1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int sdr_working_phase(uint32_t grp, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t tmp_delay = 0; 1341 uint32_t test_status; 1342 u32 bit_chk; 1343 1344 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1345 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1346 *work_bgn = tmp_delay; 1347 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1348 1349 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1350 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1351 IO_DELAY_PER_OPA_TAP) { 1352 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1353 1354 test_status = 1355 rw_mgr_mem_calibrate_read_test_all_ranks 1356 (grp, 1, PASS_ONE_BIT, &bit_chk, 0); 1357 1358 if (test_status) { 1359 *max_working_cnt = 1; 1360 return 1; 1361 } 1362 } 1363 1364 if (*p > IO_DQS_EN_PHASE_MAX) 1365 /* fiddle with FIFO */ 1366 rw_mgr_incr_vfifo(grp, v); 1367 } 1368 } 1369 1370 /* Cannot find working solution */ 1371 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1372 ptap/dtap\n", __func__, __LINE__); 1373 return 0; 1374 } 1375 1376 static void sdr_backup_phase(uint32_t grp, 1377 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1378 uint32_t *p, uint32_t *max_working_cnt) 1379 { 1380 uint32_t found_begin = 0; 1381 uint32_t tmp_delay; 1382 u32 bit_chk; 1383 1384 /* Special case code for backing up a phase */ 1385 if (*p == 0) { 1386 *p = IO_DQS_EN_PHASE_MAX; 1387 rw_mgr_decr_vfifo(grp, v); 1388 } else { 1389 (*p)--; 1390 } 1391 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1392 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1393 1394 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1395 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1396 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1397 1398 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1399 PASS_ONE_BIT, 1400 &bit_chk, 0)) { 1401 found_begin = 1; 1402 *work_bgn = tmp_delay; 1403 break; 1404 } 1405 } 1406 1407 /* We have found a working dtap before the ptap found above */ 1408 if (found_begin == 1) 1409 (*max_working_cnt)++; 1410 1411 /* 1412 * Restore VFIFO to old state before we decremented it 1413 * (if needed). 1414 */ 1415 (*p)++; 1416 if (*p > IO_DQS_EN_PHASE_MAX) { 1417 *p = 0; 1418 rw_mgr_incr_vfifo(grp, v); 1419 } 1420 1421 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1422 } 1423 1424 static int sdr_nonworking_phase(uint32_t grp, 1425 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1426 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1427 uint32_t *work_end) 1428 { 1429 u32 bit_chk; 1430 1431 (*p)++; 1432 *work_end += IO_DELAY_PER_OPA_TAP; 1433 if (*p > IO_DQS_EN_PHASE_MAX) { 1434 /* fiddle with FIFO */ 1435 *p = 0; 1436 rw_mgr_incr_vfifo(grp, v); 1437 } 1438 1439 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1440 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1441 += IO_DELAY_PER_OPA_TAP) { 1442 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1443 1444 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1445 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1446 return 1; 1447 } else { 1448 (*max_working_cnt)++; 1449 } 1450 } 1451 1452 if (*p > IO_DQS_EN_PHASE_MAX) { 1453 /* fiddle with FIFO */ 1454 rw_mgr_incr_vfifo(grp, v); 1455 *p = 0; 1456 } 1457 } 1458 1459 /* Cannot see edge of failing read. */ 1460 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1461 failed\n", __func__, __LINE__); 1462 return 0; 1463 } 1464 1465 /** 1466 * sdr_find_window_center() - Find center of the working DQS window. 1467 * @grp: Read/Write group 1468 * @work_bgn: First working settings 1469 * @work_end: Last working settings 1470 * @val: VFIFO value 1471 * 1472 * Find center of the working DQS enable window. 1473 */ 1474 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1475 const u32 work_end, const u32 val) 1476 { 1477 u32 bit_chk, work_mid, v = val; 1478 int tmp_delay = 0; 1479 int i, p, d; 1480 1481 work_mid = (work_bgn + work_end) / 2; 1482 1483 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1484 work_bgn, work_end, work_mid); 1485 /* Get the middle delay to be less than a VFIFO delay */ 1486 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1487 1488 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1489 work_mid %= tmp_delay; 1490 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1491 1492 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1493 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1494 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1495 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1496 1497 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1498 1499 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1500 if (d > IO_DQS_EN_DELAY_MAX) 1501 d = IO_DQS_EN_DELAY_MAX; 1502 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1503 1504 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1505 1506 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1507 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1508 1509 /* 1510 * push vfifo until we can successfully calibrate. We can do this 1511 * because the largest possible margin in 1 VFIFO cycle. 1512 */ 1513 for (i = 0; i < VFIFO_SIZE; i++) { 1514 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1515 v); 1516 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1517 PASS_ONE_BIT, 1518 &bit_chk, 0)) { 1519 debug_cond(DLEVEL == 2, 1520 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1521 __func__, __LINE__, v, p, d); 1522 return 0; 1523 } 1524 1525 /* Fiddle with FIFO. */ 1526 rw_mgr_incr_vfifo(grp, &v); 1527 } 1528 1529 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1530 __func__, __LINE__); 1531 return -EINVAL; 1532 } 1533 1534 /* find a good dqs enable to use */ 1535 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1536 { 1537 uint32_t v, d, p, i; 1538 uint32_t max_working_cnt; 1539 uint32_t bit_chk; 1540 uint32_t dtaps_per_ptap; 1541 uint32_t work_bgn, work_end; 1542 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1543 1544 debug("%s:%d %u\n", __func__, __LINE__, grp); 1545 1546 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1547 1548 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1549 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1550 1551 /* ************************************************************** */ 1552 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1553 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1554 1555 /* ********************************************************* */ 1556 /* * Step 1 : First push vfifo until we get a failing read * */ 1557 v = find_vfifo_read(grp, &bit_chk); 1558 1559 max_working_cnt = 0; 1560 1561 /* ******************************************************** */ 1562 /* * step 2: find first working phase, increment in ptaps * */ 1563 work_bgn = 0; 1564 if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, 1565 &p, &i, &max_working_cnt) == 0) 1566 return 0; 1567 1568 work_end = work_bgn; 1569 1570 /* 1571 * If d is 0 then the working window covers a phase tap and 1572 * we can follow the old procedure otherwise, we've found the beginning, 1573 * and we need to increment the dtaps until we find the end. 1574 */ 1575 if (d == 0) { 1576 /* ********************************************************* */ 1577 /* * step 3a: if we have room, back off by one and 1578 increment in dtaps * */ 1579 1580 sdr_backup_phase(grp, &work_bgn, &v, &d, &p, 1581 &max_working_cnt); 1582 1583 /* ********************************************************* */ 1584 /* * step 4a: go forward from working phase to non working 1585 phase, increment in ptaps * */ 1586 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p, 1587 &i, &max_working_cnt, &work_end) == 0) 1588 return 0; 1589 1590 /* ********************************************************* */ 1591 /* * step 5a: back off one from last, increment in dtaps * */ 1592 1593 /* Special case code for backing up a phase */ 1594 if (p == 0) { 1595 p = IO_DQS_EN_PHASE_MAX; 1596 rw_mgr_decr_vfifo(grp, &v); 1597 } else { 1598 p = p - 1; 1599 } 1600 1601 work_end -= IO_DELAY_PER_OPA_TAP; 1602 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1603 1604 /* * The actual increment of dtaps is done outside of 1605 the if/else loop to share code */ 1606 d = 0; 1607 1608 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1609 vfifo=%u ptap=%u\n", __func__, __LINE__, 1610 v, p); 1611 } else { 1612 /* ******************************************************* */ 1613 /* * step 3-5b: Find the right edge of the window using 1614 delay taps * */ 1615 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1616 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1617 v, p, d, work_bgn); 1618 1619 work_end = work_bgn; 1620 1621 /* * The actual increment of dtaps is done outside of the 1622 if/else loop to share code */ 1623 1624 /* Only here to counterbalance a subtract later on which is 1625 not needed if this branch of the algorithm is taken */ 1626 max_working_cnt++; 1627 } 1628 1629 /* The dtap increment to find the failing edge is done here */ 1630 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1631 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1632 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1633 end-2: dtap=%u\n", __func__, __LINE__, d); 1634 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1635 1636 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1637 PASS_ONE_BIT, 1638 &bit_chk, 0)) { 1639 break; 1640 } 1641 } 1642 1643 /* Go back to working dtap */ 1644 if (d != 0) 1645 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1646 1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1648 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1649 v, p, d-1, work_end); 