1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 /** 1290 * rw_mgr_incr_vfifo() - Increase VFIFO value 1291 * @grp: Read/Write group 1292 * 1293 * Increase VFIFO value. 1294 */ 1295 static void rw_mgr_incr_vfifo(const u32 grp) 1296 { 1297 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1298 } 1299 1300 /** 1301 * rw_mgr_decr_vfifo() - Decrease VFIFO value 1302 * @grp: Read/Write group 1303 * 1304 * Decrease VFIFO value. 1305 */ 1306 static void rw_mgr_decr_vfifo(const u32 grp) 1307 { 1308 u32 i; 1309 1310 for (i = 0; i < VFIFO_SIZE - 1; i++) 1311 rw_mgr_incr_vfifo(grp); 1312 } 1313 1314 /** 1315 * find_vfifo_failing_read() - Push VFIFO to get a failing read 1316 * @grp: Read/Write group 1317 * 1318 * Push VFIFO until a failing read happens. 1319 */ 1320 static int find_vfifo_failing_read(const u32 grp) 1321 { 1322 u32 v, ret, bit_chk, fail_cnt = 0; 1323 1324 for (v = 0; v < VFIFO_SIZE; v++) { 1325 debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n", 1326 __func__, __LINE__, v); 1327 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1328 PASS_ONE_BIT, &bit_chk, 0); 1329 if (!ret) { 1330 fail_cnt++; 1331 1332 if (fail_cnt == 2) 1333 return v; 1334 } 1335 1336 /* Fiddle with FIFO. */ 1337 rw_mgr_incr_vfifo(grp); 1338 } 1339 1340 /* No failing read found! Something must have gone wrong. */ 1341 debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__); 1342 return 0; 1343 } 1344 1345 /** 1346 * sdr_find_phase() - Find DQS enable phase 1347 * @working: If 1, look for working phase, if 0, look for non-working phase 1348 * @grp: Read/Write group 1349 * @work: Working window position 1350 * @i: Iterator 1351 * @p: DQS Phase Iterator 1352 * 1353 * Find working or non-working DQS enable phase setting. 1354 */ 1355 static int sdr_find_phase(int working, const u32 grp, u32 *work, 1356 u32 *i, u32 *p) 1357 { 1358 u32 ret, bit_chk; 1359 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1360 1361 for (; *i < end; (*i)++) { 1362 if (working) 1363 *p = 0; 1364 1365 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1366 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1367 1368 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1369 PASS_ONE_BIT, &bit_chk, 0); 1370 if (!working) 1371 ret = !ret; 1372 1373 if (ret) 1374 return 0; 1375 1376 *work += IO_DELAY_PER_OPA_TAP; 1377 } 1378 1379 if (*p > IO_DQS_EN_PHASE_MAX) { 1380 /* Fiddle with FIFO. */ 1381 rw_mgr_incr_vfifo(grp); 1382 if (!working) 1383 *p = 0; 1384 } 1385 } 1386 1387 return -EINVAL; 1388 } 1389 1390 /** 1391 * sdr_working_phase() - Find working DQS enable phase 1392 * @grp: Read/Write group 1393 * @work_bgn: Working window start position 1394 * @d: dtaps output value 1395 * @p: DQS Phase Iterator 1396 * @i: Iterator 1397 * 1398 * Find working DQS enable phase setting. 1399 */ 1400 static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d, 1401 u32 *p, u32 *i) 1402 { 1403 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1404 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1405 int ret; 1406 1407 *work_bgn = 0; 1408 1409 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1410 *i = 0; 1411 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1412 ret = sdr_find_phase(1, grp, work_bgn, i, p); 1413 if (!ret) 1414 return 0; 1415 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1416 } 1417 1418 /* Cannot find working solution */ 1419 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1420 __func__, __LINE__); 1421 return -EINVAL; 1422 } 1423 1424 /** 1425 * sdr_backup_phase() - Find DQS enable backup phase 1426 * @grp: Read/Write group 1427 * @work_bgn: Working window start position 1428 * @p: DQS Phase Iterator 1429 * 1430 * Find DQS enable backup phase setting. 1431 */ 1432 static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p) 1433 { 1434 u32 tmp_delay, bit_chk, d; 1435 int ret; 1436 1437 /* Special case code for backing up a phase */ 1438 if (*p == 0) { 1439 *p = IO_DQS_EN_PHASE_MAX; 1440 rw_mgr_decr_vfifo(grp); 1441 } else { 1442 (*p)--; 1443 } 1444 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1445 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1446 1447 for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; d++) { 1448 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1449 1450 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1451 PASS_ONE_BIT, &bit_chk, 0); 1452 if (ret) { 1453 *work_bgn = tmp_delay; 1454 break; 1455 } 1456 1457 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1458 } 1459 1460 /* Restore VFIFO to old state before we decremented it (if needed). */ 1461 (*p)++; 1462 if (*p > IO_DQS_EN_PHASE_MAX) { 1463 *p = 0; 1464 rw_mgr_incr_vfifo(grp); 1465 } 1466 1467 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1468 } 1469 1470 /** 1471 * sdr_nonworking_phase() - Find non-working DQS enable phase 1472 * @grp: Read/Write group 1473 * @work_end: Working window end position 1474 * @p: DQS Phase Iterator 1475 * @i: Iterator 1476 * 1477 * Find non-working DQS enable phase setting. 1478 */ 1479 static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i) 1480 { 1481 int ret; 1482 1483 (*p)++; 1484 *work_end += IO_DELAY_PER_OPA_TAP; 1485 if (*p > IO_DQS_EN_PHASE_MAX) { 1486 /* Fiddle with FIFO. */ 1487 *p = 0; 1488 rw_mgr_incr_vfifo(grp); 1489 } 1490 1491 ret = sdr_find_phase(0, grp, work_end, i, p); 1492 if (ret) { 1493 /* Cannot see edge of failing read. */ 1494 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1495 __func__, __LINE__); 1496 } 1497 1498 return ret; 1499 } 1500 1501 /** 1502 * sdr_find_window_center() - Find center of the working DQS window. 1503 * @grp: Read/Write group 1504 * @work_bgn: First working settings 1505 * @work_end: Last working settings 1506 * 1507 * Find center of the working DQS enable window. 1508 */ 1509 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1510 const u32 work_end) 1511 { 1512 u32 bit_chk, work_mid; 1513 int tmp_delay = 0; 1514 int i, p, d; 1515 1516 work_mid = (work_bgn + work_end) / 2; 1517 1518 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1519 work_bgn, work_end, work_mid); 1520 /* Get the middle delay to be less than a VFIFO delay */ 1521 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1522 1523 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1524 work_mid %= tmp_delay; 1525 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1526 1527 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1528 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1529 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1530 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1531 1532 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1533 1534 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1535 if (d > IO_DQS_EN_DELAY_MAX) 1536 d = IO_DQS_EN_DELAY_MAX; 1537 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1538 1539 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1540 1541 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1542 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1543 1544 /* 1545 * push vfifo until we can successfully calibrate. We can do this 1546 * because the largest possible margin in 1 VFIFO cycle. 1547 */ 1548 for (i = 0; i < VFIFO_SIZE; i++) { 1549 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n"); 1550 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1551 PASS_ONE_BIT, 1552 &bit_chk, 0)) { 1553 debug_cond(DLEVEL == 2, 1554 "%s:%d center: found: ptap=%u dtap=%u\n", 1555 __func__, __LINE__, p, d); 1556 return 0; 1557 } 1558 1559 /* Fiddle with FIFO. */ 1560 rw_mgr_incr_vfifo(grp); 1561 } 1562 1563 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1564 __func__, __LINE__); 1565 return -EINVAL; 1566 } 1567 1568 /* find a good dqs enable to use */ 1569 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(u32 grp) 1570 { 1571 uint32_t d, p, i; 1572 uint32_t bit_chk; 1573 uint32_t dtaps_per_ptap; 1574 uint32_t work_bgn, work_end; 1575 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1576 1577 debug("%s:%d %u\n", __func__, __LINE__, grp); 1578 1579 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1580 1581 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1582 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1583 1584 /* Step 0: Determine number of delay taps for each phase tap. */ 1585 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1586 1587 /* Step 1: First push vfifo until we get a failing read. */ 1588 find_vfifo_failing_read(grp); 1589 1590 /* Step 2: Find first working phase, increment in ptaps. */ 1591 work_bgn = 0; 1592 if (sdr_working_phase(grp, &work_bgn, &d, &p, &i)) 1593 return 0; 1594 1595 work_end = work_bgn; 1596 1597 /* 1598 * If d is 0 then the working window covers a phase tap and we can 1599 * follow the old procedure. Otherwise, we've found the beginning 1600 * and we need to increment the dtaps until we find the end. 1601 */ 1602 if (d == 0) { 1603 /* 1604 * Step 3a: If we have room, back off by one and 1605 * increment in dtaps. 1606 */ 1607 sdr_backup_phase(grp, &work_bgn, &p); 1608 1609 /* 1610 * Step 4a: go forward from working phase to non working 1611 * phase, increment in ptaps. 