xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 3de9622e9741a98d40e19b384acd6bb4e49d1107)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static void set_failing_group_stage(uint32_t group, uint32_t stage,
84 	uint32_t substage)
85 {
86 	/*
87 	 * Only set the global stage if there was not been any other
88 	 * failing group
89 	 */
90 	if (gbl->error_stage == CAL_STAGE_NIL)	{
91 		gbl->error_substage = substage;
92 		gbl->error_stage = stage;
93 		gbl->error_group = group;
94 	}
95 }
96 
97 static void reg_file_set_group(u16 set_group)
98 {
99 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
100 }
101 
102 static void reg_file_set_stage(u8 set_stage)
103 {
104 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
105 }
106 
107 static void reg_file_set_sub_stage(u8 set_sub_stage)
108 {
109 	set_sub_stage &= 0xff;
110 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
111 }
112 
113 /**
114  * phy_mgr_initialize() - Initialize PHY Manager
115  *
116  * Initialize PHY Manager.
117  */
118 static void phy_mgr_initialize(void)
119 {
120 	u32 ratio;
121 
122 	debug("%s:%d\n", __func__, __LINE__);
123 	/* Calibration has control over path to memory */
124 	/*
125 	 * In Hard PHY this is a 2-bit control:
126 	 * 0: AFI Mux Select
127 	 * 1: DDIO Mux Select
128 	 */
129 	writel(0x3, &phy_mgr_cfg->mux_sel);
130 
131 	/* USER memory clock is not stable we begin initialization  */
132 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
133 
134 	/* USER calibration status all set to zero */
135 	writel(0, &phy_mgr_cfg->cal_status);
136 
137 	writel(0, &phy_mgr_cfg->cal_debug_info);
138 
139 	/* Init params only if we do NOT skip calibration. */
140 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
141 		return;
142 
143 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
144 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
145 	param->read_correct_mask_vg = (1 << ratio) - 1;
146 	param->write_correct_mask_vg = (1 << ratio) - 1;
147 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
148 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
149 	ratio = RW_MGR_MEM_DATA_WIDTH /
150 		RW_MGR_MEM_DATA_MASK_WIDTH;
151 	param->dm_correct_mask = (1 << ratio) - 1;
152 }
153 
154 /**
155  * set_rank_and_odt_mask() - Set Rank and ODT mask
156  * @rank:	Rank mask
157  * @odt_mode:	ODT mode, OFF or READ_WRITE
158  *
159  * Set Rank and ODT mask (On-Die Termination).
160  */
161 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
162 {
163 	u32 odt_mask_0 = 0;
164 	u32 odt_mask_1 = 0;
165 	u32 cs_and_odt_mask;
166 
167 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
168 		odt_mask_0 = 0x0;
169 		odt_mask_1 = 0x0;
170 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
171 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
172 		case 1:	/* 1 Rank */
173 			/* Read: ODT = 0 ; Write: ODT = 1 */
174 			odt_mask_0 = 0x0;
175 			odt_mask_1 = 0x1;
176 			break;
177 		case 2:	/* 2 Ranks */
178 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
179 				/*
180 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
181 				 *   OR
182 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
183 				 *
184 				 * Since MEM_NUMBER_OF_RANKS is 2, they
185 				 * are both single rank with 2 CS each
186 				 * (special for RDIMM).
187 				 *
188 				 * Read: Turn on ODT on the opposite rank
189 				 * Write: Turn on ODT on all ranks
190 				 */
191 				odt_mask_0 = 0x3 & ~(1 << rank);
192 				odt_mask_1 = 0x3;
193 			} else {
194 				/*
195 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
196 				 *
197 				 * Read: Turn on ODT off on all ranks
198 				 * Write: Turn on ODT on active rank
199 				 */
200 				odt_mask_0 = 0x0;
201 				odt_mask_1 = 0x3 & (1 << rank);
202 			}
203 			break;
204 		case 4:	/* 4 Ranks */
205 			/* Read:
206 			 * ----------+-----------------------+
207 			 *           |         ODT           |
208 			 * Read From +-----------------------+
209 			 *   Rank    |  3  |  2  |  1  |  0  |
210 			 * ----------+-----+-----+-----+-----+
211 			 *     0     |  0  |  1  |  0  |  0  |
212 			 *     1     |  1  |  0  |  0  |  0  |
213 			 *     2     |  0  |  0  |  0  |  1  |
214 			 *     3     |  0  |  0  |  1  |  0  |
215 			 * ----------+-----+-----+-----+-----+
216 			 *
217 			 * Write:
218 			 * ----------+-----------------------+
219 			 *           |         ODT           |
220 			 * Write To  +-----------------------+
221 			 *   Rank    |  3  |  2  |  1  |  0  |
222 			 * ----------+-----+-----+-----+-----+
223 			 *     0     |  0  |  1  |  0  |  1  |
224 			 *     1     |  1  |  0  |  1  |  0  |
225 			 *     2     |  0  |  1  |  0  |  1  |
226 			 *     3     |  1  |  0  |  1  |  0  |
227 			 * ----------+-----+-----+-----+-----+
228 			 */
229 			switch (rank) {
230 			case 0:
231 				odt_mask_0 = 0x4;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 1:
235 				odt_mask_0 = 0x8;
236 				odt_mask_1 = 0xA;
237 				break;
238 			case 2:
239 				odt_mask_0 = 0x1;
240 				odt_mask_1 = 0x5;
241 				break;
242 			case 3:
243 				odt_mask_0 = 0x2;
244 				odt_mask_1 = 0xA;
245 				break;
246 			}
247 			break;
248 		}
249 	}
250 
251 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
252 			  ((0xFF & odt_mask_0) << 8) |
253 			  ((0xFF & odt_mask_1) << 16);
254 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
255 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
256 }
257 
258 /**
259  * scc_mgr_set() - Set SCC Manager register
260  * @off:	Base offset in SCC Manager space
261  * @grp:	Read/Write group
262  * @val:	Value to be set
263  *
264  * This function sets the SCC Manager (Scan Chain Control Manager) register.
265  */
266 static void scc_mgr_set(u32 off, u32 grp, u32 val)
267 {
268 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
269 }
270 
271 /**
272  * scc_mgr_initialize() - Initialize SCC Manager registers
273  *
274  * Initialize SCC Manager registers.
275  */
276 static void scc_mgr_initialize(void)
277 {
278 	/*
279 	 * Clear register file for HPS. 16 (2^4) is the size of the
280 	 * full register file in the scc mgr:
281 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
282 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
283 	 */
284 	int i;
285 
286 	for (i = 0; i < 16; i++) {
287 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
288 			   __func__, __LINE__, i);
289 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
290 	}
291 }
292 
293 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
294 {
295 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
296 }
297 
298 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
301 }
302 
303 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
306 }
307 
308 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
311 }
312 
313 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
314 {
315 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
316 		    delay);
317 }
318 
319 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
327 }
328 
329 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
330 {
331 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
332 		    delay);
333 }
334 
335 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
336 {
337 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
338 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
339 		    delay);
340 }
341 
342 /* load up dqs config settings */
343 static void scc_mgr_load_dqs(uint32_t dqs)
344 {
345 	writel(dqs, &sdr_scc_mgr->dqs_ena);
346 }
347 
348 /* load up dqs io config settings */
349 static void scc_mgr_load_dqs_io(void)
350 {
351 	writel(0, &sdr_scc_mgr->dqs_io_ena);
352 }
353 
354 /* load up dq config settings */
355 static void scc_mgr_load_dq(uint32_t dq_in_group)
356 {
357 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
358 }
359 
360 /* load up dm config settings */
361 static void scc_mgr_load_dm(uint32_t dm)
362 {
363 	writel(dm, &sdr_scc_mgr->dm_ena);
364 }
365 
366 /**
367  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
368  * @off:	Base offset in SCC Manager space
369  * @grp:	Read/Write group
370  * @val:	Value to be set
371  * @update:	If non-zero, trigger SCC Manager update for all ranks
372  *
373  * This function sets the SCC Manager (Scan Chain Control Manager) register
374  * and optionally triggers the SCC update for all ranks.
375  */
376 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
377 				  const int update)
378 {
379 	u32 r;
380 
381 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
382 	     r += NUM_RANKS_PER_SHADOW_REG) {
383 		scc_mgr_set(off, grp, val);
384 
385 		if (update || (r == 0)) {
386 			writel(grp, &sdr_scc_mgr->dqs_ena);
387 			writel(0, &sdr_scc_mgr->update);
388 		}
389 	}
390 }
391 
392 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
393 {
394 	/*
395 	 * USER although the h/w doesn't support different phases per
396 	 * shadow register, for simplicity our scc manager modeling
397 	 * keeps different phase settings per shadow reg, and it's
398 	 * important for us to keep them in sync to match h/w.
399 	 * for efficiency, the scan chain update should occur only
400 	 * once to sr0.
401 	 */
402 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
403 			      read_group, phase, 0);
404 }
405 
406 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
407 						     uint32_t phase)
408 {
409 	/*
410 	 * USER although the h/w doesn't support different phases per
411 	 * shadow register, for simplicity our scc manager modeling
412 	 * keeps different phase settings per shadow reg, and it's
413 	 * important for us to keep them in sync to match h/w.
414 	 * for efficiency, the scan chain update should occur only
415 	 * once to sr0.
416 	 */
417 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
418 			      write_group, phase, 0);
419 }
420 
421 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
422 					       uint32_t delay)
423 {
424 	/*
425 	 * In shadow register mode, the T11 settings are stored in
426 	 * registers in the core, which are updated by the DQS_ENA
427 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
428 	 * save lots of rank switching overhead, by calling
429 	 * select_shadow_regs_for_update with update_scan_chains
430 	 * set to 0.
431 	 */
432 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
433 			      read_group, delay, 1);
434 	writel(0, &sdr_scc_mgr->update);
435 }
436 
437 /**
438  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
439  * @write_group:	Write group
440  * @delay:		Delay value
441  *
442  * This function sets the OCT output delay in SCC manager.
443  */
444 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
445 {
446 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
447 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
448 	const int base = write_group * ratio;
449 	int i;
450 	/*
451 	 * Load the setting in the SCC manager
452 	 * Although OCT affects only write data, the OCT delay is controlled
453 	 * by the DQS logic block which is instantiated once per read group.
454 	 * For protocols where a write group consists of multiple read groups,
455 	 * the setting must be set multiple times.
456 	 */
457 	for (i = 0; i < ratio; i++)
458 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
459 }
460 
461 /**
462  * scc_mgr_set_hhp_extras() - Set HHP extras.
463  *
464  * Load the fixed setting in the SCC manager HHP extras.
465  */
466 static void scc_mgr_set_hhp_extras(void)
467 {
468 	/*
469 	 * Load the fixed setting in the SCC manager
470 	 * bits: 0:0 = 1'b1	- DQS bypass
471 	 * bits: 1:1 = 1'b1	- DQ bypass
472 	 * bits: 4:2 = 3'b001	- rfifo_mode
473 	 * bits: 6:5 = 2'b01	- rfifo clock_select
474 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
475 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
476 	 */
477 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
478 			  (1 << 2) | (1 << 1) | (1 << 0);
479 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
480 			 SCC_MGR_HHP_GLOBALS_OFFSET |
481 			 SCC_MGR_HHP_EXTRAS_OFFSET;
482 
483 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
484 		   __func__, __LINE__);
485 	writel(value, addr);
486 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 }
489 
490 /**
491  * scc_mgr_zero_all() - Zero all DQS config
492  *
493  * Zero all DQS config.
494  */
495 static void scc_mgr_zero_all(void)
496 {
497 	int i, r;
498 
499 	/*
500 	 * USER Zero all DQS config settings, across all groups and all
501 	 * shadow registers
502 	 */
503 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
504 	     r += NUM_RANKS_PER_SHADOW_REG) {
505 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
506 			/*
507 			 * The phases actually don't exist on a per-rank basis,
508 			 * but there's no harm updating them several times, so
509 			 * let's keep the code simple.
510 			 */
511 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
512 			scc_mgr_set_dqs_en_phase(i, 0);
513 			scc_mgr_set_dqs_en_delay(i, 0);
514 		}
515 
516 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
517 			scc_mgr_set_dqdqs_output_phase(i, 0);
518 			/* Arria V/Cyclone V don't have out2. */
519 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
520 		}
521 	}
522 
523 	/* Multicast to all DQS group enables. */
524 	writel(0xff, &sdr_scc_mgr->dqs_ena);
525 	writel(0, &sdr_scc_mgr->update);
526 }
527 
528 /**
529  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
530  * @write_group:	Write group
531  *
532  * Set bypass mode and trigger SCC update.
533  */
534 static void scc_set_bypass_mode(const u32 write_group)
535 {
536 	/* Multicast to all DQ enables. */
537 	writel(0xff, &sdr_scc_mgr->dq_ena);
538 	writel(0xff, &sdr_scc_mgr->dm_ena);
539 
540 	/* Update current DQS IO enable. */
541 	writel(0, &sdr_scc_mgr->dqs_io_ena);
542 
543 	/* Update the DQS logic. */
544 	writel(write_group, &sdr_scc_mgr->dqs_ena);
545 
546 	/* Hit update. */
547 	writel(0, &sdr_scc_mgr->update);
548 }
549 
550 /**
551  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
552  * @write_group:	Write group
553  *
554  * Load DQS settings for Write Group, do not trigger SCC update.
555  */
556 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
557 {
558 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
559 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
560 	const int base = write_group * ratio;
561 	int i;
562 	/*
563 	 * Load the setting in the SCC manager
564 	 * Although OCT affects only write data, the OCT delay is controlled
565 	 * by the DQS logic block which is instantiated once per read group.