1650 1651 if (work_end < work_bgn) { 1652 /* nil range */ 1653 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1654 failed\n", __func__, __LINE__); 1655 return 0; 1656 } 1657 1658 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1659 __func__, __LINE__, work_bgn, work_end); 1660 1661 /* *************************************************************** */ 1662 /* 1663 * * We need to calculate the number of dtaps that equal a ptap 1664 * * To do that we'll back up a ptap and re-find the edge of the 1665 * * window using dtaps 1666 */ 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1669 for tracking\n", __func__, __LINE__); 1670 1671 /* Special case code for backing up a phase */ 1672 if (p == 0) { 1673 p = IO_DQS_EN_PHASE_MAX; 1674 rw_mgr_decr_vfifo(grp, &v); 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1676 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1677 v, p); 1678 } else { 1679 p = p - 1; 1680 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1681 phase only: v=%u p=%u", __func__, __LINE__, 1682 v, p); 1683 } 1684 1685 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1686 1687 /* 1688 * Increase dtap until we first see a passing read (in case the 1689 * window is smaller than a ptap), 1690 * and then a failing read to mark the edge of the window again 1691 */ 1692 1693 /* Find a passing read */ 1694 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1695 __func__, __LINE__); 1696 found_passing_read = 0; 1697 found_failing_read = 0; 1698 initial_failing_dtap = d; 1699 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1700 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1701 read d=%u\n", __func__, __LINE__, d); 1702 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1703 1704 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1705 PASS_ONE_BIT, 1706 &bit_chk, 0)) { 1707 found_passing_read = 1; 1708 break; 1709 } 1710 } 1711 1712 if (found_passing_read) { 1713 /* Find a failing read */ 1714 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1715 read\n", __func__, __LINE__); 1716 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1717 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1718 testing read d=%u\n", __func__, __LINE__, d); 1719 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1720 1721 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1722 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1723 found_failing_read = 1; 1724 break; 1725 } 1726 } 1727 } else { 1728 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1729 calculate dtaps", __func__, __LINE__); 1730 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1731 } 1732 1733 /* 1734 * The dynamically calculated dtaps_per_ptap is only valid if we 1735 * found a passing/failing read. If we didn't, it means d hit the max 1736 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1737 * statically calculated value. 1738 */ 1739 if (found_passing_read && found_failing_read) 1740 dtaps_per_ptap = d - initial_failing_dtap; 1741 1742 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1743 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1744 - %u = %u", __func__, __LINE__, d, 1745 initial_failing_dtap, dtaps_per_ptap); 1746 1747 /* ******************************************** */ 1748 /* * step 6: Find the centre of the window * */ 1749 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1750 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1751 1752 return 1; 1753 } 1754 1755 /* per-bit deskew DQ and center */ 1756 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1757 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1758 uint32_t use_read_test, uint32_t update_fom) 1759 { 1760 uint32_t i, p, d, min_index; 1761 /* 1762 * Store these as signed since there are comparisons with 1763 * signed numbers. 1764 */ 1765 uint32_t bit_chk; 1766 uint32_t sticky_bit_chk; 1767 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1768 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1769 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1770 int32_t mid; 1771 int32_t orig_mid_min, mid_min; 1772 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1773 final_dqs_en; 1774 int32_t dq_margin, dqs_margin; 1775 uint32_t stop; 1776 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1777 uint32_t addr; 1778 1779 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1780 1781 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1782 start_dqs = readl(addr + (read_group << 2)); 1783 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1784 start_dqs_en = readl(addr + ((read_group << 2) 1785 - IO_DQS_EN_DELAY_OFFSET)); 1786 1787 /* set the left and right edge of each bit to an illegal value */ 1788 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1789 sticky_bit_chk = 0; 1790 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1791 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1792 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1793 } 1794 1795 /* Search for the left edge of the window for each bit */ 1796 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1797 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1798 1799 writel(0, &sdr_scc_mgr->update); 1800 1801 /* 1802 * Stop searching when the read test doesn't pass AND when 1803 * we've seen a passing read on every bit. 1804 */ 1805 if (use_read_test) { 1806 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1807 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1808 &bit_chk, 0, 0); 1809 } else { 1810 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1811 0, PASS_ONE_BIT, 1812 &bit_chk, 0); 1813 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1814 (read_group - (write_group * 1815 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1816 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1817 stop = (bit_chk == 0); 1818 } 1819 sticky_bit_chk = sticky_bit_chk | bit_chk; 1820 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1821 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1822 && %u", __func__, __LINE__, d, 1823 sticky_bit_chk, 1824 param->read_correct_mask, stop); 1825 1826 if (stop == 1) { 1827 break; 1828 } else { 1829 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1830 if (bit_chk & 1) { 1831 /* Remember a passing test as the 1832 left_edge */ 1833 left_edge[i] = d; 1834 } else { 1835 /* If a left edge has not been seen yet, 1836 then a future passing test will mark 1837 this edge as the right edge */ 1838 if (left_edge[i] == 1839 IO_IO_IN_DELAY_MAX + 1) { 1840 right_edge[i] = -(d + 1); 1841 } 1842 } 1843 bit_chk = bit_chk >> 1; 1844 } 1845 } 1846 } 1847 1848 /* Reset DQ delay chains to 0 */ 1849 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1850 sticky_bit_chk = 0; 1851 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1852 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1853 %d right_edge[%u]: %d\n", __func__, __LINE__, 1854 i, left_edge[i], i, right_edge[i]); 1855 1856 /* 1857 * Check for cases where we haven't found the left edge, 1858 * which makes our assignment of the the right edge invalid. 1859 * Reset it to the illegal value. 1860 */ 1861 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1862 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1863 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1864 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1865 right_edge[%u]: %d\n", __func__, __LINE__, 1866 i, right_edge[i]); 1867 } 1868 1869 /* 1870 * Reset sticky bit (except for bits where we have seen 1871 * both the left and right edge). 1872 */ 1873 sticky_bit_chk = sticky_bit_chk << 1; 1874 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1875 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1876 sticky_bit_chk = sticky_bit_chk | 1; 1877 } 1878 1879 if (i == 0) 1880 break; 1881 } 1882 1883 /* Search for the right edge of the window for each bit */ 1884 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1885 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1886 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1887 uint32_t delay = d + start_dqs_en; 1888 if (delay > IO_DQS_EN_DELAY_MAX) 1889 delay = IO_DQS_EN_DELAY_MAX; 1890 scc_mgr_set_dqs_en_delay(read_group, delay); 1891 } 1892 scc_mgr_load_dqs(read_group); 1893 1894 writel(0, &sdr_scc_mgr->update); 1895 1896 /* 1897 * Stop searching when the read test doesn't pass AND when 1898 * we've seen a passing read on every bit. 1899 */ 1900 if (use_read_test) { 1901 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1902 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1903 &bit_chk, 0, 0); 1904 } else { 1905 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1906 0, PASS_ONE_BIT, 1907 &bit_chk, 0); 1908 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1909 (read_group - (write_group * 1910 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1911 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1912 stop = (bit_chk == 0); 1913 } 1914 sticky_bit_chk = sticky_bit_chk | bit_chk; 1915 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1916 1917 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1918 %u && %u", __func__, __LINE__, d, 1919 sticky_bit_chk, param->read_correct_mask, stop); 1920 1921 if (stop == 1) { 1922 break; 1923 } else { 1924 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1925 if (bit_chk & 1) { 1926 /* Remember a passing test as 1927 the right_edge */ 1928 right_edge[i] = d; 1929 } else { 1930 if (d != 0) { 1931 /* If a right edge has not been 1932 seen yet, then a future passing 1933 test will mark this edge as the 1934 left edge */ 1935 if (right_edge[i] == 1936 IO_IO_IN_DELAY_MAX + 1) { 1937 left_edge[i] = -(d + 1); 1938 } 1939 } else { 1940 /* d = 0 failed, but it passed 1941 when testing the left edge, 1942 so it must be marginal, 1943 set it to -1 */ 1944 if (right_edge[i] == 1945 IO_IO_IN_DELAY_MAX + 1 && 1946 left_edge[i] != 1947 IO_IO_IN_DELAY_MAX 1948 + 1) { 1949 right_edge[i] = -1; 1950 } 1951 /* If a right edge has not been 1952 seen yet, then a future passing 1953 test will mark this edge as the 1954 left edge */ 1955 else if (right_edge[i] == 1956 IO_IO_IN_DELAY_MAX + 1957 1) { 1958 left_edge[i] = -(d + 1); 1959 } 1960 } 1961 } 1962 1963 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1964 d=%u]: ", __func__, __LINE__, d); 1965 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1966 (int)(bit_chk & 1), i, left_edge[i]); 1967 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1968 right_edge[i]); 1969 bit_chk = bit_chk >> 1; 1970 } 1971 } 1972 } 1973 1974 /* Check that all bits have a window */ 1975 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1976 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1977 %d right_edge[%u]: %d", __func__, __LINE__, 1978 i, left_edge[i], i, right_edge[i]); 1979 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1980 == IO_IO_IN_DELAY_MAX + 1)) { 1981 /* 1982 * Restore delay chain settings before letting the loop 1983 * in rw_mgr_mem_calibrate_vfifo to retry different 1984 * dqs/ck relationships. 