1612 */ 1613 if (sdr_nonworking_phase(grp, &work_end, &p, &i)) 1614 return 0; 1615 1616 /* Step 5a: Back off one from last, increment in dtaps. */ 1617 1618 /* Special case code for backing up a phase */ 1619 if (p == 0) { 1620 p = IO_DQS_EN_PHASE_MAX; 1621 rw_mgr_decr_vfifo(grp); 1622 } else { 1623 p = p - 1; 1624 } 1625 1626 work_end -= IO_DELAY_PER_OPA_TAP; 1627 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1628 1629 d = 0; 1630 1631 debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n", 1632 __func__, __LINE__, p); 1633 } 1634 1635 /* The dtap increment to find the failing edge is done here. */ 1636 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1637 debug_cond(DLEVEL == 2, "%s:%d end-2: dtap=%u\n", 1638 __func__, __LINE__, d); 1639 1640 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1641 1642 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1643 PASS_ONE_BIT, 1644 &bit_chk, 0)) { 1645 break; 1646 } 1647 1648 work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1649 } 1650 1651 /* Go back to working dtap */ 1652 if (d != 0) 1653 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1654 1655 debug_cond(DLEVEL == 2, 1656 "%s:%d p/d: ptap=%u dtap=%u end=%u\n", 1657 __func__, __LINE__, p, d - 1, work_end); 1658 1659 if (work_end < work_bgn) { 1660 /* nil range */ 1661 debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n", 1662 __func__, __LINE__); 1663 return 0; 1664 } 1665 1666 debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n", 1667 __func__, __LINE__, work_bgn, work_end); 1668 1669 /* 1670 * We need to calculate the number of dtaps that equal a ptap. 1671 * To do that we'll back up a ptap and re-find the edge of the 1672 * window using dtaps 1673 */ 1674 debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n", 1675 __func__, __LINE__); 1676 1677 /* Special case code for backing up a phase */ 1678 if (p == 0) { 1679 p = IO_DQS_EN_PHASE_MAX; 1680 rw_mgr_decr_vfifo(grp); 1681 debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n", 1682 __func__, __LINE__, p); 1683 } else { 1684 p = p - 1; 1685 debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u", 1686 __func__, __LINE__, p); 1687 } 1688 1689 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1690 1691 /* 1692 * Increase dtap until we first see a passing read (in case the 1693 * window is smaller than a ptap), and then a failing read to 1694 * mark the edge of the window again. 1695 */ 1696 1697 /* Find a passing read. */ 1698 debug_cond(DLEVEL == 2, "%s:%d find passing read\n", 1699 __func__, __LINE__); 1700 found_passing_read = 0; 1701 found_failing_read = 0; 1702 initial_failing_dtap = d; 1703 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1704 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n", 1705 __func__, __LINE__, d); 1706 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1707 1708 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1709 PASS_ONE_BIT, 1710 &bit_chk, 0)) { 1711 found_passing_read = 1; 1712 break; 1713 } 1714 } 1715 1716 if (found_passing_read) { 1717 /* Find a failing read. */ 1718 debug_cond(DLEVEL == 2, "%s:%d find failing read\n", 1719 __func__, __LINE__); 1720 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1721 debug_cond(DLEVEL == 2, "%s:%d testing read d=%u\n", 1722 __func__, __LINE__, d); 1723 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1724 1725 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1726 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1727 found_failing_read = 1; 1728 break; 1729 } 1730 } 1731 } else { 1732 debug_cond(DLEVEL == 1, 1733 "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n", 1734 __func__, __LINE__); 1735 } 1736 1737 /* 1738 * The dynamically calculated dtaps_per_ptap is only valid if we 1739 * found a passing/failing read. If we didn't, it means d hit the max 1740 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1741 * statically calculated value. 1742 */ 1743 if (found_passing_read && found_failing_read) 1744 dtaps_per_ptap = d - initial_failing_dtap; 1745 1746 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1747 debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u", 1748 __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); 1749 1750 /* Step 6: Find the centre of the window. */ 1751 if (sdr_find_window_centre(grp, work_bgn, work_end)) 1752 return 0; 1753 1754 return 1; 1755 } 1756 1757 /* per-bit deskew DQ and center */ 1758 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1759 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1760 uint32_t use_read_test, uint32_t update_fom) 1761 { 1762 uint32_t i, p, d, min_index; 1763 /* 1764 * Store these as signed since there are comparisons with 1765 * signed numbers. 1766 */ 1767 uint32_t bit_chk; 1768 uint32_t sticky_bit_chk; 1769 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1770 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1771 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1772 int32_t mid; 1773 int32_t orig_mid_min, mid_min; 1774 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1775 final_dqs_en; 1776 int32_t dq_margin, dqs_margin; 1777 uint32_t stop; 1778 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1779 uint32_t addr; 1780 1781 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1782 1783 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1784 start_dqs = readl(addr + (read_group << 2)); 1785 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1786 start_dqs_en = readl(addr + ((read_group << 2) 1787 - IO_DQS_EN_DELAY_OFFSET)); 1788 1789 /* set the left and right edge of each bit to an illegal value */ 1790 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1791 sticky_bit_chk = 0; 1792 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1793 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1794 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1795 } 1796 1797 /* Search for the left edge of the window for each bit */ 1798 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1799 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1800 1801 writel(0, &sdr_scc_mgr->update); 1802 1803 /* 1804 * Stop searching when the read test doesn't pass AND when 1805 * we've seen a passing read on every bit. 1806 */ 1807 if (use_read_test) { 1808 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1809 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1810 &bit_chk, 0, 0); 1811 } else { 1812 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1813 0, PASS_ONE_BIT, 1814 &bit_chk, 0); 1815 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1816 (read_group - (write_group * 1817 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1818 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1819 stop = (bit_chk == 0); 1820 } 1821 sticky_bit_chk = sticky_bit_chk | bit_chk; 1822 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1823 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1824 && %u", __func__, __LINE__, d, 1825 sticky_bit_chk, 1826 param->read_correct_mask, stop); 1827 1828 if (stop == 1) { 1829 break; 1830 } else { 1831 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1832 if (bit_chk & 1) { 1833 /* Remember a passing test as the 1834 left_edge */ 1835 left_edge[i] = d; 1836 } else { 1837 /* If a left edge has not been seen yet, 1838 then a future passing test will mark 1839 this edge as the right edge */ 1840 if (left_edge[i] == 1841 IO_IO_IN_DELAY_MAX + 1) { 1842 right_edge[i] = -(d + 1); 1843 } 1844 } 1845 bit_chk = bit_chk >> 1; 1846 } 1847 } 1848 } 1849 1850 /* Reset DQ delay chains to 0 */ 1851 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1852 sticky_bit_chk = 0; 1853 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1854 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1855 %d right_edge[%u]: %d\n", __func__, __LINE__, 1856 i, left_edge[i], i, right_edge[i]); 1857 1858 /* 1859 * Check for cases where we haven't found the left edge, 1860 * which makes our assignment of the the right edge invalid. 1861 * Reset it to the illegal value. 1862 */ 1863 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1864 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1865 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1866 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1867 right_edge[%u]: %d\n", __func__, __LINE__, 1868 i, right_edge[i]); 1869 } 1870 1871 /* 1872 * Reset sticky bit (except for bits where we have seen 1873 * both the left and right edge). 1874 */ 1875 sticky_bit_chk = sticky_bit_chk << 1; 1876 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1877 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1878 sticky_bit_chk = sticky_bit_chk | 1; 1879 } 1880 1881 if (i == 0) 1882 break; 1883 } 1884 1885 /* Search for the right edge of the window for each bit */ 1886 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1887 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1888 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1889 uint32_t delay = d + start_dqs_en; 1890 if (delay > IO_DQS_EN_DELAY_MAX) 1891 delay = IO_DQS_EN_DELAY_MAX; 1892 scc_mgr_set_dqs_en_delay(read_group, delay); 1893 } 1894 scc_mgr_load_dqs(read_group); 1895 1896 writel(0, &sdr_scc_mgr->update); 1897 1898 /* 1899 * Stop searching when the read test doesn't pass AND when 1900 * we've seen a passing read on every bit. 1901 */ 1902 if (use_read_test) { 1903 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1904 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1905 &bit_chk, 0, 0); 1906 } else { 1907 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1908 0, PASS_ONE_BIT, 1909 &bit_chk, 0); 1910 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1911 (read_group - (write_group * 1912 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1913 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1914 stop = (bit_chk == 0); 1915 } 1916 sticky_bit_chk = sticky_bit_chk | bit_chk; 1917 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1918 1919 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1920 %u && %u", __func__, __LINE__, d, 1921 sticky_bit_chk, param->read_correct_mask, stop); 1922 1923 if (stop == 1) { 1924 break; 1925 } else { 1926 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1927 if (bit_chk & 1) { 1928 /* Remember a passing test as 1929 the right_edge */ 1930 right_edge[i] = d; 1931 } else { 1932 if (d != 0) { 1933 /* If a right edge has not been 1934 seen yet, then a future passing 1935 test will mark this edge as the 1936 left edge */ 1937 if (right_edge[i] == 1938 IO_IO_IN_DELAY_MAX + 1) { 1939 left_edge[i] = -(d + 1); 1940 } 1941 } else { 1942 /* d = 0 failed, but it passed 1943 when testing the left edge, 1944 so it must be marginal, 1945 set it to -1 */ 1946 if (right_edge[i] == 1947 IO_IO_IN_DELAY_MAX + 1 && 1948 left_edge[i] != 1949 IO_IO_IN_DELAY_MAX 1950 + 1) { 1951 right_edge[i] = -1; 1952 } 1953 /* If a right edge has not been 1954 seen yet, then a future passing 1955 test will mark this edge as the 1956 left edge */ 1957 else if (right_edge[i] == 1958 IO_IO_IN_DELAY_MAX + 1959 1) { 1960 left_edge[i] = -(d + 1); 1961 } 1962 } 1963 } 1964 1965 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1966 d=%u]: ", __func__, __LINE__, d); 1967 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1968 (int)(bit_chk & 1), i, left_edge[i]); 1969 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1970 right_edge[i]); 1971 bit_chk = bit_chk >> 1; 1972 } 1973 } 1974 } 1975 1976 /* Check that all bits have a window */ 1977 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1978 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1979 %d right_edge[%u]: %d", __func__, __LINE__, 1980 i, left_edge[i], i, right_edge[i]); 1981 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1982 == IO_IO_IN_DELAY_MAX + 1)) { 1983 /* 1984 * Restore delay chain settings before letting the loop 1985 * in rw_mgr_mem_calibrate_vfifo to retry different 1986 * dqs/ck relationships. 