1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 327 delay); 328 } 329 330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 331 { 332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 333 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 334 delay); 335 } 336 337 /* load up dqs config settings */ 338 static void scc_mgr_load_dqs(uint32_t dqs) 339 { 340 writel(dqs, &sdr_scc_mgr->dqs_ena); 341 } 342 343 /* load up dqs io config settings */ 344 static void scc_mgr_load_dqs_io(void) 345 { 346 writel(0, &sdr_scc_mgr->dqs_io_ena); 347 } 348 349 /* load up dq config settings */ 350 static void scc_mgr_load_dq(uint32_t dq_in_group) 351 { 352 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 353 } 354 355 /* load up dm config settings */ 356 static void scc_mgr_load_dm(uint32_t dm) 357 { 358 writel(dm, &sdr_scc_mgr->dm_ena); 359 } 360 361 /** 362 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 363 * @off: Base offset in SCC Manager space 364 * @grp: Read/Write group 365 * @val: Value to be set 366 * @update: If non-zero, trigger SCC Manager update for all ranks 367 * 368 * This function sets the SCC Manager (Scan Chain Control Manager) register 369 * and optionally triggers the SCC update for all ranks. 370 */ 371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 372 const int update) 373 { 374 u32 r; 375 376 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 377 r += NUM_RANKS_PER_SHADOW_REG) { 378 scc_mgr_set(off, grp, val); 379 380 if (update || (r == 0)) { 381 writel(grp, &sdr_scc_mgr->dqs_ena); 382 writel(0, &sdr_scc_mgr->update); 383 } 384 } 385 } 386 387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 388 { 389 /* 390 * USER although the h/w doesn't support different phases per 391 * shadow register, for simplicity our scc manager modeling 392 * keeps different phase settings per shadow reg, and it's 393 * important for us to keep them in sync to match h/w. 394 * for efficiency, the scan chain update should occur only 395 * once to sr0. 396 */ 397 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 398 read_group, phase, 0); 399 } 400 401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 402 uint32_t phase) 403 { 404 /* 405 * USER although the h/w doesn't support different phases per 406 * shadow register, for simplicity our scc manager modeling 407 * keeps different phase settings per shadow reg, and it's 408 * important for us to keep them in sync to match h/w. 409 * for efficiency, the scan chain update should occur only 410 * once to sr0. 411 */ 412 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 413 write_group, phase, 0); 414 } 415 416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 417 uint32_t delay) 418 { 419 /* 420 * In shadow register mode, the T11 settings are stored in 421 * registers in the core, which are updated by the DQS_ENA 422 * signals. Not issuing the SCC_MGR_UPD command allows us to 423 * save lots of rank switching overhead, by calling 424 * select_shadow_regs_for_update with update_scan_chains 425 * set to 0. 426 */ 427 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 428 read_group, delay, 1); 429 writel(0, &sdr_scc_mgr->update); 430 } 431 432 /** 433 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 434 * @write_group: Write group 435 * @delay: Delay value 436 * 437 * This function sets the OCT output delay in SCC manager. 438 */ 439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 440 { 441 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 443 const int base = write_group * ratio; 444 int i; 445 /* 446 * Load the setting in the SCC manager 447 * Although OCT affects only write data, the OCT delay is controlled 448 * by the DQS logic block which is instantiated once per read group. 449 * For protocols where a write group consists of multiple read groups, 450 * the setting must be set multiple times. 451 */ 452 for (i = 0; i < ratio; i++) 453 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 454 } 455 456 /** 457 * scc_mgr_set_hhp_extras() - Set HHP extras. 458 * 459 * Load the fixed setting in the SCC manager HHP extras. 460 */ 461 static void scc_mgr_set_hhp_extras(void) 462 { 463 /* 464 * Load the fixed setting in the SCC manager 465 * bits: 0:0 = 1'b1 - DQS bypass 466 * bits: 1:1 = 1'b1 - DQ bypass 467 * bits: 4:2 = 3'b001 - rfifo_mode 468 * bits: 6:5 = 2'b01 - rfifo clock_select 469 * bits: 7:7 = 1'b0 - separate gating from ungating setting 470 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 471 */ 472 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 473 (1 << 2) | (1 << 1) | (1 << 0); 474 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 475 SCC_MGR_HHP_GLOBALS_OFFSET | 476 SCC_MGR_HHP_EXTRAS_OFFSET; 477 478 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 479 __func__, __LINE__); 480 writel(value, addr); 481 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 482 __func__, __LINE__); 483 } 484 485 /* 486 * USER Zero all DQS config 487 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 488 */ 489 static void scc_mgr_zero_all(void) 490 { 491 uint32_t i, r; 492 493 /* 494 * USER Zero all DQS config settings, across all groups and all 495 * shadow registers 496 */ 497 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 498 NUM_RANKS_PER_SHADOW_REG) { 499 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 500 /* 501 * The phases actually don't exist on a per-rank basis, 502 * but there's no harm updating them several times, so 503 * let's keep the code simple. 504 */ 505 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 506 scc_mgr_set_dqs_en_phase(i, 0); 507 scc_mgr_set_dqs_en_delay(i, 0); 508 } 509 510 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 511 scc_mgr_set_dqdqs_output_phase(i, 0); 512 /* av/cv don't have out2 */ 513 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 514 } 515 } 516 517 /* multicast to all DQS group enables */ 518 writel(0xff, &sdr_scc_mgr->dqs_ena); 519 writel(0, &sdr_scc_mgr->update); 520 } 521 522 /** 523 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 524 * @write_group: Write group 525 * 526 * Set bypass mode and trigger SCC update. 527 */ 528 static void scc_set_bypass_mode(const u32 write_group) 529 { 530 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 531 if (write_group == 0) 532 scc_mgr_set_hhp_extras(); 533 534 /* Multicast to all DQ enables. */ 535 writel(0xff, &sdr_scc_mgr->dq_ena); 536 writel(0xff, &sdr_scc_mgr->dm_ena); 537 538 /* Update current DQS IO enable. */ 539 writel(0, &sdr_scc_mgr->dqs_io_ena); 540 541 /* Update the DQS logic. */ 542 writel(write_group, &sdr_scc_mgr->dqs_ena); 543 544 /* Hit update. */ 545 writel(0, &sdr_scc_mgr->update); 546 } 547 548 /** 549 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 550 * @write_group: Write group 551 * 552 * Load DQS settings for Write Group, do not trigger SCC update. 553 */ 554 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 555 { 556 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 557 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 558 const int base = write_group * ratio; 559 int i; 560 /* 561 * Load the setting in the SCC manager 562 * Although OCT affects only write data, the OCT delay is controlled 563 * by the DQS logic block which is instantiated once per read group. 564 * For protocols where a write group consists of multiple read groups, 565 * the setting must be set multiple times. 566 */ 567 for (i = 0; i < ratio; i++) 568 writel(base + i, &sdr_scc_mgr->dqs_ena); 569 } 570 571 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 572 int32_t out_only) 573 { 574 uint32_t i, r; 575 576 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 577 NUM_RANKS_PER_SHADOW_REG) { 578 /* Zero all DQ config settings */ 579 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 580 scc_mgr_set_dq_out1_delay(i, 0); 581 if (!out_only) 582 scc_mgr_set_dq_in_delay(i, 0); 583 } 584 585 /* multicast to all DQ enables */ 586 writel(0xff, &sdr_scc_mgr->dq_ena); 587 588 /* Zero all DM config settings */ 589 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 590 scc_mgr_set_dm_out1_delay(i, 0); 591 } 592 593 /* multicast to all DM enables */ 594 writel(0xff, &sdr_scc_mgr->dm_ena); 595 596 /* zero all DQS io settings */ 597 if (!out_only) 598 scc_mgr_set_dqs_io_in_delay(0); 599 /* av/cv don't have out2 */ 600 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 601 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 602 scc_mgr_load_dqs_for_write_group(write_group); 603 604 /* multicast to all DQS IO enables (only 1) */ 605 writel(0, &sdr_scc_mgr->dqs_io_ena); 606 607 /* hit update to zero everything */ 608 writel(0, &sdr_scc_mgr->update); 609 } 610 } 611 612 /* 613 * apply and load a particular input delay for the DQ pins in a group 614 * group_bgn is the index of the first dq pin (in the write group) 615 */ 616 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 617 { 618 uint32_t i, p; 619 620 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 621 scc_mgr_set_dq_in_delay(p, delay); 622 scc_mgr_load_dq(p); 623 } 624 } 625 626 /** 627 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 628 * @delay: Delay value 629 * 630 * Apply and load a particular output delay for the DQ pins in a group. 631 */ 632 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 633 { 634 int i; 635 636 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 637 scc_mgr_set_dq_out1_delay(i, delay); 638 scc_mgr_load_dq(i); 639 } 640 } 641 642 /* apply and load a particular output delay for the DM pins in a group */ 643 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 644 { 645 uint32_t i; 646 647 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 648 scc_mgr_set_dm_out1_delay(i, delay1); 649 scc_mgr_load_dm(i); 650 } 651 } 652 653 654 /* apply and load delay on both DQS and OCT out1 */ 655 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 656 uint32_t delay) 657 { 658 scc_mgr_set_dqs_out1_delay(delay); 659 scc_mgr_load_dqs_io(); 660 661 scc_mgr_set_oct_out1_delay(write_group, delay); 662 scc_mgr_load_dqs_for_write_group(write_group); 663 } 664 665 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 666 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 667 uint32_t group_bgn, 668 uint32_t delay) 669 { 670 uint32_t i, p, new_delay; 671 672 /* dq shift */ 673 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 674 new_delay = READ_SCC_DQ_OUT2_DELAY; 675 new_delay += delay; 676 677 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 678 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 679 %u > %lu => %lu", __func__, __LINE__, 680 write_group, group_bgn, delay, i, p, new_delay, 681 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 682 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 683 new_delay = IO_IO_OUT2_DELAY_MAX; 684 } 685 686 scc_mgr_load_dq(i); 687 } 688 689 /* dm shift */ 690 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 691 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 692 new_delay += delay; 693 694 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 695 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 696 %u > %lu => %lu\n", __func__, __LINE__, 697 write_group, group_bgn, delay, i, new_delay, 698 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 699 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 700 new_delay = IO_IO_OUT2_DELAY_MAX; 701 } 702 703 scc_mgr_load_dm(i); 704 } 705 706 /* dqs shift */ 707 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 708 new_delay += delay; 709 710 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 711 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 712 " adding %u to OUT1\n", __func__, __LINE__, 713 write_group, group_bgn, delay, new_delay, 714 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 715 new_delay - IO_IO_OUT2_DELAY_MAX); 716 scc_mgr_set_dqs_out1_delay(new_delay - 717 IO_IO_OUT2_DELAY_MAX); 718 new_delay = IO_IO_OUT2_DELAY_MAX; 719 } 720 721 scc_mgr_load_dqs_io(); 722 723 /* oct shift */ 724 new_delay = READ_SCC_OCT_OUT2_DELAY; 725 new_delay += delay; 726 727 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 728 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 729 " adding %u to OUT1\n", __func__, __LINE__, 730 write_group, group_bgn, delay, new_delay, 731 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 732 new_delay - IO_IO_OUT2_DELAY_MAX); 733 scc_mgr_set_oct_out1_delay(write_group, new_delay - 734 IO_IO_OUT2_DELAY_MAX); 735 new_delay = IO_IO_OUT2_DELAY_MAX; 736 } 737 738 scc_mgr_load_dqs_for_write_group(write_group); 739 } 740 741 /* 742 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 743 * and to all ranks 744 */ 745 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 746 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 747 { 748 uint32_t r; 749 750 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 751 r += NUM_RANKS_PER_SHADOW_REG) { 752 scc_mgr_apply_group_all_out_delay_add(write_group, 753 group_bgn, delay); 754 writel(0, &sdr_scc_mgr->update); 755 } 756 } 757 758 /* optimization used to recover some slots in ddr3 inst_rom */ 759 /* could be applied to other protocols if we wanted to */ 760 static void set_jump_as_return(void) 761 { 762 /* 763 * to save space, we replace return with jump to special shared 764 * RETURN instruction so we set the counter to large value so that 765 * we always jump 766 */ 767 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 768 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 769 } 770 771 /* 772 * should always use constants as argument to ensure all computations are 773 * performed at compile time 774 */ 775 static void delay_for_n_mem_clocks(const uint32_t clocks) 776 { 777 uint32_t afi_clocks; 778 uint8_t inner = 0; 779 uint8_t outer = 0; 780 uint16_t c_loop = 0; 781 782 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 783 784 785 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 786 /* scale (rounding up) to get afi clocks */ 787 788 /* 789 * Note, we don't bother accounting for being off a little bit 790 * because of a few extra instructions in outer loops 791 * Note, the loops have a test at the end, and do the test before 792 * the decrement, and so always perform the loop 793 * 1 time more than the counter value 794 */ 795 if (afi_clocks == 0) { 796 ; 797 } else if (afi_clocks <= 0x100) { 798 inner = afi_clocks-1; 799 outer = 0; 800 c_loop = 0; 801 } else if (afi_clocks <= 0x10000) { 802 inner = 0xff; 803 outer = (afi_clocks-1) >> 8; 804 c_loop = 0; 805 } else { 806 inner = 0xff; 807 outer = 0xff; 808 c_loop = (afi_clocks-1) >> 16; 809 } 810 811 /* 812 * rom instructions are structured as follows: 813 * 814 * IDLE_LOOP2: jnz cntr0, TARGET_A 815 * IDLE_LOOP1: jnz cntr1, TARGET_B 816 * return 817 * 818 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 819 * TARGET_B is set to IDLE_LOOP2 as well 820 * 821 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 822 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 823 * 824 * a little confusing, but it helps save precious space in the inst_rom 825 * and sequencer rom and keeps the delays more accurate and reduces 826 * overhead 827 */ 828 if (afi_clocks <= 0x100) { 829 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 830 &sdr_rw_load_mgr_regs->load_cntr1); 831 832 writel(RW_MGR_IDLE_LOOP1, 833 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 834 835 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 836 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 837 } else { 838 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 839 &sdr_rw_load_mgr_regs->load_cntr0); 840 841 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 842 &sdr_rw_load_mgr_regs->load_cntr1); 843 844 writel(RW_MGR_IDLE_LOOP2, 845 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 846 847 writel(RW_MGR_IDLE_LOOP2, 848 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 849 850 /* hack to get around compiler not being smart enough */ 851 if (afi_clocks <= 0x10000) { 852 /* only need to run once */ 853 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 854 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 855 } else { 856 do { 857 writel(RW_MGR_IDLE_LOOP2, 858 SDR_PHYGRP_RWMGRGRP_ADDRESS | 859 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 860 } while (c_loop-- != 0); 861 } 862 } 863 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 864 } 865 866 static void rw_mgr_mem_initialize(void) 867 { 868 uint32_t r; 869 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 870 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 871 872 debug("%s:%d\n", __func__, __LINE__); 873 874 /* The reset / cke part of initialization is broadcasted to all ranks */ 875 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 876 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 877 878 /* 879 * Here's how you load register for a loop 880 * Counters are located @ 0x800 881 * Jump address are located @ 0xC00 882 * For both, registers 0 to 3 are selected using bits 3 and 2, like 883 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 884 * I know this ain't pretty, but Avalon bus throws away the 2 least 885 * significant bits 886 */ 887 888 /* start with memory RESET activated */ 889 890 /* tINIT = 200us */ 891 892 /* 893 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 894 * If a and b are the number of iteration in 2 nested loops 895 * it takes the following number of cycles to complete the operation: 896 * number_of_cycles = ((2 + n) * a + 2) * b 897 * where n is the number of instruction in the inner loop 898 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 899 * b = 6A 900 */ 901 902 /* Load counters */ 903 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 904 &sdr_rw_load_mgr_regs->load_cntr0); 905 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 906 &sdr_rw_load_mgr_regs->load_cntr1); 907 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 908 &sdr_rw_load_mgr_regs->load_cntr2); 909 910 /* Load jump address */ 911 writel(RW_MGR_INIT_RESET_0_CKE_0, 912 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 913 writel(RW_MGR_INIT_RESET_0_CKE_0, 914 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 915 writel(RW_MGR_INIT_RESET_0_CKE_0, 916 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 917 918 /* Execute count instruction */ 919 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 920 921 /* indicate that memory is stable */ 922 writel(1, &phy_mgr_cfg->reset_mem_stbl); 923 924 /* 925 * transition the RESET to high 926 * Wait for 500us 927 */ 928 929 /* 930 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 931 * If a and b are the number of iteration in 2 nested loops 932 * it takes the following number of cycles to complete the operation 933 * number_of_cycles = ((2 + n) * a + 2) * b 934 * where n is the number of instruction in the inner loop 935 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 936 * b = FF 937 */ 938 939 /* Load counters */ 940 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 941 &sdr_rw_load_mgr_regs->load_cntr0); 942 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 943 &sdr_rw_load_mgr_regs->load_cntr1); 944 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 945 &sdr_rw_load_mgr_regs->load_cntr2); 946 947 /* Load jump address */ 948 writel(RW_MGR_INIT_RESET_1_CKE_0, 949 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 950 writel(RW_MGR_INIT_RESET_1_CKE_0, 951 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 952 writel(RW_MGR_INIT_RESET_1_CKE_0, 953 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 954 955 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 956 957 /* bring up clock enable */ 958 959 /* tXRP < 250 ck cycles */ 960 delay_for_n_mem_clocks(250); 961 962 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 963 if (param->skip_ranks[r]) { 964 /* request to skip the rank */ 965 continue; 966 } 967 968 /* set rank */ 969 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 970 971 /* 972 * USER Use Mirror-ed commands for odd ranks if address 973 * mirrorring is on 974 */ 975 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 976 set_jump_as_return(); 977 writel(RW_MGR_MRS2_MIRR, grpaddr); 978 delay_for_n_mem_clocks(4); 979 set_jump_as_return(); 980 writel(RW_MGR_MRS3_MIRR, grpaddr); 981 delay_for_n_mem_clocks(4); 982 set_jump_as_return(); 983 writel(RW_MGR_MRS1_MIRR, grpaddr); 984 delay_for_n_mem_clocks(4); 985 set_jump_as_return(); 986 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 987 } else { 988 set_jump_as_return(); 989 writel(RW_MGR_MRS2, grpaddr); 990 delay_for_n_mem_clocks(4); 991 set_jump_as_return(); 992 writel(RW_MGR_MRS3, grpaddr); 993 delay_for_n_mem_clocks(4); 994 set_jump_as_return(); 995 writel(RW_MGR_MRS1, grpaddr); 996 set_jump_as_return(); 997 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 998 } 999 set_jump_as_return(); 1000 writel(RW_MGR_ZQCL, grpaddr); 1001 1002 /* tZQinit = tDLLK = 512 ck cycles */ 1003 delay_for_n_mem_clocks(512); 1004 } 1005 } 1006 1007 /* 1008 * At the end of calibration we have to program the user settings in, and 1009 * USER hand off the memory to the user. 1010 */ 1011 static void rw_mgr_mem_handoff(void) 1012 { 1013 uint32_t r; 1014 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1015 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1016 1017 debug("%s:%d\n", __func__, __LINE__); 1018 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1019 if (param->skip_ranks[r]) 1020 /* request to skip the rank */ 1021 continue; 1022 /* set rank */ 1023 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1024 1025 /* precharge all banks ... */ 1026 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1027 1028 /* load up MR settings specified by user */ 1029 1030 /* 1031 * Use Mirror-ed commands for odd ranks if address 1032 * mirrorring is on 1033 */ 1034 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1035 set_jump_as_return(); 1036 writel(RW_MGR_MRS2_MIRR, grpaddr); 1037 delay_for_n_mem_clocks(4); 1038 set_jump_as_return(); 1039 writel(RW_MGR_MRS3_MIRR, grpaddr); 1040 delay_for_n_mem_clocks(4); 1041 set_jump_as_return(); 1042 writel(RW_MGR_MRS1_MIRR, grpaddr); 1043 delay_for_n_mem_clocks(4); 1044 set_jump_as_return(); 1045 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1046 } else { 1047 set_jump_as_return(); 1048 writel(RW_MGR_MRS2, grpaddr); 1049 delay_for_n_mem_clocks(4); 1050 set_jump_as_return(); 1051 writel(RW_MGR_MRS3, grpaddr); 1052 delay_for_n_mem_clocks(4); 1053 set_jump_as_return(); 1054 writel(RW_MGR_MRS1, grpaddr); 1055 delay_for_n_mem_clocks(4); 1056 set_jump_as_return(); 1057 writel(RW_MGR_MRS0_USER, grpaddr); 1058 } 1059 /* 1060 * USER need to wait tMOD (12CK or 15ns) time before issuing 1061 * other commands, but we will have plenty of NIOS cycles before 1062 * actual handoff so its okay. 1063 */ 1064 } 1065 } 1066 1067 /* 1068 * performs a guaranteed read on the patterns we are going to use during a 1069 * read test to ensure memory works 1070 */ 1071 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1072 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1073 uint32_t all_ranks) 1074 { 1075 uint32_t r, vg; 1076 uint32_t correct_mask_vg; 1077 uint32_t tmp_bit_chk; 1078 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1079 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1080 uint32_t addr; 1081 uint32_t base_rw_mgr; 1082 1083 *bit_chk = param->read_correct_mask; 1084 correct_mask_vg = param->read_correct_mask_vg; 1085 1086 for (r = rank_bgn; r < rank_end; r++) { 1087 if (param->skip_ranks[r]) 1088 /* request to skip the rank */ 1089 continue; 1090 1091 /* set rank */ 1092 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1093 1094 /* Load up a constant bursts of read commands */ 1095 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1096 writel(RW_MGR_GUARANTEED_READ, 1097 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1098 1099 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1100 writel(RW_MGR_GUARANTEED_READ_CONT, 1101 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1102 1103 tmp_bit_chk = 0; 1104 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1105 /* reset the fifos to get pointers to known state */ 1106 1107 writel(0, &phy_mgr_cmd->fifo_reset); 1108 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1109 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1110 1111 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1112 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1113 1114 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1115 writel(RW_MGR_GUARANTEED_READ, addr + 1116 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1117 vg) << 2)); 1118 1119 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1120 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1121 1122 if (vg == 0) 1123 break; 1124 } 1125 *bit_chk &= tmp_bit_chk; 1126 } 1127 1128 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1129 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1130 1131 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1132 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1133 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1134 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1135 return *bit_chk == param->read_correct_mask; 1136 } 1137 1138 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1139 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1140 { 1141 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1142 num_tries, bit_chk, 1); 1143 } 1144 1145 /* load up the patterns we are going to use during a read test */ 1146 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1147 uint32_t all_ranks) 1148 { 1149 uint32_t r; 1150 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1151 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1152 1153 debug("%s:%d\n", __func__, __LINE__); 1154 for (r = rank_bgn; r < rank_end; r++) { 1155 if (param->skip_ranks[r]) 1156 /* request to skip the rank */ 1157 continue; 1158 1159 /* set rank */ 1160 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1161 1162 /* Load up a constant bursts */ 1163 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1166 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1167 1168 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1169 1170 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1171 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1172 1173 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1174 1175 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1176 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1177 1178 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1179 1180 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1181 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1182 1183 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1184 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1185 } 1186 1187 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1188 } 1189 1190 /* 1191 * try a read and see if it returns correct data back. has dummy reads 1192 * inserted into the mix used to align dqs enable. has more thorough checks 1193 * than the regular read test. 1194 */ 1195 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1196 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1197 uint32_t all_groups, uint32_t all_ranks) 1198 { 1199 uint32_t r, vg; 1200 uint32_t correct_mask_vg; 1201 uint32_t tmp_bit_chk; 1202 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1203 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1204 