566 	 * For protocols where a write group consists of multiple read groups,
567 	 * the setting must be set multiple times.
568 	 */
569 	for (i = 0; i < ratio; i++)
570 		writel(base + i, &sdr_scc_mgr->dqs_ena);
571 }
572 
573 /**
574  * scc_mgr_zero_group() - Zero all configs for a group
575  *
576  * Zero DQ, DM, DQS and OCT configs for a group.
577  */
578 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
579 {
580 	int i, r;
581 
582 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
583 	     r += NUM_RANKS_PER_SHADOW_REG) {
584 		/* Zero all DQ config settings. */
585 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
586 			scc_mgr_set_dq_out1_delay(i, 0);
587 			if (!out_only)
588 				scc_mgr_set_dq_in_delay(i, 0);
589 		}
590 
591 		/* Multicast to all DQ enables. */
592 		writel(0xff, &sdr_scc_mgr->dq_ena);
593 
594 		/* Zero all DM config settings. */
595 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
596 			scc_mgr_set_dm_out1_delay(i, 0);
597 
598 		/* Multicast to all DM enables. */
599 		writel(0xff, &sdr_scc_mgr->dm_ena);
600 
601 		/* Zero all DQS IO settings. */
602 		if (!out_only)
603 			scc_mgr_set_dqs_io_in_delay(0);
604 
605 		/* Arria V/Cyclone V don't have out2. */
606 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
607 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
608 		scc_mgr_load_dqs_for_write_group(write_group);
609 
610 		/* Multicast to all DQS IO enables (only 1 in total). */
611 		writel(0, &sdr_scc_mgr->dqs_io_ena);
612 
613 		/* Hit update to zero everything. */
614 		writel(0, &sdr_scc_mgr->update);
615 	}
616 }
617 
618 /*
619  * apply and load a particular input delay for the DQ pins in a group
620  * group_bgn is the index of the first dq pin (in the write group)
621  */
622 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
623 {
624 	uint32_t i, p;
625 
626 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
627 		scc_mgr_set_dq_in_delay(p, delay);
628 		scc_mgr_load_dq(p);
629 	}
630 }
631 
632 /**
633  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
634  * @delay:		Delay value
635  *
636  * Apply and load a particular output delay for the DQ pins in a group.
637  */
638 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
639 {
640 	int i;
641 
642 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
643 		scc_mgr_set_dq_out1_delay(i, delay);
644 		scc_mgr_load_dq(i);
645 	}
646 }
647 
648 /* apply and load a particular output delay for the DM pins in a group */
649 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
650 {
651 	uint32_t i;
652 
653 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
654 		scc_mgr_set_dm_out1_delay(i, delay1);
655 		scc_mgr_load_dm(i);
656 	}
657 }
658 
659 
660 /* apply and load delay on both DQS and OCT out1 */
661 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
662 						    uint32_t delay)
663 {
664 	scc_mgr_set_dqs_out1_delay(delay);
665 	scc_mgr_load_dqs_io();
666 
667 	scc_mgr_set_oct_out1_delay(write_group, delay);
668 	scc_mgr_load_dqs_for_write_group(write_group);
669 }
670 
671 /**
672  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
673  * @write_group:	Write group
674  * @delay:		Delay value
675  *
676  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
677  */
678 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
679 						  const u32 delay)
680 {
681 	u32 i, new_delay;
682 
683 	/* DQ shift */
684 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
685 		scc_mgr_load_dq(i);
686 
687 	/* DM shift */
688 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
689 		scc_mgr_load_dm(i);
690 
691 	/* DQS shift */
692 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
693 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
694 		debug_cond(DLEVEL == 1,
695 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
696 			   __func__, __LINE__, write_group, delay, new_delay,
697 			   IO_IO_OUT2_DELAY_MAX,
698 			   new_delay - IO_IO_OUT2_DELAY_MAX);
699 		new_delay -= IO_IO_OUT2_DELAY_MAX;
700 		scc_mgr_set_dqs_out1_delay(new_delay);
701 	}
702 
703 	scc_mgr_load_dqs_io();
704 
705 	/* OCT shift */
706 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
707 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
708 		debug_cond(DLEVEL == 1,
709 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
710 			   __func__, __LINE__, write_group, delay,
711 			   new_delay, IO_IO_OUT2_DELAY_MAX,
712 			   new_delay - IO_IO_OUT2_DELAY_MAX);
713 		new_delay -= IO_IO_OUT2_DELAY_MAX;
714 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
715 	}
716 
717 	scc_mgr_load_dqs_for_write_group(write_group);
718 }
719 
720 /**
721  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
722  * @write_group:	Write group
723  * @delay:		Delay value
724  *
725  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
726  */
727 static void
728 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
729 						const u32 delay)
730 {
731 	int r;
732 
733 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
734 	     r += NUM_RANKS_PER_SHADOW_REG) {
735 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
736 		writel(0, &sdr_scc_mgr->update);
737 	}
738 }
739 
740 /**
741  * set_jump_as_return() - Return instruction optimization
742  *
743  * Optimization used to recover some slots in ddr3 inst_rom could be
744  * applied to other protocols if we wanted to
745  */
746 static void set_jump_as_return(void)
747 {
748 	/*
749 	 * To save space, we replace return with jump to special shared
750 	 * RETURN instruction so we set the counter to large value so that
751 	 * we always jump.
752 	 */
753 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
754 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
755 }
756 
757 /**
758  * delay_for_n_mem_clocks() - Delay for N memory clocks
759  * @clocks:	Length of the delay
760  *
761  * Delay for N memory clocks.
762  */
763 static void delay_for_n_mem_clocks(const u32 clocks)
764 {
765 	u32 afi_clocks;
766 	u16 c_loop;
767 	u8 inner;
768 	u8 outer;
769 
770 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
771 
772 	/* Scale (rounding up) to get afi clocks. */
773 	afi_clocks = DIV_ROUND_UP(clocks, AFI_RATE_RATIO);
774 	if (afi_clocks)	/* Temporary underflow protection */
775 		afi_clocks--;
776 
777 	/*
778 	 * Note, we don't bother accounting for being off a little
779 	 * bit because of a few extra instructions in outer loops.
780 	 * Note, the loops have a test at the end, and do the test
781 	 * before the decrement, and so always perform the loop
782 	 * 1 time more than the counter value
783 	 */
784 	c_loop = afi_clocks >> 16;
785 	outer = c_loop ? 0xff : (afi_clocks >> 8);
786 	inner = outer ? 0xff : afi_clocks;
787 
788 	/*
789 	 * rom instructions are structured as follows:
790 	 *
791 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
792 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
793 	 *                return
794 	 *
795 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
796 	 * TARGET_B is set to IDLE_LOOP2 as well
797 	 *
798 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
799 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
800 	 *
801 	 * a little confusing, but it helps save precious space in the inst_rom
802 	 * and sequencer rom and keeps the delays more accurate and reduces
803 	 * overhead
804 	 */
805 	if (afi_clocks < 0x100) {
806 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
807 			&sdr_rw_load_mgr_regs->load_cntr1);
808 
809 		writel(RW_MGR_IDLE_LOOP1,
810 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
811 
812 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
813 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
814 	} else {
815 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
816 			&sdr_rw_load_mgr_regs->load_cntr0);
817 
818 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
819 			&sdr_rw_load_mgr_regs->load_cntr1);
820 
821 		writel(RW_MGR_IDLE_LOOP2,
822 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
823 
824 		writel(RW_MGR_IDLE_LOOP2,
825 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
826 
827 		do {
828 			writel(RW_MGR_IDLE_LOOP2,
829 				SDR_PHYGRP_RWMGRGRP_ADDRESS |
830 				RW_MGR_RUN_SINGLE_GROUP_OFFSET);
831 		} while (c_loop-- != 0);
832 	}
833 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
834 }
835 
836 /**
837  * rw_mgr_mem_init_load_regs() - Load instruction registers
838  * @cntr0:	Counter 0 value
839  * @cntr1:	Counter 1 value
840  * @cntr2:	Counter 2 value
841  * @jump:	Jump instruction value
842  *
843  * Load instruction registers.
844  */
845 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
846 {
847 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
848 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
849 
850 	/* Load counters */
851 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
852 	       &sdr_rw_load_mgr_regs->load_cntr0);
853 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
854 	       &sdr_rw_load_mgr_regs->load_cntr1);
855 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
856 	       &sdr_rw_load_mgr_regs->load_cntr2);
857 
858 	/* Load jump address */
859 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
860 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
861 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
862 
863 	/* Execute count instruction */
864 	writel(jump, grpaddr);
865 }
866 
867 /**
868  * rw_mgr_mem_load_user() - Load user calibration values
869  * @fin1:	Final instruction 1
870  * @fin2:	Final instruction 2
871  * @precharge:	If 1, precharge the banks at the end
872  *
873  * Load user calibration values and optionally precharge the banks.
874  */
875 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
876 				 const int precharge)
877 {
878 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
879 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
880 	u32 r;
881 
882 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
883 		if (param->skip_ranks[r]) {
884 			/* request to skip the rank */
885 			continue;
886 		}
887 
888 		/* set rank */
889 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
890 
891 		/* precharge all banks ... */
892 		if (precharge)
893 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
894 
895 		/*
896 		 * USER Use Mirror-ed commands for odd ranks if address
897 		 * mirrorring is on
898 		 */
899 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
900 			set_jump_as_return();
901 			writel(RW_MGR_MRS2_MIRR, grpaddr);
902 			delay_for_n_mem_clocks(4);
903 			set_jump_as_return();
904 			writel(RW_MGR_MRS3_MIRR, grpaddr);
905 			delay_for_n_mem_clocks(4);
906 			set_jump_as_return();
907 			writel(RW_MGR_MRS1_MIRR, grpaddr);
908 			delay_for_n_mem_clocks(4);
909 			set_jump_as_return();
910 			writel(fin1, grpaddr);
911 		} else {
912 			set_jump_as_return();
913 			writel(RW_MGR_MRS2, grpaddr);
914 			delay_for_n_mem_clocks(4);
915 			set_jump_as_return();
916 			writel(RW_MGR_MRS3, grpaddr);
917 			delay_for_n_mem_clocks(4);
918 			set_jump_as_return();
919 			writel(RW_MGR_MRS1, grpaddr);
920 			set_jump_as_return();
921 			writel(fin2, grpaddr);
922 		}
923 
924 		if (precharge)
925 			continue;
926 
927 		set_jump_as_return();
928 		writel(RW_MGR_ZQCL, grpaddr);
929 
930 		/* tZQinit = tDLLK = 512 ck cycles */
931 		delay_for_n_mem_clocks(512);
932 	}
933 }
934 
935 /**
936  * rw_mgr_mem_initialize() - Initialize RW Manager
937  *
938  * Initialize RW Manager.
939  */
940 static void rw_mgr_mem_initialize(void)
941 {
942 	debug("%s:%d\n", __func__, __LINE__);
943 
944 	/* The reset / cke part of initialization is broadcasted to all ranks */
945 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
946 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
947 
948 	/*
949 	 * Here's how you load register for a loop
950 	 * Counters are located @ 0x800
951 	 * Jump address are located @ 0xC00
952 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
953 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
954 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
955 	 * significant bits
956 	 */
957 
958 	/* Start with memory RESET activated */
959 
960 	/* tINIT = 200us */
961 
962 	/*
963 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
964 	 * If a and b are the number of iteration in 2 nested loops
965 	 * it takes the following number of cycles to complete the operation:
966 	 * number_of_cycles = ((2 + n) * a + 2) * b
967 	 * where n is the number of instruction in the inner loop
968 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
969 	 * b = 6A
970 	 */
971 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
972 				  SEQ_TINIT_CNTR2_VAL,
973 				  RW_MGR_INIT_RESET_0_CKE_0);
974 
975 	/* Indicate that memory is stable. */
976 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
977 
978 	/*
979 	 * transition the RESET to high
980 	 * Wait for 500us
981 	 */
982 
983 	/*
984 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
985 	 * If a and b are the number of iteration in 2 nested loops
986 	 * it takes the following number of cycles to complete the operation
987 	 * number_of_cycles = ((2 + n) * a + 2) * b
988 	 * where n is the number of instruction in the inner loop
989 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
990 	 * b = FF
991 	 */
992 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
993 				  SEQ_TRESET_CNTR2_VAL,
994 				  RW_MGR_INIT_RESET_1_CKE_0);
995 
996 	/* Bring up clock enable. */
997 
998 	/* tXRP < 250 ck cycles */
999 	delay_for_n_mem_clocks(250);
1000 
1001 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1002 			     0);
1003 }
1004 
1005 /**
1006  * rw_mgr_mem_handoff() - Hand off the memory to user
1007  *
1008  * At the end of calibration we have to program the user settings in
1009  * and hand off the memory to the user.
1010  */
1011 static void rw_mgr_mem_handoff(void)
1012 {
1013 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1014 	/*
1015 	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1016 	 * commands, but we will have plenty of NIOS cycles before actual
1017 	 * handoff so its okay.
1018 	 */
1019 }
1020 
1021 /**
1022  * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1023  * @group:	Write Group
1024  * @use_dm:	Use DM
1025  *
1026  * Issue write test command. Two variants are provided, one that just tests
1027  * a write pattern and another that tests datamask functionality.
1028  */
1029 static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1030 						  u32 test_dm)
1031 {
1032 	const u32 quick_write_mode =
1033 		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1034 		ENABLE_SUPER_QUICK_CALIBRATION;
1035 	u32 mcc_instruction;
1036 	u32 rw_wl_nop_cycles;
1037 
1038 	/*
1039 	 * Set counter and jump addresses for the right
1040 	 * number of NOP cycles.
