xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 35ee867fc28614dcbd23897f42e78e6cc8ad9151)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include <errno.h>
11 #include "sequencer.h"
12 #include "sequencer_auto.h"
13 #include "sequencer_auto_ac_init.h"
14 #include "sequencer_auto_inst_init.h"
15 #include "sequencer_defines.h"
16 
17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
18 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
19 
20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
21 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
22 
23 static struct socfpga_sdr_reg_file *sdr_reg_file =
24 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
25 
26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
27 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
28 
29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
30 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
31 
32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
33 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
34 
35 static struct socfpga_data_mgr *data_mgr =
36 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
37 
38 static struct socfpga_sdr_ctrl *sdr_ctrl =
39 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
40 
41 #define DELTA_D		1
42 
43 /*
44  * In order to reduce ROM size, most of the selectable calibration steps are
45  * decided at compile time based on the user's calibration mode selection,
46  * as captured by the STATIC_CALIB_STEPS selection below.
47  *
48  * However, to support simulation-time selection of fast simulation mode, where
49  * we skip everything except the bare minimum, we need a few of the steps to
50  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
51  * check, which is based on the rtl-supplied value, or we dynamically compute
52  * the value to use based on the dynamically-chosen calibration mode
53  */
54 
55 #define DLEVEL 0
56 #define STATIC_IN_RTL_SIM 0
57 #define STATIC_SKIP_DELAY_LOOPS 0
58 
59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
60 	STATIC_SKIP_DELAY_LOOPS)
61 
62 /* calibration steps requested by the rtl */
63 uint16_t dyn_calib_steps;
64 
65 /*
66  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
67  * instead of static, we use boolean logic to select between
68  * non-skip and skip values
69  *
70  * The mask is set to include all bits when not-skipping, but is
71  * zero when skipping
72  */
73 
74 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
75 
76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
77 	((non_skip_value) & skip_delay_mask)
78 
79 struct gbl_type *gbl;
80 struct param_type *param;
81 uint32_t curr_shadow_reg;
82 
83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
84 	uint32_t write_group, uint32_t use_dm,
85 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
86 
87 static void set_failing_group_stage(uint32_t group, uint32_t stage,
88 	uint32_t substage)
89 {
90 	/*
91 	 * Only set the global stage if there was not been any other
92 	 * failing group
93 	 */
94 	if (gbl->error_stage == CAL_STAGE_NIL)	{
95 		gbl->error_substage = substage;
96 		gbl->error_stage = stage;
97 		gbl->error_group = group;
98 	}
99 }
100 
101 static void reg_file_set_group(u16 set_group)
102 {
103 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
104 }
105 
106 static void reg_file_set_stage(u8 set_stage)
107 {
108 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
109 }
110 
111 static void reg_file_set_sub_stage(u8 set_sub_stage)
112 {
113 	set_sub_stage &= 0xff;
114 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
115 }
116 
117 /**
118  * phy_mgr_initialize() - Initialize PHY Manager
119  *
120  * Initialize PHY Manager.
121  */
122 static void phy_mgr_initialize(void)
123 {
124 	u32 ratio;
125 
126 	debug("%s:%d\n", __func__, __LINE__);
127 	/* Calibration has control over path to memory */
128 	/*
129 	 * In Hard PHY this is a 2-bit control:
130 	 * 0: AFI Mux Select
131 	 * 1: DDIO Mux Select
132 	 */
133 	writel(0x3, &phy_mgr_cfg->mux_sel);
134 
135 	/* USER memory clock is not stable we begin initialization  */
136 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
137 
138 	/* USER calibration status all set to zero */
139 	writel(0, &phy_mgr_cfg->cal_status);
140 
141 	writel(0, &phy_mgr_cfg->cal_debug_info);
142 
143 	/* Init params only if we do NOT skip calibration. */
144 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
145 		return;
146 
147 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
148 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
149 	param->read_correct_mask_vg = (1 << ratio) - 1;
150 	param->write_correct_mask_vg = (1 << ratio) - 1;
151 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
152 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
153 	ratio = RW_MGR_MEM_DATA_WIDTH /
154 		RW_MGR_MEM_DATA_MASK_WIDTH;
155 	param->dm_correct_mask = (1 << ratio) - 1;
156 }
157 
158 /**
159  * set_rank_and_odt_mask() - Set Rank and ODT mask
160  * @rank:	Rank mask
161  * @odt_mode:	ODT mode, OFF or READ_WRITE
162  *
163  * Set Rank and ODT mask (On-Die Termination).
164  */
165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
166 {
167 	u32 odt_mask_0 = 0;
168 	u32 odt_mask_1 = 0;
169 	u32 cs_and_odt_mask;
170 
171 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
172 		odt_mask_0 = 0x0;
173 		odt_mask_1 = 0x0;
174 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
175 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
176 		case 1:	/* 1 Rank */
177 			/* Read: ODT = 0 ; Write: ODT = 1 */
178 			odt_mask_0 = 0x0;
179 			odt_mask_1 = 0x1;
180 			break;
181 		case 2:	/* 2 Ranks */
182 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
183 				/*
184 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
185 				 *   OR
186 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
187 				 *
188 				 * Since MEM_NUMBER_OF_RANKS is 2, they
189 				 * are both single rank with 2 CS each
190 				 * (special for RDIMM).
191 				 *
192 				 * Read: Turn on ODT on the opposite rank
193 				 * Write: Turn on ODT on all ranks
194 				 */
195 				odt_mask_0 = 0x3 & ~(1 << rank);
196 				odt_mask_1 = 0x3;
197 			} else {
198 				/*
199 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
200 				 *
201 				 * Read: Turn on ODT off on all ranks
202 				 * Write: Turn on ODT on active rank
203 				 */
204 				odt_mask_0 = 0x0;
205 				odt_mask_1 = 0x3 & (1 << rank);
206 			}
207 			break;
208 		case 4:	/* 4 Ranks */
209 			/* Read:
210 			 * ----------+-----------------------+
211 			 *           |         ODT           |
212 			 * Read From +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  0  |
216 			 *     1     |  1  |  0  |  0  |  0  |
217 			 *     2     |  0  |  0  |  0  |  1  |
218 			 *     3     |  0  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 *
221 			 * Write:
222 			 * ----------+-----------------------+
223 			 *           |         ODT           |
224 			 * Write To  +-----------------------+
225 			 *   Rank    |  3  |  2  |  1  |  0  |
226 			 * ----------+-----+-----+-----+-----+
227 			 *     0     |  0  |  1  |  0  |  1  |
228 			 *     1     |  1  |  0  |  1  |  0  |
229 			 *     2     |  0  |  1  |  0  |  1  |
230 			 *     3     |  1  |  0  |  1  |  0  |
231 			 * ----------+-----+-----+-----+-----+
232 			 */
233 			switch (rank) {
234 			case 0:
235 				odt_mask_0 = 0x4;
236 				odt_mask_1 = 0x5;
237 				break;
238 			case 1:
239 				odt_mask_0 = 0x8;
240 				odt_mask_1 = 0xA;
241 				break;
242 			case 2:
243 				odt_mask_0 = 0x1;
244 				odt_mask_1 = 0x5;
245 				break;
246 			case 3:
247 				odt_mask_0 = 0x2;
248 				odt_mask_1 = 0xA;
249 				break;
250 			}
251 			break;
252 		}
253 	}
254 
255 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
256 			  ((0xFF & odt_mask_0) << 8) |
257 			  ((0xFF & odt_mask_1) << 16);
258 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
259 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
260 }
261 
262 /**
263  * scc_mgr_set() - Set SCC Manager register
264  * @off:	Base offset in SCC Manager space
265  * @grp:	Read/Write group
266  * @val:	Value to be set
267  *
268  * This function sets the SCC Manager (Scan Chain Control Manager) register.
269  */
270 static void scc_mgr_set(u32 off, u32 grp, u32 val)
271 {
272 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
273 }
274 
275 /**
276  * scc_mgr_initialize() - Initialize SCC Manager registers
277  *
278  * Initialize SCC Manager registers.
279  */
280 static void scc_mgr_initialize(void)
281 {
282 	/*
283 	 * Clear register file for HPS. 16 (2^4) is the size of the
284 	 * full register file in the scc mgr:
285 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
286 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
287 	 */
288 	int i;
289 
290 	for (i = 0; i < 16; i++) {
291 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
292 			   __func__, __LINE__, i);
293 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
294 	}
295 }
296 
297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
298 {
299 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
303 {
304 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
305 }
306 
307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
308 {
309 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
310 }
311 
312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
313 {
314 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
315 }
316 
317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
318 {
319 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
320 		    delay);
321 }
322 
323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
324 {
325 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
326 }
327 
328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
329 {
330 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
331 }
332 
333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
334 {
335 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
336 		    delay);
337 }
338 
339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
340 {
341 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
342 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
343 		    delay);
344 }
345 
346 /* load up dqs config settings */
347 static void scc_mgr_load_dqs(uint32_t dqs)
348 {
349 	writel(dqs, &sdr_scc_mgr->dqs_ena);
350 }
351 
352 /* load up dqs io config settings */
353 static void scc_mgr_load_dqs_io(void)
354 {
355 	writel(0, &sdr_scc_mgr->dqs_io_ena);
356 }
357 
358 /* load up dq config settings */
359 static void scc_mgr_load_dq(uint32_t dq_in_group)
360 {
361 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
362 }
363 
364 /* load up dm config settings */
365 static void scc_mgr_load_dm(uint32_t dm)
366 {
367 	writel(dm, &sdr_scc_mgr->dm_ena);
368 }
369 
370 /**
371  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
372  * @off:	Base offset in SCC Manager space
373  * @grp:	Read/Write group
374  * @val:	Value to be set
375  * @update:	If non-zero, trigger SCC Manager update for all ranks
376  *
377  * This function sets the SCC Manager (Scan Chain Control Manager) register
378  * and optionally triggers the SCC update for all ranks.
379  */
380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
381 				  const int update)
382 {
383 	u32 r;
384 
385 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
386 	     r += NUM_RANKS_PER_SHADOW_REG) {
387 		scc_mgr_set(off, grp, val);
388 
389 		if (update || (r == 0)) {
390 			writel(grp, &sdr_scc_mgr->dqs_ena);
391 			writel(0, &sdr_scc_mgr->update);
392 		}
393 	}
394 }
395 
396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
397 {
398 	/*
399 	 * USER although the h/w doesn't support different phases per
400 	 * shadow register, for simplicity our scc manager modeling
401 	 * keeps different phase settings per shadow reg, and it's
402 	 * important for us to keep them in sync to match h/w.
403 	 * for efficiency, the scan chain update should occur only
404 	 * once to sr0.
405 	 */
406 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
407 			      read_group, phase, 0);
408 }
409 
410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
411 						     uint32_t phase)
412 {
413 	/*
414 	 * USER although the h/w doesn't support different phases per
415 	 * shadow register, for simplicity our scc manager modeling
416 	 * keeps different phase settings per shadow reg, and it's
417 	 * important for us to keep them in sync to match h/w.
418 	 * for efficiency, the scan chain update should occur only
419 	 * once to sr0.
420 	 */
421 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
422 			      write_group, phase, 0);
423 }
424 
425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
426 					       uint32_t delay)
427 {
428 	/*
429 	 * In shadow register mode, the T11 settings are stored in
430 	 * registers in the core, which are updated by the DQS_ENA
431 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
432 	 * save lots of rank switching overhead, by calling
433 	 * select_shadow_regs_for_update with update_scan_chains
434 	 * set to 0.
435 	 */
436 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
437 			      read_group, delay, 1);
438 	writel(0, &sdr_scc_mgr->update);
439 }
440 
441 /**
442  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
443  * @write_group:	Write group
444  * @delay:		Delay value
445  *
446  * This function sets the OCT output delay in SCC manager.
447  */
448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
449 {
450 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
451 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
452 	const int base = write_group * ratio;
453 	int i;
454 	/*
455 	 * Load the setting in the SCC manager
456 	 * Although OCT affects only write data, the OCT delay is controlled
457 	 * by the DQS logic block which is instantiated once per read group.
458 	 * For protocols where a write group consists of multiple read groups,
459 	 * the setting must be set multiple times.
460 	 */
461 	for (i = 0; i < ratio; i++)
462 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
463 }
464 
465 /**
466  * scc_mgr_set_hhp_extras() - Set HHP extras.
467  *
468  * Load the fixed setting in the SCC manager HHP extras.
469  */
470 static void scc_mgr_set_hhp_extras(void)
471 {
472 	/*
473 	 * Load the fixed setting in the SCC manager
474 	 * bits: 0:0 = 1'b1	- DQS bypass
475 	 * bits: 1:1 = 1'b1	- DQ bypass
476 	 * bits: 4:2 = 3'b001	- rfifo_mode
477 	 * bits: 6:5 = 2'b01	- rfifo clock_select
478 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
479 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
480 	 */
481 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
482 			  (1 << 2) | (1 << 1) | (1 << 0);
483 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
484 			 SCC_MGR_HHP_GLOBALS_OFFSET |
485 			 SCC_MGR_HHP_EXTRAS_OFFSET;
486 
487 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
488 		   __func__, __LINE__);
489 	writel(value, addr);
490 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
491 		   __func__, __LINE__);
492 }
493 
494 /**
495  * scc_mgr_zero_all() - Zero all DQS config
496  *
497  * Zero all DQS config.
