1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static void set_failing_group_stage(uint32_t group, uint32_t stage, 84 uint32_t substage) 85 { 86 /* 87 * Only set the global stage if there was not been any other 88 * failing group 89 */ 90 if (gbl->error_stage == CAL_STAGE_NIL) { 91 gbl->error_substage = substage; 92 gbl->error_stage = stage; 93 gbl->error_group = group; 94 } 95 } 96 97 static void reg_file_set_group(u16 set_group) 98 { 99 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 100 } 101 102 static void reg_file_set_stage(u8 set_stage) 103 { 104 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 105 } 106 107 static void reg_file_set_sub_stage(u8 set_sub_stage) 108 { 109 set_sub_stage &= 0xff; 110 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 111 } 112 113 /** 114 * phy_mgr_initialize() - Initialize PHY Manager 115 * 116 * Initialize PHY Manager. 117 */ 118 static void phy_mgr_initialize(void) 119 { 120 u32 ratio; 121 122 debug("%s:%d\n", __func__, __LINE__); 123 /* Calibration has control over path to memory */ 124 /* 125 * In Hard PHY this is a 2-bit control: 126 * 0: AFI Mux Select 127 * 1: DDIO Mux Select 128 */ 129 writel(0x3, &phy_mgr_cfg->mux_sel); 130 131 /* USER memory clock is not stable we begin initialization */ 132 writel(0, &phy_mgr_cfg->reset_mem_stbl); 133 134 /* USER calibration status all set to zero */ 135 writel(0, &phy_mgr_cfg->cal_status); 136 137 writel(0, &phy_mgr_cfg->cal_debug_info); 138 139 /* Init params only if we do NOT skip calibration. */ 140 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 141 return; 142 143 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 144 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 145 param->read_correct_mask_vg = (1 << ratio) - 1; 146 param->write_correct_mask_vg = (1 << ratio) - 1; 147 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 148 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 149 ratio = RW_MGR_MEM_DATA_WIDTH / 150 RW_MGR_MEM_DATA_MASK_WIDTH; 151 param->dm_correct_mask = (1 << ratio) - 1; 152 } 153 154 /** 155 * set_rank_and_odt_mask() - Set Rank and ODT mask 156 * @rank: Rank mask 157 * @odt_mode: ODT mode, OFF or READ_WRITE 158 * 159 * Set Rank and ODT mask (On-Die Termination). 160 */ 161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 162 { 163 u32 odt_mask_0 = 0; 164 u32 odt_mask_1 = 0; 165 u32 cs_and_odt_mask; 166 167 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 168 odt_mask_0 = 0x0; 169 odt_mask_1 = 0x0; 170 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 171 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 172 case 1: /* 1 Rank */ 173 /* Read: ODT = 0 ; Write: ODT = 1 */ 174 odt_mask_0 = 0x0; 175 odt_mask_1 = 0x1; 176 break; 177 case 2: /* 2 Ranks */ 178 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 179 /* 180 * - Dual-Slot , Single-Rank (1 CS per DIMM) 181 * OR 182 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 183 * 184 * Since MEM_NUMBER_OF_RANKS is 2, they 185 * are both single rank with 2 CS each 186 * (special for RDIMM). 187 * 188 * Read: Turn on ODT on the opposite rank 189 * Write: Turn on ODT on all ranks 190 */ 191 odt_mask_0 = 0x3 & ~(1 << rank); 192 odt_mask_1 = 0x3; 193 } else { 194 /* 195 * - Single-Slot , Dual-Rank (2 CS per DIMM) 196 * 197 * Read: Turn on ODT off on all ranks 198 * Write: Turn on ODT on active rank 199 */ 200 odt_mask_0 = 0x0; 201 odt_mask_1 = 0x3 & (1 << rank); 202 } 203 break; 204 case 4: /* 4 Ranks */ 205 /* Read: 206 * ----------+-----------------------+ 207 * | ODT | 208 * Read From +-----------------------+ 209 * Rank | 3 | 2 | 1 | 0 | 210 * ----------+-----+-----+-----+-----+ 211 * 0 | 0 | 1 | 0 | 0 | 212 * 1 | 1 | 0 | 0 | 0 | 213 * 2 | 0 | 0 | 0 | 1 | 214 * 3 | 0 | 0 | 1 | 0 | 215 * ----------+-----+-----+-----+-----+ 216 * 217 * Write: 218 * ----------+-----------------------+ 219 * | ODT | 220 * Write To +-----------------------+ 221 * Rank | 3 | 2 | 1 | 0 | 222 * ----------+-----+-----+-----+-----+ 223 * 0 | 0 | 1 | 0 | 1 | 224 * 1 | 1 | 0 | 1 | 0 | 225 * 2 | 0 | 1 | 0 | 1 | 226 * 3 | 1 | 0 | 1 | 0 | 227 * ----------+-----+-----+-----+-----+ 228 */ 229 switch (rank) { 230 case 0: 231 odt_mask_0 = 0x4; 232 odt_mask_1 = 0x5; 233 break; 234 case 1: 235 odt_mask_0 = 0x8; 236 odt_mask_1 = 0xA; 237 break; 238 case 2: 239 odt_mask_0 = 0x1; 240 odt_mask_1 = 0x5; 241 break; 242 case 3: 243 odt_mask_0 = 0x2; 244 odt_mask_1 = 0xA; 245 break; 246 } 247 break; 248 } 249 } 250 251 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 252 ((0xFF & odt_mask_0) << 8) | 253 ((0xFF & odt_mask_1) << 16); 254 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 255 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 256 } 257 258 /** 259 * scc_mgr_set() - Set SCC Manager register 260 * @off: Base offset in SCC Manager space 261 * @grp: Read/Write group 262 * @val: Value to be set 263 * 264 * This function sets the SCC Manager (Scan Chain Control Manager) register. 265 */ 266 static void scc_mgr_set(u32 off, u32 grp, u32 val) 267 { 268 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 269 } 270 271 /** 272 * scc_mgr_initialize() - Initialize SCC Manager registers 273 * 274 * Initialize SCC Manager registers. 275 */ 276 static void scc_mgr_initialize(void) 277 { 278 /* 279 * Clear register file for HPS. 16 (2^4) is the size of the 280 * full register file in the scc mgr: 281 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 282 * MEM_IF_READ_DQS_WIDTH - 1); 283 */ 284 int i; 285 286 for (i = 0; i < 16; i++) { 287 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 288 __func__, __LINE__, i); 289 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 290 } 291 } 292 293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 294 { 295 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 296 } 297 298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 299 { 300 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 301 } 302 303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 306 } 307 308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 311 } 312 313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 314 { 315 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 316 delay); 317 } 318 319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 327 } 328 329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 330 { 331 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 332 delay); 333 } 334 335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 336 { 337 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 338 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 339 delay); 340 } 341 342 /* load up dqs config settings */ 343 static void scc_mgr_load_dqs(uint32_t dqs) 344 { 345 writel(dqs, &sdr_scc_mgr->dqs_ena); 346 } 347 348 /* load up dqs io config settings */ 349 static void scc_mgr_load_dqs_io(void) 350 { 351 writel(0, &sdr_scc_mgr->dqs_io_ena); 352 } 353 354 /* load up dq config settings */ 355 static void scc_mgr_load_dq(uint32_t dq_in_group) 356 { 357 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 358 } 359 360 /* load up dm config settings */ 361 static void scc_mgr_load_dm(uint32_t dm) 362 { 363 writel(dm, &sdr_scc_mgr->dm_ena); 364 } 365 366 /** 367 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 368 * @off: Base offset in SCC Manager space 369 * @grp: Read/Write group 370 * @val: Value to be set 371 * @update: If non-zero, trigger SCC Manager update for all ranks 372 * 373 * This function sets the SCC Manager (Scan Chain Control Manager) register 374 * and optionally triggers the SCC update for all ranks. 375 */ 376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 377 const int update) 378 { 379 u32 r; 380 381 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 382 r += NUM_RANKS_PER_SHADOW_REG) { 383 scc_mgr_set(off, grp, val); 384 385 if (update || (r == 0)) { 386 writel(grp, &sdr_scc_mgr->dqs_ena); 387 writel(0, &sdr_scc_mgr->update); 388 } 389 } 390 } 391 392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 393 { 394 /* 395 * USER although the h/w doesn't support different phases per 396 * shadow register, for simplicity our scc manager modeling 397 * keeps different phase settings per shadow reg, and it's 398 * important for us to keep them in sync to match h/w. 399 * for efficiency, the scan chain update should occur only 400 * once to sr0. 401 */ 402 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 403 read_group, phase, 0); 404 } 405 406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 407 uint32_t phase) 408 { 409 /* 410 * USER although the h/w doesn't support different phases per 411 * shadow register, for simplicity our scc manager modeling 412 * keeps different phase settings per shadow reg, and it's 413 * important for us to keep them in sync to match h/w. 414 * for efficiency, the scan chain update should occur only 415 * once to sr0. 416 */ 417 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 418 write_group, phase, 0); 419 } 420 421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 422 uint32_t delay) 423 { 424 /* 425 * In shadow register mode, the T11 settings are stored in 426 * registers in the core, which are updated by the DQS_ENA 427 * signals. Not issuing the SCC_MGR_UPD command allows us to 428 * save lots of rank switching overhead, by calling 429 * select_shadow_regs_for_update with update_scan_chains 430 * set to 0. 431 */ 432 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 433 read_group, delay, 1); 434 writel(0, &sdr_scc_mgr->update); 435 } 436 437 /** 438 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 439 * @write_group: Write group 440 * @delay: Delay value 441 * 442 * This function sets the OCT output delay in SCC manager. 443 */ 444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 445 { 446 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 447 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 448 const int base = write_group * ratio; 449 int i; 450 /* 451 * Load the setting in the SCC manager 452 * Although OCT affects only write data, the OCT delay is controlled 453 * by the DQS logic block which is instantiated once per read group. 454 * For protocols where a write group consists of multiple read groups, 455 * the setting must be set multiple times. 456 */ 457 for (i = 0; i < ratio; i++) 458 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 459 } 460 461 /** 462 * scc_mgr_set_hhp_extras() - Set HHP extras. 463 * 464 * Load the fixed setting in the SCC manager HHP extras. 465 */ 466 static void scc_mgr_set_hhp_extras(void) 467 { 468 /* 469 * Load the fixed setting in the SCC manager 470 * bits: 0:0 = 1'b1 - DQS bypass 471 * bits: 1:1 = 1'b1 - DQ bypass 472 * bits: 4:2 = 3'b001 - rfifo_mode 473 * bits: 6:5 = 2'b01 - rfifo clock_select 474 * bits: 7:7 = 1'b0 - separate gating from ungating setting 475 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 476 */ 477 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 478 (1 << 2) | (1 << 1) | (1 << 0); 479 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 480 SCC_MGR_HHP_GLOBALS_OFFSET | 481 SCC_MGR_HHP_EXTRAS_OFFSET; 482 483 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 484 __func__, __LINE__); 485 writel(value, addr); 486 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 487 __func__, __LINE__); 488 } 489 490 /** 491 * scc_mgr_zero_all() - Zero all DQS config 492 * 493 * Zero all DQS config. 494 */ 495 static void scc_mgr_zero_all(void) 496 { 497 int i, r; 498 499 /* 500 * USER Zero all DQS config settings, across all groups and all 501 * shadow registers 502 */ 503 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 504 r += NUM_RANKS_PER_SHADOW_REG) { 505 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 506 /* 507 * The phases actually don't exist on a per-rank basis, 508 * but there's no harm updating them several times, so 509 * let's keep the code simple. 510 */ 511 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 512 scc_mgr_set_dqs_en_phase(i, 0); 513 scc_mgr_set_dqs_en_delay(i, 0); 514 } 515 516 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 517 scc_mgr_set_dqdqs_output_phase(i, 0); 518 /* Arria V/Cyclone V don't have out2. */ 519 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 520 } 521 } 522 523 /* Multicast to all DQS group enables. */ 524 writel(0xff, &sdr_scc_mgr->dqs_ena); 525 writel(0, &sdr_scc_mgr->update); 526 } 527 528 /** 529 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 530 * @write_group: Write group 531 * 532 * Set bypass mode and trigger SCC update. 533 */ 534 static void scc_set_bypass_mode(const u32 write_group) 535 { 536 /* Multicast to all DQ enables. */ 537 writel(0xff, &sdr_scc_mgr->dq_ena); 538 writel(0xff, &sdr_scc_mgr->dm_ena); 539 540 /* Update current DQS IO enable. */ 541 writel(0, &sdr_scc_mgr->dqs_io_ena); 542 543 /* Update the DQS logic. */ 544 writel(write_group, &sdr_scc_mgr->dqs_ena); 545 546 /* Hit update. */ 547 writel(0, &sdr_scc_mgr->update); 548 } 549 550 /** 551 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 552 * @write_group: Write group 553 * 554 * Load DQS settings for Write Group, do not trigger SCC update. 555 */ 556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 557 { 558 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 559 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 560 const int base = write_group * ratio; 561 int i; 562 /* 563 * Load the setting in the SCC manager 564 * Although OCT affects only write data, the OCT delay is controlled 565 * by the DQS logic block which is instantiated once per read group. 566 * For protocols where a write group consists of multiple read groups, 567 * the setting must be set multiple times. 568 */ 569 for (i = 0; i < ratio; i++) 570 writel(base + i, &sdr_scc_mgr->dqs_ena); 571 } 572 573 /** 574 * scc_mgr_zero_group() - Zero all configs for a group 575 * 576 * Zero DQ, DM, DQS and OCT configs for a group. 