1987 */ 1988 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 1989 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1990 scc_mgr_set_dqs_en_delay(read_group, 1991 start_dqs_en); 1992 } 1993 scc_mgr_load_dqs(read_group); 1994 writel(0, &sdr_scc_mgr->update); 1995 1996 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 1997 find edge [%u]: %d %d", __func__, __LINE__, 1998 i, left_edge[i], right_edge[i]); 1999 if (use_read_test) { 2000 set_failing_group_stage(read_group * 2001 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2002 CAL_STAGE_VFIFO, 2003 CAL_SUBSTAGE_VFIFO_CENTER); 2004 } else { 2005 set_failing_group_stage(read_group * 2006 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2007 CAL_STAGE_VFIFO_AFTER_WRITES, 2008 CAL_SUBSTAGE_VFIFO_CENTER); 2009 } 2010 return 0; 2011 } 2012 } 2013 2014 /* Find middle of window for each DQ bit */ 2015 mid_min = left_edge[0] - right_edge[0]; 2016 min_index = 0; 2017 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2018 mid = left_edge[i] - right_edge[i]; 2019 if (mid < mid_min) { 2020 mid_min = mid; 2021 min_index = i; 2022 } 2023 } 2024 2025 /* 2026 * -mid_min/2 represents the amount that we need to move DQS. 2027 * If mid_min is odd and positive we'll need to add one to 2028 * make sure the rounding in further calculations is correct 2029 * (always bias to the right), so just add 1 for all positive values. 2030 */ 2031 if (mid_min > 0) 2032 mid_min++; 2033 2034 mid_min = mid_min / 2; 2035 2036 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2037 __func__, __LINE__, mid_min, min_index); 2038 2039 /* Determine the amount we can change DQS (which is -mid_min) */ 2040 orig_mid_min = mid_min; 2041 new_dqs = start_dqs - mid_min; 2042 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2043 new_dqs = IO_DQS_IN_DELAY_MAX; 2044 else if (new_dqs < 0) 2045 new_dqs = 0; 2046 2047 mid_min = start_dqs - new_dqs; 2048 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2049 mid_min, new_dqs); 2050 2051 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2052 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2053 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2054 else if (start_dqs_en - mid_min < 0) 2055 mid_min += start_dqs_en - mid_min; 2056 } 2057 new_dqs = start_dqs - mid_min; 2058 2059 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2060 new_dqs=%d mid_min=%d\n", start_dqs, 2061 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2062 new_dqs, mid_min); 2063 2064 /* Initialize data for export structures */ 2065 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2066 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2067 2068 /* add delay to bring centre of all DQ windows to the same "level" */ 2069 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2070 /* Use values before divide by 2 to reduce round off error */ 2071 shift_dq = (left_edge[i] - right_edge[i] - 2072 (left_edge[min_index] - right_edge[min_index]))/2 + 2073 (orig_mid_min - mid_min); 2074 2075 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2076 shift_dq[%u]=%d\n", i, shift_dq); 2077 2078 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2079 temp_dq_in_delay1 = readl(addr + (p << 2)); 2080 temp_dq_in_delay2 = readl(addr + (i << 2)); 2081 2082 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2083 (int32_t)IO_IO_IN_DELAY_MAX) { 2084 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2085 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2086 shift_dq = -(int32_t)temp_dq_in_delay1; 2087 } 2088 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2089 shift_dq[%u]=%d\n", i, shift_dq); 2090 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2091 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2092 scc_mgr_load_dq(p); 2093 2094 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2095 left_edge[i] - shift_dq + (-mid_min), 2096 right_edge[i] + shift_dq - (-mid_min)); 2097 /* To determine values for export structures */ 2098 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2099 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2100 2101 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2102 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2103 } 2104 2105 final_dqs = new_dqs; 2106 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2107 final_dqs_en = start_dqs_en - mid_min; 2108 2109 /* Move DQS-en */ 2110 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2111 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2112 scc_mgr_load_dqs(read_group); 2113 } 2114 2115 /* Move DQS */ 2116 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2117 scc_mgr_load_dqs(read_group); 2118 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2119 dqs_margin=%d", __func__, __LINE__, 2120 dq_margin, dqs_margin); 2121 2122 /* 2123 * Do not remove this line as it makes sure all of our decisions 2124 * have been applied. Apply the update bit. 2125 */ 2126 writel(0, &sdr_scc_mgr->update); 2127 2128 return (dq_margin >= 0) && (dqs_margin >= 0); 2129 } 2130 2131 /** 2132 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2133 * @rw_group: Read/Write Group 2134 * @phase: DQ/DQS phase 2135 * 2136 * Because initially no communication ca be reliably performed with the memory 2137 * device, the sequencer uses a guaranteed write mechanism to write data into 2138 * the memory device. 2139 */ 2140 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2141 const u32 phase) 2142 { 2143 int ret; 2144 2145 /* Set a particular DQ/DQS phase. */ 2146 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2147 2148 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2149 __func__, __LINE__, rw_group, phase); 2150 2151 /* 2152 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2153 * Load up the patterns used by read calibration using the 2154 * current DQDQS phase. 2155 */ 2156 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2157 2158 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2159 return 0; 2160 2161 /* 2162 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2163 * Back-to-Back reads of the patterns used for calibration. 2164 */ 2165 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2166 if (ret) 2167 debug_cond(DLEVEL == 1, 2168 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2169 __func__, __LINE__, rw_group, phase); 2170 return ret; 2171 } 2172 2173 /** 2174 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2175 * @rw_group: Read/Write Group 2176 * @test_bgn: Rank at which the test begins 2177 * 2178 * DQS enable calibration ensures reliable capture of the DQ signal without 2179 * glitches on the DQS line. 2180 */ 2181 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2182 const u32 test_bgn) 2183 { 2184 /* 2185 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2186 * DQS and DQS Eanble Signal Relationships. 2187 */ 2188 2189 /* We start at zero, so have one less dq to devide among */ 2190 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2191 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2192 int found; 2193 u32 i, p, d, r; 2194 2195 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2196 2197 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2198 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2199 r += NUM_RANKS_PER_SHADOW_REG) { 2200 for (i = 0, p = test_bgn, d = 0; 2201 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2202 i++, p++, d += delay_step) { 2203 debug_cond(DLEVEL == 1, 2204 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2205 __func__, __LINE__, rw_group, r, i, p, d); 2206 2207 scc_mgr_set_dq_in_delay(p, d); 2208 scc_mgr_load_dq(p); 2209 } 2210 2211 writel(0, &sdr_scc_mgr->update); 2212 } 2213 2214 /* 2215 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2216 * dq_in_delay values 2217 */ 2218 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2219 2220 debug_cond(DLEVEL == 1, 2221 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2222 __func__, __LINE__, rw_group, found); 2223 2224 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2225 r += NUM_RANKS_PER_SHADOW_REG) { 2226 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2227 writel(0, &sdr_scc_mgr->update); 2228 } 2229 2230 if (!found) 2231 return -EINVAL; 2232 2233 return 0; 2234 2235 } 2236 2237 /** 2238 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2239 * @rw_group: Read/Write Group 2240 * @test_bgn: Rank at which the test begins 2241 * @use_read_test: Perform a read test 2242 * @update_fom: Update FOM 2243 * 2244 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2245 * within a group. 