498  */
499 static void scc_mgr_zero_all(void)
500 {
501 	int i, r;
502 
503 	/*
504 	 * USER Zero all DQS config settings, across all groups and all
505 	 * shadow registers
506 	 */
507 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
508 	     r += NUM_RANKS_PER_SHADOW_REG) {
509 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
510 			/*
511 			 * The phases actually don't exist on a per-rank basis,
512 			 * but there's no harm updating them several times, so
513 			 * let's keep the code simple.
514 			 */
515 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
516 			scc_mgr_set_dqs_en_phase(i, 0);
517 			scc_mgr_set_dqs_en_delay(i, 0);
518 		}
519 
520 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
521 			scc_mgr_set_dqdqs_output_phase(i, 0);
522 			/* Arria V/Cyclone V don't have out2. */
523 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
524 		}
525 	}
526 
527 	/* Multicast to all DQS group enables. */
528 	writel(0xff, &sdr_scc_mgr->dqs_ena);
529 	writel(0, &sdr_scc_mgr->update);
530 }
531 
532 /**
533  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
534  * @write_group:	Write group
535  *
536  * Set bypass mode and trigger SCC update.
537  */
538 static void scc_set_bypass_mode(const u32 write_group)
539 {
540 	/* Multicast to all DQ enables. */
541 	writel(0xff, &sdr_scc_mgr->dq_ena);
542 	writel(0xff, &sdr_scc_mgr->dm_ena);
543 
544 	/* Update current DQS IO enable. */
545 	writel(0, &sdr_scc_mgr->dqs_io_ena);
546 
547 	/* Update the DQS logic. */
548 	writel(write_group, &sdr_scc_mgr->dqs_ena);
549 
550 	/* Hit update. */
551 	writel(0, &sdr_scc_mgr->update);
552 }
553 
554 /**
555  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
556  * @write_group:	Write group
557  *
558  * Load DQS settings for Write Group, do not trigger SCC update.
559  */
560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
561 {
562 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
563 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
564 	const int base = write_group * ratio;
565 	int i;
566 	/*
567 	 * Load the setting in the SCC manager
568 	 * Although OCT affects only write data, the OCT delay is controlled
569 	 * by the DQS logic block which is instantiated once per read group.
570 	 * For protocols where a write group consists of multiple read groups,
571 	 * the setting must be set multiple times.
572 	 */
573 	for (i = 0; i < ratio; i++)
574 		writel(base + i, &sdr_scc_mgr->dqs_ena);
575 }
576 
577 /**
578  * scc_mgr_zero_group() - Zero all configs for a group
579  *
580  * Zero DQ, DM, DQS and OCT configs for a group.
581  */
582 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
583 {
584 	int i, r;
585 
586 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
587 	     r += NUM_RANKS_PER_SHADOW_REG) {
588 		/* Zero all DQ config settings. */
589 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
590 			scc_mgr_set_dq_out1_delay(i, 0);
591 			if (!out_only)
592 				scc_mgr_set_dq_in_delay(i, 0);
593 		}
594 
595 		/* Multicast to all DQ enables. */
596 		writel(0xff, &sdr_scc_mgr->dq_ena);
597 
598 		/* Zero all DM config settings. */
599 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
600 			scc_mgr_set_dm_out1_delay(i, 0);
601 
602 		/* Multicast to all DM enables. */
603 		writel(0xff, &sdr_scc_mgr->dm_ena);
604 
605 		/* Zero all DQS IO settings. */
606 		if (!out_only)
607 			scc_mgr_set_dqs_io_in_delay(0);
608 
609 		/* Arria V/Cyclone V don't have out2. */
610 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
611 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
612 		scc_mgr_load_dqs_for_write_group(write_group);
613 
614 		/* Multicast to all DQS IO enables (only 1 in total). */
615 		writel(0, &sdr_scc_mgr->dqs_io_ena);
616 
617 		/* Hit update to zero everything. */
618 		writel(0, &sdr_scc_mgr->update);
619 	}
620 }
621 
622 /*
623  * apply and load a particular input delay for the DQ pins in a group
624  * group_bgn is the index of the first dq pin (in the write group)
625  */
626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
627 {
628 	uint32_t i, p;
629 
630 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
631 		scc_mgr_set_dq_in_delay(p, delay);
632 		scc_mgr_load_dq(p);
633 	}
634 }
635 
636 /**
637  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
638  * @delay:		Delay value
639  *
640  * Apply and load a particular output delay for the DQ pins in a group.
641  */
642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
643 {
644 	int i;
645 
646 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
647 		scc_mgr_set_dq_out1_delay(i, delay);
648 		scc_mgr_load_dq(i);
649 	}
650 }
651 
652 /* apply and load a particular output delay for the DM pins in a group */
653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
654 {
655 	uint32_t i;
656 
657 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
658 		scc_mgr_set_dm_out1_delay(i, delay1);
659 		scc_mgr_load_dm(i);
660 	}
661 }
662 
663 
664 /* apply and load delay on both DQS and OCT out1 */
665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
666 						    uint32_t delay)
667 {
668 	scc_mgr_set_dqs_out1_delay(delay);
669 	scc_mgr_load_dqs_io();
670 
671 	scc_mgr_set_oct_out1_delay(write_group, delay);
672 	scc_mgr_load_dqs_for_write_group(write_group);
673 }
674 
675 /**
676  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
677  * @write_group:	Write group
678  * @delay:		Delay value
679  *
680  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
681  */
682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
683 						  const u32 delay)
684 {
685 	u32 i, new_delay;
686 
687 	/* DQ shift */
688 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
689 		scc_mgr_load_dq(i);
690 
691 	/* DM shift */
692 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
693 		scc_mgr_load_dm(i);
694 
695 	/* DQS shift */
696 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
697 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
698 		debug_cond(DLEVEL == 1,
699 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
700 			   __func__, __LINE__, write_group, delay, new_delay,
701 			   IO_IO_OUT2_DELAY_MAX,
702 			   new_delay - IO_IO_OUT2_DELAY_MAX);
703 		new_delay -= IO_IO_OUT2_DELAY_MAX;
704 		scc_mgr_set_dqs_out1_delay(new_delay);
705 	}
706 
707 	scc_mgr_load_dqs_io();
708 
709 	/* OCT shift */
710 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
711 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
712 		debug_cond(DLEVEL == 1,
713 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
714 			   __func__, __LINE__, write_group, delay,
715 			   new_delay, IO_IO_OUT2_DELAY_MAX,
716 			   new_delay - IO_IO_OUT2_DELAY_MAX);
717 		new_delay -= IO_IO_OUT2_DELAY_MAX;
718 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
719 	}
720 
721 	scc_mgr_load_dqs_for_write_group(write_group);
722 }
723 
724 /**
725  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
726  * @write_group:	Write group
727  * @delay:		Delay value
728  *
729  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
730  */
731 static void
732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
733 						const u32 delay)
734 {
735 	int r;
736 
737 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
738 	     r += NUM_RANKS_PER_SHADOW_REG) {
739 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
740 		writel(0, &sdr_scc_mgr->update);
741 	}
742 }
743 
744 /**
745  * set_jump_as_return() - Return instruction optimization
746  *
747  * Optimization used to recover some slots in ddr3 inst_rom could be
748  * applied to other protocols if we wanted to
749  */
750 static void set_jump_as_return(void)
751 {
752 	/*
753 	 * To save space, we replace return with jump to special shared
754 	 * RETURN instruction so we set the counter to large value so that
755 	 * we always jump.
756 	 */
757 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
758 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
759 }
760 
761 /*
762  * should always use constants as argument to ensure all computations are
763  * performed at compile time
764  */
765 static void delay_for_n_mem_clocks(const uint32_t clocks)
766 {
767 	uint32_t afi_clocks;
768 	uint8_t inner = 0;
769 	uint8_t outer = 0;
770 	uint16_t c_loop = 0;
771 
772 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
773 
774 
775 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
776 	/* scale (rounding up) to get afi clocks */
777 
778 	/*
779 	 * Note, we don't bother accounting for being off a little bit
780 	 * because of a few extra instructions in outer loops
781 	 * Note, the loops have a test at the end, and do the test before
782 	 * the decrement, and so always perform the loop
783 	 * 1 time more than the counter value
784 	 */
785 	if (afi_clocks == 0) {
786 		;
787 	} else if (afi_clocks <= 0x100) {
788 		inner = afi_clocks-1;
789 		outer = 0;
790 		c_loop = 0;
791 	} else if (afi_clocks <= 0x10000) {
792 		inner = 0xff;
793 		outer = (afi_clocks-1) >> 8;
794 		c_loop = 0;
795 	} else {
796 		inner = 0xff;
797 		outer = 0xff;
798 		c_loop = (afi_clocks-1) >> 16;
799 	}
800 
801 	/*
802 	 * rom instructions are structured as follows:
803 	 *
804 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
805 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
806 	 *                return
807 	 *
808 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
809 	 * TARGET_B is set to IDLE_LOOP2 as well
810 	 *
811 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
812 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
813 	 *
814 	 * a little confusing, but it helps save precious space in the inst_rom
815 	 * and sequencer rom and keeps the delays more accurate and reduces
816 	 * overhead
817 	 */
818 	if (afi_clocks <= 0x100) {
819 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
820 			&sdr_rw_load_mgr_regs->load_cntr1);
821 
822 		writel(RW_MGR_IDLE_LOOP1,
823 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
824 
825 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
826 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
827 	} else {
828 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
829 			&sdr_rw_load_mgr_regs->load_cntr0);
830 
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
832 			&sdr_rw_load_mgr_regs->load_cntr1);
833 
834 		writel(RW_MGR_IDLE_LOOP2,
835 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
839 
840 		/* hack to get around compiler not being smart enough */
841 		if (afi_clocks <= 0x10000) {
842 			/* only need to run once */
843 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
844 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
845 		} else {
846 			do {
847 				writel(RW_MGR_IDLE_LOOP2,
848 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
849 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
850 			} while (c_loop-- != 0);
851 		}
852 	}
853 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
854 }
855 
856 /**
857  * rw_mgr_mem_init_load_regs() - Load instruction registers
858  * @cntr0:	Counter 0 value
859  * @cntr1:	Counter 1 value
860  * @cntr2:	Counter 2 value
861  * @jump:	Jump instruction value
862  *
863  * Load instruction registers.
864  */
865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
866 {
867 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
868 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
869 
870 	/* Load counters */
871 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
872 	       &sdr_rw_load_mgr_regs->load_cntr0);
873 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
874 	       &sdr_rw_load_mgr_regs->load_cntr1);
875 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
876 	       &sdr_rw_load_mgr_regs->load_cntr2);
877 
878 	/* Load jump address */
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
881 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
882 
883 	/* Execute count instruction */
884 	writel(jump, grpaddr);
885 }
886 
887 /**
888  * rw_mgr_mem_load_user() - Load user calibration values
889  * @fin1:	Final instruction 1
890  * @fin2:	Final instruction 2
891  * @precharge:	If 1, precharge the banks at the end
892  *
893  * Load user calibration values and optionally precharge the banks.
894  */
895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
896 				 const int precharge)
897 {
898 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
899 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
900 	u32 r;
901 
902 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
903 		if (param->skip_ranks[r]) {
904 			/* request to skip the rank */
905 			continue;
906 		}
907 
908 		/* set rank */
909 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
910 
911 		/* precharge all banks ... */
912 		if (precharge)
913 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
914 
915 		/*
916 		 * USER Use Mirror-ed commands for odd ranks if address
917 		 * mirrorring is on
918 		 */
919 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
920 			set_jump_as_return();
921 			writel(RW_MGR_MRS2_MIRR, grpaddr);
922 			delay_for_n_mem_clocks(4);
923 			set_jump_as_return();
924 			writel(RW_MGR_MRS3_MIRR, grpaddr);
925 			delay_for_n_mem_clocks(4);
926 			set_jump_as_return();
927 			writel(RW_MGR_MRS1_MIRR, grpaddr);
928 			delay_for_n_mem_clocks(4);
929 			set_jump_as_return();
930 			writel(fin1, grpaddr);
931 		} else {
932 			set_jump_as_return();
933 			writel(RW_MGR_MRS2, grpaddr);
934 			delay_for_n_mem_clocks(4);
935 			set_jump_as_return();
936 			writel(RW_MGR_MRS3, grpaddr);
937 			delay_for_n_mem_clocks(4);
938 			set_jump_as_return();
939 			writel(RW_MGR_MRS1, grpaddr);
940 			set_jump_as_return();
941 			writel(fin2, grpaddr);
942 		}
943 
944 		if (precharge)
945 			continue;
946 
947 		set_jump_as_return();
948 		writel(RW_MGR_ZQCL, grpaddr);
949 
950 		/* tZQinit = tDLLK = 512 ck cycles */
951 		delay_for_n_mem_clocks(512);
952 	}
953 }
954 
955 /**
956  * rw_mgr_mem_initialize() - Initialize RW Manager
957  *
958  * Initialize RW Manager.