577 */ 578 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 579 { 580 int i, r; 581 582 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 583 r += NUM_RANKS_PER_SHADOW_REG) { 584 /* Zero all DQ config settings. */ 585 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 586 scc_mgr_set_dq_out1_delay(i, 0); 587 if (!out_only) 588 scc_mgr_set_dq_in_delay(i, 0); 589 } 590 591 /* Multicast to all DQ enables. */ 592 writel(0xff, &sdr_scc_mgr->dq_ena); 593 594 /* Zero all DM config settings. */ 595 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 596 scc_mgr_set_dm_out1_delay(i, 0); 597 598 /* Multicast to all DM enables. */ 599 writel(0xff, &sdr_scc_mgr->dm_ena); 600 601 /* Zero all DQS IO settings. */ 602 if (!out_only) 603 scc_mgr_set_dqs_io_in_delay(0); 604 605 /* Arria V/Cyclone V don't have out2. */ 606 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 607 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 608 scc_mgr_load_dqs_for_write_group(write_group); 609 610 /* Multicast to all DQS IO enables (only 1 in total). */ 611 writel(0, &sdr_scc_mgr->dqs_io_ena); 612 613 /* Hit update to zero everything. */ 614 writel(0, &sdr_scc_mgr->update); 615 } 616 } 617 618 /* 619 * apply and load a particular input delay for the DQ pins in a group 620 * group_bgn is the index of the first dq pin (in the write group) 621 */ 622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 623 { 624 uint32_t i, p; 625 626 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 627 scc_mgr_set_dq_in_delay(p, delay); 628 scc_mgr_load_dq(p); 629 } 630 } 631 632 /** 633 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 634 * @delay: Delay value 635 * 636 * Apply and load a particular output delay for the DQ pins in a group. 637 */ 638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 639 { 640 int i; 641 642 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 643 scc_mgr_set_dq_out1_delay(i, delay); 644 scc_mgr_load_dq(i); 645 } 646 } 647 648 /* apply and load a particular output delay for the DM pins in a group */ 649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 650 { 651 uint32_t i; 652 653 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 654 scc_mgr_set_dm_out1_delay(i, delay1); 655 scc_mgr_load_dm(i); 656 } 657 } 658 659 660 /* apply and load delay on both DQS and OCT out1 */ 661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 662 uint32_t delay) 663 { 664 scc_mgr_set_dqs_out1_delay(delay); 665 scc_mgr_load_dqs_io(); 666 667 scc_mgr_set_oct_out1_delay(write_group, delay); 668 scc_mgr_load_dqs_for_write_group(write_group); 669 } 670 671 /** 672 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 673 * @write_group: Write group 674 * @delay: Delay value 675 * 676 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 677 */ 678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 679 const u32 delay) 680 { 681 u32 i, new_delay; 682 683 /* DQ shift */ 684 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 685 scc_mgr_load_dq(i); 686 687 /* DM shift */ 688 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 689 scc_mgr_load_dm(i); 690 691 /* DQS shift */ 692 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 693 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 694 debug_cond(DLEVEL == 1, 695 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 696 __func__, __LINE__, write_group, delay, new_delay, 697 IO_IO_OUT2_DELAY_MAX, 698 new_delay - IO_IO_OUT2_DELAY_MAX); 699 new_delay -= IO_IO_OUT2_DELAY_MAX; 700 scc_mgr_set_dqs_out1_delay(new_delay); 701 } 702 703 scc_mgr_load_dqs_io(); 704 705 /* OCT shift */ 706 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 707 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 708 debug_cond(DLEVEL == 1, 709 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 710 __func__, __LINE__, write_group, delay, 711 new_delay, IO_IO_OUT2_DELAY_MAX, 712 new_delay - IO_IO_OUT2_DELAY_MAX); 713 new_delay -= IO_IO_OUT2_DELAY_MAX; 714 scc_mgr_set_oct_out1_delay(write_group, new_delay); 715 } 716 717 scc_mgr_load_dqs_for_write_group(write_group); 718 } 719 720 /** 721 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 722 * @write_group: Write group 723 * @delay: Delay value 724 * 725 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 726 */ 727 static void 728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 729 const u32 delay) 730 { 731 int r; 732 733 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 734 r += NUM_RANKS_PER_SHADOW_REG) { 735 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 736 writel(0, &sdr_scc_mgr->update); 737 } 738 } 739 740 /** 741 * set_jump_as_return() - Return instruction optimization 742 * 743 * Optimization used to recover some slots in ddr3 inst_rom could be 744 * applied to other protocols if we wanted to 745 */ 746 static void set_jump_as_return(void) 747 { 748 /* 749 * To save space, we replace return with jump to special shared 750 * RETURN instruction so we set the counter to large value so that 751 * we always jump. 752 */ 753 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 754 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 755 } 756 757 /* 758 * should always use constants as argument to ensure all computations are 759 * performed at compile time 760 */ 761 static void delay_for_n_mem_clocks(const uint32_t clocks) 762 { 763 uint32_t afi_clocks; 764 uint8_t inner = 0; 765 uint8_t outer = 0; 766 uint16_t c_loop = 0; 767 768 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 769 770 771 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 772 /* scale (rounding up) to get afi clocks */ 773 774 /* 775 * Note, we don't bother accounting for being off a little bit 776 * because of a few extra instructions in outer loops 777 * Note, the loops have a test at the end, and do the test before 778 * the decrement, and so always perform the loop 779 * 1 time more than the counter value 780 */ 781 if (afi_clocks == 0) { 782 ; 783 } else if (afi_clocks <= 0x100) { 784 inner = afi_clocks-1; 785 outer = 0; 786 c_loop = 0; 787 } else if (afi_clocks <= 0x10000) { 788 inner = 0xff; 789 outer = (afi_clocks-1) >> 8; 790 c_loop = 0; 791 } else { 792 inner = 0xff; 793 outer = 0xff; 794 c_loop = (afi_clocks-1) >> 16; 795 } 796 797 /* 798 * rom instructions are structured as follows: 799 * 800 * IDLE_LOOP2: jnz cntr0, TARGET_A 801 * IDLE_LOOP1: jnz cntr1, TARGET_B 802 * return 803 * 804 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 805 * TARGET_B is set to IDLE_LOOP2 as well 806 * 807 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 808 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 809 * 810 * a little confusing, but it helps save precious space in the inst_rom 811 * and sequencer rom and keeps the delays more accurate and reduces 812 * overhead 813 */ 814 if (afi_clocks <= 0x100) { 815 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 816 &sdr_rw_load_mgr_regs->load_cntr1); 817 818 writel(RW_MGR_IDLE_LOOP1, 819 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 820 821 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 822 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 823 } else { 824 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 825 &sdr_rw_load_mgr_regs->load_cntr0); 826 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 828 &sdr_rw_load_mgr_regs->load_cntr1); 829 830 writel(RW_MGR_IDLE_LOOP2, 831 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 835 836 /* hack to get around compiler not being smart enough */ 837 if (afi_clocks <= 0x10000) { 838 /* only need to run once */ 839 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 840 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 841 } else { 842 do { 843 writel(RW_MGR_IDLE_LOOP2, 844 SDR_PHYGRP_RWMGRGRP_ADDRESS | 845 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 846 } while (c_loop-- != 0); 847 } 848 } 849 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 850 } 851 852 /** 853 * rw_mgr_mem_init_load_regs() - Load instruction registers 854 * @cntr0: Counter 0 value 855 * @cntr1: Counter 1 value 856 * @cntr2: Counter 2 value 857 * @jump: Jump instruction value 858 * 859 * Load instruction registers. 860 */ 861 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 862 { 863 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 864 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 865 866 /* Load counters */ 867 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 868 &sdr_rw_load_mgr_regs->load_cntr0); 869 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 870 &sdr_rw_load_mgr_regs->load_cntr1); 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 872 &sdr_rw_load_mgr_regs->load_cntr2); 873 874 /* Load jump address */ 875 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 876 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 877 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 878 879 /* Execute count instruction */ 880 writel(jump, grpaddr); 881 } 882 883 /** 884 * rw_mgr_mem_load_user() - Load user calibration values 885 * @fin1: Final instruction 1 886 * @fin2: Final instruction 2 887 * @precharge: If 1, precharge the banks at the end 888 * 889 * Load user calibration values and optionally precharge the banks. 890 */ 891 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 892 const int precharge) 893 { 894 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 895 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 896 u32 r; 897 898 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 899 if (param->skip_ranks[r]) { 900 /* request to skip the rank */ 901 continue; 902 } 903 904 /* set rank */ 905 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 906 907 /* precharge all banks ... */ 908 if (precharge) 909 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 910 911 /* 912 * USER Use Mirror-ed commands for odd ranks if address 913 * mirrorring is on 914 */ 915 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 916 set_jump_as_return(); 917 writel(RW_MGR_MRS2_MIRR, grpaddr); 918 delay_for_n_mem_clocks(4); 919 set_jump_as_return(); 920 writel(RW_MGR_MRS3_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS1_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(fin1, grpaddr); 927 } else { 928 set_jump_as_return(); 929 writel(RW_MGR_MRS2, grpaddr); 930 delay_for_n_mem_clocks(4); 931 set_jump_as_return(); 932 writel(RW_MGR_MRS3, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS1, grpaddr); 936 set_jump_as_return(); 937 writel(fin2, grpaddr); 938 } 939 940 if (precharge) 941 continue; 942 943 set_jump_as_return(); 944 writel(RW_MGR_ZQCL, grpaddr); 945 946 /* tZQinit = tDLLK = 512 ck cycles */ 947 delay_for_n_mem_clocks(512); 948 } 949 } 950 951 /** 952 * rw_mgr_mem_initialize() - Initialize RW Manager 953 * 954 * Initialize RW Manager. 955 */ 956 static void rw_mgr_mem_initialize(void) 957 { 958 debug("%s:%d\n", __func__, __LINE__); 959 960 /* The reset / cke part of initialization is broadcasted to all ranks */ 961 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 962 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 963 964 /* 965 * Here's how you load register for a loop 966 * Counters are located @ 0x800 967 * Jump address are located @ 0xC00 968 * For both, registers 0 to 3 are selected using bits 3 and 2, like 969 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 970 * I know this ain't pretty, but Avalon bus throws away the 2 least 971 * significant bits 972 */ 973 974 /* Start with memory RESET activated */ 975 976 /* tINIT = 200us */ 977 978 /* 979 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 980 * If a and b are the number of iteration in 2 nested loops 981 * it takes the following number of cycles to complete the operation: 982 * number_of_cycles = ((2 + n) * a + 2) * b 983 * where n is the number of instruction in the inner loop 984 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 985 * b = 6A 986 */ 987 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 988 SEQ_TINIT_CNTR2_VAL, 989 RW_MGR_INIT_RESET_0_CKE_0); 990 991 /* Indicate that memory is stable. */ 992 writel(1, &phy_mgr_cfg->reset_mem_stbl); 993 994 /* 995 * transition the RESET to high 996 * Wait for 500us 997 */ 998 999 /* 1000 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1001 * If a and b are the number of iteration in 2 nested loops 1002 * it takes the following number of cycles to complete the operation 1003 * number_of_cycles = ((2 + n) * a + 2) * b 1004 * where n is the number of instruction in the inner loop 1005 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1006 * b = FF 1007 */ 1008 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1009 SEQ_TRESET_CNTR2_VAL, 1010 RW_MGR_INIT_RESET_1_CKE_0); 1011 1012 /* Bring up clock enable. */ 1013 1014 /* tXRP < 250 ck cycles */ 1015 delay_for_n_mem_clocks(250); 1016 1017 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1018 0); 1019 } 1020 1021 /* 1022 * At the end of calibration we have to program the user settings in, and 1023 * USER hand off the memory to the user. 1024 */ 1025 static void rw_mgr_mem_handoff(void) 1026 { 1027 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1028 /* 1029 * USER need to wait tMOD (12CK or 15ns) time before issuing 1030 * other commands, but we will have plenty of NIOS cycles before 1031 * actual handoff so its okay. 1032 */ 1033 } 1034 1035 /* 1036 * issue write test command. 1037 * two variants are provided. one that just tests a write pattern and 1038 * another that tests datamask functionality. 1039 */ 1040 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 1041 uint32_t test_dm) 1042 { 1043 uint32_t mcc_instruction; 1044 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 1045 ENABLE_SUPER_QUICK_CALIBRATION); 1046 uint32_t rw_wl_nop_cycles; 1047 uint32_t addr; 1048 1049 /* 1050 * Set counter and jump addresses for the right 1051 * number of NOP cycles. 1052 * The number of supported NOP cycles can range from -1 to infinity 1053 * Three different cases are handled: 1054 * 1055 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 1056 * mechanism will be used to insert the right number of NOPs 1057 * 1058 * 2. For a number of NOP cycles equals to 0, the micro-instruction 1059 * issuing the write command will jump straight to the 1060 * micro-instruction that turns on DQS (for DDRx), or outputs write 1061 * data (for RLD), skipping 1062 * the NOP micro-instruction all together 1063 * 1064 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 1065 * turned on in the same micro-instruction that issues the write 1066 * command. Then we need 1067 * to directly jump to the micro-instruction that sends out the data 1068 * 1069 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 1070 * (2 and 3). One jump-counter (0) is used to perform multiple 1071 * write-read operations. 