uint32_t addr; 1205 uint32_t base_rw_mgr; 1206 1207 *bit_chk = param->read_correct_mask; 1208 correct_mask_vg = param->read_correct_mask_vg; 1209 1210 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1211 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1212 1213 for (r = rank_bgn; r < rank_end; r++) { 1214 if (param->skip_ranks[r]) 1215 /* request to skip the rank */ 1216 continue; 1217 1218 /* set rank */ 1219 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1220 1221 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1222 1223 writel(RW_MGR_READ_B2B_WAIT1, 1224 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1225 1226 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1227 writel(RW_MGR_READ_B2B_WAIT2, 1228 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1229 1230 if (quick_read_mode) 1231 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1232 /* need at least two (1+1) reads to capture failures */ 1233 else if (all_groups) 1234 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1235 else 1236 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1237 1238 writel(RW_MGR_READ_B2B, 1239 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1240 if (all_groups) 1241 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1242 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1243 &sdr_rw_load_mgr_regs->load_cntr3); 1244 else 1245 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1246 1247 writel(RW_MGR_READ_B2B, 1248 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1249 1250 tmp_bit_chk = 0; 1251 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1252 /* reset the fifos to get pointers to known state */ 1253 writel(0, &phy_mgr_cmd->fifo_reset); 1254 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1255 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1256 1257 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1258 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1259 1260 if (all_groups) 1261 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1262 else 1263 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1264 1265 writel(RW_MGR_READ_B2B, addr + 1266 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1267 vg) << 2)); 1268 1269 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1270 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1271 1272 if (vg == 0) 1273 break; 1274 } 1275 *bit_chk &= tmp_bit_chk; 1276 } 1277 1278 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1279 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1280 1281 if (all_correct) { 1282 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1283 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1284 (%u == %u) => %lu", __func__, __LINE__, group, 1285 all_groups, *bit_chk, param->read_correct_mask, 1286 (long unsigned int)(*bit_chk == 1287 param->read_correct_mask)); 1288 return *bit_chk == param->read_correct_mask; 1289 } else { 1290 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1291 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1292 (%u != %lu) => %lu\n", __func__, __LINE__, 1293 group, all_groups, *bit_chk, (long unsigned int)0, 1294 (long unsigned int)(*bit_chk != 0x00)); 1295 return *bit_chk != 0x00; 1296 } 1297 } 1298 1299 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1300 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1301 uint32_t all_groups) 1302 { 1303 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1304 bit_chk, all_groups, 1); 1305 } 1306 1307 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1308 { 1309 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1310 (*v)++; 1311 } 1312 1313 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1314 { 1315 uint32_t i; 1316 1317 for (i = 0; i < VFIFO_SIZE-1; i++) 1318 rw_mgr_incr_vfifo(grp, v); 1319 } 1320 1321 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1322 { 1323 uint32_t v; 1324 uint32_t fail_cnt = 0; 1325 uint32_t test_status; 1326 1327 for (v = 0; v < VFIFO_SIZE; ) { 1328 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1329 __func__, __LINE__, v); 1330 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1331 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1332 if (!test_status) { 1333 fail_cnt++; 1334 1335 if (fail_cnt == 2) 1336 break; 1337 } 1338 1339 /* fiddle with FIFO */ 1340 rw_mgr_incr_vfifo(grp, &v); 1341 } 1342 1343 if (v >= VFIFO_SIZE) { 1344 /* no failing read found!! Something must have gone wrong */ 1345 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1346 __func__, __LINE__); 1347 return 0; 1348 } else { 1349 return v; 1350 } 1351 } 1352 1353 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1354 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1355 uint32_t *v, uint32_t *d, uint32_t *p, 1356 uint32_t *i, uint32_t *max_working_cnt) 1357 { 1358 uint32_t found_begin = 0; 1359 uint32_t tmp_delay = 0; 1360 uint32_t test_status; 1361 1362 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1363 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1364 *work_bgn = tmp_delay; 1365 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1366 1367 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1368 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1369 IO_DELAY_PER_OPA_TAP) { 1370 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1371 1372 test_status = 1373 rw_mgr_mem_calibrate_read_test_all_ranks 1374 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1375 1376 if (test_status) { 1377 *max_working_cnt = 1; 1378 found_begin = 1; 1379 break; 1380 } 1381 } 1382 1383 if (found_begin) 1384 break; 1385 1386 if (*p > IO_DQS_EN_PHASE_MAX) 1387 /* fiddle with FIFO */ 1388 rw_mgr_incr_vfifo(*grp, v); 1389 } 1390 1391 if (found_begin) 1392 break; 1393 } 1394 1395 if (*i >= VFIFO_SIZE) { 1396 /* cannot find working solution */ 1397 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1398 ptap/dtap\n", __func__, __LINE__); 1399 return 0; 1400 } else { 1401 return 1; 1402 } 1403 } 1404 1405 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1406 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1407 uint32_t *p, uint32_t *max_working_cnt) 1408 { 1409 uint32_t found_begin = 0; 1410 uint32_t tmp_delay; 1411 1412 /* Special case code for backing up a phase */ 1413 if (*p == 0) { 1414 *p = IO_DQS_EN_PHASE_MAX; 1415 rw_mgr_decr_vfifo(*grp, v); 1416 } else { 1417 (*p)--; 1418 } 1419 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1420 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1421 1422 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1423 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1424 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1425 1426 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1427 PASS_ONE_BIT, 1428 bit_chk, 0)) { 1429 found_begin = 1; 1430 *work_bgn = tmp_delay; 1431 break; 1432 } 1433 } 1434 1435 /* We have found a working dtap before the ptap found above */ 1436 if (found_begin == 1) 1437 (*max_working_cnt)++; 1438 1439 /* 1440 * Restore VFIFO to old state before we decremented it 1441 * (if needed). 1442 */ 1443 (*p)++; 1444 if (*p > IO_DQS_EN_PHASE_MAX) { 1445 *p = 0; 1446 rw_mgr_incr_vfifo(*grp, v); 1447 } 1448 1449 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1450 } 1451 1452 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1453 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1454 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1455 uint32_t *work_end) 1456 { 1457 uint32_t found_end = 0; 1458 1459 (*p)++; 1460 *work_end += IO_DELAY_PER_OPA_TAP; 1461 if (*p > IO_DQS_EN_PHASE_MAX) { 1462 /* fiddle with FIFO */ 1463 *p = 0; 1464 rw_mgr_incr_vfifo(*grp, v); 1465 } 1466 1467 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1468 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1469 += IO_DELAY_PER_OPA_TAP) { 1470 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1471 1472 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1473 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1474 found_end = 1; 1475 break; 1476 } else { 1477 (*max_working_cnt)++; 1478 } 1479 } 1480 1481 if (found_end) 1482 break; 1483 1484 if (*p > IO_DQS_EN_PHASE_MAX) { 1485 /* fiddle with FIFO */ 1486 rw_mgr_incr_vfifo(*grp, v); 1487 *p = 0; 1488 } 1489 } 1490 1491 if (*i >= VFIFO_SIZE + 1) { 1492 /* cannot see edge of failing read */ 1493 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1494 failed\n", __func__, __LINE__); 1495 return 0; 1496 } else { 1497 return 1; 1498 } 1499 } 1500 1501 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1502 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1503 uint32_t *p, uint32_t *work_mid, 1504 uint32_t *work_end) 1505 { 1506 int i; 1507 int tmp_delay = 0; 1508 1509 *work_mid = (*work_bgn + *work_end) / 2; 1510 1511 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1512 *work_bgn, *work_end, *work_mid); 1513 /* Get the middle delay to be less than a VFIFO delay */ 1514 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1515 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1516 ; 1517 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1518 while (*work_mid > tmp_delay) 1519 *work_mid -= tmp_delay; 1520 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1521 1522 tmp_delay = 0; 1523 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1524 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1525 ; 1526 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1527 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1528 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1529 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1530 ; 1531 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1532 1533 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1534 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1535 1536 /* 1537 * push vfifo until we can successfully calibrate. We can do this 1538 * because the largest possible margin in 1 VFIFO cycle. 1539 */ 1540 for (i = 0; i < VFIFO_SIZE; i++) { 1541 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1542 *v); 1543 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1544 PASS_ONE_BIT, 1545 bit_chk, 0)) { 1546 break; 1547 } 1548 1549 /* fiddle with FIFO */ 1550 rw_mgr_incr_vfifo(*grp, v); 1551 } 1552 1553 if (i >= VFIFO_SIZE) { 1554 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1555 failed\n", __func__, __LINE__); 1556 return 0; 1557 } else { 1558 return 1; 1559 } 1560 } 1561 1562 /* find a good dqs enable to use */ 1563 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1564 { 1565 uint32_t v, d, p, i; 1566 uint32_t max_working_cnt; 1567 uint32_t bit_chk; 1568 uint32_t dtaps_per_ptap; 1569 uint32_t work_bgn, work_mid, work_end; 1570 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1571 1572 debug("%s:%d %u\n", __func__, __LINE__, grp); 1573 1574 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1575 1576 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1577 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1578 1579 /* ************************************************************** */ 1580 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1581 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1582 1583 /* ********************************************************* */ 1584 /* * Step 1 : First push vfifo until we get a failing read * */ 1585 v = find_vfifo_read(grp, &bit_chk); 1586 1587 max_working_cnt = 0; 1588 1589 /* ******************************************************** */ 1590 /* * step 2: find first working phase, increment in ptaps * */ 1591 work_bgn = 0; 1592 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1593 &p, &i, &max_working_cnt) == 0) 1594 return 0; 1595 1596 work_end = work_bgn; 1597 1598 /* 1599 * If d is 0 then the working window covers a phase tap and 1600 * we can follow the old procedure otherwise, we've found the beginning, 1601 * and we need to increment the dtaps until we find the end. 1602 */ 1603 if (d == 0) { 1604 /* ********************************************************* */ 1605 /* * step 3a: if we have room, back off by one and 1606 increment in dtaps * */ 1607 1608 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1609 &max_working_cnt); 1610 1611 /* ********************************************************* */ 1612 /* * step 4a: go forward from working phase to non working 1613 phase, increment in ptaps * */ 1614 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1615 &i, &max_working_cnt, &work_end) == 0) 1616 return 0; 1617 1618 /* ********************************************************* */ 1619 /* * step 5a: back off one from last, increment in dtaps * */ 1620 1621 /* Special case code for backing up a phase */ 1622 if (p == 0) { 1623 p = IO_DQS_EN_PHASE_MAX; 1624 rw_mgr_decr_vfifo(grp, &v); 1625 } else { 1626 p = p - 1; 1627 } 1628 1629 work_end -= IO_DELAY_PER_OPA_TAP; 1630 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1631 1632 /* * The actual increment of dtaps is done outside of 1633 the if/else loop to share code */ 1634 d = 0; 1635 1636 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1637 vfifo=%u ptap=%u\n", __func__, __LINE__, 1638 v, p); 1639 } else { 1640 /* ******************************************************* */ 1641 /* * step 3-5b: Find the right edge of the window using 1642 delay taps * */ 1643 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1644 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1645 v, p, d, work_bgn); 1646 1647 work_end = work_bgn; 1648 1649 /* * The actual increment of dtaps is done outside of the 1650 if/else loop to share code */ 1651 1652 /* Only here to counterbalance a subtract later on which is 1653 not needed if this branch of the algorithm is taken */ 1654 max_working_cnt++; 1655 } 1656 1657 /* The dtap increment to find the