
2469 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2470 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2471 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2472 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2473 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2474 		} else {
2475 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2476 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2477 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2478 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2479 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2480 		}
2481 	} else if (rw_wl_nop_cycles == 0) {
2482 		/*
2483 		 * CNTR 2 - We want to skip the NOP operation and go straight
2484 		 * to the DQS enable instruction. We set the counter to a large
2485 		 * number so that the jump is always taken.
2486 		 */
2487 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2488 
2489 		/* CNTR 3 - Not used */
2490 		if (test_dm) {
2491 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2492 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2493 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2494 		} else {
2495 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2496 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2497 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2498 		}
2499 	} else {
2500 		/*
2501 		 * CNTR 2 - In this case we want to execute the next instruction
2502 		 * and NOT take the jump. So we set the counter to 0. The jump
2503 		 * address doesn't count.
2504 		 */
2505 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2506 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2507 
2508 		/*
2509 		 * CNTR 3 - Set the nop counter to the number of cycles we
2510 		 * need to loop for, minus 1.
2511 		 */
2512 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2513 		if (test_dm) {
2514 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2515 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2516 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2517 		} else {
2518 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2519 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2520 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2521 		}
2522 	}
2523 
2524 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2525 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2526 
2527 	if (quick_write_mode)
2528 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2529 	else
2530 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2531 
2532 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2533 
2534 	/*
2535 	 * CNTR 1 - This is used to ensure enough time elapses
2536 	 * for read data to come back.
2537 	 */
2538 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2539 
2540 	if (test_dm) {
2541 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2542 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2543 	} else {
2544 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2545 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2546 	}
2547 
2548 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2549 	writel(mcc_instruction, addr + (group << 2));
2550 }
2551 
2552 /* Test writes, can check for a single bit pass or multiple bit pass */
2553 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2554 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2555 	uint32_t *bit_chk, uint32_t all_ranks)
2556 {
2557 	uint32_t r;
2558 	uint32_t correct_mask_vg;
2559 	uint32_t tmp_bit_chk;
2560 	uint32_t vg;
2561 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2562 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2563 	uint32_t addr_rw_mgr;
2564 	uint32_t base_rw_mgr;
2565 
2566 	*bit_chk = param->write_correct_mask;
2567 	correct_mask_vg = param->write_correct_mask_vg;
2568 
2569 	for (r = rank_bgn; r < rank_end; r++) {
2570 		if (param->skip_ranks[r]) {
2571 			/* request to skip the rank */
2572 			continue;
2573 		}
2574 
2575 		/* set rank */
2576 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2577 
2578 		tmp_bit_chk = 0;
2579 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2580 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2581 			/* reset the fifos to get pointers to known state */
2582 			writel(0, &phy_mgr_cmd->fifo_reset);
2583 
2584 			tmp_bit_chk = tmp_bit_chk <<
2585 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2586 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2587 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2588 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2589 				use_dm);
2590 
2591 			base_rw_mgr = readl(addr_rw_mgr);
2592 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2593 			if (vg == 0)
2594 				break;
2595 		}
2596 		*bit_chk &= tmp_bit_chk;
2597 	}
2598 
2599 	if (all_correct) {
2600 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2601 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2602 			   %u => %lu", write_group, use_dm,
2603 			   *bit_chk, param->write_correct_mask,
2604 			   (long unsigned int)(*bit_chk ==
2605 			   param->write_correct_mask));
2606 		return *bit_chk == param->write_correct_mask;
2607 	} else {
2608 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2609 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2610 		       write_group, use_dm, *bit_chk);
2611 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2612 			(long unsigned int)(*bit_chk != 0));
2613 		return *bit_chk != 0x00;
2614 	}
2615 }
2616 
2617 /*
2618  * center all windows. do per-bit-deskew to possibly increase size of
2619  * certain windows.
2620  */
2621 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2622 	uint32_t write_group, uint32_t test_bgn)
2623 {
2624 	uint32_t i, p, min_index;
2625 	int32_t d;
2626 	/*
2627 	 * Store these as signed since there are comparisons with
2628 	 * signed numbers.
2629 	 */
2630 	uint32_t bit_chk;
2631 	uint32_t sticky_bit_chk;
2632 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2633 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2634 	int32_t mid;
2635 	int32_t mid_min, orig_mid_min;
2636 	int32_t new_dqs, start_dqs, shift_dq;
2637 	int32_t dq_margin, dqs_margin, dm_margin;
2638 	uint32_t stop;
2639 	uint32_t temp_dq_out1_delay;
2640 	uint32_t addr;
2641 
2642 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2643 
2644 	dm_margin = 0;
2645 
2646 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2647 	start_dqs = readl(addr +
2648 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2649 
2650 	/* per-bit deskew */
2651 
2652 	/*
2653 	 * set the left and right edge of each bit to an illegal value
2654 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2655 	 */
2656 	sticky_bit_chk = 0;
2657 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2658 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2659 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2660 	}
2661 
2662 	/* Search for the left edge of the window for each bit */
2663 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2664 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2665 
2666 		writel(0, &sdr_scc_mgr->update);
2667 
2668 		/*
2669 		 * Stop searching when the read test doesn't pass AND when
2670 		 * we've seen a passing read on every bit.