1985 */ 1986 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 1987 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1988 scc_mgr_set_dqs_en_delay(read_group, 1989 start_dqs_en); 1990 } 1991 scc_mgr_load_dqs(read_group); 1992 writel(0, &sdr_scc_mgr->update); 1993 1994 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 1995 find edge [%u]: %d %d", __func__, __LINE__, 1996 i, left_edge[i], right_edge[i]); 1997 if (use_read_test) { 1998 set_failing_group_stage(read_group * 1999 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2000 CAL_STAGE_VFIFO, 2001 CAL_SUBSTAGE_VFIFO_CENTER); 2002 } else { 2003 set_failing_group_stage(read_group * 2004 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2005 CAL_STAGE_VFIFO_AFTER_WRITES, 2006 CAL_SUBSTAGE_VFIFO_CENTER); 2007 } 2008 return 0; 2009 } 2010 } 2011 2012 /* Find middle of window for each DQ bit */ 2013 mid_min = left_edge[0] - right_edge[0]; 2014 min_index = 0; 2015 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2016 mid = left_edge[i] - right_edge[i]; 2017 if (mid < mid_min) { 2018 mid_min = mid; 2019 min_index = i; 2020 } 2021 } 2022 2023 /* 2024 * -mid_min/2 represents the amount that we need to move DQS. 2025 * If mid_min is odd and positive we'll need to add one to 2026 * make sure the rounding in further calculations is correct 2027 * (always bias to the right), so just add 1 for all positive values. 2028 */ 2029 if (mid_min > 0) 2030 mid_min++; 2031 2032 mid_min = mid_min / 2; 2033 2034 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2035 __func__, __LINE__, mid_min, min_index); 2036 2037 /* Determine the amount we can change DQS (which is -mid_min) */ 2038 orig_mid_min = mid_min; 2039 new_dqs = start_dqs - mid_min; 2040 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2041 new_dqs = IO_DQS_IN_DELAY_MAX; 2042 else if (new_dqs < 0) 2043 new_dqs = 0; 2044 2045 mid_min = start_dqs - new_dqs; 2046 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2047 mid_min, new_dqs); 2048 2049 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2050 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2051 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2052 else if (start_dqs_en - mid_min < 0) 2053 mid_min += start_dqs_en - mid_min; 2054 } 2055 new_dqs = start_dqs - mid_min; 2056 2057 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2058 new_dqs=%d mid_min=%d\n", start_dqs, 2059 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2060 new_dqs, mid_min); 2061 2062 /* Initialize data for export structures */ 2063 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2064 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2065 2066 /* add delay to bring centre of all DQ windows to the same "level" */ 2067 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2068 /* Use values before divide by 2 to reduce round off error */ 2069 shift_dq = (left_edge[i] - right_edge[i] - 2070 (left_edge[min_index] - right_edge[min_index]))/2 + 2071 (orig_mid_min - mid_min); 2072 2073 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2074 shift_dq[%u]=%d\n", i, shift_dq); 2075 2076 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2077 temp_dq_in_delay1 = readl(addr + (p << 2)); 2078 temp_dq_in_delay2 = readl(addr + (i << 2)); 2079 2080 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2081 (int32_t)IO_IO_IN_DELAY_MAX) { 2082 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2083 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2084 shift_dq = -(int32_t)temp_dq_in_delay1; 2085 } 2086 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2087 shift_dq[%u]=%d\n", i, shift_dq); 2088 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2089 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2090 scc_mgr_load_dq(p); 2091 2092 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2093 left_edge[i] - shift_dq + (-mid_min), 2094 right_edge[i] + shift_dq - (-mid_min)); 2095 /* To determine values for export structures */ 2096 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2097 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2098 2099 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2100 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2101 } 2102 2103 final_dqs = new_dqs; 2104 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2105 final_dqs_en = start_dqs_en - mid_min; 2106 2107 /* Move DQS-en */ 2108 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2109 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2110 scc_mgr_load_dqs(read_group); 2111 } 2112 2113 /* Move DQS */ 2114 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2115 scc_mgr_load_dqs(read_group); 2116 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2117 dqs_margin=%d", __func__, __LINE__, 2118 dq_margin, dqs_margin); 2119 2120 /* 2121 * Do not remove this line as it makes sure all of our decisions 2122 * have been applied. Apply the update bit. 2123 */ 2124 writel(0, &sdr_scc_mgr->update); 2125 2126 return (dq_margin >= 0) && (dqs_margin >= 0); 2127 } 2128 2129 /** 2130 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2131 * @rw_group: Read/Write Group 2132 * @phase: DQ/DQS phase 2133 * 2134 * Because initially no communication ca be reliably performed with the memory 2135 * device, the sequencer uses a guaranteed write mechanism to write data into 2136 * the memory device. 2137 */ 2138 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2139 const u32 phase) 2140 { 2141 int ret; 2142 2143 /* Set a particular DQ/DQS phase. */ 2144 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2145 2146 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2147 __func__, __LINE__, rw_group, phase); 2148 2149 /* 2150 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2151 * Load up the patterns used by read calibration using the 2152 * current DQDQS phase. 2153 */ 2154 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2155 2156 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2157 return 0; 2158 2159 /* 2160 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2161 * Back-to-Back reads of the patterns used for calibration. 2162 */ 2163 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2164 if (ret) 2165 debug_cond(DLEVEL == 1, 2166 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2167 __func__, __LINE__, rw_group, phase); 2168 return ret; 2169 } 2170 2171 /** 2172 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2173 * @rw_group: Read/Write Group 2174 * @test_bgn: Rank at which the test begins 2175 * 2176 * DQS enable calibration ensures reliable capture of the DQ signal without 2177 * glitches on the DQS line. 2178 */ 2179 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2180 const u32 test_bgn) 2181 { 2182 /* 2183 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2184 * DQS and DQS Eanble Signal Relationships. 2185 */ 2186 2187 /* We start at zero, so have one less dq to devide among */ 2188 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2189 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2190 int found; 2191 u32 i, p, d, r; 2192 2193 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2194 2195 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2196 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2197 r += NUM_RANKS_PER_SHADOW_REG) { 2198 for (i = 0, p = test_bgn, d = 0; 2199 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2200 i++, p++, d += delay_step) { 2201 debug_cond(DLEVEL == 1, 2202 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2203 __func__, __LINE__, rw_group, r, i, p, d); 2204 2205 scc_mgr_set_dq_in_delay(p, d); 2206 scc_mgr_load_dq(p); 2207 } 2208 2209 writel(0, &sdr_scc_mgr->update); 2210 } 2211 2212 /* 2213 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2214 * dq_in_delay values 2215 */ 2216 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2217 2218 debug_cond(DLEVEL == 1, 2219 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2220 __func__, __LINE__, rw_group, found); 2221 2222 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2223 r += NUM_RANKS_PER_SHADOW_REG) { 2224 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2225 writel(0, &sdr_scc_mgr->update); 2226 } 2227 2228 if (!found) 2229 return -EINVAL; 2230 2231 return 0; 2232 2233 } 2234 2235 /** 2236 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2237 * @rw_group: Read/Write Group 2238 * @test_bgn: Rank at which the test begins 2239 * @use_read_test: Perform a read test 2240 * @update_fom: Update FOM 2241 * 2242 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2243 * within a group. 