2246 */ 2247 static int 2248 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2249 const int use_read_test, 2250 const int update_fom) 2251 2252 { 2253 int ret, grp_calibrated; 2254 u32 rank_bgn, sr; 2255 2256 /* 2257 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2258 * Read per-bit deskew can be done on a per shadow register basis. 2259 */ 2260 grp_calibrated = 1; 2261 for (rank_bgn = 0, sr = 0; 2262 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2263 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2264 /* Check if this set of ranks should be skipped entirely. */ 2265 if (param->skip_shadow_regs[sr]) 2266 continue; 2267 2268 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2269 rw_group, test_bgn, 2270 use_read_test, 2271 update_fom); 2272 if (ret) 2273 continue; 2274 2275 grp_calibrated = 0; 2276 } 2277 2278 if (!grp_calibrated) 2279 return -EIO; 2280 2281 return 0; 2282 } 2283 2284 /** 2285 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2286 * @rw_group: Read/Write Group 2287 * @test_bgn: Rank at which the test begins 2288 * 2289 * Stage 1: Calibrate the read valid prediction FIFO. 2290 * 2291 * This function implements UniPHY calibration Stage 1, as explained in 2292 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2293 * 2294 * - read valid prediction will consist of finding: 2295 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2296 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2297 * - we also do a per-bit deskew on the DQ lines. 2298 */ 2299 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2300 { 2301 uint32_t p, d; 2302 uint32_t dtaps_per_ptap; 2303 uint32_t failed_substage; 2304 2305 int ret; 2306 2307 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2308 2309 /* Update info for sims */ 2310 reg_file_set_group(rw_group); 2311 reg_file_set_stage(CAL_STAGE_VFIFO); 2312 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2313 2314 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2315 2316 /* USER Determine number of delay taps for each phase tap. */ 2317 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2318 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2319 2320 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2321 /* 2322 * In RLDRAMX we may be messing the delay of pins in 2323 * the same write rw_group but outside of the current read 2324 * the rw_group, but that's ok because we haven't calibrated 2325 * output side yet. 2326 */ 2327 if (d > 0) { 2328 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2329 rw_group, d); 2330 } 2331 2332 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2333 /* 1) Guaranteed Write */ 2334 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2335 if (ret) 2336 break; 2337 2338 /* 2) DQS Enable Calibration */ 2339 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2340 test_bgn); 2341 if (ret) { 2342 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2343 continue; 2344 } 2345 2346 /* 3) Centering DQ/DQS */ 2347 /* 2348 * If doing read after write calibration, do not update 2349 * FOM now. Do it then. 2350 */ 2351 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2352 test_bgn, 1, 0); 2353 if (ret) { 2354 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2355 continue; 2356 } 2357 2358 /* All done. */ 2359 goto cal_done_ok; 2360 } 2361 } 2362 2363 /* Calibration Stage 1 failed. */ 2364 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2365 return 0; 2366 2367 /* Calibration Stage 1 completed OK. */ 2368 cal_done_ok: 2369 /* 2370 * Reset the delay chains back to zero if they have moved > 1 2371 * (check for > 1 because loop will increase d even when pass in 2372 * first case). 2373 */ 2374 if (d > 2) 2375 scc_mgr_zero_group(rw_group, 1); 2376 2377 return 1; 2378 } 2379 2380 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2381 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2382 uint32_t test_bgn) 2383 { 2384 uint32_t rank_bgn, sr; 2385 uint32_t grp_calibrated; 2386 uint32_t write_group; 2387 2388 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2389 2390 /* update info for sims */ 2391 2392 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2393 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2394 2395 write_group = read_group; 2396 2397 /* update info for sims */ 2398 reg_file_set_group(read_group); 2399 2400 grp_calibrated = 1; 2401 /* Read per-bit deskew can be done on a per shadow register basis */ 2402 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2403 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2404 /* Determine if this set of ranks should be skipped entirely */ 2405 if (!param->skip_shadow_regs[sr]) { 2406 /* This is the last calibration round, update FOM here */ 2407 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2408 write_group, 2409 read_group, 2410 test_bgn, 0, 2411 1)) { 2412 grp_calibrated = 0; 2413 } 2414 } 2415 } 2416 2417 2418 if (grp_calibrated == 0) { 2419 set_failing_group_stage(write_group, 2420 CAL_STAGE_VFIFO_AFTER_WRITES, 2421 CAL_SUBSTAGE_VFIFO_CENTER); 2422 return 0; 2423 } 2424 2425 return 1; 2426 } 2427 2428 /* Calibrate LFIFO to find smallest read latency */ 2429 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2430 { 2431 uint32_t found_one; 2432 uint32_t bit_chk; 2433 2434 debug("%s:%d\n", __func__, __LINE__); 2435 2436 /* update info for sims */ 2437 reg_file_set_stage(CAL_STAGE_LFIFO); 2438 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2439 2440 /* Load up the patterns used by read calibration for all ranks */ 2441 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2442 found_one = 0; 2443 2444 do { 2445 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2446 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2447 __func__, __LINE__, gbl->curr_read_lat); 2448 2449 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2450 NUM_READ_TESTS, 2451 PASS_ALL_BITS, 2452 &bit_chk, 1)) { 2453 break; 2454 } 2455 2456 found_one = 1; 2457 /* reduce read latency and see if things are working */ 2458 /* correctly */ 2459 gbl->curr_read_lat--; 2460 } while (gbl->curr_read_lat > 0); 2461 2462 /* reset the fifos to get pointers to known state */ 2463 2464 writel(0, &phy_mgr_cmd->fifo_reset); 2465 2466 if (found_one) { 2467 /* add a fudge factor to the read latency that was determined */ 2468 gbl->curr_read_lat += 2; 2469 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2470 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2471 read_lat=%u\n", __func__, __LINE__, 2472 gbl->curr_read_lat); 2473 return 1; 2474 } else { 2475 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2476 CAL_SUBSTAGE_READ_LATENCY); 2477 2478 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2479 read_lat=%u\n", __func__, __LINE__, 2480 gbl->curr_read_lat); 2481 return 0; 2482 } 2483 } 2484 2485 /* 2486 * issue write test command. 2487 * two variants are provided. one that just tests a write pattern and 2488 * another that tests datamask functionality. 2489 */ 2490 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2491 uint32_t test_dm) 2492 { 2493 uint32_t mcc_instruction; 2494 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2495 ENABLE_SUPER_QUICK_CALIBRATION); 2496 uint32_t rw_wl_nop_cycles; 2497 uint32_t addr; 2498 2499 /* 2500 * Set counter and jump addresses for the right 2501 * number of NOP cycles. 2502 * The number of supported NOP cycles can range from -1 to infinity 2503 * Three different cases are handled: 2504 * 2505 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2506 * mechanism will be used to insert the right number of NOPs 2507 * 2508 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2509 * issuing the write command will jump straight to the 2510 * micro-instruction that turns on DQS (for DDRx), or outputs write 2511 * data (for RLD), skipping 2512 * the NOP micro-instruction all together 2513 * 2514 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2515 * turned on in the same micro-instruction that issues the write 2516 * command. Then we need 2517 * to directly jump to the micro-instruction that sends out the data 2518 * 2519 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2520 * (2 and 3). One jump-counter (0) is used to perform multiple 2521 * write-read operations. 2522 * one counter left to issue this command in "multiple-group" mode 2523 */ 2524 2525 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2526 2527 if (rw_wl_nop_cycles == -1) { 2528 /* 2529 * CNTR 2 - We want to execute the special write operation that 2530 * turns on DQS right away and then skip directly to the 2531 * instruction that sends out the data. We set the counter to a 2532 * large number so that the jump is always taken. 2533 */ 2534 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2535 2536 /* CNTR 3 - Not used */ 2537 if (test_dm) { 2538 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2539 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2540 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2541 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2542 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2543 } else { 2544 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2545 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2546 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2547 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2548 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2549 } 2550 } else if (rw_wl_nop_cycles == 0) { 2551 /* 2552 * CNTR 2 - We want to skip the NOP operation and go straight 2553 * to the DQS enable instruction. We set the counter to a large 2554 * number so that the jump is always taken. 