1041 	 * The number of supported NOP cycles can range from -1 to infinity
1042 	 * Three different cases are handled:
1043 	 *
1044 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1045 	 *    mechanism will be used to insert the right number of NOPs
1046 	 *
1047 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1048 	 *    issuing the write command will jump straight to the
1049 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1050 	 *    data (for RLD), skipping
1051 	 *    the NOP micro-instruction all together
1052 	 *
1053 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1054 	 *    turned on in the same micro-instruction that issues the write
1055 	 *    command. Then we need
1056 	 *    to directly jump to the micro-instruction that sends out the data
1057 	 *
1058 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1059 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1060 	 *       write-read operations.
1061 	 *       one counter left to issue this command in "multiple-group" mode
1062 	 */
1063 
1064 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1065 
1066 	if (rw_wl_nop_cycles == -1) {
1067 		/*
1068 		 * CNTR 2 - We want to execute the special write operation that
1069 		 * turns on DQS right away and then skip directly to the
1070 		 * instruction that sends out the data. We set the counter to a
1071 		 * large number so that the jump is always taken.
1072 		 */
1073 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1074 
1075 		/* CNTR 3 - Not used */
1076 		if (test_dm) {
1077 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
1078 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
1079 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1080 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1081 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1082 		} else {
1083 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
1084 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
1085 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1086 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1087 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1088 		}
1089 	} else if (rw_wl_nop_cycles == 0) {
1090 		/*
1091 		 * CNTR 2 - We want to skip the NOP operation and go straight
1092 		 * to the DQS enable instruction. We set the counter to a large
1093 		 * number so that the jump is always taken.
1094 		 */
1095 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1096 
1097 		/* CNTR 3 - Not used */
1098 		if (test_dm) {
1099 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1100 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
1101 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1102 		} else {
1103 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1104 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
1105 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1106 		}
1107 	} else {
1108 		/*
1109 		 * CNTR 2 - In this case we want to execute the next instruction
1110 		 * and NOT take the jump. So we set the counter to 0. The jump
1111 		 * address doesn't count.
1112 		 */
1113 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1114 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1115 
1116 		/*
1117 		 * CNTR 3 - Set the nop counter to the number of cycles we
1118 		 * need to loop for, minus 1.
1119 		 */
1120 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1121 		if (test_dm) {
1122 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
1123 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
1124 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1125 		} else {
1126 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
1127 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
1128 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1129 		}
1130 	}
1131 
1132 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1133 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1134 
1135 	if (quick_write_mode)
1136 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1137 	else
1138 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1139 
1140 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1141 
1142 	/*
1143 	 * CNTR 1 - This is used to ensure enough time elapses
1144 	 * for read data to come back.
1145 	 */
1146 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1147 
1148 	if (test_dm) {
1149 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
1150 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1151 	} else {
1152 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 	}
1155 
1156 	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1157 				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1158 				(group << 2));
1159 }
1160 
1161 /**
1162  * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1163  * @rank_bgn:		Rank number
1164  * @write_group:	Write Group
1165  * @use_dm:		Use DM
1166  * @all_correct:	All bits must be correct in the mask
1167  * @bit_chk:		Resulting bit mask after the test
1168  * @all_ranks:		Test all ranks
1169  *
1170  * Test writes, can check for a single bit pass or multiple bit pass.
1171  */
1172 static int
1173 rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1174 				const u32 use_dm, const u32 all_correct,
1175 				u32 *bit_chk, const u32 all_ranks)
1176 {
1177 	const u32 rank_end = all_ranks ?
1178 				RW_MGR_MEM_NUMBER_OF_RANKS :
1179 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1180 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_WRITE_DQS /
1181 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS;
1182 	const u32 correct_mask_vg = param->write_correct_mask_vg;
1183 
1184 	u32 tmp_bit_chk, base_rw_mgr;
1185 	int vg, r;
1186 
1187 	*bit_chk = param->write_correct_mask;
1188 
1189 	for (r = rank_bgn; r < rank_end; r++) {
1190 		/* Request to skip the rank */
1191 		if (param->skip_ranks[r])
1192 			continue;
1193 
1194 		/* Set rank */
1195 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1196 
1197 		tmp_bit_chk = 0;
1198 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;
1199 		     vg >= 0; vg--) {
1200 			/* Reset the FIFOs to get pointers to known state. */
1201 			writel(0, &phy_mgr_cmd->fifo_reset);
1202 
1203 			rw_mgr_mem_calibrate_write_test_issue(
1204 				write_group *
1205 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
1206 				use_dm);
1207 
1208 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1209 			tmp_bit_chk <<= shift_ratio;
1210 			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1211 		}
1212 
1213 		*bit_chk &= tmp_bit_chk;
1214 	}
1215 
1216 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1217 	if (all_correct) {
1218 		debug_cond(DLEVEL == 2,
1219 			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1220 			   write_group, use_dm, *bit_chk,
1221 			   param->write_correct_mask,
1222 			   *bit_chk == param->write_correct_mask);
1223 		return *bit_chk == param->write_correct_mask;
1224 	} else {
1225 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1226 		debug_cond(DLEVEL == 2,
1227 			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1228 			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1229 		return *bit_chk != 0x00;
1230 	}
1231 }
1232 
1233 /**
1234  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1235  * @rank_bgn:	Rank number
1236  * @group:	Read/Write Group
1237  * @all_ranks:	Test all ranks
1238  *
1239  * Performs a guaranteed read on the patterns we are going to use during a
1240  * read test to ensure memory works.
1241  */
1242 static int
1243 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1244 					const u32 all_ranks)
1245 {
1246 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1247 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1248 	const u32 addr_offset =
1249 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1250 	const u32 rank_end = all_ranks ?
1251 				RW_MGR_MEM_NUMBER_OF_RANKS :
1252 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1253 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1254 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1255 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1256 
1257 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1258 	int vg, r;
1259 	int ret = 0;
1260 
1261 	bit_chk = param->read_correct_mask;
1262 
1263 	for (r = rank_bgn; r < rank_end; r++) {
1264 		/* Request to skip the rank */
1265 		if (param->skip_ranks[r])
1266 			continue;
1267 
1268 		/* Set rank */
1269 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1270 
1271 		/* Load up a constant bursts of read commands */
1272 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1273 		writel(RW_MGR_GUARANTEED_READ,
1274 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1275 
1276 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1277 		writel(RW_MGR_GUARANTEED_READ_CONT,
1278 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1279 
1280 		tmp_bit_chk = 0;
1281 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1282 		     vg >= 0; vg--) {
1283 			/* Reset the FIFOs to get pointers to known state. */
1284 			writel(0, &phy_mgr_cmd->fifo_reset);
1285 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1286 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1287 			writel(RW_MGR_GUARANTEED_READ,
1288 			       addr + addr_offset + (vg << 2));
1289 
1290 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1291 			tmp_bit_chk <<= shift_ratio;
1292 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1293 		}
1294 
1295 		bit_chk &= tmp_bit_chk;
1296 	}
1297 
1298 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1299 
1300 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1301 
1302 	if (bit_chk != param->read_correct_mask)
1303 		ret = -EIO;
1304 
1305 	debug_cond(DLEVEL == 1,
1306 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1307 		   __func__, __LINE__, group, bit_chk,
1308 		   param->read_correct_mask, ret);
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1315  * @rank_bgn:	Rank number
1316  * @all_ranks:	Test all ranks
1317  *
1318  * Load up the patterns we are going to use during a read test.
1319  */
1320 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1321 						    const int all_ranks)
1322 {
1323 	const u32 rank_end = all_ranks ?
1324 			RW_MGR_MEM_NUMBER_OF_RANKS :
1325 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1326 	u32 r;
1327 
1328 	debug("%s:%d\n", __func__, __LINE__);
1329 
1330 	for (r = rank_bgn; r < rank_end; r++) {
1331 		if (param->skip_ranks[r])
1332 			/* request to skip the rank */
1333 			continue;
1334 
1335 		/* set rank */
1336 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1337 
1338 		/* Load up a constant bursts */
1339 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1340 
1341 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1342 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1343 
1344 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1345 
1346 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1347 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1348 
1349 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1350 
1351 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1352 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1353 
1354 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1355 
1356 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1357 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1358 
1359 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1360 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1361 	}
1362 
1363 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1364 }
1365 
1366 /**
1367  * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1368  * @rank_bgn:		Rank number
1369  * @group:		Read/Write group
1370  * @num_tries:		Number of retries of the test
1371  * @all_correct:	All bits must be correct in the mask
1372  * @bit_chk:		Resulting bit mask after the test
1373  * @all_groups:		Test all R/W groups
1374  * @all_ranks:		Test all ranks
1375  *
1376  * Try a read and see if it returns correct data back. Test has dummy reads
1377  * inserted into the mix used to align DQS enable. Test has more thorough
1378  * checks than the regular read test.
1379  */
1380 static int
1381 rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1382 			       const u32 num_tries, const u32 all_correct,
1383 			       u32 *bit_chk,
1384 			       const u32 all_groups, const u32 all_ranks)
1385 {
1386 	const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1387 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1388 	const u32 quick_read_mode =
1389 		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1390 		 ENABLE_SUPER_QUICK_CALIBRATION);
1391 	u32 correct_mask_vg = param->read_correct_mask_vg;
1392 	u32 tmp_bit_chk;
1393 	u32 base_rw_mgr;
1394 	u32 addr;
1395 
1396 	int r, vg, ret;
1397 
1398 	*bit_chk = param->read_correct_mask;
1399 
1400 	for (r = rank_bgn; r < rank_end; r++) {
1401 		if (param->skip_ranks[r])
1402 			/* request to skip the rank */
1403 			continue;
1404 
1405 		/* set rank */
1406 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1407 
1408 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1409 
1410 		writel(RW_MGR_READ_B2B_WAIT1,
1411 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1412 
1413 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1414 		writel(RW_MGR_READ_B2B_WAIT2,
1415 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1416 
1417 		if (quick_read_mode)
1418 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1419 			/* need at least two (1+1) reads to capture failures */
1420 		else if (all_groups)
1421 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1422 		else
1423 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1424 
1425 		writel(RW_MGR_READ_B2B,
1426 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1427 		if (all_groups)
1428 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1429 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1430 			       &sdr_rw_load_mgr_regs->load_cntr3);
1431 		else
1432 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1433 
1434 		writel(RW_MGR_READ_B2B,
1435 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1436 
1437 		tmp_bit_chk = 0;
1438 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0;
1439 		     vg--) {
1440 			/* Reset the FIFOs to get pointers to known state. */
1441 			writel(0, &phy_mgr_cmd->fifo_reset);
1442 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1443 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1444 
1445 			if (all_groups) {
1446 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1447 				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1448 			} else {
1449 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1450 				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1451 			}
1452 
1453 			writel(RW_MGR_READ_B2B, addr +
1454 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1455 			       vg) << 2));
1456 
1457 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1458 			tmp_bit_chk <<= RW_MGR_MEM_DQ_PER_READ_DQS /
1459 					RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1460 			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1461 		}
1462 
1463 		*bit_chk &= tmp_bit_chk;
1464 	}
1465 
1466 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1467 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1468 
1469 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1470 
1471 	if (all_correct) {
1472 		ret = (*bit_chk == param->read_correct_mask);
1473 		debug_cond(DLEVEL == 2,
1474 			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1475 			   __func__, __LINE__, group, all_groups, *bit_chk,
1476 			   param->read_correct_mask, ret);
1477 	} else	{
1478 		ret = (*bit_chk != 0x00);
1479 		debug_cond(DLEVEL == 2,
1480 			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1481 			   __func__, __LINE__, group, all_groups, *bit_chk,
1482 			   0, ret);
1483 	}
1484 
1485 	return ret;
1486 }
1487 
1488 /**
1489  * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1490  * @grp:		Read/Write group
1491  * @num_tries:		Number of retries of the test
1492  * @all_correct:	All bits must be correct in the mask
1493  * @all_groups:		Test all R/W groups
1494  *
1495  * Perform a READ test across all memory ranks.
1496  */
1497 static int
1498 rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1499 					 const u32 all_correct,
1500 					 const u32 all_groups)
1501 {
1502 	u32 bit_chk;
1503 	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1504 					      &bit_chk, all_groups, 1);
1505 }
1506 
1507 /**
1508  * rw_mgr_incr_vfifo() - Increase VFIFO value
1509  * @grp:	Read/Write group
1510  *
1511  * Increase VFIFO value.
1512  */
1513 static void rw_mgr_incr_vfifo(const u32 grp)
1514 {
1515 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1516 }
1517 
1518 /**
1519  * rw_mgr_decr_vfifo() - Decrease VFIFO value
1520  * @grp:	Read/Write group
1521  *
1522  * Decrease VFIFO value.
1523  */
1524 static void rw_mgr_decr_vfifo(const u32 grp)
1525 {
1526 	u32 i;
1527 
1528 	for (i = 0; i < VFIFO_SIZE - 1; i++)
1529 		rw_mgr_incr_vfifo(grp);
1530 }
1531 
1532 /**
1533  * find_vfifo_failing_read() - Push VFIFO to get a failing read
1534  * @grp:	Read/Write group
1535  *
1536  * Push VFIFO until a failing read happens.