2244 */ 2245 static int 2246 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2247 const int use_read_test, 2248 const int update_fom) 2249 2250 { 2251 int ret, grp_calibrated; 2252 u32 rank_bgn, sr; 2253 2254 /* 2255 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2256 * Read per-bit deskew can be done on a per shadow register basis. 2257 */ 2258 grp_calibrated = 1; 2259 for (rank_bgn = 0, sr = 0; 2260 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2261 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2262 /* Check if this set of ranks should be skipped entirely. */ 2263 if (param->skip_shadow_regs[sr]) 2264 continue; 2265 2266 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2267 rw_group, test_bgn, 2268 use_read_test, 2269 update_fom); 2270 if (ret) 2271 continue; 2272 2273 grp_calibrated = 0; 2274 } 2275 2276 if (!grp_calibrated) 2277 return -EIO; 2278 2279 return 0; 2280 } 2281 2282 /** 2283 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2284 * @rw_group: Read/Write Group 2285 * @test_bgn: Rank at which the test begins 2286 * 2287 * Stage 1: Calibrate the read valid prediction FIFO. 2288 * 2289 * This function implements UniPHY calibration Stage 1, as explained in 2290 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2291 * 2292 * - read valid prediction will consist of finding: 2293 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2294 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2295 * - we also do a per-bit deskew on the DQ lines. 2296 */ 2297 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2298 { 2299 uint32_t p, d; 2300 uint32_t dtaps_per_ptap; 2301 uint32_t failed_substage; 2302 2303 int ret; 2304 2305 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2306 2307 /* Update info for sims */ 2308 reg_file_set_group(rw_group); 2309 reg_file_set_stage(CAL_STAGE_VFIFO); 2310 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2311 2312 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2313 2314 /* USER Determine number of delay taps for each phase tap. */ 2315 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2316 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2317 2318 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2319 /* 2320 * In RLDRAMX we may be messing the delay of pins in 2321 * the same write rw_group but outside of the current read 2322 * the rw_group, but that's ok because we haven't calibrated 2323 * output side yet. 2324 */ 2325 if (d > 0) { 2326 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2327 rw_group, d); 2328 } 2329 2330 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2331 /* 1) Guaranteed Write */ 2332 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2333 if (ret) 2334 break; 2335 2336 /* 2) DQS Enable Calibration */ 2337 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2338 test_bgn); 2339 if (ret) { 2340 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2341 continue; 2342 } 2343 2344 /* 3) Centering DQ/DQS */ 2345 /* 2346 * If doing read after write calibration, do not update 2347 * FOM now. Do it then. 2348 */ 2349 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2350 test_bgn, 1, 0); 2351 if (ret) { 2352 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2353 continue; 2354 } 2355 2356 /* All done. */ 2357 goto cal_done_ok; 2358 } 2359 } 2360 2361 /* Calibration Stage 1 failed. */ 2362 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2363 return 0; 2364 2365 /* Calibration Stage 1 completed OK. */ 2366 cal_done_ok: 2367 /* 2368 * Reset the delay chains back to zero if they have moved > 1 2369 * (check for > 1 because loop will increase d even when pass in 2370 * first case). 2371 */ 2372 if (d > 2) 2373 scc_mgr_zero_group(rw_group, 1); 2374 2375 return 1; 2376 } 2377 2378 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2379 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2380 uint32_t test_bgn) 2381 { 2382 uint32_t rank_bgn, sr; 2383 uint32_t grp_calibrated; 2384 uint32_t write_group; 2385 2386 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2387 2388 /* update info for sims */ 2389 2390 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2391 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2392 2393 write_group = read_group; 2394 2395 /* update info for sims */ 2396 reg_file_set_group(read_group); 2397 2398 grp_calibrated = 1; 2399 /* Read per-bit deskew can be done on a per shadow register basis */ 2400 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2401 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2402 /* Determine if this set of ranks should be skipped entirely */ 2403 if (!param->skip_shadow_regs[sr]) { 2404 /* This is the last calibration round, update FOM here */ 2405 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2406 write_group, 2407 read_group, 2408 test_bgn, 0, 2409 1)) { 2410 grp_calibrated = 0; 2411 } 2412 } 2413 } 2414 2415 2416 if (grp_calibrated == 0) { 2417 set_failing_group_stage(write_group, 2418 CAL_STAGE_VFIFO_AFTER_WRITES, 2419 CAL_SUBSTAGE_VFIFO_CENTER); 2420 return 0; 2421 } 2422 2423 return 1; 2424 } 2425 2426 /* Calibrate LFIFO to find smallest read latency */ 2427 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2428 { 2429 uint32_t found_one; 2430 uint32_t bit_chk; 2431 2432 debug("%s:%d\n", __func__, __LINE__); 2433 2434 /* update info for sims */ 2435 reg_file_set_stage(CAL_STAGE_LFIFO); 2436 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2437 2438 /* Load up the patterns used by read calibration for all ranks */ 2439 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2440 found_one = 0; 2441 2442 do { 2443 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2444 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2445 __func__, __LINE__, gbl->curr_read_lat); 2446 2447 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2448 NUM_READ_TESTS, 2449 PASS_ALL_BITS, 2450 &bit_chk, 1)) { 2451 break; 2452 } 2453 2454 found_one = 1; 2455 /* reduce read latency and see if things are working */ 2456 /* correctly */ 2457 gbl->curr_read_lat--; 2458 } while (gbl->curr_read_lat > 0); 2459 2460 /* reset the fifos to get pointers to known state */ 2461 2462 writel(0, &phy_mgr_cmd->fifo_reset); 2463 2464 if (found_one) { 2465 /* add a fudge factor to the read latency that was determined */ 2466 gbl->curr_read_lat += 2; 2467 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2468 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2469 read_lat=%u\n", __func__, __LINE__, 2470 gbl->curr_read_lat); 2471 return 1; 2472 } else { 2473 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2474 CAL_SUBSTAGE_READ_LATENCY); 2475 2476 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2477 read_lat=%u\n", __func__, __LINE__, 2478 gbl->curr_read_lat); 2479 return 0; 2480 } 2481 } 2482 2483 /* 2484 * issue write test command. 2485 * two variants are provided. one that just tests a write pattern and 2486 * another that tests datamask functionality. 2487 */ 2488 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2489 uint32_t test_dm) 2490 { 2491 uint32_t mcc_instruction; 2492 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2493 ENABLE_SUPER_QUICK_CALIBRATION); 2494 uint32_t rw_wl_nop_cycles; 2495 uint32_t addr; 2496 2497 /* 2498 * Set counter and jump addresses for the right 2499 * number of NOP cycles. 2500 * The number of supported NOP cycles can range from -1 to infinity 2501 * Three different cases are handled: 2502 * 2503 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2504 * mechanism will be used to insert the right number of NOPs 2505 * 2506 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2507 * issuing the write command will jump straight to the 2508 * micro-instruction that turns on DQS (for DDRx), or outputs write 2509 * data (for RLD), skipping 2510 * the NOP micro-instruction all together 2511 * 2512 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2513 * turned on in the same micro-instruction that issues the write 2514 * command. Then we need 2515 * to directly jump to the micro-instruction that sends out the data 2516 * 2517 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2518 * (2 and 3). One jump-counter (0) is used to perform multiple 2519 * write-read operations. 2520 * one counter left to issue this command in "multiple-group" mode 2521 */ 2522 2523 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2524 2525 if (rw_wl_nop_cycles == -1) { 2526 /* 2527 * CNTR 2 - We want to execute the special write operation that 2528 * turns on DQS right away and then skip directly to the 2529 * instruction that sends out the data. We set the counter to a 2530 * large number so that the jump is always taken. 2531 */ 2532 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2533 2534 /* CNTR 3 - Not used */ 2535 if (test_dm) { 2536 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2537 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2538 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2539 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2540 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2541 } else { 2542 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2543 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2544 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2545 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2546 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2547 } 2548 } else if (rw_wl_nop_cycles == 0) { 2549 /* 2550 * CNTR 2 - We want to skip the NOP operation and go straight 2551 * to the DQS enable instruction. We set the counter to a large 2552 * number so that the jump is always taken. 