2555 */ 2556 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2557 2558 /* CNTR 3 - Not used */ 2559 if (test_dm) { 2560 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2561 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2562 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2563 } else { 2564 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2565 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2566 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2567 } 2568 } else { 2569 /* 2570 * CNTR 2 - In this case we want to execute the next instruction 2571 * and NOT take the jump. So we set the counter to 0. The jump 2572 * address doesn't count. 2573 */ 2574 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2575 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2576 2577 /* 2578 * CNTR 3 - Set the nop counter to the number of cycles we 2579 * need to loop for, minus 1. 2580 */ 2581 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2582 if (test_dm) { 2583 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2584 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2585 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2586 } else { 2587 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2588 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2589 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2590 } 2591 } 2592 2593 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2594 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2595 2596 if (quick_write_mode) 2597 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2598 else 2599 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2600 2601 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2602 2603 /* 2604 * CNTR 1 - This is used to ensure enough time elapses 2605 * for read data to come back. 2606 */ 2607 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2608 2609 if (test_dm) { 2610 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2611 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2612 } else { 2613 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2614 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2615 } 2616 2617 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2618 writel(mcc_instruction, addr + (group << 2)); 2619 } 2620 2621 /* Test writes, can check for a single bit pass or multiple bit pass */ 2622 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2623 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2624 uint32_t *bit_chk, uint32_t all_ranks) 2625 { 2626 uint32_t r; 2627 uint32_t correct_mask_vg; 2628 uint32_t tmp_bit_chk; 2629 uint32_t vg; 2630 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2631 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2632 uint32_t addr_rw_mgr; 2633 uint32_t base_rw_mgr; 2634 2635 *bit_chk = param->write_correct_mask; 2636 correct_mask_vg = param->write_correct_mask_vg; 2637 2638 for (r = rank_bgn; r < rank_end; r++) { 2639 if (param->skip_ranks[r]) { 2640 /* request to skip the rank */ 2641 continue; 2642 } 2643 2644 /* set rank */ 2645 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2646 2647 tmp_bit_chk = 0; 2648 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2649 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2650 /* reset the fifos to get pointers to known state */ 2651 writel(0, &phy_mgr_cmd->fifo_reset); 2652 2653 tmp_bit_chk = tmp_bit_chk << 2654 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2655 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2656 rw_mgr_mem_calibrate_write_test_issue(write_group * 2657 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2658 use_dm); 2659 2660 base_rw_mgr = readl(addr_rw_mgr); 2661 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2662 if (vg == 0) 2663 break; 2664 } 2665 *bit_chk &= tmp_bit_chk; 2666 } 2667 2668 if (all_correct) { 2669 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2670 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2671 %u => %lu", write_group, use_dm, 2672 *bit_chk, param->write_correct_mask, 2673 (long unsigned int)(*bit_chk == 2674 param->write_correct_mask)); 2675 return *bit_chk == param->write_correct_mask; 2676 } else { 2677 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2678 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2679 write_group, use_dm, *bit_chk); 2680 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2681 (long unsigned int)(*bit_chk != 0)); 2682 return *bit_chk != 0x00; 2683 } 2684 } 2685 2686 /* 2687 * center all windows. do per-bit-deskew to possibly increase size of 2688 * certain windows. 2689 */ 2690 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2691 uint32_t write_group, uint32_t test_bgn) 2692 { 2693 uint32_t i, p, min_index; 2694 int32_t d; 2695 /* 2696 * Store these as signed since there are comparisons with 2697 * signed numbers. 2698 */ 2699 uint32_t bit_chk; 2700 uint32_t sticky_bit_chk; 2701 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2702 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2703 int32_t mid; 2704 int32_t mid_min, orig_mid_min; 2705 int32_t new_dqs, start_dqs, shift_dq; 2706 int32_t dq_margin, dqs_margin, dm_margin; 2707 uint32_t stop; 2708 uint32_t temp_dq_out1_delay; 2709 uint32_t addr; 2710 2711 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2712 2713 dm_margin = 0; 2714 2715 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2716 start_dqs = readl(addr + 2717 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2718 2719 /* per-bit deskew */ 2720 2721 /* 2722 * set the left and right edge of each bit to an illegal value 2723 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2724 */ 2725 sticky_bit_chk = 0; 2726 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2727 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2728 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2729 } 2730 2731 /* Search for the left edge of the window for each bit */ 2732 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2733 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2734 2735 writel(0, &sdr_scc_mgr->update); 2736 2737 /* 2738 * Stop searching when the read test doesn't pass AND when 2739 * we've seen a passing read on every bit. 2740 */ 2741 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2742 0, PASS_ONE_BIT, &bit_chk, 0); 2743 sticky_bit_chk = sticky_bit_chk | bit_chk; 2744 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2745 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2746 == %u && %u [bit_chk= %u ]\n", 2747 d, sticky_bit_chk, param->write_correct_mask, 2748 stop, bit_chk); 2749 2750 if (stop == 1) { 2751 break; 2752 } else { 2753 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2754 if (bit_chk & 1) { 2755 /* 2756 * Remember a passing test as the 2757 * left_edge. 2758 */ 2759 left_edge[i] = d; 2760 } else { 2761 /* 2762 * If a left edge has not been seen 2763 * yet, then a future passing test will 2764 * mark this edge as the right edge. 2765 */ 2766 if (left_edge[i] == 2767 IO_IO_OUT1_DELAY_MAX + 1) { 2768 right_edge[i] = -(d + 1); 2769 } 2770 } 2771 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2772 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2773 (int)(bit_chk & 1), i, left_edge[i]); 2774 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2775 right_edge[i]); 2776 bit_chk = bit_chk >> 1; 2777 } 2778 } 2779 } 2780 2781 /* Reset DQ delay chains to 0 */ 2782 scc_mgr_apply_group_dq_out1_delay(0); 2783 sticky_bit_chk = 0; 2784 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2785 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2786 %d right_edge[%u]: %d\n", __func__, __LINE__, 2787 i, left_edge[i], i, right_edge[i]); 2788 2789 /* 2790 * Check for cases where we haven't found the left edge, 2791 * which makes our assignment of the the right edge invalid. 2792 * Reset it to the illegal value. 2793 */ 2794 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2795 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2796 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2797 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2798 right_edge[%u]: %d\n", __func__, __LINE__, 2799 i, right_edge[i]); 2800 } 2801 2802 /* 2803 * Reset sticky bit (except for bits where we have 2804 * seen the left edge). 2805 */ 2806 sticky_bit_chk = sticky_bit_chk << 1; 2807 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2808 sticky_bit_chk = sticky_bit_chk | 1; 2809 2810 if (i == 0) 2811 break; 2812 } 2813 2814 /* Search for the right edge of the window for each bit */ 2815 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2816 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2817 d + start_dqs); 2818 2819 writel(0, &sdr_scc_mgr->update); 2820 2821 /* 2822 * Stop searching when the read test doesn't pass AND when 2823 * we've seen a passing read on every bit. 2824 */ 2825 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2826 0, PASS_ONE_BIT, &bit_chk, 0); 2827 2828 sticky_bit_chk = sticky_bit_chk | bit_chk; 2829 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2830 2831 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2832 %u && %u\n", d, sticky_bit_chk, 2833 param->write_correct_mask, stop); 2834 2835 if (stop == 1) { 2836 if (d == 0) { 2837 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2838 i++) { 2839 /* d = 0 failed, but it passed when 2840 testing the left edge, so it must be 2841 marginal, set it to -1 */ 2842 if (right_edge[i] == 2843 IO_IO_OUT1_DELAY_MAX + 1 && 2844 left_edge[i] != 2845 IO_IO_OUT1_DELAY_MAX + 1) { 2846 right_edge[i] = -1; 2847 } 2848 } 2849 } 2850 break; 2851 } else { 2852 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2853 if (bit_chk & 1) { 2854 /* 2855 * Remember a passing test as 2856 * the right_edge. 2857 */ 2858 right_edge[i] = d; 2859 } else { 2860 if (d != 0) { 2861 /* 2862 * If a right edge has not 2863 * been seen yet, then a future 2864 * passing test will mark this 2865 * edge as the left edge. 2866 */ 2867 if (right_edge[i] == 2868 IO_IO_OUT1_DELAY_MAX + 1) 2869 left_edge[i] = -(d + 1); 2870 } else { 2871 /* 2872 * d = 0 failed, but it passed 2873 * when testing the left edge, 2874 * so it must be marginal, set 2875 * it to -1. 