failing edge is done here */ 1658 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1659 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1660 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1661 end-2: dtap=%u\n", __func__, __LINE__, d); 1662 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1663 1664 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1665 PASS_ONE_BIT, 1666 &bit_chk, 0)) { 1667 break; 1668 } 1669 } 1670 1671 /* Go back to working dtap */ 1672 if (d != 0) 1673 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1674 1675 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1676 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1677 v, p, d-1, work_end); 1678 1679 if (work_end < work_bgn) { 1680 /* nil range */ 1681 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1682 failed\n", __func__, __LINE__); 1683 return 0; 1684 } 1685 1686 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1687 __func__, __LINE__, work_bgn, work_end); 1688 1689 /* *************************************************************** */ 1690 /* 1691 * * We need to calculate the number of dtaps that equal a ptap 1692 * * To do that we'll back up a ptap and re-find the edge of the 1693 * * window using dtaps 1694 */ 1695 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1697 for tracking\n", __func__, __LINE__); 1698 1699 /* Special case code for backing up a phase */ 1700 if (p == 0) { 1701 p = IO_DQS_EN_PHASE_MAX; 1702 rw_mgr_decr_vfifo(grp, &v); 1703 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1704 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1705 v, p); 1706 } else { 1707 p = p - 1; 1708 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1709 phase only: v=%u p=%u", __func__, __LINE__, 1710 v, p); 1711 } 1712 1713 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1714 1715 /* 1716 * Increase dtap until we first see a passing read (in case the 1717 * window is smaller than a ptap), 1718 * and then a failing read to mark the edge of the window again 1719 */ 1720 1721 /* Find a passing read */ 1722 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1723 __func__, __LINE__); 1724 found_passing_read = 0; 1725 found_failing_read = 0; 1726 initial_failing_dtap = d; 1727 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1728 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1729 read d=%u\n", __func__, __LINE__, d); 1730 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1731 1732 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1733 PASS_ONE_BIT, 1734 &bit_chk, 0)) { 1735 found_passing_read = 1; 1736 break; 1737 } 1738 } 1739 1740 if (found_passing_read) { 1741 /* Find a failing read */ 1742 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1743 read\n", __func__, __LINE__); 1744 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1745 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1746 testing read d=%u\n", __func__, __LINE__, d); 1747 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1748 1749 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1750 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1751 found_failing_read = 1; 1752 break; 1753 } 1754 } 1755 } else { 1756 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1757 calculate dtaps", __func__, __LINE__); 1758 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1759 } 1760 1761 /* 1762 * The dynamically calculated dtaps_per_ptap is only valid if we 1763 * found a passing/failing read. If we didn't, it means d hit the max 1764 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1765 * statically calculated value. 1766 */ 1767 if (found_passing_read && found_failing_read) 1768 dtaps_per_ptap = d - initial_failing_dtap; 1769 1770 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1771 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1772 - %u = %u", __func__, __LINE__, d, 1773 initial_failing_dtap, dtaps_per_ptap); 1774 1775 /* ******************************************** */ 1776 /* * step 6: Find the centre of the window * */ 1777 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1778 &work_mid, &work_end) == 0) 1779 return 0; 1780 1781 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1782 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1783 v, p-1, d); 1784 return 1; 1785 } 1786 1787 /* 1788 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1789 * dq_in_delay values 1790 */ 1791 static uint32_t 1792 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1793 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1794 { 1795 uint32_t found; 1796 uint32_t i; 1797 uint32_t p; 1798 uint32_t d; 1799 uint32_t r; 1800 1801 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1802 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1803 /* we start at zero, so have one less dq to devide among */ 1804 1805 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1806 test_bgn); 1807 1808 /* try different dq_in_delays since the dq path is shorter than dqs */ 1809 1810 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1811 r += NUM_RANKS_PER_SHADOW_REG) { 1812 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1813 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1814 vfifo_find_dqs_", __func__, __LINE__); 1815 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1816 write_group, read_group); 1817 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1818 scc_mgr_set_dq_in_delay(p, d); 1819 scc_mgr_load_dq(p); 1820 } 1821 writel(0, &sdr_scc_mgr->update); 1822 } 1823 1824 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1825 1826 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1827 en_phase_sweep_dq", __func__, __LINE__); 1828 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1829 chain to zero\n", write_group, read_group, found); 1830 1831 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1832 r += NUM_RANKS_PER_SHADOW_REG) { 1833 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1834 i++, p++) { 1835 scc_mgr_set_dq_in_delay(p, 0); 1836 scc_mgr_load_dq(p); 1837 } 1838 writel(0, &sdr_scc_mgr->update); 1839 } 1840 1841 return found; 1842 } 1843 1844 /* per-bit deskew DQ and center */ 1845 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1846 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1847 uint32_t use_read_test, uint32_t update_fom) 1848 { 1849 uint32_t i, p, d, min_index; 1850 /* 1851 * Store these as signed since there are comparisons with 1852 * signed numbers. 1853 */ 1854 uint32_t bit_chk; 1855 uint32_t sticky_bit_chk; 1856 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1857 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1858 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1859 int32_t mid; 1860 int32_t orig_mid_min, mid_min; 1861 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1862 final_dqs_en; 1863 int32_t dq_margin, dqs_margin; 1864 uint32_t stop; 1865 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1866 uint32_t addr; 1867 1868 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1869 1870 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1871 start_dqs = readl(addr + (read_group << 2)); 1872 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1873 start_dqs_en = readl(addr + ((read_group << 2) 1874 - IO_DQS_EN_DELAY_OFFSET)); 1875 1876 /* set the left and right edge of each bit to an illegal value */ 1877 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1878 sticky_bit_chk = 0; 1879 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1880 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1881 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1882 } 1883 1884 /* Search for the left edge of the window for each bit */ 1885 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1886 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1887 1888 writel(0, &sdr_scc_mgr->update); 1889 1890 /* 1891 * Stop searching when the read test doesn't pass AND when 1892 * we've seen a passing read on every bit. 1893 */ 1894 if (use_read_test) { 1895 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1896 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1897 &bit_chk, 0, 0); 1898 } else { 1899 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1900 0, PASS_ONE_BIT, 1901 &bit_chk, 0); 1902 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1903 (read_group - (write_group * 1904 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1905 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1906 stop = (bit_chk == 0); 1907 } 1908 sticky_bit_chk = sticky_bit_chk | bit_chk; 1909 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1910 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1911 && %u", __func__, __LINE__, d, 1912 sticky_bit_chk, 1913 param->read_correct_mask, stop); 1914 1915 if (stop == 1) { 1916 break; 1917 } else { 1918 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1919 if (bit_chk & 1) { 1920 /* Remember a passing test as the 1921 left_edge */ 1922 left_edge[i] = d; 1923 } else { 1924 /* If a left edge has not been seen yet, 1925 then a future passing test will mark 1926 this edge as the right edge */ 1927 if (left_edge[i] == 1928 IO_IO_IN_DELAY_MAX + 1) { 1929 right_edge[i] = -(d + 1); 1930 } 1931 } 1932 bit_chk = bit_chk >> 1; 1933 } 1934 } 1935 } 1936 1937 /* Reset DQ delay chains to 0 */ 1938 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1939 sticky_bit_chk = 0; 1940 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1941 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1942 %d right_edge[%u]: %d\n", __func__, __LINE__, 1943 i, left_edge[i], i, right_edge[i]); 1944 1945 /* 1946 * Check for cases where we haven't found the left edge, 1947 * which makes our assignment of the the right edge invalid. 1948 * Reset it to the illegal value. 1949 */ 1950 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1951 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1952 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1953 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1954 right_edge[%u]: %d\n", __func__, __LINE__, 1955 i, right_edge[i]); 1956 } 1957 1958 /* 1959 * Reset sticky bit (except for bits where we have seen 1960 * both the left and right edge). 1961 */ 1962 sticky_bit_chk = sticky_bit_chk << 1; 1963 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1964 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1965 sticky_bit_chk = sticky_bit_chk | 1; 1966 } 1967 1968 if (i == 0) 1969 break; 1970 } 1971 1972 /* Search for the right edge of the window for each bit */ 1973 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1974 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1975 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1976 uint32_t delay = d + start_dqs_en; 1977 if (delay > IO_DQS_EN_DELAY_MAX) 1978 delay = IO_DQS_EN_DELAY_MAX; 1979 scc_mgr_set_dqs_en_delay(read_group, delay); 1980 } 1981 scc_mgr_load_dqs(read_group); 1982 1983 writel(0, &sdr_scc_mgr->update); 1984 1985 /* 1986 * Stop searching when the read test doesn't pass AND when 1987 * we've seen a passing read on every bit. 1988 */ 1989 if (use_read_test) { 1990 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1991 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1992 &bit_chk, 0, 0); 1993 } else { 1994 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1995 0, PASS_ONE_BIT, 1996 &bit_chk, 0); 1997 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1998 (read_group - (write_group * 1999 RW_MGR_MEM_IF_READ_DQS_WIDTH / 2000 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 2001 stop = (bit_chk == 0); 2002 } 2003 sticky_bit_chk = sticky_bit_chk | bit_chk; 2004 stop = stop && (sticky_bit_chk == param->read_correct_mask); 2005 2006 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2007 %u && %u", __func__, __LINE__, d, 2008 sticky_bit_chk, param->read_correct_mask, stop); 2009 2010 if (stop == 1) { 2011 break; 2012 } else { 2013 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2014 if (bit_chk & 1) { 2015 /* Remember a passing test as 2016 the right_edge */ 2017 right_edge[i] = d; 2018 } else { 2019 if (d != 0) { 2020 /* If a right edge has not been 2021 seen yet, then a future passing 2022 test will mark this edge as the 2023 left edge */ 2024 if (right_edge[i] == 2025 IO_IO_IN_DELAY_MAX + 1) { 2026 left_edge[i] = -(d + 1); 2027 } 2028 } else { 2029 /* d = 0 failed, but it passed 2030 when testing the left edge, 2031 so it must be marginal, 2032 set it to -1 */ 2033 if (right_edge[i] == 2034 IO_IO_IN_DELAY_MAX + 1 && 2035 left_edge[i] != 2036 IO_IO_IN_DELAY_MAX 2037 + 1) { 2038 right_edge[i] = -1; 2039 } 2040 /* If a right edge has not been 2041 seen yet, then a future passing 2042 test will mark this edge as the 2043 left edge */ 2044 else if (right_edge[i] == 2045 IO_IO_IN_DELAY_MAX + 2046 1) { 2047 left_edge[i] = -(d + 1); 2048 } 2049 } 2050 } 2051 2052 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2053 d=%u]: ", __func__, __LINE__, d); 2054 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2055 (int)(bit_chk & 1), i, left_edge[i]); 2056 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2057 right_edge[i]); 2058 bit_chk = bit_chk >> 1; 2059 } 2060 } 2061 } 2062 2063 /* Check that all bits have a window */ 2064 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2065 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2066 %d right_edge[%u]: %d", __func__, __LINE__, 2067 i, left_edge[i], i, right_edge[i]); 2068 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2069 == IO_IO_IN_DELAY_MAX + 1)) { 2070 /* 2071 * Restore delay chain settings before letting the loop 2072 * in rw_mgr_mem_calibrate_vfifo to retry different 2073 * dqs/ck relationships. 