2671 		 */
2672 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2673 			0, PASS_ONE_BIT, &bit_chk, 0);
2674 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2675 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2676 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2677 			   == %u && %u [bit_chk= %u ]\n",
2678 			d, sticky_bit_chk, param->write_correct_mask,
2679 			stop, bit_chk);
2680 
2681 		if (stop == 1) {
2682 			break;
2683 		} else {
2684 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2685 				if (bit_chk & 1) {
2686 					/*
2687 					 * Remember a passing test as the
2688 					 * left_edge.
2689 					 */
2690 					left_edge[i] = d;
2691 				} else {
2692 					/*
2693 					 * If a left edge has not been seen
2694 					 * yet, then a future passing test will
2695 					 * mark this edge as the right edge.
2696 					 */
2697 					if (left_edge[i] ==
2698 						IO_IO_OUT1_DELAY_MAX + 1) {
2699 						right_edge[i] = -(d + 1);
2700 					}
2701 				}
2702 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2703 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2704 					   (int)(bit_chk & 1), i, left_edge[i]);
2705 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2706 				       right_edge[i]);
2707 				bit_chk = bit_chk >> 1;
2708 			}
2709 		}
2710 	}
2711 
2712 	/* Reset DQ delay chains to 0 */
2713 	scc_mgr_apply_group_dq_out1_delay(0);
2714 	sticky_bit_chk = 0;
2715 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2716 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2717 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2718 			   i, left_edge[i], i, right_edge[i]);
2719 
2720 		/*
2721 		 * Check for cases where we haven't found the left edge,
2722 		 * which makes our assignment of the the right edge invalid.
2723 		 * Reset it to the illegal value.
2724 		 */
2725 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2726 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2727 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2728 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2729 				   right_edge[%u]: %d\n", __func__, __LINE__,
2730 				   i, right_edge[i]);
2731 		}
2732 
2733 		/*
2734 		 * Reset sticky bit (except for bits where we have
2735 		 * seen the left edge).
2736 		 */
2737 		sticky_bit_chk = sticky_bit_chk << 1;
2738 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2739 			sticky_bit_chk = sticky_bit_chk | 1;
2740 
2741 		if (i == 0)
2742 			break;
2743 	}
2744 
2745 	/* Search for the right edge of the window for each bit */
2746 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2747 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2748 							d + start_dqs);
2749 
2750 		writel(0, &sdr_scc_mgr->update);
2751 
2752 		/*
2753 		 * Stop searching when the read test doesn't pass AND when
2754 		 * we've seen a passing read on every bit.
2755 		 */
2756 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2757 			0, PASS_ONE_BIT, &bit_chk, 0);
2758 
2759 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2760 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2761 
2762 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2763 			   %u && %u\n", d, sticky_bit_chk,
2764 			   param->write_correct_mask, stop);
2765 
2766 		if (stop == 1) {
2767 			if (d == 0) {
2768 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2769 					i++) {
2770 					/* d = 0 failed, but it passed when
2771 					testing the left edge, so it must be
2772 					marginal, set it to -1 */
2773 					if (right_edge[i] ==
2774 						IO_IO_OUT1_DELAY_MAX + 1 &&
2775 						left_edge[i] !=
2776 						IO_IO_OUT1_DELAY_MAX + 1) {
2777 						right_edge[i] = -1;
2778 					}
2779 				}
2780 			}
2781 			break;
2782 		} else {
2783 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2784 				if (bit_chk & 1) {
2785 					/*
2786 					 * Remember a passing test as
2787 					 * the right_edge.
2788 					 */
2789 					right_edge[i] = d;
2790 				} else {
2791 					if (d != 0) {
2792 						/*
2793 						 * If a right edge has not
2794 						 * been seen yet, then a future
2795 						 * passing test will mark this
2796 						 * edge as the left edge.
2797 						 */
2798 						if (right_edge[i] ==
2799 						    IO_IO_OUT1_DELAY_MAX + 1)
2800 							left_edge[i] = -(d + 1);
2801 					} else {
2802 						/*
2803 						 * d = 0 failed, but it passed
2804 						 * when testing the left edge,
2805 						 * so it must be marginal, set
2806 						 * it to -1.