1537  */
1538 static int find_vfifo_failing_read(const u32 grp)
1539 {
1540 	u32 v, ret, fail_cnt = 0;
1541 
1542 	for (v = 0; v < VFIFO_SIZE; v++) {
1543 		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
1544 			   __func__, __LINE__, v);
1545 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1546 						PASS_ONE_BIT, 0);
1547 		if (!ret) {
1548 			fail_cnt++;
1549 
1550 			if (fail_cnt == 2)
1551 				return v;
1552 		}
1553 
1554 		/* Fiddle with FIFO. */
1555 		rw_mgr_incr_vfifo(grp);
1556 	}
1557 
1558 	/* No failing read found! Something must have gone wrong. */
1559 	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1560 	return 0;
1561 }
1562 
1563 /**
1564  * sdr_find_phase_delay() - Find DQS enable phase or delay
1565  * @working:	If 1, look for working phase/delay, if 0, look for non-working
1566  * @delay:	If 1, look for delay, if 0, look for phase
1567  * @grp:	Read/Write group
1568  * @work:	Working window position
1569  * @work_inc:	Working window increment
1570  * @pd:		DQS Phase/Delay Iterator
1571  *
1572  * Find working or non-working DQS enable phase setting.
1573  */
1574 static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1575 				u32 *work, const u32 work_inc, u32 *pd)
1576 {
1577 	const u32 max = delay ? IO_DQS_EN_DELAY_MAX : IO_DQS_EN_PHASE_MAX;
1578 	u32 ret;
1579 
1580 	for (; *pd <= max; (*pd)++) {
1581 		if (delay)
1582 			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1583 		else
1584 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1585 
1586 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1587 					PASS_ONE_BIT, 0);
1588 		if (!working)
1589 			ret = !ret;
1590 
1591 		if (ret)
1592 			return 0;
1593 
1594 		if (work)
1595 			*work += work_inc;
1596 	}
1597 
1598 	return -EINVAL;
1599 }
1600 /**
1601  * sdr_find_phase() - Find DQS enable phase
1602  * @working:	If 1, look for working phase, if 0, look for non-working phase
1603  * @grp:	Read/Write group
1604  * @work:	Working window position
1605  * @i:		Iterator
1606  * @p:		DQS Phase Iterator
1607  *
1608  * Find working or non-working DQS enable phase setting.
1609  */
1610 static int sdr_find_phase(int working, const u32 grp, u32 *work,
1611 			  u32 *i, u32 *p)
1612 {
1613 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1614 	int ret;
1615 
1616 	for (; *i < end; (*i)++) {
1617 		if (working)
1618 			*p = 0;
1619 
1620 		ret = sdr_find_phase_delay(working, 0, grp, work,
1621 					   IO_DELAY_PER_OPA_TAP, p);
1622 		if (!ret)
1623 			return 0;
1624 
1625 		if (*p > IO_DQS_EN_PHASE_MAX) {
1626 			/* Fiddle with FIFO. */
1627 			rw_mgr_incr_vfifo(grp);
1628 			if (!working)
1629 				*p = 0;
1630 		}
1631 	}
1632 
1633 	return -EINVAL;
1634 }
1635 
1636 /**
1637  * sdr_working_phase() - Find working DQS enable phase
1638  * @grp:	Read/Write group
1639  * @work_bgn:	Working window start position
1640  * @d:		dtaps output value
1641  * @p:		DQS Phase Iterator
1642  * @i:		Iterator
1643  *
1644  * Find working DQS enable phase setting.
1645  */
1646 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1647 			     u32 *p, u32 *i)
1648 {
1649 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1650 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1651 	int ret;
1652 
1653 	*work_bgn = 0;
1654 
1655 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1656 		*i = 0;
1657 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1658 		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1659 		if (!ret)
1660 			return 0;
1661 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1662 	}
1663 
1664 	/* Cannot find working solution */
1665 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1666 		   __func__, __LINE__);
1667 	return -EINVAL;
1668 }
1669 
1670 /**
1671  * sdr_backup_phase() - Find DQS enable backup phase
1672  * @grp:	Read/Write group
1673  * @work_bgn:	Working window start position
1674  * @p:		DQS Phase Iterator
1675  *
1676  * Find DQS enable backup phase setting.
1677  */
1678 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1679 {
1680 	u32 tmp_delay, d;
1681 	int ret;
1682 
1683 	/* Special case code for backing up a phase */
1684 	if (*p == 0) {
1685 		*p = IO_DQS_EN_PHASE_MAX;
1686 		rw_mgr_decr_vfifo(grp);
1687 	} else {
1688 		(*p)--;
1689 	}
1690 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1691 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1692 
1693 	for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) {
1694 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1695 
1696 		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1697 					PASS_ONE_BIT, 0);
1698 		if (ret) {
1699 			*work_bgn = tmp_delay;
1700 			break;
1701 		}
1702 
1703 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1704 	}
1705 
1706 	/* Restore VFIFO to old state before we decremented it (if needed). */
1707 	(*p)++;
1708 	if (*p > IO_DQS_EN_PHASE_MAX) {
1709 		*p = 0;
1710 		rw_mgr_incr_vfifo(grp);
1711 	}
1712 
1713 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1714 }
1715 
1716 /**
1717  * sdr_nonworking_phase() - Find non-working DQS enable phase
1718  * @grp:	Read/Write group
1719  * @work_end:	Working window end position
1720  * @p:		DQS Phase Iterator
1721  * @i:		Iterator
1722  *
1723  * Find non-working DQS enable phase setting.
1724  */
1725 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1726 {
1727 	int ret;
1728 
1729 	(*p)++;
1730 	*work_end += IO_DELAY_PER_OPA_TAP;
1731 	if (*p > IO_DQS_EN_PHASE_MAX) {
1732 		/* Fiddle with FIFO. */
1733 		*p = 0;
1734 		rw_mgr_incr_vfifo(grp);
1735 	}
1736 
1737 	ret = sdr_find_phase(0, grp, work_end, i, p);
1738 	if (ret) {
1739 		/* Cannot see edge of failing read. */
1740 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1741 			   __func__, __LINE__);
1742 	}
1743 
1744 	return ret;
1745 }
1746 
1747 /**
1748  * sdr_find_window_center() - Find center of the working DQS window.
1749  * @grp:	Read/Write group
1750  * @work_bgn:	First working settings
1751  * @work_end:	Last working settings
1752  *
1753  * Find center of the working DQS enable window.
1754  */
1755 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1756 				  const u32 work_end)
1757 {
1758 	u32 work_mid;
1759 	int tmp_delay = 0;
1760 	int i, p, d;
1761 
1762 	work_mid = (work_bgn + work_end) / 2;
1763 
1764 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1765 		   work_bgn, work_end, work_mid);
1766 	/* Get the middle delay to be less than a VFIFO delay */
1767 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1768 
1769 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1770 	work_mid %= tmp_delay;
1771 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1772 
1773 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1774 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1775 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1776 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1777 
1778 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1779 
1780 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1781 	if (d > IO_DQS_EN_DELAY_MAX)
1782 		d = IO_DQS_EN_DELAY_MAX;
1783 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1784 
1785 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1786 
1787 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1788 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1789 
1790 	/*
1791 	 * push vfifo until we can successfully calibrate. We can do this
1792 	 * because the largest possible margin in 1 VFIFO cycle.
1793 	 */
1794 	for (i = 0; i < VFIFO_SIZE; i++) {
1795 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
1796 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1797 							     PASS_ONE_BIT,
1798 							     0)) {
1799 			debug_cond(DLEVEL == 2,
1800 				   "%s:%d center: found: ptap=%u dtap=%u\n",
1801 				   __func__, __LINE__, p, d);
1802 			return 0;
1803 		}
1804 
1805 		/* Fiddle with FIFO. */
1806 		rw_mgr_incr_vfifo(grp);
1807 	}
1808 
1809 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1810 		   __func__, __LINE__);
1811 	return -EINVAL;
1812 }
1813 
1814 /**
1815  * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1816  * @grp:	Read/Write Group
1817  *
1818  * Find a good DQS enable to use.
1819  */
1820 static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1821 {
1822 	u32 d, p, i;
1823 	u32 dtaps_per_ptap;
1824 	u32 work_bgn, work_end;
1825 	u32 found_passing_read, found_failing_read, initial_failing_dtap;
1826 	int ret;
1827 
1828 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1829 
1830 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1831 
1832 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1833 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1834 
1835 	/* Step 0: Determine number of delay taps for each phase tap. */
1836 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1837 
1838 	/* Step 1: First push vfifo until we get a failing read. */
1839 	find_vfifo_failing_read(grp);
1840 
1841 	/* Step 2: Find first working phase, increment in ptaps. */
1842 	work_bgn = 0;
1843 	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1844 	if (ret)
1845 		return ret;
1846 
1847 	work_end = work_bgn;
1848 
1849 	/*
1850 	 * If d is 0 then the working window covers a phase tap and we can
1851 	 * follow the old procedure. Otherwise, we've found the beginning
1852 	 * and we need to increment the dtaps until we find the end.
1853 	 */
1854 	if (d == 0) {
1855 		/*
1856 		 * Step 3a: If we have room, back off by one and
1857 		 *          increment in dtaps.
1858 		 */
1859 		sdr_backup_phase(grp, &work_bgn, &p);
1860 
1861 		/*
1862 		 * Step 4a: go forward from working phase to non working
1863 		 * phase, increment in ptaps.
1864 		 */
1865 		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1866 		if (ret)
1867 			return ret;
1868 
1869 		/* Step 5a: Back off one from last, increment in dtaps. */
1870 
1871 		/* Special case code for backing up a phase */
1872 		if (p == 0) {
1873 			p = IO_DQS_EN_PHASE_MAX;
1874 			rw_mgr_decr_vfifo(grp);
1875 		} else {
1876 			p = p - 1;
1877 		}
1878 
1879 		work_end -= IO_DELAY_PER_OPA_TAP;
1880 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1881 
1882 		d = 0;
1883 
1884 		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
1885 			   __func__, __LINE__, p);
1886 	}
1887 
1888 	/* The dtap increment to find the failing edge is done here. */
1889 	sdr_find_phase_delay(0, 1, grp, &work_end,
1890 			     IO_DELAY_PER_DQS_EN_DCHAIN_TAP, &d);
1891 
1892 	/* Go back to working dtap */
1893 	if (d != 0)
1894 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1895 
1896 	debug_cond(DLEVEL == 2,
1897 		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1898 		   __func__, __LINE__, p, d - 1, work_end);
1899 
1900 	if (work_end < work_bgn) {
1901 		/* nil range */
1902 		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
1903 			   __func__, __LINE__);
1904 		return -EINVAL;
1905 	}
1906 
1907 	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
1908 		   __func__, __LINE__, work_bgn, work_end);
1909 
1910 	/*
1911 	 * We need to calculate the number of dtaps that equal a ptap.
1912 	 * To do that we'll back up a ptap and re-find the edge of the
1913 	 * window using dtaps
1914 	 */
1915 	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1916 		   __func__, __LINE__);
1917 
1918 	/* Special case code for backing up a phase */
1919 	if (p == 0) {
1920 		p = IO_DQS_EN_PHASE_MAX;
1921 		rw_mgr_decr_vfifo(grp);
1922 		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
1923 			   __func__, __LINE__, p);
1924 	} else {
1925 		p = p - 1;
1926 		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
1927 			   __func__, __LINE__, p);
1928 	}
1929 
1930 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1931 
1932 	/*
1933 	 * Increase dtap until we first see a passing read (in case the
1934 	 * window is smaller than a ptap), and then a failing read to
1935 	 * mark the edge of the window again.
1936 	 */
1937 
1938 	/* Find a passing read. */
1939 	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
1940 		   __func__, __LINE__);
1941 
1942 	initial_failing_dtap = d;
1943 
1944 	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1945 	if (found_passing_read) {
1946 		/* Find a failing read. */
1947 		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
1948 			   __func__, __LINE__);
1949 		d++;
1950 		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1951 							   &d);
1952 	} else {
1953 		debug_cond(DLEVEL == 1,
1954 			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1955 			   __func__, __LINE__);
1956 	}
1957 
1958 	/*
1959 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1960 	 * found a passing/failing read. If we didn't, it means d hit the max
1961 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1962 	 * statically calculated value.
1963 	 */
1964 	if (found_passing_read && found_failing_read)
1965 		dtaps_per_ptap = d - initial_failing_dtap;
1966 
1967 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1968 	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1969 		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1970 
1971 	/* Step 6: Find the centre of the window. */
1972 	ret = sdr_find_window_center(grp, work_bgn, work_end);
1973 
1974 	return ret;
1975 }
1976 
1977 /**
1978  * search_stop_check() - Check if the detected edge is valid
1979  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1980  * @d:			DQS delay
1981  * @rank_bgn:		Rank number
1982  * @write_group:	Write Group
1983  * @read_group:		Read Group
1984  * @bit_chk:		Resulting bit mask after the test
1985  * @sticky_bit_chk:	Resulting sticky bit mask after the test
1986  * @use_read_test:	Perform read test
1987  *
1988  * Test if the found edge is valid.
1989  */
1990 static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1991 			     const u32 write_group, const u32 read_group,
1992 			     u32 *bit_chk, u32 *sticky_bit_chk,
1993 			     const u32 use_read_test)
1994 {
1995 	const u32 ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
1996 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
1997 	const u32 correct_mask = write ? param->write_correct_mask :
1998 					 param->read_correct_mask;
1999 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2000 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2001 	u32 ret;
2002 	/*
2003 	 * Stop searching when the read test doesn't pass AND when
2004 	 * we've seen a passing read on every bit.