959  */
960 static void rw_mgr_mem_initialize(void)
961 {
962 	debug("%s:%d\n", __func__, __LINE__);
963 
964 	/* The reset / cke part of initialization is broadcasted to all ranks */
965 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
966 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
967 
968 	/*
969 	 * Here's how you load register for a loop
970 	 * Counters are located @ 0x800
971 	 * Jump address are located @ 0xC00
972 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
973 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
974 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
975 	 * significant bits
976 	 */
977 
978 	/* Start with memory RESET activated */
979 
980 	/* tINIT = 200us */
981 
982 	/*
983 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
984 	 * If a and b are the number of iteration in 2 nested loops
985 	 * it takes the following number of cycles to complete the operation:
986 	 * number_of_cycles = ((2 + n) * a + 2) * b
987 	 * where n is the number of instruction in the inner loop
988 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
989 	 * b = 6A
990 	 */
991 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
992 				  SEQ_TINIT_CNTR2_VAL,
993 				  RW_MGR_INIT_RESET_0_CKE_0);
994 
995 	/* Indicate that memory is stable. */
996 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
997 
998 	/*
999 	 * transition the RESET to high
1000 	 * Wait for 500us
1001 	 */
1002 
1003 	/*
1004 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
1005 	 * If a and b are the number of iteration in 2 nested loops
1006 	 * it takes the following number of cycles to complete the operation
1007 	 * number_of_cycles = ((2 + n) * a + 2) * b
1008 	 * where n is the number of instruction in the inner loop
1009 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1010 	 * b = FF
1011 	 */
1012 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1013 				  SEQ_TRESET_CNTR2_VAL,
1014 				  RW_MGR_INIT_RESET_1_CKE_0);
1015 
1016 	/* Bring up clock enable. */
1017 
1018 	/* tXRP < 250 ck cycles */
1019 	delay_for_n_mem_clocks(250);
1020 
1021 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1022 			     0);
1023 }
1024 
1025 /*
1026  * At the end of calibration we have to program the user settings in, and
1027  * USER  hand off the memory to the user.
1028  */
1029 static void rw_mgr_mem_handoff(void)
1030 {
1031 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1032 	/*
1033 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1034 	 * other commands, but we will have plenty of NIOS cycles before
1035 	 * actual handoff so its okay.
1036 	 */
1037 }
1038 
1039 /**
1040  * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1041  * @rank_bgn:	Rank number
1042  * @group:	Read/Write Group
1043  * @all_ranks:	Test all ranks
1044  *
1045  * Performs a guaranteed read on the patterns we are going to use during a
1046  * read test to ensure memory works.
1047  */
1048 static int
1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1050 					const u32 all_ranks)
1051 {
1052 	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1053 			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1054 	const u32 addr_offset =
1055 			 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2;
1056 	const u32 rank_end = all_ranks ?
1057 				RW_MGR_MEM_NUMBER_OF_RANKS :
1058 				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1059 	const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
1060 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
1061 	const u32 correct_mask_vg = param->read_correct_mask_vg;
1062 
1063 	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1064 	int vg, r;
1065 	int ret = 0;
1066 
1067 	bit_chk = param->read_correct_mask;
1068 
1069 	for (r = rank_bgn; r < rank_end; r++) {
1070 		/* Request to skip the rank */
1071 		if (param->skip_ranks[r])
1072 			continue;
1073 
1074 		/* Set rank */
1075 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1076 
1077 		/* Load up a constant bursts of read commands */
1078 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1079 		writel(RW_MGR_GUARANTEED_READ,
1080 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1081 
1082 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1083 		writel(RW_MGR_GUARANTEED_READ_CONT,
1084 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1085 
1086 		tmp_bit_chk = 0;
1087 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;
1088 		     vg >= 0; vg--) {
1089 			/* Reset the FIFOs to get pointers to known state. */
1090 			writel(0, &phy_mgr_cmd->fifo_reset);
1091 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1092 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1093 			writel(RW_MGR_GUARANTEED_READ,
1094 			       addr + addr_offset + (vg << 2));
1095 
1096 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1097 			tmp_bit_chk <<= shift_ratio;
1098 			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1099 		}
1100 
1101 		bit_chk &= tmp_bit_chk;
1102 	}
1103 
1104 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1105 
1106 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1107 
1108 	if (bit_chk != param->read_correct_mask)
1109 		ret = -EIO;
1110 
1111 	debug_cond(DLEVEL == 1,
1112 		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1113 		   __func__, __LINE__, group, bit_chk,
1114 		   param->read_correct_mask, ret);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1121  * @rank_bgn:	Rank number
1122  * @all_ranks:	Test all ranks
1123  *
1124  * Load up the patterns we are going to use during a read test.
1125  */
1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1127 						    const int all_ranks)
1128 {
1129 	const u32 rank_end = all_ranks ?
1130 			RW_MGR_MEM_NUMBER_OF_RANKS :
1131 			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1132 	u32 r;
1133 
1134 	debug("%s:%d\n", __func__, __LINE__);
1135 
1136 	for (r = rank_bgn; r < rank_end; r++) {
1137 		if (param->skip_ranks[r])
1138 			/* request to skip the rank */
1139 			continue;
1140 
1141 		/* set rank */
1142 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1143 
1144 		/* Load up a constant bursts */
1145 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1146 
1147 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1148 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1149 
1150 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1151 
1152 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1153 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1154 
1155 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1156 
1157 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1158 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1159 
1160 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1161 
1162 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1163 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1164 
1165 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1166 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1167 	}
1168 
1169 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1170 }
1171 
1172 /*
1173  * try a read and see if it returns correct data back. has dummy reads
1174  * inserted into the mix used to align dqs enable. has more thorough checks
1175  * than the regular read test.
1176  */
1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1178 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1179 	uint32_t all_groups, uint32_t all_ranks)
1180 {
1181 	uint32_t r, vg;
1182 	uint32_t correct_mask_vg;
1183 	uint32_t tmp_bit_chk;
1184 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1185 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1186 	uint32_t addr;
1187 	uint32_t base_rw_mgr;
1188 
1189 	*bit_chk = param->read_correct_mask;
1190 	correct_mask_vg = param->read_correct_mask_vg;
1191 
1192 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1193 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1194 
1195 	for (r = rank_bgn; r < rank_end; r++) {
1196 		if (param->skip_ranks[r])
1197 			/* request to skip the rank */
1198 			continue;
1199 
1200 		/* set rank */
1201 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1202 
1203 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1204 
1205 		writel(RW_MGR_READ_B2B_WAIT1,
1206 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1207 
1208 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1209 		writel(RW_MGR_READ_B2B_WAIT2,
1210 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1211 
1212 		if (quick_read_mode)
1213 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1214 			/* need at least two (1+1) reads to capture failures */
1215 		else if (all_groups)
1216 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1217 		else
1218 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1219 
1220 		writel(RW_MGR_READ_B2B,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1222 		if (all_groups)
1223 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1224 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1225 			       &sdr_rw_load_mgr_regs->load_cntr3);
1226 		else
1227 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1228 
1229 		writel(RW_MGR_READ_B2B,
1230 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1231 
1232 		tmp_bit_chk = 0;
1233 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1234 			/* reset the fifos to get pointers to known state */
1235 			writel(0, &phy_mgr_cmd->fifo_reset);
1236 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1237 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1238 
1239 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1240 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1241 
1242 			if (all_groups)
1243 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1244 			else
1245 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1246 
1247 			writel(RW_MGR_READ_B2B, addr +
1248 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1249 			       vg) << 2));
1250 
1251 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1252 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1253 
1254 			if (vg == 0)
1255 				break;
1256 		}
1257 		*bit_chk &= tmp_bit_chk;
1258 	}
1259 
1260 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1261 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1262 
1263 	if (all_correct) {
1264 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1265 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1266 			   (%u == %u) => %lu", __func__, __LINE__, group,
1267 			   all_groups, *bit_chk, param->read_correct_mask,
1268 			   (long unsigned int)(*bit_chk ==
1269 			   param->read_correct_mask));
1270 		return *bit_chk == param->read_correct_mask;
1271 	} else	{
1272 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1273 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1274 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1275 			   group, all_groups, *bit_chk, (long unsigned int)0,
1276 			   (long unsigned int)(*bit_chk != 0x00));
1277 		return *bit_chk != 0x00;
1278 	}
1279 }
1280 
1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1282 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1283 	uint32_t all_groups)
1284 {
1285 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1286 					      bit_chk, all_groups, 1);
1287 }
1288 
1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1290 {
1291 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1292 	(*v)++;
1293 }
1294 
1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1296 {
1297 	uint32_t i;
1298 
1299 	for (i = 0; i < VFIFO_SIZE-1; i++)
1300 		rw_mgr_incr_vfifo(grp, v);
1301 }
1302 
1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1304 {
1305 	uint32_t  v;
1306 	uint32_t fail_cnt = 0;
1307 	uint32_t test_status;
1308 
1309 	for (v = 0; v < VFIFO_SIZE; ) {
1310 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1311 			   __func__, __LINE__, v);
1312 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1313 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1314 		if (!test_status) {
1315 			fail_cnt++;
1316 
1317 			if (fail_cnt == 2)
1318 				break;
1319 		}
1320 
1321 		/* fiddle with FIFO */
1322 		rw_mgr_incr_vfifo(grp, &v);
1323 	}
1324 
1325 	if (v >= VFIFO_SIZE) {
1326 		/* no failing read found!! Something must have gone wrong */
1327 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1328 			   __func__, __LINE__);
1329 		return 0;
1330 	} else {
1331 		return v;
1332 	}
1333 }
1334 
1335 /**
1336  * sdr_find_phase() - Find DQS enable phase
1337  * @working:	If 1, look for working phase, if 0, look for non-working phase
1338  * @grp:	Read/Write group
1339  * @v:		VFIFO value
1340  * @work:	Working window position
1341  * @i:		Iterator
1342  * @p:		DQS Phase Iterator
1343  *
1344  * Find working or non-working DQS enable phase setting.
1345  */
1346 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work,
1347 			  u32 *i, u32 *p)
1348 {
1349 	u32 ret, bit_chk;
1350 	const u32 end = VFIFO_SIZE + (working ? 0 : 1);
1351 
1352 	for (; *i < end; (*i)++) {
1353 		if (working)
1354 			*p = 0;
1355 
1356 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) {
1357 			scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1358 
1359 			ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1360 						PASS_ONE_BIT, &bit_chk, 0);
1361 			if (!working)
1362 				ret = !ret;
1363 
1364 			if (ret)
1365 				return 0;
1366 
1367 			*work += IO_DELAY_PER_OPA_TAP;
1368 		}
1369 
1370 		if (*p > IO_DQS_EN_PHASE_MAX) {
1371 			/* Fiddle with FIFO. */
1372 			rw_mgr_incr_vfifo(grp, v);
1373 			if (!working)
1374 				*p = 0;
1375 		}
1376 	}
1377 
1378 	return -EINVAL;
1379 }
1380 
1381 static int sdr_working_phase(uint32_t grp, uint32_t *work_bgn,
1382 			     uint32_t *v, uint32_t *d, uint32_t *p,
1383 			     uint32_t *i)
1384 {
1385 	const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP /
1386 				   IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1387 	int ret;
1388 
1389 	*work_bgn = 0;
1390 
1391 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1392 		*i = 0;
1393 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1394 		ret = sdr_find_phase(1, grp, v, work_bgn, i, p);
1395 		if (!ret)
1396 			return 0;
1397 		*work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1398 	}
1399 
1400 	/* Cannot find working solution */
1401 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1402 		   __func__, __LINE__);
1403 	return -EINVAL;
1404 }
1405 
1406 static void sdr_backup_phase(uint32_t grp,
1407 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1408 			     uint32_t *p)
1409 {
1410 	uint32_t tmp_delay;
1411 	u32 bit_chk;
1412 
1413 	/* Special case code for backing up a phase */
1414 	if (*p == 0) {
1415 		*p = IO_DQS_EN_PHASE_MAX;
1416 		rw_mgr_decr_vfifo(grp, v);
1417 	} else {
1418 		(*p)--;
1419 	}
1420 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1421 	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1422 
1423 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1424 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1425 		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1426 
1427 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1428 							     PASS_ONE_BIT,
1429 							     &bit_chk, 0)) {
1430 			*work_bgn = tmp_delay;
1431 			break;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * Restore VFIFO to old state before we decremented it
1437 	 * (if needed).
1438 	 */
1439 	(*p)++;
1440 	if (*p > IO_DQS_EN_PHASE_MAX) {
1441 		*p = 0;
1442 		rw_mgr_incr_vfifo(grp, v);
1443 	}
1444 
1445 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1446 }
1447 
1448 static int sdr_nonworking_phase(uint32_t grp,
1449 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1450 			     uint32_t *p, uint32_t *i,
1451 			     uint32_t *work_end)
1452 {
1453 	int ret;
1454 
1455 	(*p)++;
1456 	*work_end += IO_DELAY_PER_OPA_TAP;
1457 	if (*p > IO_DQS_EN_PHASE_MAX) {
1458 		/* Fiddle with FIFO. */
1459 		*p = 0;
1460 		rw_mgr_incr_vfifo(grp, v);
1461 	}
1462 
1463 	ret = sdr_find_phase(0, grp, v, work_end, i, p);
1464 	if (ret) {
1465 		/* Cannot see edge of failing read. */
1466 		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
1467 			   __func__, __LINE__);
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 /**
1474  * sdr_find_window_center() - Find center of the working DQS window.
1475  * @grp:	Read/Write group
1476  * @work_bgn:	First working settings
1477  * @work_end:	Last working settings
1478  * @val:	VFIFO value
1479  *
1480  * Find center of the working DQS enable window.