2807 						 */
2808 						if (right_edge[i] ==
2809 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2810 						    left_edge[i] !=
2811 						    IO_IO_OUT1_DELAY_MAX + 1)
2812 							right_edge[i] = -1;
2813 						/*
2814 						 * If a right edge has not been
2815 						 * seen yet, then a future
2816 						 * passing test will mark this
2817 						 * edge as the left edge.
2818 						 */
2819 						else if (right_edge[i] ==
2820 							IO_IO_OUT1_DELAY_MAX +
2821 							1)
2822 							left_edge[i] = -(d + 1);
2823 					}
2824 				}
2825 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2826 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2827 					   (int)(bit_chk & 1), i, left_edge[i]);
2828 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2829 					   right_edge[i]);
2830 				bit_chk = bit_chk >> 1;
2831 			}
2832 		}
2833 	}
2834 
2835 	/* Check that all bits have a window */
2836 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2837 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2838 			   %d right_edge[%u]: %d", __func__, __LINE__,
2839 			   i, left_edge[i], i, right_edge[i]);
2840 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2841 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2842 			set_failing_group_stage(test_bgn + i,
2843 						CAL_STAGE_WRITES,
2844 						CAL_SUBSTAGE_WRITES_CENTER);
2845 			return 0;
2846 		}
2847 	}
2848 
2849 	/* Find middle of window for each DQ bit */
2850 	mid_min = left_edge[0] - right_edge[0];
2851 	min_index = 0;
2852 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2853 		mid = left_edge[i] - right_edge[i];
2854 		if (mid < mid_min) {
2855 			mid_min = mid;
2856 			min_index = i;
2857 		}
2858 	}
2859 
2860 	/*
2861 	 * -mid_min/2 represents the amount that we need to move DQS.
2862 	 * If mid_min is odd and positive we'll need to add one to
2863 	 * make sure the rounding in further calculations is correct
2864 	 * (always bias to the right), so just add 1 for all positive values.
2865 	 */
2866 	if (mid_min > 0)
2867 		mid_min++;
2868 	mid_min = mid_min / 2;
2869 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2870 		   __LINE__, mid_min);
2871 
2872 	/* Determine the amount we can change DQS (which is -mid_min) */
2873 	orig_mid_min = mid_min;
2874 	new_dqs = start_dqs;
2875 	mid_min = 0;
2876 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2877 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2878 	/* Initialize data for export structures */
2879 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2880 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2881 
2882 	/* add delay to bring centre of all DQ windows to the same "level" */
2883 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2884 		/* Use values before divide by 2 to reduce round off error */
2885 		shift_dq = (left_edge[i] - right_edge[i] -
2886 			(left_edge[min_index] - right_edge[min_index]))/2  +
2887 		(orig_mid_min - mid_min);
2888 
2889 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2890 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2891 
2892 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2893 		temp_dq_out1_delay = readl(addr + (i << 2));
2894 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2895 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2896 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2897 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2898 			shift_dq = -(int32_t)temp_dq_out1_delay;
2899 		}
2900 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2901 			   i, shift_dq);
2902 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2903 		scc_mgr_load_dq(i);
2904 
2905 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2906 			   left_edge[i] - shift_dq + (-mid_min),
2907 			   right_edge[i] + shift_dq - (-mid_min));
2908 		/* To determine values for export structures */
2909 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2910 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2911 
2912 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2913 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2914 	}
2915 
2916 	/* Move DQS */
2917 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2918 	writel(0, &sdr_scc_mgr->update);
2919 
2920 	/* Centre DM */
2921 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2922 
2923 	/*
2924 	 * set the left and right edge of each bit to an illegal value,
2925 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2926 	 */
2927 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2928 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2929 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2930 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2931 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2932 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2933 	int32_t win_best = 0;
2934 
2935 	/* Search for the/part of the window with DM shift */
2936 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2937 		scc_mgr_apply_group_dm_out1_delay(d);
2938 		writel(0, &sdr_scc_mgr->update);
2939 
2940 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2941 						    PASS_ALL_BITS, &bit_chk,
2942 						    0)) {
2943 			/* USE Set current end of the window */
2944 			end_curr = -d;
2945 			/*
2946 			 * If a starting edge of our window has not been seen
2947 			 * this is our current start of the DM window.
2948 			 */
2949 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2950 				bgn_curr = -d;
2951 
2952 			/*
2953 			 * If current window is bigger than best seen.
2954 			 * Set best seen to be current window.
