1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 static int sdr_working_phase(uint32_t grp, 1336 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1337 uint32_t *v, uint32_t *d, uint32_t *p, 1338 uint32_t *i, uint32_t *max_working_cnt) 1339 { 1340 uint32_t found_begin = 0; 1341 uint32_t tmp_delay = 0; 1342 uint32_t test_status; 1343 u32 bit_chk; 1344 1345 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1346 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1347 *work_bgn = tmp_delay; 1348 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1349 1350 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1351 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1352 IO_DELAY_PER_OPA_TAP) { 1353 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1354 1355 test_status = 1356 rw_mgr_mem_calibrate_read_test_all_ranks 1357 (grp, 1, PASS_ONE_BIT, &bit_chk, 0); 1358 1359 if (test_status) { 1360 *max_working_cnt = 1; 1361 found_begin = 1; 1362 break; 1363 } 1364 } 1365 1366 if (found_begin) 1367 break; 1368 1369 if (*p > IO_DQS_EN_PHASE_MAX) 1370 /* fiddle with FIFO */ 1371 rw_mgr_incr_vfifo(grp, v); 1372 } 1373 1374 if (found_begin) 1375 break; 1376 } 1377 1378 if (*i >= VFIFO_SIZE) { 1379 /* cannot find working solution */ 1380 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1381 ptap/dtap\n", __func__, __LINE__); 1382 return 0; 1383 } else { 1384 return 1; 1385 } 1386 } 1387 1388 static void sdr_backup_phase(uint32_t grp, 1389 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1390 uint32_t *p, uint32_t *max_working_cnt) 1391 { 1392 uint32_t found_begin = 0; 1393 uint32_t tmp_delay; 1394 u32 bit_chk; 1395 1396 /* Special case code for backing up a phase */ 1397 if (*p == 0) { 1398 *p = IO_DQS_EN_PHASE_MAX; 1399 rw_mgr_decr_vfifo(grp, v); 1400 } else { 1401 (*p)--; 1402 } 1403 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1404 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1405 1406 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1407 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1408 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1409 1410 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1411 PASS_ONE_BIT, 1412 &bit_chk, 0)) { 1413 found_begin = 1; 1414 *work_bgn = tmp_delay; 1415 break; 1416 } 1417 } 1418 1419 /* We have found a working dtap before the ptap found above */ 1420 if (found_begin == 1) 1421 (*max_working_cnt)++; 1422 1423 /* 1424 * Restore VFIFO to old state before we decremented it 1425 * (if needed). 1426 */ 1427 (*p)++; 1428 if (*p > IO_DQS_EN_PHASE_MAX) { 1429 *p = 0; 1430 rw_mgr_incr_vfifo(grp, v); 1431 } 1432 1433 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1434 } 1435 1436 static int sdr_nonworking_phase(uint32_t grp, 1437 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1438 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1439 uint32_t *work_end) 1440 { 1441 uint32_t found_end = 0; 1442 u32 bit_chk; 1443 1444 (*p)++; 1445 *work_end += IO_DELAY_PER_OPA_TAP; 1446 if (*p > IO_DQS_EN_PHASE_MAX) { 1447 /* fiddle with FIFO */ 1448 *p = 0; 1449 rw_mgr_incr_vfifo(grp, v); 1450 } 1451 1452 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1453 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1454 += IO_DELAY_PER_OPA_TAP) { 1455 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1456 1457 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1458 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1459 found_end = 1; 1460 break; 1461 } else { 1462 (*max_working_cnt)++; 1463 } 1464 } 1465 1466 if (found_end) 1467 break; 1468 1469 if (*p > IO_DQS_EN_PHASE_MAX) { 1470 /* fiddle with FIFO */ 1471 rw_mgr_incr_vfifo(grp, v); 1472 *p = 0; 1473 } 1474 } 1475 1476 if (*i >= VFIFO_SIZE + 1) { 1477 /* cannot see edge of failing read */ 1478 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1479 failed\n", __func__, __LINE__); 1480 return 0; 1481 } else { 1482 return 1; 1483 } 1484 } 1485 1486 /** 1487 * sdr_find_window_center() - Find center of the working DQS window. 1488 * @grp: Read/Write group 1489 * @work_bgn: First working settings 1490 * @work_end: Last working settings 1491 * @val: VFIFO value 1492 * 1493 * Find center of the working DQS enable window. 1494 */ 1495 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1496 const u32 work_end, const u32 val) 1497 { 1498 u32 bit_chk, work_mid, v = val; 1499 int tmp_delay = 0; 1500 int i, p, d; 1501 1502 work_mid = (work_bgn + work_end) / 2; 1503 1504 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1505 work_bgn, work_end, work_mid); 1506 /* Get the middle delay to be less than a VFIFO delay */ 1507 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1508 1509 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1510 work_mid %= tmp_delay; 1511 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1512 1513 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1514 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1515 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1516 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1517 1518 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1519 1520 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1521 if (d > IO_DQS_EN_DELAY_MAX) 1522 d = IO_DQS_EN_DELAY_MAX; 1523 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1524 1525 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1526 1527 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1528 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1529 1530 /* 1531 * push vfifo until we can successfully calibrate. We can do this 1532 * because the largest possible margin in 1 VFIFO cycle. 1533 */ 1534 for (i = 0; i < VFIFO_SIZE; i++) { 1535 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1536 v); 1537 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1538 PASS_ONE_BIT, 1539 &bit_chk, 0)) { 1540 debug_cond(DLEVEL == 2, 1541 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1542 __func__, __LINE__, v, p, d); 1543 return 0; 1544 } 1545 1546 /* Fiddle with FIFO. */ 1547 rw_mgr_incr_vfifo(grp, &v); 1548 } 1549 1550 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1551 __func__, __LINE__); 1552 return -EINVAL; 1553 } 1554 1555 /* find a good dqs enable to use */ 1556 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1557 { 1558 uint32_t v, d, p, i; 1559 uint32_t max_working_cnt; 1560 uint32_t bit_chk; 1561 uint32_t dtaps_per_ptap; 1562 uint32_t work_bgn, work_end; 1563 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1564 1565 debug("%s:%d %u\n", __func__, __LINE__, grp); 1566 1567 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1568 1569 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1570 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1571 1572 /* ************************************************************** */ 1573 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1574 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1575 1576 /* ********************************************************* */ 1577 /* * Step 1 : First push vfifo until we get a failing read * */ 1578 v = find_vfifo_read(grp, &bit_chk); 1579 1580 max_working_cnt = 0; 1581 1582 /* ******************************************************** */ 1583 /* * step 2: find first working phase, increment in ptaps * */ 1584 work_bgn = 0; 1585 if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, 1586 &p, &i, &max_working_cnt) == 0) 1587 return 0; 1588 1589 work_end = work_bgn; 1590 1591 /* 1592 * If d is 0 then the working window covers a phase tap and 1593 * we can follow the old procedure otherwise, we've found the beginning, 1594 * and we need to increment the dtaps until we find the end. 1595 */ 1596 if (d == 0) { 1597 /* ********************************************************* */ 1598 /* * step 3a: if we have room, back off by one and 1599 increment in dtaps * */ 1600 1601 sdr_backup_phase(grp, &work_bgn, &v, &d, &p, 1602 &max_working_cnt); 1603 1604 /* ********************************************************* */ 1605 /* * step 4a: go forward from working phase to non working 1606 phase, increment in ptaps * */ 1607 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p, 1608 &i, &max_working_cnt, &work_end) == 0) 1609 return 0; 1610 1611 /* ********************************************************* */ 1612 /* * step 5a: back off one from last, increment in dtaps * */ 1613 1614 /* Special case code for backing up a phase */ 1615 if (p == 0) { 1616 p = IO_DQS_EN_PHASE_MAX; 1617 rw_mgr_decr_vfifo(grp, &v); 1618 } else { 1619 p = p - 1; 1620 } 1621 1622 work_end -= IO_DELAY_PER_OPA_TAP; 1623 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1624 1625 /* * The actual increment of dtaps is done outside of 1626 the if/else loop to share code */ 1627 d = 0; 1628 1629 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1630 vfifo=%u ptap=%u\n", __func__, __LINE__, 1631 v, p); 1632 } else { 1633 /* ******************************************************* */ 1634 /* * step 3-5b: Find the right edge of the window using 1635 delay taps * */ 1636 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1637 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1638 v, p, d, work_bgn); 1639 1640 work_end = work_bgn; 1641 1642 /* * The actual increment of dtaps is done outside of the 1643 if/else loop to share code */ 1644 1645 /* Only here to counterbalance a subtract later on which is 1646 not needed if this branch of the algorithm is taken */ 1647 max_working_cnt++; 1648 } 1649 1650 /* The dtap increment to find the failing edge is done here */ 1651 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1652 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1653 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1654 end-2: dtap=%u\n", __func__, __LINE__, d); 1655 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1656 1657 