1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include <errno.h> 11 #include "sequencer.h" 12 #include "sequencer_auto.h" 13 #include "sequencer_auto_ac_init.h" 14 #include "sequencer_auto_inst_init.h" 15 #include "sequencer_defines.h" 16 17 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 18 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 19 20 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 21 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 22 23 static struct socfpga_sdr_reg_file *sdr_reg_file = 24 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 25 26 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 27 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 28 29 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 30 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 31 32 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 33 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 34 35 static struct socfpga_data_mgr *data_mgr = 36 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 37 38 static struct socfpga_sdr_ctrl *sdr_ctrl = 39 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 40 41 #define DELTA_D 1 42 43 /* 44 * In order to reduce ROM size, most of the selectable calibration steps are 45 * decided at compile time based on the user's calibration mode selection, 46 * as captured by the STATIC_CALIB_STEPS selection below. 47 * 48 * However, to support simulation-time selection of fast simulation mode, where 49 * we skip everything except the bare minimum, we need a few of the steps to 50 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 51 * check, which is based on the rtl-supplied value, or we dynamically compute 52 * the value to use based on the dynamically-chosen calibration mode 53 */ 54 55 #define DLEVEL 0 56 #define STATIC_IN_RTL_SIM 0 57 #define STATIC_SKIP_DELAY_LOOPS 0 58 59 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 60 STATIC_SKIP_DELAY_LOOPS) 61 62 /* calibration steps requested by the rtl */ 63 uint16_t dyn_calib_steps; 64 65 /* 66 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 67 * instead of static, we use boolean logic to select between 68 * non-skip and skip values 69 * 70 * The mask is set to include all bits when not-skipping, but is 71 * zero when skipping 72 */ 73 74 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 75 76 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 77 ((non_skip_value) & skip_delay_mask) 78 79 struct gbl_type *gbl; 80 struct param_type *param; 81 uint32_t curr_shadow_reg; 82 83 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 84 uint32_t write_group, uint32_t use_dm, 85 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 86 87 static void set_failing_group_stage(uint32_t group, uint32_t stage, 88 uint32_t substage) 89 { 90 /* 91 * Only set the global stage if there was not been any other 92 * failing group 93 */ 94 if (gbl->error_stage == CAL_STAGE_NIL) { 95 gbl->error_substage = substage; 96 gbl->error_stage = stage; 97 gbl->error_group = group; 98 } 99 } 100 101 static void reg_file_set_group(u16 set_group) 102 { 103 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 104 } 105 106 static void reg_file_set_stage(u8 set_stage) 107 { 108 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 109 } 110 111 static void reg_file_set_sub_stage(u8 set_sub_stage) 112 { 113 set_sub_stage &= 0xff; 114 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 115 } 116 117 /** 118 * phy_mgr_initialize() - Initialize PHY Manager 119 * 120 * Initialize PHY Manager. 121 */ 122 static void phy_mgr_initialize(void) 123 { 124 u32 ratio; 125 126 debug("%s:%d\n", __func__, __LINE__); 127 /* Calibration has control over path to memory */ 128 /* 129 * In Hard PHY this is a 2-bit control: 130 * 0: AFI Mux Select 131 * 1: DDIO Mux Select 132 */ 133 writel(0x3, &phy_mgr_cfg->mux_sel); 134 135 /* USER memory clock is not stable we begin initialization */ 136 writel(0, &phy_mgr_cfg->reset_mem_stbl); 137 138 /* USER calibration status all set to zero */ 139 writel(0, &phy_mgr_cfg->cal_status); 140 141 writel(0, &phy_mgr_cfg->cal_debug_info); 142 143 /* Init params only if we do NOT skip calibration. */ 144 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 145 return; 146 147 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 148 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 149 param->read_correct_mask_vg = (1 << ratio) - 1; 150 param->write_correct_mask_vg = (1 << ratio) - 1; 151 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 152 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 153 ratio = RW_MGR_MEM_DATA_WIDTH / 154 RW_MGR_MEM_DATA_MASK_WIDTH; 155 param->dm_correct_mask = (1 << ratio) - 1; 156 } 157 158 /** 159 * set_rank_and_odt_mask() - Set Rank and ODT mask 160 * @rank: Rank mask 161 * @odt_mode: ODT mode, OFF or READ_WRITE 162 * 163 * Set Rank and ODT mask (On-Die Termination). 164 */ 165 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 166 { 167 u32 odt_mask_0 = 0; 168 u32 odt_mask_1 = 0; 169 u32 cs_and_odt_mask; 170 171 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 172 odt_mask_0 = 0x0; 173 odt_mask_1 = 0x0; 174 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 175 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 176 case 1: /* 1 Rank */ 177 /* Read: ODT = 0 ; Write: ODT = 1 */ 178 odt_mask_0 = 0x0; 179 odt_mask_1 = 0x1; 180 break; 181 case 2: /* 2 Ranks */ 182 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 183 /* 184 * - Dual-Slot , Single-Rank (1 CS per DIMM) 185 * OR 186 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 187 * 188 * Since MEM_NUMBER_OF_RANKS is 2, they 189 * are both single rank with 2 CS each 190 * (special for RDIMM). 191 * 192 * Read: Turn on ODT on the opposite rank 193 * Write: Turn on ODT on all ranks 194 */ 195 odt_mask_0 = 0x3 & ~(1 << rank); 196 odt_mask_1 = 0x3; 197 } else { 198 /* 199 * - Single-Slot , Dual-Rank (2 CS per DIMM) 200 * 201 * Read: Turn on ODT off on all ranks 202 * Write: Turn on ODT on active rank 203 */ 204 odt_mask_0 = 0x0; 205 odt_mask_1 = 0x3 & (1 << rank); 206 } 207 break; 208 case 4: /* 4 Ranks */ 209 /* Read: 210 * ----------+-----------------------+ 211 * | ODT | 212 * Read From +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 0 | 216 * 1 | 1 | 0 | 0 | 0 | 217 * 2 | 0 | 0 | 0 | 1 | 218 * 3 | 0 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 * 221 * Write: 222 * ----------+-----------------------+ 223 * | ODT | 224 * Write To +-----------------------+ 225 * Rank | 3 | 2 | 1 | 0 | 226 * ----------+-----+-----+-----+-----+ 227 * 0 | 0 | 1 | 0 | 1 | 228 * 1 | 1 | 0 | 1 | 0 | 229 * 2 | 0 | 1 | 0 | 1 | 230 * 3 | 1 | 0 | 1 | 0 | 231 * ----------+-----+-----+-----+-----+ 232 */ 233 switch (rank) { 234 case 0: 235 odt_mask_0 = 0x4; 236 odt_mask_1 = 0x5; 237 break; 238 case 1: 239 odt_mask_0 = 0x8; 240 odt_mask_1 = 0xA; 241 break; 242 case 2: 243 odt_mask_0 = 0x1; 244 odt_mask_1 = 0x5; 245 break; 246 case 3: 247 odt_mask_0 = 0x2; 248 odt_mask_1 = 0xA; 249 break; 250 } 251 break; 252 } 253 } 254 255 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 256 ((0xFF & odt_mask_0) << 8) | 257 ((0xFF & odt_mask_1) << 16); 258 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 259 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 260 } 261 262 /** 263 * scc_mgr_set() - Set SCC Manager register 264 * @off: Base offset in SCC Manager space 265 * @grp: Read/Write group 266 * @val: Value to be set 267 * 268 * This function sets the SCC Manager (Scan Chain Control Manager) register. 269 */ 270 static void scc_mgr_set(u32 off, u32 grp, u32 val) 271 { 272 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 273 } 274 275 /** 276 * scc_mgr_initialize() - Initialize SCC Manager registers 277 * 278 * Initialize SCC Manager registers. 279 */ 280 static void scc_mgr_initialize(void) 281 { 282 /* 283 * Clear register file for HPS. 16 (2^4) is the size of the 284 * full register file in the scc mgr: 285 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 286 * MEM_IF_READ_DQS_WIDTH - 1); 287 */ 288 int i; 289 290 for (i = 0; i < 16; i++) { 291 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 292 __func__, __LINE__, i); 293 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 294 } 295 } 296 297 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 298 { 299 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 300 } 301 302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 303 { 304 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 305 } 306 307 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 308 { 309 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 310 } 311 312 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 313 { 314 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 315 } 316 317 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 318 { 319 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 320 delay); 321 } 322 323 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 324 { 325 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 326 } 327 328 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 329 { 330 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 331 } 332 333 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 334 { 335 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 336 delay); 337 } 338 339 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 340 { 341 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 342 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 343 delay); 344 } 345 346 /* load up dqs config settings */ 347 static void scc_mgr_load_dqs(uint32_t dqs) 348 { 349 writel(dqs, &sdr_scc_mgr->dqs_ena); 350 } 351 352 /* load up dqs io config settings */ 353 static void scc_mgr_load_dqs_io(void) 354 { 355 writel(0, &sdr_scc_mgr->dqs_io_ena); 356 } 357 358 /* load up dq config settings */ 359 static void scc_mgr_load_dq(uint32_t dq_in_group) 360 { 361 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 362 } 363 364 /* load up dm config settings */ 365 static void scc_mgr_load_dm(uint32_t dm) 366 { 367 writel(dm, &sdr_scc_mgr->dm_ena); 368 } 369 370 /** 371 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 372 * @off: Base offset in SCC Manager space 373 * @grp: Read/Write group 374 * @val: Value to be set 375 * @update: If non-zero, trigger SCC Manager update for all ranks 376 * 377 * This function sets the SCC Manager (Scan Chain Control Manager) register 378 * and optionally triggers the SCC update for all ranks. 379 */ 380 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 381 const int update) 382 { 383 u32 r; 384 385 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 386 r += NUM_RANKS_PER_SHADOW_REG) { 387 scc_mgr_set(off, grp, val); 388 389 if (update || (r == 0)) { 390 writel(grp, &sdr_scc_mgr->dqs_ena); 391 writel(0, &sdr_scc_mgr->update); 392 } 393 } 394 } 395 396 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 397 { 398 /* 399 * USER although the h/w doesn't support different phases per 400 * shadow register, for simplicity our scc manager modeling 401 * keeps different phase settings per shadow reg, and it's 402 * important for us to keep them in sync to match h/w. 403 * for efficiency, the scan chain update should occur only 404 * once to sr0. 405 */ 406 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 407 read_group, phase, 0); 408 } 409 410 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 411 uint32_t phase) 412 { 413 /* 414 * USER although the h/w doesn't support different phases per 415 * shadow register, for simplicity our scc manager modeling 416 * keeps different phase settings per shadow reg, and it's 417 * important for us to keep them in sync to match h/w. 418 * for efficiency, the scan chain update should occur only 419 * once to sr0. 420 */ 421 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 422 write_group, phase, 0); 423 } 424 425 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 426 uint32_t delay) 427 { 428 /* 429 * In shadow register mode, the T11 settings are stored in 430 * registers in the core, which are updated by the DQS_ENA 431 * signals. Not issuing the SCC_MGR_UPD command allows us to 432 * save lots of rank switching overhead, by calling 433 * select_shadow_regs_for_update with update_scan_chains 434 * set to 0. 435 */ 436 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 437 read_group, delay, 1); 438 writel(0, &sdr_scc_mgr->update); 439 } 440 441 /** 442 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 443 * @write_group: Write group 444 * @delay: Delay value 445 * 446 * This function sets the OCT output delay in SCC manager. 447 */ 448 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 449 { 450 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 451 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 452 const int base = write_group * ratio; 453 int i; 454 /* 455 * Load the setting in the SCC manager 456 * Although OCT affects only write data, the OCT delay is controlled 457 * by the DQS logic block which is instantiated once per read group. 458 * For protocols where a write group consists of multiple read groups, 459 * the setting must be set multiple times. 460 */ 461 for (i = 0; i < ratio; i++) 462 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 463 } 464 465 /** 466 * scc_mgr_set_hhp_extras() - Set HHP extras. 467 * 468 * Load the fixed setting in the SCC manager HHP extras. 