2955 			 */
2956 			if ((end_curr-bgn_curr+1) > win_best) {
2957 				win_best = end_curr-bgn_curr+1;
2958 				bgn_best = bgn_curr;
2959 				end_best = end_curr;
2960 			}
2961 		} else {
2962 			/* We just saw a failing test. Reset temp edge */
2963 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2964 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2965 			}
2966 		}
2967 
2968 
2969 	/* Reset DM delay chains to 0 */
2970 	scc_mgr_apply_group_dm_out1_delay(0);
2971 
2972 	/*
2973 	 * Check to see if the current window nudges up aganist 0 delay.
2974 	 * If so we need to continue the search by shifting DQS otherwise DQS
2975 	 * search begins as a new search. */
2976 	if (end_curr != 0) {
2977 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2978 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2979 	}
2980 
2981 	/* Search for the/part of the window with DQS shifts */
2982 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2983 		/*
2984 		 * Note: This only shifts DQS, so are we limiting ourselve to
2985 		 * width of DQ unnecessarily.
2986 		 */
2987 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2988 							d + new_dqs);
2989 
2990 		writel(0, &sdr_scc_mgr->update);
2991 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2992 						    PASS_ALL_BITS, &bit_chk,
2993 						    0)) {
2994 			/* USE Set current end of the window */
2995 			end_curr = d;
2996 			/*
2997 			 * If a beginning edge of our window has not been seen
2998 			 * this is our current begin of the DM window.
2999 			 */
3000 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3001 				bgn_curr = d;
3002 
3003 			/*
3004 			 * If current window is bigger than best seen. Set best
3005 			 * seen to be current window.
3006 			 */
3007 			if ((end_curr-bgn_curr+1) > win_best) {
3008 				win_best = end_curr-bgn_curr+1;
3009 				bgn_best = bgn_curr;
3010 				end_best = end_curr;
3011 			}
3012 		} else {
3013 			/* We just saw a failing test. Reset temp edge */
3014 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016 
3017 			/* Early exit optimization: if ther remaining delay
3018 			chain space is less than already seen largest window
3019 			we can exit */
3020 			if ((win_best-1) >
3021 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3022 					break;
3023 				}
3024 			}
3025 		}
3026 
3027 	/* assign left and right edge for cal and reporting; */
3028 	left_edge[0] = -1*bgn_best;
3029 	right_edge[0] = end_best;
3030 
3031 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3032 		   __LINE__, left_edge[0], right_edge[0]);
3033 
3034 	/* Move DQS (back to orig) */
3035 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3036 
3037 	/* Move DM */
3038 
3039 	/* Find middle of window for the DM bit */
3040 	mid = (left_edge[0] - right_edge[0]) / 2;
3041 
3042 	/* only move right, since we are not moving DQS/DQ */
3043 	if (mid < 0)
3044 		mid = 0;
3045 
3046 	/* dm_marign should fail if we never find a window */
3047 	if (win_best == 0)
3048 		dm_margin = -1;
3049 	else
3050 		dm_margin = left_edge[0] - mid;
3051 
3052 	scc_mgr_apply_group_dm_out1_delay(mid);
3053 	writel(0, &sdr_scc_mgr->update);
3054 
3055 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3056 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3057 		   right_edge[0], mid, dm_margin);
3058 	/* Export values */
3059 	gbl->fom_out += dq_margin + dqs_margin;
3060 
3061 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3062 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3063 		   dq_margin, dqs_margin, dm_margin);
3064 
3065 	/*
3066 	 * Do not remove this line as it makes sure all of our
3067 	 * decisions have been applied.
3068 	 */
3069 	writel(0, &sdr_scc_mgr->update);
3070 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3071 }
3072 
3073 /* calibrate the write operations */
3074 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3075 	uint32_t test_bgn)
3076 {
3077 	/* update info for sims */
3078 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3079 
3080 	reg_file_set_stage(CAL_STAGE_WRITES);
3081 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3082 
3083 	reg_file_set_group(g);
3084 
3085 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3086 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3087 					CAL_SUBSTAGE_WRITES_CENTER);
3088 		return 0;
3089 	}
3090 
3091 	return 1;
3092 }
3093 
3094 /**
3095  * mem_precharge_and_activate() - Precharge all banks and activate
3096  *
3097  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3098  */
3099 static void mem_precharge_and_activate(void)
3100 {
3101 	int r;
3102 
3103 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3104 		/* Test if the rank should be skipped. */
3105 		if (param->skip_ranks[r])
3106 			continue;
3107 
3108 		/* Set rank. */
3109 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3110 
3111 		/* Precharge all banks. */
3112 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3113 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3114 
3115 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3116 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3117 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3118 
3119 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3120 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3121 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3122 
3123 		/* Activate rows. */
3124 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3125 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3126 	}
3127 }
3128 
3129 /**
3130  * mem_init_latency() - Configure memory RLAT and WLAT settings
3131  *
3132  * Configure memory RLAT and WLAT parameters.