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1658 PASS_ONE_BIT, 1659 &bit_chk, 0)) { 1660 break; 1661 } 1662 } 1663 1664 /* Go back to working dtap */ 1665 if (d != 0) 1666 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1669 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1670 v, p, d-1, work_end); 1671 1672 if (work_end < work_bgn) { 1673 /* nil range */ 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1675 failed\n", __func__, __LINE__); 1676 return 0; 1677 } 1678 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1680 __func__, __LINE__, work_bgn, work_end); 1681 1682 /* *************************************************************** */ 1683 /* 1684 * * We need to calculate the number of dtaps that equal a ptap 1685 * * To do that we'll back up a ptap and re-find the edge of the 1686 * * window using dtaps 1687 */ 1688 1689 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1690 for tracking\n", __func__, __LINE__); 1691 1692 /* Special case code for backing up a phase */ 1693 if (p == 0) { 1694 p = IO_DQS_EN_PHASE_MAX; 1695 rw_mgr_decr_vfifo(grp, &v); 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1697 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1698 v, p); 1699 } else { 1700 p = p - 1; 1701 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1702 phase only: v=%u p=%u", __func__, __LINE__, 1703 v, p); 1704 } 1705 1706 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1707 1708 /* 1709 * Increase dtap until we first see a passing read (in case the 1710 * window is smaller than a ptap), 1711 * and then a failing read to mark the edge of the window again 1712 */ 1713 1714 /* Find a passing read */ 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1716 __func__, __LINE__); 1717 found_passing_read = 0; 1718 found_failing_read = 0; 1719 initial_failing_dtap = d; 1720 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1721 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1722 read d=%u\n", __func__, __LINE__, d); 1723 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1724 1725 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1726 PASS_ONE_BIT, 1727 &bit_chk, 0)) { 1728 found_passing_read = 1; 1729 break; 1730 } 1731 } 1732 1733 if (found_passing_read) { 1734 /* Find a failing read */ 1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1736 read\n", __func__, __LINE__); 1737 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1738 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1739 testing read d=%u\n", __func__, __LINE__, d); 1740 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1741 1742 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1743 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1744 found_failing_read = 1; 1745 break; 1746 } 1747 } 1748 } else { 1749 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1750 calculate dtaps", __func__, __LINE__); 1751 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1752 } 1753 1754 /* 1755 * The dynamically calculated dtaps_per_ptap is only valid if we 1756 * found a passing/failing read. If we didn't, it means d hit the max 1757 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1758 * statically calculated value. 1759 */ 1760 if (found_passing_read && found_failing_read) 1761 dtaps_per_ptap = d - initial_failing_dtap; 1762 1763 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1764 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1765 - %u = %u", __func__, __LINE__, d, 1766 initial_failing_dtap, dtaps_per_ptap); 1767 1768 /* ******************************************** */ 1769 /* * step 6: Find the centre of the window * */ 1770 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1771 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1772 1773 return 1; 1774 } 1775 1776 /* per-bit deskew DQ and center */ 1777 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1778 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1779 uint32_t use_read_test, uint32_t update_fom) 1780 { 1781 uint32_t i, p, d, min_index; 1782 /* 1783 * Store these as signed since there are comparisons with 1784 * signed numbers. 1785 */ 1786 uint32_t bit_chk; 1787 uint32_t sticky_bit_chk; 1788 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1789 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1790 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1791 int32_t mid; 1792 int32_t orig_mid_min, mid_min; 1793 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1794 final_dqs_en; 1795 int32_t dq_margin, dqs_margin; 1796 uint32_t stop; 1797 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1798 uint32_t addr; 1799 1800 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1801 1802 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1803 start_dqs = readl(addr + (read_group << 2)); 1804 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1805 start_dqs_en = readl(addr + ((read_group << 2) 1806 - IO_DQS_EN_DELAY_OFFSET)); 1807 1808 /* set the left and right edge of each bit to an illegal value */ 1809 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1810 sticky_bit_chk = 0; 1811 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1812 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1813 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1814 } 1815 1816 /* Search for the left edge of the window for each bit */ 1817 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1818 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1819 1820 writel(0, &sdr_scc_mgr->update); 1821 1822 /* 1823 * Stop searching when the read test doesn't pass AND when 1824 * we've seen a passing read on every bit. 1825 */ 1826 if (use_read_test) { 1827 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1828 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1829 &bit_chk, 0, 0); 1830 } else { 1831 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1832 0, PASS_ONE_BIT, 1833 &bit_chk, 0); 1834 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1835 (read_group - (write_group * 1836 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1837 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1838 stop = (bit_chk == 0); 1839 } 1840 sticky_bit_chk = sticky_bit_chk | bit_chk; 1841 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1842 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1843 && %u", __func__, __LINE__, d, 1844 sticky_bit_chk, 1845 param->read_correct_mask, stop); 1846 1847 if (stop == 1) { 1848 break; 1849 } else { 1850 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1851 if (bit_chk & 1) { 1852 /* Remember a passing test as the 1853 left_edge */ 1854 left_edge[i] = d; 1855 } else { 1856 /* If a left edge has not been seen yet, 1857 then a future passing test will mark 1858 this edge as the right edge */ 1859 if (left_edge[i] == 1860 IO_IO_IN_DELAY_MAX + 1) { 1861 right_edge[i] = -(d + 1); 1862 } 1863 } 1864 bit_chk = bit_chk >> 1; 1865 } 1866 } 1867 } 1868 1869 /* Reset DQ delay chains to 0 */ 1870 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1871 sticky_bit_chk = 0; 1872 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1873 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1874 %d right_edge[%u]: %d\n", __func__, __LINE__, 1875 i, left_edge[i], i, right_edge[i]); 1876 1877 /* 1878 * Check for cases where we haven't found the left edge, 1879 * which makes our assignment of the the right edge invalid. 1880 * Reset it to the illegal value. 1881 */ 1882 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1883 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1884 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1885 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1886 right_edge[%u]: %d\n", __func__, __LINE__, 1887 i, right_edge[i]); 1888 } 1889 1890 /* 1891 * Reset sticky bit (except for bits where we have seen 1892 * both the left and right edge). 1893 */ 1894 sticky_bit_chk = sticky_bit_chk << 1; 1895 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1896 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1897 sticky_bit_chk = sticky_bit_chk | 1; 1898 } 1899 1900 if (i == 0) 1901 break; 1902 } 1903 1904 /* Search for the right edge of the window for each bit */ 1905 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1906 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1907 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1908 uint32_t delay = d + start_dqs_en; 1909 if (delay > IO_DQS_EN_DELAY_MAX) 1910 delay = IO_DQS_EN_DELAY_MAX; 1911 scc_mgr_set_dqs_en_delay(read_group, delay); 1912 } 1913 scc_mgr_load_dqs(read_group); 1914 1915 writel(0, &sdr_scc_mgr->update); 1916 1917 /* 1918 * Stop searching when the read test doesn't pass AND when 1919 * we've seen a passing read on every bit. 1920 */ 1921 if (use_read_test) { 1922 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1923 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1924 &bit_chk, 0, 0); 1925 } else { 1926 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1927 0, PASS_ONE_BIT, 1928 &bit_chk, 0); 1929 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1930 (read_group - (write_group * 1931 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1932 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1933 stop = (bit_chk == 0); 1934 } 1935 sticky_bit_chk = sticky_bit_chk | bit_chk; 1936 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1937 1938 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1939 %u && %u", __func__, __LINE__, d, 1940 sticky_bit_chk, param->read_correct_mask, stop); 1941 1942 if (stop == 1) { 1943 break; 1944 } else { 1945 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1946 if (bit_chk & 1) { 1947 /* Remember a passing test as 1948 the right_edge */ 1949 right_edge[i] = d; 1950 } else { 1951 if (d != 0) { 1952 /* If a right edge has not been 1953 seen yet, then a future passing 1954 test will mark this edge as the 1955 left edge */ 1956 if (right_edge[i] == 1957 IO_IO_IN_DELAY_MAX + 1) { 1958 left_edge[i] = -(d + 1); 1959 } 1960 } else { 1961 /* d = 0 failed, but it passed 1962 when testing the left edge, 1963 so it must be marginal, 1964 set it to -1 */ 1965 if (right_edge[i] == 1966 IO_IO_IN_DELAY_MAX + 1 && 1967 left_edge[i] != 1968 IO_IO_IN_DELAY_MAX 1969 + 1) { 1970 right_edge[i] = -1; 1971 } 1972 /* If a right edge has not been 1973 seen yet, then a future passing 1974 test will mark this edge as the 1975 left edge */ 1976 else if (right_edge[i] == 1977 IO_IO_IN_DELAY_MAX + 1978 1) { 1979 left_edge[i] = -(d + 1); 1980 } 1981 } 1982 } 1983 1984 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1985 d=%u]: ", __func__, __LINE__, d); 1986 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1987 (int)(bit_chk & 1), i, left_edge[i]); 1988 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1989 right_edge[i]); 1990 bit_chk = bit_chk >> 1; 1991 } 1992 } 1993 } 1994 1995 /* Check that all bits have a window */ 1996 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1997 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1998 %d right_edge[%u]: %d", __func__, __LINE__, 1999 i, left_edge[i], i, right_edge[i]); 2000 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2001 == IO_IO_IN_DELAY_MAX + 1)) { 2002 /* 2003 * Restore delay chain settings before letting the loop 2004 * in rw_mgr_mem_calibrate_vfifo to retry different 2005 * dqs/ck relationships. 