2876 */ 2877 if (right_edge[i] == 2878 IO_IO_OUT1_DELAY_MAX + 1 && 2879 left_edge[i] != 2880 IO_IO_OUT1_DELAY_MAX + 1) 2881 right_edge[i] = -1; 2882 /* 2883 * If a right edge has not been 2884 * seen yet, then a future 2885 * passing test will mark this 2886 * edge as the left edge. 2887 */ 2888 else if (right_edge[i] == 2889 IO_IO_OUT1_DELAY_MAX + 2890 1) 2891 left_edge[i] = -(d + 1); 2892 } 2893 } 2894 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2895 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2896 (int)(bit_chk & 1), i, left_edge[i]); 2897 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2898 right_edge[i]); 2899 bit_chk = bit_chk >> 1; 2900 } 2901 } 2902 } 2903 2904 /* Check that all bits have a window */ 2905 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2906 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2907 %d right_edge[%u]: %d", __func__, __LINE__, 2908 i, left_edge[i], i, right_edge[i]); 2909 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2910 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2911 set_failing_group_stage(test_bgn + i, 2912 CAL_STAGE_WRITES, 2913 CAL_SUBSTAGE_WRITES_CENTER); 2914 return 0; 2915 } 2916 } 2917 2918 /* Find middle of window for each DQ bit */ 2919 mid_min = left_edge[0] - right_edge[0]; 2920 min_index = 0; 2921 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2922 mid = left_edge[i] - right_edge[i]; 2923 if (mid < mid_min) { 2924 mid_min = mid; 2925 min_index = i; 2926 } 2927 } 2928 2929 /* 2930 * -mid_min/2 represents the amount that we need to move DQS. 2931 * If mid_min is odd and positive we'll need to add one to 2932 * make sure the rounding in further calculations is correct 2933 * (always bias to the right), so just add 1 for all positive values. 2934 */ 2935 if (mid_min > 0) 2936 mid_min++; 2937 mid_min = mid_min / 2; 2938 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2939 __LINE__, mid_min); 2940 2941 /* Determine the amount we can change DQS (which is -mid_min) */ 2942 orig_mid_min = mid_min; 2943 new_dqs = start_dqs; 2944 mid_min = 0; 2945 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2946 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2947 /* Initialize data for export structures */ 2948 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2949 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2950 2951 /* add delay to bring centre of all DQ windows to the same "level" */ 2952 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2953 /* Use values before divide by 2 to reduce round off error */ 2954 shift_dq = (left_edge[i] - right_edge[i] - 2955 (left_edge[min_index] - right_edge[min_index]))/2 + 2956 (orig_mid_min - mid_min); 2957 2958 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2959 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2960 2961 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2962 temp_dq_out1_delay = readl(addr + (i << 2)); 2963 if (shift_dq + (int32_t)temp_dq_out1_delay > 2964 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2965 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2966 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2967 shift_dq = -(int32_t)temp_dq_out1_delay; 2968 } 2969 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2970 i, shift_dq); 2971 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2972 scc_mgr_load_dq(i); 2973 2974 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2975 left_edge[i] - shift_dq + (-mid_min), 2976 right_edge[i] + shift_dq - (-mid_min)); 2977 /* To determine values for export structures */ 2978 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2979 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2980 2981 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2982 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2983 } 2984 2985 /* Move DQS */ 2986 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2987 writel(0, &sdr_scc_mgr->update); 2988 2989 /* Centre DM */ 2990 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2991 2992 /* 2993 * set the left and right edge of each bit to an illegal value, 2994 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2995 */ 2996 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2997 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2998 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2999 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3000 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3001 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3002 int32_t win_best = 0; 3003 3004 /* Search for the/part of the window with DM shift */ 3005 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3006 scc_mgr_apply_group_dm_out1_delay(d); 3007 writel(0, &sdr_scc_mgr->update); 3008 3009 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3010 PASS_ALL_BITS, &bit_chk, 3011 0)) { 3012 /* USE Set current end of the window */ 3013 end_curr = -d; 3014 /* 3015 * If a starting edge of our window has not been seen 3016 * this is our current start of the DM window. 3017 */ 3018 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3019 bgn_curr = -d; 3020 3021 /* 3022 * If current window is bigger than best seen. 3023 * Set best seen to be current window. 3024 */ 3025 if ((end_curr-bgn_curr+1) > win_best) { 3026 win_best = end_curr-bgn_curr+1; 3027 bgn_best = bgn_curr; 3028 end_best = end_curr; 3029 } 3030 } else { 3031 /* We just saw a failing test. Reset temp edge */ 3032 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3033 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3034 } 3035 } 3036 3037 3038 /* Reset DM delay chains to 0 */ 3039 scc_mgr_apply_group_dm_out1_delay(0); 3040 3041 /* 3042 * Check to see if the current window nudges up aganist 0 delay. 3043 * If so we need to continue the search by shifting DQS otherwise DQS 3044 * search begins as a new search. */ 3045 if (end_curr != 0) { 3046 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3047 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3048 } 3049 3050 /* Search for the/part of the window with DQS shifts */ 3051 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3052 /* 3053 * Note: This only shifts DQS, so are we limiting ourselve to 3054 * width of DQ unnecessarily. 3055 */ 3056 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3057 d + new_dqs); 3058 3059 writel(0, &sdr_scc_mgr->update); 3060 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3061 PASS_ALL_BITS, &bit_chk, 3062 0)) { 3063 /* USE Set current end of the window */ 3064 end_curr = d; 3065 /* 3066 * If a beginning edge of our window has not been seen 3067 * this is our current begin of the DM window. 3068 */ 3069 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3070 bgn_curr = d; 3071 3072 /* 3073 * If current window is bigger than best seen. Set best 3074 * seen to be current window. 3075 */ 3076 if ((end_curr-bgn_curr+1) > win_best) { 3077 win_best = end_curr-bgn_curr+1; 3078 bgn_best = bgn_curr; 3079 end_best = end_curr; 3080 } 3081 } else { 3082 /* We just saw a failing test. Reset temp edge */ 3083 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3084 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3085 3086 /* Early exit optimization: if ther remaining delay 3087 chain space is less than already seen largest window 3088 we can exit */ 3089 if ((win_best-1) > 3090 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3091 break; 3092 } 3093 } 3094 } 3095 3096 /* assign left and right edge for cal and reporting; */ 3097 left_edge[0] = -1*bgn_best; 3098 right_edge[0] = end_best; 3099 3100 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3101 __LINE__, left_edge[0], right_edge[0]); 3102 3103 /* Move DQS (back to orig) */ 3104 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3105 3106 /* Move DM */ 3107 3108 /* Find middle of window for the DM bit */ 3109 mid = (left_edge[0] - right_edge[0]) / 2; 3110 3111 /* only move right, since we are not moving DQS/DQ */ 3112 if (mid < 0) 3113 mid = 0; 3114 3115 /* dm_marign should fail if we never find a window */ 3116 if (win_best == 0) 3117 dm_margin = -1; 3118 else 3119 dm_margin = left_edge[0] - mid; 3120 3121 scc_mgr_apply_group_dm_out1_delay(mid); 3122 writel(0, &sdr_scc_mgr->update); 3123 3124 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3125 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3126 right_edge[0], mid, dm_margin); 3127 /* Export values */ 3128 gbl->fom_out += dq_margin + dqs_margin; 3129 3130 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3131 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3132 dq_margin, dqs_margin, dm_margin); 3133 3134 /* 3135 * Do not remove this line as it makes sure all of our 3136 * decisions have been applied. 