3133  */
3134 static void mem_init_latency(void)
3135 {
3136 	/*
3137 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3138 	 * so max latency in AFI clocks, used here, is correspondingly
3139 	 * smaller.
3140 	 */
3141 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3142 	u32 rlat, wlat;
3143 
3144 	debug("%s:%d\n", __func__, __LINE__);
3145 
3146 	/*
3147 	 * Read in write latency.
3148 	 * WL for Hard PHY does not include additive latency.
3149 	 */
3150 	wlat = readl(&data_mgr->t_wl_add);
3151 	wlat += readl(&data_mgr->mem_t_add);
3152 
3153 	gbl->rw_wl_nop_cycles = wlat - 1;
3154 
3155 	/* Read in readl latency. */
3156 	rlat = readl(&data_mgr->t_rl_add);
3157 
3158 	/* Set a pretty high read latency initially. */
3159 	gbl->curr_read_lat = rlat + 16;
3160 	if (gbl->curr_read_lat > max_latency)
3161 		gbl->curr_read_lat = max_latency;
3162 
3163 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3164 
3165 	/* Advertise write latency. */
3166 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3167 }
3168 
3169 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3170 static void mem_skip_calibrate(void)
3171 {
3172 	uint32_t vfifo_offset;
3173 	uint32_t i, j, r;
3174 
3175 	debug("%s:%d\n", __func__, __LINE__);
3176 	/* Need to update every shadow register set used by the interface */
3177 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3178 		r += NUM_RANKS_PER_SHADOW_REG) {
3179 		/*
3180 		 * Set output phase alignment settings appropriate for
3181 		 * skip calibration.
3182 		 */
3183 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3184 			scc_mgr_set_dqs_en_phase(i, 0);
3185 #if IO_DLL_CHAIN_LENGTH == 6
3186 			scc_mgr_set_dqdqs_output_phase(i, 6);
3187 #else
3188 			scc_mgr_set_dqdqs_output_phase(i, 7);
3189 #endif
3190 			/*
3191 			 * Case:33398
3192 			 *
3193 			 * Write data arrives to the I/O two cycles before write
3194 			 * latency is reached (720 deg).
3195 			 *   -> due to bit-slip in a/c bus
3196 			 *   -> to allow board skew where dqs is longer than ck
3197 			 *      -> how often can this happen!?
3198 			 *      -> can claim back some ptaps for high freq
3199 			 *       support if we can relax this, but i digress...
3200 			 *
3201 			 * The write_clk leads mem_ck by 90 deg
3202 			 * The minimum ptap of the OPA is 180 deg
3203 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3204 			 * The write_clk is always delayed by 2 ptaps
3205 			 *
3206 			 * Hence, to make DQS aligned to CK, we need to delay
3207 			 * DQS by:
3208 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3209 			 *
3210 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3211 			 * gives us the number of ptaps, which simplies to:
3212 			 *
3213 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3214 			 */
3215 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3216 				IO_DLL_CHAIN_LENGTH - 2));
3217 		}
3218 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3219 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3220 
3221 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3222 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3223 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3224 		}
3225 		writel(0xff, &sdr_scc_mgr->dq_ena);
3226 		writel(0xff, &sdr_scc_mgr->dm_ena);
3227 		writel(0, &sdr_scc_mgr->update);
3228 	}
3229 
3230 	/* Compensate for simulation model behaviour */
3231 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3232 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3233 		scc_mgr_load_dqs(i);
3234 	}
3235 	writel(0, &sdr_scc_mgr->update);
3236 
3237 	/*
3238 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3239 	 * in sequencer.
3240 	 */
3241 	vfifo_offset = CALIB_VFIFO_OFFSET;
3242 	for (j = 0; j < vfifo_offset; j++) {
3243 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3244 	}
3245 	writel(0, &phy_mgr_cmd->fifo_reset);
3246 
3247 	/*
3248 	 * For ACV with hard lfifo, we get the skip-cal setting from
3249 	 * generation-time constant.