2006 */ 2007 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2008 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2009 scc_mgr_set_dqs_en_delay(read_group, 2010 start_dqs_en); 2011 } 2012 scc_mgr_load_dqs(read_group); 2013 writel(0, &sdr_scc_mgr->update); 2014 2015 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2016 find edge [%u]: %d %d", __func__, __LINE__, 2017 i, left_edge[i], right_edge[i]); 2018 if (use_read_test) { 2019 set_failing_group_stage(read_group * 2020 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2021 CAL_STAGE_VFIFO, 2022 CAL_SUBSTAGE_VFIFO_CENTER); 2023 } else { 2024 set_failing_group_stage(read_group * 2025 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2026 CAL_STAGE_VFIFO_AFTER_WRITES, 2027 CAL_SUBSTAGE_VFIFO_CENTER); 2028 } 2029 return 0; 2030 } 2031 } 2032 2033 /* Find middle of window for each DQ bit */ 2034 mid_min = left_edge[0] - right_edge[0]; 2035 min_index = 0; 2036 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2037 mid = left_edge[i] - right_edge[i]; 2038 if (mid < mid_min) { 2039 mid_min = mid; 2040 min_index = i; 2041 } 2042 } 2043 2044 /* 2045 * -mid_min/2 represents the amount that we need to move DQS. 2046 * If mid_min is odd and positive we'll need to add one to 2047 * make sure the rounding in further calculations is correct 2048 * (always bias to the right), so just add 1 for all positive values. 2049 */ 2050 if (mid_min > 0) 2051 mid_min++; 2052 2053 mid_min = mid_min / 2; 2054 2055 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2056 __func__, __LINE__, mid_min, min_index); 2057 2058 /* Determine the amount we can change DQS (which is -mid_min) */ 2059 orig_mid_min = mid_min; 2060 new_dqs = start_dqs - mid_min; 2061 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2062 new_dqs = IO_DQS_IN_DELAY_MAX; 2063 else if (new_dqs < 0) 2064 new_dqs = 0; 2065 2066 mid_min = start_dqs - new_dqs; 2067 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2068 mid_min, new_dqs); 2069 2070 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2071 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2072 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2073 else if (start_dqs_en - mid_min < 0) 2074 mid_min += start_dqs_en - mid_min; 2075 } 2076 new_dqs = start_dqs - mid_min; 2077 2078 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2079 new_dqs=%d mid_min=%d\n", start_dqs, 2080 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2081 new_dqs, mid_min); 2082 2083 /* Initialize data for export structures */ 2084 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2085 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2086 2087 /* add delay to bring centre of all DQ windows to the same "level" */ 2088 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2089 /* Use values before divide by 2 to reduce round off error */ 2090 shift_dq = (left_edge[i] - right_edge[i] - 2091 (left_edge[min_index] - right_edge[min_index]))/2 + 2092 (orig_mid_min - mid_min); 2093 2094 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2095 shift_dq[%u]=%d\n", i, shift_dq); 2096 2097 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2098 temp_dq_in_delay1 = readl(addr + (p << 2)); 2099 temp_dq_in_delay2 = readl(addr + (i << 2)); 2100 2101 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2102 (int32_t)IO_IO_IN_DELAY_MAX) { 2103 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2104 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2105 shift_dq = -(int32_t)temp_dq_in_delay1; 2106 } 2107 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2108 shift_dq[%u]=%d\n", i, shift_dq); 2109 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2110 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2111 scc_mgr_load_dq(p); 2112 2113 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2114 left_edge[i] - shift_dq + (-mid_min), 2115 right_edge[i] + shift_dq - (-mid_min)); 2116 /* To determine values for export structures */ 2117 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2118 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2119 2120 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2121 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2122 } 2123 2124 final_dqs = new_dqs; 2125 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2126 final_dqs_en = start_dqs_en - mid_min; 2127 2128 /* Move DQS-en */ 2129 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2130 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2131 scc_mgr_load_dqs(read_group); 2132 } 2133 2134 /* Move DQS */ 2135 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2136 scc_mgr_load_dqs(read_group); 2137 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2138 dqs_margin=%d", __func__, __LINE__, 2139 dq_margin, dqs_margin); 2140 2141 /* 2142 * Do not remove this line as it makes sure all of our decisions 2143 * have been applied. Apply the update bit. 2144 */ 2145 writel(0, &sdr_scc_mgr->update); 2146 2147 return (dq_margin >= 0) && (dqs_margin >= 0); 2148 } 2149 2150 /** 2151 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2152 * @rw_group: Read/Write Group 2153 * @phase: DQ/DQS phase 2154 * 2155 * Because initially no communication ca be reliably performed with the memory 2156 * device, the sequencer uses a guaranteed write mechanism to write data into 2157 * the memory device. 2158 */ 2159 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2160 const u32 phase) 2161 { 2162 int ret; 2163 2164 /* Set a particular DQ/DQS phase. */ 2165 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2166 2167 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2168 __func__, __LINE__, rw_group, phase); 2169 2170 /* 2171 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2172 * Load up the patterns used by read calibration using the 2173 * current DQDQS phase. 2174 */ 2175 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2176 2177 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2178 return 0; 2179 2180 /* 2181 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2182 * Back-to-Back reads of the patterns used for calibration. 2183 */ 2184 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2185 if (ret) 2186 debug_cond(DLEVEL == 1, 2187 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2188 __func__, __LINE__, rw_group, phase); 2189 return ret; 2190 } 2191 2192 /** 2193 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2194 * @rw_group: Read/Write Group 2195 * @test_bgn: Rank at which the test begins 2196 * 2197 * DQS enable calibration ensures reliable capture of the DQ signal without 2198 * glitches on the DQS line. 2199 */ 2200 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2201 const u32 test_bgn) 2202 { 2203 /* 2204 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2205 * DQS and DQS Eanble Signal Relationships. 2206 */ 2207 2208 /* We start at zero, so have one less dq to devide among */ 2209 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2210 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2211 int found; 2212 u32 i, p, d, r; 2213 2214 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2215 2216 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2217 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2218 r += NUM_RANKS_PER_SHADOW_REG) { 2219 for (i = 0, p = test_bgn, d = 0; 2220 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2221 i++, p++, d += delay_step) { 2222 debug_cond(DLEVEL == 1, 2223 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2224 __func__, __LINE__, rw_group, r, i, p, d); 2225 2226 scc_mgr_set_dq_in_delay(p, d); 2227 scc_mgr_load_dq(p); 2228 } 2229 2230 writel(0, &sdr_scc_mgr->update); 2231 } 2232 2233 /* 2234 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2235 * dq_in_delay values 2236 */ 2237 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2238 2239 debug_cond(DLEVEL == 1, 2240 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2241 __func__, __LINE__, rw_group, found); 2242 2243 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2244 r += NUM_RANKS_PER_SHADOW_REG) { 2245 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2246 writel(0, &sdr_scc_mgr->update); 2247 } 2248 2249 if (!found) 2250 return -EINVAL; 2251 2252 return 0; 2253 2254 } 2255 2256 /** 2257 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2258 * @rw_group: Read/Write Group 2259 * @test_bgn: Rank at which the test begins 2260 * @use_read_test: Perform a read test 2261 * @update_fom: Update FOM 2262 * 2263 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2264 * within a group. 