2074 */ 2075 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2076 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2077 scc_mgr_set_dqs_en_delay(read_group, 2078 start_dqs_en); 2079 } 2080 scc_mgr_load_dqs(read_group); 2081 writel(0, &sdr_scc_mgr->update); 2082 2083 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2084 find edge [%u]: %d %d", __func__, __LINE__, 2085 i, left_edge[i], right_edge[i]); 2086 if (use_read_test) { 2087 set_failing_group_stage(read_group * 2088 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2089 CAL_STAGE_VFIFO, 2090 CAL_SUBSTAGE_VFIFO_CENTER); 2091 } else { 2092 set_failing_group_stage(read_group * 2093 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2094 CAL_STAGE_VFIFO_AFTER_WRITES, 2095 CAL_SUBSTAGE_VFIFO_CENTER); 2096 } 2097 return 0; 2098 } 2099 } 2100 2101 /* Find middle of window for each DQ bit */ 2102 mid_min = left_edge[0] - right_edge[0]; 2103 min_index = 0; 2104 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2105 mid = left_edge[i] - right_edge[i]; 2106 if (mid < mid_min) { 2107 mid_min = mid; 2108 min_index = i; 2109 } 2110 } 2111 2112 /* 2113 * -mid_min/2 represents the amount that we need to move DQS. 2114 * If mid_min is odd and positive we'll need to add one to 2115 * make sure the rounding in further calculations is correct 2116 * (always bias to the right), so just add 1 for all positive values. 2117 */ 2118 if (mid_min > 0) 2119 mid_min++; 2120 2121 mid_min = mid_min / 2; 2122 2123 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2124 __func__, __LINE__, mid_min, min_index); 2125 2126 /* Determine the amount we can change DQS (which is -mid_min) */ 2127 orig_mid_min = mid_min; 2128 new_dqs = start_dqs - mid_min; 2129 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2130 new_dqs = IO_DQS_IN_DELAY_MAX; 2131 else if (new_dqs < 0) 2132 new_dqs = 0; 2133 2134 mid_min = start_dqs - new_dqs; 2135 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2136 mid_min, new_dqs); 2137 2138 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2139 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2140 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2141 else if (start_dqs_en - mid_min < 0) 2142 mid_min += start_dqs_en - mid_min; 2143 } 2144 new_dqs = start_dqs - mid_min; 2145 2146 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2147 new_dqs=%d mid_min=%d\n", start_dqs, 2148 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2149 new_dqs, mid_min); 2150 2151 /* Initialize data for export structures */ 2152 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2153 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2154 2155 /* add delay to bring centre of all DQ windows to the same "level" */ 2156 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2157 /* Use values before divide by 2 to reduce round off error */ 2158 shift_dq = (left_edge[i] - right_edge[i] - 2159 (left_edge[min_index] - right_edge[min_index]))/2 + 2160 (orig_mid_min - mid_min); 2161 2162 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2163 shift_dq[%u]=%d\n", i, shift_dq); 2164 2165 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2166 temp_dq_in_delay1 = readl(addr + (p << 2)); 2167 temp_dq_in_delay2 = readl(addr + (i << 2)); 2168 2169 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2170 (int32_t)IO_IO_IN_DELAY_MAX) { 2171 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2172 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2173 shift_dq = -(int32_t)temp_dq_in_delay1; 2174 } 2175 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2176 shift_dq[%u]=%d\n", i, shift_dq); 2177 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2178 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2179 scc_mgr_load_dq(p); 2180 2181 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2182 left_edge[i] - shift_dq + (-mid_min), 2183 right_edge[i] + shift_dq - (-mid_min)); 2184 /* To determine values for export structures */ 2185 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2186 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2187 2188 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2189 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2190 } 2191 2192 final_dqs = new_dqs; 2193 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2194 final_dqs_en = start_dqs_en - mid_min; 2195 2196 /* Move DQS-en */ 2197 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2198 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2199 scc_mgr_load_dqs(read_group); 2200 } 2201 2202 /* Move DQS */ 2203 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2204 scc_mgr_load_dqs(read_group); 2205 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2206 dqs_margin=%d", __func__, __LINE__, 2207 dq_margin, dqs_margin); 2208 2209 /* 2210 * Do not remove this line as it makes sure all of our decisions 2211 * have been applied. Apply the update bit. 2212 */ 2213 writel(0, &sdr_scc_mgr->update); 2214 2215 return (dq_margin >= 0) && (dqs_margin >= 0); 2216 } 2217 2218 /* 2219 * calibrate the read valid prediction FIFO. 2220 * 2221 * - read valid prediction will consist of finding a good DQS enable phase, 2222 * DQS enable delay, DQS input phase, and DQS input delay. 2223 * - we also do a per-bit deskew on the DQ lines. 2224 */ 2225 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2226 uint32_t test_bgn) 2227 { 2228 uint32_t p, d, rank_bgn, sr; 2229 uint32_t dtaps_per_ptap; 2230 uint32_t tmp_delay; 2231 uint32_t bit_chk; 2232 uint32_t grp_calibrated; 2233 uint32_t write_group, write_test_bgn; 2234 uint32_t failed_substage; 2235 2236 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2237 2238 /* update info for sims */ 2239 reg_file_set_stage(CAL_STAGE_VFIFO); 2240 2241 write_group = read_group; 2242 write_test_bgn = test_bgn; 2243 2244 /* USER Determine number of delay taps for each phase tap */ 2245 dtaps_per_ptap = 0; 2246 tmp_delay = 0; 2247 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2248 dtaps_per_ptap++; 2249 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2250 } 2251 dtaps_per_ptap--; 2252 tmp_delay = 0; 2253 2254 /* update info for sims */ 2255 reg_file_set_group(read_group); 2256 2257 grp_calibrated = 0; 2258 2259 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2260 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2261 2262 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2263 /* 2264 * In RLDRAMX we may be messing the delay of pins in 2265 * the same write group but outside of the current read 2266 * the group, but that's ok because we haven't 2267 * calibrated output side yet. 2268 */ 2269 if (d > 0) { 2270 scc_mgr_apply_group_all_out_delay_add_all_ranks 2271 (write_group, write_test_bgn, d); 2272 } 2273 2274 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2275 p++) { 2276 /* set a particular dqdqs phase */ 2277 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2278 2279 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2280 p=%u d=%u\n", __func__, __LINE__, 2281 read_group, p, d); 2282 2283 /* 2284 * Load up the patterns used by read calibration 2285 * using current DQDQS phase. 2286 */ 2287 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2288 if (!(gbl->phy_debug_mode_flags & 2289 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2290 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2291 (read_group, 1, &bit_chk)) { 2292 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2293 __func__, __LINE__); 2294 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2295 read_group, p, d); 2296 break; 2297 } 2298 } 2299 2300 /* case:56390 */ 2301 grp_calibrated = 1; 2302 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2303 (write_group, read_group, test_bgn)) { 2304 /* 2305 * USER Read per-bit deskew can be done on a 2306 * per shadow register basis. 2307 */ 2308 for (rank_bgn = 0, sr = 0; 2309 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2310 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2311 ++sr) { 2312 /* 2313 * Determine if this set of ranks 2314 * should be skipped entirely. 2315 */ 2316 if (!param->skip_shadow_regs[sr]) { 2317 /* 2318 * If doing read after write 2319 * calibration, do not update 2320 * FOM, now - do it then. 2321 */ 2322 if (!rw_mgr_mem_calibrate_vfifo_center 2323 (rank_bgn, write_group, 2324 read_group, test_bgn, 1, 0)) { 2325 grp_calibrated = 0; 2326 failed_substage = 2327 CAL_SUBSTAGE_VFIFO_CENTER; 2328 } 2329 } 2330 } 2331 } else { 2332 grp_calibrated = 0; 2333 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2334 } 2335 } 2336 } 2337 2338 if (grp_calibrated == 0) { 2339 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2340 failed_substage); 2341 return 0; 2342 } 2343 2344 /* 2345 * Reset the delay chains back to zero if they have moved > 1 2346 * (check for > 1 because loop will increase d even when pass in 2347 * first case). 2348 */ 2349 if (d > 2) 2350 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2351 2352 return 1; 2353 } 2354 2355 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2356 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2357 uint32_t test_bgn) 2358 { 2359 uint32_t rank_bgn, sr; 2360 uint32_t grp_calibrated; 2361 uint32_t write_group; 2362 2363 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2364 2365 /* update info for sims */ 2366 2367 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2368 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2369 2370 write_group = read_group; 2371 2372 /* update info for sims */ 2373 reg_file_set_group(read_group); 2374 2375 grp_calibrated = 1; 2376 /* Read per-bit deskew can be done on a per shadow register basis */ 2377 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2378 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2379 /* Determine if this set of ranks should be skipped entirely */ 2380 if (!param->skip_shadow_regs[sr]) { 2381 /* This is the last calibration round, update FOM here */ 2382 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2383 write_group, 2384 read_group, 2385 test_bgn, 0, 2386 1)) { 2387 grp_calibrated = 0; 2388 } 2389 } 2390 } 2391 2392 2393 if (grp_calibrated == 0) { 2394 set_failing_group_stage(write_group, 2395 CAL_STAGE_VFIFO_AFTER_WRITES, 2396 CAL_SUBSTAGE_VFIFO_CENTER); 2397 return 0; 2398 } 2399 2400 return 1; 2401 } 2402 2403 /* Calibrate LFIFO to find smallest read latency */ 2404 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2405 { 2406 uint32_t found_one; 2407 uint32_t bit_chk; 2408 2409 debug("%s:%d\n", __func__, __LINE__); 2410 2411 /* update info for sims */ 2412 reg_file_set_stage(CAL_STAGE_LFIFO); 2413 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2414 2415 /* Load up the patterns used by read calibration for all ranks */ 2416 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2417 found_one = 0; 2418 2419 do { 2420 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2421 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2422 __func__, __LINE__, gbl->curr_read_lat); 2423 2424 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2425 NUM_READ_TESTS, 2426 PASS_ALL_BITS, 2427 &bit_chk, 1)) { 2428 break; 2429 } 2430 2431 found_one = 1; 2432 /* reduce read latency and see if things are working */ 2433 /* correctly */ 2434 gbl->curr_read_lat--; 2435 } while (gbl->curr_read_lat > 0); 2436 2437 /* reset the fifos to get pointers to known state */ 2438 2439 writel(0, &phy_mgr_cmd->fifo_reset); 2440 2441 if (found_one) { 2442 /* add a fudge factor to the read latency that was determined */ 2443 gbl->curr_read_lat += 2; 2444 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2445 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2446 read_lat=%u\n", __func__, __LINE__, 2447 gbl->curr_read_lat); 2448 return 1; 2449 } else { 2450 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2451 CAL_SUBSTAGE_READ_LATENCY); 2452 2453 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2454 read_lat=%u\n", __func__, __LINE__, 2455 gbl->curr_read_lat); 2456 return 0; 2457 } 2458 } 2459 2460 /* 2461 * issue write test command. 2462 * two variants are provided. one that just tests a write pattern and 2463 * another that tests datamask functionality. 2464 */ 2465 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2466 uint32_t test_dm) 2467 { 2468 uint32_t mcc_instruction; 2469 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2470 ENABLE_SUPER_QUICK_CALIBRATION); 2471 uint32_t rw_wl_nop_cycles; 2472 uint32_t addr; 2473 2474 /* 2475 * Set counter and jump addresses for the right 2476 * number of NOP cycles. 2477 * The number of supported NOP cycles can range from -1 to infinity 2478 * Three different cases are handled: 2479 * 2480 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2481 * mechanism will be used to insert the right number of NOPs 2482 * 2483 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2484 * issuing the write command will jump straight to the 2485 * micro-instruction that turns on DQS (for DDRx), or outputs write 2486 * data (for RLD), skipping 2487 * the NOP micro-instruction all together 2488 * 2489 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2490 * turned on in the same micro-instruction that issues the write 2491 * command. Then we need 2492 * to directly jump to the micro-instruction that sends out the data 2493 * 2494 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2495 * (2 and 3). One jump-counter (0) is used to perform multiple 2496 * write-read operations. 2497 * one counter left to issue this command in "multiple-group" mode 2498 */ 2499 2500 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2501 2502 if (rw_wl_nop_cycles == -1) { 2503 /* 2504 * CNTR 2 - We want to execute the special write operation that 2505 * turns on DQS right away and then skip directly to the 2506 * instruction that sends out the data. We set the counter to a 2507 * large number so that the jump is always taken. 