3137 */ 3138 writel(0, &sdr_scc_mgr->update); 3139 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3140 } 3141 3142 /* calibrate the write operations */ 3143 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3144 uint32_t test_bgn) 3145 { 3146 /* update info for sims */ 3147 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3148 3149 reg_file_set_stage(CAL_STAGE_WRITES); 3150 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3151 3152 reg_file_set_group(g); 3153 3154 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3155 set_failing_group_stage(g, CAL_STAGE_WRITES, 3156 CAL_SUBSTAGE_WRITES_CENTER); 3157 return 0; 3158 } 3159 3160 return 1; 3161 } 3162 3163 /** 3164 * mem_precharge_and_activate() - Precharge all banks and activate 3165 * 3166 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3167 */ 3168 static void mem_precharge_and_activate(void) 3169 { 3170 int r; 3171 3172 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3173 /* Test if the rank should be skipped. */ 3174 if (param->skip_ranks[r]) 3175 continue; 3176 3177 /* Set rank. */ 3178 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3179 3180 /* Precharge all banks. */ 3181 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3182 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3183 3184 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3185 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3186 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3187 3188 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3189 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3190 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3191 3192 /* Activate rows. */ 3193 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3194 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3195 } 3196 } 3197 3198 /** 3199 * mem_init_latency() - Configure memory RLAT and WLAT settings 3200 * 3201 * Configure memory RLAT and WLAT parameters. 3202 */ 3203 static void mem_init_latency(void) 3204 { 3205 /* 3206 * For AV/CV, LFIFO is hardened and always runs at full rate 3207 * so max latency in AFI clocks, used here, is correspondingly 3208 * smaller. 3209 */ 3210 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3211 u32 rlat, wlat; 3212 3213 debug("%s:%d\n", __func__, __LINE__); 3214 3215 /* 3216 * Read in write latency. 3217 * WL for Hard PHY does not include additive latency. 3218 */ 3219 wlat = readl(&data_mgr->t_wl_add); 3220 wlat += readl(&data_mgr->mem_t_add); 3221 3222 gbl->rw_wl_nop_cycles = wlat - 1; 3223 3224 /* Read in readl latency. */ 3225 rlat = readl(&data_mgr->t_rl_add); 3226 3227 /* Set a pretty high read latency initially. */ 3228 gbl->curr_read_lat = rlat + 16; 3229 if (gbl->curr_read_lat > max_latency) 3230 gbl->curr_read_lat = max_latency; 3231 3232 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3233 3234 /* Advertise write latency. */ 3235 writel(wlat, &phy_mgr_cfg->afi_wlat); 3236 } 3237 3238 /** 3239 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3240 * 3241 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3242 */ 3243 static void mem_skip_calibrate(void) 3244 { 3245 uint32_t vfifo_offset; 3246 uint32_t i, j, r; 3247 3248 debug("%s:%d\n", __func__, __LINE__); 3249 /* Need to update every shadow register set used by the interface */ 3250 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3251 r += NUM_RANKS_PER_SHADOW_REG) { 3252 /* 3253 * Set output phase alignment settings appropriate for 3254 * skip calibration. 3255 */ 3256 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3257 scc_mgr_set_dqs_en_phase(i, 0); 3258 #if IO_DLL_CHAIN_LENGTH == 6 3259 scc_mgr_set_dqdqs_output_phase(i, 6); 3260 #else 3261 scc_mgr_set_dqdqs_output_phase(i, 7); 3262 #endif 3263 /* 3264 * Case:33398 3265 * 3266 * Write data arrives to the I/O two cycles before write 3267 * latency is reached (720 deg). 3268 * -> due to bit-slip in a/c bus 3269 * -> to allow board skew where dqs is longer than ck 3270 * -> how often can this happen!? 3271 * -> can claim back some ptaps for high freq 3272 * support if we can relax this, but i digress... 3273 * 3274 * The write_clk leads mem_ck by 90 deg 3275 * The minimum ptap of the OPA is 180 deg 3276 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3277 * The write_clk is always delayed by 2 ptaps 3278 * 3279 * Hence, to make DQS aligned to CK, we need to delay 3280 * DQS by: 3281 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3282 * 3283 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3284 * gives us the number of ptaps, which simplies to: 3285 * 3286 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3287 */ 3288 scc_mgr_set_dqdqs_output_phase(i, 3289 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3290 } 3291 writel(0xff, &sdr_scc_mgr->dqs_ena); 3292 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3293 3294 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3295 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3296 SCC_MGR_GROUP_COUNTER_OFFSET); 3297 } 3298 writel(0xff, &sdr_scc_mgr->dq_ena); 3299 writel(0xff, &sdr_scc_mgr->dm_ena); 3300 writel(0, &sdr_scc_mgr->update); 3301 } 3302 3303 /* Compensate for simulation model behaviour */ 3304 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3305 scc_mgr_set_dqs_bus_in_delay(i, 10); 3306 scc_mgr_load_dqs(i); 3307 } 3308 writel(0, &sdr_scc_mgr->update); 3309 3310 /* 3311 * ArriaV has hard FIFOs that can only be initialized by incrementing 3312 * in sequencer. 3313 */ 3314 vfifo_offset = CALIB_VFIFO_OFFSET; 3315 for (j = 0; j < vfifo_offset; j++) 3316 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3317 writel(0, &phy_mgr_cmd->fifo_reset); 3318 3319 /* 3320 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3321 * setting from generation-time constant. 3322 */ 3323 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3324 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3325 } 3326 3327 /** 3328 * mem_calibrate() - Memory calibration entry point. 3329 * 3330 * Perform memory calibration. 3331 */ 3332 static uint32_t mem_calibrate(void) 3333 { 3334 uint32_t i; 3335 uint32_t rank_bgn, sr; 3336 uint32_t write_group, write_test_bgn; 3337 uint32_t read_group, read_test_bgn; 3338 uint32_t run_groups, current_run; 3339 uint32_t failing_groups = 0; 3340 uint32_t group_failed = 0; 3341 3342 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3343 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3344 3345 debug("%s:%d\n", __func__, __LINE__); 3346 3347 /* Initialize the data settings */ 3348 gbl->error_substage = CAL_SUBSTAGE_NIL; 3349 gbl->error_stage = CAL_STAGE_NIL; 3350 gbl->error_group = 0xff; 3351 gbl->fom_in = 0; 3352 gbl->fom_out = 0; 3353 3354 /* Initialize WLAT and RLAT. */ 3355 mem_init_latency(); 3356 3357 /* Initialize bit slips. */ 3358 mem_precharge_and_activate(); 3359 3360 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3361 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3362 SCC_MGR_GROUP_COUNTER_OFFSET); 3363 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3364 if (i == 0) 3365 scc_mgr_set_hhp_extras(); 3366 3367 scc_set_bypass_mode(i); 3368 } 3369 3370 /* Calibration is skipped. */ 3371 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3372 /* 3373 * Set VFIFO and LFIFO to instant-on settings in skip 3374 * calibration mode. 3375 */ 3376 mem_skip_calibrate(); 3377 3378 /* 3379 * Do not remove this line as it makes sure all of our 3380 * decisions have been applied. 3381 */ 3382 writel(0, &sdr_scc_mgr->update); 3383 return 1; 3384 } 3385 3386 /* Calibration is not skipped. */ 3387 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3388 /* 3389 * Zero all delay chain/phase settings for all 3390 * groups and all shadow register sets. 3391 */ 3392 scc_mgr_zero_all(); 3393 3394 run_groups = ~param->skip_groups; 3395 3396 for (write_group = 0, write_test_bgn = 0; write_group 3397 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3398 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3399 3400 /* Initialize the group failure */ 3401 group_failed = 0; 3402 3403 current_run = run_groups & ((1 << 3404 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3405 run_groups = run_groups >> 3406 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3407 3408 if (current_run == 0) 3409 continue; 3410 3411 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3412 SCC_MGR_GROUP_COUNTER_OFFSET); 3413 scc_mgr_zero_group(write_group, 0); 3414 3415 for (read_group = write_group * rwdqs_ratio, 3416 read_test_bgn = 0; 3417 read_group < (write_group + 1) * rwdqs_ratio; 3418 read_group++, 3419 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3420 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3421 continue; 3422 3423 /* Calibrate the VFIFO */ 3424 if (rw_mgr_mem_calibrate_vfifo(read_group, 3425 read_test_bgn)) 3426 continue; 3427 3428 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3429 return 0; 3430 3431 /* The group failed, we're done. */ 3432 goto grp_failed; 3433 } 3434 3435 /* Calibrate the output side */ 3436 for (rank_bgn = 0, sr = 0; 3437 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3438 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3439 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3440 continue; 3441 3442 /* Not needed in quick mode! */ 3443 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3444 continue; 3445 3446 /* 3447 * Determine if this set of ranks 3448 * should be skipped entirely. 3449 */ 3450 if (param->skip_shadow_regs[sr]) 3451 continue; 3452 3453 /* Calibrate WRITEs */ 3454 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3455 write_group, write_test_bgn)) 3456 continue; 3457 3458 group_failed = 1; 3459 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3460 return 0; 3461 } 3462 3463 /* Some group failed, we're done. */ 3464 if (group_failed) 3465 goto grp_failed; 3466 3467 for (read_group = write_group * rwdqs_ratio, 3468 read_test_bgn = 0; 3469 read_group < (write_group + 1) * rwdqs_ratio; 3470 read_group++, 3471 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3472 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3473 continue; 3474 3475 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3476 read_test_bgn)) 3477 continue; 3478 3479 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3480 return 0; 3481 3482 /* The group failed, we're done. */ 3483 goto grp_failed; 3484 } 3485 3486 /* No group failed, continue as usual. */ 3487 continue; 3488 3489 grp_failed: /* A group failed, increment the counter. */ 3490 failing_groups++; 3491 } 3492 3493 /* 3494 * USER If there are any failing groups then report 3495 * the failure. 