2553 */ 2554 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2555 2556 /* CNTR 3 - Not used */ 2557 if (test_dm) { 2558 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2559 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2561 } else { 2562 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2564 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2565 } 2566 } else { 2567 /* 2568 * CNTR 2 - In this case we want to execute the next instruction 2569 * and NOT take the jump. So we set the counter to 0. The jump 2570 * address doesn't count. 2571 */ 2572 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2573 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2574 2575 /* 2576 * CNTR 3 - Set the nop counter to the number of cycles we 2577 * need to loop for, minus 1. 2578 */ 2579 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2580 if (test_dm) { 2581 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2582 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2583 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2584 } else { 2585 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2586 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2587 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2588 } 2589 } 2590 2591 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2592 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2593 2594 if (quick_write_mode) 2595 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2596 else 2597 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2598 2599 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2600 2601 /* 2602 * CNTR 1 - This is used to ensure enough time elapses 2603 * for read data to come back. 2604 */ 2605 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2606 2607 if (test_dm) { 2608 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2609 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2610 } else { 2611 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2612 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2613 } 2614 2615 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2616 writel(mcc_instruction, addr + (group << 2)); 2617 } 2618 2619 /* Test writes, can check for a single bit pass or multiple bit pass */ 2620 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2621 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2622 uint32_t *bit_chk, uint32_t all_ranks) 2623 { 2624 uint32_t r; 2625 uint32_t correct_mask_vg; 2626 uint32_t tmp_bit_chk; 2627 uint32_t vg; 2628 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2629 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2630 uint32_t addr_rw_mgr; 2631 uint32_t base_rw_mgr; 2632 2633 *bit_chk = param->write_correct_mask; 2634 correct_mask_vg = param->write_correct_mask_vg; 2635 2636 for (r = rank_bgn; r < rank_end; r++) { 2637 if (param->skip_ranks[r]) { 2638 /* request to skip the rank */ 2639 continue; 2640 } 2641 2642 /* set rank */ 2643 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2644 2645 tmp_bit_chk = 0; 2646 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2647 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2648 /* reset the fifos to get pointers to known state */ 2649 writel(0, &phy_mgr_cmd->fifo_reset); 2650 2651 tmp_bit_chk = tmp_bit_chk << 2652 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2653 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2654 rw_mgr_mem_calibrate_write_test_issue(write_group * 2655 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2656 use_dm); 2657 2658 base_rw_mgr = readl(addr_rw_mgr); 2659 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2660 if (vg == 0) 2661 break; 2662 } 2663 *bit_chk &= tmp_bit_chk; 2664 } 2665 2666 if (all_correct) { 2667 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2668 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2669 %u => %lu", write_group, use_dm, 2670 *bit_chk, param->write_correct_mask, 2671 (long unsigned int)(*bit_chk == 2672 param->write_correct_mask)); 2673 return *bit_chk == param->write_correct_mask; 2674 } else { 2675 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2676 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2677 write_group, use_dm, *bit_chk); 2678 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2679 (long unsigned int)(*bit_chk != 0)); 2680 return *bit_chk != 0x00; 2681 } 2682 } 2683 2684 /* 2685 * center all windows. do per-bit-deskew to possibly increase size of 2686 * certain windows. 2687 */ 2688 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2689 uint32_t write_group, uint32_t test_bgn) 2690 { 2691 uint32_t i, p, min_index; 2692 int32_t d; 2693 /* 2694 * Store these as signed since there are comparisons with 2695 * signed numbers. 2696 */ 2697 uint32_t bit_chk; 2698 uint32_t sticky_bit_chk; 2699 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2700 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2701 int32_t mid; 2702 int32_t mid_min, orig_mid_min; 2703 int32_t new_dqs, start_dqs, shift_dq; 2704 int32_t dq_margin, dqs_margin, dm_margin; 2705 uint32_t stop; 2706 uint32_t temp_dq_out1_delay; 2707 uint32_t addr; 2708 2709 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2710 2711 dm_margin = 0; 2712 2713 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2714 start_dqs = readl(addr + 2715 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2716 2717 /* per-bit deskew */ 2718 2719 /* 2720 * set the left and right edge of each bit to an illegal value 2721 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2722 */ 2723 sticky_bit_chk = 0; 2724 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2725 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2726 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2727 } 2728 2729 /* Search for the left edge of the window for each bit */ 2730 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2731 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2732 2733 writel(0, &sdr_scc_mgr->update); 2734 2735 /* 2736 * Stop searching when the read test doesn't pass AND when 2737 * we've seen a passing read on every bit. 2738 */ 2739 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2740 0, PASS_ONE_BIT, &bit_chk, 0); 2741 sticky_bit_chk = sticky_bit_chk | bit_chk; 2742 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2743 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2744 == %u && %u [bit_chk= %u ]\n", 2745 d, sticky_bit_chk, param->write_correct_mask, 2746 stop, bit_chk); 2747 2748 if (stop == 1) { 2749 break; 2750 } else { 2751 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2752 if (bit_chk & 1) { 2753 /* 2754 * Remember a passing test as the 2755 * left_edge. 2756 */ 2757 left_edge[i] = d; 2758 } else { 2759 /* 2760 * If a left edge has not been seen 2761 * yet, then a future passing test will 2762 * mark this edge as the right edge. 2763 */ 2764 if (left_edge[i] == 2765 IO_IO_OUT1_DELAY_MAX + 1) { 2766 right_edge[i] = -(d + 1); 2767 } 2768 } 2769 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2770 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2771 (int)(bit_chk & 1), i, left_edge[i]); 2772 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2773 right_edge[i]); 2774 bit_chk = bit_chk >> 1; 2775 } 2776 } 2777 } 2778 2779 /* Reset DQ delay chains to 0 */ 2780 scc_mgr_apply_group_dq_out1_delay(0); 2781 sticky_bit_chk = 0; 2782 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2783 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2784 %d right_edge[%u]: %d\n", __func__, __LINE__, 2785 i, left_edge[i], i, right_edge[i]); 2786 2787 /* 2788 * Check for cases where we haven't found the left edge, 2789 * which makes our assignment of the the right edge invalid. 2790 * Reset it to the illegal value. 2791 */ 2792 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2793 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2794 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2795 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2796 right_edge[%u]: %d\n", __func__, __LINE__, 2797 i, right_edge[i]); 2798 } 2799 2800 /* 2801 * Reset sticky bit (except for bits where we have 2802 * seen the left edge). 2803 */ 2804 sticky_bit_chk = sticky_bit_chk << 1; 2805 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2806 sticky_bit_chk = sticky_bit_chk | 1; 2807 2808 if (i == 0) 2809 break; 2810 } 2811 2812 /* Search for the right edge of the window for each bit */ 2813 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2814 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2815 d + start_dqs); 2816 2817 writel(0, &sdr_scc_mgr->update); 2818 2819 /* 2820 * Stop searching when the read test doesn't pass AND when 2821 * we've seen a passing read on every bit. 2822 */ 2823 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2824 0, PASS_ONE_BIT, &bit_chk, 0); 2825 2826 sticky_bit_chk = sticky_bit_chk | bit_chk; 2827 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2828 2829 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2830 %u && %u\n", d, sticky_bit_chk, 2831 param->write_correct_mask, stop); 2832 2833 if (stop == 1) { 2834 if (d == 0) { 2835 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2836 i++) { 2837 /* d = 0 failed, but it passed when 2838 testing the left edge, so it must be 2839 marginal, set it to -1 */ 2840 if (right_edge[i] == 2841 IO_IO_OUT1_DELAY_MAX + 1 && 2842 left_edge[i] != 2843 IO_IO_OUT1_DELAY_MAX + 1) { 2844 right_edge[i] = -1; 2845 } 2846 } 2847 } 2848 break; 2849 } else { 2850 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2851 if (bit_chk & 1) { 2852 /* 2853 * Remember a passing test as 2854 * the right_edge. 2855 */ 2856 right_edge[i] = d; 2857 } else { 2858 if (d != 0) { 2859 /* 2860 * If a right edge has not 2861 * been seen yet, then a future 2862 * passing test will mark this 2863 * edge as the left edge. 2864 */ 2865 if (right_edge[i] == 2866 IO_IO_OUT1_DELAY_MAX + 1) 2867 left_edge[i] = -(d + 1); 2868 } else { 2869 /* 2870 * d = 0 failed, but it passed 2871 * when testing the left edge, 2872 * so it must be marginal, set 2873 * it to -1. 