1072 * one counter left to issue this command in "multiple-group" mode 1073 */ 1074 1075 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 1076 1077 if (rw_wl_nop_cycles == -1) { 1078 /* 1079 * CNTR 2 - We want to execute the special write operation that 1080 * turns on DQS right away and then skip directly to the 1081 * instruction that sends out the data. We set the counter to a 1082 * large number so that the jump is always taken. 1083 */ 1084 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1085 1086 /* CNTR 3 - Not used */ 1087 if (test_dm) { 1088 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 1089 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1091 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1092 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1093 } else { 1094 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 1095 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 1096 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1097 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1098 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1099 } 1100 } else if (rw_wl_nop_cycles == 0) { 1101 /* 1102 * CNTR 2 - We want to skip the NOP operation and go straight 1103 * to the DQS enable instruction. We set the counter to a large 1104 * number so that the jump is always taken. 1105 */ 1106 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 1107 1108 /* CNTR 3 - Not used */ 1109 if (test_dm) { 1110 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1111 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 1112 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1113 } else { 1114 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1115 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 1116 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1117 } 1118 } else { 1119 /* 1120 * CNTR 2 - In this case we want to execute the next instruction 1121 * and NOT take the jump. So we set the counter to 0. The jump 1122 * address doesn't count. 1123 */ 1124 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 1125 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1126 1127 /* 1128 * CNTR 3 - Set the nop counter to the number of cycles we 1129 * need to loop for, minus 1. 1130 */ 1131 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 1132 if (test_dm) { 1133 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 1134 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 1135 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1136 } else { 1137 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 1138 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 1139 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1140 } 1141 } 1142 1143 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1144 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1145 1146 if (quick_write_mode) 1147 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 1148 else 1149 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 1150 1151 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1152 1153 /* 1154 * CNTR 1 - This is used to ensure enough time elapses 1155 * for read data to come back. 1156 */ 1157 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 1158 1159 if (test_dm) { 1160 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 1161 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1162 } else { 1163 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1165 } 1166 1167 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1168 writel(mcc_instruction, addr + (group << 2)); 1169 } 1170 1171 /** 1172 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass 1173 * @rank_bgn: Rank number 1174 * @write_group: Write Group 1175 * @use_dm: Use DM 1176 * @all_correct: All bits must be correct in the mask 1177 * @bit_chk: Resulting bit mask after the test 1178 * @all_ranks: Test all ranks 1179 * 1180 * Test writes, can check for a single bit pass or multiple bit pass. 1181 */ 1182 static int 1183 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group, 1184 const u32 use_dm, const u32 all_correct, 1185 u32 *bit_chk, const u32 all_ranks) 1186 { 1187 const u32 rank_end = all_ranks ? 1188 RW_MGR_MEM_NUMBER_OF_RANKS : 1189 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1190 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS / 1191 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS; 1192 const u32 correct_mask_vg = param->write_correct_mask_vg; 1193 1194 u32 tmp_bit_chk, base_rw_mgr; 1195 int vg, r; 1196 1197 *bit_chk = param->write_correct_mask; 1198 1199 for (r = rank_bgn; r < rank_end; r++) { 1200 /* Request to skip the rank */ 1201 if (param->skip_ranks[r]) 1202 continue; 1203 1204 /* Set rank */ 1205 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1206 1207 tmp_bit_chk = 0; 1208 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; 1209 vg >= 0; vg--) { 1210 /* Reset the FIFOs to get pointers to known state. */ 1211 writel(0, &phy_mgr_cmd->fifo_reset); 1212 1213 rw_mgr_mem_calibrate_write_test_issue( 1214 write_group * 1215 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg, 1216 use_dm); 1217 1218 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1219 tmp_bit_chk <<= shift_ratio; 1220 tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr)); 1221 } 1222 1223 *bit_chk &= tmp_bit_chk; 1224 } 1225 1226 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1227 if (all_correct) { 1228 debug_cond(DLEVEL == 2, 1229 "write_test(%u,%u,ALL) : %u == %u => %i\n", 1230 write_group, use_dm, *bit_chk, 1231 param->write_correct_mask, 1232 *bit_chk == param->write_correct_mask); 1233 return *bit_chk == param->write_correct_mask; 1234 } else { 1235 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1236 debug_cond(DLEVEL == 2, 1237 "write_test(%u,%u,ONE) : %u != %i => %i\n", 1238 write_group, use_dm, *bit_chk, 0, *bit_chk != 0); 1239 return *bit_chk != 0x00; 1240 } 1241 } 1242 1243 /** 1244 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1245 * @rank_bgn: Rank number 1246 * @group: Read/Write Group 1247 * @all_ranks: Test all ranks 1248 * 1249 * Performs a guaranteed read on the patterns we are going to use during a 1250 * read test to ensure memory works. 1251 */ 1252 static int 1253 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1254 const u32 all_ranks) 1255 { 1256 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1257 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1258 const u32 addr_offset = 1259 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1260 const u32 rank_end = all_ranks ? 1261 RW_MGR_MEM_NUMBER_OF_RANKS : 1262 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1263 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1264 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1265 const u32 correct_mask_vg = param->read_correct_mask_vg; 1266 1267 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1268 int vg, r; 1269 int ret = 0; 1270 1271 bit_chk = param->read_correct_mask; 1272 1273 for (r = rank_bgn; r < rank_end; r++) { 1274 /* Request to skip the rank */ 1275 if (param->skip_ranks[r]) 1276 continue; 1277 1278 /* Set rank */ 1279 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1280 1281 /* Load up a constant bursts of read commands */ 1282 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1283 writel(RW_MGR_GUARANTEED_READ, 1284 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1285 1286 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1287 writel(RW_MGR_GUARANTEED_READ_CONT, 1288 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1289 1290 tmp_bit_chk = 0; 1291 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1292 vg >= 0; vg--) { 1293 /* Reset the FIFOs to get pointers to known state. */ 1294 writel(0, &phy_mgr_cmd->fifo_reset); 1295 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1296 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1297 writel(RW_MGR_GUARANTEED_READ, 1298 addr + addr_offset + (vg << 2)); 1299 1300 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1301 tmp_bit_chk <<= shift_ratio; 1302 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1303 } 1304 1305 bit_chk &= tmp_bit_chk; 1306 } 1307 1308 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1309 1310 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1311 1312 if (bit_chk != param->read_correct_mask) 1313 ret = -EIO; 1314 1315 debug_cond(DLEVEL == 1, 1316 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1317 __func__, __LINE__, group, bit_chk, 1318 param->read_correct_mask, ret); 1319 1320 return ret; 1321 } 1322 1323 /** 1324 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1325 * @rank_bgn: Rank number 1326 * @all_ranks: Test all ranks 1327 * 1328 * Load up the patterns we are going to use during a read test. 1329 */ 1330 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1331 const int all_ranks) 1332 { 1333 const u32 rank_end = all_ranks ? 1334 RW_MGR_MEM_NUMBER_OF_RANKS : 1335 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1336 u32 r; 1337 1338 debug("%s:%d\n", __func__, __LINE__); 1339 1340 for (r = rank_bgn; r < rank_end; r++) { 1341 if (param->skip_ranks[r]) 1342 /* request to skip the rank */ 1343 continue; 1344 1345 /* set rank */ 1346 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1347 1348 /* Load up a constant bursts */ 1349 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1350 1351 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1352 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1353 1354 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1355 1356 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1357 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1358 1359 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1360 1361 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1362 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1363 1364 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1365 1366 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1367 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1368 1369 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1370 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1371 } 1372 1373 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1374 } 1375 1376 /** 1377 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank 1378 * @rank_bgn: Rank number 1379 * @group: Read/Write group 1380 * @num_tries: Number of retries of the test 1381 * @all_correct: All bits must be correct in the mask 1382 * @bit_chk: Resulting bit mask after the test 1383 * @all_groups: Test all R/W groups 1384 * @all_ranks: Test all ranks 1385 * 1386 * Try a read and see if it returns correct data back. Test has dummy reads 1387 * inserted into the mix used to align DQS enable. Test has more thorough 1388 * checks than the regular read test. 1389 */ 1390 static int 1391 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group, 1392 const u32 num_tries, const u32 all_correct, 1393 u32 *bit_chk, 1394 const u32 all_groups, const u32 all_ranks) 1395 { 1396 const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1397 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1398 const u32 quick_read_mode = 1399 ((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) && 1400 ENABLE_SUPER_QUICK_CALIBRATION); 1401 u32 correct_mask_vg = param->read_correct_mask_vg; 1402 u32 tmp_bit_chk; 1403 u32 base_rw_mgr; 1404 u32 addr; 1405 1406 int r, vg, ret; 1407 1408 *bit_chk = param->read_correct_mask; 1409 1410 for (r = rank_bgn; r < rank_end; r++) { 1411 if (param->skip_ranks[r]) 1412 /* request to skip the rank */ 1413 continue; 1414 1415 /* set rank */ 1416 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1417 1418 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1419 1420 writel(RW_MGR_READ_B2B_WAIT1, 1421 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1422 1423 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1424 writel(RW_MGR_READ_B2B_WAIT2, 1425 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1426 1427 if (quick_read_mode) 1428 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1429 /* need at least two (1+1) reads to capture failures */ 1430 else if (all_groups) 1431 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1432 else 1433 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1434 1435 writel(RW_MGR_READ_B2B, 1436 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1437 if (all_groups) 1438 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1439 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1440 &sdr_rw_load_mgr_regs->load_cntr3); 1441 else 1442 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1443 1444 writel(RW_MGR_READ_B2B, 1445 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1446 1447 tmp_bit_chk = 0; 1448 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; 1449 vg--) { 1450 /* Reset the FIFOs to get pointers to known state. */ 1451 writel(0, &phy_mgr_cmd->fifo_reset); 1452 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1453 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1454 1455 if (all_groups) { 1456 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1457 RW_MGR_RUN_ALL_GROUPS_OFFSET; 1458 } else { 1459 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1460 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1461 } 1462 1463 writel(RW_MGR_READ_B2B, addr + 1464 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1465 vg) << 2)); 1466 1467 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1468 tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS / 1469 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1470 tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr); 1471 } 1472 1473 *bit_chk &= tmp_bit_chk; 1474 } 1475 1476 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1477 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1478 1479 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1480 1481 if (all_correct) { 1482 ret = (*bit_chk == param->read_correct_mask); 1483 debug_cond(DLEVEL == 2, 1484 "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n", 1485 __func__, __LINE__, group, all_groups, *bit_chk, 1486 param->read_correct_mask, ret); 1487 } else { 1488 ret = (*bit_chk != 0x00); 1489 debug_cond(DLEVEL == 2, 1490 "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n", 1491 __func__, __LINE__, group, all_groups, *bit_chk, 1492 0, ret); 1493 } 1494 1495 return ret; 1496 } 1497 1498 /** 1499 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks 1500 * @grp: Read/Write group 1501 * @num_tries: Number of retries of the test 1502 * @all_correct: All bits must be correct in the mask 1503 * @all_groups: Test all R/W groups 1504 * 1505 * Perform a READ test across all memory ranks. 