3250 	 */
3251 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3252 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3253 }
3254 
3255 /* Memory calibration entry point */
3256 static uint32_t mem_calibrate(void)
3257 {
3258 	uint32_t i;
3259 	uint32_t rank_bgn, sr;
3260 	uint32_t write_group, write_test_bgn;
3261 	uint32_t read_group, read_test_bgn;
3262 	uint32_t run_groups, current_run;
3263 	uint32_t failing_groups = 0;
3264 	uint32_t group_failed = 0;
3265 	uint32_t sr_failed = 0;
3266 
3267 	debug("%s:%d\n", __func__, __LINE__);
3268 
3269 	/* Initialize the data settings */
3270 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3271 	gbl->error_stage = CAL_STAGE_NIL;
3272 	gbl->error_group = 0xff;
3273 	gbl->fom_in = 0;
3274 	gbl->fom_out = 0;
3275 
3276 	/* Initialize WLAT and RLAT. */
3277 	mem_init_latency();
3278 
3279 	/* Initialize bit slips. */
3280 	mem_precharge_and_activate();
3281 
3282 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3283 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3284 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3285 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3286 		if (i == 0)
3287 			scc_mgr_set_hhp_extras();
3288 
3289 		scc_set_bypass_mode(i);
3290 	}
3291 
3292 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3293 		/*
3294 		 * Set VFIFO and LFIFO to instant-on settings in skip
3295 		 * calibration mode.
3296 		 */
3297 		mem_skip_calibrate();
3298 	} else {
3299 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3300 			/*
3301 			 * Zero all delay chain/phase settings for all
3302 			 * groups and all shadow register sets.
3303 			 */
3304 			scc_mgr_zero_all();
3305 
3306 			run_groups = ~param->skip_groups;
3307 
3308 			for (write_group = 0, write_test_bgn = 0; write_group
3309 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3310 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3311 				/* Initialized the group failure */
3312 				group_failed = 0;
3313 
3314 				current_run = run_groups & ((1 <<
3315 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3316 				run_groups = run_groups >>
3317 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3318 
3319 				if (current_run == 0)
3320 					continue;
3321 
3322 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3323 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3324 				scc_mgr_zero_group(write_group, 0);
3325 
3326 				for (read_group = write_group *
3327 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3328 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3329 					read_test_bgn = 0;
3330 					read_group < (write_group + 1) *
3331 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3332 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3333 					group_failed == 0;
3334 					read_group++, read_test_bgn +=
3335 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3336 					/* Calibrate the VFIFO */
3337 					if (!((STATIC_CALIB_STEPS) &
3338 						CALIB_SKIP_VFIFO)) {
3339 						if (!rw_mgr_mem_calibrate_vfifo
3340 							(read_group,
3341 							read_test_bgn)) {
3342 							group_failed = 1;
3343 
3344 							if (!(gbl->
3345 							phy_debug_mode_flags &
3346 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3347 								return 0;
3348 							}
3349 						}
3350 					}
3351 				}
3352 
3353 				/* Calibrate the output side */
3354 				if (group_failed == 0)	{
3355 					for (rank_bgn = 0, sr = 0; rank_bgn
3356 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3357 						rank_bgn +=
3358 						NUM_RANKS_PER_SHADOW_REG,
3359 						++sr) {
3360 						sr_failed = 0;
3361 						if (!((STATIC_CALIB_STEPS) &
3362 						CALIB_SKIP_WRITES)) {
3363 							if ((STATIC_CALIB_STEPS)
3364 						& CALIB_SKIP_DELAY_SWEEPS) {
3365 						/* not needed in quick mode! */
3366 							} else {
3367 						/*
3368 						 * Determine if this set of
3369 						 * ranks should be skipped
3370 						 * entirely.
3371 						 */
3372 					if (!param->skip_shadow_regs[sr]) {
3373 						if (!rw_mgr_mem_calibrate_writes
3374 						(rank_bgn, write_group,
3375 						write_test_bgn)) {
3376 							sr_failed = 1;
3377 							if (!(gbl->
3378 							phy_debug_mode_flags &
3379 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3380 								return 0;
3381 									}
3382 									}
3383 								}
3384 							}
3385 						}
3386 						if (sr_failed != 0)
3387 							group_failed = 1;
3388 					}
3389 				}
3390 
3391 				if (group_failed == 0) {
3392 					for (read_group = write_group *
3393 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3394 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3395 					read_test_bgn = 0;
3396 						read_group < (write_group + 1)
3397 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3398 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3399 						group_failed == 0;
3400 						read_group++, read_test_bgn +=
3401 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3402 						if (!((STATIC_CALIB_STEPS) &
3403 							CALIB_SKIP_WRITES)) {
3404 					if (!rw_mgr_mem_calibrate_vfifo_end
3405 						(read_group, read_test_bgn)) {
3406 							group_failed = 1;
3407 
3408 						if (!(gbl->phy_debug_mode_flags
3409 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3410 								return 0;
3411 								}
3412 							}
3413 						}
3414 					}
3415 				}
3416 
3417 				if (group_failed != 0)
3418 					failing_groups++;
3419 			}
3420 
3421 			/*
3422 			 * USER If there are any failing groups then report
3423 			 * the failure.