2874 */ 2875 if (right_edge[i] == 2876 IO_IO_OUT1_DELAY_MAX + 1 && 2877 left_edge[i] != 2878 IO_IO_OUT1_DELAY_MAX + 1) 2879 right_edge[i] = -1; 2880 /* 2881 * If a right edge has not been 2882 * seen yet, then a future 2883 * passing test will mark this 2884 * edge as the left edge. 2885 */ 2886 else if (right_edge[i] == 2887 IO_IO_OUT1_DELAY_MAX + 2888 1) 2889 left_edge[i] = -(d + 1); 2890 } 2891 } 2892 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2893 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2894 (int)(bit_chk & 1), i, left_edge[i]); 2895 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2896 right_edge[i]); 2897 bit_chk = bit_chk >> 1; 2898 } 2899 } 2900 } 2901 2902 /* Check that all bits have a window */ 2903 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2904 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2905 %d right_edge[%u]: %d", __func__, __LINE__, 2906 i, left_edge[i], i, right_edge[i]); 2907 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2908 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2909 set_failing_group_stage(test_bgn + i, 2910 CAL_STAGE_WRITES, 2911 CAL_SUBSTAGE_WRITES_CENTER); 2912 return 0; 2913 } 2914 } 2915 2916 /* Find middle of window for each DQ bit */ 2917 mid_min = left_edge[0] - right_edge[0]; 2918 min_index = 0; 2919 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2920 mid = left_edge[i] - right_edge[i]; 2921 if (mid < mid_min) { 2922 mid_min = mid; 2923 min_index = i; 2924 } 2925 } 2926 2927 /* 2928 * -mid_min/2 represents the amount that we need to move DQS. 2929 * If mid_min is odd and positive we'll need to add one to 2930 * make sure the rounding in further calculations is correct 2931 * (always bias to the right), so just add 1 for all positive values. 2932 */ 2933 if (mid_min > 0) 2934 mid_min++; 2935 mid_min = mid_min / 2; 2936 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2937 __LINE__, mid_min); 2938 2939 /* Determine the amount we can change DQS (which is -mid_min) */ 2940 orig_mid_min = mid_min; 2941 new_dqs = start_dqs; 2942 mid_min = 0; 2943 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2944 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2945 /* Initialize data for export structures */ 2946 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2947 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2948 2949 /* add delay to bring centre of all DQ windows to the same "level" */ 2950 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2951 /* Use values before divide by 2 to reduce round off error */ 2952 shift_dq = (left_edge[i] - right_edge[i] - 2953 (left_edge[min_index] - right_edge[min_index]))/2 + 2954 (orig_mid_min - mid_min); 2955 2956 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2957 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2958 2959 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2960 temp_dq_out1_delay = readl(addr + (i << 2)); 2961 if (shift_dq + (int32_t)temp_dq_out1_delay > 2962 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2963 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2964 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2965 shift_dq = -(int32_t)temp_dq_out1_delay; 2966 } 2967 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2968 i, shift_dq); 2969 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2970 scc_mgr_load_dq(i); 2971 2972 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2973 left_edge[i] - shift_dq + (-mid_min), 2974 right_edge[i] + shift_dq - (-mid_min)); 2975 /* To determine values for export structures */ 2976 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2977 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2978 2979 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2980 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2981 } 2982 2983 /* Move DQS */ 2984 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2985 writel(0, &sdr_scc_mgr->update); 2986 2987 /* Centre DM */ 2988 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2989 2990 /* 2991 * set the left and right edge of each bit to an illegal value, 2992 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2993 */ 2994 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2995 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2996 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2997 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2998 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2999 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3000 int32_t win_best = 0; 3001 3002 /* Search for the/part of the window with DM shift */ 3003 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3004 scc_mgr_apply_group_dm_out1_delay(d); 3005 writel(0, &sdr_scc_mgr->update); 3006 3007 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3008 PASS_ALL_BITS, &bit_chk, 3009 0)) { 3010 /* USE Set current end of the window */ 3011 end_curr = -d; 3012 /* 3013 * If a starting edge of our window has not been seen 3014 * this is our current start of the DM window. 3015 */ 3016 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3017 bgn_curr = -d; 3018 3019 /* 3020 * If current window is bigger than best seen. 3021 * Set best seen to be current window. 3022 */ 3023 if ((end_curr-bgn_curr+1) > win_best) { 3024 win_best = end_curr-bgn_curr+1; 3025 bgn_best = bgn_curr; 3026 end_best = end_curr; 3027 } 3028 } else { 3029 /* We just saw a failing test. Reset temp edge */ 3030 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3031 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3032 } 3033 } 3034 3035 3036 /* Reset DM delay chains to 0 */ 3037 scc_mgr_apply_group_dm_out1_delay(0); 3038 3039 /* 3040 * Check to see if the current window nudges up aganist 0 delay. 3041 * If so we need to continue the search by shifting DQS otherwise DQS 3042 * search begins as a new search. */ 3043 if (end_curr != 0) { 3044 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3045 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3046 } 3047 3048 /* Search for the/part of the window with DQS shifts */ 3049 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3050 /* 3051 * Note: This only shifts DQS, so are we limiting ourselve to 3052 * width of DQ unnecessarily. 3053 */ 3054 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3055 d + new_dqs); 3056 3057 writel(0, &sdr_scc_mgr->update); 3058 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3059 PASS_ALL_BITS, &bit_chk, 3060 0)) { 3061 /* USE Set current end of the window */ 3062 end_curr = d; 3063 /* 3064 * If a beginning edge of our window has not been seen 3065 * this is our current begin of the DM window. 3066 */ 3067 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3068 bgn_curr = d; 3069 3070 /* 3071 * If current window is bigger than best seen. Set best 3072 * seen to be current window. 3073 */ 3074 if ((end_curr-bgn_curr+1) > win_best) { 3075 win_best = end_curr-bgn_curr+1; 3076 bgn_best = bgn_curr; 3077 end_best = end_curr; 3078 } 3079 } else { 3080 /* We just saw a failing test. Reset temp edge */ 3081 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3082 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3083 3084 /* Early exit optimization: if ther remaining delay 3085 chain space is less than already seen largest window 3086 we can exit */ 3087 if ((win_best-1) > 3088 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3089 break; 3090 } 3091 } 3092 } 3093 3094 /* assign left and right edge for cal and reporting; */ 3095 left_edge[0] = -1*bgn_best; 3096 right_edge[0] = end_best; 3097 3098 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3099 __LINE__, left_edge[0], right_edge[0]); 3100 3101 /* Move DQS (back to orig) */ 3102 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3103 3104 /* Move DM */ 3105 3106 /* Find middle of window for the DM bit */ 3107 mid = (left_edge[0] - right_edge[0]) / 2; 3108 3109 /* only move right, since we are not moving DQS/DQ */ 3110 if (mid < 0) 3111 mid = 0; 3112 3113 /* dm_marign should fail if we never find a window */ 3114 if (win_best == 0) 3115 dm_margin = -1; 3116 else 3117 dm_margin = left_edge[0] - mid; 3118 3119 scc_mgr_apply_group_dm_out1_delay(mid); 3120 writel(0, &sdr_scc_mgr->update); 3121 3122 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3123 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3124 right_edge[0], mid, dm_margin); 3125 /* Export values */ 3126 gbl->fom_out += dq_margin + dqs_margin; 3127 3128 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3129 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3130 dq_margin, dqs_margin, dm_margin); 3131 3132 /* 3133 * Do not remove this line as it makes sure all of our 3134 * decisions have been applied. 