2005 	 */
2006 	if (write) {			/* WRITE-ONLY */
2007 		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2008 							 0, PASS_ONE_BIT,
2009 							 bit_chk, 0);
2010 	} else if (use_read_test) {	/* READ-ONLY */
2011 		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
2012 							NUM_READ_PB_TESTS,
2013 							PASS_ONE_BIT, bit_chk,
2014 							0, 0);
2015 	} else {			/* READ-ONLY */
2016 		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2017 						PASS_ONE_BIT, bit_chk, 0);
2018 		*bit_chk = *bit_chk >> (per_dqs *
2019 			(read_group - (write_group * ratio)));
2020 		ret = (*bit_chk == 0);
2021 	}
2022 	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2023 	ret = ret && (*sticky_bit_chk == correct_mask);
2024 	debug_cond(DLEVEL == 2,
2025 		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2026 		   __func__, __LINE__, d,
2027 		   *sticky_bit_chk, correct_mask, ret);
2028 	return ret;
2029 }
2030 
2031 /**
2032  * search_left_edge() - Find left edge of DQ/DQS working phase
2033  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2034  * @rank_bgn:		Rank number
2035  * @write_group:	Write Group
2036  * @read_group:		Read Group
2037  * @test_bgn:		Rank number to begin the test
2038  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2039  * @left_edge:		Left edge of the DQ/DQS phase
2040  * @right_edge:		Right edge of the DQ/DQS phase
2041  * @use_read_test:	Perform read test
2042  *
2043  * Find left edge of DQ/DQS working phase.
2044  */
2045 static void search_left_edge(const int write, const int rank_bgn,
2046 	const u32 write_group, const u32 read_group, const u32 test_bgn,
2047 	u32 *sticky_bit_chk,
2048 	int *left_edge, int *right_edge, const u32 use_read_test)
2049 {
2050 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2051 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2052 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2053 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2054 	u32 stop, bit_chk;
2055 	int i, d;
2056 
2057 	for (d = 0; d <= dqs_max; d++) {
2058 		if (write)
2059 			scc_mgr_apply_group_dq_out1_delay(d);
2060 		else
2061 			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2062 
2063 		writel(0, &sdr_scc_mgr->update);
2064 
2065 		stop = search_stop_check(write, d, rank_bgn, write_group,
2066 					 read_group, &bit_chk, sticky_bit_chk,
2067 					 use_read_test);
2068 		if (stop == 1)
2069 			break;
2070 
2071 		/* stop != 1 */
2072 		for (i = 0; i < per_dqs; i++) {
2073 			if (bit_chk & 1) {
2074 				/*
2075 				 * Remember a passing test as
2076 				 * the left_edge.
2077 				 */
2078 				left_edge[i] = d;
2079 			} else {
2080 				/*
2081 				 * If a left edge has not been seen
2082 				 * yet, then a future passing test
2083 				 * will mark this edge as the right
2084 				 * edge.
2085 				 */
2086 				if (left_edge[i] == delay_max + 1)
2087 					right_edge[i] = -(d + 1);
2088 			}
2089 			bit_chk >>= 1;
2090 		}
2091 	}
2092 
2093 	/* Reset DQ delay chains to 0 */
2094 	if (write)
2095 		scc_mgr_apply_group_dq_out1_delay(0);
2096 	else
2097 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2098 
2099 	*sticky_bit_chk = 0;
2100 	for (i = per_dqs - 1; i >= 0; i--) {
2101 		debug_cond(DLEVEL == 2,
2102 			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2103 			   __func__, __LINE__, i, left_edge[i],
2104 			   i, right_edge[i]);
2105 
2106 		/*
2107 		 * Check for cases where we haven't found the left edge,
2108 		 * which makes our assignment of the the right edge invalid.
2109 		 * Reset it to the illegal value.
2110 		 */
2111 		if ((left_edge[i] == delay_max + 1) &&
2112 		    (right_edge[i] != delay_max + 1)) {
2113 			right_edge[i] = delay_max + 1;
2114 			debug_cond(DLEVEL == 2,
2115 				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2116 				   __func__, __LINE__, i, right_edge[i]);
2117 		}
2118 
2119 		/*
2120 		 * Reset sticky bit
2121 		 * READ: except for bits where we have seen both
2122 		 *       the left and right edge.
2123 		 * WRITE: except for bits where we have seen the
2124 		 *        left edge.
2125 		 */
2126 		*sticky_bit_chk <<= 1;
2127 		if (write) {
2128 			if (left_edge[i] != delay_max + 1)
2129 				*sticky_bit_chk |= 1;
2130 		} else {
2131 			if ((left_edge[i] != delay_max + 1) &&
2132 			    (right_edge[i] != delay_max + 1))
2133 				*sticky_bit_chk |= 1;
2134 		}
2135 	}
2136 
2137 
2138 }
2139 
2140 /**
2141  * search_right_edge() - Find right edge of DQ/DQS working phase
2142  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2143  * @rank_bgn:		Rank number
2144  * @write_group:	Write Group
2145  * @read_group:		Read Group
2146  * @start_dqs:		DQS start phase
2147  * @start_dqs_en:	DQS enable start phase
2148  * @sticky_bit_chk:	Resulting sticky bit mask after the test
2149  * @left_edge:		Left edge of the DQ/DQS phase
2150  * @right_edge:		Right edge of the DQ/DQS phase
2151  * @use_read_test:	Perform read test
2152  *
2153  * Find right edge of DQ/DQS working phase.
2154  */
2155 static int search_right_edge(const int write, const int rank_bgn,
2156 	const u32 write_group, const u32 read_group,
2157 	const int start_dqs, const int start_dqs_en,
2158 	u32 *sticky_bit_chk,
2159 	int *left_edge, int *right_edge, const u32 use_read_test)
2160 {
2161 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2162 	const u32 dqs_max = write ? IO_IO_OUT1_DELAY_MAX : IO_DQS_IN_DELAY_MAX;
2163 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2164 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2165 	u32 stop, bit_chk;
2166 	int i, d;
2167 
2168 	for (d = 0; d <= dqs_max - start_dqs; d++) {
2169 		if (write) {	/* WRITE-ONLY */
2170 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2171 								d + start_dqs);
2172 		} else {	/* READ-ONLY */
2173 			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2174 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2175 				uint32_t delay = d + start_dqs_en;
2176 				if (delay > IO_DQS_EN_DELAY_MAX)
2177 					delay = IO_DQS_EN_DELAY_MAX;
2178 				scc_mgr_set_dqs_en_delay(read_group, delay);
2179 			}
2180 			scc_mgr_load_dqs(read_group);
2181 		}
2182 
2183 		writel(0, &sdr_scc_mgr->update);
2184 
2185 		stop = search_stop_check(write, d, rank_bgn, write_group,
2186 					 read_group, &bit_chk, sticky_bit_chk,
2187 					 use_read_test);
2188 		if (stop == 1) {
2189 			if (write && (d == 0)) {	/* WRITE-ONLY */
2190 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2191 					/*
2192 					 * d = 0 failed, but it passed when
2193 					 * testing the left edge, so it must be
2194 					 * marginal, set it to -1
2195 					 */
2196 					if (right_edge[i] == delay_max + 1 &&
2197 					    left_edge[i] != delay_max + 1)
2198 						right_edge[i] = -1;
2199 				}
2200 			}
2201 			break;
2202 		}
2203 
2204 		/* stop != 1 */
2205 		for (i = 0; i < per_dqs; i++) {
2206 			if (bit_chk & 1) {
2207 				/*
2208 				 * Remember a passing test as
2209 				 * the right_edge.
2210 				 */
2211 				right_edge[i] = d;
2212 			} else {
2213 				if (d != 0) {
2214 					/*
2215 					 * If a right edge has not
2216 					 * been seen yet, then a future
2217 					 * passing test will mark this
2218 					 * edge as the left edge.
2219 					 */
2220 					if (right_edge[i] == delay_max + 1)
2221 						left_edge[i] = -(d + 1);
2222 				} else {
2223 					/*
2224 					 * d = 0 failed, but it passed
2225 					 * when testing the left edge,
2226 					 * so it must be marginal, set
2227 					 * it to -1
2228 					 */
2229 					if (right_edge[i] == delay_max + 1 &&
2230 					    left_edge[i] != delay_max + 1)
2231 						right_edge[i] = -1;
2232 					/*
2233 					 * If a right edge has not been
2234 					 * seen yet, then a future
2235 					 * passing test will mark this
2236 					 * edge as the left edge.
2237 					 */
2238 					else if (right_edge[i] == delay_max + 1)
2239 						left_edge[i] = -(d + 1);
2240 				}
2241 			}
2242 
2243 			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
2244 				   __func__, __LINE__, d);
2245 			debug_cond(DLEVEL == 2,
2246 				   "bit_chk_test=%i left_edge[%u]: %d ",
2247 				   bit_chk & 1, i, left_edge[i]);
2248 			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2249 				   right_edge[i]);
2250 			bit_chk >>= 1;
2251 		}
2252 	}
2253 
2254 	/* Check that all bits have a window */
2255 	for (i = 0; i < per_dqs; i++) {
2256 		debug_cond(DLEVEL == 2,
2257 			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2258 			   __func__, __LINE__, i, left_edge[i],
2259 			   i, right_edge[i]);
2260 		if ((left_edge[i] == dqs_max + 1) ||
2261 		    (right_edge[i] == dqs_max + 1))
2262 			return i + 1;	/* FIXME: If we fail, retval > 0 */
2263 	}
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2270  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2271  * @left_edge:		Left edge of the DQ/DQS phase
2272  * @right_edge:		Right edge of the DQ/DQS phase
2273  * @mid_min:		Best DQ/DQS phase middle setting
2274  *
2275  * Find index and value of the middle of the DQ/DQS working phase.
2276  */
2277 static int get_window_mid_index(const int write, int *left_edge,
2278 				int *right_edge, int *mid_min)
2279 {
2280 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2281 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2282 	int i, mid, min_index;
2283 
2284 	/* Find middle of window for each DQ bit */
2285 	*mid_min = left_edge[0] - right_edge[0];
2286 	min_index = 0;
2287 	for (i = 1; i < per_dqs; i++) {
2288 		mid = left_edge[i] - right_edge[i];
2289 		if (mid < *mid_min) {
2290 			*mid_min = mid;
2291 			min_index = i;
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * -mid_min/2 represents the amount that we need to move DQS.
2297 	 * If mid_min is odd and positive we'll need to add one to make
2298 	 * sure the rounding in further calculations is correct (always
2299 	 * bias to the right), so just add 1 for all positive values.
2300 	 */
2301 	if (*mid_min > 0)
2302 		(*mid_min)++;
2303 	*mid_min = *mid_min / 2;
2304 
2305 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2306 		   __func__, __LINE__, *mid_min, min_index);
2307 	return min_index;
2308 }
2309 
2310 /**
2311  * center_dq_windows() - Center the DQ/DQS windows
2312  * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2313  * @left_edge:		Left edge of the DQ/DQS phase
2314  * @right_edge:		Right edge of the DQ/DQS phase
2315  * @mid_min:		Adjusted DQ/DQS phase middle setting
2316  * @orig_mid_min:	Original DQ/DQS phase middle setting
2317  * @min_index:		DQ/DQS phase middle setting index
2318  * @test_bgn:		Rank number to begin the test
2319  * @dq_margin:		Amount of shift for the DQ
2320  * @dqs_margin:		Amount of shift for the DQS
2321  *
2322  * Align the DQ/DQS windows in each group.
2323  */
2324 static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2325 			      const int mid_min, const int orig_mid_min,
2326 			      const int min_index, const int test_bgn,
2327 			      int *dq_margin, int *dqs_margin)
2328 {
2329 	const u32 delay_max = write ? IO_IO_OUT1_DELAY_MAX : IO_IO_IN_DELAY_MAX;
2330 	const u32 per_dqs = write ? RW_MGR_MEM_DQ_PER_WRITE_DQS :
2331 				    RW_MGR_MEM_DQ_PER_READ_DQS;
2332 	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2333 				      SCC_MGR_IO_IN_DELAY_OFFSET;
2334 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2335 
2336 	u32 temp_dq_io_delay1, temp_dq_io_delay2;
2337 	int shift_dq, i, p;
2338 
2339 	/* Initialize data for export structures */
2340 	*dqs_margin = delay_max + 1;
2341 	*dq_margin  = delay_max + 1;
2342 
2343 	/* add delay to bring centre of all DQ windows to the same "level" */
2344 	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2345 		/* Use values before divide by 2 to reduce round off error */
2346 		shift_dq = (left_edge[i] - right_edge[i] -
2347 			(left_edge[min_index] - right_edge[min_index]))/2  +
2348 			(orig_mid_min - mid_min);
2349 
2350 		debug_cond(DLEVEL == 2,
2351 			   "vfifo_center: before: shift_dq[%u]=%d\n",
2352 			   i, shift_dq);
2353 
2354 		temp_dq_io_delay1 = readl(addr + (p << 2));
2355 		temp_dq_io_delay2 = readl(addr + (i << 2));
2356 
2357 		if (shift_dq + temp_dq_io_delay1 > delay_max)
2358 			shift_dq = delay_max - temp_dq_io_delay2;
2359 		else if (shift_dq + temp_dq_io_delay1 < 0)
2360 			shift_dq = -temp_dq_io_delay1;
2361 
2362 		debug_cond(DLEVEL == 2,
2363 			   "vfifo_center: after: shift_dq[%u]=%d\n",
2364 			   i, shift_dq);
2365 
2366 		if (write)
2367 			scc_mgr_set_dq_out1_delay(i, temp_dq_io_delay1 + shift_dq);
2368 		else
2369 			scc_mgr_set_dq_in_delay(p, temp_dq_io_delay1 + shift_dq);
2370 
2371 		scc_mgr_load_dq(p);
2372 
2373 		debug_cond(DLEVEL == 2,
2374 			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2375 			   left_edge[i] - shift_dq + (-mid_min),
2376 			   right_edge[i] + shift_dq - (-mid_min));
2377 
2378 		/* To determine values for export structures */
2379 		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2380 			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2381 
2382 		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2383 			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2384 	}
2385 
2386 }
2387 
2388 /**
2389  * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2390  * @rank_bgn:		Rank number
2391  * @rw_group:		Read/Write Group
2392  * @test_bgn:		Rank at which the test begins
2393  * @use_read_test:	Perform a read test
2394  * @update_fom:		Update FOM
2395  *
2396  * Per-bit deskew DQ and centering.