1481  */
1482 static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1483 				  const u32 work_end, const u32 val)
1484 {
1485 	u32 bit_chk, work_mid, v = val;
1486 	int tmp_delay = 0;
1487 	int i, p, d;
1488 
1489 	work_mid = (work_bgn + work_end) / 2;
1490 
1491 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1492 		   work_bgn, work_end, work_mid);
1493 	/* Get the middle delay to be less than a VFIFO delay */
1494 	tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP;
1495 
1496 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1497 	work_mid %= tmp_delay;
1498 	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);
1499 
1500 	tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP);
1501 	if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP)
1502 		tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP;
1503 	p = tmp_delay / IO_DELAY_PER_OPA_TAP;
1504 
1505 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1506 
1507 	d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP);
1508 	if (d > IO_DQS_EN_DELAY_MAX)
1509 		d = IO_DQS_EN_DELAY_MAX;
1510 	tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1511 
1512 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1513 
1514 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1515 	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1516 
1517 	/*
1518 	 * push vfifo until we can successfully calibrate. We can do this
1519 	 * because the largest possible margin in 1 VFIFO cycle.
1520 	 */
1521 	for (i = 0; i < VFIFO_SIZE; i++) {
1522 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1523 			   v);
1524 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1525 							     PASS_ONE_BIT,
1526 							     &bit_chk, 0)) {
1527 			debug_cond(DLEVEL == 2,
1528 				   "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n",
1529 				   __func__, __LINE__, v, p, d);
1530 			return 0;
1531 		}
1532 
1533 		/* Fiddle with FIFO. */
1534 		rw_mgr_incr_vfifo(grp, &v);
1535 	}
1536 
1537 	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
1538 		   __func__, __LINE__);
1539 	return -EINVAL;
1540 }
1541 
1542 /* find a good dqs enable to use */
1543 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1544 {
1545 	uint32_t v, d, p, i;
1546 	uint32_t bit_chk;
1547 	uint32_t dtaps_per_ptap;
1548 	uint32_t work_bgn, work_end;
1549 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1550 
1551 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1552 
1553 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1554 
1555 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1556 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1557 
1558 	/* ************************************************************** */
1559 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1560 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1561 
1562 	/* ********************************************************* */
1563 	/* * Step 1 : First push vfifo until we get a failing read * */
1564 	v = find_vfifo_read(grp, &bit_chk);
1565 
1566 	/* ******************************************************** */
1567 	/* * step 2: find first working phase, increment in ptaps * */
1568 	work_bgn = 0;
1569 	if (sdr_working_phase(grp, &work_bgn, &v, &d, &p, &i))
1570 		return 0;
1571 
1572 	work_end = work_bgn;
1573 
1574 	/*
1575 	 * If d is 0 then the working window covers a phase tap and
1576 	 * we can follow the old procedure otherwise, we've found the beginning,
1577 	 * and we need to increment the dtaps until we find the end.
1578 	 */
1579 	if (d == 0) {
1580 		/* ********************************************************* */
1581 		/* * step 3a: if we have room, back off by one and
1582 		increment in dtaps * */
1583 
1584 		sdr_backup_phase(grp, &work_bgn, &v, &d, &p);
1585 
1586 		/* ********************************************************* */
1587 		/* * step 4a: go forward from working phase to non working
1588 		phase, increment in ptaps * */
1589 		if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p,
1590 					 &i, &work_end))
1591 			return 0;
1592 
1593 		/* ********************************************************* */
1594 		/* * step 5a:  back off one from last, increment in dtaps  * */
1595 
1596 		/* Special case code for backing up a phase */
1597 		if (p == 0) {
1598 			p = IO_DQS_EN_PHASE_MAX;
1599 			rw_mgr_decr_vfifo(grp, &v);
1600 		} else {
1601 			p = p - 1;
1602 		}
1603 
1604 		work_end -= IO_DELAY_PER_OPA_TAP;
1605 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1606 
1607 		/* * The actual increment of dtaps is done outside of
1608 		the if/else loop to share code */
1609 		d = 0;
1610 
1611 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1612 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1613 			   v, p);
1614 	} else {
1615 		/* ******************************************************* */
1616 		/* * step 3-5b:  Find the right edge of the window using
1617 		delay taps   * */
1618 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1619 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1620 			   v, p, d, work_bgn);
1621 
1622 		work_end = work_bgn;
1623 	}
1624 
1625 	/* The dtap increment to find the failing edge is done here */
1626 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1627 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1628 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1629 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1630 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1631 
1632 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1633 								      PASS_ONE_BIT,
1634 								      &bit_chk, 0)) {
1635 				break;
1636 			}
1637 	}
1638 
1639 	/* Go back to working dtap */
1640 	if (d != 0)
1641 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1642 
1643 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1644 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1645 		   v, p, d-1, work_end);
1646 
1647 	if (work_end < work_bgn) {
1648 		/* nil range */
1649 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1650 			   failed\n", __func__, __LINE__);
1651 		return 0;
1652 	}
1653 
1654 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1655 		   __func__, __LINE__, work_bgn, work_end);
1656 
1657 	/* *************************************************************** */
1658 	/*
1659 	 * * We need to calculate the number of dtaps that equal a ptap
1660 	 * * To do that we'll back up a ptap and re-find the edge of the
1661 	 * * window using dtaps
1662 	 */
1663 
1664 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1665 		   for tracking\n", __func__, __LINE__);
1666 
1667 	/* Special case code for backing up a phase */
1668 	if (p == 0) {
1669 		p = IO_DQS_EN_PHASE_MAX;
1670 		rw_mgr_decr_vfifo(grp, &v);
1671 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1672 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1673 			   v, p);
1674 	} else {
1675 		p = p - 1;
1676 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1677 			   phase only: v=%u p=%u", __func__, __LINE__,
1678 			   v, p);
1679 	}
1680 
1681 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1682 
1683 	/*
1684 	 * Increase dtap until we first see a passing read (in case the
1685 	 * window is smaller than a ptap),
1686 	 * and then a failing read to mark the edge of the window again
1687 	 */
1688 
1689 	/* Find a passing read */
1690 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1691 		   __func__, __LINE__);
1692 	found_passing_read = 0;
1693 	found_failing_read = 0;
1694 	initial_failing_dtap = d;
1695 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1696 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1697 			   read d=%u\n", __func__, __LINE__, d);
1698 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1699 
1700 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1701 							     PASS_ONE_BIT,
1702 							     &bit_chk, 0)) {
1703 			found_passing_read = 1;
1704 			break;
1705 		}
1706 	}
1707 
1708 	if (found_passing_read) {
1709 		/* Find a failing read */
1710 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1711 			   read\n", __func__, __LINE__);
1712 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1713 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1714 				   testing read d=%u\n", __func__, __LINE__, d);
1715 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1716 
1717 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1718 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1719 				found_failing_read = 1;
1720 				break;
1721 			}
1722 		}
1723 	} else {
1724 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1725 			   calculate dtaps", __func__, __LINE__);
1726 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1727 	}
1728 
1729 	/*
1730 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1731 	 * found a passing/failing read. If we didn't, it means d hit the max
1732 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1733 	 * statically calculated value.
1734 	 */
1735 	if (found_passing_read && found_failing_read)
1736 		dtaps_per_ptap = d - initial_failing_dtap;
1737 
1738 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1739 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1740 		   - %u = %u",  __func__, __LINE__, d,
1741 		   initial_failing_dtap, dtaps_per_ptap);
1742 
1743 	/* ******************************************** */
1744 	/* * step 6:  Find the centre of the window   * */
1745 	if (sdr_find_window_centre(grp, work_bgn, work_end, v))
1746 		return 0; /* FIXME: Old code, return 0 means failure :-( */
1747 
1748 	return 1;
1749 }
1750 
1751 /* per-bit deskew DQ and center */
1752 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1753 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1754 	uint32_t use_read_test, uint32_t update_fom)
1755 {
1756 	uint32_t i, p, d, min_index;
1757 	/*
1758 	 * Store these as signed since there are comparisons with
1759 	 * signed numbers.
1760 	 */
1761 	uint32_t bit_chk;
1762 	uint32_t sticky_bit_chk;
1763 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1764 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1765 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1766 	int32_t mid;
1767 	int32_t orig_mid_min, mid_min;
1768 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1769 		final_dqs_en;
1770 	int32_t dq_margin, dqs_margin;
1771 	uint32_t stop;
1772 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1773 	uint32_t addr;
1774 
1775 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1776 
1777 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1778 	start_dqs = readl(addr + (read_group << 2));
1779 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1780 		start_dqs_en = readl(addr + ((read_group << 2)
1781 				     - IO_DQS_EN_DELAY_OFFSET));
1782 
1783 	/* set the left and right edge of each bit to an illegal value */
1784 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1785 	sticky_bit_chk = 0;
1786 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1787 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1788 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1789 	}
1790 
1791 	/* Search for the left edge of the window for each bit */
1792 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1793 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1794 
1795 		writel(0, &sdr_scc_mgr->update);
1796 
1797 		/*
1798 		 * Stop searching when the read test doesn't pass AND when
1799 		 * we've seen a passing read on every bit.
1800 		 */
1801 		if (use_read_test) {
1802 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1803 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1804 				&bit_chk, 0, 0);
1805 		} else {
1806 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1807 							0, PASS_ONE_BIT,
1808 							&bit_chk, 0);
1809 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1810 				(read_group - (write_group *
1811 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1812 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1813 			stop = (bit_chk == 0);
1814 		}
1815 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1816 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1817 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1818 			   && %u", __func__, __LINE__, d,
1819 			   sticky_bit_chk,
1820 			param->read_correct_mask, stop);
1821 
1822 		if (stop == 1) {
1823 			break;
1824 		} else {
1825 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1826 				if (bit_chk & 1) {
1827 					/* Remember a passing test as the
1828 					left_edge */
1829 					left_edge[i] = d;
1830 				} else {
1831 					/* If a left edge has not been seen yet,
1832 					then a future passing test will mark
1833 					this edge as the right edge */
1834 					if (left_edge[i] ==
1835 						IO_IO_IN_DELAY_MAX + 1) {
1836 						right_edge[i] = -(d + 1);
1837 					}
1838 				}
1839 				bit_chk = bit_chk >> 1;
1840 			}
1841 		}
1842 	}
1843 
1844 	/* Reset DQ delay chains to 0 */
1845 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1846 	sticky_bit_chk = 0;
1847 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1848 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1849 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1850 			   i, left_edge[i], i, right_edge[i]);
1851 
1852 		/*
1853 		 * Check for cases where we haven't found the left edge,
1854 		 * which makes our assignment of the the right edge invalid.
1855 		 * Reset it to the illegal value.
1856 		 */
1857 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1858 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1859 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1860 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1861 				   right_edge[%u]: %d\n", __func__, __LINE__,
1862 				   i, right_edge[i]);
1863 		}
1864 
1865 		/*
1866 		 * Reset sticky bit (except for bits where we have seen
1867 		 * both the left and right edge).
1868 		 */
1869 		sticky_bit_chk = sticky_bit_chk << 1;
1870 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1871 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1872 			sticky_bit_chk = sticky_bit_chk | 1;
1873 		}
1874 
1875 		if (i == 0)
1876 			break;
1877 	}
1878 
1879 	/* Search for the right edge of the window for each bit */
1880 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1881 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1882 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1883 			uint32_t delay = d + start_dqs_en;
1884 			if (delay > IO_DQS_EN_DELAY_MAX)
1885 				delay = IO_DQS_EN_DELAY_MAX;
1886 			scc_mgr_set_dqs_en_delay(read_group, delay);
1887 		}
1888 		scc_mgr_load_dqs(read_group);
1889 
1890 		writel(0, &sdr_scc_mgr->update);
1891 
1892 		/*
1893 		 * Stop searching when the read test doesn't pass AND when
1894 		 * we've seen a passing read on every bit.
1895 		 */
1896 		if (use_read_test) {
1897 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1898 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1899 				&bit_chk, 0, 0);
1900 		} else {
1901 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1902 							0, PASS_ONE_BIT,
1903 							&bit_chk, 0);
1904 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1905 				(read_group - (write_group *
1906 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1907 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1908 			stop = (bit_chk == 0);
1909 		}
1910 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1911 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1912 
1913 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1914 			   %u && %u", __func__, __LINE__, d,
1915 			   sticky_bit_chk, param->read_correct_mask, stop);
1916 
1917 		if (stop == 1) {
1918 			break;
1919 		} else {
1920 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1921 				if (bit_chk & 1) {
1922 					/* Remember a passing test as
1923 					the right_edge */
1924 					right_edge[i] = d;
1925 				} else {
1926 					if (d != 0) {
1927 						/* If a right edge has not been
1928 						seen yet, then a future passing
1929 						test will mark this edge as the
1930 						left edge */
1931 						if (right_edge[i] ==
1932 						IO_IO_IN_DELAY_MAX + 1) {
1933 							left_edge[i] = -(d + 1);
1934 						}
1935 					} else {
1936 						/* d = 0 failed, but it passed
1937 						when testing the left edge,
1938 						so it must be marginal,
1939 						set it to -1 */
1940 						if (right_edge[i] ==
1941 							IO_IO_IN_DELAY_MAX + 1 &&
1942 							left_edge[i] !=
1943 							IO_IO_IN_DELAY_MAX
1944 							+ 1) {
1945 							right_edge[i] = -1;
1946 						}
1947 						/* If a right edge has not been
1948 						seen yet, then a future passing
1949 						test will mark this edge as the
1950 						left edge */
1951 						else if (right_edge[i] ==
1952 							IO_IO_IN_DELAY_MAX +
1953 							1) {
1954 							left_edge[i] = -(d + 1);
1955 						}
1956 					}
1957 				}
1958 
1959 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
1960 					   d=%u]: ", __func__, __LINE__, d);
1961 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
1962 					   (int)(bit_chk & 1), i, left_edge[i]);
1963 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
1964 					   right_edge[i]);
1965 				bit_chk = bit_chk >> 1;
1966 			}
1967 		}
1968 	}
1969 
1970 	/* Check that all bits have a window */
1971 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1972 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1973 			   %d right_edge[%u]: %d", __func__, __LINE__,
1974 			   i, left_edge[i], i, right_edge[i]);
1975 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
1976 			== IO_IO_IN_DELAY_MAX + 1)) {
1977 			/*
1978 			 * Restore delay chain settings before letting the loop
1979 			 * in rw_mgr_mem_calibrate_vfifo to retry different
1980 			 * dqs/ck relationships.