3135 */ 3136 writel(0, &sdr_scc_mgr->update); 3137 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3138 } 3139 3140 /* calibrate the write operations */ 3141 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3142 uint32_t test_bgn) 3143 { 3144 /* update info for sims */ 3145 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3146 3147 reg_file_set_stage(CAL_STAGE_WRITES); 3148 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3149 3150 reg_file_set_group(g); 3151 3152 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3153 set_failing_group_stage(g, CAL_STAGE_WRITES, 3154 CAL_SUBSTAGE_WRITES_CENTER); 3155 return 0; 3156 } 3157 3158 return 1; 3159 } 3160 3161 /** 3162 * mem_precharge_and_activate() - Precharge all banks and activate 3163 * 3164 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3165 */ 3166 static void mem_precharge_and_activate(void) 3167 { 3168 int r; 3169 3170 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3171 /* Test if the rank should be skipped. */ 3172 if (param->skip_ranks[r]) 3173 continue; 3174 3175 /* Set rank. */ 3176 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3177 3178 /* Precharge all banks. */ 3179 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3180 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3181 3182 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3183 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3184 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3185 3186 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3187 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3188 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3189 3190 /* Activate rows. */ 3191 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3192 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3193 } 3194 } 3195 3196 /** 3197 * mem_init_latency() - Configure memory RLAT and WLAT settings 3198 * 3199 * Configure memory RLAT and WLAT parameters. 3200 */ 3201 static void mem_init_latency(void) 3202 { 3203 /* 3204 * For AV/CV, LFIFO is hardened and always runs at full rate 3205 * so max latency in AFI clocks, used here, is correspondingly 3206 * smaller. 3207 */ 3208 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3209 u32 rlat, wlat; 3210 3211 debug("%s:%d\n", __func__, __LINE__); 3212 3213 /* 3214 * Read in write latency. 3215 * WL for Hard PHY does not include additive latency. 3216 */ 3217 wlat = readl(&data_mgr->t_wl_add); 3218 wlat += readl(&data_mgr->mem_t_add); 3219 3220 gbl->rw_wl_nop_cycles = wlat - 1; 3221 3222 /* Read in readl latency. */ 3223 rlat = readl(&data_mgr->t_rl_add); 3224 3225 /* Set a pretty high read latency initially. */ 3226 gbl->curr_read_lat = rlat + 16; 3227 if (gbl->curr_read_lat > max_latency) 3228 gbl->curr_read_lat = max_latency; 3229 3230 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3231 3232 /* Advertise write latency. */ 3233 writel(wlat, &phy_mgr_cfg->afi_wlat); 3234 } 3235 3236 /** 3237 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3238 * 3239 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3240 */ 3241 static void mem_skip_calibrate(void) 3242 { 3243 uint32_t vfifo_offset; 3244 uint32_t i, j, r; 3245 3246 debug("%s:%d\n", __func__, __LINE__); 3247 /* Need to update every shadow register set used by the interface */ 3248 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3249 r += NUM_RANKS_PER_SHADOW_REG) { 3250 /* 3251 * Set output phase alignment settings appropriate for 3252 * skip calibration. 3253 */ 3254 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3255 scc_mgr_set_dqs_en_phase(i, 0); 3256 #if IO_DLL_CHAIN_LENGTH == 6 3257 scc_mgr_set_dqdqs_output_phase(i, 6); 3258 #else 3259 scc_mgr_set_dqdqs_output_phase(i, 7); 3260 #endif 3261 /* 3262 * Case:33398 3263 * 3264 * Write data arrives to the I/O two cycles before write 3265 * latency is reached (720 deg). 3266 * -> due to bit-slip in a/c bus 3267 * -> to allow board skew where dqs is longer than ck 3268 * -> how often can this happen!? 3269 * -> can claim back some ptaps for high freq 3270 * support if we can relax this, but i digress... 3271 * 3272 * The write_clk leads mem_ck by 90 deg 3273 * The minimum ptap of the OPA is 180 deg 3274 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3275 * The write_clk is always delayed by 2 ptaps 3276 * 3277 * Hence, to make DQS aligned to CK, we need to delay 3278 * DQS by: 3279 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3280 * 3281 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3282 * gives us the number of ptaps, which simplies to: 3283 * 3284 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3285 */ 3286 scc_mgr_set_dqdqs_output_phase(i, 3287 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3288 } 3289 writel(0xff, &sdr_scc_mgr->dqs_ena); 3290 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3291 3292 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3293 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3294 SCC_MGR_GROUP_COUNTER_OFFSET); 3295 } 3296 writel(0xff, &sdr_scc_mgr->dq_ena); 3297 writel(0xff, &sdr_scc_mgr->dm_ena); 3298 writel(0, &sdr_scc_mgr->update); 3299 } 3300 3301 /* Compensate for simulation model behaviour */ 3302 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3303 scc_mgr_set_dqs_bus_in_delay(i, 10); 3304 scc_mgr_load_dqs(i); 3305 } 3306 writel(0, &sdr_scc_mgr->update); 3307 3308 /* 3309 * ArriaV has hard FIFOs that can only be initialized by incrementing 3310 * in sequencer. 3311 */ 3312 vfifo_offset = CALIB_VFIFO_OFFSET; 3313 for (j = 0; j < vfifo_offset; j++) 3314 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3315 writel(0, &phy_mgr_cmd->fifo_reset); 3316 3317 /* 3318 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3319 * setting from generation-time constant. 3320 */ 3321 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3322 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3323 } 3324 3325 /** 3326 * mem_calibrate() - Memory calibration entry point. 3327 * 3328 * Perform memory calibration. 3329 */ 3330 static uint32_t mem_calibrate(void) 3331 { 3332 uint32_t i; 3333 uint32_t rank_bgn, sr; 3334 uint32_t write_group, write_test_bgn; 3335 uint32_t read_group, read_test_bgn; 3336 uint32_t run_groups, current_run; 3337 uint32_t failing_groups = 0; 3338 uint32_t group_failed = 0; 3339 3340 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3341 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3342 3343 debug("%s:%d\n", __func__, __LINE__); 3344 3345 /* Initialize the data settings */ 3346 gbl->error_substage = CAL_SUBSTAGE_NIL; 3347 gbl->error_stage = CAL_STAGE_NIL; 3348 gbl->error_group = 0xff; 3349 gbl->fom_in = 0; 3350 gbl->fom_out = 0; 3351 3352 /* Initialize WLAT and RLAT. */ 3353 mem_init_latency(); 3354 3355 /* Initialize bit slips. */ 3356 mem_precharge_and_activate(); 3357 3358 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3359 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3360 SCC_MGR_GROUP_COUNTER_OFFSET); 3361 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3362 if (i == 0) 3363 scc_mgr_set_hhp_extras(); 3364 3365 scc_set_bypass_mode(i); 3366 } 3367 3368 /* Calibration is skipped. */ 3369 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3370 /* 3371 * Set VFIFO and LFIFO to instant-on settings in skip 3372 * calibration mode. 3373 */ 3374 mem_skip_calibrate(); 3375 3376 /* 3377 * Do not remove this line as it makes sure all of our 3378 * decisions have been applied. 3379 */ 3380 writel(0, &sdr_scc_mgr->update); 3381 return 1; 3382 } 3383 3384 /* Calibration is not skipped. */ 3385 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3386 /* 3387 * Zero all delay chain/phase settings for all 3388 * groups and all shadow register sets. 3389 */ 3390 scc_mgr_zero_all(); 3391 3392 run_groups = ~param->skip_groups; 3393 3394 for (write_group = 0, write_test_bgn = 0; write_group 3395 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3396 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3397 3398 /* Initialize the group failure */ 3399 group_failed = 0; 3400 3401 current_run = run_groups & ((1 << 3402 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3403 run_groups = run_groups >> 3404 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3405 3406 if (current_run == 0) 3407 continue; 3408 3409 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3410 SCC_MGR_GROUP_COUNTER_OFFSET); 3411 scc_mgr_zero_group(write_group, 0); 3412 3413 for (read_group = write_group * rwdqs_ratio, 3414 read_test_bgn = 0; 3415 read_group < (write_group + 1) * rwdqs_ratio; 3416 read_group++, 3417 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3418 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3419 continue; 3420 3421 /* Calibrate the VFIFO */ 3422 if (rw_mgr_mem_calibrate_vfifo(read_group, 3423 read_test_bgn)) 3424 continue; 3425 3426 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3427 return 0; 3428 3429 /* The group failed, we're done. */ 3430 goto grp_failed; 3431 } 3432 3433 /* Calibrate the output side */ 3434 for (rank_bgn = 0, sr = 0; 3435 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3436 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3437 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3438 continue; 3439 3440 /* Not needed in quick mode! */ 3441 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3442 continue; 3443 3444 /* 3445 * Determine if this set of ranks 3446 * should be skipped entirely. 3447 */ 3448 if (param->skip_shadow_regs[sr]) 3449 continue; 3450 3451 /* Calibrate WRITEs */ 3452 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3453 write_group, write_test_bgn)) 3454 continue; 3455 3456 group_failed = 1; 3457 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3458 return 0; 3459 } 3460 3461 /* Some group failed, we're done. */ 3462 if (group_failed) 3463 goto grp_failed; 3464 3465 for (read_group = write_group * rwdqs_ratio, 3466 read_test_bgn = 0; 3467 read_group < (write_group + 1) * rwdqs_ratio; 3468 read_group++, 3469 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3470 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3471 continue; 3472 3473 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3474 read_test_bgn)) 3475 continue; 3476 3477 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3478 return 0; 3479 3480 /* The group failed, we're done. */ 3481 goto grp_failed; 3482 } 3483 3484 /* No group failed, continue as usual. */ 3485 continue; 3486 3487 grp_failed: /* A group failed, increment the counter. */ 3488 failing_groups++; 3489 } 3490 3491 /* 3492 * USER If there are any failing groups then report 3493 * the failure. 