469 */ 470 static void scc_mgr_set_hhp_extras(void) 471 { 472 /* 473 * Load the fixed setting in the SCC manager 474 * bits: 0:0 = 1'b1 - DQS bypass 475 * bits: 1:1 = 1'b1 - DQ bypass 476 * bits: 4:2 = 3'b001 - rfifo_mode 477 * bits: 6:5 = 2'b01 - rfifo clock_select 478 * bits: 7:7 = 1'b0 - separate gating from ungating setting 479 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 480 */ 481 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 482 (1 << 2) | (1 << 1) | (1 << 0); 483 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 484 SCC_MGR_HHP_GLOBALS_OFFSET | 485 SCC_MGR_HHP_EXTRAS_OFFSET; 486 487 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 488 __func__, __LINE__); 489 writel(value, addr); 490 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 491 __func__, __LINE__); 492 } 493 494 /** 495 * scc_mgr_zero_all() - Zero all DQS config 496 * 497 * Zero all DQS config. 498 */ 499 static void scc_mgr_zero_all(void) 500 { 501 int i, r; 502 503 /* 504 * USER Zero all DQS config settings, across all groups and all 505 * shadow registers 506 */ 507 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 508 r += NUM_RANKS_PER_SHADOW_REG) { 509 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 510 /* 511 * The phases actually don't exist on a per-rank basis, 512 * but there's no harm updating them several times, so 513 * let's keep the code simple. 514 */ 515 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 516 scc_mgr_set_dqs_en_phase(i, 0); 517 scc_mgr_set_dqs_en_delay(i, 0); 518 } 519 520 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 521 scc_mgr_set_dqdqs_output_phase(i, 0); 522 /* Arria V/Cyclone V don't have out2. */ 523 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 524 } 525 } 526 527 /* Multicast to all DQS group enables. */ 528 writel(0xff, &sdr_scc_mgr->dqs_ena); 529 writel(0, &sdr_scc_mgr->update); 530 } 531 532 /** 533 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 534 * @write_group: Write group 535 * 536 * Set bypass mode and trigger SCC update. 537 */ 538 static void scc_set_bypass_mode(const u32 write_group) 539 { 540 /* Multicast to all DQ enables. */ 541 writel(0xff, &sdr_scc_mgr->dq_ena); 542 writel(0xff, &sdr_scc_mgr->dm_ena); 543 544 /* Update current DQS IO enable. */ 545 writel(0, &sdr_scc_mgr->dqs_io_ena); 546 547 /* Update the DQS logic. */ 548 writel(write_group, &sdr_scc_mgr->dqs_ena); 549 550 /* Hit update. */ 551 writel(0, &sdr_scc_mgr->update); 552 } 553 554 /** 555 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 556 * @write_group: Write group 557 * 558 * Load DQS settings for Write Group, do not trigger SCC update. 559 */ 560 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 561 { 562 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 563 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 564 const int base = write_group * ratio; 565 int i; 566 /* 567 * Load the setting in the SCC manager 568 * Although OCT affects only write data, the OCT delay is controlled 569 * by the DQS logic block which is instantiated once per read group. 570 * For protocols where a write group consists of multiple read groups, 571 * the setting must be set multiple times. 572 */ 573 for (i = 0; i < ratio; i++) 574 writel(base + i, &sdr_scc_mgr->dqs_ena); 575 } 576 577 /** 578 * scc_mgr_zero_group() - Zero all configs for a group 579 * 580 * Zero DQ, DM, DQS and OCT configs for a group. 581 */ 582 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 583 { 584 int i, r; 585 586 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 587 r += NUM_RANKS_PER_SHADOW_REG) { 588 /* Zero all DQ config settings. */ 589 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 590 scc_mgr_set_dq_out1_delay(i, 0); 591 if (!out_only) 592 scc_mgr_set_dq_in_delay(i, 0); 593 } 594 595 /* Multicast to all DQ enables. */ 596 writel(0xff, &sdr_scc_mgr->dq_ena); 597 598 /* Zero all DM config settings. */ 599 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 600 scc_mgr_set_dm_out1_delay(i, 0); 601 602 /* Multicast to all DM enables. */ 603 writel(0xff, &sdr_scc_mgr->dm_ena); 604 605 /* Zero all DQS IO settings. */ 606 if (!out_only) 607 scc_mgr_set_dqs_io_in_delay(0); 608 609 /* Arria V/Cyclone V don't have out2. */ 610 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 611 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 612 scc_mgr_load_dqs_for_write_group(write_group); 613 614 /* Multicast to all DQS IO enables (only 1 in total). */ 615 writel(0, &sdr_scc_mgr->dqs_io_ena); 616 617 /* Hit update to zero everything. */ 618 writel(0, &sdr_scc_mgr->update); 619 } 620 } 621 622 /* 623 * apply and load a particular input delay for the DQ pins in a group 624 * group_bgn is the index of the first dq pin (in the write group) 625 */ 626 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 627 { 628 uint32_t i, p; 629 630 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 631 scc_mgr_set_dq_in_delay(p, delay); 632 scc_mgr_load_dq(p); 633 } 634 } 635 636 /** 637 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 638 * @delay: Delay value 639 * 640 * Apply and load a particular output delay for the DQ pins in a group. 641 */ 642 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 643 { 644 int i; 645 646 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 647 scc_mgr_set_dq_out1_delay(i, delay); 648 scc_mgr_load_dq(i); 649 } 650 } 651 652 /* apply and load a particular output delay for the DM pins in a group */ 653 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 654 { 655 uint32_t i; 656 657 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 658 scc_mgr_set_dm_out1_delay(i, delay1); 659 scc_mgr_load_dm(i); 660 } 661 } 662 663 664 /* apply and load delay on both DQS and OCT out1 */ 665 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 666 uint32_t delay) 667 { 668 scc_mgr_set_dqs_out1_delay(delay); 669 scc_mgr_load_dqs_io(); 670 671 scc_mgr_set_oct_out1_delay(write_group, delay); 672 scc_mgr_load_dqs_for_write_group(write_group); 673 } 674 675 /** 676 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 677 * @write_group: Write group 678 * @delay: Delay value 679 * 680 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 681 */ 682 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 683 const u32 delay) 684 { 685 u32 i, new_delay; 686 687 /* DQ shift */ 688 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 689 scc_mgr_load_dq(i); 690 691 /* DM shift */ 692 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 693 scc_mgr_load_dm(i); 694 695 /* DQS shift */ 696 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 697 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 698 debug_cond(DLEVEL == 1, 699 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 700 __func__, __LINE__, write_group, delay, new_delay, 701 IO_IO_OUT2_DELAY_MAX, 702 new_delay - IO_IO_OUT2_DELAY_MAX); 703 new_delay -= IO_IO_OUT2_DELAY_MAX; 704 scc_mgr_set_dqs_out1_delay(new_delay); 705 } 706 707 scc_mgr_load_dqs_io(); 708 709 /* OCT shift */ 710 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 711 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 712 debug_cond(DLEVEL == 1, 713 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 714 __func__, __LINE__, write_group, delay, 715 new_delay, IO_IO_OUT2_DELAY_MAX, 716 new_delay - IO_IO_OUT2_DELAY_MAX); 717 new_delay -= IO_IO_OUT2_DELAY_MAX; 718 scc_mgr_set_oct_out1_delay(write_group, new_delay); 719 } 720 721 scc_mgr_load_dqs_for_write_group(write_group); 722 } 723 724 /** 725 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 726 * @write_group: Write group 727 * @delay: Delay value 728 * 729 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 730 */ 731 static void 732 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 733 const u32 delay) 734 { 735 int r; 736 737 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 738 r += NUM_RANKS_PER_SHADOW_REG) { 739 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 740 writel(0, &sdr_scc_mgr->update); 741 } 742 } 743 744 /** 745 * set_jump_as_return() - Return instruction optimization 746 * 747 * Optimization used to recover some slots in ddr3 inst_rom could be 748 * applied to other protocols if we wanted to 749 */ 750 static void set_jump_as_return(void) 751 { 752 /* 753 * To save space, we replace return with jump to special shared 754 * RETURN instruction so we set the counter to large value so that 755 * we always jump. 756 */ 757 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 758 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 759 } 760 761 /* 762 * should always use constants as argument to ensure all computations are 763 * performed at compile time 764 */ 765 static void delay_for_n_mem_clocks(const uint32_t clocks) 766 { 767 uint32_t afi_clocks; 768 uint8_t inner = 0; 769 uint8_t outer = 0; 770 uint16_t c_loop = 0; 771 772 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 773 774 775 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 776 /* scale (rounding up) to get afi clocks */ 777 778 /* 779 * Note, we don't bother accounting for being off a little bit 780 * because of a few extra instructions in outer loops 781 * Note, the loops have a test at the end, and do the test before 782 * the decrement, and so always perform the loop 783 * 1 time more than the counter value 784 */ 785 if (afi_clocks == 0) { 786 ; 787 } else if (afi_clocks <= 0x100) { 788 inner = afi_clocks-1; 789 outer = 0; 790 c_loop = 0; 791 } else if (afi_clocks <= 0x10000) { 792 inner = 0xff; 793 outer = (afi_clocks-1) >> 8; 794 c_loop = 0; 795 } else { 796 inner = 0xff; 797 outer = 0xff; 798 c_loop = (afi_clocks-1) >> 16; 799 } 800 801 /* 802 * rom instructions are structured as follows: 803 * 804 * IDLE_LOOP2: jnz cntr0, TARGET_A 805 * IDLE_LOOP1: jnz cntr1, TARGET_B 806 * return 807 * 808 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 809 * TARGET_B is set to IDLE_LOOP2 as well 810 * 811 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 812 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 813 * 814 * a little confusing, but it helps save precious space in the inst_rom 815 * and sequencer rom and keeps the delays more accurate and reduces 816 * overhead 817 */ 818 if (afi_clocks <= 0x100) { 819 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 820 &sdr_rw_load_mgr_regs->load_cntr1); 821 822 writel(RW_MGR_IDLE_LOOP1, 823 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 824 825 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 826 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 827 } else { 828 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 829 &sdr_rw_load_mgr_regs->load_cntr0); 830 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 832 &sdr_rw_load_mgr_regs->load_cntr1); 833 834 writel(RW_MGR_IDLE_LOOP2, 835 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 839 840 /* hack to get around compiler not being smart enough */ 841 if (afi_clocks <= 0x10000) { 842 /* only need to run once */ 843 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 844 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 845 } else { 846 do { 847 writel(RW_MGR_IDLE_LOOP2, 848 SDR_PHYGRP_RWMGRGRP_ADDRESS | 849 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 850 } while (c_loop-- != 0); 851 } 852 } 853 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 854 } 855 856 /** 857 * rw_mgr_mem_init_load_regs() - Load instruction registers 858 * @cntr0: Counter 0 value 859 * @cntr1: Counter 1 value 860 * @cntr2: Counter 2 value 861 * @jump: Jump instruction value 862 * 863 * Load instruction registers. 864 */ 865 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 866 { 867 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 868 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 869 870 /* Load counters */ 871 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 872 &sdr_rw_load_mgr_regs->load_cntr0); 873 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 874 &sdr_rw_load_mgr_regs->load_cntr1); 875 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 876 &sdr_rw_load_mgr_regs->load_cntr2); 877 878 /* Load jump address */ 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 881 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 882 883 /* Execute count instruction */ 884 writel(jump, grpaddr); 885 } 886 887 /** 888 * rw_mgr_mem_load_user() - Load user calibration values 889 * @fin1: Final instruction 1 890 * @fin2: Final instruction 2 891 * @precharge: If 1, precharge the banks at the end 892 * 893 * Load user calibration values and optionally precharge the banks. 894 */ 895 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 896 const int precharge) 897 { 898 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 899 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 900 u32 r; 901 902 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 903 if (param->skip_ranks[r]) { 904 /* request to skip the rank */ 905 continue; 906 } 907 908 /* set rank */ 909 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 910 911 /* precharge all banks ... */ 912 if (precharge) 913 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 914 915 /* 916 * USER Use Mirror-ed commands for odd ranks if address 917 * mirrorring is on 918 */ 919 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 920 set_jump_as_return(); 921 writel(RW_MGR_MRS2_MIRR, grpaddr); 922 delay_for_n_mem_clocks(4); 923 set_jump_as_return(); 924 writel(RW_MGR_MRS3_MIRR, grpaddr); 925 delay_for_n_mem_clocks(4); 926 set_jump_as_return(); 927 writel(RW_MGR_MRS1_MIRR, grpaddr); 928 delay_for_n_mem_clocks(4); 929 set_jump_as_return(); 930 writel(fin1, grpaddr); 931 } else { 932 set_jump_as_return(); 933 writel(RW_MGR_MRS2, grpaddr); 934 delay_for_n_mem_clocks(4); 935 set_jump_as_return(); 936 writel(RW_MGR_MRS3, grpaddr); 937 delay_for_n_mem_clocks(4); 938 set_jump_as_return(); 939 writel(RW_MGR_MRS1, grpaddr); 940 set_jump_as_return(); 941 writel(fin2, grpaddr); 942 } 943 944 if (precharge) 945 continue; 946 947 set_jump_as_return(); 948 writel(RW_MGR_ZQCL, grpaddr); 949 950 /* tZQinit = tDLLK = 512 ck cycles */ 951 delay_for_n_mem_clocks(512); 952 } 953 } 954 955 /** 956 * rw_mgr_mem_initialize() - Initialize RW Manager 957 * 958 * Initialize RW Manager. 