3424 			 */
3425 			if (failing_groups != 0)
3426 				return 0;
3427 
3428 			/* Calibrate the LFIFO */
3429 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3430 				/*
3431 				 * If we're skipping groups as part of debug,
3432 				 * don't calibrate LFIFO.
3433 				 */
3434 				if (param->skip_groups == 0) {
3435 					if (!rw_mgr_mem_calibrate_lfifo())
3436 						return 0;
3437 				}
3438 			}
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * Do not remove this line as it makes sure all of our decisions
3444 	 * have been applied.
3445 	 */
3446 	writel(0, &sdr_scc_mgr->update);
3447 	return 1;
3448 }
3449 
3450 /**
3451  * run_mem_calibrate() - Perform memory calibration
3452  *
3453  * This function triggers the entire memory calibration procedure.
3454  */
3455 static int run_mem_calibrate(void)
3456 {
3457 	int pass;
3458 
3459 	debug("%s:%d\n", __func__, __LINE__);
3460 
3461 	/* Reset pass/fail status shown on afi_cal_success/fail */
3462 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3463 
3464 	/* Stop tracking manager. */
3465 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3466 
3467 	phy_mgr_initialize();
3468 	rw_mgr_mem_initialize();
3469 
3470 	/* Perform the actual memory calibration. */
3471 	pass = mem_calibrate();
3472 
3473 	mem_precharge_and_activate();
3474 	writel(0, &phy_mgr_cmd->fifo_reset);
3475 
3476 	/* Handoff. */
3477 	rw_mgr_mem_handoff();
3478 	/*
3479 	 * In Hard PHY this is a 2-bit control:
3480 	 * 0: AFI Mux Select
3481 	 * 1: DDIO Mux Select
3482 	 */
3483 	writel(0x2, &phy_mgr_cfg->mux_sel);
3484 
3485 	/* Start tracking manager. */
3486 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3487 
3488 	return pass;
3489 }
3490 
3491 /**
3492  * debug_mem_calibrate() - Report result of memory calibration
3493  * @pass:	Value indicating whether calibration passed or failed
3494  *
3495  * This function reports the results of the memory calibration
3496  * and writes debug information into the register file.
3497  */
3498 static void debug_mem_calibrate(int pass)
3499 {
3500 	uint32_t debug_info;
3501 
3502 	if (pass) {
3503 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3504 
3505 		gbl->fom_in /= 2;
3506 		gbl->fom_out /= 2;
3507 
3508 		if (gbl->fom_in > 0xff)
3509 			gbl->fom_in = 0xff;
3510 
3511 		if (gbl->fom_out > 0xff)
3512 			gbl->fom_out = 0xff;
3513 
3514 		/* Update the FOM in the register file */
3515 		debug_info = gbl->fom_in;
3516 		debug_info |= gbl->fom_out << 8;
3517 		writel(debug_info, &sdr_reg_file->fom);
3518 
3519 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3520 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3521 	} else {
3522 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3523 
3524 		debug_info = gbl->error_stage;
3525 		debug_info |= gbl->error_substage << 8;
3526 		debug_info |= gbl->error_group << 16;
3527 
3528 		writel(debug_info, &sdr_reg_file->failing_stage);
3529 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3530 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3531 
3532 		/* Update the failing group/stage in the register file */
3533 		debug_info = gbl->error_stage;
3534 		debug_info |= gbl->error_substage << 8;
3535 		debug_info |= gbl->error_group << 16;
3536 		writel(debug_info, &sdr_reg_file->failing_stage);
3537 	}
3538 
3539 	printf("%s: Calibration complete\n", __FILE__);
3540 }
3541 
3542 /**
3543  * hc_initialize_rom_data() - Initialize ROM data
3544  *
3545  * Initialize ROM data.
3546  */
3547 static void hc_initialize_rom_data(void)
3548 {
3549 	u32 i, addr;
3550 
3551 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3552 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3553 		writel(inst_rom_init[i], addr + (i << 2));
3554 
3555 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3556 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3557 		writel(ac_rom_init[i], addr + (i << 2));
3558 }
3559 
3560 /**
3561  * initialize_reg_file() - Initialize SDR register file
3562  *
3563  * Initialize SDR register file.
3564  */
3565 static void initialize_reg_file(void)
3566 {
3567 	/* Initialize the register file with the correct data */
3568 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3569 	writel(0, &sdr_reg_file->debug_data_addr);
3570 	writel(0, &sdr_reg_file->cur_stage);
3571 	writel(0, &sdr_reg_file->fom);
3572 	writel(0, &sdr_reg_file->failing_stage);
3573 	writel(0, &sdr_reg_file->debug1);
3574 	writel(0, &sdr_reg_file->debug2);
3575 }
3576 
3577 /**
3578  * initialize_hps_phy() - Initialize HPS PHY
3579  *
3580  * Initialize HPS PHY.