2397  */
2398 static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2399 			const u32 rw_group, const u32 test_bgn,
2400 			const int use_read_test, const int update_fom)
2401 {
2402 	const u32 addr =
2403 		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2404 		(rw_group << 2);
2405 	/*
2406 	 * Store these as signed since there are comparisons with
2407 	 * signed numbers.
2408 	 */
2409 	uint32_t sticky_bit_chk;
2410 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2411 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
2412 	int32_t orig_mid_min, mid_min;
2413 	int32_t new_dqs, start_dqs, start_dqs_en, final_dqs_en;
2414 	int32_t dq_margin, dqs_margin;
2415 	int i, min_index;
2416 	int ret;
2417 
2418 	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2419 
2420 	start_dqs = readl(addr);
2421 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2422 		start_dqs_en = readl(addr - IO_DQS_EN_DELAY_OFFSET);
2423 
2424 	/* set the left and right edge of each bit to an illegal value */
2425 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
2426 	sticky_bit_chk = 0;
2427 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2428 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
2429 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
2430 	}
2431 
2432 	/* Search for the left edge of the window for each bit */
2433 	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2434 			 &sticky_bit_chk,
2435 			 left_edge, right_edge, use_read_test);
2436 
2437 
2438 	/* Search for the right edge of the window for each bit */
2439 	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2440 				start_dqs, start_dqs_en,
2441 				&sticky_bit_chk,
2442 				left_edge, right_edge, use_read_test);
2443 	if (ret) {
2444 		/*
2445 		 * Restore delay chain settings before letting the loop
2446 		 * in rw_mgr_mem_calibrate_vfifo to retry different
2447 		 * dqs/ck relationships.
2448 		 */
2449 		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2450 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2451 			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2452 
2453 		scc_mgr_load_dqs(rw_group);
2454 		writel(0, &sdr_scc_mgr->update);
2455 
2456 		debug_cond(DLEVEL == 1,
2457 			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2458 			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2459 		if (use_read_test) {
2460 			set_failing_group_stage(rw_group *
2461 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2462 				CAL_STAGE_VFIFO,
2463 				CAL_SUBSTAGE_VFIFO_CENTER);
2464 		} else {
2465 			set_failing_group_stage(rw_group *
2466 				RW_MGR_MEM_DQ_PER_READ_DQS + i,
2467 				CAL_STAGE_VFIFO_AFTER_WRITES,
2468 				CAL_SUBSTAGE_VFIFO_CENTER);
2469 		}
2470 		return -EIO;
2471 	}
2472 
2473 	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2474 
2475 	/* Determine the amount we can change DQS (which is -mid_min) */
2476 	orig_mid_min = mid_min;
2477 	new_dqs = start_dqs - mid_min;
2478 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2479 		new_dqs = IO_DQS_IN_DELAY_MAX;
2480 	else if (new_dqs < 0)
2481 		new_dqs = 0;
2482 
2483 	mid_min = start_dqs - new_dqs;
2484 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2485 		   mid_min, new_dqs);
2486 
2487 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2488 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2489 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2490 		else if (start_dqs_en - mid_min < 0)
2491 			mid_min += start_dqs_en - mid_min;
2492 	}
2493 	new_dqs = start_dqs - mid_min;
2494 
2495 	debug_cond(DLEVEL == 1,
2496 		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2497 		   start_dqs,
2498 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2499 		   new_dqs, mid_min);
2500 
2501 	/* Add delay to bring centre of all DQ windows to the same "level". */
2502 	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2503 			  min_index, test_bgn, &dq_margin, &dqs_margin);
2504 
2505 	/* Move DQS-en */
2506 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2507 		final_dqs_en = start_dqs_en - mid_min;
2508 		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2509 		scc_mgr_load_dqs(rw_group);
2510 	}
2511 
2512 	/* Move DQS */
2513 	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2514 	scc_mgr_load_dqs(rw_group);
2515 	debug_cond(DLEVEL == 2,
2516 		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2517 		   __func__, __LINE__, dq_margin, dqs_margin);
2518 
2519 	/*
2520 	 * Do not remove this line as it makes sure all of our decisions
2521 	 * have been applied. Apply the update bit.
2522 	 */
2523 	writel(0, &sdr_scc_mgr->update);
2524 
2525 	if ((dq_margin < 0) || (dqs_margin < 0))
2526 		return -EINVAL;
2527 
2528 	return 0;
2529 }
2530 
2531 /**
2532  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2533  * @rw_group:	Read/Write Group
2534  * @phase:	DQ/DQS phase
2535  *
2536  * Because initially no communication ca be reliably performed with the memory
2537  * device, the sequencer uses a guaranteed write mechanism to write data into
2538  * the memory device.
2539  */
2540 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2541 						 const u32 phase)
2542 {
2543 	int ret;
2544 
2545 	/* Set a particular DQ/DQS phase. */
2546 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2547 
2548 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2549 		   __func__, __LINE__, rw_group, phase);
2550 
2551 	/*
2552 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2553 	 * Load up the patterns used by read calibration using the
2554 	 * current DQDQS phase.
2555 	 */
2556 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2557 
2558 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2559 		return 0;
2560 
2561 	/*
2562 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2563 	 * Back-to-Back reads of the patterns used for calibration.
2564 	 */
2565 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2566 	if (ret)
2567 		debug_cond(DLEVEL == 1,
2568 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2569 			   __func__, __LINE__, rw_group, phase);
2570 	return ret;
2571 }
2572 
2573 /**
2574  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2575  * @rw_group:	Read/Write Group
2576  * @test_bgn:	Rank at which the test begins
2577  *
2578  * DQS enable calibration ensures reliable capture of the DQ signal without
2579  * glitches on the DQS line.
2580  */
2581 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2582 						       const u32 test_bgn)
2583 {
2584 	/*
2585 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2586 	 * DQS and DQS Eanble Signal Relationships.
2587 	 */
2588 
2589 	/* We start at zero, so have one less dq to devide among */
2590 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2591 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2592 	int ret;
2593 	u32 i, p, d, r;
2594 
2595 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2596 
2597 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2598 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2599 	     r += NUM_RANKS_PER_SHADOW_REG) {
2600 		for (i = 0, p = test_bgn, d = 0;
2601 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2602 		     i++, p++, d += delay_step) {
2603 			debug_cond(DLEVEL == 1,
2604 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2605 				   __func__, __LINE__, rw_group, r, i, p, d);
2606 
2607 			scc_mgr_set_dq_in_delay(p, d);
2608 			scc_mgr_load_dq(p);
2609 		}
2610 
2611 		writel(0, &sdr_scc_mgr->update);
2612 	}
2613 
2614 	/*
2615 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2616 	 * dq_in_delay values
2617 	 */
2618 	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2619 
2620 	debug_cond(DLEVEL == 1,
2621 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2622 		   __func__, __LINE__, rw_group, !ret);
2623 
2624 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2625 	     r += NUM_RANKS_PER_SHADOW_REG) {
2626 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2627 		writel(0, &sdr_scc_mgr->update);
2628 	}
2629 
2630 	return ret;
2631 }
2632 
2633 /**
2634  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2635  * @rw_group:		Read/Write Group
2636  * @test_bgn:		Rank at which the test begins
2637  * @use_read_test:	Perform a read test
2638  * @update_fom:		Update FOM
2639  *
2640  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2641  * within a group.
2642  */
2643 static int
2644 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2645 				      const int use_read_test,
2646 				      const int update_fom)
2647 
2648 {
2649 	int ret, grp_calibrated;
2650 	u32 rank_bgn, sr;
2651 
2652 	/*
2653 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2654 	 * Read per-bit deskew can be done on a per shadow register basis.
2655 	 */
2656 	grp_calibrated = 1;
2657 	for (rank_bgn = 0, sr = 0;
2658 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2659 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2660 		/* Check if this set of ranks should be skipped entirely. */
2661 		if (param->skip_shadow_regs[sr])
2662 			continue;
2663 
2664 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2665 							test_bgn,
2666 							use_read_test,
2667 							update_fom);
2668 		if (!ret)
2669 			continue;
2670 
2671 		grp_calibrated = 0;
2672 	}
2673 
2674 	if (!grp_calibrated)
2675 		return -EIO;
2676 
2677 	return 0;
2678 }
2679 
2680 /**
2681  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2682  * @rw_group:		Read/Write Group
2683  * @test_bgn:		Rank at which the test begins
2684  *
2685  * Stage 1: Calibrate the read valid prediction FIFO.
2686  *
2687  * This function implements UniPHY calibration Stage 1, as explained in
2688  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2689  *
2690  * - read valid prediction will consist of finding:
2691  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2692  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2693  *  - we also do a per-bit deskew on the DQ lines.
2694  */
2695 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2696 {
2697 	uint32_t p, d;
2698 	uint32_t dtaps_per_ptap;
2699 	uint32_t failed_substage;
2700 
2701 	int ret;
2702 
2703 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2704 
2705 	/* Update info for sims */
2706 	reg_file_set_group(rw_group);
2707 	reg_file_set_stage(CAL_STAGE_VFIFO);
2708 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2709 
2710 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2711 
2712 	/* USER Determine number of delay taps for each phase tap. */
2713 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2714 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2715 
2716 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2717 		/*
2718 		 * In RLDRAMX we may be messing the delay of pins in
2719 		 * the same write rw_group but outside of the current read
2720 		 * the rw_group, but that's ok because we haven't calibrated
2721 		 * output side yet.
2722 		 */
2723 		if (d > 0) {
2724 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2725 								rw_group, d);
2726 		}
2727 
2728 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2729 			/* 1) Guaranteed Write */
2730 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2731 			if (ret)
2732 				break;
2733 
2734 			/* 2) DQS Enable Calibration */
2735 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2736 									  test_bgn);
2737 			if (ret) {
2738 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2739 				continue;
2740 			}
2741 
2742 			/* 3) Centering DQ/DQS */
2743 			/*
2744 			 * If doing read after write calibration, do not update
2745 			 * FOM now. Do it then.
2746 			 */
2747 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2748 								test_bgn, 1, 0);
2749 			if (ret) {
2750 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2751 				continue;
2752 			}
2753 
2754 			/* All done. */
2755 			goto cal_done_ok;
2756 		}
2757 	}
2758 
2759 	/* Calibration Stage 1 failed. */
2760 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2761 	return 0;
2762 
2763 	/* Calibration Stage 1 completed OK. */
2764 cal_done_ok:
2765 	/*
2766 	 * Reset the delay chains back to zero if they have moved > 1
2767 	 * (check for > 1 because loop will increase d even when pass in
2768 	 * first case).
2769 	 */
2770 	if (d > 2)
2771 		scc_mgr_zero_group(rw_group, 1);
2772 
2773 	return 1;
2774 }
2775 
2776 /**
2777  * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2778  * @rw_group:		Read/Write Group
2779  * @test_bgn:		Rank at which the test begins
2780  *
2781  * Stage 3: DQ/DQS Centering.
2782  *
2783  * This function implements UniPHY calibration Stage 3, as explained in
2784  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2785  */
2786 static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2787 					  const u32 test_bgn)
2788 {
2789 	int ret;
2790 
2791 	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2792 
2793 	/* Update info for sims. */
2794 	reg_file_set_group(rw_group);
2795 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2796 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2797 
2798 	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2799 	if (ret)
2800 		set_failing_group_stage(rw_group,
2801 					CAL_STAGE_VFIFO_AFTER_WRITES,
2802 					CAL_SUBSTAGE_VFIFO_CENTER);
2803 	return ret;
2804 }
2805 
2806 /**
2807  * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2808  *
2809  * Stage 4: Minimize latency.
2810  *
2811  * This function implements UniPHY calibration Stage 4, as explained in
2812  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2813  * Calibrate LFIFO to find smallest read latency.
2814  */
2815 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2816 {
2817 	int found_one = 0;
2818 
2819 	debug("%s:%d\n", __func__, __LINE__);
2820 
2821 	/* Update info for sims. */
2822 	reg_file_set_stage(CAL_STAGE_LFIFO);
2823 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2824 
2825 	/* Load up the patterns used by read calibration for all ranks */
2826 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2827 
2828 	do {
2829 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2830 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2831 			   __func__, __LINE__, gbl->curr_read_lat);
2832 
2833 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2834 							      PASS_ALL_BITS, 1))
2835 			break;
2836 
2837 		found_one = 1;
2838 		/*
2839 		 * Reduce read latency and see if things are
2840 		 * working correctly.
2841 		 */
2842 		gbl->curr_read_lat--;
2843 	} while (gbl->curr_read_lat > 0);
2844 
2845 	/* Reset the fifos to get pointers to known state. */
2846 	writel(0, &phy_mgr_cmd->fifo_reset);
2847 
2848 	if (found_one) {
2849 		/* Add a fudge factor to the read latency that was determined */
2850 		gbl->curr_read_lat += 2;
2851 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2852 		debug_cond(DLEVEL == 2,
2853 			   "%s:%d lfifo: success: using read_lat=%u\n",
2854 			   __func__, __LINE__, gbl->curr_read_lat);
2855 	} else {
2856 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2857 					CAL_SUBSTAGE_READ_LATENCY);
2858 
2859 		debug_cond(DLEVEL == 2,
2860 			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2861 			   __func__, __LINE__, gbl->curr_read_lat);
2862 	}
2863 
2864 	return found_one;
2865 }
2866 
2867 /**
2868  * search_window() - Search for the/part of the window with DM/DQS shift
2869  * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2870  * @rank_bgn:		Rank number
2871  * @write_group:	Write Group
2872  * @bgn_curr:		Current window begin
2873  * @end_curr:		Current window end
2874  * @bgn_best:		Current best window begin
2875  * @end_best:		Current best window end
2876  * @win_best:		Size of the best window
2877  * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2878  *
2879  * Search for the/part of the window with DM/DQS shift.