2508 */ 2509 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2510 2511 /* CNTR 3 - Not used */ 2512 if (test_dm) { 2513 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2514 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2515 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2516 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2517 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2518 } else { 2519 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2520 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2521 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2522 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2523 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2524 } 2525 } else if (rw_wl_nop_cycles == 0) { 2526 /* 2527 * CNTR 2 - We want to skip the NOP operation and go straight 2528 * to the DQS enable instruction. We set the counter to a large 2529 * number so that the jump is always taken. 2530 */ 2531 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2532 2533 /* CNTR 3 - Not used */ 2534 if (test_dm) { 2535 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2536 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2537 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2538 } else { 2539 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2540 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2541 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2542 } 2543 } else { 2544 /* 2545 * CNTR 2 - In this case we want to execute the next instruction 2546 * and NOT take the jump. So we set the counter to 0. The jump 2547 * address doesn't count. 2548 */ 2549 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2550 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2551 2552 /* 2553 * CNTR 3 - Set the nop counter to the number of cycles we 2554 * need to loop for, minus 1. 2555 */ 2556 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2557 if (test_dm) { 2558 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2559 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2561 } else { 2562 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2563 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2564 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2565 } 2566 } 2567 2568 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2569 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2570 2571 if (quick_write_mode) 2572 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2573 else 2574 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2575 2576 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2577 2578 /* 2579 * CNTR 1 - This is used to ensure enough time elapses 2580 * for read data to come back. 2581 */ 2582 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2583 2584 if (test_dm) { 2585 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2586 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2587 } else { 2588 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2589 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2590 } 2591 2592 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2593 writel(mcc_instruction, addr + (group << 2)); 2594 } 2595 2596 /* Test writes, can check for a single bit pass or multiple bit pass */ 2597 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2598 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2599 uint32_t *bit_chk, uint32_t all_ranks) 2600 { 2601 uint32_t r; 2602 uint32_t correct_mask_vg; 2603 uint32_t tmp_bit_chk; 2604 uint32_t vg; 2605 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2606 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2607 uint32_t addr_rw_mgr; 2608 uint32_t base_rw_mgr; 2609 2610 *bit_chk = param->write_correct_mask; 2611 correct_mask_vg = param->write_correct_mask_vg; 2612 2613 for (r = rank_bgn; r < rank_end; r++) { 2614 if (param->skip_ranks[r]) { 2615 /* request to skip the rank */ 2616 continue; 2617 } 2618 2619 /* set rank */ 2620 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2621 2622 tmp_bit_chk = 0; 2623 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2624 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2625 /* reset the fifos to get pointers to known state */ 2626 writel(0, &phy_mgr_cmd->fifo_reset); 2627 2628 tmp_bit_chk = tmp_bit_chk << 2629 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2630 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2631 rw_mgr_mem_calibrate_write_test_issue(write_group * 2632 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2633 use_dm); 2634 2635 base_rw_mgr = readl(addr_rw_mgr); 2636 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2637 if (vg == 0) 2638 break; 2639 } 2640 *bit_chk &= tmp_bit_chk; 2641 } 2642 2643 if (all_correct) { 2644 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2645 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2646 %u => %lu", write_group, use_dm, 2647 *bit_chk, param->write_correct_mask, 2648 (long unsigned int)(*bit_chk == 2649 param->write_correct_mask)); 2650 return *bit_chk == param->write_correct_mask; 2651 } else { 2652 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2653 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2654 write_group, use_dm, *bit_chk); 2655 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2656 (long unsigned int)(*bit_chk != 0)); 2657 return *bit_chk != 0x00; 2658 } 2659 } 2660 2661 /* 2662 * center all windows. do per-bit-deskew to possibly increase size of 2663 * certain windows. 2664 */ 2665 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2666 uint32_t write_group, uint32_t test_bgn) 2667 { 2668 uint32_t i, p, min_index; 2669 int32_t d; 2670 /* 2671 * Store these as signed since there are comparisons with 2672 * signed numbers. 2673 */ 2674 uint32_t bit_chk; 2675 uint32_t sticky_bit_chk; 2676 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2677 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2678 int32_t mid; 2679 int32_t mid_min, orig_mid_min; 2680 int32_t new_dqs, start_dqs, shift_dq; 2681 int32_t dq_margin, dqs_margin, dm_margin; 2682 uint32_t stop; 2683 uint32_t temp_dq_out1_delay; 2684 uint32_t addr; 2685 2686 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2687 2688 dm_margin = 0; 2689 2690 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2691 start_dqs = readl(addr + 2692 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2693 2694 /* per-bit deskew */ 2695 2696 /* 2697 * set the left and right edge of each bit to an illegal value 2698 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2699 */ 2700 sticky_bit_chk = 0; 2701 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2702 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2703 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2704 } 2705 2706 /* Search for the left edge of the window for each bit */ 2707 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2708 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2709 2710 writel(0, &sdr_scc_mgr->update); 2711 2712 /* 2713 * Stop searching when the read test doesn't pass AND when 2714 * we've seen a passing read on every bit. 2715 */ 2716 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2717 0, PASS_ONE_BIT, &bit_chk, 0); 2718 sticky_bit_chk = sticky_bit_chk | bit_chk; 2719 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2720 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2721 == %u && %u [bit_chk= %u ]\n", 2722 d, sticky_bit_chk, param->write_correct_mask, 2723 stop, bit_chk); 2724 2725 if (stop == 1) { 2726 break; 2727 } else { 2728 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2729 if (bit_chk & 1) { 2730 /* 2731 * Remember a passing test as the 2732 * left_edge. 2733 */ 2734 left_edge[i] = d; 2735 } else { 2736 /* 2737 * If a left edge has not been seen 2738 * yet, then a future passing test will 2739 * mark this edge as the right edge. 2740 */ 2741 if (left_edge[i] == 2742 IO_IO_OUT1_DELAY_MAX + 1) { 2743 right_edge[i] = -(d + 1); 2744 } 2745 } 2746 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2747 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2748 (int)(bit_chk & 1), i, left_edge[i]); 2749 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2750 right_edge[i]); 2751 bit_chk = bit_chk >> 1; 2752 } 2753 } 2754 } 2755 2756 /* Reset DQ delay chains to 0 */ 2757 scc_mgr_apply_group_dq_out1_delay(0); 2758 sticky_bit_chk = 0; 2759 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2760 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2761 %d right_edge[%u]: %d\n", __func__, __LINE__, 2762 i, left_edge[i], i, right_edge[i]); 2763 2764 /* 2765 * Check for cases where we haven't found the left edge, 2766 * which makes our assignment of the the right edge invalid. 2767 * Reset it to the illegal value. 2768 */ 2769 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2770 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2771 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2772 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2773 right_edge[%u]: %d\n", __func__, __LINE__, 2774 i, right_edge[i]); 2775 } 2776 2777 /* 2778 * Reset sticky bit (except for bits where we have 2779 * seen the left edge). 2780 */ 2781 sticky_bit_chk = sticky_bit_chk << 1; 2782 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2783 sticky_bit_chk = sticky_bit_chk | 1; 2784 2785 if (i == 0) 2786 break; 2787 } 2788 2789 /* Search for the right edge of the window for each bit */ 2790 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2791 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2792 d + start_dqs); 2793 2794 writel(0, &sdr_scc_mgr->update); 2795 2796 /* 2797 * Stop searching when the read test doesn't pass AND when 2798 * we've seen a passing read on every bit. 2799 */ 2800 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2801 0, PASS_ONE_BIT, &bit_chk, 0); 2802 2803 sticky_bit_chk = sticky_bit_chk | bit_chk; 2804 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2805 2806 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2807 %u && %u\n", d, sticky_bit_chk, 2808 param->write_correct_mask, stop); 2809 2810 if (stop == 1) { 2811 if (d == 0) { 2812 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2813 i++) { 2814 /* d = 0 failed, but it passed when 2815 testing the left edge, so it must be 2816 marginal, set it to -1 */ 2817 if (right_edge[i] == 2818 IO_IO_OUT1_DELAY_MAX + 1 && 2819 left_edge[i] != 2820 IO_IO_OUT1_DELAY_MAX + 1) { 2821 right_edge[i] = -1; 2822 } 2823 } 2824 } 2825 break; 2826 } else { 2827 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2828 if (bit_chk & 1) { 2829 /* 2830 * Remember a passing test as 2831 * the right_edge. 2832 */ 2833 right_edge[i] = d; 2834 } else { 2835 if (d != 0) { 2836 /* 2837 * If a right edge has not 2838 * been seen yet, then a future 2839 * passing test will mark this 2840 * edge as the left edge. 2841 */ 2842 if (right_edge[i] == 2843 IO_IO_OUT1_DELAY_MAX + 1) 2844 left_edge[i] = -(d + 1); 2845 } else { 2846 /* 2847 * d = 0 failed, but it passed 2848 * when testing the left edge, 2849 * so it must be marginal, set 2850 * it to -1. 2851 */ 2852 if (right_edge[i] == 2853 IO_IO_OUT1_DELAY_MAX + 1 && 2854 left_edge[i] != 2855 IO_IO_OUT1_DELAY_MAX + 1) 2856 right_edge[i] = -1; 2857 /* 2858 * If a right edge has not been 2859 * seen yet, then a future 2860 * passing test will mark this 2861 * edge as the left edge. 2862 */ 2863 else if (right_edge[i] == 2864 IO_IO_OUT1_DELAY_MAX + 2865 1) 2866 left_edge[i] = -(d + 1); 2867 } 2868 } 2869 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2870 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2871 (int)(bit_chk & 1), i, left_edge[i]); 2872 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2873 right_edge[i]); 2874 bit_chk = bit_chk >> 1; 2875 } 2876 } 2877 } 2878 2879 /* Check that all bits have a window */ 2880 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2881 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2882 %d right_edge[%u]: %d", __func__, __LINE__, 2883 i, left_edge[i], i, right_edge[i]); 2884 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2885 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2886 set_failing_group_stage(test_bgn + i, 2887 CAL_STAGE_WRITES, 2888 CAL_SUBSTAGE_WRITES_CENTER); 2889 return 0; 2890 } 2891 } 2892 2893 /* Find middle of window for each DQ bit */ 2894 mid_min = left_edge[0] - right_edge[0]; 2895 min_index = 0; 2896 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2897 mid = left_edge[i] - right_edge[i]; 2898 if (mid < mid_min) { 2899 mid_min = mid; 2900 min_index = i; 2901 } 2902 } 2903 2904 /* 2905 * -mid_min/2 represents the amount that we need to move DQS. 2906 * If mid_min is odd and positive we'll need to add one to 2907 * make sure the rounding in further calculations is correct 2908 * (always bias to the right), so just add 1 for all positive values. 