3494 */ 3495 if (failing_groups != 0) 3496 return 0; 3497 3498 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3499 continue; 3500 3501 /* 3502 * If we're skipping groups as part of debug, 3503 * don't calibrate LFIFO. 3504 */ 3505 if (param->skip_groups != 0) 3506 continue; 3507 3508 /* Calibrate the LFIFO */ 3509 if (!rw_mgr_mem_calibrate_lfifo()) 3510 return 0; 3511 } 3512 3513 /* 3514 * Do not remove this line as it makes sure all of our decisions 3515 * have been applied. 3516 */ 3517 writel(0, &sdr_scc_mgr->update); 3518 return 1; 3519 } 3520 3521 /** 3522 * run_mem_calibrate() - Perform memory calibration 3523 * 3524 * This function triggers the entire memory calibration procedure. 3525 */ 3526 static int run_mem_calibrate(void) 3527 { 3528 int pass; 3529 3530 debug("%s:%d\n", __func__, __LINE__); 3531 3532 /* Reset pass/fail status shown on afi_cal_success/fail */ 3533 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3534 3535 /* Stop tracking manager. */ 3536 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3537 3538 phy_mgr_initialize(); 3539 rw_mgr_mem_initialize(); 3540 3541 /* Perform the actual memory calibration. */ 3542 pass = mem_calibrate(); 3543 3544 mem_precharge_and_activate(); 3545 writel(0, &phy_mgr_cmd->fifo_reset); 3546 3547 /* Handoff. */ 3548 rw_mgr_mem_handoff(); 3549 /* 3550 * In Hard PHY this is a 2-bit control: 3551 * 0: AFI Mux Select 3552 * 1: DDIO Mux Select 3553 */ 3554 writel(0x2, &phy_mgr_cfg->mux_sel); 3555 3556 /* Start tracking manager. */ 3557 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3558 3559 return pass; 3560 } 3561 3562 /** 3563 * debug_mem_calibrate() - Report result of memory calibration 3564 * @pass: Value indicating whether calibration passed or failed 3565 * 3566 * This function reports the results of the memory calibration 3567 * and writes debug information into the register file. 3568 */ 3569 static void debug_mem_calibrate(int pass) 3570 { 3571 uint32_t debug_info; 3572 3573 if (pass) { 3574 printf("%s: CALIBRATION PASSED\n", __FILE__); 3575 3576 gbl->fom_in /= 2; 3577 gbl->fom_out /= 2; 3578 3579 if (gbl->fom_in > 0xff) 3580 gbl->fom_in = 0xff; 3581 3582 if (gbl->fom_out > 0xff) 3583 gbl->fom_out = 0xff; 3584 3585 /* Update the FOM in the register file */ 3586 debug_info = gbl->fom_in; 3587 debug_info |= gbl->fom_out << 8; 3588 writel(debug_info, &sdr_reg_file->fom); 3589 3590 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3591 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3592 } else { 3593 printf("%s: CALIBRATION FAILED\n", __FILE__); 3594 3595 debug_info = gbl->error_stage; 3596 debug_info |= gbl->error_substage << 8; 3597 debug_info |= gbl->error_group << 16; 3598 3599 writel(debug_info, &sdr_reg_file->failing_stage); 3600 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3601 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3602 3603 /* Update the failing group/stage in the register file */ 3604 debug_info = gbl->error_stage; 3605 debug_info |= gbl->error_substage << 8; 3606 debug_info |= gbl->error_group << 16; 3607 writel(debug_info, &sdr_reg_file->failing_stage); 3608 } 3609 3610 printf("%s: Calibration complete\n", __FILE__); 3611 } 3612 3613 /** 3614 * hc_initialize_rom_data() - Initialize ROM data 3615 * 3616 * Initialize ROM data. 3617 */ 3618 static void hc_initialize_rom_data(void) 3619 { 3620 u32 i, addr; 3621 3622 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3623 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3624 writel(inst_rom_init[i], addr + (i << 2)); 3625 3626 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3627 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3628 writel(ac_rom_init[i], addr + (i << 2)); 3629 } 3630 3631 /** 3632 * initialize_reg_file() - Initialize SDR register file 3633 * 3634 * Initialize SDR register file. 3635 */ 3636 static void initialize_reg_file(void) 3637 { 3638 /* Initialize the register file with the correct data */ 3639 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3640 writel(0, &sdr_reg_file->debug_data_addr); 3641 writel(0, &sdr_reg_file->cur_stage); 3642 writel(0, &sdr_reg_file->fom); 3643 writel(0, &sdr_reg_file->failing_stage); 3644 writel(0, &sdr_reg_file->debug1); 3645 writel(0, &sdr_reg_file->debug2); 3646 } 3647 3648 /** 3649 * initialize_hps_phy() - Initialize HPS PHY 3650 * 3651 * Initialize HPS PHY. 3652 */ 3653 static void initialize_hps_phy(void) 3654 { 3655 uint32_t reg; 3656 /* 3657 * Tracking also gets configured here because it's in the 3658 * same register. 3659 */ 3660 uint32_t trk_sample_count = 7500; 3661 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3662 /* 3663 * Format is number of outer loops in the 16 MSB, sample 3664 * count in 16 LSB. 3665 */ 3666 3667 reg = 0; 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3674 /* 3675 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3676 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3677 */ 3678 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3679 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3680 trk_sample_count); 3681 writel(reg, &sdr_ctrl->phy_ctrl0); 3682 3683 reg = 0; 3684 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3685 trk_sample_count >> 3686 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3687 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3688 trk_long_idle_sample_count); 3689 writel(reg, &sdr_ctrl->phy_ctrl1); 3690 3691 reg = 0; 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3693 trk_long_idle_sample_count >> 3694 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3695 writel(reg, &sdr_ctrl->phy_ctrl2); 3696 } 3697 3698 /** 3699 * initialize_tracking() - Initialize tracking 3700 * 3701 * Initialize the register file with usable initial data. 3702 */ 3703 static void initialize_tracking(void) 3704 { 3705 /* 3706 * Initialize the register file with the correct data. 3707 * Compute usable version of value in case we skip full 3708 * computation later. 3709 */ 3710 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3711 &sdr_reg_file->dtaps_per_ptap); 3712 3713 /* trk_sample_count */ 3714 writel(7500, &sdr_reg_file->trk_sample_count); 3715 3716 /* longidle outer loop [15:0] */ 3717 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3718 3719 /* 3720 * longidle sample count [31:24] 3721 * trfc, worst case of 933Mhz 4Gb [23:16] 3722 * trcd, worst case [15:8] 3723 * vfifo wait [7:0] 3724 */ 3725 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3726 &sdr_reg_file->delays); 3727 3728 /* mux delay */ 3729 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3730 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3731 &sdr_reg_file->trk_rw_mgr_addr); 3732 3733 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3734 &sdr_reg_file->trk_read_dqs_width); 3735 3736 /* trefi [7:0] */ 3737 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3738 &sdr_reg_file->trk_rfsh); 3739 } 3740 3741 int sdram_calibration_full(void) 3742 { 3743 struct param_type my_param; 3744 struct gbl_type my_gbl; 3745 uint32_t pass; 3746 3747 memset(&my_param, 0, sizeof(my_param)); 3748 memset(&my_gbl, 0, sizeof(my_gbl)); 3749 3750 param = &my_param; 3751 gbl = &my_gbl; 3752 3753 /* Set the calibration enabled by default */ 3754 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3755 /* 3756 * Only sweep all groups (regardless of fail state) by default 3757 * Set enabled read test by default. 3758 */ 3759 #if DISABLE_GUARANTEED_READ 3760 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3761 #endif 3762 /* Initialize the register file */ 3763 initialize_reg_file(); 3764 3765 /* Initialize any PHY CSR */ 3766 initialize_hps_phy(); 3767 3768 scc_mgr_initialize(); 3769 3770 initialize_tracking(); 3771 3772 printf("%s: Preparing to start memory calibration\n", __FILE__); 3773 3774 debug("%s:%d\n", __func__, __LINE__); 3775 debug_cond(DLEVEL == 1, 3776 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3777 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3778 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3779 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3780 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3781 debug_cond(DLEVEL == 1, 3782 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3783 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3784 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3785 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3786 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3787 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3788 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3789 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3790 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3791 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3792 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3793 IO_IO_OUT2_DELAY_MAX); 3794 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3795 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3796 3797 hc_initialize_rom_data(); 3798 3799 /* update info for sims */ 3800 reg_file_set_stage(CAL_STAGE_NIL); 3801 reg_file_set_group(0); 3802 3803 /* 3804 * Load global needed for those actions that require 3805 * some dynamic calibration support. 3806 */ 3807 dyn_calib_steps = STATIC_CALIB_STEPS; 3808 /* 3809 * Load global to allow dynamic selection of delay loop settings 3810 * based on calibration mode. 3811 */ 3812 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3813 skip_delay_mask = 0xff; 3814 else 3815 skip_delay_mask = 0x0; 3816 3817 pass = run_mem_calibrate(); 3818 debug_mem_calibrate(pass); 3819 return pass; 3820 } 3821