959 */ 960 static void rw_mgr_mem_initialize(void) 961 { 962 debug("%s:%d\n", __func__, __LINE__); 963 964 /* The reset / cke part of initialization is broadcasted to all ranks */ 965 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 966 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 967 968 /* 969 * Here's how you load register for a loop 970 * Counters are located @ 0x800 971 * Jump address are located @ 0xC00 972 * For both, registers 0 to 3 are selected using bits 3 and 2, like 973 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 974 * I know this ain't pretty, but Avalon bus throws away the 2 least 975 * significant bits 976 */ 977 978 /* Start with memory RESET activated */ 979 980 /* tINIT = 200us */ 981 982 /* 983 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 984 * If a and b are the number of iteration in 2 nested loops 985 * it takes the following number of cycles to complete the operation: 986 * number_of_cycles = ((2 + n) * a + 2) * b 987 * where n is the number of instruction in the inner loop 988 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 989 * b = 6A 990 */ 991 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 992 SEQ_TINIT_CNTR2_VAL, 993 RW_MGR_INIT_RESET_0_CKE_0); 994 995 /* Indicate that memory is stable. */ 996 writel(1, &phy_mgr_cfg->reset_mem_stbl); 997 998 /* 999 * transition the RESET to high 1000 * Wait for 500us 1001 */ 1002 1003 /* 1004 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 1005 * If a and b are the number of iteration in 2 nested loops 1006 * it takes the following number of cycles to complete the operation 1007 * number_of_cycles = ((2 + n) * a + 2) * b 1008 * where n is the number of instruction in the inner loop 1009 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1010 * b = FF 1011 */ 1012 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1013 SEQ_TRESET_CNTR2_VAL, 1014 RW_MGR_INIT_RESET_1_CKE_0); 1015 1016 /* Bring up clock enable. */ 1017 1018 /* tXRP < 250 ck cycles */ 1019 delay_for_n_mem_clocks(250); 1020 1021 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1022 0); 1023 } 1024 1025 /* 1026 * At the end of calibration we have to program the user settings in, and 1027 * USER hand off the memory to the user. 1028 */ 1029 static void rw_mgr_mem_handoff(void) 1030 { 1031 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1032 /* 1033 * USER need to wait tMOD (12CK or 15ns) time before issuing 1034 * other commands, but we will have plenty of NIOS cycles before 1035 * actual handoff so its okay. 1036 */ 1037 } 1038 1039 /** 1040 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns 1041 * @rank_bgn: Rank number 1042 * @group: Read/Write Group 1043 * @all_ranks: Test all ranks 1044 * 1045 * Performs a guaranteed read on the patterns we are going to use during a 1046 * read test to ensure memory works. 1047 */ 1048 static int 1049 rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, 1050 const u32 all_ranks) 1051 { 1052 const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1053 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1054 const u32 addr_offset = 1055 (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; 1056 const u32 rank_end = all_ranks ? 1057 RW_MGR_MEM_NUMBER_OF_RANKS : 1058 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1059 const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 1060 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 1061 const u32 correct_mask_vg = param->read_correct_mask_vg; 1062 1063 u32 tmp_bit_chk, base_rw_mgr, bit_chk; 1064 int vg, r; 1065 int ret = 0; 1066 1067 bit_chk = param->read_correct_mask; 1068 1069 for (r = rank_bgn; r < rank_end; r++) { 1070 /* Request to skip the rank */ 1071 if (param->skip_ranks[r]) 1072 continue; 1073 1074 /* Set rank */ 1075 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1076 1077 /* Load up a constant bursts of read commands */ 1078 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1079 writel(RW_MGR_GUARANTEED_READ, 1080 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1081 1082 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1083 writel(RW_MGR_GUARANTEED_READ_CONT, 1084 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1085 1086 tmp_bit_chk = 0; 1087 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; 1088 vg >= 0; vg--) { 1089 /* Reset the FIFOs to get pointers to known state. */ 1090 writel(0, &phy_mgr_cmd->fifo_reset); 1091 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1092 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1093 writel(RW_MGR_GUARANTEED_READ, 1094 addr + addr_offset + (vg << 2)); 1095 1096 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1097 tmp_bit_chk <<= shift_ratio; 1098 tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; 1099 } 1100 1101 bit_chk &= tmp_bit_chk; 1102 } 1103 1104 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1105 1106 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1107 1108 if (bit_chk != param->read_correct_mask) 1109 ret = -EIO; 1110 1111 debug_cond(DLEVEL == 1, 1112 "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", 1113 __func__, __LINE__, group, bit_chk, 1114 param->read_correct_mask, ret); 1115 1116 return ret; 1117 } 1118 1119 /** 1120 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test 1121 * @rank_bgn: Rank number 1122 * @all_ranks: Test all ranks 1123 * 1124 * Load up the patterns we are going to use during a read test. 1125 */ 1126 static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, 1127 const int all_ranks) 1128 { 1129 const u32 rank_end = all_ranks ? 1130 RW_MGR_MEM_NUMBER_OF_RANKS : 1131 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1132 u32 r; 1133 1134 debug("%s:%d\n", __func__, __LINE__); 1135 1136 for (r = rank_bgn; r < rank_end; r++) { 1137 if (param->skip_ranks[r]) 1138 /* request to skip the rank */ 1139 continue; 1140 1141 /* set rank */ 1142 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1143 1144 /* Load up a constant bursts */ 1145 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1146 1147 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1148 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1149 1150 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1151 1152 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1153 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1154 1155 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1156 1157 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1158 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1159 1160 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1161 1162 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1163 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1164 1165 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1166 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1167 } 1168 1169 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1170 } 1171 1172 /* 1173 * try a read and see if it returns correct data back. has dummy reads 1174 * inserted into the mix used to align dqs enable. has more thorough checks 1175 * than the regular read test. 1176 */ 1177 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1178 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1179 uint32_t all_groups, uint32_t all_ranks) 1180 { 1181 uint32_t r, vg; 1182 uint32_t correct_mask_vg; 1183 uint32_t tmp_bit_chk; 1184 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1185 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1186 uint32_t addr; 1187 uint32_t base_rw_mgr; 1188 1189 *bit_chk = param->read_correct_mask; 1190 correct_mask_vg = param->read_correct_mask_vg; 1191 1192 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1193 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1194 1195 for (r = rank_bgn; r < rank_end; r++) { 1196 if (param->skip_ranks[r]) 1197 /* request to skip the rank */ 1198 continue; 1199 1200 /* set rank */ 1201 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1202 1203 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1204 1205 writel(RW_MGR_READ_B2B_WAIT1, 1206 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1207 1208 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1209 writel(RW_MGR_READ_B2B_WAIT2, 1210 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1211 1212 if (quick_read_mode) 1213 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1214 /* need at least two (1+1) reads to capture failures */ 1215 else if (all_groups) 1216 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1217 else 1218 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1219 1220 writel(RW_MGR_READ_B2B, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1222 if (all_groups) 1223 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1224 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1225 &sdr_rw_load_mgr_regs->load_cntr3); 1226 else 1227 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1228 1229 writel(RW_MGR_READ_B2B, 1230 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1231 1232 tmp_bit_chk = 0; 1233 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1234 /* reset the fifos to get pointers to known state */ 1235 writel(0, &phy_mgr_cmd->fifo_reset); 1236 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1237 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1238 1239 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1240 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1241 1242 if (all_groups) 1243 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1244 else 1245 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1246 1247 writel(RW_MGR_READ_B2B, addr + 1248 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1249 vg) << 2)); 1250 1251 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1252 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1253 1254 if (vg == 0) 1255 break; 1256 } 1257 *bit_chk &= tmp_bit_chk; 1258 } 1259 1260 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1261 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1262 1263 if (all_correct) { 1264 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1265 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1266 (%u == %u) => %lu", __func__, __LINE__, group, 1267 all_groups, *bit_chk, param->read_correct_mask, 1268 (long unsigned int)(*bit_chk == 1269 param->read_correct_mask)); 1270 return *bit_chk == param->read_correct_mask; 1271 } else { 1272 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1273 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1274 (%u != %lu) => %lu\n", __func__, __LINE__, 1275 group, all_groups, *bit_chk, (long unsigned int)0, 1276 (long unsigned int)(*bit_chk != 0x00)); 1277 return *bit_chk != 0x00; 1278 } 1279 } 1280 1281 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1282 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1283 uint32_t all_groups) 1284 { 1285 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1286 bit_chk, all_groups, 1); 1287 } 1288 1289 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1290 { 1291 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1292 (*v)++; 1293 } 1294 1295 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1296 { 1297 uint32_t i; 1298 1299 for (i = 0; i < VFIFO_SIZE-1; i++) 1300 rw_mgr_incr_vfifo(grp, v); 1301 } 1302 1303 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1304 { 1305 uint32_t v; 1306 uint32_t fail_cnt = 0; 1307 uint32_t test_status; 1308 1309 for (v = 0; v < VFIFO_SIZE; ) { 1310 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1311 __func__, __LINE__, v); 1312 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1313 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1314 if (!test_status) { 1315 fail_cnt++; 1316 1317 if (fail_cnt == 2) 1318 break; 1319 } 1320 1321 /* fiddle with FIFO */ 1322 rw_mgr_incr_vfifo(grp, &v); 1323 } 1324 1325 if (v >= VFIFO_SIZE) { 1326 /* no failing read found!! Something must have gone wrong */ 1327 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1328 __func__, __LINE__); 1329 return 0; 1330 } else { 1331 return v; 1332 } 1333 } 1334 1335 /** 1336 * sdr_find_phase() - Find DQS enable phase 1337 * @working: If 1, look for working phase, if 0, look for non-working phase 1338 * @grp: Read/Write group 1339 * @v: VFIFO value 1340 * @work: Working window position 1341 * @i: Iterator 1342 * @p: DQS Phase Iterator 1343 * 1344 * Find working or non-working DQS enable phase setting. 1345 */ 1346 static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work, 1347 u32 *i, u32 *p) 1348 { 1349 u32 ret, bit_chk; 1350 const u32 end = VFIFO_SIZE + (working ? 0 : 1); 1351 1352 for (; *i < end; (*i)++) { 1353 if (working) 1354 *p = 0; 1355 1356 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { 1357 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1358 1359 ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1360 PASS_ONE_BIT, &bit_chk, 0); 1361 if (!working) 1362 ret = !ret; 1363 1364 if (ret) 1365 return 0; 1366 1367 *work += IO_DELAY_PER_OPA_TAP; 1368 } 1369 1370 if (*p > IO_DQS_EN_PHASE_MAX) { 1371 /* Fiddle with FIFO. */ 1372 rw_mgr_incr_vfifo(grp, v); 1373 if (!working) 1374 *p = 0; 1375 } 1376 } 1377 1378 return -EINVAL; 1379 } 1380 1381 static int sdr_working_phase(uint32_t grp, uint32_t *work_bgn, 1382 uint32_t *v, uint32_t *d, uint32_t *p, 1383 uint32_t *i) 1384 { 1385 const u32 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP / 1386 IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1387 int ret; 1388 1389 *work_bgn = 0; 1390 1391 for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { 1392 *i = 0; 1393 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1394 ret = sdr_find_phase(1, grp, v, work_bgn, i, p); 1395 if (!ret) 1396 return 0; 1397 *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1398 } 1399 1400 /* Cannot find working solution */ 1401 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", 1402 __func__, __LINE__); 1403 return -EINVAL; 1404 } 1405 1406 static void sdr_backup_phase(uint32_t grp, 1407 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1408 uint32_t *p) 1409 { 1410 uint32_t tmp_delay; 1411 u32 bit_chk; 1412 1413 /* Special case code for backing up a phase */ 1414 if (*p == 0) { 1415 *p = IO_DQS_EN_PHASE_MAX; 1416 rw_mgr_decr_vfifo(grp, v); 1417 } else { 1418 (*p)--; 1419 } 1420 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1421 scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); 1422 1423 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1424 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1425 scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); 1426 1427 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1428 PASS_ONE_BIT, 1429 &bit_chk, 0)) { 1430 *work_bgn = tmp_delay; 1431 break; 1432 } 1433 } 1434 1435 /* 1436 * Restore VFIFO to old state before we decremented it 1437 * (if needed). 