2909 */ 2910 if (mid_min > 0) 2911 mid_min++; 2912 mid_min = mid_min / 2; 2913 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2914 __LINE__, mid_min); 2915 2916 /* Determine the amount we can change DQS (which is -mid_min) */ 2917 orig_mid_min = mid_min; 2918 new_dqs = start_dqs; 2919 mid_min = 0; 2920 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2921 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2922 /* Initialize data for export structures */ 2923 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2924 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2925 2926 /* add delay to bring centre of all DQ windows to the same "level" */ 2927 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2928 /* Use values before divide by 2 to reduce round off error */ 2929 shift_dq = (left_edge[i] - right_edge[i] - 2930 (left_edge[min_index] - right_edge[min_index]))/2 + 2931 (orig_mid_min - mid_min); 2932 2933 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2934 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2935 2936 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2937 temp_dq_out1_delay = readl(addr + (i << 2)); 2938 if (shift_dq + (int32_t)temp_dq_out1_delay > 2939 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2940 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2941 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2942 shift_dq = -(int32_t)temp_dq_out1_delay; 2943 } 2944 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2945 i, shift_dq); 2946 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2947 scc_mgr_load_dq(i); 2948 2949 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2950 left_edge[i] - shift_dq + (-mid_min), 2951 right_edge[i] + shift_dq - (-mid_min)); 2952 /* To determine values for export structures */ 2953 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2954 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2955 2956 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2957 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2958 } 2959 2960 /* Move DQS */ 2961 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2962 writel(0, &sdr_scc_mgr->update); 2963 2964 /* Centre DM */ 2965 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2966 2967 /* 2968 * set the left and right edge of each bit to an illegal value, 2969 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2970 */ 2971 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2972 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2973 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2974 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2975 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2976 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2977 int32_t win_best = 0; 2978 2979 /* Search for the/part of the window with DM shift */ 2980 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2981 scc_mgr_apply_group_dm_out1_delay(d); 2982 writel(0, &sdr_scc_mgr->update); 2983 2984 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2985 PASS_ALL_BITS, &bit_chk, 2986 0)) { 2987 /* USE Set current end of the window */ 2988 end_curr = -d; 2989 /* 2990 * If a starting edge of our window has not been seen 2991 * this is our current start of the DM window. 2992 */ 2993 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2994 bgn_curr = -d; 2995 2996 /* 2997 * If current window is bigger than best seen. 2998 * Set best seen to be current window. 2999 */ 3000 if ((end_curr-bgn_curr+1) > win_best) { 3001 win_best = end_curr-bgn_curr+1; 3002 bgn_best = bgn_curr; 3003 end_best = end_curr; 3004 } 3005 } else { 3006 /* We just saw a failing test. Reset temp edge */ 3007 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3008 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3009 } 3010 } 3011 3012 3013 /* Reset DM delay chains to 0 */ 3014 scc_mgr_apply_group_dm_out1_delay(0); 3015 3016 /* 3017 * Check to see if the current window nudges up aganist 0 delay. 3018 * If so we need to continue the search by shifting DQS otherwise DQS 3019 * search begins as a new search. */ 3020 if (end_curr != 0) { 3021 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3022 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3023 } 3024 3025 /* Search for the/part of the window with DQS shifts */ 3026 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3027 /* 3028 * Note: This only shifts DQS, so are we limiting ourselve to 3029 * width of DQ unnecessarily. 3030 */ 3031 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3032 d + new_dqs); 3033 3034 writel(0, &sdr_scc_mgr->update); 3035 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3036 PASS_ALL_BITS, &bit_chk, 3037 0)) { 3038 /* USE Set current end of the window */ 3039 end_curr = d; 3040 /* 3041 * If a beginning edge of our window has not been seen 3042 * this is our current begin of the DM window. 3043 */ 3044 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3045 bgn_curr = d; 3046 3047 /* 3048 * If current window is bigger than best seen. Set best 3049 * seen to be current window. 3050 */ 3051 if ((end_curr-bgn_curr+1) > win_best) { 3052 win_best = end_curr-bgn_curr+1; 3053 bgn_best = bgn_curr; 3054 end_best = end_curr; 3055 } 3056 } else { 3057 /* We just saw a failing test. Reset temp edge */ 3058 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3059 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3060 3061 /* Early exit optimization: if ther remaining delay 3062 chain space is less than already seen largest window 3063 we can exit */ 3064 if ((win_best-1) > 3065 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3066 break; 3067 } 3068 } 3069 } 3070 3071 /* assign left and right edge for cal and reporting; */ 3072 left_edge[0] = -1*bgn_best; 3073 right_edge[0] = end_best; 3074 3075 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3076 __LINE__, left_edge[0], right_edge[0]); 3077 3078 /* Move DQS (back to orig) */ 3079 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3080 3081 /* Move DM */ 3082 3083 /* Find middle of window for the DM bit */ 3084 mid = (left_edge[0] - right_edge[0]) / 2; 3085 3086 /* only move right, since we are not moving DQS/DQ */ 3087 if (mid < 0) 3088 mid = 0; 3089 3090 /* dm_marign should fail if we never find a window */ 3091 if (win_best == 0) 3092 dm_margin = -1; 3093 else 3094 dm_margin = left_edge[0] - mid; 3095 3096 scc_mgr_apply_group_dm_out1_delay(mid); 3097 writel(0, &sdr_scc_mgr->update); 3098 3099 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3100 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3101 right_edge[0], mid, dm_margin); 3102 /* Export values */ 3103 gbl->fom_out += dq_margin + dqs_margin; 3104 3105 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3106 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3107 dq_margin, dqs_margin, dm_margin); 3108 3109 /* 3110 * Do not remove this line as it makes sure all of our 3111 * decisions have been applied. 3112 */ 3113 writel(0, &sdr_scc_mgr->update); 3114 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3115 } 3116 3117 /* calibrate the write operations */ 3118 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3119 uint32_t test_bgn) 3120 { 3121 /* update info for sims */ 3122 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3123 3124 reg_file_set_stage(CAL_STAGE_WRITES); 3125 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3126 3127 reg_file_set_group(g); 3128 3129 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3130 set_failing_group_stage(g, CAL_STAGE_WRITES, 3131 CAL_SUBSTAGE_WRITES_CENTER); 3132 return 0; 3133 } 3134 3135 return 1; 3136 } 3137 3138 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3139 static void mem_precharge_and_activate(void) 3140 { 3141 uint32_t r; 3142 3143 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3144 if (param->skip_ranks[r]) { 3145 /* request to skip the rank */ 3146 continue; 3147 } 3148 3149 /* set rank */ 3150 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3151 3152 /* precharge all banks ... */ 3153 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3154 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3155 3156 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3157 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3158 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3159 3160 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3161 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3162 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3163 3164 /* activate rows */ 3165 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3167 } 3168 } 3169 3170 /* Configure various memory related parameters. */ 3171 static void mem_config(void) 3172 { 3173 uint32_t rlat, wlat; 3174 uint32_t rw_wl_nop_cycles; 3175 uint32_t max_latency; 3176 3177 debug("%s:%d\n", __func__, __LINE__); 3178 /* read in write and read latency */ 3179 wlat = readl(&data_mgr->t_wl_add); 3180 wlat += readl(&data_mgr->mem_t_add); 3181 3182 /* WL for hard phy does not include additive latency */ 3183 3184 /* 3185 * add addtional write latency to offset the address/command extra 3186 * clock cycle. We change the AC mux setting causing AC to be delayed 3187 * by one mem clock cycle. Only do this for DDR3 3188 */ 3189 wlat = wlat + 1; 3190 3191 rlat = readl(&data_mgr->t_rl_add); 3192 3193 rw_wl_nop_cycles = wlat - 2; 3194 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3195 3196 /* 3197 * For AV/CV, lfifo is hardened and always runs at full rate so 3198 * max latency in AFI clocks, used here, is correspondingly smaller. 3199 */ 3200 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3201 /* configure for a burst length of 8 */ 3202 3203 /* write latency */ 3204 /* Adjust Write Latency for Hard PHY */ 3205 wlat = wlat + 1; 3206 3207 /* set a pretty high read latency initially */ 3208 gbl->curr_read_lat = rlat + 16; 3209 3210 if (gbl->curr_read_lat > max_latency) 3211 gbl->curr_read_lat = max_latency; 3212 3213 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3214 3215 /* advertise write latency */ 3216 gbl->curr_write_lat = wlat; 3217 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3218 3219 /* initialize bit slips */ 3220 mem_precharge_and_activate(); 3221 } 3222 3223 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3224 static void mem_skip_calibrate(void) 3225 { 3226 uint32_t vfifo_offset; 3227 uint32_t i, j, r; 3228 3229 debug("%s:%d\n", __func__, __LINE__); 3230 /* Need to update every shadow register set used by the interface */ 3231 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3232 r += NUM_RANKS_PER_SHADOW_REG) { 3233 /* 3234 * Set output phase alignment settings appropriate for 3235 * skip calibration. 3236 */ 3237 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3238 scc_mgr_set_dqs_en_phase(i, 0); 3239 #if IO_DLL_CHAIN_LENGTH == 6 3240 scc_mgr_set_dqdqs_output_phase(i, 6); 3241 #else 3242 scc_mgr_set_dqdqs_output_phase(i, 7); 3243 #endif 3244 /* 3245 * Case:33398 3246 * 3247 * Write data arrives to the I/O two cycles before write 3248 * latency is reached (720 deg). 3249 * -> due to bit-slip in a/c bus 3250 * -> to allow board skew where dqs is longer than ck 3251 * -> how often can this happen!? 3252 * -> can claim back some ptaps for high freq 3253 * support if we can relax this, but i digress... 3254 * 3255 * The write_clk leads mem_ck by 90 deg 3256 * The minimum ptap of the OPA is 180 deg 3257 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3258 * The write_clk is always delayed by 2 ptaps 3259 * 3260 * Hence, to make DQS aligned to CK, we need to delay 3261 * DQS by: 3262 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3263 * 3264 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3265 * gives us the number of ptaps, which simplies to: 3266 * 3267 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3268 */ 3269 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3270 IO_DLL_CHAIN_LENGTH - 2)); 3271 } 3272 writel(0xff, &sdr_scc_mgr->dqs_ena); 3273 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3274 3275 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3276 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3277 SCC_MGR_GROUP_COUNTER_OFFSET); 3278 } 3279 writel(0xff, &sdr_scc_mgr->dq_ena); 3280 writel(0xff, &sdr_scc_mgr->dm_ena); 3281 writel(0, &sdr_scc_mgr->update); 3282 } 3283 3284 /* Compensate for simulation model behaviour */ 3285 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3286 scc_mgr_set_dqs_bus_in_delay(i, 10); 3287 scc_mgr_load_dqs(i); 3288 } 3289 writel(0, &sdr_scc_mgr->update); 3290 3291 /* 3292 * ArriaV has hard FIFOs that can only be initialized by incrementing 3293 * in sequencer. 3294 */ 3295 vfifo_offset = CALIB_VFIFO_OFFSET; 3296 for (j = 0; j < vfifo_offset; j++) { 3297 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3298 } 3299 writel(0, &phy_mgr_cmd->fifo_reset); 3300 3301 /* 3302 * For ACV with hard lfifo, we get the skip-cal setting from 3303 * generation-time constant. 3304 */ 3305 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3306 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3307 } 3308 3309 /* Memory calibration entry point */ 3310 static uint32_t mem_calibrate(void) 3311 { 3312 uint32_t i; 3313 uint32_t rank_bgn, sr; 3314 uint32_t write_group, write_test_bgn; 3315 uint32_t read_group, read_test_bgn; 3316 uint32_t run_groups, current_run; 3317 uint32_t failing_groups = 0; 3318 uint32_t group_failed = 0; 3319 uint32_t sr_failed = 0; 3320 3321 debug("%s:%d\n", __func__, __LINE__); 3322 /* Initialize the data settings */ 3323 3324 gbl->error_substage = CAL_SUBSTAGE_NIL; 3325 gbl->error_stage = CAL_STAGE_NIL; 3326 gbl->error_group = 0xff; 3327 gbl->fom_in = 0; 3328 gbl->fom_out = 0; 3329 3330 mem_config(); 3331 3332 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3333 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3334 SCC_MGR_GROUP_COUNTER_OFFSET); 3335 scc_set_bypass_mode(i); 3336 } 3337 3338 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3339 /* 3340 * Set VFIFO and LFIFO to instant-on settings in skip 3341 * calibration mode. 3342 */ 3343 mem_skip_calibrate(); 3344 } else { 3345 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3346 /* 3347 * Zero all delay chain/phase settings for all 3348 * groups and all shadow register sets. 3349 */ 3350 scc_mgr_zero_all(); 3351 3352 run_groups = ~param->skip_groups; 3353 3354 for (write_group = 0, write_test_bgn = 0; write_group 3355 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3356 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3357 /* Initialized the group failure */ 3358 group_failed = 0; 3359 3360 current_run = run_groups & ((1 << 3361 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3362 run_groups = run_groups >> 3363 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3364 3365 if (current_run == 0) 3366 continue; 3367 3368 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3369 SCC_MGR_GROUP_COUNTER_OFFSET); 3370 scc_mgr_zero_group(write_group, write_test_bgn, 3371 0); 3372 3373 for (read_group = write_group * 3374 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3375 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3376 read_test_bgn = 0; 3377 read_group < (write_group + 1) * 3378 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3379 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3380 group_failed == 0; 3381 read_group++, read_test_bgn += 3382 RW_MGR_MEM_DQ_PER_READ_DQS) { 3383 /* Calibrate the VFIFO */ 3384 if (!