1981 			 */
1982 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
1983 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1984 				scc_mgr_set_dqs_en_delay(read_group,
1985 							 start_dqs_en);
1986 			}
1987 			scc_mgr_load_dqs(read_group);
1988 			writel(0, &sdr_scc_mgr->update);
1989 
1990 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
1991 				   find edge [%u]: %d %d", __func__, __LINE__,
1992 				   i, left_edge[i], right_edge[i]);
1993 			if (use_read_test) {
1994 				set_failing_group_stage(read_group *
1995 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
1996 					CAL_STAGE_VFIFO,
1997 					CAL_SUBSTAGE_VFIFO_CENTER);
1998 			} else {
1999 				set_failing_group_stage(read_group *
2000 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2001 					CAL_STAGE_VFIFO_AFTER_WRITES,
2002 					CAL_SUBSTAGE_VFIFO_CENTER);
2003 			}
2004 			return 0;
2005 		}
2006 	}
2007 
2008 	/* Find middle of window for each DQ bit */
2009 	mid_min = left_edge[0] - right_edge[0];
2010 	min_index = 0;
2011 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2012 		mid = left_edge[i] - right_edge[i];
2013 		if (mid < mid_min) {
2014 			mid_min = mid;
2015 			min_index = i;
2016 		}
2017 	}
2018 
2019 	/*
2020 	 * -mid_min/2 represents the amount that we need to move DQS.
2021 	 * If mid_min is odd and positive we'll need to add one to
2022 	 * make sure the rounding in further calculations is correct
2023 	 * (always bias to the right), so just add 1 for all positive values.
2024 	 */
2025 	if (mid_min > 0)
2026 		mid_min++;
2027 
2028 	mid_min = mid_min / 2;
2029 
2030 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2031 		   __func__, __LINE__, mid_min, min_index);
2032 
2033 	/* Determine the amount we can change DQS (which is -mid_min) */
2034 	orig_mid_min = mid_min;
2035 	new_dqs = start_dqs - mid_min;
2036 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2037 		new_dqs = IO_DQS_IN_DELAY_MAX;
2038 	else if (new_dqs < 0)
2039 		new_dqs = 0;
2040 
2041 	mid_min = start_dqs - new_dqs;
2042 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2043 		   mid_min, new_dqs);
2044 
2045 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2046 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2047 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2048 		else if (start_dqs_en - mid_min < 0)
2049 			mid_min += start_dqs_en - mid_min;
2050 	}
2051 	new_dqs = start_dqs - mid_min;
2052 
2053 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2054 		   new_dqs=%d mid_min=%d\n", start_dqs,
2055 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2056 		   new_dqs, mid_min);
2057 
2058 	/* Initialize data for export structures */
2059 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2060 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2061 
2062 	/* add delay to bring centre of all DQ windows to the same "level" */
2063 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2064 		/* Use values before divide by 2 to reduce round off error */
2065 		shift_dq = (left_edge[i] - right_edge[i] -
2066 			(left_edge[min_index] - right_edge[min_index]))/2  +
2067 			(orig_mid_min - mid_min);
2068 
2069 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2070 			   shift_dq[%u]=%d\n", i, shift_dq);
2071 
2072 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2073 		temp_dq_in_delay1 = readl(addr + (p << 2));
2074 		temp_dq_in_delay2 = readl(addr + (i << 2));
2075 
2076 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2077 			(int32_t)IO_IO_IN_DELAY_MAX) {
2078 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2079 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2080 			shift_dq = -(int32_t)temp_dq_in_delay1;
2081 		}
2082 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2083 			   shift_dq[%u]=%d\n", i, shift_dq);
2084 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2085 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2086 		scc_mgr_load_dq(p);
2087 
2088 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2089 			   left_edge[i] - shift_dq + (-mid_min),
2090 			   right_edge[i] + shift_dq - (-mid_min));
2091 		/* To determine values for export structures */
2092 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2093 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2094 
2095 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2096 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2097 	}
2098 
2099 	final_dqs = new_dqs;
2100 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2101 		final_dqs_en = start_dqs_en - mid_min;
2102 
2103 	/* Move DQS-en */
2104 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2105 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2106 		scc_mgr_load_dqs(read_group);
2107 	}
2108 
2109 	/* Move DQS */
2110 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2111 	scc_mgr_load_dqs(read_group);
2112 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2113 		   dqs_margin=%d", __func__, __LINE__,
2114 		   dq_margin, dqs_margin);
2115 
2116 	/*
2117 	 * Do not remove this line as it makes sure all of our decisions
2118 	 * have been applied. Apply the update bit.
2119 	 */
2120 	writel(0, &sdr_scc_mgr->update);
2121 
2122 	return (dq_margin >= 0) && (dqs_margin >= 0);
2123 }
2124 
2125 /**
2126  * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2127  * @rw_group:	Read/Write Group
2128  * @phase:	DQ/DQS phase
2129  *
2130  * Because initially no communication ca be reliably performed with the memory
2131  * device, the sequencer uses a guaranteed write mechanism to write data into
2132  * the memory device.
2133  */
2134 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2135 						 const u32 phase)
2136 {
2137 	int ret;
2138 
2139 	/* Set a particular DQ/DQS phase. */
2140 	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2141 
2142 	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
2143 		   __func__, __LINE__, rw_group, phase);
2144 
2145 	/*
2146 	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2147 	 * Load up the patterns used by read calibration using the
2148 	 * current DQDQS phase.
2149 	 */
2150 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2151 
2152 	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2153 		return 0;
2154 
2155 	/*
2156 	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2157 	 * Back-to-Back reads of the patterns used for calibration.
2158 	 */
2159 	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2160 	if (ret)
2161 		debug_cond(DLEVEL == 1,
2162 			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2163 			   __func__, __LINE__, rw_group, phase);
2164 	return ret;
2165 }
2166 
2167 /**
2168  * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2169  * @rw_group:	Read/Write Group
2170  * @test_bgn:	Rank at which the test begins
2171  *
2172  * DQS enable calibration ensures reliable capture of the DQ signal without
2173  * glitches on the DQS line.
2174  */
2175 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2176 						       const u32 test_bgn)
2177 {
2178 	/*
2179 	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2180 	 * DQS and DQS Eanble Signal Relationships.
2181 	 */
2182 
2183 	/* We start at zero, so have one less dq to devide among */
2184 	const u32 delay_step = IO_IO_IN_DELAY_MAX /
2185 			       (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
2186 	int found;
2187 	u32 i, p, d, r;
2188 
2189 	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2190 
2191 	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2192 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2193 	     r += NUM_RANKS_PER_SHADOW_REG) {
2194 		for (i = 0, p = test_bgn, d = 0;
2195 		     i < RW_MGR_MEM_DQ_PER_READ_DQS;
2196 		     i++, p++, d += delay_step) {
2197 			debug_cond(DLEVEL == 1,
2198 				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2199 				   __func__, __LINE__, rw_group, r, i, p, d);
2200 
2201 			scc_mgr_set_dq_in_delay(p, d);
2202 			scc_mgr_load_dq(p);
2203 		}
2204 
2205 		writel(0, &sdr_scc_mgr->update);
2206 	}
2207 
2208 	/*
2209 	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2210 	 * dq_in_delay values
2211 	 */
2212 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2213 
2214 	debug_cond(DLEVEL == 1,
2215 		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2216 		   __func__, __LINE__, rw_group, found);
2217 
2218 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
2219 	     r += NUM_RANKS_PER_SHADOW_REG) {
2220 		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2221 		writel(0, &sdr_scc_mgr->update);
2222 	}
2223 
2224 	if (!found)
2225 		return -EINVAL;
2226 
2227 	return 0;
2228 
2229 }
2230 
2231 /**
2232  * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2233  * @rw_group:		Read/Write Group
2234  * @test_bgn:		Rank at which the test begins
2235  * @use_read_test:	Perform a read test
2236  * @update_fom:		Update FOM
2237  *
2238  * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2239  * within a group.
2240  */
2241 static int
2242 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2243 				      const int use_read_test,
2244 				      const int update_fom)
2245 
2246 {
2247 	int ret, grp_calibrated;
2248 	u32 rank_bgn, sr;
2249 
2250 	/*
2251 	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2252 	 * Read per-bit deskew can be done on a per shadow register basis.
2253 	 */
2254 	grp_calibrated = 1;
2255 	for (rank_bgn = 0, sr = 0;
2256 	     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2257 	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2258 		/* Check if this set of ranks should be skipped entirely. */
2259 		if (param->skip_shadow_regs[sr])
2260 			continue;
2261 
2262 		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2263 							rw_group, test_bgn,
2264 							use_read_test,
2265 							update_fom);
2266 		if (ret)
2267 			continue;
2268 
2269 		grp_calibrated = 0;
2270 	}
2271 
2272 	if (!grp_calibrated)
2273 		return -EIO;
2274 
2275 	return 0;
2276 }
2277 
2278 /**
2279  * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2280  * @rw_group:		Read/Write Group
2281  * @test_bgn:		Rank at which the test begins
2282  *
2283  * Stage 1: Calibrate the read valid prediction FIFO.
2284  *
2285  * This function implements UniPHY calibration Stage 1, as explained in
2286  * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2287  *
2288  * - read valid prediction will consist of finding:
2289  *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2290  *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2291  *  - we also do a per-bit deskew on the DQ lines.
2292  */
2293 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2294 {
2295 	uint32_t p, d;
2296 	uint32_t dtaps_per_ptap;
2297 	uint32_t failed_substage;
2298 
2299 	int ret;
2300 
2301 	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2302 
2303 	/* Update info for sims */
2304 	reg_file_set_group(rw_group);
2305 	reg_file_set_stage(CAL_STAGE_VFIFO);
2306 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2307 
2308 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2309 
2310 	/* USER Determine number of delay taps for each phase tap. */
2311 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2312 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2313 
2314 	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2315 		/*
2316 		 * In RLDRAMX we may be messing the delay of pins in
2317 		 * the same write rw_group but outside of the current read
2318 		 * the rw_group, but that's ok because we haven't calibrated
2319 		 * output side yet.
2320 		 */
2321 		if (d > 0) {
2322 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2323 								rw_group, d);
2324 		}
2325 
2326 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) {
2327 			/* 1) Guaranteed Write */
2328 			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2329 			if (ret)
2330 				break;
2331 
2332 			/* 2) DQS Enable Calibration */
2333 			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2334 									  test_bgn);
2335 			if (ret) {
2336 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2337 				continue;
2338 			}
2339 
2340 			/* 3) Centering DQ/DQS */
2341 			/*
2342 			 * If doing read after write calibration, do not update
2343 			 * FOM now. Do it then.
2344 			 */
2345 			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2346 								test_bgn, 1, 0);
2347 			if (ret) {
2348 				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2349 				continue;
2350 			}
2351 
2352 			/* All done. */
2353 			goto cal_done_ok;
2354 		}
2355 	}
2356 
2357 	/* Calibration Stage 1 failed. */
2358 	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2359 	return 0;
2360 
2361 	/* Calibration Stage 1 completed OK. */
2362 cal_done_ok:
2363 	/*
2364 	 * Reset the delay chains back to zero if they have moved > 1
2365 	 * (check for > 1 because loop will increase d even when pass in
2366 	 * first case).