1438 */ 1439 (*p)++; 1440 if (*p > IO_DQS_EN_PHASE_MAX) { 1441 *p = 0; 1442 rw_mgr_incr_vfifo(grp, v); 1443 } 1444 1445 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1446 } 1447 1448 static int sdr_nonworking_phase(uint32_t grp, 1449 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1450 uint32_t *p, uint32_t *i, 1451 uint32_t *work_end) 1452 { 1453 int ret; 1454 1455 (*p)++; 1456 *work_end += IO_DELAY_PER_OPA_TAP; 1457 if (*p > IO_DQS_EN_PHASE_MAX) { 1458 /* Fiddle with FIFO. */ 1459 *p = 0; 1460 rw_mgr_incr_vfifo(grp, v); 1461 } 1462 1463 ret = sdr_find_phase(0, grp, v, work_end, i, p); 1464 if (ret) { 1465 /* Cannot see edge of failing read. */ 1466 debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", 1467 __func__, __LINE__); 1468 } 1469 1470 return ret; 1471 } 1472 1473 /** 1474 * sdr_find_window_center() - Find center of the working DQS window. 1475 * @grp: Read/Write group 1476 * @work_bgn: First working settings 1477 * @work_end: Last working settings 1478 * @val: VFIFO value 1479 * 1480 * Find center of the working DQS enable window. 1481 */ 1482 static int sdr_find_window_center(const u32 grp, const u32 work_bgn, 1483 const u32 work_end, const u32 val) 1484 { 1485 u32 bit_chk, work_mid, v = val; 1486 int tmp_delay = 0; 1487 int i, p, d; 1488 1489 work_mid = (work_bgn + work_end) / 2; 1490 1491 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1492 work_bgn, work_end, work_mid); 1493 /* Get the middle delay to be less than a VFIFO delay */ 1494 tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; 1495 1496 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1497 work_mid %= tmp_delay; 1498 debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); 1499 1500 tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); 1501 if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) 1502 tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; 1503 p = tmp_delay / IO_DELAY_PER_OPA_TAP; 1504 1505 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); 1506 1507 d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); 1508 if (d > IO_DQS_EN_DELAY_MAX) 1509 d = IO_DQS_EN_DELAY_MAX; 1510 tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1511 1512 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); 1513 1514 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1515 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1516 1517 /* 1518 * push vfifo until we can successfully calibrate. We can do this 1519 * because the largest possible margin in 1 VFIFO cycle. 1520 */ 1521 for (i = 0; i < VFIFO_SIZE; i++) { 1522 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1523 v); 1524 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1525 PASS_ONE_BIT, 1526 &bit_chk, 0)) { 1527 debug_cond(DLEVEL == 2, 1528 "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", 1529 __func__, __LINE__, v, p, d); 1530 return 0; 1531 } 1532 1533 /* Fiddle with FIFO. */ 1534 rw_mgr_incr_vfifo(grp, &v); 1535 } 1536 1537 debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", 1538 __func__, __LINE__); 1539 return -EINVAL; 1540 } 1541 1542 /* find a good dqs enable to use */ 1543 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1544 { 1545 uint32_t v, d, p, i; 1546 uint32_t bit_chk; 1547 uint32_t dtaps_per_ptap; 1548 uint32_t work_bgn, work_end; 1549 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1550 1551 debug("%s:%d %u\n", __func__, __LINE__, grp); 1552 1553 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1554 1555 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1556 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1557 1558 /* ************************************************************** */ 1559 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1560 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1561 1562 /* ********************************************************* */ 1563 /* * Step 1 : First push vfifo until we get a failing read * */ 1564 v = find_vfifo_read(grp, &bit_chk); 1565 1566 /* ******************************************************** */ 1567 /* * step 2: find first working phase, increment in ptaps * */ 1568 work_bgn = 0; 1569 if (sdr_working_phase(grp, &work_bgn, &v, &d, &p, &i)) 1570 return 0; 1571 1572 work_end = work_bgn; 1573 1574 /* 1575 * If d is 0 then the working window covers a phase tap and 1576 * we can follow the old procedure otherwise, we've found the beginning, 1577 * and we need to increment the dtaps until we find the end. 1578 */ 1579 if (d == 0) { 1580 /* ********************************************************* */ 1581 /* * step 3a: if we have room, back off by one and 1582 increment in dtaps * */ 1583 1584 sdr_backup_phase(grp, &work_bgn, &v, &d, &p); 1585 1586 /* ********************************************************* */ 1587 /* * step 4a: go forward from working phase to non working 1588 phase, increment in ptaps * */ 1589 if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p, 1590 &i, &work_end)) 1591 return 0; 1592 1593 /* ********************************************************* */ 1594 /* * step 5a: back off one from last, increment in dtaps * */ 1595 1596 /* Special case code for backing up a phase */ 1597 if (p == 0) { 1598 p = IO_DQS_EN_PHASE_MAX; 1599 rw_mgr_decr_vfifo(grp, &v); 1600 } else { 1601 p = p - 1; 1602 } 1603 1604 work_end -= IO_DELAY_PER_OPA_TAP; 1605 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1606 1607 /* * The actual increment of dtaps is done outside of 1608 the if/else loop to share code */ 1609 d = 0; 1610 1611 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1612 vfifo=%u ptap=%u\n", __func__, __LINE__, 1613 v, p); 1614 } else { 1615 /* ******************************************************* */ 1616 /* * step 3-5b: Find the right edge of the window using 1617 delay taps * */ 1618 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1619 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1620 v, p, d, work_bgn); 1621 1622 work_end = work_bgn; 1623 } 1624 1625 /* The dtap increment to find the failing edge is done here */ 1626 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1627 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1628 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1629 end-2: dtap=%u\n", __func__, __LINE__, d); 1630 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1631 1632 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1633 PASS_ONE_BIT, 1634 &bit_chk, 0)) { 1635 break; 1636 } 1637 } 1638 1639 /* Go back to working dtap */ 1640 if (d != 0) 1641 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1642 1643 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1644 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1645 v, p, d-1, work_end); 1646 1647 if (work_end < work_bgn) { 1648 /* nil range */ 1649 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1650 failed\n", __func__, __LINE__); 1651 return 0; 1652 } 1653 1654 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1655 __func__, __LINE__, work_bgn, work_end); 1656 1657 /* *************************************************************** */ 1658 /* 1659 * * We need to calculate the number of dtaps that equal a ptap 1660 * * To do that we'll back up a ptap and re-find the edge of the 1661 * * window using dtaps 1662 */ 1663 1664 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1665 for tracking\n", __func__, __LINE__); 1666 1667 /* Special case code for backing up a phase */ 1668 if (p == 0) { 1669 p = IO_DQS_EN_PHASE_MAX; 1670 rw_mgr_decr_vfifo(grp, &v); 1671 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1672 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1673 v, p); 1674 } else { 1675 p = p - 1; 1676 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1677 phase only: v=%u p=%u", __func__, __LINE__, 1678 v, p); 1679 } 1680 1681 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1682 1683 /* 1684 * Increase dtap until we first see a passing read (in case the 1685 * window is smaller than a ptap), 1686 * and then a failing read to mark the edge of the window again 1687 */ 1688 1689 /* Find a passing read */ 1690 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1691 __func__, __LINE__); 1692 found_passing_read = 0; 1693 found_failing_read = 0; 1694 initial_failing_dtap = d; 1695 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1697 read d=%u\n", __func__, __LINE__, d); 1698 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1699 1700 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1701 PASS_ONE_BIT, 1702 &bit_chk, 0)) { 1703 found_passing_read = 1; 1704 break; 1705 } 1706 } 1707 1708 if (found_passing_read) { 1709 /* Find a failing read */ 1710 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1711 read\n", __func__, __LINE__); 1712 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1713 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1714 testing read d=%u\n", __func__, __LINE__, d); 1715 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1716 1717 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1718 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1719 found_failing_read = 1; 1720 break; 1721 } 1722 } 1723 } else { 1724 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1725 calculate dtaps", __func__, __LINE__); 1726 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1727 } 1728 1729 /* 1730 * The dynamically calculated dtaps_per_ptap is only valid if we 1731 * found a passing/failing read. If we didn't, it means d hit the max 1732 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1733 * statically calculated value. 1734 */ 1735 if (found_passing_read && found_failing_read) 1736 dtaps_per_ptap = d - initial_failing_dtap; 1737 1738 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1739 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1740 - %u = %u", __func__, __LINE__, d, 1741 initial_failing_dtap, dtaps_per_ptap); 1742 1743 /* ******************************************** */ 1744 /* * step 6: Find the centre of the window * */ 1745 if (sdr_find_window_centre(grp, work_bgn, work_end, v)) 1746 return 0; /* FIXME: Old code, return 0 means failure :-( */ 1747 1748 return 1; 1749 } 1750 1751 /* per-bit deskew DQ and center */ 1752 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1753 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1754 uint32_t use_read_test, uint32_t update_fom) 1755 { 1756 uint32_t i, p, d, min_index; 1757 /* 1758 * Store these as signed since there are comparisons with 1759 * signed numbers. 1760 */ 1761 uint32_t bit_chk; 1762 uint32_t sticky_bit_chk; 1763 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1764 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1765 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1766 int32_t mid; 1767 int32_t orig_mid_min, mid_min; 1768 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1769 final_dqs_en; 1770 int32_t dq_margin, dqs_margin; 1771 uint32_t stop; 1772 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1773 uint32_t addr; 1774 1775 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1776 1777 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1778 start_dqs = readl(addr + (read_group << 2)); 1779 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1780 start_dqs_en = readl(addr + ((read_group << 2) 1781 - IO_DQS_EN_DELAY_OFFSET)); 1782 1783 /* set the left and right edge of each bit to an illegal value */ 1784 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1785 sticky_bit_chk = 0; 1786 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1787 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1788 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1789 } 1790 1791 /* Search for the left edge of the window for each bit */ 1792 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1793 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1794 1795 writel(0, &sdr_scc_mgr->update); 1796 1797 /* 1798 * Stop searching when the read test doesn't pass AND when 1799 * we've seen a passing read on every bit. 1800 */ 1801 if (use_read_test) { 1802 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1803 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1804 &bit_chk, 0, 0); 1805 } else { 1806 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1807 0, PASS_ONE_BIT, 1808 &bit_chk, 0); 1809 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1810 (read_group - (write_group * 1811 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1812 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1813 stop = (bit_chk == 0); 1814 } 1815 sticky_bit_chk = sticky_bit_chk | bit_chk; 1816 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1817 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1818 && %u", __func__, __LINE__, d, 1819 sticky_bit_chk, 1820 param->read_correct_mask, stop); 1821 1822 if (stop == 1) { 1823 break; 1824 } else { 1825 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1826 if (bit_chk & 1) { 1827 /* Remember a passing test as the 1828 left_edge */ 1829 left_edge[i] = d; 1830 } else { 1831 /* If a left edge has not been seen yet, 1832 then a future passing test will mark 1833 this edge as the right edge */ 1834 if (left_edge[i] == 1835 IO_IO_IN_DELAY_MAX + 1) { 1836 right_edge[i] = -(d + 1); 1837 } 1838 } 1839 bit_chk = bit_chk >> 1; 1840 } 1841 } 1842 } 1843 1844 /* Reset DQ delay chains to 0 */ 1845 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1846 sticky_bit_chk = 0; 1847 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1848 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1849 %d right_edge[%u]: %d\n", __func__, __LINE__, 1850 i, left_edge[i], i, right_edge[i]); 1851 1852 /* 1853 * Check for cases where we haven't found the left edge, 1854 * which makes our assignment of the the right edge invalid. 