2265 */ 2266 static int 2267 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2268 const int use_read_test, 2269 const int update_fom) 2270 2271 { 2272 int ret, grp_calibrated; 2273 u32 rank_bgn, sr; 2274 2275 /* 2276 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2277 * Read per-bit deskew can be done on a per shadow register basis. 2278 */ 2279 grp_calibrated = 1; 2280 for (rank_bgn = 0, sr = 0; 2281 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2282 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2283 /* Check if this set of ranks should be skipped entirely. */ 2284 if (param->skip_shadow_regs[sr]) 2285 continue; 2286 2287 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2288 rw_group, test_bgn, 2289 use_read_test, 2290 update_fom); 2291 if (ret) 2292 continue; 2293 2294 grp_calibrated = 0; 2295 } 2296 2297 if (!grp_calibrated) 2298 return -EIO; 2299 2300 return 0; 2301 } 2302 2303 /** 2304 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2305 * @rw_group: Read/Write Group 2306 * @test_bgn: Rank at which the test begins 2307 * 2308 * Stage 1: Calibrate the read valid prediction FIFO. 2309 * 2310 * This function implements UniPHY calibration Stage 1, as explained in 2311 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2312 * 2313 * - read valid prediction will consist of finding: 2314 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2315 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2316 * - we also do a per-bit deskew on the DQ lines. 2317 */ 2318 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2319 { 2320 uint32_t p, d; 2321 uint32_t dtaps_per_ptap; 2322 uint32_t failed_substage; 2323 2324 int ret; 2325 2326 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2327 2328 /* Update info for sims */ 2329 reg_file_set_group(rw_group); 2330 reg_file_set_stage(CAL_STAGE_VFIFO); 2331 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2332 2333 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2334 2335 /* USER Determine number of delay taps for each phase tap. */ 2336 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2337 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2338 2339 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2340 /* 2341 * In RLDRAMX we may be messing the delay of pins in 2342 * the same write rw_group but outside of the current read 2343 * the rw_group, but that's ok because we haven't calibrated 2344 * output side yet. 2345 */ 2346 if (d > 0) { 2347 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2348 rw_group, d); 2349 } 2350 2351 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2352 /* 1) Guaranteed Write */ 2353 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2354 if (ret) 2355 break; 2356 2357 /* 2) DQS Enable Calibration */ 2358 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2359 test_bgn); 2360 if (ret) { 2361 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2362 continue; 2363 } 2364 2365 /* 3) Centering DQ/DQS */ 2366 /* 2367 * If doing read after write calibration, do not update 2368 * FOM now. Do it then. 2369 */ 2370 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2371 test_bgn, 1, 0); 2372 if (ret) { 2373 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2374 continue; 2375 } 2376 2377 /* All done. */ 2378 goto cal_done_ok; 2379 } 2380 } 2381 2382 /* Calibration Stage 1 failed. */ 2383 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2384 return 0; 2385 2386 /* Calibration Stage 1 completed OK. */ 2387 cal_done_ok: 2388 /* 2389 * Reset the delay chains back to zero if they have moved > 1 2390 * (check for > 1 because loop will increase d even when pass in 2391 * first case). 2392 */ 2393 if (d > 2) 2394 scc_mgr_zero_group(rw_group, 1); 2395 2396 return 1; 2397 } 2398 2399 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2400 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2401 uint32_t test_bgn) 2402 { 2403 uint32_t rank_bgn, sr; 2404 uint32_t grp_calibrated; 2405 uint32_t write_group; 2406 2407 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2408 2409 /* update info for sims */ 2410 2411 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2412 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2413 2414 write_group = read_group; 2415 2416 /* update info for sims */ 2417 reg_file_set_group(read_group); 2418 2419 grp_calibrated = 1; 2420 /* Read per-bit deskew can be done on a per shadow register basis */ 2421 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2422 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2423 /* Determine if this set of ranks should be skipped entirely */ 2424 if (!param->skip_shadow_regs[sr]) { 2425 /* This is the last calibration round, update FOM here */ 2426 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2427 write_group, 2428 read_group, 2429 test_bgn, 0, 2430 1)) { 2431 grp_calibrated = 0; 2432 } 2433 } 2434 } 2435 2436 2437 if (grp_calibrated == 0) { 2438 set_failing_group_stage(write_group, 2439 CAL_STAGE_VFIFO_AFTER_WRITES, 2440 CAL_SUBSTAGE_VFIFO_CENTER); 2441 return 0; 2442 } 2443 2444 return 1; 2445 } 2446 2447 /* Calibrate LFIFO to find smallest read latency */ 2448 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2449 { 2450 uint32_t found_one; 2451 uint32_t bit_chk; 2452 2453 debug("%s:%d\n", __func__, __LINE__); 2454 2455 /* update info for sims */ 2456 reg_file_set_stage(CAL_STAGE_LFIFO); 2457 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2458 2459 /* Load up the patterns used by read calibration for all ranks */ 2460 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2461 found_one = 0; 2462 2463 do { 2464 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2465 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2466 __func__, __LINE__, gbl->curr_read_lat); 2467 2468 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2469 NUM_READ_TESTS, 2470 PASS_ALL_BITS, 2471 &bit_chk, 1)) { 2472 break; 2473 } 2474 2475 found_one = 1; 2476 /* reduce read latency and see if things are working */ 2477 /* correctly */ 2478 gbl->curr_read_lat--; 2479 } while (gbl->curr_read_lat > 0); 2480 2481 /* reset the fifos to get pointers to known state */ 2482 2483 writel(0, &phy_mgr_cmd->fifo_reset); 2484 2485 if (found_one) { 2486 /* add a fudge factor to the read latency that was determined */ 2487 gbl->curr_read_lat += 2; 2488 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2489 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2490 read_lat=%u\n", __func__, __LINE__, 2491 gbl->curr_read_lat); 2492 return 1; 2493 } else { 2494 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2495 CAL_SUBSTAGE_READ_LATENCY); 2496 2497 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2498 read_lat=%u\n", __func__, __LINE__, 2499 gbl->curr_read_lat); 2500 return 0; 2501 } 2502 } 2503 2504 /* 2505 * issue write test command. 2506 * two variants are provided. one that just tests a write pattern and 2507 * another that tests datamask functionality. 2508 */ 2509 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2510 uint32_t test_dm) 2511 { 2512 uint32_t mcc_instruction; 2513 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2514 ENABLE_SUPER_QUICK_CALIBRATION); 2515 uint32_t rw_wl_nop_cycles; 2516 uint32_t addr; 2517 2518 /* 2519 * Set counter and jump addresses for the right 2520 * number of NOP cycles. 2521 * The number of supported NOP cycles can range from -1 to infinity 2522 * Three different cases are handled: 2523 * 2524 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2525 * mechanism will be used to insert the right number of NOPs 2526 * 2527 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2528 * issuing the write command will jump straight to the 2529 * micro-instruction that turns on DQS (for DDRx), or outputs write 2530 * data (for RLD), skipping 2531 * the NOP micro-instruction all together 2532 * 2533 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2534 * turned on in the same micro-instruction that issues the write 2535 * command. Then we need 2536 * to directly jump to the micro-instruction that sends out the data 2537 * 2538 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2539 * (2 and 3). One jump-counter (0) is used to perform multiple 2540 * write-read operations. 2541 * one counter left to issue this command in "multiple-group" mode 2542 */ 2543 2544 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2545 2546 if (rw_wl_nop_cycles == -1) { 2547 /* 2548 * CNTR 2 - We want to execute the special write operation that 2549 * turns on DQS right away and then skip directly to the 2550 * instruction that sends out the data. We set the counter to a 2551 * large number so that the jump is always taken. 2552 */ 2553 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2554 2555 /* CNTR 3 - Not used */ 2556 if (test_dm) { 2557 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2558 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2559 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2560 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2561 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2562 } else { 2563 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2564 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2565 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2566 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2567 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2568 } 2569 } else if (rw_wl_nop_cycles == 0) { 2570 /* 2571 * CNTR 2 - We want to skip the NOP operation and go straight 2572 * to the DQS enable instruction. We set the counter to a large 2573 * number so that the jump is always taken. 