2367 	 */
2368 	if (d > 2)
2369 		scc_mgr_zero_group(rw_group, 1);
2370 
2371 	return 1;
2372 }
2373 
2374 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2375 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2376 					       uint32_t test_bgn)
2377 {
2378 	uint32_t rank_bgn, sr;
2379 	uint32_t grp_calibrated;
2380 	uint32_t write_group;
2381 
2382 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2383 
2384 	/* update info for sims */
2385 
2386 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2387 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2388 
2389 	write_group = read_group;
2390 
2391 	/* update info for sims */
2392 	reg_file_set_group(read_group);
2393 
2394 	grp_calibrated = 1;
2395 	/* Read per-bit deskew can be done on a per shadow register basis */
2396 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2397 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2398 		/* Determine if this set of ranks should be skipped entirely */
2399 		if (!param->skip_shadow_regs[sr]) {
2400 		/* This is the last calibration round, update FOM here */
2401 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2402 								write_group,
2403 								read_group,
2404 								test_bgn, 0,
2405 								1)) {
2406 				grp_calibrated = 0;
2407 			}
2408 		}
2409 	}
2410 
2411 
2412 	if (grp_calibrated == 0) {
2413 		set_failing_group_stage(write_group,
2414 					CAL_STAGE_VFIFO_AFTER_WRITES,
2415 					CAL_SUBSTAGE_VFIFO_CENTER);
2416 		return 0;
2417 	}
2418 
2419 	return 1;
2420 }
2421 
2422 /* Calibrate LFIFO to find smallest read latency */
2423 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2424 {
2425 	uint32_t found_one;
2426 	uint32_t bit_chk;
2427 
2428 	debug("%s:%d\n", __func__, __LINE__);
2429 
2430 	/* update info for sims */
2431 	reg_file_set_stage(CAL_STAGE_LFIFO);
2432 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2433 
2434 	/* Load up the patterns used by read calibration for all ranks */
2435 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2436 	found_one = 0;
2437 
2438 	do {
2439 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2440 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2441 			   __func__, __LINE__, gbl->curr_read_lat);
2442 
2443 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2444 							      NUM_READ_TESTS,
2445 							      PASS_ALL_BITS,
2446 							      &bit_chk, 1)) {
2447 			break;
2448 		}
2449 
2450 		found_one = 1;
2451 		/* reduce read latency and see if things are working */
2452 		/* correctly */
2453 		gbl->curr_read_lat--;
2454 	} while (gbl->curr_read_lat > 0);
2455 
2456 	/* reset the fifos to get pointers to known state */
2457 
2458 	writel(0, &phy_mgr_cmd->fifo_reset);
2459 
2460 	if (found_one) {
2461 		/* add a fudge factor to the read latency that was determined */
2462 		gbl->curr_read_lat += 2;
2463 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2464 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2465 			   read_lat=%u\n", __func__, __LINE__,
2466 			   gbl->curr_read_lat);
2467 		return 1;
2468 	} else {
2469 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2470 					CAL_SUBSTAGE_READ_LATENCY);
2471 
2472 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2473 			   read_lat=%u\n", __func__, __LINE__,
2474 			   gbl->curr_read_lat);
2475 		return 0;
2476 	}
2477 }
2478 
2479 /*
2480  * issue write test command.
2481  * two variants are provided. one that just tests a write pattern and
2482  * another that tests datamask functionality.
2483  */
2484 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2485 						  uint32_t test_dm)
2486 {
2487 	uint32_t mcc_instruction;
2488 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2489 		ENABLE_SUPER_QUICK_CALIBRATION);
2490 	uint32_t rw_wl_nop_cycles;
2491 	uint32_t addr;
2492 
2493 	/*
2494 	 * Set counter and jump addresses for the right
2495 	 * number of NOP cycles.
2496 	 * The number of supported NOP cycles can range from -1 to infinity
2497 	 * Three different cases are handled:
2498 	 *
2499 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2500 	 *    mechanism will be used to insert the right number of NOPs
2501 	 *
2502 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2503 	 *    issuing the write command will jump straight to the
2504 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2505 	 *    data (for RLD), skipping
2506 	 *    the NOP micro-instruction all together
2507 	 *
2508 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2509 	 *    turned on in the same micro-instruction that issues the write
2510 	 *    command. Then we need
2511 	 *    to directly jump to the micro-instruction that sends out the data
2512 	 *
2513 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2514 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2515 	 *       write-read operations.
2516 	 *       one counter left to issue this command in "multiple-group" mode
2517 	 */
2518 
2519 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2520 
2521 	if (rw_wl_nop_cycles == -1) {
2522 		/*
2523 		 * CNTR 2 - We want to execute the special write operation that
2524 		 * turns on DQS right away and then skip directly to the
2525 		 * instruction that sends out the data. We set the counter to a
2526 		 * large number so that the jump is always taken.
2527 		 */
2528 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2529 
2530 		/* CNTR 3 - Not used */
2531 		if (test_dm) {
2532 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2533 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2534 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2535 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2536 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2537 		} else {
2538 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2539 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2540 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2541 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2542 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2543 		}
2544 	} else if (rw_wl_nop_cycles == 0) {
2545 		/*
2546 		 * CNTR 2 - We want to skip the NOP operation and go straight
2547 		 * to the DQS enable instruction. We set the counter to a large
2548 		 * number so that the jump is always taken.
2549 		 */
2550 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2551 
2552 		/* CNTR 3 - Not used */
2553 		if (test_dm) {
2554 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2555 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2556 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2557 		} else {
2558 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2559 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2560 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2561 		}
2562 	} else {
2563 		/*
2564 		 * CNTR 2 - In this case we want to execute the next instruction
2565 		 * and NOT take the jump. So we set the counter to 0. The jump
2566 		 * address doesn't count.
2567 		 */
2568 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2569 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2570 
2571 		/*
2572 		 * CNTR 3 - Set the nop counter to the number of cycles we
2573 		 * need to loop for, minus 1.
2574 		 */
2575 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2576 		if (test_dm) {
2577 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2578 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2579 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2580 		} else {
2581 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2582 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2583 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2584 		}
2585 	}
2586 
2587 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2588 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2589 
2590 	if (quick_write_mode)
2591 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2592 	else
2593 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2594 
2595 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2596 
2597 	/*
2598 	 * CNTR 1 - This is used to ensure enough time elapses
2599 	 * for read data to come back.
2600 	 */
2601 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2602 
2603 	if (test_dm) {
2604 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2605 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2606 	} else {
2607 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2608 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2609 	}
2610 
2611 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2612 	writel(mcc_instruction, addr + (group << 2));
2613 }
2614 
2615 /* Test writes, can check for a single bit pass or multiple bit pass */
2616 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2617 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2618 	uint32_t *bit_chk, uint32_t all_ranks)
2619 {
2620 	uint32_t r;
2621 	uint32_t correct_mask_vg;
2622 	uint32_t tmp_bit_chk;
2623 	uint32_t vg;
2624 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2625 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2626 	uint32_t addr_rw_mgr;
2627 	uint32_t base_rw_mgr;
2628 
2629 	*bit_chk = param->write_correct_mask;
2630 	correct_mask_vg = param->write_correct_mask_vg;
2631 
2632 	for (r = rank_bgn; r < rank_end; r++) {
2633 		if (param->skip_ranks[r]) {
2634 			/* request to skip the rank */
2635 			continue;
2636 		}
2637 
2638 		/* set rank */
2639 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2640 
2641 		tmp_bit_chk = 0;
2642 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2643 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2644 			/* reset the fifos to get pointers to known state */
2645 			writel(0, &phy_mgr_cmd->fifo_reset);
2646 
2647 			tmp_bit_chk = tmp_bit_chk <<
2648 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2649 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2650 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2651 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2652 				use_dm);
2653 
2654 			base_rw_mgr = readl(addr_rw_mgr);
2655 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2656 			if (vg == 0)
2657 				break;
2658 		}
2659 		*bit_chk &= tmp_bit_chk;
2660 	}
2661 
2662 	if (all_correct) {
2663 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2664 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2665 			   %u => %lu", write_group, use_dm,
2666 			   *bit_chk, param->write_correct_mask,
2667 			   (long unsigned int)(*bit_chk ==
2668 			   param->write_correct_mask));
2669 		return *bit_chk == param->write_correct_mask;
2670 	} else {
2671 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2672 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2673 		       write_group, use_dm, *bit_chk);
2674 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2675 			(long unsigned int)(*bit_chk != 0));
2676 		return *bit_chk != 0x00;
2677 	}
2678 }
2679 
2680 /*
2681  * center all windows. do per-bit-deskew to possibly increase size of
2682  * certain windows.
2683  */
2684 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2685 	uint32_t write_group, uint32_t test_bgn)
2686 {
2687 	uint32_t i, p, min_index;
2688 	int32_t d;
2689 	/*
2690 	 * Store these as signed since there are comparisons with
2691 	 * signed numbers.
2692 	 */
2693 	uint32_t bit_chk;
2694 	uint32_t sticky_bit_chk;
2695 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2696 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2697 	int32_t mid;
2698 	int32_t mid_min, orig_mid_min;
2699 	int32_t new_dqs, start_dqs, shift_dq;
2700 	int32_t dq_margin, dqs_margin, dm_margin;
2701 	uint32_t stop;
2702 	uint32_t temp_dq_out1_delay;
2703 	uint32_t addr;
2704 
2705 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2706 
2707 	dm_margin = 0;
2708 
2709 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2710 	start_dqs = readl(addr +
2711 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2712 
2713 	/* per-bit deskew */
2714 
2715 	/*
2716 	 * set the left and right edge of each bit to an illegal value
2717 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2718 	 */
2719 	sticky_bit_chk = 0;
2720 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2721 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2722 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2723 	}
2724 
2725 	/* Search for the left edge of the window for each bit */
2726 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2727 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2728 
2729 		writel(0, &sdr_scc_mgr->update);
2730 
2731 		/*
2732 		 * Stop searching when the read test doesn't pass AND when
2733 		 * we've seen a passing read on every bit.
2734 		 */
2735 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2736 			0, PASS_ONE_BIT, &bit_chk, 0);
2737 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2738 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2739 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2740 			   == %u && %u [bit_chk= %u ]\n",
2741 			d, sticky_bit_chk, param->write_correct_mask,
2742 			stop, bit_chk);
2743 
2744 		if (stop == 1) {
2745 			break;
2746 		} else {
2747 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2748 				if (bit_chk & 1) {
2749 					/*
2750 					 * Remember a passing test as the
2751 					 * left_edge.
2752 					 */
2753 					left_edge[i] = d;
2754 				} else {
2755 					/*
2756 					 * If a left edge has not been seen
2757 					 * yet, then a future passing test will
2758 					 * mark this edge as the right edge.
2759 					 */
2760 					if (left_edge[i] ==
2761 						IO_IO_OUT1_DELAY_MAX + 1) {
2762 						right_edge[i] = -(d + 1);
2763 					}
2764 				}
2765 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2766 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2767 					   (int)(bit_chk & 1), i, left_edge[i]);
2768 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2769 				       right_edge[i]);
2770 				bit_chk = bit_chk >> 1;
2771 			}
2772 		}
2773 	}
2774 
2775 	/* Reset DQ delay chains to 0 */
2776 	scc_mgr_apply_group_dq_out1_delay(0);
2777 	sticky_bit_chk = 0;
2778 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2779 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2780 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2781 			   i, left_edge[i], i, right_edge[i]);
2782 
2783 		/*
2784 		 * Check for cases where we haven't found the left edge,
2785 		 * which makes our assignment of the the right edge invalid.
2786 		 * Reset it to the illegal value.
2787 		 */
2788 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2789 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2790 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2791 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2792 				   right_edge[%u]: %d\n", __func__, __LINE__,
2793 				   i, right_edge[i]);
2794 		}
2795 
2796 		/*
2797 		 * Reset sticky bit (except for bits where we have
2798 		 * seen the left edge).
2799 		 */
2800 		sticky_bit_chk = sticky_bit_chk << 1;
2801 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2802 			sticky_bit_chk = sticky_bit_chk | 1;
2803 
2804 		if (i == 0)
2805 			break;
2806 	}
2807 
2808 	/* Search for the right edge of the window for each bit */
2809 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2810 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2811 							d + start_dqs);
2812 
2813 		writel(0, &sdr_scc_mgr->update);
2814 
2815 		/*
2816 		 * Stop searching when the read test doesn't pass AND when
2817 		 * we've seen a passing read on every bit.
2818 		 */
2819 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2820 			0, PASS_ONE_BIT, &bit_chk, 0);
2821 
2822 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2823 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2824 
2825 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2826 			   %u && %u\n", d, sticky_bit_chk,
2827 			   param->write_correct_mask, stop);
2828 
2829 		if (stop == 1) {
2830 			if (d == 0) {
2831 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2832 					i++) {
2833 					/* d = 0 failed, but it passed when
2834 					testing the left edge, so it must be
2835 					marginal, set it to -1 */
2836 					if (right_edge[i] ==
2837 						IO_IO_OUT1_DELAY_MAX + 1 &&
2838 						left_edge[i] !=
2839 						IO_IO_OUT1_DELAY_MAX + 1) {
2840 						right_edge[i] = -1;
2841 					}
2842 				}
2843 			}
2844 			break;
2845 		} else {
2846 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2847 				if (bit_chk & 1) {
2848 					/*
2849 					 * Remember a passing test as
2850 					 * the right_edge.
2851 					 */
2852 					right_edge[i] = d;
2853 				} else {
2854 					if (d != 0) {
2855 						/*
2856 						 * If a right edge has not
2857 						 * been seen yet, then a future
2858 						 * passing test will mark this
2859 						 * edge as the left edge.
2860 						 */
2861 						if (right_edge[i] ==
2862 						    IO_IO_OUT1_DELAY_MAX + 1)
2863 							left_edge[i] = -(d + 1);
2864 					} else {
2865 						/*
2866 						 * d = 0 failed, but it passed
2867 						 * when testing the left edge,
2868 						 * so it must be marginal, set
2869 						 * it to -1.
2870 						 */
2871 						if (right_edge[i] ==
2872 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2873 						    left_edge[i] !=
2874 						    IO_IO_OUT1_DELAY_MAX + 1)
2875 							right_edge[i] = -1;
2876 						/*
2877 						 * If a right edge has not been
2878 						 * seen yet, then a future
2879 						 * passing test will mark this
2880 						 * edge as the left edge.