1855 * Reset it to the illegal value. 1856 */ 1857 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1858 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1859 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1860 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1861 right_edge[%u]: %d\n", __func__, __LINE__, 1862 i, right_edge[i]); 1863 } 1864 1865 /* 1866 * Reset sticky bit (except for bits where we have seen 1867 * both the left and right edge). 1868 */ 1869 sticky_bit_chk = sticky_bit_chk << 1; 1870 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1871 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1872 sticky_bit_chk = sticky_bit_chk | 1; 1873 } 1874 1875 if (i == 0) 1876 break; 1877 } 1878 1879 /* Search for the right edge of the window for each bit */ 1880 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1881 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1882 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1883 uint32_t delay = d + start_dqs_en; 1884 if (delay > IO_DQS_EN_DELAY_MAX) 1885 delay = IO_DQS_EN_DELAY_MAX; 1886 scc_mgr_set_dqs_en_delay(read_group, delay); 1887 } 1888 scc_mgr_load_dqs(read_group); 1889 1890 writel(0, &sdr_scc_mgr->update); 1891 1892 /* 1893 * Stop searching when the read test doesn't pass AND when 1894 * we've seen a passing read on every bit. 1895 */ 1896 if (use_read_test) { 1897 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1898 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1899 &bit_chk, 0, 0); 1900 } else { 1901 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1902 0, PASS_ONE_BIT, 1903 &bit_chk, 0); 1904 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1905 (read_group - (write_group * 1906 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1907 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1908 stop = (bit_chk == 0); 1909 } 1910 sticky_bit_chk = sticky_bit_chk | bit_chk; 1911 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1912 1913 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1914 %u && %u", __func__, __LINE__, d, 1915 sticky_bit_chk, param->read_correct_mask, stop); 1916 1917 if (stop == 1) { 1918 break; 1919 } else { 1920 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1921 if (bit_chk & 1) { 1922 /* Remember a passing test as 1923 the right_edge */ 1924 right_edge[i] = d; 1925 } else { 1926 if (d != 0) { 1927 /* If a right edge has not been 1928 seen yet, then a future passing 1929 test will mark this edge as the 1930 left edge */ 1931 if (right_edge[i] == 1932 IO_IO_IN_DELAY_MAX + 1) { 1933 left_edge[i] = -(d + 1); 1934 } 1935 } else { 1936 /* d = 0 failed, but it passed 1937 when testing the left edge, 1938 so it must be marginal, 1939 set it to -1 */ 1940 if (right_edge[i] == 1941 IO_IO_IN_DELAY_MAX + 1 && 1942 left_edge[i] != 1943 IO_IO_IN_DELAY_MAX 1944 + 1) { 1945 right_edge[i] = -1; 1946 } 1947 /* If a right edge has not been 1948 seen yet, then a future passing 1949 test will mark this edge as the 1950 left edge */ 1951 else if (right_edge[i] == 1952 IO_IO_IN_DELAY_MAX + 1953 1) { 1954 left_edge[i] = -(d + 1); 1955 } 1956 } 1957 } 1958 1959 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 1960 d=%u]: ", __func__, __LINE__, d); 1961 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 1962 (int)(bit_chk & 1), i, left_edge[i]); 1963 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 1964 right_edge[i]); 1965 bit_chk = bit_chk >> 1; 1966 } 1967 } 1968 } 1969 1970 /* Check that all bits have a window */ 1971 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1972 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1973 %d right_edge[%u]: %d", __func__, __LINE__, 1974 i, left_edge[i], i, right_edge[i]); 1975 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 1976 == IO_IO_IN_DELAY_MAX + 1)) { 1977 /* 1978 * Restore delay chain settings before letting the loop 1979 * in rw_mgr_mem_calibrate_vfifo to retry different 1980 * dqs/ck relationships. 1981 */ 1982 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 1983 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1984 scc_mgr_set_dqs_en_delay(read_group, 1985 start_dqs_en); 1986 } 1987 scc_mgr_load_dqs(read_group); 1988 writel(0, &sdr_scc_mgr->update); 1989 1990 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 1991 find edge [%u]: %d %d", __func__, __LINE__, 1992 i, left_edge[i], right_edge[i]); 1993 if (use_read_test) { 1994 set_failing_group_stage(read_group * 1995 RW_MGR_MEM_DQ_PER_READ_DQS + i, 1996 CAL_STAGE_VFIFO, 1997 CAL_SUBSTAGE_VFIFO_CENTER); 1998 } else { 1999 set_failing_group_stage(read_group * 2000 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2001 CAL_STAGE_VFIFO_AFTER_WRITES, 2002 CAL_SUBSTAGE_VFIFO_CENTER); 2003 } 2004 return 0; 2005 } 2006 } 2007 2008 /* Find middle of window for each DQ bit */ 2009 mid_min = left_edge[0] - right_edge[0]; 2010 min_index = 0; 2011 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2012 mid = left_edge[i] - right_edge[i]; 2013 if (mid < mid_min) { 2014 mid_min = mid; 2015 min_index = i; 2016 } 2017 } 2018 2019 /* 2020 * -mid_min/2 represents the amount that we need to move DQS. 2021 * If mid_min is odd and positive we'll need to add one to 2022 * make sure the rounding in further calculations is correct 2023 * (always bias to the right), so just add 1 for all positive values. 2024 */ 2025 if (mid_min > 0) 2026 mid_min++; 2027 2028 mid_min = mid_min / 2; 2029 2030 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2031 __func__, __LINE__, mid_min, min_index); 2032 2033 /* Determine the amount we can change DQS (which is -mid_min) */ 2034 orig_mid_min = mid_min; 2035 new_dqs = start_dqs - mid_min; 2036 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2037 new_dqs = IO_DQS_IN_DELAY_MAX; 2038 else if (new_dqs < 0) 2039 new_dqs = 0; 2040 2041 mid_min = start_dqs - new_dqs; 2042 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2043 mid_min, new_dqs); 2044 2045 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2046 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2047 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2048 else if (start_dqs_en - mid_min < 0) 2049 mid_min += start_dqs_en - mid_min; 2050 } 2051 new_dqs = start_dqs - mid_min; 2052 2053 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2054 new_dqs=%d mid_min=%d\n", start_dqs, 2055 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2056 new_dqs, mid_min); 2057 2058 /* Initialize data for export structures */ 2059 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2060 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2061 2062 /* add delay to bring centre of all DQ windows to the same "level" */ 2063 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2064 /* Use values before divide by 2 to reduce round off error */ 2065 shift_dq = (left_edge[i] - right_edge[i] - 2066 (left_edge[min_index] - right_edge[min_index]))/2 + 2067 (orig_mid_min - mid_min); 2068 2069 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2070 shift_dq[%u]=%d\n", i, shift_dq); 2071 2072 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2073 temp_dq_in_delay1 = readl(addr + (p << 2)); 2074 temp_dq_in_delay2 = readl(addr + (i << 2)); 2075 2076 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2077 (int32_t)IO_IO_IN_DELAY_MAX) { 2078 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2079 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2080 shift_dq = -(int32_t)temp_dq_in_delay1; 2081 } 2082 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2083 shift_dq[%u]=%d\n", i, shift_dq); 2084 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2085 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2086 scc_mgr_load_dq(p); 2087 2088 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2089 left_edge[i] - shift_dq + (-mid_min), 2090 right_edge[i] + shift_dq - (-mid_min)); 2091 /* To determine values for export structures */ 2092 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2093 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2094 2095 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2096 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2097 } 2098 2099 final_dqs = new_dqs; 2100 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2101 final_dqs_en = start_dqs_en - mid_min; 2102 2103 /* Move DQS-en */ 2104 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2105 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2106 scc_mgr_load_dqs(read_group); 2107 } 2108 2109 /* Move DQS */ 2110 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2111 scc_mgr_load_dqs(read_group); 2112 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2113 dqs_margin=%d", __func__, __LINE__, 2114 dq_margin, dqs_margin); 2115 2116 /* 2117 * Do not remove this line as it makes sure all of our decisions 2118 * have been applied. Apply the update bit. 2119 */ 2120 writel(0, &sdr_scc_mgr->update); 2121 2122 return (dq_margin >= 0) && (dqs_margin >= 0); 2123 } 2124 2125 /** 2126 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device 2127 * @rw_group: Read/Write Group 2128 * @phase: DQ/DQS phase 2129 * 2130 * Because initially no communication ca be reliably performed with the memory 2131 * device, the sequencer uses a guaranteed write mechanism to write data into 2132 * the memory device. 2133 */ 2134 static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, 2135 const u32 phase) 2136 { 2137 int ret; 2138 2139 /* Set a particular DQ/DQS phase. */ 2140 scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); 2141 2142 debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", 2143 __func__, __LINE__, rw_group, phase); 2144 2145 /* 2146 * Altera EMI_RM 2015.05.04 :: Figure 1-25 2147 * Load up the patterns used by read calibration using the 2148 * current DQDQS phase. 2149 */ 2150 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2151 2152 if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) 2153 return 0; 2154 2155 /* 2156 * Altera EMI_RM 2015.05.04 :: Figure 1-26 2157 * Back-to-Back reads of the patterns used for calibration. 2158 */ 2159 ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); 2160 if (ret) 2161 debug_cond(DLEVEL == 1, 2162 "%s:%d Guaranteed read test failed: g=%u p=%u\n", 2163 __func__, __LINE__, rw_group, phase); 2164 return ret; 2165 } 2166 2167 /** 2168 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration 2169 * @rw_group: Read/Write Group 2170 * @test_bgn: Rank at which the test begins 2171 * 2172 * DQS enable calibration ensures reliable capture of the DQ signal without 2173 * glitches on the DQS line. 2174 */ 2175 static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, 2176 const u32 test_bgn) 2177 { 2178 /* 2179 * Altera EMI_RM 2015.05.04 :: Figure 1-27 2180 * DQS and DQS Eanble Signal Relationships. 2181 */ 2182 2183 /* We start at zero, so have one less dq to devide among */ 2184 const u32 delay_step = IO_IO_IN_DELAY_MAX / 2185 (RW_MGR_MEM_DQ_PER_READ_DQS - 1); 2186 int found; 2187 u32 i, p, d, r; 2188 2189 debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); 2190 2191 /* Try different dq_in_delays since the DQ path is shorter than DQS. */ 2192 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2193 r += NUM_RANKS_PER_SHADOW_REG) { 2194 for (i = 0, p = test_bgn, d = 0; 2195 i < RW_MGR_MEM_DQ_PER_READ_DQS; 2196 i++, p++, d += delay_step) { 2197 debug_cond(DLEVEL == 1, 2198 "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", 2199 __func__, __LINE__, rw_group, r, i, p, d); 2200 2201 scc_mgr_set_dq_in_delay(p, d); 2202 scc_mgr_load_dq(p); 2203 } 2204 2205 writel(0, &sdr_scc_mgr->update); 2206 } 2207 2208 /* 2209 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 2210 * dq_in_delay values 2211 */ 2212 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); 2213 2214 debug_cond(DLEVEL == 1, 2215 "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", 2216 __func__, __LINE__, rw_group, found); 2217 2218 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 2219 r += NUM_RANKS_PER_SHADOW_REG) { 2220 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 2221 writel(0, &sdr_scc_mgr->update); 2222 } 2223 2224 if (!found) 2225 return -EINVAL; 2226 2227 return 0; 2228 2229 } 2230 2231 /** 2232 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS 2233 * @rw_group: Read/Write Group 2234 * @test_bgn: Rank at which the test begins 2235 * @use_read_test: Perform a read test 2236 * @update_fom: Update FOM 2237 * 2238 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads 2239 * within a group. 2240 */ 2241 static int 2242 rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, 2243 const int use_read_test, 2244 const int update_fom) 2245 2246 { 2247 int ret, grp_calibrated; 2248 u32 rank_bgn, sr; 2249 2250 /* 2251 * Altera EMI_RM 2015.05.04 :: Figure 1-28 2252 * Read per-bit deskew can be done on a per shadow register basis. 