3496 */ 3497 if (failing_groups != 0) 3498 return 0; 3499 3500 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3501 continue; 3502 3503 /* 3504 * If we're skipping groups as part of debug, 3505 * don't calibrate LFIFO. 3506 */ 3507 if (param->skip_groups != 0) 3508 continue; 3509 3510 /* Calibrate the LFIFO */ 3511 if (!rw_mgr_mem_calibrate_lfifo()) 3512 return 0; 3513 } 3514 3515 /* 3516 * Do not remove this line as it makes sure all of our decisions 3517 * have been applied. 3518 */ 3519 writel(0, &sdr_scc_mgr->update); 3520 return 1; 3521 } 3522 3523 /** 3524 * run_mem_calibrate() - Perform memory calibration 3525 * 3526 * This function triggers the entire memory calibration procedure. 3527 */ 3528 static int run_mem_calibrate(void) 3529 { 3530 int pass; 3531 3532 debug("%s:%d\n", __func__, __LINE__); 3533 3534 /* Reset pass/fail status shown on afi_cal_success/fail */ 3535 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3536 3537 /* Stop tracking manager. */ 3538 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3539 3540 phy_mgr_initialize(); 3541 rw_mgr_mem_initialize(); 3542 3543 /* Perform the actual memory calibration. */ 3544 pass = mem_calibrate(); 3545 3546 mem_precharge_and_activate(); 3547 writel(0, &phy_mgr_cmd->fifo_reset); 3548 3549 /* Handoff. */ 3550 rw_mgr_mem_handoff(); 3551 /* 3552 * In Hard PHY this is a 2-bit control: 3553 * 0: AFI Mux Select 3554 * 1: DDIO Mux Select 3555 */ 3556 writel(0x2, &phy_mgr_cfg->mux_sel); 3557 3558 /* Start tracking manager. */ 3559 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3560 3561 return pass; 3562 } 3563 3564 /** 3565 * debug_mem_calibrate() - Report result of memory calibration 3566 * @pass: Value indicating whether calibration passed or failed 3567 * 3568 * This function reports the results of the memory calibration 3569 * and writes debug information into the register file. 3570 */ 3571 static void debug_mem_calibrate(int pass) 3572 { 3573 uint32_t debug_info; 3574 3575 if (pass) { 3576 printf("%s: CALIBRATION PASSED\n", __FILE__); 3577 3578 gbl->fom_in /= 2; 3579 gbl->fom_out /= 2; 3580 3581 if (gbl->fom_in > 0xff) 3582 gbl->fom_in = 0xff; 3583 3584 if (gbl->fom_out > 0xff) 3585 gbl->fom_out = 0xff; 3586 3587 /* Update the FOM in the register file */ 3588 debug_info = gbl->fom_in; 3589 debug_info |= gbl->fom_out << 8; 3590 writel(debug_info, &sdr_reg_file->fom); 3591 3592 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3593 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3594 } else { 3595 printf("%s: CALIBRATION FAILED\n", __FILE__); 3596 3597 debug_info = gbl->error_stage; 3598 debug_info |= gbl->error_substage << 8; 3599 debug_info |= gbl->error_group << 16; 3600 3601 writel(debug_info, &sdr_reg_file->failing_stage); 3602 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3603 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3604 3605 /* Update the failing group/stage in the register file */ 3606 debug_info = gbl->error_stage; 3607 debug_info |= gbl->error_substage << 8; 3608 debug_info |= gbl->error_group << 16; 3609 writel(debug_info, &sdr_reg_file->failing_stage); 3610 } 3611 3612 printf("%s: Calibration complete\n", __FILE__); 3613 } 3614 3615 /** 3616 * hc_initialize_rom_data() - Initialize ROM data 3617 * 3618 * Initialize ROM data. 3619 */ 3620 static void hc_initialize_rom_data(void) 3621 { 3622 u32 i, addr; 3623 3624 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3625 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3626 writel(inst_rom_init[i], addr + (i << 2)); 3627 3628 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3629 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3630 writel(ac_rom_init[i], addr + (i << 2)); 3631 } 3632 3633 /** 3634 * initialize_reg_file() - Initialize SDR register file 3635 * 3636 * Initialize SDR register file. 3637 */ 3638 static void initialize_reg_file(void) 3639 { 3640 /* Initialize the register file with the correct data */ 3641 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3642 writel(0, &sdr_reg_file->debug_data_addr); 3643 writel(0, &sdr_reg_file->cur_stage); 3644 writel(0, &sdr_reg_file->fom); 3645 writel(0, &sdr_reg_file->failing_stage); 3646 writel(0, &sdr_reg_file->debug1); 3647 writel(0, &sdr_reg_file->debug2); 3648 } 3649 3650 /** 3651 * initialize_hps_phy() - Initialize HPS PHY 3652 * 3653 * Initialize HPS PHY. 3654 */ 3655 static void initialize_hps_phy(void) 3656 { 3657 uint32_t reg; 3658 /* 3659 * Tracking also gets configured here because it's in the 3660 * same register. 3661 */ 3662 uint32_t trk_sample_count = 7500; 3663 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3664 /* 3665 * Format is number of outer loops in the 16 MSB, sample 3666 * count in 16 LSB. 3667 */ 3668 3669 reg = 0; 3670 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3671 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3672 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3673 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3676 /* 3677 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3678 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3679 */ 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3681 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3682 trk_sample_count); 3683 writel(reg, &sdr_ctrl->phy_ctrl0); 3684 3685 reg = 0; 3686 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3687 trk_sample_count >> 3688 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3690 trk_long_idle_sample_count); 3691 writel(reg, &sdr_ctrl->phy_ctrl1); 3692 3693 reg = 0; 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3695 trk_long_idle_sample_count >> 3696 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3697 writel(reg, &sdr_ctrl->phy_ctrl2); 3698 } 3699 3700 /** 3701 * initialize_tracking() - Initialize tracking 3702 * 3703 * Initialize the register file with usable initial data. 3704 */ 3705 static void initialize_tracking(void) 3706 { 3707 /* 3708 * Initialize the register file with the correct data. 3709 * Compute usable version of value in case we skip full 3710 * computation later. 3711 */ 3712 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3713 &sdr_reg_file->dtaps_per_ptap); 3714 3715 /* trk_sample_count */ 3716 writel(7500, &sdr_reg_file->trk_sample_count); 3717 3718 /* longidle outer loop [15:0] */ 3719 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3720 3721 /* 3722 * longidle sample count [31:24] 3723 * trfc, worst case of 933Mhz 4Gb [23:16] 3724 * trcd, worst case [15:8] 3725 * vfifo wait [7:0] 3726 */ 3727 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3728 &sdr_reg_file->delays); 3729 3730 /* mux delay */ 3731 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3732 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3733 &sdr_reg_file->trk_rw_mgr_addr); 3734 3735 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3736 &sdr_reg_file->trk_read_dqs_width); 3737 3738 /* trefi [7:0] */ 3739 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3740 &sdr_reg_file->trk_rfsh); 3741 } 3742 3743 int sdram_calibration_full(void) 3744 { 3745 struct param_type my_param; 3746 struct gbl_type my_gbl; 3747 uint32_t pass; 3748 3749 memset(&my_param, 0, sizeof(my_param)); 3750 memset(&my_gbl, 0, sizeof(my_gbl)); 3751 3752 param = &my_param; 3753 gbl = &my_gbl; 3754 3755 /* Set the calibration enabled by default */ 3756 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3757 /* 3758 * Only sweep all groups (regardless of fail state) by default 3759 * Set enabled read test by default. 3760 */ 3761 #if DISABLE_GUARANTEED_READ 3762 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3763 #endif 3764 /* Initialize the register file */ 3765 initialize_reg_file(); 3766 3767 /* Initialize any PHY CSR */ 3768 initialize_hps_phy(); 3769 3770 scc_mgr_initialize(); 3771 3772 initialize_tracking(); 3773 3774 printf("%s: Preparing to start memory calibration\n", __FILE__); 3775 3776 debug("%s:%d\n", __func__, __LINE__); 3777 debug_cond(DLEVEL == 1, 3778 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3779 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3780 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3781 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3782 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3783 debug_cond(DLEVEL == 1, 3784 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3785 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3786 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3787 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3788 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3789 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3790 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3791 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3792 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3793 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3794 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3795 IO_IO_OUT2_DELAY_MAX); 3796 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3797 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3798 3799 hc_initialize_rom_data(); 3800 3801 /* update info for sims */ 3802 reg_file_set_stage(CAL_STAGE_NIL); 3803 reg_file_set_group(0); 3804 3805 /* 3806 * Load global needed for those actions that require 3807 * some dynamic calibration support. 3808 */ 3809 dyn_calib_steps = STATIC_CALIB_STEPS; 3810 /* 3811 * Load global to allow dynamic selection of delay loop settings 3812 * based on calibration mode. 3813 */ 3814 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3815 skip_delay_mask = 0xff; 3816 else 3817 skip_delay_mask = 0x0; 3818 3819 pass = run_mem_calibrate(); 3820 debug_mem_calibrate(pass); 3821 return pass; 3822 } 3823