1506 */ 1507 static int 1508 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries, 1509 const u32 all_correct, 1510 const u32 all_groups) 1511 { 1512 u32 bit_chk; 1513 return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct, 1514 &bit_chk, all_groups, 1); 1515 } 1516 1517 /** 1518 * rw_mgr_incr_vfifo() - Increase VFIFO value 1519 * @grp: Read/Write group 1520 * 1521 * Increase VFIFO value. 1522 */ 1523 static void rw_mgr_incr_vfifo(const u32 grp) 1524 { 1525 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1526 } 1527 1528 /** 1529 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1530 * @grp: Read/Write group 1531 * 1532 * Decrease VFIFO value. 1533 */ 1534 static void rw_mgr_decr_vfifo(const u32 grp) 1535 { 1536 u32 i; 1537 1538 for (i = 0; i < VFIFO_SIZE - 1; i++) 1539 rw_mgr_incr_vfifo(grp); 1540 } 1541 1542 /** 1543 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1544 * @grp: Read/Write group 1545 * 1546 * Push VFIFO until a failing read happens. 1547 */ 1548 static int find_vfifo_failing_read(const u32 grp) 1549 { 1550 u32 v, ret, fail_cnt = 0; 1551 1552 for (v = 0; v < VFIFO_SIZE; v++) { 1553 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1554 __func__, __LINE__, v); 1555 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1556 PASS_ONE_BIT, 0); 1557 if (!ret) { 1558 fail_cnt++; 1559 1560 if (fail_cnt == 2) 1561 return v; 1562 } 1563 1564 /* Fiddle with FIFO. */ 1565 rw_mgr_incr_vfifo(grp); 1566 } 1567 1568 /* No failing read found! Something must have gone wrong. */ 1569 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1570 return 0; 1571 } 1572 1573 /** 1574 * sdr_find_phase_delay() - Find DQS enable phase or delay 1575 * @working: If 1, look for working phase/delay, if 0, look for non-working 1576 * @delay: If 1, look for delay, if 0, look for phase 1577 * @grp: Read/Write group 1578 * @work: Working window position 1579 * @work_inc: Working window increment 1580 * @pd: DQS Phase/Delay Iterator 1581 * 1582 * Find working or non-working DQS enable phase setting. 1583 */ 1584 static int sdr_find_phase_delay(int working, int delay, const u32 grp, 1585 u32 *work, const u32 work_inc, u32 *pd) 1586 { 1587 const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX; 1588 u32 ret; 1589 1590 for (; *pd <= max; (*pd)++) { 1591 if (delay) 1592 scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd); 1593 else 1594 scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd); 1595 1596 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1597 PASS_ONE_BIT, 0); 1598 if (!working) 1599 ret = !ret; 1600 1601 if (ret) 1602 return 0; 1603 1604 if (work) 1605 *work += work_inc; 1606 } 1607 1608 return -EINVAL; 1609 } 1610 /** 1611 * sdr_find_phase() - Find DQS enable phase 1612 * @working: If 1, look for working phase, if 0, look for non-working phase 1613 * @grp: Read/Write group 1614 * @work: Working window position 1615 * @i: Iterator 1616 * @p: DQS Phase Iterator 1617 * 1618 * Find working or non-working DQS enable phase setting. 1619 */ 1620 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1621 u32 *i, u32 *p) 1622 { 1623 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1624 int ret; 1625 1626 for (; *i < end; (*i)++) { 1627 if (working) 1628 *p = 0; 1629 1630 ret = sdr_find_phase_delay(working, 0, grp, work, 1631 IO_DELAY_PER_OPA_TAP, p); 1632 if (!ret) 1633 return 0; 1634 1635 if (*p > IO_DQS_EN_PHASE_MAX) { 1636 /* Fiddle with FIFO. */ 1637 rw_mgr_incr_vfifo(grp); 1638 if (!working) 1639 *p = 0; 1640 } 1641 } 1642 1643 return -EINVAL; 1644 } 1645 1646 /** 1647 * sdr_working_phase() - Find working DQS enable phase 1648 * @grp: Read/Write group 1649 * @work_bgn: Working window start position 1650 * @d: dtaps output value 1651 * @p: DQS Phase Iterator 1652 * @i: Iterator 1653 * 1654 * Find working DQS enable phase setting. 1655 */ 1656 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1657 u32 *p, u32 *i) 1658 { 1659 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1660 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1661 int ret; 1662 1663 *work_bgn = 0; 1664 1665 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1666 *i = 0; 1667 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1668 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1669 if (!ret) 1670 return 0; 1671 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1672 } 1673 1674 /* Cannot find working solution */ 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1676 __func__, __LINE__); 1677 return -EINVAL; 1678 } 1679 1680 /** 1681 * sdr_backup_phase() - Find DQS enable backup phase 1682 * @grp: Read/Write group 1683 * @work_bgn: Working window start position 1684 * @p: DQS Phase Iterator 1685 * 1686 * Find DQS enable backup phase setting. 1687 */ 1688 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1689 { 1690 u32 tmp_delay, d; 1691 int ret; 1692 1693 /* Special case code for backing up a phase */ 1694 if (*p == 0) { 1695 *p = IO_DQS_EN_PHASE_MAX; 1696 rw_mgr_decr_vfifo(grp); 1697 } else { 1698 (*p)--; 1699 } 1700 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1701 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1702 1703 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1704 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1705 1706 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1707 PASS_ONE_BIT, 0); 1708 if (ret) { 1709 *work_bgn = tmp_delay; 1710 break; 1711 } 1712 1713 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1714 } 1715 1716 /* Restore VFIFO to old state before we decremented it (if needed). */ 1717 (*p)++; 1718 if (*p > IO_DQS_EN_PHASE_MAX) { 1719 *p = 0; 1720 rw_mgr_incr_vfifo(grp); 1721 } 1722 1723 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1724 } 1725 1726 /** 1727 * sdr_nonworking_phase() - Find non-working DQS enable phase 1728 * @grp: Read/Write group 1729 * @work_end: Working window end position 1730 * @p: DQS Phase Iterator 1731 * @i: Iterator 1732 * 1733 * Find non-working DQS enable phase setting. 1734 */ 1735 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1736 { 1737 int ret; 1738 1739 (*p)++; 1740 *work_end += IO_DELAY_PER_OPA_TAP; 1741 if (*p > IO_DQS_EN_PHASE_MAX) { 1742 /* Fiddle with FIFO. */ 1743 *p = 0; 1744 rw_mgr_incr_vfifo(grp); 1745 } 1746 1747 ret = sdr_find_phase(0, grp, work_end, i, p); 1748 if (ret) { 1749 /* Cannot see edge of failing read. */ 1750 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1751 __func__, __LINE__); 1752 } 1753 1754 return ret; 1755 } 1756 1757 /** 1758 * sdr_find_window_center() - Find center of the working DQS window. 1759 * @grp: Read/Write group 1760 * @work_bgn: First working settings 1761 * @work_end: Last working settings 1762 * 1763 * Find center of the working DQS enable window. 1764 */ 1765 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1766 const u32 work_end) 1767 { 1768 u32 work_mid; 1769 int tmp_delay = 0; 1770 int i, p, d; 1771 1772 work_mid = (work_bgn + work_end) / 2; 1773 1774 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1775 work_bgn, work_end, work_mid); 1776 /* Get the middle delay to be less than a VFIFO delay */ 1777 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1778 1779 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1780 work_mid %= tmp_delay; 1781 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1782 1783 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1784 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1785 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1786 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1787 1788 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1789 1790 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1791 if (d > IO_DQS_EN_DELAY_MAX) 1792 d = IO_DQS_EN_DELAY_MAX; 1793 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1794 1795 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1796 1797 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1798 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1799 1800 /* 1801 * push vfifo until we can successfully calibrate. We can do this 1802 * because the largest possible margin in 1 VFIFO cycle. 1803 */ 1804 for (i = 0; i < VFIFO_SIZE; i++) { 1805 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1806 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1807 PASS_ONE_BIT, 1808 0)) { 1809 debug_cond(DLEVEL == 2, 1810 "%s:%d center: found: ptap=%u dtap=%u\n", 1811 __func__, __LINE__, p, d); 1812 return 0; 1813 } 1814 1815 /* Fiddle with FIFO. */ 1816 rw_mgr_incr_vfifo(grp); 1817 } 1818 1819 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1820 __func__, __LINE__); 1821 return -EINVAL; 1822 } 1823 1824 /** 1825 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use 1826 * @grp: Read/Write Group 1827 * 1828 * Find a good DQS enable to use. 1829 */ 1830 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp) 1831 { 1832 u32 d, p, i; 1833 u32 dtaps_per_ptap; 1834 u32 work_bgn, work_end; 1835 u32 found_passing_read, found_failing_read, initial_failing_dtap; 1836 int ret; 1837 1838 debug("%s:%d %u\n", __func__, __LINE__, grp); 1839 1840 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1841 1842 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1843 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1844 1845 /* Step 0: Determine number of delay taps for each phase tap. */ 1846 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1847 1848 /* Step 1: First push vfifo until we get a failing read. */ 1849 find_vfifo_failing_read(grp); 1850 1851 /* Step 2: Find first working phase, increment in ptaps. */ 1852 work_bgn = 0; 1853 ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i); 1854 if (ret) 1855 return ret; 1856 1857 work_end = work_bgn; 1858 1859 /* 1860 * If d is 0 then the working window covers a phase tap and we can 1861 * follow the old procedure. Otherwise, we've found the beginning 1862 * and we need to increment the dtaps until we find the end. 1863 */ 1864 if (d == 0) { 1865 /* 1866 * Step 3a: If we have room, back off by one and 1867 * increment in dtaps. 1868 */ 1869 sdr_backup_phase(grp, &work_bgn, &p); 1870 1871 /* 1872 * Step 4a: go forward from working phase to non working 1873 * phase, increment in ptaps. 1874 */ 1875 ret = sdr_nonworking_phase(grp, &work_end, &p, &i); 1876 if (ret) 1877 return ret; 1878 1879 /* Step 5a: Back off one from last, increment in dtaps. */ 1880 1881 /* Special case code for backing up a phase */ 1882 if (p == 0) { 1883 p = IO_DQS_EN_PHASE_MAX; 1884 rw_mgr_decr_vfifo(grp); 1885 } else { 1886 p = p - 1; 1887 } 1888 1889 work_end -= IO_DELAY_PER_OPA_TAP; 1890 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1891 1892 d = 0; 1893 1894 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1895 __func__, __LINE__, p); 1896 } 1897 1898 /* The dtap increment to find the failing edge is done here. */ 1899 sdr_find_phase_delay(0, 1, grp, &work_end, 1900 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d); 1901 1902 /* Go back to working dtap */ 1903 if (d != 0) 1904 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1905 1906 debug_cond(DLEVEL == 2, 1907 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1908 __func__, __LINE__, p, d - 1, work_end); 1909 1910 if (work_end < work_bgn) { 1911 /* nil range */ 1912 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1913 __func__, __LINE__); 1914 return -EINVAL; 1915 } 1916 1917 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1918 __func__, __LINE__, work_bgn, work_end); 1919 1920 /* 1921 * We need to calculate the number of dtaps that equal a ptap. 1922 * To do that we'll back up a ptap and re-find the edge of the 1923 * window using dtaps 1924 */ 1925 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1926 __func__, __LINE__); 1927 1928 /* Special case code for backing up a phase */ 1929 if (p == 0) { 1930 p = IO_DQS_EN_PHASE_MAX; 1931 rw_mgr_decr_vfifo(grp); 1932 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1933 __func__, __LINE__, p); 1934 } else { 1935 p = p - 1; 1936 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1937 __func__, __LINE__, p); 1938 } 1939 1940 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1941 1942 /* 1943 * Increase dtap until we first see a passing read (in case the 1944 * window is smaller than a ptap), and then a failing read to 1945 * mark the edge of the window again. 1946 */ 1947 1948 /* Find a passing read. */ 1949 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1950 __func__, __LINE__); 1951 1952 initial_failing_dtap = d; 1953 1954 found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d); 1955 if (found_passing_read) { 1956 /* Find a failing read. */ 1957 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1958 __func__, __LINE__); 1959 d++; 1960 found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0, 1961 &d); 1962 } else { 1963 debug_cond(DLEVEL == 1, 1964 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1965 __func__, __LINE__); 1966 } 1967 1968 /* 1969 * The dynamically calculated dtaps_per_ptap is only valid if we 1970 * found a passing/failing read. If we didn't, it means d hit the max 1971 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1972 * statically calculated value. 