2253 */ 2254 grp_calibrated = 1; 2255 for (rank_bgn = 0, sr = 0; 2256 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2257 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 2258 /* Check if this set of ranks should be skipped entirely. */ 2259 if (param->skip_shadow_regs[sr]) 2260 continue; 2261 2262 ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, 2263 rw_group, test_bgn, 2264 use_read_test, 2265 update_fom); 2266 if (ret) 2267 continue; 2268 2269 grp_calibrated = 0; 2270 } 2271 2272 if (!grp_calibrated) 2273 return -EIO; 2274 2275 return 0; 2276 } 2277 2278 /** 2279 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO 2280 * @rw_group: Read/Write Group 2281 * @test_bgn: Rank at which the test begins 2282 * 2283 * Stage 1: Calibrate the read valid prediction FIFO. 2284 * 2285 * This function implements UniPHY calibration Stage 1, as explained in 2286 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". 2287 * 2288 * - read valid prediction will consist of finding: 2289 * - DQS enable phase and DQS enable delay (DQS Enable Calibration) 2290 * - DQS input phase and DQS input delay (DQ/DQS Centering) 2291 * - we also do a per-bit deskew on the DQ lines. 2292 */ 2293 static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) 2294 { 2295 uint32_t p, d; 2296 uint32_t dtaps_per_ptap; 2297 uint32_t failed_substage; 2298 2299 int ret; 2300 2301 debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); 2302 2303 /* Update info for sims */ 2304 reg_file_set_group(rw_group); 2305 reg_file_set_stage(CAL_STAGE_VFIFO); 2306 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2307 2308 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2309 2310 /* USER Determine number of delay taps for each phase tap. */ 2311 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2312 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2313 2314 for (d = 0; d <= dtaps_per_ptap; d += 2) { 2315 /* 2316 * In RLDRAMX we may be messing the delay of pins in 2317 * the same write rw_group but outside of the current read 2318 * the rw_group, but that's ok because we haven't calibrated 2319 * output side yet. 2320 */ 2321 if (d > 0) { 2322 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2323 rw_group, d); 2324 } 2325 2326 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { 2327 /* 1) Guaranteed Write */ 2328 ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); 2329 if (ret) 2330 break; 2331 2332 /* 2) DQS Enable Calibration */ 2333 ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, 2334 test_bgn); 2335 if (ret) { 2336 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2337 continue; 2338 } 2339 2340 /* 3) Centering DQ/DQS */ 2341 /* 2342 * If doing read after write calibration, do not update 2343 * FOM now. Do it then. 2344 */ 2345 ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, 2346 test_bgn, 1, 0); 2347 if (ret) { 2348 failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; 2349 continue; 2350 } 2351 2352 /* All done. */ 2353 goto cal_done_ok; 2354 } 2355 } 2356 2357 /* Calibration Stage 1 failed. */ 2358 set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); 2359 return 0; 2360 2361 /* Calibration Stage 1 completed OK. */ 2362 cal_done_ok: 2363 /* 2364 * Reset the delay chains back to zero if they have moved > 1 2365 * (check for > 1 because loop will increase d even when pass in 2366 * first case). 2367 */ 2368 if (d > 2) 2369 scc_mgr_zero_group(rw_group, 1); 2370 2371 return 1; 2372 } 2373 2374 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2375 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2376 uint32_t test_bgn) 2377 { 2378 uint32_t rank_bgn, sr; 2379 uint32_t grp_calibrated; 2380 uint32_t write_group; 2381 2382 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2383 2384 /* update info for sims */ 2385 2386 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2387 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2388 2389 write_group = read_group; 2390 2391 /* update info for sims */ 2392 reg_file_set_group(read_group); 2393 2394 grp_calibrated = 1; 2395 /* Read per-bit deskew can be done on a per shadow register basis */ 2396 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2397 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2398 /* Determine if this set of ranks should be skipped entirely */ 2399 if (!param->skip_shadow_regs[sr]) { 2400 /* This is the last calibration round, update FOM here */ 2401 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2402 write_group, 2403 read_group, 2404 test_bgn, 0, 2405 1)) { 2406 grp_calibrated = 0; 2407 } 2408 } 2409 } 2410 2411 2412 if (grp_calibrated == 0) { 2413 set_failing_group_stage(write_group, 2414 CAL_STAGE_VFIFO_AFTER_WRITES, 2415 CAL_SUBSTAGE_VFIFO_CENTER); 2416 return 0; 2417 } 2418 2419 return 1; 2420 } 2421 2422 /* Calibrate LFIFO to find smallest read latency */ 2423 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2424 { 2425 uint32_t found_one; 2426 uint32_t bit_chk; 2427 2428 debug("%s:%d\n", __func__, __LINE__); 2429 2430 /* update info for sims */ 2431 reg_file_set_stage(CAL_STAGE_LFIFO); 2432 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2433 2434 /* Load up the patterns used by read calibration for all ranks */ 2435 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2436 found_one = 0; 2437 2438 do { 2439 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2440 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2441 __func__, __LINE__, gbl->curr_read_lat); 2442 2443 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2444 NUM_READ_TESTS, 2445 PASS_ALL_BITS, 2446 &bit_chk, 1)) { 2447 break; 2448 } 2449 2450 found_one = 1; 2451 /* reduce read latency and see if things are working */ 2452 /* correctly */ 2453 gbl->curr_read_lat--; 2454 } while (gbl->curr_read_lat > 0); 2455 2456 /* reset the fifos to get pointers to known state */ 2457 2458 writel(0, &phy_mgr_cmd->fifo_reset); 2459 2460 if (found_one) { 2461 /* add a fudge factor to the read latency that was determined */ 2462 gbl->curr_read_lat += 2; 2463 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2464 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2465 read_lat=%u\n", __func__, __LINE__, 2466 gbl->curr_read_lat); 2467 return 1; 2468 } else { 2469 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2470 CAL_SUBSTAGE_READ_LATENCY); 2471 2472 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2473 read_lat=%u\n", __func__, __LINE__, 2474 gbl->curr_read_lat); 2475 return 0; 2476 } 2477 } 2478 2479 /* 2480 * issue write test command. 2481 * two variants are provided. one that just tests a write pattern and 2482 * another that tests datamask functionality. 2483 */ 2484 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2485 uint32_t test_dm) 2486 { 2487 uint32_t mcc_instruction; 2488 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2489 ENABLE_SUPER_QUICK_CALIBRATION); 2490 uint32_t rw_wl_nop_cycles; 2491 uint32_t addr; 2492 2493 /* 2494 * Set counter and jump addresses for the right 2495 * number of NOP cycles. 2496 * The number of supported NOP cycles can range from -1 to infinity 2497 * Three different cases are handled: 2498 * 2499 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2500 * mechanism will be used to insert the right number of NOPs 2501 * 2502 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2503 * issuing the write command will jump straight to the 2504 * micro-instruction that turns on DQS (for DDRx), or outputs write 2505 * data (for RLD), skipping 2506 * the NOP micro-instruction all together 2507 * 2508 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2509 * turned on in the same micro-instruction that issues the write 2510 * command. Then we need 2511 * to directly jump to the micro-instruction that sends out the data 2512 * 2513 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2514 * (2 and 3). One jump-counter (0) is used to perform multiple 2515 * write-read operations. 2516 * one counter left to issue this command in "multiple-group" mode 2517 */ 2518 2519 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2520 2521 if (rw_wl_nop_cycles == -1) { 2522 /* 2523 * CNTR 2 - We want to execute the special write operation that 2524 * turns on DQS right away and then skip directly to the 2525 * instruction that sends out the data. We set the counter to a 2526 * large number so that the jump is always taken. 2527 */ 2528 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2529 2530 /* CNTR 3 - Not used */ 2531 if (test_dm) { 2532 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2533 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2534 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2535 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2536 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2537 } else { 2538 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2539 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2540 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2541 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2542 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2543 } 2544 } else if (rw_wl_nop_cycles == 0) { 2545 /* 2546 * CNTR 2 - We want to skip the NOP operation and go straight 2547 * to the DQS enable instruction. We set the counter to a large 2548 * number so that the jump is always taken. 2549 */ 2550 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2551 2552 /* CNTR 3 - Not used */ 2553 if (test_dm) { 2554 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2555 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2556 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2557 } else { 2558 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2559 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2560 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2561 } 2562 } else { 2563 /* 2564 * CNTR 2 - In this case we want to execute the next instruction 2565 * and NOT take the jump. So we set the counter to 0. The jump 2566 * address doesn't count. 2567 */ 2568 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2569 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2570 2571 /* 2572 * CNTR 3 - Set the nop counter to the number of cycles we 2573 * need to loop for, minus 1. 2574 */ 2575 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2576 if (test_dm) { 2577 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2578 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2579 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2580 } else { 2581 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2582 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2583 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2584 } 2585 } 2586 2587 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2588 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2589 2590 if (quick_write_mode) 2591 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2592 else 2593 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2594 2595 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2596 2597 /* 2598 * CNTR 1 - This is used to ensure enough time elapses 2599 * for read data to come back. 2600 */ 2601 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2602 2603 if (test_dm) { 2604 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2605 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2606 } else { 2607 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2608 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2609 } 2610 2611 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2612 writel(mcc_instruction, addr + (group << 2)); 2613 } 2614 2615 /* Test writes, can check for a single bit pass or multiple bit pass */ 2616 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2617 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2618 uint32_t *bit_chk, uint32_t all_ranks) 2619 { 2620 uint32_t r; 2621 uint32_t correct_mask_vg; 2622 uint32_t tmp_bit_chk; 2623 uint32_t vg; 2624 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2625 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2626 uint32_t addr_rw_mgr; 2627 uint32_t base_rw_mgr; 2628 2629 *bit_chk = param->write_correct_mask; 2630 correct_mask_vg = param->write_correct_mask_vg; 2631 2632 for (r = rank_bgn; r < rank_end; r++) { 2633 if (param->skip_ranks[r]) { 2634 /* request to skip the rank */ 2635 continue; 2636 } 2637 2638 /* set rank */ 2639 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2640 2641 tmp_bit_chk = 0; 2642 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2643 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2644 /* reset the fifos to get pointers to known state */ 2645 writel(0, &phy_mgr_cmd->fifo_reset); 2646 2647 tmp_bit_chk = tmp_bit_chk << 2648 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2649 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2650 rw_mgr_mem_calibrate_write_test_issue(write_group * 2651 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2652 use_dm); 2653 2654 base_rw_mgr = readl(addr_rw_mgr); 2655 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2656 if (vg == 0) 2657 break; 2658 } 2659 *bit_chk &= tmp_bit_chk; 2660 } 2661 2662 if (all_correct) { 2663 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2664 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2665 %u => %lu", write_group, use_dm, 2666 *bit_chk, param->write_correct_mask, 2667 (long unsigned int)(*bit_chk == 2668 param->write_correct_mask)); 2669 return *bit_chk == param->write_correct_mask; 2670 } else { 2671 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2672 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2673 write_group, use_dm, *bit_chk); 2674 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2675 (long unsigned int)(*bit_chk != 0)); 2676 return *bit_chk != 0x00; 2677 } 2678 } 2679 2680 /* 2681 * center all windows. do per-bit-deskew to possibly increase size of 2682 * certain windows. 