2880  */
2881 static void search_window(const int search_dm,
2882 			  const u32 rank_bgn, const u32 write_group,
2883 			  int *bgn_curr, int *end_curr, int *bgn_best,
2884 			  int *end_best, int *win_best, int new_dqs)
2885 {
2886 	u32 bit_chk;
2887 	const int max = IO_IO_OUT1_DELAY_MAX - new_dqs;
2888 	int d, di;
2889 
2890 	/* Search for the/part of the window with DM/DQS shift. */
2891 	for (di = max; di >= 0; di -= DELTA_D) {
2892 		if (search_dm) {
2893 			d = di;
2894 			scc_mgr_apply_group_dm_out1_delay(d);
2895 		} else {
2896 			/* For DQS, we go from 0...max */
2897 			d = max - di;
2898 			/*
2899 			 * Note: This only shifts DQS, so are we limiting ourselve to
2900 			 * width of DQ unnecessarily.
2901 			 */
2902 			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2903 								d + new_dqs);
2904 		}
2905 
2906 		writel(0, &sdr_scc_mgr->update);
2907 
2908 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2909 						    PASS_ALL_BITS, &bit_chk,
2910 						    0)) {
2911 			/* Set current end of the window. */
2912 			*end_curr = search_dm ? -d : d;
2913 
2914 			/*
2915 			 * If a starting edge of our window has not been seen
2916 			 * this is our current start of the DM window.
2917 			 */
2918 			if (*bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2919 				*bgn_curr = search_dm ? -d : d;
2920 
2921 			/*
2922 			 * If current window is bigger than best seen.
2923 			 * Set best seen to be current window.
2924 			 */
2925 			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2926 				*win_best = *end_curr - *bgn_curr + 1;
2927 				*bgn_best = *bgn_curr;
2928 				*end_best = *end_curr;
2929 			}
2930 		} else {
2931 			/* We just saw a failing test. Reset temp edge. */
2932 			*bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2933 			*end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2934 
2935 			/* Early exit is only applicable to DQS. */
2936 			if (search_dm)
2937 				continue;
2938 
2939 			/*
2940 			 * Early exit optimization: if the remaining delay
2941 			 * chain space is less than already seen largest
2942 			 * window we can exit.
2943 			 */
2944 			if (*win_best - 1 > IO_IO_OUT1_DELAY_MAX - new_dqs - d)
2945 				break;
2946 		}
2947 	}
2948 }
2949 
2950 /*
2951  * rw_mgr_mem_calibrate_writes_center() - Center all windows
2952  * @rank_bgn:		Rank number
2953  * @write_group:	Write group
2954  * @test_bgn:		Rank at which the test begins
2955  *
2956  * Center all windows. Do per-bit-deskew to possibly increase size of
2957  * certain windows.
2958  */
2959 static int
2960 rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2961 				   const u32 test_bgn)
2962 {
2963 	int i;
2964 	u32 sticky_bit_chk;
2965 	u32 min_index;
2966 	int left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2967 	int right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2968 	int mid;
2969 	int mid_min, orig_mid_min;
2970 	int new_dqs, start_dqs;
2971 	int dq_margin, dqs_margin, dm_margin;
2972 	int bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2973 	int end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2974 	int bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2975 	int end_best = IO_IO_OUT1_DELAY_MAX + 1;
2976 	int win_best = 0;
2977 
2978 	int ret;
2979 
2980 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2981 
2982 	dm_margin = 0;
2983 
2984 	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2985 			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2986 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2987 
2988 	/* Per-bit deskew. */
2989 
2990 	/*
2991 	 * Set the left and right edge of each bit to an illegal value.
2992 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2993 	 */
2994 	sticky_bit_chk = 0;
2995 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2996 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2997 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2998 	}
2999 
3000 	/* Search for the left edge of the window for each bit. */
3001 	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
3002 			 &sticky_bit_chk,
3003 			 left_edge, right_edge, 0);
3004 
3005 	/* Search for the right edge of the window for each bit. */
3006 	ret = search_right_edge(1, rank_bgn, write_group, 0,
3007 				start_dqs, 0,
3008 				&sticky_bit_chk,
3009 				left_edge, right_edge, 0);
3010 	if (ret) {
3011 		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
3012 					CAL_SUBSTAGE_WRITES_CENTER);
3013 		return -EINVAL;
3014 	}
3015 
3016 	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3017 
3018 	/* Determine the amount we can change DQS (which is -mid_min). */
3019 	orig_mid_min = mid_min;
3020 	new_dqs = start_dqs;
3021 	mid_min = 0;
3022 	debug_cond(DLEVEL == 1,
3023 		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3024 		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3025 
3026 	/* Add delay to bring centre of all DQ windows to the same "level". */
3027 	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3028 			  min_index, 0, &dq_margin, &dqs_margin);
3029 
3030 	/* Move DQS */
3031 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3032 	writel(0, &sdr_scc_mgr->update);
3033 
3034 	/* Centre DM */
3035 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3036 
3037 	/*
3038 	 * Set the left and right edge of each bit to an illegal value.
3039 	 * Use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
3040 	 */
3041 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3042 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3043 
3044 	/* Search for the/part of the window with DM shift. */
3045 	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3046 		      &bgn_best, &end_best, &win_best, 0);
3047 
3048 	/* Reset DM delay chains to 0. */
3049 	scc_mgr_apply_group_dm_out1_delay(0);
3050 
3051 	/*
3052 	 * Check to see if the current window nudges up aganist 0 delay.
3053 	 * If so we need to continue the search by shifting DQS otherwise DQS
3054 	 * search begins as a new search.
3055 	 */
3056 	if (end_curr != 0) {
3057 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3058 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3059 	}
3060 
3061 	/* Search for the/part of the window with DQS shifts. */
3062 	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3063 		      &bgn_best, &end_best, &win_best, new_dqs);
3064 
3065 	/* Assign left and right edge for cal and reporting. */
3066 	left_edge[0] = -1 * bgn_best;
3067 	right_edge[0] = end_best;
3068 
3069 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
3070 		   __func__, __LINE__, left_edge[0], right_edge[0]);
3071 
3072 	/* Move DQS (back to orig). */
3073 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3074 
3075 	/* Move DM */
3076 
3077 	/* Find middle of window for the DM bit. */
3078 	mid = (left_edge[0] - right_edge[0]) / 2;
3079 
3080 	/* Only move right, since we are not moving DQS/DQ. */
3081 	if (mid < 0)
3082 		mid = 0;
3083 
3084 	/* dm_marign should fail if we never find a window. */
3085 	if (win_best == 0)
3086 		dm_margin = -1;
3087 	else
3088 		dm_margin = left_edge[0] - mid;
3089 
3090 	scc_mgr_apply_group_dm_out1_delay(mid);
3091 	writel(0, &sdr_scc_mgr->update);
3092 
3093 	debug_cond(DLEVEL == 2,
3094 		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3095 		   __func__, __LINE__, left_edge[0], right_edge[0],
3096 		   mid, dm_margin);
3097 	/* Export values. */
3098 	gbl->fom_out += dq_margin + dqs_margin;
3099 
3100 	debug_cond(DLEVEL == 2,
3101 		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3102 		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3103 
3104 	/*
3105 	 * Do not remove this line as it makes sure all of our
3106 	 * decisions have been applied.
3107 	 */
3108 	writel(0, &sdr_scc_mgr->update);
3109 
3110 	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3111 		return -EINVAL;
3112 
3113 	return 0;
3114 }
3115 
3116 /**
3117  * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3118  * @rank_bgn:		Rank number
3119  * @group:		Read/Write Group
3120  * @test_bgn:		Rank at which the test begins
3121  *
3122  * Stage 2: Write Calibration Part One.
3123  *
3124  * This function implements UniPHY calibration Stage 2, as explained in
3125  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3126  */
3127 static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3128 				       const u32 test_bgn)
3129 {
3130 	int ret;
3131 
3132 	/* Update info for sims */
3133 	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3134 
3135 	reg_file_set_group(group);
3136 	reg_file_set_stage(CAL_STAGE_WRITES);
3137 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3138 
3139 	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3140 	if (ret)
3141 		set_failing_group_stage(group, CAL_STAGE_WRITES,
3142 					CAL_SUBSTAGE_WRITES_CENTER);
3143 
3144 	return ret;
3145 }
3146 
3147 /**
3148  * mem_precharge_and_activate() - Precharge all banks and activate
3149  *
3150  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3151  */
3152 static void mem_precharge_and_activate(void)
3153 {
3154 	int r;
3155 
3156 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3157 		/* Test if the rank should be skipped. */
3158 		if (param->skip_ranks[r])
3159 			continue;
3160 
3161 		/* Set rank. */
3162 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3163 
3164 		/* Precharge all banks. */
3165 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3166 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3167 
3168 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3169 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3170 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3171 
3172 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3173 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3174 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3175 
3176 		/* Activate rows. */
3177 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3178 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3179 	}
3180 }
3181 
3182 /**
3183  * mem_init_latency() - Configure memory RLAT and WLAT settings
3184  *
3185  * Configure memory RLAT and WLAT parameters.
3186  */
3187 static void mem_init_latency(void)
3188 {
3189 	/*
3190 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3191 	 * so max latency in AFI clocks, used here, is correspondingly
3192 	 * smaller.
3193 	 */
3194 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3195 	u32 rlat, wlat;
3196 
3197 	debug("%s:%d\n", __func__, __LINE__);
3198 
3199 	/*
3200 	 * Read in write latency.
3201 	 * WL for Hard PHY does not include additive latency.
3202 	 */
3203 	wlat = readl(&data_mgr->t_wl_add);
3204 	wlat += readl(&data_mgr->mem_t_add);
3205 
3206 	gbl->rw_wl_nop_cycles = wlat - 1;
3207 
3208 	/* Read in readl latency. */
3209 	rlat = readl(&data_mgr->t_rl_add);
3210 
3211 	/* Set a pretty high read latency initially. */
3212 	gbl->curr_read_lat = rlat + 16;
3213 	if (gbl->curr_read_lat > max_latency)
3214 		gbl->curr_read_lat = max_latency;
3215 
3216 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3217 
3218 	/* Advertise write latency. */
3219 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3220 }
3221 
3222 /**
3223  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3224  *
3225  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3226  */
3227 static void mem_skip_calibrate(void)
3228 {
3229 	uint32_t vfifo_offset;
3230 	uint32_t i, j, r;
3231 
3232 	debug("%s:%d\n", __func__, __LINE__);
3233 	/* Need to update every shadow register set used by the interface */
3234 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3235 	     r += NUM_RANKS_PER_SHADOW_REG) {
3236 		/*
3237 		 * Set output phase alignment settings appropriate for
3238 		 * skip calibration.
3239 		 */
3240 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3241 			scc_mgr_set_dqs_en_phase(i, 0);
3242 #if IO_DLL_CHAIN_LENGTH == 6
3243 			scc_mgr_set_dqdqs_output_phase(i, 6);
3244 #else
3245 			scc_mgr_set_dqdqs_output_phase(i, 7);
3246 #endif
3247 			/*
3248 			 * Case:33398
3249 			 *
3250 			 * Write data arrives to the I/O two cycles before write
3251 			 * latency is reached (720 deg).
3252 			 *   -> due to bit-slip in a/c bus
3253 			 *   -> to allow board skew where dqs is longer than ck
3254 			 *      -> how often can this happen!?
3255 			 *      -> can claim back some ptaps for high freq
3256 			 *       support if we can relax this, but i digress...
3257 			 *
3258 			 * The write_clk leads mem_ck by 90 deg
3259 			 * The minimum ptap of the OPA is 180 deg
3260 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3261 			 * The write_clk is always delayed by 2 ptaps
3262 			 *
3263 			 * Hence, to make DQS aligned to CK, we need to delay
3264 			 * DQS by:
3265 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3266 			 *
3267 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3268 			 * gives us the number of ptaps, which simplies to:
3269 			 *
3270 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3271 			 */
3272 			scc_mgr_set_dqdqs_output_phase(i,
3273 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3274 		}
3275 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3276 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3277 
3278 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3279 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3280 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3281 		}
3282 		writel(0xff, &sdr_scc_mgr->dq_ena);
3283 		writel(0xff, &sdr_scc_mgr->dm_ena);
3284 		writel(0, &sdr_scc_mgr->update);
3285 	}
3286 
3287 	/* Compensate for simulation model behaviour */
3288 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3289 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3290 		scc_mgr_load_dqs(i);
3291 	}
3292 	writel(0, &sdr_scc_mgr->update);
3293 
3294 	/*
3295 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3296 	 * in sequencer.
3297 	 */
3298 	vfifo_offset = CALIB_VFIFO_OFFSET;
3299 	for (j = 0; j < vfifo_offset; j++)
3300 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3301 	writel(0, &phy_mgr_cmd->fifo_reset);
3302 
3303 	/*
3304 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3305 	 * setting from generation-time constant.
3306 	 */
3307 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3308 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3309 }
3310 
3311 /**
3312  * mem_calibrate() - Memory calibration entry point.
3313  *
3314  * Perform memory calibration.