1973 */ 1974 if (found_passing_read && found_failing_read) 1975 dtaps_per_ptap = d - initial_failing_dtap; 1976 1977 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1978 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1979 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1980 1981 /* Step 6: Find the centre of the window. */ 1982 ret = sdr_find_window_center(grp, work_bgn, work_end); 1983 1984 return ret; 1985 } 1986 1987 /** 1988 * search_stop_check() - Check if the detected edge is valid 1989 * @write: Perform read (Stage 2) or write (Stage 3) calibration 1990 * @d: DQS delay 1991 * @rank_bgn: Rank number 1992 * @write_group: Write Group 1993 * @read_group: Read Group 1994 * @bit_chk: Resulting bit mask after the test 1995 * @sticky_bit_chk: Resulting sticky bit mask after the test 1996 * @use_read_test: Perform read test 1997 * 1998 * Test if the found edge is valid. 1999 */ 2000 static u32 search_stop_check(const int write, const int d, const int rank_bgn, 2001 const u32 write_group, const u32 read_group, 2002 u32 *bit_chk, u32 *sticky_bit_chk, 2003 const u32 use_read_test) 2004 { 2005 const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 2006 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 2007 const u32 correct_mask = write ? param->write_correct_mask : 2008 param->read_correct_mask; 2009 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2010 RW_MGR_MEM_DQ_PER_READ_DQS; 2011 u32 ret; 2012 /* 2013 * Stop searching when the read test doesn't pass AND when 2014 * we've seen a passing read on every bit. 2015 */ 2016 if (write) { /* WRITE-ONLY */ 2017 ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2018 0, PASS_ONE_BIT, 2019 bit_chk, 0); 2020 } else if (use_read_test) { /* READ-ONLY */ 2021 ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, 2022 NUM_READ_PB_TESTS, 2023 PASS_ONE_BIT, bit_chk, 2024 0, 0); 2025 } else { /* READ-ONLY */ 2026 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, 2027 PASS_ONE_BIT, bit_chk, 0); 2028 *bit_chk = *bit_chk >> (per_dqs * 2029 (read_group - (write_group * ratio))); 2030 ret = (*bit_chk == 0); 2031 } 2032 *sticky_bit_chk = *sticky_bit_chk | *bit_chk; 2033 ret = ret && (*sticky_bit_chk == correct_mask); 2034 debug_cond(DLEVEL == 2, 2035 "%s:%d center(left): dtap=%u => %u == %u && %u", 2036 __func__, __LINE__, d, 2037 *sticky_bit_chk, correct_mask, ret); 2038 return ret; 2039 } 2040 2041 /** 2042 * search_left_edge() - Find left edge of DQ/DQS working phase 2043 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2044 * @rank_bgn: Rank number 2045 * @write_group: Write Group 2046 * @read_group: Read Group 2047 * @test_bgn: Rank number to begin the test 2048 * @sticky_bit_chk: Resulting sticky bit mask after the test 2049 * @left_edge: Left edge of the DQ/DQS phase 2050 * @right_edge: Right edge of the DQ/DQS phase 2051 * @use_read_test: Perform read test 2052 * 2053 * Find left edge of DQ/DQS working phase. 2054 */ 2055 static void search_left_edge(const int write, const int rank_bgn, 2056 const u32 write_group, const u32 read_group, const u32 test_bgn, 2057 u32 *sticky_bit_chk, 2058 int *left_edge, int *right_edge, const u32 use_read_test) 2059 { 2060 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2061 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2062 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2063 RW_MGR_MEM_DQ_PER_READ_DQS; 2064 u32 stop, bit_chk; 2065 int i, d; 2066 2067 for (d = 0; d <= dqs_max; d++) { 2068 if (write) 2069 scc_mgr_apply_group_dq_out1_delay(d); 2070 else 2071 scc_mgr_apply_group_dq_in_delay(test_bgn, d); 2072 2073 writel(0, &sdr_scc_mgr->update); 2074 2075 stop = search_stop_check(write, d, rank_bgn, write_group, 2076 read_group, &bit_chk, sticky_bit_chk, 2077 use_read_test); 2078 if (stop == 1) 2079 break; 2080 2081 /* stop != 1 */ 2082 for (i = 0; i < per_dqs; i++) { 2083 if (bit_chk & 1) { 2084 /* 2085 * Remember a passing test as 2086 * the left_edge. 2087 */ 2088 left_edge[i] = d; 2089 } else { 2090 /* 2091 * If a left edge has not been seen 2092 * yet, then a future passing test 2093 * will mark this edge as the right 2094 * edge. 2095 */ 2096 if (left_edge[i] == delay_max + 1) 2097 right_edge[i] = -(d + 1); 2098 } 2099 bit_chk >>= 1; 2100 } 2101 } 2102 2103 /* Reset DQ delay chains to 0 */ 2104 if (write) 2105 scc_mgr_apply_group_dq_out1_delay(0); 2106 else 2107 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2108 2109 *sticky_bit_chk = 0; 2110 for (i = per_dqs - 1; i >= 0; i--) { 2111 debug_cond(DLEVEL == 2, 2112 "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n", 2113 __func__, __LINE__, i, left_edge[i], 2114 i, right_edge[i]); 2115 2116 /* 2117 * Check for cases where we haven't found the left edge, 2118 * which makes our assignment of the the right edge invalid. 2119 * Reset it to the illegal value. 2120 */ 2121 if ((left_edge[i] == delay_max + 1) && 2122 (right_edge[i] != delay_max + 1)) { 2123 right_edge[i] = delay_max + 1; 2124 debug_cond(DLEVEL == 2, 2125 "%s:%d vfifo_center: reset right_edge[%u]: %d\n", 2126 __func__, __LINE__, i, right_edge[i]); 2127 } 2128 2129 /* 2130 * Reset sticky bit 2131 * READ: except for bits where we have seen both 2132 * the left and right edge. 2133 * WRITE: except for bits where we have seen the 2134 * left edge. 2135 */ 2136 *sticky_bit_chk <<= 1; 2137 if (write) { 2138 if (left_edge[i] != delay_max + 1) 2139 *sticky_bit_chk |= 1; 2140 } else { 2141 if ((left_edge[i] != delay_max + 1) && 2142 (right_edge[i] != delay_max + 1)) 2143 *sticky_bit_chk |= 1; 2144 } 2145 } 2146 2147 2148 } 2149 2150 /** 2151 * search_right_edge() - Find right edge of DQ/DQS working phase 2152 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2153 * @rank_bgn: Rank number 2154 * @write_group: Write Group 2155 * @read_group: Read Group 2156 * @start_dqs: DQS start phase 2157 * @start_dqs_en: DQS enable start phase 2158 * @sticky_bit_chk: Resulting sticky bit mask after the test 2159 * @left_edge: Left edge of the DQ/DQS phase 2160 * @right_edge: Right edge of the DQ/DQS phase 2161 * @use_read_test: Perform read test 2162 * 2163 * Find right edge of DQ/DQS working phase. 2164 */ 2165 static int search_right_edge(const int write, const int rank_bgn, 2166 const u32 write_group, const u32 read_group, 2167 const int start_dqs, const int start_dqs_en, 2168 u32 *sticky_bit_chk, 2169 int *left_edge, int *right_edge, const u32 use_read_test) 2170 { 2171 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2172 const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX; 2173 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2174 RW_MGR_MEM_DQ_PER_READ_DQS; 2175 u32 stop, bit_chk; 2176 int i, d; 2177 2178 for (d = 0; d <= dqs_max - start_dqs; d++) { 2179 if (write) { /* WRITE-ONLY */ 2180 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2181 d + start_dqs); 2182 } else { /* READ-ONLY */ 2183 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 2184 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2185 uint32_t delay = d + start_dqs_en; 2186 if (delay > IO_DQS_EN_DELAY_MAX) 2187 delay = IO_DQS_EN_DELAY_MAX; 2188 scc_mgr_set_dqs_en_delay(read_group, delay); 2189 } 2190 scc_mgr_load_dqs(read_group); 2191 } 2192 2193 writel(0, &sdr_scc_mgr->update); 2194 2195 stop = search_stop_check(write, d, rank_bgn, write_group, 2196 read_group, &bit_chk, sticky_bit_chk, 2197 use_read_test); 2198 if (stop == 1) { 2199 if (write && (d == 0)) { /* WRITE-ONLY */ 2200 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2201 /* 2202 * d = 0 failed, but it passed when 2203 * testing the left edge, so it must be 2204 * marginal, set it to -1 2205 */ 2206 if (right_edge[i] == delay_max + 1 && 2207 left_edge[i] != delay_max + 1) 2208 right_edge[i] = -1; 2209 } 2210 } 2211 break; 2212 } 2213 2214 /* stop != 1 */ 2215 for (i = 0; i < per_dqs; i++) { 2216 if (bit_chk & 1) { 2217 /* 2218 * Remember a passing test as 2219 * the right_edge. 2220 */ 2221 right_edge[i] = d; 2222 } else { 2223 if (d != 0) { 2224 /* 2225 * If a right edge has not 2226 * been seen yet, then a future 2227 * passing test will mark this 2228 * edge as the left edge. 2229 */ 2230 if (right_edge[i] == delay_max + 1) 2231 left_edge[i] = -(d + 1); 2232 } else { 2233 /* 2234 * d = 0 failed, but it passed 2235 * when testing the left edge, 2236 * so it must be marginal, set 2237 * it to -1 2238 */ 2239 if (right_edge[i] == delay_max + 1 && 2240 left_edge[i] != delay_max + 1) 2241 right_edge[i] = -1; 2242 /* 2243 * If a right edge has not been 2244 * seen yet, then a future 2245 * passing test will mark this 2246 * edge as the left edge. 2247 */ 2248 else if (right_edge[i] == delay_max + 1) 2249 left_edge[i] = -(d + 1); 2250 } 2251 } 2252 2253 debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ", 2254 __func__, __LINE__, d); 2255 debug_cond(DLEVEL == 2, 2256 "bit_chk_test=%i left_edge[%u]: %d ", 2257 bit_chk & 1, i, left_edge[i]); 2258 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2259 right_edge[i]); 2260 bit_chk >>= 1; 2261 } 2262 } 2263 2264 /* Check that all bits have a window */ 2265 for (i = 0; i < per_dqs; i++) { 2266 debug_cond(DLEVEL == 2, 2267 "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d", 2268 __func__, __LINE__, i, left_edge[i], 2269 i, right_edge[i]); 2270 if ((left_edge[i] == dqs_max + 1) || 2271 (right_edge[i] == dqs_max + 1)) 2272 return i + 1; /* FIXME: If we fail, retval > 0 */ 2273 } 2274 2275 return 0; 2276 } 2277 2278 /** 2279 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase 2280 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2281 * @left_edge: Left edge of the DQ/DQS phase 2282 * @right_edge: Right edge of the DQ/DQS phase 2283 * @mid_min: Best DQ/DQS phase middle setting 2284 * 2285 * Find index and value of the middle of the DQ/DQS working phase. 2286 */ 2287 static int get_window_mid_index(const int write, int *left_edge, 2288 int *right_edge, int *mid_min) 2289 { 2290 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2291 RW_MGR_MEM_DQ_PER_READ_DQS; 2292 int i, mid, min_index; 2293 2294 /* Find middle of window for each DQ bit */ 2295 *mid_min = left_edge[0] - right_edge[0]; 2296 min_index = 0; 2297 for (i = 1; i < per_dqs; i++) { 2298 mid = left_edge[i] - right_edge[i]; 2299 if (mid < *mid_min) { 2300 *mid_min = mid; 2301 min_index = i; 2302 } 2303 } 2304 2305 /* 2306 * -mid_min/2 represents the amount that we need to move DQS. 2307 * If mid_min is odd and positive we'll need to add one to make 2308 * sure the rounding in further calculations is correct (always 2309 * bias to the right), so just add 1 for all positive values. 2310 */ 2311 if (*mid_min > 0) 2312 (*mid_min)++; 2313 *mid_min = *mid_min / 2; 2314 2315 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n", 2316 __func__, __LINE__, *mid_min, min_index); 2317 return min_index; 2318 } 2319 2320 /** 2321 * center_dq_windows() - Center the DQ/DQS windows 2322 * @write: Perform read (Stage 2) or write (Stage 3) calibration 2323 * @left_edge: Left edge of the DQ/DQS phase 2324 * @right_edge: Right edge of the DQ/DQS phase 2325 * @mid_min: Adjusted DQ/DQS phase middle setting 2326 * @orig_mid_min: Original DQ/DQS phase middle setting 2327 * @min_index: DQ/DQS phase middle setting index 2328 * @test_bgn: Rank number to begin the test 2329 * @dq_margin: Amount of shift for the DQ 2330 * @dqs_margin: Amount of shift for the DQS 2331 * 2332 * Align the DQ/DQS windows in each group. 2333 */ 2334 static void center_dq_windows(const int write, int *left_edge, int *right_edge, 2335 const int mid_min, const int orig_mid_min, 2336 const int min_index, const int test_bgn, 2337 int *dq_margin, int *dqs_margin) 2338 { 2339 const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX; 2340 const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS : 2341 RW_MGR_MEM_DQ_PER_READ_DQS; 2342 const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET : 2343 SCC_MGR_IO_IN_DELAY_OFFSET; 2344 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off; 2345 2346 u32 temp_dq_io_delay1, temp_dq_io_delay2; 2347 int shift_dq, i, p; 2348 2349 /* Initialize data for export structures */ 2350 *dqs_margin = delay_max + 1; 2351 *dq_margin = delay_max + 1; 2352 2353 /* add delay to bring centre of all DQ windows to the same "level" */ 2354 for (i = 0, p = test_bgn; i < per_dqs; i++, p++) { 2355 /* Use values before divide by 2 to reduce round off error */ 2356 shift_dq = (left_edge[i] - right_edge[i] - 2357 (left_edge[min_index] - right_edge[min_index]))/2 + 2358 (orig_mid_min - mid_min); 2359 2360 debug_cond(DLEVEL == 2, 2361 "vfifo_center: before: shift_dq[%u]=%d\n", 2362 i, shift_dq); 2363 2364 temp_dq_io_delay1 = readl(addr + (p << 2)); 2365 temp_dq_io_delay2 = readl(addr + (i << 2)); 2366 2367 if (shift_dq + temp_dq_io_delay1 > delay_max) 2368 shift_dq = delay_max - temp_dq_io_delay2; 2369 else if (shift_dq + temp_dq_io_delay1 < 0) 2370 shift_dq = -temp_dq_io_delay1; 2371 2372 debug_cond(DLEVEL == 2, 2373 "vfifo_center: after: shift_dq[%u]=%d\n", 2374 i, shift_dq); 2375 2376 if (write) 2377 scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq); 2378 else 2379 scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq); 2380 2381 scc_mgr_load_dq(p); 2382 2383 debug_cond(DLEVEL == 2, 2384 "vfifo_center: margin[%u]=[%d,%d]\n", i, 2385 left_edge[i] - shift_dq + (-mid_min), 2386 right_edge[i] + shift_dq - (-mid_min)); 2387 2388 /* To determine values for export structures */ 2389 if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin) 2390 *dq_margin = left_edge[i] - shift_dq + (-mid_min); 2391 2392 if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin) 2393 *dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2394 } 2395 2396 } 2397 2398 /** 2399 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering 2400 * @rank_bgn: Rank number 2401 * @rw_group: Read/Write Group 2402 * @test_bgn: Rank at which the test begins 2403 * @use_read_test: Perform a read test 2404 * @update_fom: Update FOM 2405 * 2406 * Per-bit deskew DQ and centering. 2407 */ 2408 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn, 2409 const u32 rw_group, const u32 test_bgn, 2410 const int use_read_test, const int update_fom) 2411 { 2412 const u32 addr = 2413 SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET + 2414 (rw_group << 2); 2415 /* 2416 * Store these as signed since there are comparisons with 2417 * signed numbers. 