2574 */ 2575 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2576 2577 /* CNTR 3 - Not used */ 2578 if (test_dm) { 2579 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2580 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2581 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2582 } else { 2583 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2584 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2585 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2586 } 2587 } else { 2588 /* 2589 * CNTR 2 - In this case we want to execute the next instruction 2590 * and NOT take the jump. So we set the counter to 0. The jump 2591 * address doesn't count. 2592 */ 2593 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2594 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2595 2596 /* 2597 * CNTR 3 - Set the nop counter to the number of cycles we 2598 * need to loop for, minus 1. 2599 */ 2600 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2601 if (test_dm) { 2602 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2603 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2604 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2605 } else { 2606 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2607 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2608 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2609 } 2610 } 2611 2612 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2613 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2614 2615 if (quick_write_mode) 2616 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2617 else 2618 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2619 2620 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2621 2622 /* 2623 * CNTR 1 - This is used to ensure enough time elapses 2624 * for read data to come back. 2625 */ 2626 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2627 2628 if (test_dm) { 2629 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2630 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2631 } else { 2632 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2633 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2634 } 2635 2636 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2637 writel(mcc_instruction, addr + (group << 2)); 2638 } 2639 2640 /* Test writes, can check for a single bit pass or multiple bit pass */ 2641 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2642 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2643 uint32_t *bit_chk, uint32_t all_ranks) 2644 { 2645 uint32_t r; 2646 uint32_t correct_mask_vg; 2647 uint32_t tmp_bit_chk; 2648 uint32_t vg; 2649 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2650 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2651 uint32_t addr_rw_mgr; 2652 uint32_t base_rw_mgr; 2653 2654 *bit_chk = param->write_correct_mask; 2655 correct_mask_vg = param->write_correct_mask_vg; 2656 2657 for (r = rank_bgn; r < rank_end; r++) { 2658 if (param->skip_ranks[r]) { 2659 /* request to skip the rank */ 2660 continue; 2661 } 2662 2663 /* set rank */ 2664 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2665 2666 tmp_bit_chk = 0; 2667 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2668 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2669 /* reset the fifos to get pointers to known state */ 2670 writel(0, &phy_mgr_cmd->fifo_reset); 2671 2672 tmp_bit_chk = tmp_bit_chk << 2673 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2674 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2675 rw_mgr_mem_calibrate_write_test_issue(write_group * 2676 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2677 use_dm); 2678 2679 base_rw_mgr = readl(addr_rw_mgr); 2680 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2681 if (vg == 0) 2682 break; 2683 } 2684 *bit_chk &= tmp_bit_chk; 2685 } 2686 2687 if (all_correct) { 2688 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2689 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2690 %u => %lu", write_group, use_dm, 2691 *bit_chk, param->write_correct_mask, 2692 (long unsigned int)(*bit_chk == 2693 param->write_correct_mask)); 2694 return *bit_chk == param->write_correct_mask; 2695 } else { 2696 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2697 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2698 write_group, use_dm, *bit_chk); 2699 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2700 (long unsigned int)(*bit_chk != 0)); 2701 return *bit_chk != 0x00; 2702 } 2703 } 2704 2705 /* 2706 * center all windows. do per-bit-deskew to possibly increase size of 2707 * certain windows. 2708 */ 2709 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2710 uint32_t write_group, uint32_t test_bgn) 2711 { 2712 uint32_t i, p, min_index; 2713 int32_t d; 2714 /* 2715 * Store these as signed since there are comparisons with 2716 * signed numbers. 2717 */ 2718 uint32_t bit_chk; 2719 uint32_t sticky_bit_chk; 2720 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2721 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2722 int32_t mid; 2723 int32_t mid_min, orig_mid_min; 2724 int32_t new_dqs, start_dqs, shift_dq; 2725 int32_t dq_margin, dqs_margin, dm_margin; 2726 uint32_t stop; 2727 uint32_t temp_dq_out1_delay; 2728 uint32_t addr; 2729 2730 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2731 2732 dm_margin = 0; 2733 2734 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2735 start_dqs = readl(addr + 2736 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2737 2738 /* per-bit deskew */ 2739 2740 /* 2741 * set the left and right edge of each bit to an illegal value 2742 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2743 */ 2744 sticky_bit_chk = 0; 2745 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2746 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2747 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2748 } 2749 2750 /* Search for the left edge of the window for each bit */ 2751 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2752 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2753 2754 writel(0, &sdr_scc_mgr->update); 2755 2756 /* 2757 * Stop searching when the read test doesn't pass AND when 2758 * we've seen a passing read on every bit. 2759 */ 2760 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2761 0, PASS_ONE_BIT, &bit_chk, 0); 2762 sticky_bit_chk = sticky_bit_chk | bit_chk; 2763 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2764 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2765 == %u && %u [bit_chk= %u ]\n", 2766 d, sticky_bit_chk, param->write_correct_mask, 2767 stop, bit_chk); 2768 2769 if (stop == 1) { 2770 break; 2771 } else { 2772 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2773 if (bit_chk & 1) { 2774 /* 2775 * Remember a passing test as the 2776 * left_edge. 2777 */ 2778 left_edge[i] = d; 2779 } else { 2780 /* 2781 * If a left edge has not been seen 2782 * yet, then a future passing test will 2783 * mark this edge as the right edge. 2784 */ 2785 if (left_edge[i] == 2786 IO_IO_OUT1_DELAY_MAX + 1) { 2787 right_edge[i] = -(d + 1); 2788 } 2789 } 2790 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2791 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2792 (int)(bit_chk & 1), i, left_edge[i]); 2793 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2794 right_edge[i]); 2795 bit_chk = bit_chk >> 1; 2796 } 2797 } 2798 } 2799 2800 /* Reset DQ delay chains to 0 */ 2801 scc_mgr_apply_group_dq_out1_delay(0); 2802 sticky_bit_chk = 0; 2803 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2804 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2805 %d right_edge[%u]: %d\n", __func__, __LINE__, 2806 i, left_edge[i], i, right_edge[i]); 2807 2808 /* 2809 * Check for cases where we haven't found the left edge, 2810 * which makes our assignment of the the right edge invalid. 2811 * Reset it to the illegal value. 2812 */ 2813 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2814 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2815 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2816 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2817 right_edge[%u]: %d\n", __func__, __LINE__, 2818 i, right_edge[i]); 2819 } 2820 2821 /* 2822 * Reset sticky bit (except for bits where we have 2823 * seen the left edge). 2824 */ 2825 sticky_bit_chk = sticky_bit_chk << 1; 2826 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2827 sticky_bit_chk = sticky_bit_chk | 1; 2828 2829 if (i == 0) 2830 break; 2831 } 2832 2833 /* Search for the right edge of the window for each bit */ 2834 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2835 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2836 d + start_dqs); 2837 2838 writel(0, &sdr_scc_mgr->update); 2839 2840 /* 2841 * Stop searching when the read test doesn't pass AND when 2842 * we've seen a passing read on every bit. 2843 */ 2844 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2845 0, PASS_ONE_BIT, &bit_chk, 0); 2846 2847 sticky_bit_chk = sticky_bit_chk | bit_chk; 2848 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2849 2850 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2851 %u && %u\n", d, sticky_bit_chk, 2852 param->write_correct_mask, stop); 2853 2854 if (stop == 1) { 2855 if (d == 0) { 2856 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2857 i++) { 2858 /* d = 0 failed, but it passed when 2859 testing the left edge, so it must be 2860 marginal, set it to -1 */ 2861 if (right_edge[i] == 2862 IO_IO_OUT1_DELAY_MAX + 1 && 2863 left_edge[i] != 2864 IO_IO_OUT1_DELAY_MAX + 1) { 2865 right_edge[i] = -1; 2866 } 2867 } 2868 } 2869 break; 2870 } else { 2871 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2872 if (bit_chk & 1) { 2873 /* 2874 * Remember a passing test as 2875 * the right_edge. 2876 */ 2877 right_edge[i] = d; 2878 } else { 2879 if (d != 0) { 2880 /* 2881 * If a right edge has not 2882 * been seen yet, then a future 2883 * passing test will mark this 2884 * edge as the left edge. 2885 */ 2886 if (right_edge[i] == 2887 IO_IO_OUT1_DELAY_MAX + 1) 2888 left_edge[i] = -(d + 1); 2889 } else { 2890 /* 2891 * d = 0 failed, but it passed 2892 * when testing the left edge, 2893 * so it must be marginal, set 2894 * it to -1. 