2881 						 */
2882 						else if (right_edge[i] ==
2883 							IO_IO_OUT1_DELAY_MAX +
2884 							1)
2885 							left_edge[i] = -(d + 1);
2886 					}
2887 				}
2888 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2889 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2890 					   (int)(bit_chk & 1), i, left_edge[i]);
2891 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2892 					   right_edge[i]);
2893 				bit_chk = bit_chk >> 1;
2894 			}
2895 		}
2896 	}
2897 
2898 	/* Check that all bits have a window */
2899 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2900 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2901 			   %d right_edge[%u]: %d", __func__, __LINE__,
2902 			   i, left_edge[i], i, right_edge[i]);
2903 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2904 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2905 			set_failing_group_stage(test_bgn + i,
2906 						CAL_STAGE_WRITES,
2907 						CAL_SUBSTAGE_WRITES_CENTER);
2908 			return 0;
2909 		}
2910 	}
2911 
2912 	/* Find middle of window for each DQ bit */
2913 	mid_min = left_edge[0] - right_edge[0];
2914 	min_index = 0;
2915 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2916 		mid = left_edge[i] - right_edge[i];
2917 		if (mid < mid_min) {
2918 			mid_min = mid;
2919 			min_index = i;
2920 		}
2921 	}
2922 
2923 	/*
2924 	 * -mid_min/2 represents the amount that we need to move DQS.
2925 	 * If mid_min is odd and positive we'll need to add one to
2926 	 * make sure the rounding in further calculations is correct
2927 	 * (always bias to the right), so just add 1 for all positive values.
2928 	 */
2929 	if (mid_min > 0)
2930 		mid_min++;
2931 	mid_min = mid_min / 2;
2932 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2933 		   __LINE__, mid_min);
2934 
2935 	/* Determine the amount we can change DQS (which is -mid_min) */
2936 	orig_mid_min = mid_min;
2937 	new_dqs = start_dqs;
2938 	mid_min = 0;
2939 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2940 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2941 	/* Initialize data for export structures */
2942 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2943 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2944 
2945 	/* add delay to bring centre of all DQ windows to the same "level" */
2946 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2947 		/* Use values before divide by 2 to reduce round off error */
2948 		shift_dq = (left_edge[i] - right_edge[i] -
2949 			(left_edge[min_index] - right_edge[min_index]))/2  +
2950 		(orig_mid_min - mid_min);
2951 
2952 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2953 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2954 
2955 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2956 		temp_dq_out1_delay = readl(addr + (i << 2));
2957 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2958 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2959 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2960 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2961 			shift_dq = -(int32_t)temp_dq_out1_delay;
2962 		}
2963 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2964 			   i, shift_dq);
2965 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2966 		scc_mgr_load_dq(i);
2967 
2968 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2969 			   left_edge[i] - shift_dq + (-mid_min),
2970 			   right_edge[i] + shift_dq - (-mid_min));
2971 		/* To determine values for export structures */
2972 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2973 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2974 
2975 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2976 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2977 	}
2978 
2979 	/* Move DQS */
2980 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2981 	writel(0, &sdr_scc_mgr->update);
2982 
2983 	/* Centre DM */
2984 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2985 
2986 	/*
2987 	 * set the left and right edge of each bit to an illegal value,
2988 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2989 	 */
2990 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2991 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2992 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2993 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2994 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2995 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2996 	int32_t win_best = 0;
2997 
2998 	/* Search for the/part of the window with DM shift */
2999 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3000 		scc_mgr_apply_group_dm_out1_delay(d);
3001 		writel(0, &sdr_scc_mgr->update);
3002 
3003 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3004 						    PASS_ALL_BITS, &bit_chk,
3005 						    0)) {
3006 			/* USE Set current end of the window */
3007 			end_curr = -d;
3008 			/*
3009 			 * If a starting edge of our window has not been seen
3010 			 * this is our current start of the DM window.
3011 			 */
3012 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3013 				bgn_curr = -d;
3014 
3015 			/*
3016 			 * If current window is bigger than best seen.
3017 			 * Set best seen to be current window.
3018 			 */
3019 			if ((end_curr-bgn_curr+1) > win_best) {
3020 				win_best = end_curr-bgn_curr+1;
3021 				bgn_best = bgn_curr;
3022 				end_best = end_curr;
3023 			}
3024 		} else {
3025 			/* We just saw a failing test. Reset temp edge */
3026 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3027 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3028 			}
3029 		}
3030 
3031 
3032 	/* Reset DM delay chains to 0 */
3033 	scc_mgr_apply_group_dm_out1_delay(0);
3034 
3035 	/*
3036 	 * Check to see if the current window nudges up aganist 0 delay.
3037 	 * If so we need to continue the search by shifting DQS otherwise DQS
3038 	 * search begins as a new search. */
3039 	if (end_curr != 0) {
3040 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3041 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3042 	}
3043 
3044 	/* Search for the/part of the window with DQS shifts */
3045 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3046 		/*
3047 		 * Note: This only shifts DQS, so are we limiting ourselve to
3048 		 * width of DQ unnecessarily.
3049 		 */
3050 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3051 							d + new_dqs);
3052 
3053 		writel(0, &sdr_scc_mgr->update);
3054 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3055 						    PASS_ALL_BITS, &bit_chk,
3056 						    0)) {
3057 			/* USE Set current end of the window */
3058 			end_curr = d;
3059 			/*
3060 			 * If a beginning edge of our window has not been seen
3061 			 * this is our current begin of the DM window.
3062 			 */
3063 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3064 				bgn_curr = d;
3065 
3066 			/*
3067 			 * If current window is bigger than best seen. Set best
3068 			 * seen to be current window.
3069 			 */
3070 			if ((end_curr-bgn_curr+1) > win_best) {
3071 				win_best = end_curr-bgn_curr+1;
3072 				bgn_best = bgn_curr;
3073 				end_best = end_curr;
3074 			}
3075 		} else {
3076 			/* We just saw a failing test. Reset temp edge */
3077 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3078 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3079 
3080 			/* Early exit optimization: if ther remaining delay
3081 			chain space is less than already seen largest window
3082 			we can exit */
3083 			if ((win_best-1) >
3084 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3085 					break;
3086 				}
3087 			}
3088 		}
3089 
3090 	/* assign left and right edge for cal and reporting; */
3091 	left_edge[0] = -1*bgn_best;
3092 	right_edge[0] = end_best;
3093 
3094 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3095 		   __LINE__, left_edge[0], right_edge[0]);
3096 
3097 	/* Move DQS (back to orig) */
3098 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3099 
3100 	/* Move DM */
3101 
3102 	/* Find middle of window for the DM bit */
3103 	mid = (left_edge[0] - right_edge[0]) / 2;
3104 
3105 	/* only move right, since we are not moving DQS/DQ */
3106 	if (mid < 0)
3107 		mid = 0;
3108 
3109 	/* dm_marign should fail if we never find a window */
3110 	if (win_best == 0)
3111 		dm_margin = -1;
3112 	else
3113 		dm_margin = left_edge[0] - mid;
3114 
3115 	scc_mgr_apply_group_dm_out1_delay(mid);
3116 	writel(0, &sdr_scc_mgr->update);
3117 
3118 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3119 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3120 		   right_edge[0], mid, dm_margin);
3121 	/* Export values */
3122 	gbl->fom_out += dq_margin + dqs_margin;
3123 
3124 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3125 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3126 		   dq_margin, dqs_margin, dm_margin);
3127 
3128 	/*
3129 	 * Do not remove this line as it makes sure all of our
3130 	 * decisions have been applied.
3131 	 */
3132 	writel(0, &sdr_scc_mgr->update);
3133 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3134 }
3135 
3136 /* calibrate the write operations */
3137 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3138 	uint32_t test_bgn)
3139 {
3140 	/* update info for sims */
3141 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3142 
3143 	reg_file_set_stage(CAL_STAGE_WRITES);
3144 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3145 
3146 	reg_file_set_group(g);
3147 
3148 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3149 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3150 					CAL_SUBSTAGE_WRITES_CENTER);
3151 		return 0;
3152 	}
3153 
3154 	return 1;
3155 }
3156 
3157 /**
3158  * mem_precharge_and_activate() - Precharge all banks and activate
3159  *
3160  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3161  */
3162 static void mem_precharge_and_activate(void)
3163 {
3164 	int r;
3165 
3166 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3167 		/* Test if the rank should be skipped. */
3168 		if (param->skip_ranks[r])
3169 			continue;
3170 
3171 		/* Set rank. */
3172 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3173 
3174 		/* Precharge all banks. */
3175 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3176 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3177 
3178 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3179 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3180 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3181 
3182 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3183 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3184 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3185 
3186 		/* Activate rows. */
3187 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3188 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3189 	}
3190 }
3191 
3192 /**
3193  * mem_init_latency() - Configure memory RLAT and WLAT settings
3194  *
3195  * Configure memory RLAT and WLAT parameters.
3196  */
3197 static void mem_init_latency(void)
3198 {
3199 	/*
3200 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3201 	 * so max latency in AFI clocks, used here, is correspondingly
3202 	 * smaller.
3203 	 */
3204 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3205 	u32 rlat, wlat;
3206 
3207 	debug("%s:%d\n", __func__, __LINE__);
3208 
3209 	/*
3210 	 * Read in write latency.
3211 	 * WL for Hard PHY does not include additive latency.
3212 	 */
3213 	wlat = readl(&data_mgr->t_wl_add);
3214 	wlat += readl(&data_mgr->mem_t_add);
3215 
3216 	gbl->rw_wl_nop_cycles = wlat - 1;
3217 
3218 	/* Read in readl latency. */
3219 	rlat = readl(&data_mgr->t_rl_add);
3220 
3221 	/* Set a pretty high read latency initially. */
3222 	gbl->curr_read_lat = rlat + 16;
3223 	if (gbl->curr_read_lat > max_latency)
3224 		gbl->curr_read_lat = max_latency;
3225 
3226 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3227 
3228 	/* Advertise write latency. */
3229 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3230 }
3231 
3232 /**
3233  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3234  *
3235  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3236  */
3237 static void mem_skip_calibrate(void)
3238 {
3239 	uint32_t vfifo_offset;
3240 	uint32_t i, j, r;
3241 
3242 	debug("%s:%d\n", __func__, __LINE__);
3243 	/* Need to update every shadow register set used by the interface */
3244 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3245 	     r += NUM_RANKS_PER_SHADOW_REG) {
3246 		/*
3247 		 * Set output phase alignment settings appropriate for
3248 		 * skip calibration.
3249 		 */
3250 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3251 			scc_mgr_set_dqs_en_phase(i, 0);
3252 #if IO_DLL_CHAIN_LENGTH == 6
3253 			scc_mgr_set_dqdqs_output_phase(i, 6);
3254 #else
3255 			scc_mgr_set_dqdqs_output_phase(i, 7);
3256 #endif
3257 			/*
3258 			 * Case:33398
3259 			 *
3260 			 * Write data arrives to the I/O two cycles before write
3261 			 * latency is reached (720 deg).
3262 			 *   -> due to bit-slip in a/c bus
3263 			 *   -> to allow board skew where dqs is longer than ck
3264 			 *      -> how often can this happen!?
3265 			 *      -> can claim back some ptaps for high freq
3266 			 *       support if we can relax this, but i digress...
3267 			 *
3268 			 * The write_clk leads mem_ck by 90 deg
3269 			 * The minimum ptap of the OPA is 180 deg
3270 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3271 			 * The write_clk is always delayed by 2 ptaps
3272 			 *
3273 			 * Hence, to make DQS aligned to CK, we need to delay
3274 			 * DQS by:
3275 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3276 			 *
3277 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3278 			 * gives us the number of ptaps, which simplies to:
3279 			 *
3280 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3281 			 */
3282 			scc_mgr_set_dqdqs_output_phase(i,
3283 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3284 		}
3285 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3286 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3287 
3288 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3289 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3290 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3291 		}
3292 		writel(0xff, &sdr_scc_mgr->dq_ena);
3293 		writel(0xff, &sdr_scc_mgr->dm_ena);
3294 		writel(0, &sdr_scc_mgr->update);
3295 	}
3296 
3297 	/* Compensate for simulation model behaviour */
3298 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3299 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3300 		scc_mgr_load_dqs(i);
3301 	}
3302 	writel(0, &sdr_scc_mgr->update);
3303 
3304 	/*
3305 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3306 	 * in sequencer.
3307 	 */
3308 	vfifo_offset = CALIB_VFIFO_OFFSET;
3309 	for (j = 0; j < vfifo_offset; j++)
3310 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3311 	writel(0, &phy_mgr_cmd->fifo_reset);
3312 
3313 	/*
3314 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3315 	 * setting from generation-time constant.
3316 	 */
3317 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3318 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3319 }
3320 
3321 /**
3322  * mem_calibrate() - Memory calibration entry point.
3323  *
3324  * Perform memory calibration.