2418 */ 2419 uint32_t sticky_bit_chk; 2420 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2421 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 2422 int32_t orig_mid_min, mid_min; 2423 int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en; 2424 int32_t dq_margin, dqs_margin; 2425 int i, min_index; 2426 int ret; 2427 2428 debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn); 2429 2430 start_dqs = readl(addr); 2431 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2432 start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET); 2433 2434 /* set the left and right edge of each bit to an illegal value */ 2435 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 2436 sticky_bit_chk = 0; 2437 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2438 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2439 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 2440 } 2441 2442 /* Search for the left edge of the window for each bit */ 2443 search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn, 2444 &sticky_bit_chk, 2445 left_edge, right_edge, use_read_test); 2446 2447 2448 /* Search for the right edge of the window for each bit */ 2449 ret = search_right_edge(0, rank_bgn, rw_group, rw_group, 2450 start_dqs, start_dqs_en, 2451 &sticky_bit_chk, 2452 left_edge, right_edge, use_read_test); 2453 if (ret) { 2454 /* 2455 * Restore delay chain settings before letting the loop 2456 * in rw_mgr_mem_calibrate_vfifo to retry different 2457 * dqs/ck relationships. 2458 */ 2459 scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs); 2460 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2461 scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en); 2462 2463 scc_mgr_load_dqs(rw_group); 2464 writel(0, &sdr_scc_mgr->update); 2465 2466 debug_cond(DLEVEL == 1, 2467 "%s:%d vfifo_center: failed to find edge [%u]: %d %d", 2468 __func__, __LINE__, i, left_edge[i], right_edge[i]); 2469 if (use_read_test) { 2470 set_failing_group_stage(rw_group * 2471 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2472 CAL_STAGE_VFIFO, 2473 CAL_SUBSTAGE_VFIFO_CENTER); 2474 } else { 2475 set_failing_group_stage(rw_group * 2476 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2477 CAL_STAGE_VFIFO_AFTER_WRITES, 2478 CAL_SUBSTAGE_VFIFO_CENTER); 2479 } 2480 return -EIO; 2481 } 2482 2483 min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min); 2484 2485 /* Determine the amount we can change DQS (which is -mid_min) */ 2486 orig_mid_min = mid_min; 2487 new_dqs = start_dqs - mid_min; 2488 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2489 new_dqs = IO_DQS_IN_DELAY_MAX; 2490 else if (new_dqs < 0) 2491 new_dqs = 0; 2492 2493 mid_min = start_dqs - new_dqs; 2494 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2495 mid_min, new_dqs); 2496 2497 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2498 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2499 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2500 else if (start_dqs_en - mid_min < 0) 2501 mid_min += start_dqs_en - mid_min; 2502 } 2503 new_dqs = start_dqs - mid_min; 2504 2505 debug_cond(DLEVEL == 1, 2506 "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n", 2507 start_dqs, 2508 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2509 new_dqs, mid_min); 2510 2511 /* Add delay to bring centre of all DQ windows to the same "level". */ 2512 center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min, 2513 min_index, test_bgn, &dq_margin, &dqs_margin); 2514 2515 /* Move DQS-en */ 2516 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2517 final_dqs_en = start_dqs_en - mid_min; 2518 scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en); 2519 scc_mgr_load_dqs(rw_group); 2520 } 2521 2522 /* Move DQS */ 2523 scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs); 2524 scc_mgr_load_dqs(rw_group); 2525 debug_cond(DLEVEL == 2, 2526 "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d", 2527 __func__, __LINE__, dq_margin, dqs_margin); 2528 2529 /* 2530 * Do not remove this line as it makes sure all of our decisions 2531 * have been applied. Apply the update bit. 2532 */ 2533 writel(0, &sdr_scc_mgr->update); 2534 2535 if ((dq_margin < 0) || (dqs_margin < 0)) 2536 return -EINVAL; 2537 2538 return 0; 2539 } 2540 2541 /** 2542 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2543 * @rw_group: Read/Write Group 2544 * @phase: DQ/DQS phase 2545 * 2546 * Because initially no communication ca be reliably performed with the memory 2547 * device, the sequencer uses a guaranteed write mechanism to write data into 2548 * the memory device. 2549 */ 2550 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2551 const u32 phase) 2552 { 2553 int ret; 2554 2555 /* Set a particular DQ/DQS phase. */ 2556 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2557 2558 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2559 __func__, __LINE__, rw_group, phase); 2560 2561 /* 2562 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2563 * Load up the patterns used by read calibration using the 2564 * current DQDQS phase. 2565 */ 2566 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2567 2568 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2569 return 0; 2570 2571 /* 2572 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2573 * Back-to-Back reads of the patterns used for calibration. 2574 */ 2575 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2576 if (ret) 2577 debug_cond(DLEVEL == 1, 2578 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2579 __func__, __LINE__, rw_group, phase); 2580 return ret; 2581 } 2582 2583 /** 2584 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2585 * @rw_group: Read/Write Group 2586 * @test_bgn: Rank at which the test begins 2587 * 2588 * DQS enable calibration ensures reliable capture of the DQ signal without 2589 * glitches on the DQS line. 2590 */ 2591 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2592 const u32 test_bgn) 2593 { 2594 /* 2595 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2596 * DQS and DQS Eanble Signal Relationships. 2597 */ 2598 2599 /* We start at zero, so have one less dq to devide among */ 2600 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2601 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2602 int ret; 2603 u32 i, p, d, r; 2604 2605 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2606 2607 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2608 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2609 r += NUM_RANKS_PER_SHADOW_REG) { 2610 for (i = 0, p = test_bgn, d = 0; 2611 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2612 i++, p++, d += delay_step) { 2613 debug_cond(DLEVEL == 1, 2614 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2615 __func__, __LINE__, rw_group, r, i, p, d); 2616 2617 scc_mgr_set_dq_in_delay(p, d); 2618 scc_mgr_load_dq(p); 2619 } 2620 2621 writel(0, &sdr_scc_mgr->update); 2622 } 2623 2624 /* 2625 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2626 * dq_in_delay values 2627 */ 2628 ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2629 2630 debug_cond(DLEVEL == 1, 2631 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2632 __func__, __LINE__, rw_group, !ret); 2633 2634 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2635 r += NUM_RANKS_PER_SHADOW_REG) { 2636 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2637 writel(0, &sdr_scc_mgr->update); 2638 } 2639 2640 return ret; 2641 } 2642 2643 /** 2644 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2645 * @rw_group: Read/Write Group 2646 * @test_bgn: Rank at which the test begins 2647 * @use_read_test: Perform a read test 2648 * @update_fom: Update FOM 2649 * 2650 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2651 * within a group. 2652 */ 2653 static int 2654 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2655 const int use_read_test, 2656 const int update_fom) 2657 2658 { 2659 int ret, grp_calibrated; 2660 u32 rank_bgn, sr; 2661 2662 /* 2663 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2664 * Read per-bit deskew can be done on a per shadow register basis. 2665 */ 2666 grp_calibrated = 1; 2667 for (rank_bgn = 0, sr = 0; 2668 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2669 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2670 /* Check if this set of ranks should be skipped entirely. */ 2671 if (param->skip_shadow_regs[sr]) 2672 continue; 2673 2674 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2675 test_bgn, 2676 use_read_test, 2677 update_fom); 2678 if (!ret) 2679 continue; 2680 2681 grp_calibrated = 0; 2682 } 2683 2684 if (!grp_calibrated) 2685 return -EIO; 2686 2687 return 0; 2688 } 2689 2690 /** 2691 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2692 * @rw_group: Read/Write Group 2693 * @test_bgn: Rank at which the test begins 2694 * 2695 * Stage 1: Calibrate the read valid prediction FIFO. 2696 * 2697 * This function implements UniPHY calibration Stage 1, as explained in 2698 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2699 * 2700 * - read valid prediction will consist of finding: 2701 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2702 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2703 * - we also do a per-bit deskew on the DQ lines. 2704 */ 2705 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2706 { 2707 uint32_t p, d; 2708 uint32_t dtaps_per_ptap; 2709 uint32_t failed_substage; 2710 2711 int ret; 2712 2713 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2714 2715 /* Update info for sims */ 2716 reg_file_set_group(rw_group); 2717 reg_file_set_stage(CAL_STAGE_VFIFO); 2718 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2719 2720 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2721 2722 /* USER Determine number of delay taps for each phase tap. */ 2723 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2724 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2725 2726 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2727 /* 2728 * In RLDRAMX we may be messing the delay of pins in 2729 * the same write rw_group but outside of the current read 2730 * the rw_group, but that's ok because we haven't calibrated 2731 * output side yet. 2732 */ 2733 if (d > 0) { 2734 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2735 rw_group, d); 2736 } 2737 2738 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2739 /* 1) Guaranteed Write */ 2740 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2741 if (ret) 2742 break; 2743 2744 /* 2) DQS Enable Calibration */ 2745 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2746 test_bgn); 2747 if (ret) { 2748 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2749 continue; 2750 } 2751 2752 /* 3) Centering DQ/DQS */ 2753 /* 2754 * If doing read after write calibration, do not update 2755 * FOM now. Do it then. 2756 */ 2757 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2758 test_bgn, 1, 0); 2759 if (ret) { 2760 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2761 continue; 2762 } 2763 2764 /* All done. */ 2765 goto cal_done_ok; 2766 } 2767 } 2768 2769 /* Calibration Stage 1 failed. */ 2770 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2771 return 0; 2772 2773 /* Calibration Stage 1 completed OK. */ 2774 cal_done_ok: 2775 /* 2776 * Reset the delay chains back to zero if they have moved > 1 2777 * (check for > 1 because loop will increase d even when pass in 2778 * first case). 2779 */ 2780 if (d > 2) 2781 scc_mgr_zero_group(rw_group, 1); 2782 2783 return 1; 2784 } 2785 2786 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2787 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2788 uint32_t test_bgn) 2789 { 2790 uint32_t rank_bgn, sr; 2791 uint32_t grp_calibrated; 2792 uint32_t write_group; 2793 2794 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2795 2796 /* update info for sims */ 2797 2798 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2799 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2800 2801 write_group = read_group; 2802 2803 /* update info for sims */ 2804 reg_file_set_group(read_group); 2805 2806 grp_calibrated = 1; 2807 /* Read per-bit deskew can be done on a per shadow register basis */ 2808 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2809 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2810 /* Determine if this set of ranks should be skipped entirely */ 2811 if (!param->skip_shadow_regs[sr]) { 2812 /* This is the last calibration round, update FOM here */ 2813 if (rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2814 read_group, 2815 test_bgn, 0, 2816 1)) { 2817 grp_calibrated = 0; 2818 } 2819 } 2820 } 2821 2822 2823 if (grp_calibrated == 0) { 2824 set_failing_group_stage(write_group, 2825 CAL_STAGE_VFIFO_AFTER_WRITES, 2826 CAL_SUBSTAGE_VFIFO_CENTER); 2827 return 0; 2828 } 2829 2830 return 1; 2831 } 2832 2833 /* Calibrate LFIFO to find smallest read latency */ 2834 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2835 { 2836 uint32_t found_one; 2837 2838 debug("%s:%d\n", __func__, __LINE__); 2839 2840 /* update info for sims */ 2841 reg_file_set_stage(CAL_STAGE_LFIFO); 2842 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2843 2844 /* Load up the patterns used by read calibration for all ranks */ 2845 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2846 found_one = 0; 2847 2848 do { 2849 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2850 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2851 __func__, __LINE__, gbl->curr_read_lat); 2852 2853 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2854 NUM_READ_TESTS, 2855 PASS_ALL_BITS, 2856 1)) { 2857 break; 2858 } 2859 2860 found_one = 1; 2861 /* reduce read latency and see if things are working */ 2862 /* correctly */ 2863 gbl->curr_read_lat--; 2864 } while (gbl->curr_read_lat > 0); 2865 2866 /* reset the fifos to get pointers to known state */ 2867 2868 writel(0, &phy_mgr_cmd->fifo_reset); 2869 2870 if (found_one) { 2871 /* add a fudge factor to the read latency that was determined */ 2872 gbl->curr_read_lat += 2; 2873 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2874 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2875 read_lat=%u\n", __func__, __LINE__, 2876 gbl->curr_read_lat); 2877 return 1; 2878 } else { 2879 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2880 CAL_SUBSTAGE_READ_LATENCY); 2881 2882 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2883 read_lat=%u\n", __func__, __LINE__, 2884 gbl->curr_read_lat); 2885 return 0; 2886 } 2887 } 2888 2889 /** 2890 * search_window() - Search for the/part of the window with DM/DQS shift 2891 * @search_dm: If 1, search for the DM shift, if 0, search for DQS shift 2892 * @rank_bgn: Rank number 2893 * @write_group: Write Group 2894 * @bgn_curr: Current window begin 2895 * @end_curr: Current window end 2896 * @bgn_best: Current best window begin 2897 * @end_best: Current best window end 2898 * @win_best: Size of the best window 2899 * @new_dqs: New DQS value (only applicable if search_dm = 0). 