2895 */ 2896 if (right_edge[i] == 2897 IO_IO_OUT1_DELAY_MAX + 1 && 2898 left_edge[i] != 2899 IO_IO_OUT1_DELAY_MAX + 1) 2900 right_edge[i] = -1; 2901 /* 2902 * If a right edge has not been 2903 * seen yet, then a future 2904 * passing test will mark this 2905 * edge as the left edge. 2906 */ 2907 else if (right_edge[i] == 2908 IO_IO_OUT1_DELAY_MAX + 2909 1) 2910 left_edge[i] = -(d + 1); 2911 } 2912 } 2913 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2914 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2915 (int)(bit_chk & 1), i, left_edge[i]); 2916 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2917 right_edge[i]); 2918 bit_chk = bit_chk >> 1; 2919 } 2920 } 2921 } 2922 2923 /* Check that all bits have a window */ 2924 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2925 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2926 %d right_edge[%u]: %d", __func__, __LINE__, 2927 i, left_edge[i], i, right_edge[i]); 2928 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2929 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2930 set_failing_group_stage(test_bgn + i, 2931 CAL_STAGE_WRITES, 2932 CAL_SUBSTAGE_WRITES_CENTER); 2933 return 0; 2934 } 2935 } 2936 2937 /* Find middle of window for each DQ bit */ 2938 mid_min = left_edge[0] - right_edge[0]; 2939 min_index = 0; 2940 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2941 mid = left_edge[i] - right_edge[i]; 2942 if (mid < mid_min) { 2943 mid_min = mid; 2944 min_index = i; 2945 } 2946 } 2947 2948 /* 2949 * -mid_min/2 represents the amount that we need to move DQS. 2950 * If mid_min is odd and positive we'll need to add one to 2951 * make sure the rounding in further calculations is correct 2952 * (always bias to the right), so just add 1 for all positive values. 2953 */ 2954 if (mid_min > 0) 2955 mid_min++; 2956 mid_min = mid_min / 2; 2957 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2958 __LINE__, mid_min); 2959 2960 /* Determine the amount we can change DQS (which is -mid_min) */ 2961 orig_mid_min = mid_min; 2962 new_dqs = start_dqs; 2963 mid_min = 0; 2964 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2965 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2966 /* Initialize data for export structures */ 2967 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2968 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2969 2970 /* add delay to bring centre of all DQ windows to the same "level" */ 2971 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2972 /* Use values before divide by 2 to reduce round off error */ 2973 shift_dq = (left_edge[i] - right_edge[i] - 2974 (left_edge[min_index] - right_edge[min_index]))/2 + 2975 (orig_mid_min - mid_min); 2976 2977 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2978 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2979 2980 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2981 temp_dq_out1_delay = readl(addr + (i << 2)); 2982 if (shift_dq + (int32_t)temp_dq_out1_delay > 2983 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2984 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2985 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2986 shift_dq = -(int32_t)temp_dq_out1_delay; 2987 } 2988 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2989 i, shift_dq); 2990 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2991 scc_mgr_load_dq(i); 2992 2993 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2994 left_edge[i] - shift_dq + (-mid_min), 2995 right_edge[i] + shift_dq - (-mid_min)); 2996 /* To determine values for export structures */ 2997 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2998 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2999 3000 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 3001 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 3002 } 3003 3004 /* Move DQS */ 3005 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3006 writel(0, &sdr_scc_mgr->update); 3007 3008 /* Centre DM */ 3009 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 3010 3011 /* 3012 * set the left and right edge of each bit to an illegal value, 3013 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 3014 */ 3015 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3016 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 3017 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3018 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3019 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 3020 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 3021 int32_t win_best = 0; 3022 3023 /* Search for the/part of the window with DM shift */ 3024 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3025 scc_mgr_apply_group_dm_out1_delay(d); 3026 writel(0, &sdr_scc_mgr->update); 3027 3028 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3029 PASS_ALL_BITS, &bit_chk, 3030 0)) { 3031 /* USE Set current end of the window */ 3032 end_curr = -d; 3033 /* 3034 * If a starting edge of our window has not been seen 3035 * this is our current start of the DM window. 3036 */ 3037 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3038 bgn_curr = -d; 3039 3040 /* 3041 * If current window is bigger than best seen. 3042 * Set best seen to be current window. 3043 */ 3044 if ((end_curr-bgn_curr+1) > win_best) { 3045 win_best = end_curr-bgn_curr+1; 3046 bgn_best = bgn_curr; 3047 end_best = end_curr; 3048 } 3049 } else { 3050 /* We just saw a failing test. Reset temp edge */ 3051 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3052 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3053 } 3054 } 3055 3056 3057 /* Reset DM delay chains to 0 */ 3058 scc_mgr_apply_group_dm_out1_delay(0); 3059 3060 /* 3061 * Check to see if the current window nudges up aganist 0 delay. 3062 * If so we need to continue the search by shifting DQS otherwise DQS 3063 * search begins as a new search. */ 3064 if (end_curr != 0) { 3065 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3066 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3067 } 3068 3069 /* Search for the/part of the window with DQS shifts */ 3070 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3071 /* 3072 * Note: This only shifts DQS, so are we limiting ourselve to 3073 * width of DQ unnecessarily. 3074 */ 3075 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3076 d + new_dqs); 3077 3078 writel(0, &sdr_scc_mgr->update); 3079 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3080 PASS_ALL_BITS, &bit_chk, 3081 0)) { 3082 /* USE Set current end of the window */ 3083 end_curr = d; 3084 /* 3085 * If a beginning edge of our window has not been seen 3086 * this is our current begin of the DM window. 3087 */ 3088 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3089 bgn_curr = d; 3090 3091 /* 3092 * If current window is bigger than best seen. Set best 3093 * seen to be current window. 3094 */ 3095 if ((end_curr-bgn_curr+1) > win_best) { 3096 win_best = end_curr-bgn_curr+1; 3097 bgn_best = bgn_curr; 3098 end_best = end_curr; 3099 } 3100 } else { 3101 /* We just saw a failing test. Reset temp edge */ 3102 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3103 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3104 3105 /* Early exit optimization: if ther remaining delay 3106 chain space is less than already seen largest window 3107 we can exit */ 3108 if ((win_best-1) > 3109 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3110 break; 3111 } 3112 } 3113 } 3114 3115 /* assign left and right edge for cal and reporting; */ 3116 left_edge[0] = -1*bgn_best; 3117 right_edge[0] = end_best; 3118 3119 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3120 __LINE__, left_edge[0], right_edge[0]); 3121 3122 /* Move DQS (back to orig) */ 3123 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3124 3125 /* Move DM */ 3126 3127 /* Find middle of window for the DM bit */ 3128 mid = (left_edge[0] - right_edge[0]) / 2; 3129 3130 /* only move right, since we are not moving DQS/DQ */ 3131 if (mid < 0) 3132 mid = 0; 3133 3134 /* dm_marign should fail if we never find a window */ 3135 if (win_best == 0) 3136 dm_margin = -1; 3137 else 3138 dm_margin = left_edge[0] - mid; 3139 3140 scc_mgr_apply_group_dm_out1_delay(mid); 3141 writel(0, &sdr_scc_mgr->update); 3142 3143 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3144 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3145 right_edge[0], mid, dm_margin); 3146 /* Export values */ 3147 gbl->fom_out += dq_margin + dqs_margin; 3148 3149 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3150 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3151 dq_margin, dqs_margin, dm_margin); 3152 3153 /* 3154 * Do not remove this line as it makes sure all of our 3155 * decisions have been applied. 