((STATIC_CALIB_STEPS) & 3385 CALIB_SKIP_VFIFO)) { 3386 if (!rw_mgr_mem_calibrate_vfifo 3387 (read_group, 3388 read_test_bgn)) { 3389 group_failed = 1; 3390 3391 if (!(gbl-> 3392 phy_debug_mode_flags & 3393 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3394 return 0; 3395 } 3396 } 3397 } 3398 } 3399 3400 /* Calibrate the output side */ 3401 if (group_failed == 0) { 3402 for (rank_bgn = 0, sr = 0; rank_bgn 3403 < RW_MGR_MEM_NUMBER_OF_RANKS; 3404 rank_bgn += 3405 NUM_RANKS_PER_SHADOW_REG, 3406 ++sr) { 3407 sr_failed = 0; 3408 if (!((STATIC_CALIB_STEPS) & 3409 CALIB_SKIP_WRITES)) { 3410 if ((STATIC_CALIB_STEPS) 3411 & CALIB_SKIP_DELAY_SWEEPS) { 3412 /* not needed in quick mode! */ 3413 } else { 3414 /* 3415 * Determine if this set of 3416 * ranks should be skipped 3417 * entirely. 3418 */ 3419 if (!param->skip_shadow_regs[sr]) { 3420 if (!rw_mgr_mem_calibrate_writes 3421 (rank_bgn, write_group, 3422 write_test_bgn)) { 3423 sr_failed = 1; 3424 if (!(gbl-> 3425 phy_debug_mode_flags & 3426 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3427 return 0; 3428 } 3429 } 3430 } 3431 } 3432 } 3433 if (sr_failed != 0) 3434 group_failed = 1; 3435 } 3436 } 3437 3438 if (group_failed == 0) { 3439 for (read_group = write_group * 3440 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3441 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3442 read_test_bgn = 0; 3443 read_group < (write_group + 1) 3444 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3445 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3446 group_failed == 0; 3447 read_group++, read_test_bgn += 3448 RW_MGR_MEM_DQ_PER_READ_DQS) { 3449 if (!((STATIC_CALIB_STEPS) & 3450 CALIB_SKIP_WRITES)) { 3451 if (!rw_mgr_mem_calibrate_vfifo_end 3452 (read_group, read_test_bgn)) { 3453 group_failed = 1; 3454 3455 if (!(gbl->phy_debug_mode_flags 3456 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3457 return 0; 3458 } 3459 } 3460 } 3461 } 3462 } 3463 3464 if (group_failed != 0) 3465 failing_groups++; 3466 } 3467 3468 /* 3469 * USER If there are any failing groups then report 3470 * the failure. 3471 */ 3472 if (failing_groups != 0) 3473 return 0; 3474 3475 /* Calibrate the LFIFO */ 3476 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3477 /* 3478 * If we're skipping groups as part of debug, 3479 * don't calibrate LFIFO. 3480 */ 3481 if (param->skip_groups == 0) { 3482 if (!rw_mgr_mem_calibrate_lfifo()) 3483 return 0; 3484 } 3485 } 3486 } 3487 } 3488 3489 /* 3490 * Do not remove this line as it makes sure all of our decisions 3491 * have been applied. 3492 */ 3493 writel(0, &sdr_scc_mgr->update); 3494 return 1; 3495 } 3496 3497 static uint32_t run_mem_calibrate(void) 3498 { 3499 uint32_t pass; 3500 uint32_t debug_info; 3501 3502 debug("%s:%d\n", __func__, __LINE__); 3503 3504 /* Reset pass/fail status shown on afi_cal_success/fail */ 3505 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3506 3507 /* stop tracking manger */ 3508 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3509 3510 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3511 3512 initialize(); 3513 rw_mgr_mem_initialize(); 3514 3515 pass = mem_calibrate(); 3516 3517 mem_precharge_and_activate(); 3518 writel(0, &phy_mgr_cmd->fifo_reset); 3519 3520 /* 3521 * Handoff: 3522 * Don't return control of the PHY back to AFI when in debug mode. 3523 */ 3524 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3525 rw_mgr_mem_handoff(); 3526 /* 3527 * In Hard PHY this is a 2-bit control: 3528 * 0: AFI Mux Select 3529 * 1: DDIO Mux Select 3530 */ 3531 writel(0x2, &phy_mgr_cfg->mux_sel); 3532 } 3533 3534 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3535 3536 if (pass) { 3537 printf("%s: CALIBRATION PASSED\n", __FILE__); 3538 3539 gbl->fom_in /= 2; 3540 gbl->fom_out /= 2; 3541 3542 if (gbl->fom_in > 0xff) 3543 gbl->fom_in = 0xff; 3544 3545 if (gbl->fom_out > 0xff) 3546 gbl->fom_out = 0xff; 3547 3548 /* Update the FOM in the register file */ 3549 debug_info = gbl->fom_in; 3550 debug_info |= gbl->fom_out << 8; 3551 writel(debug_info, &sdr_reg_file->fom); 3552 3553 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3554 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3555 } else { 3556 printf("%s: CALIBRATION FAILED\n", __FILE__); 3557 3558 debug_info = gbl->error_stage; 3559 debug_info |= gbl->error_substage << 8; 3560 debug_info |= gbl->error_group << 16; 3561 3562 writel(debug_info, &sdr_reg_file->failing_stage); 3563 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3564 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3565 3566 /* Update the failing group/stage in the register file */ 3567 debug_info = gbl->error_stage; 3568 debug_info |= gbl->error_substage << 8; 3569 debug_info |= gbl->error_group << 16; 3570 writel(debug_info, &sdr_reg_file->failing_stage); 3571 } 3572 3573 return pass; 3574 } 3575 3576 /** 3577 * hc_initialize_rom_data() - Initialize ROM data 3578 * 3579 * Initialize ROM data. 3580 */ 3581 static void hc_initialize_rom_data(void) 3582 { 3583 u32 i, addr; 3584 3585 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3586 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3587 writel(inst_rom_init[i], addr + (i << 2)); 3588 3589 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3590 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3591 writel(ac_rom_init[i], addr + (i << 2)); 3592 } 3593 3594 /** 3595 * initialize_reg_file() - Initialize SDR register file 3596 * 3597 * Initialize SDR register file. 3598 */ 3599 static void initialize_reg_file(void) 3600 { 3601 /* Initialize the register file with the correct data */ 3602 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3603 writel(0, &sdr_reg_file->debug_data_addr); 3604 writel(0, &sdr_reg_file->cur_stage); 3605 writel(0, &sdr_reg_file->fom); 3606 writel(0, &sdr_reg_file->failing_stage); 3607 writel(0, &sdr_reg_file->debug1); 3608 writel(0, &sdr_reg_file->debug2); 3609 } 3610 3611 /** 3612 * initialize_hps_phy() - Initialize HPS PHY 3613 * 3614 * Initialize HPS PHY. 3615 */ 3616 static void initialize_hps_phy(void) 3617 { 3618 uint32_t reg; 3619 /* 3620 * Tracking also gets configured here because it's in the 3621 * same register. 3622 */ 3623 uint32_t trk_sample_count = 7500; 3624 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3625 /* 3626 * Format is number of outer loops in the 16 MSB, sample 3627 * count in 16 LSB. 3628 */ 3629 3630 reg = 0; 3631 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3632 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3633 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3634 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3636 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3637 /* 3638 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3639 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3640 */ 3641 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3642 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3643 trk_sample_count); 3644 writel(reg, &sdr_ctrl->phy_ctrl0); 3645 3646 reg = 0; 3647 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3648 trk_sample_count >> 3649 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3650 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3651 trk_long_idle_sample_count); 3652 writel(reg, &sdr_ctrl->phy_ctrl1); 3653 3654 reg = 0; 3655 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3656 trk_long_idle_sample_count >> 3657 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3658 writel(reg, &sdr_ctrl->phy_ctrl2); 3659 } 3660 3661 static void initialize_tracking(void) 3662 { 3663 uint32_t concatenated_longidle = 0x0; 3664 uint32_t concatenated_delays = 0x0; 3665 uint32_t concatenated_rw_addr = 0x0; 3666 uint32_t concatenated_refresh = 0x0; 3667 uint32_t trk_sample_count = 7500; 3668 uint32_t dtaps_per_ptap; 3669 uint32_t tmp_delay; 3670 3671 /* 3672 * compute usable version of value in case we skip full 3673 * computation later 3674 */ 3675 dtaps_per_ptap = 0; 3676 tmp_delay = 0; 3677 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3678 dtaps_per_ptap++; 3679 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3680 } 3681 dtaps_per_ptap--; 3682 3683 concatenated_longidle = concatenated_longidle ^ 10; 3684 /*longidle outer loop */ 3685 concatenated_longidle = concatenated_longidle << 16; 3686 concatenated_longidle = concatenated_longidle ^ 100; 3687 /*longidle sample count */ 3688 concatenated_delays = concatenated_delays ^ 243; 3689 /* trfc, worst case of 933Mhz 4Gb */ 3690 concatenated_delays = concatenated_delays << 8; 3691 concatenated_delays = concatenated_delays ^ 14; 3692 /* trcd, worst case */ 3693 concatenated_delays = concatenated_delays << 8; 3694 concatenated_delays = concatenated_delays ^ 10; 3695 /* vfifo wait */ 3696 concatenated_delays = concatenated_delays << 8; 3697 concatenated_delays = concatenated_delays ^ 4; 3698 /* mux delay */ 3699 3700 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3701 concatenated_rw_addr = concatenated_rw_addr << 8; 3702 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3703 concatenated_rw_addr = concatenated_rw_addr << 8; 3704 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3705 concatenated_rw_addr = concatenated_rw_addr << 8; 3706 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3707 3708 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3709 concatenated_refresh = concatenated_refresh << 24; 3710 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3711 3712 /* Initialize the register file with the correct data */ 3713 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3714 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3715 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3716 writel(concatenated_delays, &sdr_reg_file->delays); 3717 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3718 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3719 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3720 } 3721 3722 int sdram_calibration_full(void) 3723 { 3724 struct param_type my_param; 3725 struct gbl_type my_gbl; 3726 uint32_t pass; 3727 uint32_t i; 3728 3729 param = &my_param; 3730 gbl = &my_gbl; 3731 3732 /* Initialize the debug mode flags */ 3733 gbl->phy_debug_mode_flags = 0; 3734 /* Set the calibration enabled by default */ 3735 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3736 /* 3737 * Only sweep all groups (regardless of fail state) by default 3738 * Set enabled read test by default. 3739 */ 3740 #if DISABLE_GUARANTEED_READ 3741 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3742 #endif 3743 /* Initialize the register file */ 3744 initialize_reg_file(); 3745 3746 /* Initialize any PHY CSR */ 3747 initialize_hps_phy(); 3748 3749 scc_mgr_initialize(); 3750 3751 initialize_tracking(); 3752 3753 /* USER Enable all ranks, groups */ 3754 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3755 param->skip_ranks[i] = 0; 3756 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3757 param->skip_shadow_regs[i] = 0; 3758 param->skip_groups = 0; 3759 3760 printf("%s: Preparing to start memory calibration\n", __FILE__); 3761 3762 debug("%s:%d\n", __func__, __LINE__); 3763 debug_cond(DLEVEL == 1, 3764 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3765 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3766 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3767 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3768 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3769 debug_cond(DLEVEL == 1, 3770 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3771 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3772 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3773 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3774 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3775 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3776 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3777 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3778 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3779 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3780 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3781 IO_IO_OUT2_DELAY_MAX); 3782 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3783 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3784 3785 hc_initialize_rom_data(); 3786 3787 /* update info for sims */ 3788 reg_file_set_stage(CAL_STAGE_NIL); 3789 reg_file_set_group(0); 3790 3791 /* 3792 * Load global needed for those actions that require 3793 * some dynamic calibration support. 3794 */ 3795 dyn_calib_steps = STATIC_CALIB_STEPS; 3796 /* 3797 * Load global to allow dynamic selection of delay loop settings 3798 * based on calibration mode. 3799 */ 3800 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3801 skip_delay_mask = 0xff; 3802 else 3803 skip_delay_mask = 0x0; 3804 3805 pass = run_mem_calibrate(); 3806 3807 printf("%s: Calibration complete\n", __FILE__); 3808 return pass; 3809 } 3810