2900 * 2901 * Search for the/part of the window with DM/DQS shift. 2902 */ 2903 static void search_window(const int search_dm, 2904 const u32 rank_bgn, const u32 write_group, 2905 int *bgn_curr, int *end_curr, int *bgn_best, 2906 int *end_best, int *win_best, int new_dqs) 2907 { 2908 u32 bit_chk; 2909 const int max = IO_IO_OUT1_DELAY_MAX - new_dqs; 2910 int d, di; 2911 2912 /* Search for the/part of the window with DM/DQS shift. */ 2913 for (di = max; di >= 0; di -= DELTA_D) { 2914 if (search_dm) { 2915 d = di; 2916 scc_mgr_apply_group_dm_out1_delay(d); 2917 } else { 2918 /* For DQS, we go from 0...max */ 2919 d = max - di; 2920 /* 2921 * Note: This only shifts DQS, so are we limiting ourselve to 2922 * width of DQ unnecessarily. 2923 */ 2924 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2925 d + new_dqs); 2926 } 2927 2928 writel(0, &sdr_scc_mgr->update); 2929 2930 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2931 PASS_ALL_BITS, &bit_chk, 2932 0)) { 2933 /* Set current end of the window. */ 2934 *end_curr = search_dm ? -d : d; 2935 2936 /* 2937 * If a starting edge of our window has not been seen 2938 * this is our current start of the DM window. 2939 */ 2940 if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2941 *bgn_curr = search_dm ? -d : d; 2942 2943 /* 2944 * If current window is bigger than best seen. 2945 * Set best seen to be current window. 2946 */ 2947 if ((*end_curr - *bgn_curr + 1) > *win_best) { 2948 *win_best = *end_curr - *bgn_curr + 1; 2949 *bgn_best = *bgn_curr; 2950 *end_best = *end_curr; 2951 } 2952 } else { 2953 /* We just saw a failing test. Reset temp edge. */ 2954 *bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2955 *end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2956 2957 /* Early exit is only applicable to DQS. */ 2958 if (search_dm) 2959 continue; 2960 2961 /* 2962 * Early exit optimization: if the remaining delay 2963 * chain space is less than already seen largest 2964 * window we can exit. 2965 */ 2966 if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d) 2967 break; 2968 } 2969 } 2970 } 2971 2972 /* 2973 * rw_mgr_mem_calibrate_writes_center() - Center all windows 2974 * @rank_bgn: Rank number 2975 * @write_group: Write group 2976 * @test_bgn: Rank at which the test begins 2977 * 2978 * Center all windows. Do per-bit-deskew to possibly increase size of 2979 * certain windows. 2980 */ 2981 static int 2982 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group, 2983 const u32 test_bgn) 2984 { 2985 int i; 2986 u32 sticky_bit_chk; 2987 u32 min_index; 2988 int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2989 int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2990 int mid; 2991 int mid_min, orig_mid_min; 2992 int new_dqs, start_dqs; 2993 int dq_margin, dqs_margin, dm_margin; 2994 int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2995 int end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2996 int bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2997 int end_best = IO_IO_OUT1_DELAY_MAX + 1; 2998 int win_best = 0; 2999 3000 int ret; 3001 3002 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 3003 3004 dm_margin = 0; 3005 3006 start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS | 3007 SCC_MGR_IO_OUT1_DELAY_OFFSET) + 3008 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 3009 3010 /* Per-bit deskew. */ 3011 3012 /* 3013 * Set the left and right edge of each bit to an illegal value. 3014 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3015 */ 3016 sticky_bit_chk = 0; 3017 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 3018 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3019 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 3020 } 3021 3022 /* Search for the left edge of the window for each bit. */ 3023 search_left_edge(1, rank_bgn, write_group, 0, test_bgn, 3024 &sticky_bit_chk, 3025 left_edge, right_edge, 0); 3026 3027 /* Search for the right edge of the window for each bit. */ 3028 ret = search_right_edge(1, rank_bgn, write_group, 0, 3029 start_dqs, 0, 3030 &sticky_bit_chk, 3031 left_edge, right_edge, 0); 3032 if (ret) { 3033 set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES, 3034 CAL_SUBSTAGE_WRITES_CENTER); 3035 return -EINVAL; 3036 } 3037 3038 min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min); 3039 3040 /* Determine the amount we can change DQS (which is -mid_min). */ 3041 orig_mid_min = mid_min; 3042 new_dqs = start_dqs; 3043 mid_min = 0; 3044 debug_cond(DLEVEL == 1, 3045 "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", 3046 __func__, __LINE__, start_dqs, new_dqs, mid_min); 3047 3048 /* Add delay to bring centre of all DQ windows to the same "level". */ 3049 center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min, 3050 min_index, 0, &dq_margin, &dqs_margin); 3051 3052 /* Move DQS */ 3053 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3054 writel(0, &sdr_scc_mgr->update); 3055 3056 /* Centre DM */ 3057 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3058 3059 /* 3060 * Set the left and right edge of each bit to an illegal value. 3061 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 3062 */ 3063 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3064 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3065 3066 /* Search for the/part of the window with DM shift. */ 3067 search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr, 3068 &bgn_best, &end_best, &win_best, 0); 3069 3070 /* Reset DM delay chains to 0. */ 3071 scc_mgr_apply_group_dm_out1_delay(0); 3072 3073 /* 3074 * Check to see if the current window nudges up aganist 0 delay. 3075 * If so we need to continue the search by shifting DQS otherwise DQS 3076 * search begins as a new search. 3077 */ 3078 if (end_curr != 0) { 3079 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3080 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3081 } 3082 3083 /* Search for the/part of the window with DQS shifts. */ 3084 search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr, 3085 &bgn_best, &end_best, &win_best, new_dqs); 3086 3087 /* Assign left and right edge for cal and reporting. */ 3088 left_edge[0] = -1 * bgn_best; 3089 right_edge[0] = end_best; 3090 3091 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", 3092 __func__, __LINE__, left_edge[0], right_edge[0]); 3093 3094 /* Move DQS (back to orig). */ 3095 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3096 3097 /* Move DM */ 3098 3099 /* Find middle of window for the DM bit. */ 3100 mid = (left_edge[0] - right_edge[0]) / 2; 3101 3102 /* Only move right, since we are not moving DQS/DQ. */ 3103 if (mid < 0) 3104 mid = 0; 3105 3106 /* dm_marign should fail if we never find a window. */ 3107 if (win_best == 0) 3108 dm_margin = -1; 3109 else 3110 dm_margin = left_edge[0] - mid; 3111 3112 scc_mgr_apply_group_dm_out1_delay(mid); 3113 writel(0, &sdr_scc_mgr->update); 3114 3115 debug_cond(DLEVEL == 2, 3116 "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n", 3117 __func__, __LINE__, left_edge[0], right_edge[0], 3118 mid, dm_margin); 3119 /* Export values. */ 3120 gbl->fom_out += dq_margin + dqs_margin; 3121 3122 debug_cond(DLEVEL == 2, 3123 "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n", 3124 __func__, __LINE__, dq_margin, dqs_margin, dm_margin); 3125 3126 /* 3127 * Do not remove this line as it makes sure all of our 3128 * decisions have been applied. 3129 */ 3130 writel(0, &sdr_scc_mgr->update); 3131 3132 if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0)) 3133 return -EINVAL; 3134 3135 return 0; 3136 } 3137 3138 /** 3139 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One 3140 * @rank_bgn: Rank number 3141 * @group: Read/Write Group 3142 * @test_bgn: Rank at which the test begins 3143 * 3144 * Stage 2: Write Calibration Part One. 3145 * 3146 * This function implements UniPHY calibration Stage 2, as explained in 3147 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 3148 */ 3149 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group, 3150 const u32 test_bgn) 3151 { 3152 int ret; 3153 3154 /* Update info for sims */ 3155 debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn); 3156 3157 reg_file_set_group(group); 3158 reg_file_set_stage(CAL_STAGE_WRITES); 3159 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3160 3161 ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn); 3162 if (ret) 3163 set_failing_group_stage(group, CAL_STAGE_WRITES, 3164 CAL_SUBSTAGE_WRITES_CENTER); 3165 3166 return ret; 3167 } 3168 3169 /** 3170 * mem_precharge_and_activate() - Precharge all banks and activate 3171 * 3172 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3173 */ 3174 static void mem_precharge_and_activate(void) 3175 { 3176 int r; 3177 3178 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3179 /* Test if the rank should be skipped. */ 3180 if (param->skip_ranks[r]) 3181 continue; 3182 3183 /* Set rank. */ 3184 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3185 3186 /* Precharge all banks. */ 3187 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3188 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3189 3190 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3191 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3192 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3193 3194 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3195 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3196 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3197 3198 /* Activate rows. */ 3199 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3200 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3201 } 3202 } 3203 3204 /** 3205 * mem_init_latency() - Configure memory RLAT and WLAT settings 3206 * 3207 * Configure memory RLAT and WLAT parameters. 3208 */ 3209 static void mem_init_latency(void) 3210 { 3211 /* 3212 * For AV/CV, LFIFO is hardened and always runs at full rate 3213 * so max latency in AFI clocks, used here, is correspondingly 3214 * smaller. 3215 */ 3216 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3217 u32 rlat, wlat; 3218 3219 debug("%s:%d\n", __func__, __LINE__); 3220 3221 /* 3222 * Read in write latency. 3223 * WL for Hard PHY does not include additive latency. 3224 */ 3225 wlat = readl(&data_mgr->t_wl_add); 3226 wlat += readl(&data_mgr->mem_t_add); 3227 3228 gbl->rw_wl_nop_cycles = wlat - 1; 3229 3230 /* Read in readl latency. */ 3231 rlat = readl(&data_mgr->t_rl_add); 3232 3233 /* Set a pretty high read latency initially. */ 3234 gbl->curr_read_lat = rlat + 16; 3235 if (gbl->curr_read_lat > max_latency) 3236 gbl->curr_read_lat = max_latency; 3237 3238 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3239 3240 /* Advertise write latency. */ 3241 writel(wlat, &phy_mgr_cfg->afi_wlat); 3242 } 3243 3244 /** 3245 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3246 * 3247 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3248 */ 3249 static void mem_skip_calibrate(void) 3250 { 3251 uint32_t vfifo_offset; 3252 uint32_t i, j, r; 3253 3254 debug("%s:%d\n", __func__, __LINE__); 3255 /* Need to update every shadow register set used by the interface */ 3256 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3257 r += NUM_RANKS_PER_SHADOW_REG) { 3258 /* 3259 * Set output phase alignment settings appropriate for 3260 * skip calibration. 3261 */ 3262 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3263 scc_mgr_set_dqs_en_phase(i, 0); 3264 #if IO_DLL_CHAIN_LENGTH == 6 3265 scc_mgr_set_dqdqs_output_phase(i, 6); 3266 #else 3267 scc_mgr_set_dqdqs_output_phase(i, 7); 3268 #endif 3269 /* 3270 * Case:33398 3271 * 3272 * Write data arrives to the I/O two cycles before write 3273 * latency is reached (720 deg). 3274 * -> due to bit-slip in a/c bus 3275 * -> to allow board skew where dqs is longer than ck 3276 * -> how often can this happen!? 3277 * -> can claim back some ptaps for high freq 3278 * support if we can relax this, but i digress... 3279 * 3280 * The write_clk leads mem_ck by 90 deg 3281 * The minimum ptap of the OPA is 180 deg 3282 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3283 * The write_clk is always delayed by 2 ptaps 3284 * 3285 * Hence, to make DQS aligned to CK, we need to delay 3286 * DQS by: 3287 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3288 * 3289 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3290 * gives us the number of ptaps, which simplies to: 3291 * 3292 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3293 */ 3294 scc_mgr_set_dqdqs_output_phase(i, 3295 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3296 } 3297 writel(0xff, &sdr_scc_mgr->dqs_ena); 3298 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3299 3300 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3301 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3302 SCC_MGR_GROUP_COUNTER_OFFSET); 3303 } 3304 writel(0xff, &sdr_scc_mgr->dq_ena); 3305 writel(0xff, &sdr_scc_mgr->dm_ena); 3306 writel(0, &sdr_scc_mgr->update); 3307 } 3308 3309 /* Compensate for simulation model behaviour */ 3310 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3311 scc_mgr_set_dqs_bus_in_delay(i, 10); 3312 scc_mgr_load_dqs(i); 3313 } 3314 writel(0, &sdr_scc_mgr->update); 3315 3316 /* 3317 * ArriaV has hard FIFOs that can only be initialized by incrementing 3318 * in sequencer. 3319 */ 3320 vfifo_offset = CALIB_VFIFO_OFFSET; 3321 for (j = 0; j < vfifo_offset; j++) 3322 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3323 writel(0, &phy_mgr_cmd->fifo_reset); 3324 3325 /* 3326 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3327 * setting from generation-time constant. 3328 */ 3329 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3330 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3331 } 3332 3333 /** 3334 * mem_calibrate() - Memory calibration entry point. 3335 * 3336 * Perform memory calibration. 