3581  */
3582 static void initialize_hps_phy(void)
3583 {
3584 	uint32_t reg;
3585 	/*
3586 	 * Tracking also gets configured here because it's in the
3587 	 * same register.
3588 	 */
3589 	uint32_t trk_sample_count = 7500;
3590 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3591 	/*
3592 	 * Format is number of outer loops in the 16 MSB, sample
3593 	 * count in 16 LSB.
3594 	 */
3595 
3596 	reg = 0;
3597 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3598 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3599 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3600 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3601 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3602 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3603 	/*
3604 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3605 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3606 	 */
3607 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3608 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3609 		trk_sample_count);
3610 	writel(reg, &sdr_ctrl->phy_ctrl0);
3611 
3612 	reg = 0;
3613 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3614 		trk_sample_count >>
3615 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3616 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3617 		trk_long_idle_sample_count);
3618 	writel(reg, &sdr_ctrl->phy_ctrl1);
3619 
3620 	reg = 0;
3621 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3622 		trk_long_idle_sample_count >>
3623 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3624 	writel(reg, &sdr_ctrl->phy_ctrl2);
3625 }
3626 
3627 /**
3628  * initialize_tracking() - Initialize tracking
3629  *
3630  * Initialize the register file with usable initial data.
3631  */
3632 static void initialize_tracking(void)
3633 {
3634 	/*
3635 	 * Initialize the register file with the correct data.
3636 	 * Compute usable version of value in case we skip full
3637 	 * computation later.
3638 	 */
3639 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3640 	       &sdr_reg_file->dtaps_per_ptap);
3641 
3642 	/* trk_sample_count */
3643 	writel(7500, &sdr_reg_file->trk_sample_count);
3644 
3645 	/* longidle outer loop [15:0] */
3646 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3647 
3648 	/*
3649 	 * longidle sample count [31:24]
3650 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3651 	 * trcd, worst case [15:8]
3652 	 * vfifo wait [7:0]
3653 	 */
3654 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3655 	       &sdr_reg_file->delays);
3656 
3657 	/* mux delay */
3658 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3659 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3660 	       &sdr_reg_file->trk_rw_mgr_addr);
3661 
3662 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3663 	       &sdr_reg_file->trk_read_dqs_width);
3664 
3665 	/* trefi [7:0] */
3666 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3667 	       &sdr_reg_file->trk_rfsh);
3668 }
3669 
3670 int sdram_calibration_full(void)
3671 {
3672 	struct param_type my_param;
3673 	struct gbl_type my_gbl;
3674 	uint32_t pass;
3675 
3676 	memset(&my_param, 0, sizeof(my_param));
3677 	memset(&my_gbl, 0, sizeof(my_gbl));
3678 
3679 	param = &my_param;
3680 	gbl = &my_gbl;
3681 
3682 	/* Set the calibration enabled by default */
3683 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3684 	/*
3685 	 * Only sweep all groups (regardless of fail state) by default
3686 	 * Set enabled read test by default.
3687 	 */
3688 #if DISABLE_GUARANTEED_READ
3689 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3690 #endif
3691 	/* Initialize the register file */
3692 	initialize_reg_file();
3693 
3694 	/* Initialize any PHY CSR */
3695 	initialize_hps_phy();
3696 
3697 	scc_mgr_initialize();
3698 
3699 	initialize_tracking();
3700 
3701 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3702 
3703 	debug("%s:%d\n", __func__, __LINE__);
3704 	debug_cond(DLEVEL == 1,
3705 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3706 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3707 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3708 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3709 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3710 	debug_cond(DLEVEL == 1,
3711 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3712 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3713 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3714 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3715 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3716 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3717 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3718 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3719 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3720 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3721 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3722 		   IO_IO_OUT2_DELAY_MAX);
3723 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3724 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3725 
3726 	hc_initialize_rom_data();
3727 
3728 	/* update info for sims */
3729 	reg_file_set_stage(CAL_STAGE_NIL);
3730 	reg_file_set_group(0);
3731 
3732 	/*
3733 	 * Load global needed for those actions that require
3734 	 * some dynamic calibration support.
3735 	 */
3736 	dyn_calib_steps = STATIC_CALIB_STEPS;
3737 	/*
3738 	 * Load global to allow dynamic selection of delay loop settings
3739 	 * based on calibration mode.
3740 	 */
3741 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3742 		skip_delay_mask = 0xff;
3743 	else
3744 		skip_delay_mask = 0x0;
3745 
3746 	pass = run_mem_calibrate();
3747 	debug_mem_calibrate(pass);
3748 	return pass;
3749 }
3750