2683 */ 2684 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2685 uint32_t write_group, uint32_t test_bgn) 2686 { 2687 uint32_t i, p, min_index; 2688 int32_t d; 2689 /* 2690 * Store these as signed since there are comparisons with 2691 * signed numbers. 2692 */ 2693 uint32_t bit_chk; 2694 uint32_t sticky_bit_chk; 2695 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2696 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2697 int32_t mid; 2698 int32_t mid_min, orig_mid_min; 2699 int32_t new_dqs, start_dqs, shift_dq; 2700 int32_t dq_margin, dqs_margin, dm_margin; 2701 uint32_t stop; 2702 uint32_t temp_dq_out1_delay; 2703 uint32_t addr; 2704 2705 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2706 2707 dm_margin = 0; 2708 2709 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2710 start_dqs = readl(addr + 2711 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2712 2713 /* per-bit deskew */ 2714 2715 /* 2716 * set the left and right edge of each bit to an illegal value 2717 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2718 */ 2719 sticky_bit_chk = 0; 2720 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2721 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2722 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2723 } 2724 2725 /* Search for the left edge of the window for each bit */ 2726 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2727 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2728 2729 writel(0, &sdr_scc_mgr->update); 2730 2731 /* 2732 * Stop searching when the read test doesn't pass AND when 2733 * we've seen a passing read on every bit. 2734 */ 2735 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2736 0, PASS_ONE_BIT, &bit_chk, 0); 2737 sticky_bit_chk = sticky_bit_chk | bit_chk; 2738 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2739 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2740 == %u && %u [bit_chk= %u ]\n", 2741 d, sticky_bit_chk, param->write_correct_mask, 2742 stop, bit_chk); 2743 2744 if (stop == 1) { 2745 break; 2746 } else { 2747 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2748 if (bit_chk & 1) { 2749 /* 2750 * Remember a passing test as the 2751 * left_edge. 2752 */ 2753 left_edge[i] = d; 2754 } else { 2755 /* 2756 * If a left edge has not been seen 2757 * yet, then a future passing test will 2758 * mark this edge as the right edge. 2759 */ 2760 if (left_edge[i] == 2761 IO_IO_OUT1_DELAY_MAX + 1) { 2762 right_edge[i] = -(d + 1); 2763 } 2764 } 2765 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2766 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2767 (int)(bit_chk & 1), i, left_edge[i]); 2768 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2769 right_edge[i]); 2770 bit_chk = bit_chk >> 1; 2771 } 2772 } 2773 } 2774 2775 /* Reset DQ delay chains to 0 */ 2776 scc_mgr_apply_group_dq_out1_delay(0); 2777 sticky_bit_chk = 0; 2778 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2779 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2780 %d right_edge[%u]: %d\n", __func__, __LINE__, 2781 i, left_edge[i], i, right_edge[i]); 2782 2783 /* 2784 * Check for cases where we haven't found the left edge, 2785 * which makes our assignment of the the right edge invalid. 2786 * Reset it to the illegal value. 2787 */ 2788 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2789 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2790 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2791 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2792 right_edge[%u]: %d\n", __func__, __LINE__, 2793 i, right_edge[i]); 2794 } 2795 2796 /* 2797 * Reset sticky bit (except for bits where we have 2798 * seen the left edge). 2799 */ 2800 sticky_bit_chk = sticky_bit_chk << 1; 2801 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2802 sticky_bit_chk = sticky_bit_chk | 1; 2803 2804 if (i == 0) 2805 break; 2806 } 2807 2808 /* Search for the right edge of the window for each bit */ 2809 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2810 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2811 d + start_dqs); 2812 2813 writel(0, &sdr_scc_mgr->update); 2814 2815 /* 2816 * Stop searching when the read test doesn't pass AND when 2817 * we've seen a passing read on every bit. 2818 */ 2819 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2820 0, PASS_ONE_BIT, &bit_chk, 0); 2821 2822 sticky_bit_chk = sticky_bit_chk | bit_chk; 2823 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2824 2825 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2826 %u && %u\n", d, sticky_bit_chk, 2827 param->write_correct_mask, stop); 2828 2829 if (stop == 1) { 2830 if (d == 0) { 2831 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2832 i++) { 2833 /* d = 0 failed, but it passed when 2834 testing the left edge, so it must be 2835 marginal, set it to -1 */ 2836 if (right_edge[i] == 2837 IO_IO_OUT1_DELAY_MAX + 1 && 2838 left_edge[i] != 2839 IO_IO_OUT1_DELAY_MAX + 1) { 2840 right_edge[i] = -1; 2841 } 2842 } 2843 } 2844 break; 2845 } else { 2846 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2847 if (bit_chk & 1) { 2848 /* 2849 * Remember a passing test as 2850 * the right_edge. 2851 */ 2852 right_edge[i] = d; 2853 } else { 2854 if (d != 0) { 2855 /* 2856 * If a right edge has not 2857 * been seen yet, then a future 2858 * passing test will mark this 2859 * edge as the left edge. 2860 */ 2861 if (right_edge[i] == 2862 IO_IO_OUT1_DELAY_MAX + 1) 2863 left_edge[i] = -(d + 1); 2864 } else { 2865 /* 2866 * d = 0 failed, but it passed 2867 * when testing the left edge, 2868 * so it must be marginal, set 2869 * it to -1. 2870 */ 2871 if (right_edge[i] == 2872 IO_IO_OUT1_DELAY_MAX + 1 && 2873 left_edge[i] != 2874 IO_IO_OUT1_DELAY_MAX + 1) 2875 right_edge[i] = -1; 2876 /* 2877 * If a right edge has not been 2878 * seen yet, then a future 2879 * passing test will mark this 2880 * edge as the left edge. 2881 */ 2882 else if (right_edge[i] == 2883 IO_IO_OUT1_DELAY_MAX + 2884 1) 2885 left_edge[i] = -(d + 1); 2886 } 2887 } 2888 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2889 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2890 (int)(bit_chk & 1), i, left_edge[i]); 2891 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2892 right_edge[i]); 2893 bit_chk = bit_chk >> 1; 2894 } 2895 } 2896 } 2897 2898 /* Check that all bits have a window */ 2899 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2900 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2901 %d right_edge[%u]: %d", __func__, __LINE__, 2902 i, left_edge[i], i, right_edge[i]); 2903 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2904 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2905 set_failing_group_stage(test_bgn + i, 2906 CAL_STAGE_WRITES, 2907 CAL_SUBSTAGE_WRITES_CENTER); 2908 return 0; 2909 } 2910 } 2911 2912 /* Find middle of window for each DQ bit */ 2913 mid_min = left_edge[0] - right_edge[0]; 2914 min_index = 0; 2915 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2916 mid = left_edge[i] - right_edge[i]; 2917 if (mid < mid_min) { 2918 mid_min = mid; 2919 min_index = i; 2920 } 2921 } 2922 2923 /* 2924 * -mid_min/2 represents the amount that we need to move DQS. 2925 * If mid_min is odd and positive we'll need to add one to 2926 * make sure the rounding in further calculations is correct 2927 * (always bias to the right), so just add 1 for all positive values. 2928 */ 2929 if (mid_min > 0) 2930 mid_min++; 2931 mid_min = mid_min / 2; 2932 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2933 __LINE__, mid_min); 2934 2935 /* Determine the amount we can change DQS (which is -mid_min) */ 2936 orig_mid_min = mid_min; 2937 new_dqs = start_dqs; 2938 mid_min = 0; 2939 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2940 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2941 /* Initialize data for export structures */ 2942 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2943 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2944 2945 /* add delay to bring centre of all DQ windows to the same "level" */ 2946 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2947 /* Use values before divide by 2 to reduce round off error */ 2948 shift_dq = (left_edge[i] - right_edge[i] - 2949 (left_edge[min_index] - right_edge[min_index]))/2 + 2950 (orig_mid_min - mid_min); 2951 2952 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2953 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2954 2955 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2956 temp_dq_out1_delay = readl(addr + (i << 2)); 2957 if (shift_dq + (int32_t)temp_dq_out1_delay > 2958 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2959 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2960 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2961 shift_dq = -(int32_t)temp_dq_out1_delay; 2962 } 2963 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2964 i, shift_dq); 2965 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2966 scc_mgr_load_dq(i); 2967 2968 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2969 left_edge[i] - shift_dq + (-mid_min), 2970 right_edge[i] + shift_dq - (-mid_min)); 2971 /* To determine values for export structures */ 2972 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2973 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2974 2975 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2976 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2977 } 2978 2979 /* Move DQS */ 2980 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2981 writel(0, &sdr_scc_mgr->update); 2982 2983 /* Centre DM */ 2984 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2985 2986 /* 2987 * set the left and right edge of each bit to an illegal value, 2988 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2989 */ 2990 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2991 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2992 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2993 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2994 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2995 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2996 int32_t win_best = 0; 2997 2998 /* Search for the/part of the window with DM shift */ 2999 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 3000 scc_mgr_apply_group_dm_out1_delay(d); 3001 writel(0, &sdr_scc_mgr->update); 3002 3003 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3004 PASS_ALL_BITS, &bit_chk, 3005 0)) { 3006 /* USE Set current end of the window */ 3007 end_curr = -d; 3008 /* 3009 * If a starting edge of our window has not been seen 3010 * this is our current start of the DM window. 3011 */ 3012 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3013 bgn_curr = -d; 3014 3015 /* 3016 * If current window is bigger than best seen. 3017 * Set best seen to be current window. 3018 */ 3019 if ((end_curr-bgn_curr+1) > win_best) { 3020 win_best = end_curr-bgn_curr+1; 3021 bgn_best = bgn_curr; 3022 end_best = end_curr; 3023 } 3024 } else { 3025 /* We just saw a failing test. Reset temp edge */ 3026 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3027 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3028 } 3029 } 3030 3031 3032 /* Reset DM delay chains to 0 */ 3033 scc_mgr_apply_group_dm_out1_delay(0); 3034 3035 /* 3036 * Check to see if the current window nudges up aganist 0 delay. 3037 * If so we need to continue the search by shifting DQS otherwise DQS 3038 * search begins as a new search. */ 3039 if (end_curr != 0) { 3040 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3041 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3042 } 3043 3044 /* Search for the/part of the window with DQS shifts */ 3045 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3046 /* 3047 * Note: This only shifts DQS, so are we limiting ourselve to 3048 * width of DQ unnecessarily. 3049 */ 3050 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3051 d + new_dqs); 3052 3053 writel(0, &sdr_scc_mgr->update); 3054 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3055 PASS_ALL_BITS, &bit_chk, 3056 0)) { 3057 /* USE Set current end of the window */ 3058 end_curr = d; 3059 /* 3060 * If a beginning edge of our window has not been seen 3061 * this is our current begin of the DM window. 3062 */ 3063 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3064 bgn_curr = d; 3065 3066 /* 3067 * If current window is bigger than best seen. Set best 3068 * seen to be current window. 3069 */ 3070 if ((end_curr-bgn_curr+1) > win_best) { 3071 win_best = end_curr-bgn_curr+1; 3072 bgn_best = bgn_curr; 3073 end_best = end_curr; 3074 } 3075 } else { 3076 /* We just saw a failing test. Reset temp edge */ 3077 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3078 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3079 3080 /* Early exit optimization: if ther remaining delay 3081 chain space is less than already seen largest window 3082 we can exit */ 3083 if ((win_best-1) > 3084 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3085 break; 3086 } 3087 } 3088 } 3089 3090 /* assign left and right edge for cal and reporting; */ 3091 left_edge[0] = -1*bgn_best; 3092 right_edge[0] = end_best; 3093 3094 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3095 __LINE__, left_edge[0], right_edge[0]); 3096 3097 /* Move DQS (back to orig) */ 3098 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3099 3100 /* Move DM */ 3101 3102 /* Find middle of window for the DM bit */ 3103 mid = (left_edge[0] - right_edge[0]) / 2; 3104 3105 /* only move right, since we are not moving DQS/DQ */ 3106 if (mid < 0) 3107 mid = 0; 3108 3109 /* dm_marign should fail if we never find a window */ 3110 if (win_best == 0) 3111 dm_margin = -1; 3112 else 3113 dm_margin = left_edge[0] - mid; 3114 3115 scc_mgr_apply_group_dm_out1_delay(mid); 3116 writel(0, &sdr_scc_mgr->update); 3117 3118 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3119 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3120 right_edge[0], mid, dm_margin); 3121 /* Export values */ 3122 gbl->fom_out += dq_margin + dqs_margin; 3123 3124 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3125 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3126 dq_margin, dqs_margin, dm_margin); 3127 3128 /* 3129 * Do not remove this line as it makes sure all of our 3130 * decisions have been applied. 