3337 */ 3338 static uint32_t mem_calibrate(void) 3339 { 3340 uint32_t i; 3341 uint32_t rank_bgn, sr; 3342 uint32_t write_group, write_test_bgn; 3343 uint32_t read_group, read_test_bgn; 3344 uint32_t run_groups, current_run; 3345 uint32_t failing_groups = 0; 3346 uint32_t group_failed = 0; 3347 3348 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3349 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3350 3351 debug("%s:%d\n", __func__, __LINE__); 3352 3353 /* Initialize the data settings */ 3354 gbl->error_substage = CAL_SUBSTAGE_NIL; 3355 gbl->error_stage = CAL_STAGE_NIL; 3356 gbl->error_group = 0xff; 3357 gbl->fom_in = 0; 3358 gbl->fom_out = 0; 3359 3360 /* Initialize WLAT and RLAT. */ 3361 mem_init_latency(); 3362 3363 /* Initialize bit slips. */ 3364 mem_precharge_and_activate(); 3365 3366 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3367 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3368 SCC_MGR_GROUP_COUNTER_OFFSET); 3369 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3370 if (i == 0) 3371 scc_mgr_set_hhp_extras(); 3372 3373 scc_set_bypass_mode(i); 3374 } 3375 3376 /* Calibration is skipped. */ 3377 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3378 /* 3379 * Set VFIFO and LFIFO to instant-on settings in skip 3380 * calibration mode. 3381 */ 3382 mem_skip_calibrate(); 3383 3384 /* 3385 * Do not remove this line as it makes sure all of our 3386 * decisions have been applied. 3387 */ 3388 writel(0, &sdr_scc_mgr->update); 3389 return 1; 3390 } 3391 3392 /* Calibration is not skipped. */ 3393 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3394 /* 3395 * Zero all delay chain/phase settings for all 3396 * groups and all shadow register sets. 3397 */ 3398 scc_mgr_zero_all(); 3399 3400 run_groups = ~param->skip_groups; 3401 3402 for (write_group = 0, write_test_bgn = 0; write_group 3403 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3404 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3405 3406 /* Initialize the group failure */ 3407 group_failed = 0; 3408 3409 current_run = run_groups & ((1 << 3410 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3411 run_groups = run_groups >> 3412 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3413 3414 if (current_run == 0) 3415 continue; 3416 3417 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3418 SCC_MGR_GROUP_COUNTER_OFFSET); 3419 scc_mgr_zero_group(write_group, 0); 3420 3421 for (read_group = write_group * rwdqs_ratio, 3422 read_test_bgn = 0; 3423 read_group < (write_group + 1) * rwdqs_ratio; 3424 read_group++, 3425 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3426 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3427 continue; 3428 3429 /* Calibrate the VFIFO */ 3430 if (rw_mgr_mem_calibrate_vfifo(read_group, 3431 read_test_bgn)) 3432 continue; 3433 3434 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3435 return 0; 3436 3437 /* The group failed, we're done. */ 3438 goto grp_failed; 3439 } 3440 3441 /* Calibrate the output side */ 3442 for (rank_bgn = 0, sr = 0; 3443 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3444 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3445 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3446 continue; 3447 3448 /* Not needed in quick mode! */ 3449 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3450 continue; 3451 3452 /* 3453 * Determine if this set of ranks 3454 * should be skipped entirely. 3455 */ 3456 if (param->skip_shadow_regs[sr]) 3457 continue; 3458 3459 /* Calibrate WRITEs */ 3460 if (!rw_mgr_mem_calibrate_writes(rank_bgn, 3461 write_group, write_test_bgn)) 3462 continue; 3463 3464 group_failed = 1; 3465 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3466 return 0; 3467 } 3468 3469 /* Some group failed, we're done. */ 3470 if (group_failed) 3471 goto grp_failed; 3472 3473 for (read_group = write_group * rwdqs_ratio, 3474 read_test_bgn = 0; 3475 read_group < (write_group + 1) * rwdqs_ratio; 3476 read_group++, 3477 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3478 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3479 continue; 3480 3481 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3482 read_test_bgn)) 3483 continue; 3484 3485 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3486 return 0; 3487 3488 /* The group failed, we're done. */ 3489 goto grp_failed; 3490 } 3491 3492 /* No group failed, continue as usual. */ 3493 continue; 3494 3495 grp_failed: /* A group failed, increment the counter. */ 3496 failing_groups++; 3497 } 3498 3499 /* 3500 * USER If there are any failing groups then report 3501 * the failure. 3502 */ 3503 if (failing_groups != 0) 3504 return 0; 3505 3506 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3507 continue; 3508 3509 /* 3510 * If we're skipping groups as part of debug, 3511 * don't calibrate LFIFO. 3512 */ 3513 if (param->skip_groups != 0) 3514 continue; 3515 3516 /* Calibrate the LFIFO */ 3517 if (!rw_mgr_mem_calibrate_lfifo()) 3518 return 0; 3519 } 3520 3521 /* 3522 * Do not remove this line as it makes sure all of our decisions 3523 * have been applied. 3524 */ 3525 writel(0, &sdr_scc_mgr->update); 3526 return 1; 3527 } 3528 3529 /** 3530 * run_mem_calibrate() - Perform memory calibration 3531 * 3532 * This function triggers the entire memory calibration procedure. 3533 */ 3534 static int run_mem_calibrate(void) 3535 { 3536 int pass; 3537 3538 debug("%s:%d\n", __func__, __LINE__); 3539 3540 /* Reset pass/fail status shown on afi_cal_success/fail */ 3541 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3542 3543 /* Stop tracking manager. */ 3544 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3545 3546 phy_mgr_initialize(); 3547 rw_mgr_mem_initialize(); 3548 3549 /* Perform the actual memory calibration. */ 3550 pass = mem_calibrate(); 3551 3552 mem_precharge_and_activate(); 3553 writel(0, &phy_mgr_cmd->fifo_reset); 3554 3555 /* Handoff. */ 3556 rw_mgr_mem_handoff(); 3557 /* 3558 * In Hard PHY this is a 2-bit control: 3559 * 0: AFI Mux Select 3560 * 1: DDIO Mux Select 3561 */ 3562 writel(0x2, &phy_mgr_cfg->mux_sel); 3563 3564 /* Start tracking manager. */ 3565 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3566 3567 return pass; 3568 } 3569 3570 /** 3571 * debug_mem_calibrate() - Report result of memory calibration 3572 * @pass: Value indicating whether calibration passed or failed 3573 * 3574 * This function reports the results of the memory calibration 3575 * and writes debug information into the register file. 3576 */ 3577 static void debug_mem_calibrate(int pass) 3578 { 3579 uint32_t debug_info; 3580 3581 if (pass) { 3582 printf("%s: CALIBRATION PASSED\n", __FILE__); 3583 3584 gbl->fom_in /= 2; 3585 gbl->fom_out /= 2; 3586 3587 if (gbl->fom_in > 0xff) 3588 gbl->fom_in = 0xff; 3589 3590 if (gbl->fom_out > 0xff) 3591 gbl->fom_out = 0xff; 3592 3593 /* Update the FOM in the register file */ 3594 debug_info = gbl->fom_in; 3595 debug_info |= gbl->fom_out << 8; 3596 writel(debug_info, &sdr_reg_file->fom); 3597 3598 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3599 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3600 } else { 3601 printf("%s: CALIBRATION FAILED\n", __FILE__); 3602 3603 debug_info = gbl->error_stage; 3604 debug_info |= gbl->error_substage << 8; 3605 debug_info |= gbl->error_group << 16; 3606 3607 writel(debug_info, &sdr_reg_file->failing_stage); 3608 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3609 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3610 3611 /* Update the failing group/stage in the register file */ 3612 debug_info = gbl->error_stage; 3613 debug_info |= gbl->error_substage << 8; 3614 debug_info |= gbl->error_group << 16; 3615 writel(debug_info, &sdr_reg_file->failing_stage); 3616 } 3617 3618 printf("%s: Calibration complete\n", __FILE__); 3619 } 3620 3621 /** 3622 * hc_initialize_rom_data() - Initialize ROM data 3623 * 3624 * Initialize ROM data. 3625 */ 3626 static void hc_initialize_rom_data(void) 3627 { 3628 u32 i, addr; 3629 3630 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3631 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3632 writel(inst_rom_init[i], addr + (i << 2)); 3633 3634 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3635 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3636 writel(ac_rom_init[i], addr + (i << 2)); 3637 } 3638 3639 /** 3640 * initialize_reg_file() - Initialize SDR register file 3641 * 3642 * Initialize SDR register file. 3643 */ 3644 static void initialize_reg_file(void) 3645 { 3646 /* Initialize the register file with the correct data */ 3647 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3648 writel(0, &sdr_reg_file->debug_data_addr); 3649 writel(0, &sdr_reg_file->cur_stage); 3650 writel(0, &sdr_reg_file->fom); 3651 writel(0, &sdr_reg_file->failing_stage); 3652 writel(0, &sdr_reg_file->debug1); 3653 writel(0, &sdr_reg_file->debug2); 3654 } 3655 3656 /** 3657 * initialize_hps_phy() - Initialize HPS PHY 3658 * 3659 * Initialize HPS PHY. 3660 */ 3661 static void initialize_hps_phy(void) 3662 { 3663 uint32_t reg; 3664 /* 3665 * Tracking also gets configured here because it's in the 3666 * same register. 3667 */ 3668 uint32_t trk_sample_count = 7500; 3669 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3670 /* 3671 * Format is number of outer loops in the 16 MSB, sample 3672 * count in 16 LSB. 3673 */ 3674 3675 reg = 0; 3676 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3677 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3679 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3682 /* 3683 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3684 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3685 */ 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3688 trk_sample_count); 3689 writel(reg, &sdr_ctrl->phy_ctrl0); 3690 3691 reg = 0; 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3693 trk_sample_count >> 3694 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3695 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3696 trk_long_idle_sample_count); 3697 writel(reg, &sdr_ctrl->phy_ctrl1); 3698 3699 reg = 0; 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3701 trk_long_idle_sample_count >> 3702 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3703 writel(reg, &sdr_ctrl->phy_ctrl2); 3704 } 3705 3706 /** 3707 * initialize_tracking() - Initialize tracking 3708 * 3709 * Initialize the register file with usable initial data. 3710 */ 3711 static void initialize_tracking(void) 3712 { 3713 /* 3714 * Initialize the register file with the correct data. 3715 * Compute usable version of value in case we skip full 3716 * computation later. 3717 */ 3718 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3719 &sdr_reg_file->dtaps_per_ptap); 3720 3721 /* trk_sample_count */ 3722 writel(7500, &sdr_reg_file->trk_sample_count); 3723 3724 /* longidle outer loop [15:0] */ 3725 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3726 3727 /* 3728 * longidle sample count [31:24] 3729 * trfc, worst case of 933Mhz 4Gb [23:16] 3730 * trcd, worst case [15:8] 3731 * vfifo wait [7:0] 3732 */ 3733 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3734 &sdr_reg_file->delays); 3735 3736 /* mux delay */ 3737 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3738 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3739 &sdr_reg_file->trk_rw_mgr_addr); 3740 3741 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3742 &sdr_reg_file->trk_read_dqs_width); 3743 3744 /* trefi [7:0] */ 3745 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3746 &sdr_reg_file->trk_rfsh); 3747 } 3748 3749 int sdram_calibration_full(void) 3750 { 3751 struct param_type my_param; 3752 struct gbl_type my_gbl; 3753 uint32_t pass; 3754 3755 memset(&my_param, 0, sizeof(my_param)); 3756 memset(&my_gbl, 0, sizeof(my_gbl)); 3757 3758 param = &my_param; 3759 gbl = &my_gbl; 3760 3761 /* Set the calibration enabled by default */ 3762 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3763 /* 3764 * Only sweep all groups (regardless of fail state) by default 3765 * Set enabled read test by default. 3766 */ 3767 #if DISABLE_GUARANTEED_READ 3768 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3769 #endif 3770 /* Initialize the register file */ 3771 initialize_reg_file(); 3772 3773 /* Initialize any PHY CSR */ 3774 initialize_hps_phy(); 3775 3776 scc_mgr_initialize(); 3777 3778 initialize_tracking(); 3779 3780 printf("%s: Preparing to start memory calibration\n", __FILE__); 3781 3782 debug("%s:%d\n", __func__, __LINE__); 3783 debug_cond(DLEVEL == 1, 3784 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3785 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3786 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3787 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3788 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3789 debug_cond(DLEVEL == 1, 3790 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3791 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3792 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3793 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3794 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3795 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3796 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3797 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3798 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3799 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3800 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3801 IO_IO_OUT2_DELAY_MAX); 3802 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3803 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3804 3805 hc_initialize_rom_data(); 3806 3807 /* update info for sims */ 3808 reg_file_set_stage(CAL_STAGE_NIL); 3809 reg_file_set_group(0); 3810 3811 /* 3812 * Load global needed for those actions that require 3813 * some dynamic calibration support. 3814 */ 3815 dyn_calib_steps = STATIC_CALIB_STEPS; 3816 /* 3817 * Load global to allow dynamic selection of delay loop settings 3818 * based on calibration mode. 3819 */ 3820 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3821 skip_delay_mask = 0xff; 3822 else 3823 skip_delay_mask = 0x0; 3824 3825 pass = run_mem_calibrate(); 3826 debug_mem_calibrate(pass); 3827 return pass; 3828 } 3829