3156 */ 3157 writel(0, &sdr_scc_mgr->update); 3158 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3159 } 3160 3161 /* calibrate the write operations */ 3162 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3163 uint32_t test_bgn) 3164 { 3165 /* update info for sims */ 3166 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3167 3168 reg_file_set_stage(CAL_STAGE_WRITES); 3169 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3170 3171 reg_file_set_group(g); 3172 3173 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3174 set_failing_group_stage(g, CAL_STAGE_WRITES, 3175 CAL_SUBSTAGE_WRITES_CENTER); 3176 return 0; 3177 } 3178 3179 return 1; 3180 } 3181 3182 /** 3183 * mem_precharge_and_activate() - Precharge all banks and activate 3184 * 3185 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3186 */ 3187 static void mem_precharge_and_activate(void) 3188 { 3189 int r; 3190 3191 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3192 /* Test if the rank should be skipped. */ 3193 if (param->skip_ranks[r]) 3194 continue; 3195 3196 /* Set rank. */ 3197 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3198 3199 /* Precharge all banks. */ 3200 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3201 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3202 3203 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3204 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3205 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3206 3207 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3208 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3209 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3210 3211 /* Activate rows. */ 3212 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3213 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3214 } 3215 } 3216 3217 /** 3218 * mem_init_latency() - Configure memory RLAT and WLAT settings 3219 * 3220 * Configure memory RLAT and WLAT parameters. 3221 */ 3222 static void mem_init_latency(void) 3223 { 3224 /* 3225 * For AV/CV, LFIFO is hardened and always runs at full rate 3226 * so max latency in AFI clocks, used here, is correspondingly 3227 * smaller. 3228 */ 3229 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3230 u32 rlat, wlat; 3231 3232 debug("%s:%d\n", __func__, __LINE__); 3233 3234 /* 3235 * Read in write latency. 3236 * WL for Hard PHY does not include additive latency. 3237 */ 3238 wlat = readl(&data_mgr->t_wl_add); 3239 wlat += readl(&data_mgr->mem_t_add); 3240 3241 gbl->rw_wl_nop_cycles = wlat - 1; 3242 3243 /* Read in readl latency. */ 3244 rlat = readl(&data_mgr->t_rl_add); 3245 3246 /* Set a pretty high read latency initially. */ 3247 gbl->curr_read_lat = rlat + 16; 3248 if (gbl->curr_read_lat > max_latency) 3249 gbl->curr_read_lat = max_latency; 3250 3251 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3252 3253 /* Advertise write latency. */ 3254 writel(wlat, &phy_mgr_cfg->afi_wlat); 3255 } 3256 3257 /** 3258 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3259 * 3260 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3261 */ 3262 static void mem_skip_calibrate(void) 3263 { 3264 uint32_t vfifo_offset; 3265 uint32_t i, j, r; 3266 3267 debug("%s:%d\n", __func__, __LINE__); 3268 /* Need to update every shadow register set used by the interface */ 3269 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3270 r += NUM_RANKS_PER_SHADOW_REG) { 3271 /* 3272 * Set output phase alignment settings appropriate for 3273 * skip calibration. 3274 */ 3275 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3276 scc_mgr_set_dqs_en_phase(i, 0); 3277 #if IO_DLL_CHAIN_LENGTH == 6 3278 scc_mgr_set_dqdqs_output_phase(i, 6); 3279 #else 3280 scc_mgr_set_dqdqs_output_phase(i, 7); 3281 #endif 3282 /* 3283 * Case:33398 3284 * 3285 * Write data arrives to the I/O two cycles before write 3286 * latency is reached (720 deg). 3287 * -> due to bit-slip in a/c bus 3288 * -> to allow board skew where dqs is longer than ck 3289 * -> how often can this happen!? 3290 * -> can claim back some ptaps for high freq 3291 * support if we can relax this, but i digress... 3292 * 3293 * The write_clk leads mem_ck by 90 deg 3294 * The minimum ptap of the OPA is 180 deg 3295 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3296 * The write_clk is always delayed by 2 ptaps 3297 * 3298 * Hence, to make DQS aligned to CK, we need to delay 3299 * DQS by: 3300 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3301 * 3302 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3303 * gives us the number of ptaps, which simplies to: 3304 * 3305 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3306 */ 3307 scc_mgr_set_dqdqs_output_phase(i, 3308 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3309 } 3310 writel(0xff, &sdr_scc_mgr->dqs_ena); 3311 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3312 3313 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3314 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3315 SCC_MGR_GROUP_COUNTER_OFFSET); 3316 } 3317 writel(0xff, &sdr_scc_mgr->dq_ena); 3318 writel(0xff, &sdr_scc_mgr->dm_ena); 3319 writel(0, &sdr_scc_mgr->update); 3320 } 3321 3322 /* Compensate for simulation model behaviour */ 3323 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3324 scc_mgr_set_dqs_bus_in_delay(i, 10); 3325 scc_mgr_load_dqs(i); 3326 } 3327 writel(0, &sdr_scc_mgr->update); 3328 3329 /* 3330 * ArriaV has hard FIFOs that can only be initialized by incrementing 3331 * in sequencer. 3332 */ 3333 vfifo_offset = CALIB_VFIFO_OFFSET; 3334 for (j = 0; j < vfifo_offset; j++) 3335 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3336 writel(0, &phy_mgr_cmd->fifo_reset); 3337 3338 /* 3339 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3340 * setting from generation-time constant. 3341 */ 3342 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3343 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3344 } 3345 3346 /** 3347 * mem_calibrate() - Memory calibration entry point. 3348 * 3349 * Perform memory calibration. 3350 */ 3351 static uint32_t mem_calibrate(void) 3352 { 3353 uint32_t i; 3354 uint32_t rank_bgn, sr; 3355 uint32_t write_group, write_test_bgn; 3356 uint32_t read_group, read_test_bgn; 3357 uint32_t run_groups, current_run; 3358 uint32_t failing_groups = 0; 3359 uint32_t group_failed = 0; 3360 3361 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3362 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3363 3364 debug("%s:%d\n", __func__, __LINE__); 3365 3366 /* Initialize the data settings */ 3367 gbl->error_substage = CAL_SUBSTAGE_NIL; 3368 gbl->error_stage = CAL_STAGE_NIL; 3369 gbl->error_group = 0xff; 3370 gbl->fom_in = 0; 3371 gbl->fom_out = 0; 3372 3373 /* Initialize WLAT and RLAT. */ 3374 mem_init_latency(); 3375 3376 /* Initialize bit slips. */ 3377 mem_precharge_and_activate(); 3378 3379 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3380 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3381 SCC_MGR_GROUP_COUNTER_OFFSET); 3382 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3383 if (i == 0) 3384 scc_mgr_set_hhp_extras(); 3385 3386 scc_set_bypass_mode(i); 3387 } 3388 3389 /* Calibration is skipped. */ 3390 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3391 /* 3392 * Set VFIFO and LFIFO to instant-on settings in skip 3393 * calibration mode. 3394 */ 3395 mem_skip_calibrate(); 3396 3397 /* 3398 * Do not remove this line as it makes sure all of our 3399 * decisions have been applied. 3400 */ 3401 writel(0, &sdr_scc_mgr->update); 3402 return 1; 3403 } 3404 3405 /* Calibration is not skipped. */ 3406 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3407 /* 3408 * Zero all delay chain/phase settings for all 3409 * groups and all shadow register sets. 3410 */ 3411 scc_mgr_zero_all(); 3412 3413 run_groups = ~param->skip_groups; 3414 3415 for (write_group = 0, write_test_bgn = 0; write_group 3416 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3417 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3418 3419 /* Initialize the group failure */ 3420 group_failed = 0; 3421 3422 current_run = run_groups & ((1 << 3423 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3424 run_groups = run_groups >> 3425 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3426 3427 if (current_run == 0) 3428 continue; 3429 3430 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3431 SCC_MGR_GROUP_COUNTER_OFFSET); 3432 scc_mgr_zero_group(write_group, 0); 3433 3434 for (read_group = write_group * rwdqs_ratio, 3435 read_test_bgn = 0; 3436 read_group < (write_group + 1) * rwdqs_ratio; 3437 read_group++, 3438 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3439 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3440 continue; 3441 3442 /* Calibrate the VFIFO */ 3443 if (rw_mgr_mem_calibrate_vfifo(read_group, 3444 read_test_bgn)) 3445 continue; 3446 3447 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3448 return 0; 3449 3450 /* The group failed, we're done. */ 3451 goto grp_failed; 3452 } 3453 3454 /* Calibrate the output side */ 3455 for (rank_bgn = 0, sr = 0; 3456 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3457 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3458 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3459 continue; 3460 3461 /* Not needed in quick mode! */ 3462 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3463 continue; 3464 3465 /* 3466 * Determine if this set of ranks 3467 * should be skipped entirely. 3468 */ 3469 if (param->skip_shadow_regs[sr]) 3470 continue; 3471 3472 /* Calibrate WRITEs */ 3473 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3474 write_group, write_test_bgn)) 3475 continue; 3476 3477 group_failed = 1; 3478 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3479 return 0; 3480 } 3481 3482 /* Some group failed, we're done. */ 3483 if (group_failed) 3484 goto grp_failed; 3485 3486 for (read_group = write_group * rwdqs_ratio, 3487 read_test_bgn = 0; 3488 read_group < (write_group + 1) * rwdqs_ratio; 3489 read_group++, 3490 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3491 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3492 continue; 3493 3494 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3495 read_test_bgn)) 3496 continue; 3497 3498 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3499 return 0; 3500 3501 /* The group failed, we're done. */ 3502 goto grp_failed; 3503 } 3504 3505 /* No group failed, continue as usual. */ 3506 continue; 3507 3508 grp_failed: /* A group failed, increment the counter. */ 3509 failing_groups++; 3510 } 3511 3512 /* 3513 * USER If there are any failing groups then report 3514 * the failure. 