3325  */
3326 static uint32_t mem_calibrate(void)
3327 {
3328 	uint32_t i;
3329 	uint32_t rank_bgn, sr;
3330 	uint32_t write_group, write_test_bgn;
3331 	uint32_t read_group, read_test_bgn;
3332 	uint32_t run_groups, current_run;
3333 	uint32_t failing_groups = 0;
3334 	uint32_t group_failed = 0;
3335 
3336 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3337 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3338 
3339 	debug("%s:%d\n", __func__, __LINE__);
3340 
3341 	/* Initialize the data settings */
3342 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3343 	gbl->error_stage = CAL_STAGE_NIL;
3344 	gbl->error_group = 0xff;
3345 	gbl->fom_in = 0;
3346 	gbl->fom_out = 0;
3347 
3348 	/* Initialize WLAT and RLAT. */
3349 	mem_init_latency();
3350 
3351 	/* Initialize bit slips. */
3352 	mem_precharge_and_activate();
3353 
3354 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3355 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3356 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3357 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3358 		if (i == 0)
3359 			scc_mgr_set_hhp_extras();
3360 
3361 		scc_set_bypass_mode(i);
3362 	}
3363 
3364 	/* Calibration is skipped. */
3365 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3366 		/*
3367 		 * Set VFIFO and LFIFO to instant-on settings in skip
3368 		 * calibration mode.
3369 		 */
3370 		mem_skip_calibrate();
3371 
3372 		/*
3373 		 * Do not remove this line as it makes sure all of our
3374 		 * decisions have been applied.
3375 		 */
3376 		writel(0, &sdr_scc_mgr->update);
3377 		return 1;
3378 	}
3379 
3380 	/* Calibration is not skipped. */
3381 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3382 		/*
3383 		 * Zero all delay chain/phase settings for all
3384 		 * groups and all shadow register sets.
3385 		 */
3386 		scc_mgr_zero_all();
3387 
3388 		run_groups = ~param->skip_groups;
3389 
3390 		for (write_group = 0, write_test_bgn = 0; write_group
3391 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3392 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3393 
3394 			/* Initialize the group failure */
3395 			group_failed = 0;
3396 
3397 			current_run = run_groups & ((1 <<
3398 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3399 			run_groups = run_groups >>
3400 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3401 
3402 			if (current_run == 0)
3403 				continue;
3404 
3405 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3406 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3407 			scc_mgr_zero_group(write_group, 0);
3408 
3409 			for (read_group = write_group * rwdqs_ratio,
3410 			     read_test_bgn = 0;
3411 			     read_group < (write_group + 1) * rwdqs_ratio;
3412 			     read_group++,
3413 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3414 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3415 					continue;
3416 
3417 				/* Calibrate the VFIFO */
3418 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3419 							       read_test_bgn))
3420 					continue;
3421 
3422 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3423 					return 0;
3424 
3425 				/* The group failed, we're done. */
3426 				goto grp_failed;
3427 			}
3428 
3429 			/* Calibrate the output side */
3430 			for (rank_bgn = 0, sr = 0;
3431 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3432 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3433 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3434 					continue;
3435 
3436 				/* Not needed in quick mode! */
3437 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3438 					continue;
3439 
3440 				/*
3441 				 * Determine if this set of ranks
3442 				 * should be skipped entirely.
3443 				 */
3444 				if (param->skip_shadow_regs[sr])
3445 					continue;
3446 
3447 				/* Calibrate WRITEs */
3448 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3449 						write_group, write_test_bgn))
3450 					continue;
3451 
3452 				group_failed = 1;
3453 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3454 					return 0;
3455 			}
3456 
3457 			/* Some group failed, we're done. */
3458 			if (group_failed)
3459 				goto grp_failed;
3460 
3461 			for (read_group = write_group * rwdqs_ratio,
3462 			     read_test_bgn = 0;
3463 			     read_group < (write_group + 1) * rwdqs_ratio;
3464 			     read_group++,
3465 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3466 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3467 					continue;
3468 
3469 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3470 								read_test_bgn))
3471 					continue;
3472 
3473 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3474 					return 0;
3475 
3476 				/* The group failed, we're done. */
3477 				goto grp_failed;
3478 			}
3479 
3480 			/* No group failed, continue as usual. */
3481 			continue;
3482 
3483 grp_failed:		/* A group failed, increment the counter. */
3484 			failing_groups++;
3485 		}
3486 
3487 		/*
3488 		 * USER If there are any failing groups then report
3489 		 * the failure.
3490 		 */
3491 		if (failing_groups != 0)
3492 			return 0;
3493 
3494 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3495 			continue;
3496 
3497 		/*
3498 		 * If we're skipping groups as part of debug,
3499 		 * don't calibrate LFIFO.
3500 		 */
3501 		if (param->skip_groups != 0)
3502 			continue;
3503 
3504 		/* Calibrate the LFIFO */
3505 		if (!rw_mgr_mem_calibrate_lfifo())
3506 			return 0;
3507 	}
3508 
3509 	/*
3510 	 * Do not remove this line as it makes sure all of our decisions
3511 	 * have been applied.
3512 	 */
3513 	writel(0, &sdr_scc_mgr->update);
3514 	return 1;
3515 }
3516 
3517 /**
3518  * run_mem_calibrate() - Perform memory calibration
3519  *
3520  * This function triggers the entire memory calibration procedure.
3521  */
3522 static int run_mem_calibrate(void)
3523 {
3524 	int pass;
3525 
3526 	debug("%s:%d\n", __func__, __LINE__);
3527 
3528 	/* Reset pass/fail status shown on afi_cal_success/fail */
3529 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3530 
3531 	/* Stop tracking manager. */
3532 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3533 
3534 	phy_mgr_initialize();
3535 	rw_mgr_mem_initialize();
3536 
3537 	/* Perform the actual memory calibration. */
3538 	pass = mem_calibrate();
3539 
3540 	mem_precharge_and_activate();
3541 	writel(0, &phy_mgr_cmd->fifo_reset);
3542 
3543 	/* Handoff. */
3544 	rw_mgr_mem_handoff();
3545 	/*
3546 	 * In Hard PHY this is a 2-bit control:
3547 	 * 0: AFI Mux Select
3548 	 * 1: DDIO Mux Select
3549 	 */
3550 	writel(0x2, &phy_mgr_cfg->mux_sel);
3551 
3552 	/* Start tracking manager. */
3553 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3554 
3555 	return pass;
3556 }
3557 
3558 /**
3559  * debug_mem_calibrate() - Report result of memory calibration
3560  * @pass:	Value indicating whether calibration passed or failed
3561  *
3562  * This function reports the results of the memory calibration
3563  * and writes debug information into the register file.
3564  */
3565 static void debug_mem_calibrate(int pass)
3566 {
3567 	uint32_t debug_info;
3568 
3569 	if (pass) {
3570 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3571 
3572 		gbl->fom_in /= 2;
3573 		gbl->fom_out /= 2;
3574 
3575 		if (gbl->fom_in > 0xff)
3576 			gbl->fom_in = 0xff;
3577 
3578 		if (gbl->fom_out > 0xff)
3579 			gbl->fom_out = 0xff;
3580 
3581 		/* Update the FOM in the register file */
3582 		debug_info = gbl->fom_in;
3583 		debug_info |= gbl->fom_out << 8;
3584 		writel(debug_info, &sdr_reg_file->fom);
3585 
3586 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3587 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3588 	} else {
3589 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3590 
3591 		debug_info = gbl->error_stage;
3592 		debug_info |= gbl->error_substage << 8;
3593 		debug_info |= gbl->error_group << 16;
3594 
3595 		writel(debug_info, &sdr_reg_file->failing_stage);
3596 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3597 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3598 
3599 		/* Update the failing group/stage in the register file */
3600 		debug_info = gbl->error_stage;
3601 		debug_info |= gbl->error_substage << 8;
3602 		debug_info |= gbl->error_group << 16;
3603 		writel(debug_info, &sdr_reg_file->failing_stage);
3604 	}
3605 
3606 	printf("%s: Calibration complete\n", __FILE__);
3607 }
3608 
3609 /**
3610  * hc_initialize_rom_data() - Initialize ROM data
3611  *
3612  * Initialize ROM data.
3613  */
3614 static void hc_initialize_rom_data(void)
3615 {
3616 	u32 i, addr;
3617 
3618 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3619 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3620 		writel(inst_rom_init[i], addr + (i << 2));
3621 
3622 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3623 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3624 		writel(ac_rom_init[i], addr + (i << 2));
3625 }
3626 
3627 /**
3628  * initialize_reg_file() - Initialize SDR register file
3629  *
3630  * Initialize SDR register file.
3631  */
3632 static void initialize_reg_file(void)
3633 {
3634 	/* Initialize the register file with the correct data */
3635 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3636 	writel(0, &sdr_reg_file->debug_data_addr);
3637 	writel(0, &sdr_reg_file->cur_stage);
3638 	writel(0, &sdr_reg_file->fom);
3639 	writel(0, &sdr_reg_file->failing_stage);
3640 	writel(0, &sdr_reg_file->debug1);
3641 	writel(0, &sdr_reg_file->debug2);
3642 }
3643 
3644 /**
3645  * initialize_hps_phy() - Initialize HPS PHY
3646  *
3647  * Initialize HPS PHY.
3648  */
3649 static void initialize_hps_phy(void)
3650 {
3651 	uint32_t reg;
3652 	/*
3653 	 * Tracking also gets configured here because it's in the
3654 	 * same register.
3655 	 */
3656 	uint32_t trk_sample_count = 7500;
3657 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3658 	/*
3659 	 * Format is number of outer loops in the 16 MSB, sample
3660 	 * count in 16 LSB.
3661 	 */
3662 
3663 	reg = 0;
3664 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3665 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3666 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3667 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3668 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3669 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3670 	/*
3671 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3672 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3673 	 */
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3675 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3676 		trk_sample_count);
3677 	writel(reg, &sdr_ctrl->phy_ctrl0);
3678 
3679 	reg = 0;
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3681 		trk_sample_count >>
3682 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3683 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3684 		trk_long_idle_sample_count);
3685 	writel(reg, &sdr_ctrl->phy_ctrl1);
3686 
3687 	reg = 0;
3688 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3689 		trk_long_idle_sample_count >>
3690 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3691 	writel(reg, &sdr_ctrl->phy_ctrl2);
3692 }
3693 
3694 /**
3695  * initialize_tracking() - Initialize tracking
3696  *
3697  * Initialize the register file with usable initial data.
3698  */
3699 static void initialize_tracking(void)
3700 {
3701 	/*
3702 	 * Initialize the register file with the correct data.
3703 	 * Compute usable version of value in case we skip full
3704 	 * computation later.
3705 	 */
3706 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3707 	       &sdr_reg_file->dtaps_per_ptap);
3708 
3709 	/* trk_sample_count */
3710 	writel(7500, &sdr_reg_file->trk_sample_count);
3711 
3712 	/* longidle outer loop [15:0] */
3713 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3714 
3715 	/*
3716 	 * longidle sample count [31:24]
3717 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3718 	 * trcd, worst case [15:8]
3719 	 * vfifo wait [7:0]
3720 	 */
3721 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3722 	       &sdr_reg_file->delays);
3723 
3724 	/* mux delay */
3725 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3726 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3727 	       &sdr_reg_file->trk_rw_mgr_addr);
3728 
3729 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3730 	       &sdr_reg_file->trk_read_dqs_width);
3731 
3732 	/* trefi [7:0] */
3733 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3734 	       &sdr_reg_file->trk_rfsh);
3735 }
3736 
3737 int sdram_calibration_full(void)
3738 {
3739 	struct param_type my_param;
3740 	struct gbl_type my_gbl;
3741 	uint32_t pass;
3742 
3743 	memset(&my_param, 0, sizeof(my_param));
3744 	memset(&my_gbl, 0, sizeof(my_gbl));
3745 
3746 	param = &my_param;
3747 	gbl = &my_gbl;
3748 
3749 	/* Set the calibration enabled by default */
3750 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3751 	/*
3752 	 * Only sweep all groups (regardless of fail state) by default
3753 	 * Set enabled read test by default.
3754 	 */
3755 #if DISABLE_GUARANTEED_READ
3756 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3757 #endif
3758 	/* Initialize the register file */
3759 	initialize_reg_file();
3760 
3761 	/* Initialize any PHY CSR */
3762 	initialize_hps_phy();
3763 
3764 	scc_mgr_initialize();
3765 
3766 	initialize_tracking();
3767 
3768 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3769 
3770 	debug("%s:%d\n", __func__, __LINE__);
3771 	debug_cond(DLEVEL == 1,
3772 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3773 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3774 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3775 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3776 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3777 	debug_cond(DLEVEL == 1,
3778 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3779 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3780 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3781 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3782 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3783 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3784 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3785 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3786 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3787 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3788 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3789 		   IO_IO_OUT2_DELAY_MAX);
3790 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3791 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3792 
3793 	hc_initialize_rom_data();
3794 
3795 	/* update info for sims */
3796 	reg_file_set_stage(CAL_STAGE_NIL);
3797 	reg_file_set_group(0);
3798 
3799 	/*
3800 	 * Load global needed for those actions that require
3801 	 * some dynamic calibration support.
3802 	 */
3803 	dyn_calib_steps = STATIC_CALIB_STEPS;
3804 	/*
3805 	 * Load global to allow dynamic selection of delay loop settings
3806 	 * based on calibration mode.
3807 	 */
3808 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3809 		skip_delay_mask = 0xff;
3810 	else
3811 		skip_delay_mask = 0x0;
3812 
3813 	pass = run_mem_calibrate();
3814 	debug_mem_calibrate(pass);
3815 	return pass;
3816 }
3817