3315  */
3316 static uint32_t mem_calibrate(void)
3317 {
3318 	uint32_t i;
3319 	uint32_t rank_bgn, sr;
3320 	uint32_t write_group, write_test_bgn;
3321 	uint32_t read_group, read_test_bgn;
3322 	uint32_t run_groups, current_run;
3323 	uint32_t failing_groups = 0;
3324 	uint32_t group_failed = 0;
3325 
3326 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3327 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3328 
3329 	debug("%s:%d\n", __func__, __LINE__);
3330 
3331 	/* Initialize the data settings */
3332 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3333 	gbl->error_stage = CAL_STAGE_NIL;
3334 	gbl->error_group = 0xff;
3335 	gbl->fom_in = 0;
3336 	gbl->fom_out = 0;
3337 
3338 	/* Initialize WLAT and RLAT. */
3339 	mem_init_latency();
3340 
3341 	/* Initialize bit slips. */
3342 	mem_precharge_and_activate();
3343 
3344 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3345 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3346 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3347 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3348 		if (i == 0)
3349 			scc_mgr_set_hhp_extras();
3350 
3351 		scc_set_bypass_mode(i);
3352 	}
3353 
3354 	/* Calibration is skipped. */
3355 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3356 		/*
3357 		 * Set VFIFO and LFIFO to instant-on settings in skip
3358 		 * calibration mode.
3359 		 */
3360 		mem_skip_calibrate();
3361 
3362 		/*
3363 		 * Do not remove this line as it makes sure all of our
3364 		 * decisions have been applied.
3365 		 */
3366 		writel(0, &sdr_scc_mgr->update);
3367 		return 1;
3368 	}
3369 
3370 	/* Calibration is not skipped. */
3371 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3372 		/*
3373 		 * Zero all delay chain/phase settings for all
3374 		 * groups and all shadow register sets.
3375 		 */
3376 		scc_mgr_zero_all();
3377 
3378 		run_groups = ~param->skip_groups;
3379 
3380 		for (write_group = 0, write_test_bgn = 0; write_group
3381 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3382 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3383 
3384 			/* Initialize the group failure */
3385 			group_failed = 0;
3386 
3387 			current_run = run_groups & ((1 <<
3388 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3389 			run_groups = run_groups >>
3390 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3391 
3392 			if (current_run == 0)
3393 				continue;
3394 
3395 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3396 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3397 			scc_mgr_zero_group(write_group, 0);
3398 
3399 			for (read_group = write_group * rwdqs_ratio,
3400 			     read_test_bgn = 0;
3401 			     read_group < (write_group + 1) * rwdqs_ratio;
3402 			     read_group++,
3403 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3404 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3405 					continue;
3406 
3407 				/* Calibrate the VFIFO */
3408 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3409 							       read_test_bgn))
3410 					continue;
3411 
3412 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3413 					return 0;
3414 
3415 				/* The group failed, we're done. */
3416 				goto grp_failed;
3417 			}
3418 
3419 			/* Calibrate the output side */
3420 			for (rank_bgn = 0, sr = 0;
3421 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3422 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3423 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3424 					continue;
3425 
3426 				/* Not needed in quick mode! */
3427 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3428 					continue;
3429 
3430 				/*
3431 				 * Determine if this set of ranks
3432 				 * should be skipped entirely.
3433 				 */
3434 				if (param->skip_shadow_regs[sr])
3435 					continue;
3436 
3437 				/* Calibrate WRITEs */
3438 				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3439 						write_group, write_test_bgn))
3440 					continue;
3441 
3442 				group_failed = 1;
3443 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3444 					return 0;
3445 			}
3446 
3447 			/* Some group failed, we're done. */
3448 			if (group_failed)
3449 				goto grp_failed;
3450 
3451 			for (read_group = write_group * rwdqs_ratio,
3452 			     read_test_bgn = 0;
3453 			     read_group < (write_group + 1) * rwdqs_ratio;
3454 			     read_group++,
3455 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3456 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3457 					continue;
3458 
3459 				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3460 								read_test_bgn))
3461 					continue;
3462 
3463 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3464 					return 0;
3465 
3466 				/* The group failed, we're done. */
3467 				goto grp_failed;
3468 			}
3469 
3470 			/* No group failed, continue as usual. */
3471 			continue;
3472 
3473 grp_failed:		/* A group failed, increment the counter. */
3474 			failing_groups++;
3475 		}
3476 
3477 		/*
3478 		 * USER If there are any failing groups then report
3479 		 * the failure.
3480 		 */
3481 		if (failing_groups != 0)
3482 			return 0;
3483 
3484 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3485 			continue;
3486 
3487 		/*
3488 		 * If we're skipping groups as part of debug,
3489 		 * don't calibrate LFIFO.
3490 		 */
3491 		if (param->skip_groups != 0)
3492 			continue;
3493 
3494 		/* Calibrate the LFIFO */
3495 		if (!rw_mgr_mem_calibrate_lfifo())
3496 			return 0;
3497 	}
3498 
3499 	/*
3500 	 * Do not remove this line as it makes sure all of our decisions
3501 	 * have been applied.
3502 	 */
3503 	writel(0, &sdr_scc_mgr->update);
3504 	return 1;
3505 }
3506 
3507 /**
3508  * run_mem_calibrate() - Perform memory calibration
3509  *
3510  * This function triggers the entire memory calibration procedure.
3511  */
3512 static int run_mem_calibrate(void)
3513 {
3514 	int pass;
3515 
3516 	debug("%s:%d\n", __func__, __LINE__);
3517 
3518 	/* Reset pass/fail status shown on afi_cal_success/fail */
3519 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3520 
3521 	/* Stop tracking manager. */
3522 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3523 
3524 	phy_mgr_initialize();
3525 	rw_mgr_mem_initialize();
3526 
3527 	/* Perform the actual memory calibration. */
3528 	pass = mem_calibrate();
3529 
3530 	mem_precharge_and_activate();
3531 	writel(0, &phy_mgr_cmd->fifo_reset);
3532 
3533 	/* Handoff. */
3534 	rw_mgr_mem_handoff();
3535 	/*
3536 	 * In Hard PHY this is a 2-bit control:
3537 	 * 0: AFI Mux Select
3538 	 * 1: DDIO Mux Select
3539 	 */
3540 	writel(0x2, &phy_mgr_cfg->mux_sel);
3541 
3542 	/* Start tracking manager. */
3543 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3544 
3545 	return pass;
3546 }
3547 
3548 /**
3549  * debug_mem_calibrate() - Report result of memory calibration
3550  * @pass:	Value indicating whether calibration passed or failed
3551  *
3552  * This function reports the results of the memory calibration
3553  * and writes debug information into the register file.
3554  */
3555 static void debug_mem_calibrate(int pass)
3556 {
3557 	uint32_t debug_info;
3558 
3559 	if (pass) {
3560 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3561 
3562 		gbl->fom_in /= 2;
3563 		gbl->fom_out /= 2;
3564 
3565 		if (gbl->fom_in > 0xff)
3566 			gbl->fom_in = 0xff;
3567 
3568 		if (gbl->fom_out > 0xff)
3569 			gbl->fom_out = 0xff;
3570 
3571 		/* Update the FOM in the register file */
3572 		debug_info = gbl->fom_in;
3573 		debug_info |= gbl->fom_out << 8;
3574 		writel(debug_info, &sdr_reg_file->fom);
3575 
3576 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3577 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3578 	} else {
3579 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3580 
3581 		debug_info = gbl->error_stage;
3582 		debug_info |= gbl->error_substage << 8;
3583 		debug_info |= gbl->error_group << 16;
3584 
3585 		writel(debug_info, &sdr_reg_file->failing_stage);
3586 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3587 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3588 
3589 		/* Update the failing group/stage in the register file */
3590 		debug_info = gbl->error_stage;
3591 		debug_info |= gbl->error_substage << 8;
3592 		debug_info |= gbl->error_group << 16;
3593 		writel(debug_info, &sdr_reg_file->failing_stage);
3594 	}
3595 
3596 	printf("%s: Calibration complete\n", __FILE__);
3597 }
3598 
3599 /**
3600  * hc_initialize_rom_data() - Initialize ROM data
3601  *
3602  * Initialize ROM data.
3603  */
3604 static void hc_initialize_rom_data(void)
3605 {
3606 	u32 i, addr;
3607 
3608 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3609 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3610 		writel(inst_rom_init[i], addr + (i << 2));
3611 
3612 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3613 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3614 		writel(ac_rom_init[i], addr + (i << 2));
3615 }
3616 
3617 /**
3618  * initialize_reg_file() - Initialize SDR register file
3619  *
3620  * Initialize SDR register file.
3621  */
3622 static void initialize_reg_file(void)
3623 {
3624 	/* Initialize the register file with the correct data */
3625 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3626 	writel(0, &sdr_reg_file->debug_data_addr);
3627 	writel(0, &sdr_reg_file->cur_stage);
3628 	writel(0, &sdr_reg_file->fom);
3629 	writel(0, &sdr_reg_file->failing_stage);
3630 	writel(0, &sdr_reg_file->debug1);
3631 	writel(0, &sdr_reg_file->debug2);
3632 }
3633 
3634 /**
3635  * initialize_hps_phy() - Initialize HPS PHY
3636  *
3637  * Initialize HPS PHY.
3638  */
3639 static void initialize_hps_phy(void)
3640 {
3641 	uint32_t reg;
3642 	/*
3643 	 * Tracking also gets configured here because it's in the
3644 	 * same register.
3645 	 */
3646 	uint32_t trk_sample_count = 7500;
3647 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3648 	/*
3649 	 * Format is number of outer loops in the 16 MSB, sample
3650 	 * count in 16 LSB.
3651 	 */
3652 
3653 	reg = 0;
3654 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3655 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3656 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3657 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3658 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3659 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3660 	/*
3661 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3662 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3663 	 */
3664 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3665 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3666 		trk_sample_count);
3667 	writel(reg, &sdr_ctrl->phy_ctrl0);
3668 
3669 	reg = 0;
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3671 		trk_sample_count >>
3672 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3674 		trk_long_idle_sample_count);
3675 	writel(reg, &sdr_ctrl->phy_ctrl1);
3676 
3677 	reg = 0;
3678 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3679 		trk_long_idle_sample_count >>
3680 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3681 	writel(reg, &sdr_ctrl->phy_ctrl2);
3682 }
3683 
3684 /**
3685  * initialize_tracking() - Initialize tracking
3686  *
3687  * Initialize the register file with usable initial data.
3688  */
3689 static void initialize_tracking(void)
3690 {
3691 	/*
3692 	 * Initialize the register file with the correct data.
3693 	 * Compute usable version of value in case we skip full
3694 	 * computation later.
3695 	 */
3696 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3697 	       &sdr_reg_file->dtaps_per_ptap);
3698 
3699 	/* trk_sample_count */
3700 	writel(7500, &sdr_reg_file->trk_sample_count);
3701 
3702 	/* longidle outer loop [15:0] */
3703 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3704 
3705 	/*
3706 	 * longidle sample count [31:24]
3707 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3708 	 * trcd, worst case [15:8]
3709 	 * vfifo wait [7:0]
3710 	 */
3711 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3712 	       &sdr_reg_file->delays);
3713 
3714 	/* mux delay */
3715 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3716 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3717 	       &sdr_reg_file->trk_rw_mgr_addr);
3718 
3719 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3720 	       &sdr_reg_file->trk_read_dqs_width);
3721 
3722 	/* trefi [7:0] */
3723 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3724 	       &sdr_reg_file->trk_rfsh);
3725 }
3726 
3727 int sdram_calibration_full(void)
3728 {
3729 	struct param_type my_param;
3730 	struct gbl_type my_gbl;
3731 	uint32_t pass;
3732 
3733 	memset(&my_param, 0, sizeof(my_param));
3734 	memset(&my_gbl, 0, sizeof(my_gbl));
3735 
3736 	param = &my_param;
3737 	gbl = &my_gbl;
3738 
3739 	/* Set the calibration enabled by default */
3740 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3741 	/*
3742 	 * Only sweep all groups (regardless of fail state) by default
3743 	 * Set enabled read test by default.
3744 	 */
3745 #if DISABLE_GUARANTEED_READ
3746 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3747 #endif
3748 	/* Initialize the register file */
3749 	initialize_reg_file();
3750 
3751 	/* Initialize any PHY CSR */
3752 	initialize_hps_phy();
3753 
3754 	scc_mgr_initialize();
3755 
3756 	initialize_tracking();
3757 
3758 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3759 
3760 	debug("%s:%d\n", __func__, __LINE__);
3761 	debug_cond(DLEVEL == 1,
3762 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3763 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3764 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3765 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3766 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3767 	debug_cond(DLEVEL == 1,
3768 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3769 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3770 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3771 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3772 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3773 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3774 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3775 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3776 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3777 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3778 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3779 		   IO_IO_OUT2_DELAY_MAX);
3780 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3781 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3782 
3783 	hc_initialize_rom_data();
3784 
3785 	/* update info for sims */
3786 	reg_file_set_stage(CAL_STAGE_NIL);
3787 	reg_file_set_group(0);
3788 
3789 	/*
3790 	 * Load global needed for those actions that require
3791 	 * some dynamic calibration support.
3792 	 */
3793 	dyn_calib_steps = STATIC_CALIB_STEPS;
3794 	/*
3795 	 * Load global to allow dynamic selection of delay loop settings
3796 	 * based on calibration mode.
3797 	 */
3798 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3799 		skip_delay_mask = 0xff;
3800 	else
3801 		skip_delay_mask = 0x0;
3802 
3803 	pass = run_mem_calibrate();
3804 	debug_mem_calibrate(pass);
3805 	return pass;
3806 }
3807