3515 */ 3516 if (failing_groups != 0) 3517 return 0; 3518 3519 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3520 continue; 3521 3522 /* 3523 * If we're skipping groups as part of debug, 3524 * don't calibrate LFIFO. 3525 */ 3526 if (param->skip_groups != 0) 3527 continue; 3528 3529 /* Calibrate the LFIFO */ 3530 if (!rw_mgr_mem_calibrate_lfifo()) 3531 return 0; 3532 } 3533 3534 /* 3535 * Do not remove this line as it makes sure all of our decisions 3536 * have been applied. 3537 */ 3538 writel(0, &sdr_scc_mgr->update); 3539 return 1; 3540 } 3541 3542 /** 3543 * run_mem_calibrate() - Perform memory calibration 3544 * 3545 * This function triggers the entire memory calibration procedure. 3546 */ 3547 static int run_mem_calibrate(void) 3548 { 3549 int pass; 3550 3551 debug("%s:%d\n", __func__, __LINE__); 3552 3553 /* Reset pass/fail status shown on afi_cal_success/fail */ 3554 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3555 3556 /* Stop tracking manager. */ 3557 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3558 3559 phy_mgr_initialize(); 3560 rw_mgr_mem_initialize(); 3561 3562 /* Perform the actual memory calibration. */ 3563 pass = mem_calibrate(); 3564 3565 mem_precharge_and_activate(); 3566 writel(0, &phy_mgr_cmd->fifo_reset); 3567 3568 /* Handoff. */ 3569 rw_mgr_mem_handoff(); 3570 /* 3571 * In Hard PHY this is a 2-bit control: 3572 * 0: AFI Mux Select 3573 * 1: DDIO Mux Select 3574 */ 3575 writel(0x2, &phy_mgr_cfg->mux_sel); 3576 3577 /* Start tracking manager. */ 3578 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3579 3580 return pass; 3581 } 3582 3583 /** 3584 * debug_mem_calibrate() - Report result of memory calibration 3585 * @pass: Value indicating whether calibration passed or failed 3586 * 3587 * This function reports the results of the memory calibration 3588 * and writes debug information into the register file. 3589 */ 3590 static void debug_mem_calibrate(int pass) 3591 { 3592 uint32_t debug_info; 3593 3594 if (pass) { 3595 printf("%s: CALIBRATION PASSED\n", __FILE__); 3596 3597 gbl->fom_in /= 2; 3598 gbl->fom_out /= 2; 3599 3600 if (gbl->fom_in > 0xff) 3601 gbl->fom_in = 0xff; 3602 3603 if (gbl->fom_out > 0xff) 3604 gbl->fom_out = 0xff; 3605 3606 /* Update the FOM in the register file */ 3607 debug_info = gbl->fom_in; 3608 debug_info |= gbl->fom_out << 8; 3609 writel(debug_info, &sdr_reg_file->fom); 3610 3611 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3612 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3613 } else { 3614 printf("%s: CALIBRATION FAILED\n", __FILE__); 3615 3616 debug_info = gbl->error_stage; 3617 debug_info |= gbl->error_substage << 8; 3618 debug_info |= gbl->error_group << 16; 3619 3620 writel(debug_info, &sdr_reg_file->failing_stage); 3621 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3622 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3623 3624 /* Update the failing group/stage in the register file */ 3625 debug_info = gbl->error_stage; 3626 debug_info |= gbl->error_substage << 8; 3627 debug_info |= gbl->error_group << 16; 3628 writel(debug_info, &sdr_reg_file->failing_stage); 3629 } 3630 3631 printf("%s: Calibration complete\n", __FILE__); 3632 } 3633 3634 /** 3635 * hc_initialize_rom_data() - Initialize ROM data 3636 * 3637 * Initialize ROM data. 3638 */ 3639 static void hc_initialize_rom_data(void) 3640 { 3641 u32 i, addr; 3642 3643 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3644 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3645 writel(inst_rom_init[i], addr + (i << 2)); 3646 3647 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3648 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3649 writel(ac_rom_init[i], addr + (i << 2)); 3650 } 3651 3652 /** 3653 * initialize_reg_file() - Initialize SDR register file 3654 * 3655 * Initialize SDR register file. 3656 */ 3657 static void initialize_reg_file(void) 3658 { 3659 /* Initialize the register file with the correct data */ 3660 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3661 writel(0, &sdr_reg_file->debug_data_addr); 3662 writel(0, &sdr_reg_file->cur_stage); 3663 writel(0, &sdr_reg_file->fom); 3664 writel(0, &sdr_reg_file->failing_stage); 3665 writel(0, &sdr_reg_file->debug1); 3666 writel(0, &sdr_reg_file->debug2); 3667 } 3668 3669 /** 3670 * initialize_hps_phy() - Initialize HPS PHY 3671 * 3672 * Initialize HPS PHY. 3673 */ 3674 static void initialize_hps_phy(void) 3675 { 3676 uint32_t reg; 3677 /* 3678 * Tracking also gets configured here because it's in the 3679 * same register. 3680 */ 3681 uint32_t trk_sample_count = 7500; 3682 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3683 /* 3684 * Format is number of outer loops in the 16 MSB, sample 3685 * count in 16 LSB. 3686 */ 3687 3688 reg = 0; 3689 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3690 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3691 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3692 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3693 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3694 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3695 /* 3696 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3697 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3698 */ 3699 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3700 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3701 trk_sample_count); 3702 writel(reg, &sdr_ctrl->phy_ctrl0); 3703 3704 reg = 0; 3705 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3706 trk_sample_count >> 3707 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3708 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3709 trk_long_idle_sample_count); 3710 writel(reg, &sdr_ctrl->phy_ctrl1); 3711 3712 reg = 0; 3713 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3714 trk_long_idle_sample_count >> 3715 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3716 writel(reg, &sdr_ctrl->phy_ctrl2); 3717 } 3718 3719 /** 3720 * initialize_tracking() - Initialize tracking 3721 * 3722 * Initialize the register file with usable initial data. 3723 */ 3724 static void initialize_tracking(void) 3725 { 3726 /* 3727 * Initialize the register file with the correct data. 3728 * Compute usable version of value in case we skip full 3729 * computation later. 3730 */ 3731 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3732 &sdr_reg_file->dtaps_per_ptap); 3733 3734 /* trk_sample_count */ 3735 writel(7500, &sdr_reg_file->trk_sample_count); 3736 3737 /* longidle outer loop [15:0] */ 3738 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3739 3740 /* 3741 * longidle sample count [31:24] 3742 * trfc, worst case of 933Mhz 4Gb [23:16] 3743 * trcd, worst case [15:8] 3744 * vfifo wait [7:0] 3745 */ 3746 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3747 &sdr_reg_file->delays); 3748 3749 /* mux delay */ 3750 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3751 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3752 &sdr_reg_file->trk_rw_mgr_addr); 3753 3754 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3755 &sdr_reg_file->trk_read_dqs_width); 3756 3757 /* trefi [7:0] */ 3758 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3759 &sdr_reg_file->trk_rfsh); 3760 } 3761 3762 int sdram_calibration_full(void) 3763 { 3764 struct param_type my_param; 3765 struct gbl_type my_gbl; 3766 uint32_t pass; 3767 3768 memset(&my_param, 0, sizeof(my_param)); 3769 memset(&my_gbl, 0, sizeof(my_gbl)); 3770 3771 param = &my_param; 3772 gbl = &my_gbl; 3773 3774 /* Set the calibration enabled by default */ 3775 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3776 /* 3777 * Only sweep all groups (regardless of fail state) by default 3778 * Set enabled read test by default. 3779 */ 3780 #if DISABLE_GUARANTEED_READ 3781 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3782 #endif 3783 /* Initialize the register file */ 3784 initialize_reg_file(); 3785 3786 /* Initialize any PHY CSR */ 3787 initialize_hps_phy(); 3788 3789 scc_mgr_initialize(); 3790 3791 initialize_tracking(); 3792 3793 printf("%s: Preparing to start memory calibration\n", __FILE__); 3794 3795 debug("%s:%d\n", __func__, __LINE__); 3796 debug_cond(DLEVEL == 1, 3797 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3798 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3799 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3800 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3801 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3802 debug_cond(DLEVEL == 1, 3803 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3804 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3805 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3806 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3807 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3808 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3809 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3810 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3811 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3812 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3813 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3814 IO_IO_OUT2_DELAY_MAX); 3815 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3816 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3817 3818 hc_initialize_rom_data(); 3819 3820 /* update info for sims */ 3821 reg_file_set_stage(CAL_STAGE_NIL); 3822 reg_file_set_group(0); 3823 3824 /* 3825 * Load global needed for those actions that require 3826 * some dynamic calibration support. 3827 */ 3828 dyn_calib_steps = STATIC_CALIB_STEPS; 3829 /* 3830 * Load global to allow dynamic selection of delay loop settings 3831 * based on calibration mode. 3832 */ 3833 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3834 skip_delay_mask = 0xff; 3835 else 3836 skip_delay_mask = 0x0; 3837 3838 pass = run_mem_calibrate(); 3839 debug_mem_calibrate(pass); 3840 return pass; 3841 } 3842