3131 */ 3132 writel(0, &sdr_scc_mgr->update); 3133 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3134 } 3135 3136 /* calibrate the write operations */ 3137 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3138 uint32_t test_bgn) 3139 { 3140 /* update info for sims */ 3141 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3142 3143 reg_file_set_stage(CAL_STAGE_WRITES); 3144 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3145 3146 reg_file_set_group(g); 3147 3148 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3149 set_failing_group_stage(g, CAL_STAGE_WRITES, 3150 CAL_SUBSTAGE_WRITES_CENTER); 3151 return 0; 3152 } 3153 3154 return 1; 3155 } 3156 3157 /** 3158 * mem_precharge_and_activate() - Precharge all banks and activate 3159 * 3160 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3161 */ 3162 static void mem_precharge_and_activate(void) 3163 { 3164 int r; 3165 3166 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3167 /* Test if the rank should be skipped. */ 3168 if (param->skip_ranks[r]) 3169 continue; 3170 3171 /* Set rank. */ 3172 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3173 3174 /* Precharge all banks. */ 3175 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3176 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3177 3178 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3179 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3180 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3181 3182 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3183 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3184 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3185 3186 /* Activate rows. */ 3187 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3188 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3189 } 3190 } 3191 3192 /** 3193 * mem_init_latency() - Configure memory RLAT and WLAT settings 3194 * 3195 * Configure memory RLAT and WLAT parameters. 3196 */ 3197 static void mem_init_latency(void) 3198 { 3199 /* 3200 * For AV/CV, LFIFO is hardened and always runs at full rate 3201 * so max latency in AFI clocks, used here, is correspondingly 3202 * smaller. 3203 */ 3204 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3205 u32 rlat, wlat; 3206 3207 debug("%s:%d\n", __func__, __LINE__); 3208 3209 /* 3210 * Read in write latency. 3211 * WL for Hard PHY does not include additive latency. 3212 */ 3213 wlat = readl(&data_mgr->t_wl_add); 3214 wlat += readl(&data_mgr->mem_t_add); 3215 3216 gbl->rw_wl_nop_cycles = wlat - 1; 3217 3218 /* Read in readl latency. */ 3219 rlat = readl(&data_mgr->t_rl_add); 3220 3221 /* Set a pretty high read latency initially. */ 3222 gbl->curr_read_lat = rlat + 16; 3223 if (gbl->curr_read_lat > max_latency) 3224 gbl->curr_read_lat = max_latency; 3225 3226 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3227 3228 /* Advertise write latency. */ 3229 writel(wlat, &phy_mgr_cfg->afi_wlat); 3230 } 3231 3232 /** 3233 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3234 * 3235 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3236 */ 3237 static void mem_skip_calibrate(void) 3238 { 3239 uint32_t vfifo_offset; 3240 uint32_t i, j, r; 3241 3242 debug("%s:%d\n", __func__, __LINE__); 3243 /* Need to update every shadow register set used by the interface */ 3244 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3245 r += NUM_RANKS_PER_SHADOW_REG) { 3246 /* 3247 * Set output phase alignment settings appropriate for 3248 * skip calibration. 3249 */ 3250 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3251 scc_mgr_set_dqs_en_phase(i, 0); 3252 #if IO_DLL_CHAIN_LENGTH == 6 3253 scc_mgr_set_dqdqs_output_phase(i, 6); 3254 #else 3255 scc_mgr_set_dqdqs_output_phase(i, 7); 3256 #endif 3257 /* 3258 * Case:33398 3259 * 3260 * Write data arrives to the I/O two cycles before write 3261 * latency is reached (720 deg). 3262 * -> due to bit-slip in a/c bus 3263 * -> to allow board skew where dqs is longer than ck 3264 * -> how often can this happen!? 3265 * -> can claim back some ptaps for high freq 3266 * support if we can relax this, but i digress... 3267 * 3268 * The write_clk leads mem_ck by 90 deg 3269 * The minimum ptap of the OPA is 180 deg 3270 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3271 * The write_clk is always delayed by 2 ptaps 3272 * 3273 * Hence, to make DQS aligned to CK, we need to delay 3274 * DQS by: 3275 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3276 * 3277 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3278 * gives us the number of ptaps, which simplies to: 3279 * 3280 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3281 */ 3282 scc_mgr_set_dqdqs_output_phase(i, 3283 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3284 } 3285 writel(0xff, &sdr_scc_mgr->dqs_ena); 3286 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3287 3288 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3289 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3290 SCC_MGR_GROUP_COUNTER_OFFSET); 3291 } 3292 writel(0xff, &sdr_scc_mgr->dq_ena); 3293 writel(0xff, &sdr_scc_mgr->dm_ena); 3294 writel(0, &sdr_scc_mgr->update); 3295 } 3296 3297 /* Compensate for simulation model behaviour */ 3298 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3299 scc_mgr_set_dqs_bus_in_delay(i, 10); 3300 scc_mgr_load_dqs(i); 3301 } 3302 writel(0, &sdr_scc_mgr->update); 3303 3304 /* 3305 * ArriaV has hard FIFOs that can only be initialized by incrementing 3306 * in sequencer. 3307 */ 3308 vfifo_offset = CALIB_VFIFO_OFFSET; 3309 for (j = 0; j < vfifo_offset; j++) 3310 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3311 writel(0, &phy_mgr_cmd->fifo_reset); 3312 3313 /* 3314 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3315 * setting from generation-time constant. 3316 */ 3317 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3318 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3319 } 3320 3321 /** 3322 * mem_calibrate() - Memory calibration entry point. 3323 * 3324 * Perform memory calibration. 3325 */ 3326 static uint32_t mem_calibrate(void) 3327 { 3328 uint32_t i; 3329 uint32_t rank_bgn, sr; 3330 uint32_t write_group, write_test_bgn; 3331 uint32_t read_group, read_test_bgn; 3332 uint32_t run_groups, current_run; 3333 uint32_t failing_groups = 0; 3334 uint32_t group_failed = 0; 3335 3336 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3337 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3338 3339 debug("%s:%d\n", __func__, __LINE__); 3340 3341 /* Initialize the data settings */ 3342 gbl->error_substage = CAL_SUBSTAGE_NIL; 3343 gbl->error_stage = CAL_STAGE_NIL; 3344 gbl->error_group = 0xff; 3345 gbl->fom_in = 0; 3346 gbl->fom_out = 0; 3347 3348 /* Initialize WLAT and RLAT. */ 3349 mem_init_latency(); 3350 3351 /* Initialize bit slips. */ 3352 mem_precharge_and_activate(); 3353 3354 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3355 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3356 SCC_MGR_GROUP_COUNTER_OFFSET); 3357 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3358 if (i == 0) 3359 scc_mgr_set_hhp_extras(); 3360 3361 scc_set_bypass_mode(i); 3362 } 3363 3364 /* Calibration is skipped. */ 3365 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3366 /* 3367 * Set VFIFO and LFIFO to instant-on settings in skip 3368 * calibration mode. 3369 */ 3370 mem_skip_calibrate(); 3371 3372 /* 3373 * Do not remove this line as it makes sure all of our 3374 * decisions have been applied. 3375 */ 3376 writel(0, &sdr_scc_mgr->update); 3377 return 1; 3378 } 3379 3380 /* Calibration is not skipped. */ 3381 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3382 /* 3383 * Zero all delay chain/phase settings for all 3384 * groups and all shadow register sets. 3385 */ 3386 scc_mgr_zero_all(); 3387 3388 run_groups = ~param->skip_groups; 3389 3390 for (write_group = 0, write_test_bgn = 0; write_group 3391 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3392 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3393 3394 /* Initialize the group failure */ 3395 group_failed = 0; 3396 3397 current_run = run_groups & ((1 << 3398 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3399 run_groups = run_groups >> 3400 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3401 3402 if (current_run == 0) 3403 continue; 3404 3405 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3406 SCC_MGR_GROUP_COUNTER_OFFSET); 3407 scc_mgr_zero_group(write_group, 0); 3408 3409 for (read_group = write_group * rwdqs_ratio, 3410 read_test_bgn = 0; 3411 read_group < (write_group + 1) * rwdqs_ratio; 3412 read_group++, 3413 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3414 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3415 continue; 3416 3417 /* Calibrate the VFIFO */ 3418 if (rw_mgr_mem_calibrate_vfifo(read_group, 3419 read_test_bgn)) 3420 continue; 3421 3422 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3423 return 0; 3424 3425 /* The group failed, we're done. */ 3426 goto grp_failed; 3427 } 3428 3429 /* Calibrate the output side */ 3430 for (rank_bgn = 0, sr = 0; 3431 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3432 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3433 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3434 continue; 3435 3436 /* Not needed in quick mode! */ 3437 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3438 continue; 3439 3440 /* 3441 * Determine if this set of ranks 3442 * should be skipped entirely. 3443 */ 3444 if (param->skip_shadow_regs[sr]) 3445 continue; 3446 3447 /* Calibrate WRITEs */ 3448 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3449 write_group, write_test_bgn)) 3450 continue; 3451 3452 group_failed = 1; 3453 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3454 return 0; 3455 } 3456 3457 /* Some group failed, we're done. */ 3458 if (group_failed) 3459 goto grp_failed; 3460 3461 for (read_group = write_group * rwdqs_ratio, 3462 read_test_bgn = 0; 3463 read_group < (write_group + 1) * rwdqs_ratio; 3464 read_group++, 3465 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3466 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3467 continue; 3468 3469 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3470 read_test_bgn)) 3471 continue; 3472 3473 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3474 return 0; 3475 3476 /* The group failed, we're done. */ 3477 goto grp_failed; 3478 } 3479 3480 /* No group failed, continue as usual. */ 3481 continue; 3482 3483 grp_failed: /* A group failed, increment the counter. */ 3484 failing_groups++; 3485 } 3486 3487 /* 3488 * USER If there are any failing groups then report 3489 * the failure. 3490 */ 3491 if (failing_groups != 0) 3492 return 0; 3493 3494 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3495 continue; 3496 3497 /* 3498 * If we're skipping groups as part of debug, 3499 * don't calibrate LFIFO. 3500 */ 3501 if (param->skip_groups != 0) 3502 continue; 3503 3504 /* Calibrate the LFIFO */ 3505 if (!rw_mgr_mem_calibrate_lfifo()) 3506 return 0; 3507 } 3508 3509 /* 3510 * Do not remove this line as it makes sure all of our decisions 3511 * have been applied. 3512 */ 3513 writel(0, &sdr_scc_mgr->update); 3514 return 1; 3515 } 3516 3517 /** 3518 * run_mem_calibrate() - Perform memory calibration 3519 * 3520 * This function triggers the entire memory calibration procedure. 3521 */ 3522 static int run_mem_calibrate(void) 3523 { 3524 int pass; 3525 3526 debug("%s:%d\n", __func__, __LINE__); 3527 3528 /* Reset pass/fail status shown on afi_cal_success/fail */ 3529 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3530 3531 /* Stop tracking manager. */ 3532 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3533 3534 phy_mgr_initialize(); 3535 rw_mgr_mem_initialize(); 3536 3537 /* Perform the actual memory calibration. */ 3538 pass = mem_calibrate(); 3539 3540 mem_precharge_and_activate(); 3541 writel(0, &phy_mgr_cmd->fifo_reset); 3542 3543 /* Handoff. */ 3544 rw_mgr_mem_handoff(); 3545 /* 3546 * In Hard PHY this is a 2-bit control: 3547 * 0: AFI Mux Select 3548 * 1: DDIO Mux Select 3549 */ 3550 writel(0x2, &phy_mgr_cfg->mux_sel); 3551 3552 /* Start tracking manager. */ 3553 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3554 3555 return pass; 3556 } 3557 3558 /** 3559 * debug_mem_calibrate() - Report result of memory calibration 3560 * @pass: Value indicating whether calibration passed or failed 3561 * 3562 * This function reports the results of the memory calibration 3563 * and writes debug information into the register file. 3564 */ 3565 static void debug_mem_calibrate(int pass) 3566 { 3567 uint32_t debug_info; 3568 3569 if (pass) { 3570 printf("%s: CALIBRATION PASSED\n", __FILE__); 3571 3572 gbl->fom_in /= 2; 3573 gbl->fom_out /= 2; 3574 3575 if (gbl->fom_in > 0xff) 3576 gbl->fom_in = 0xff; 3577 3578 if (gbl->fom_out > 0xff) 3579 gbl->fom_out = 0xff; 3580 3581 /* Update the FOM in the register file */ 3582 debug_info = gbl->fom_in; 3583 debug_info |= gbl->fom_out << 8; 3584 writel(debug_info, &sdr_reg_file->fom); 3585 3586 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3587 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3588 } else { 3589 printf("%s: CALIBRATION FAILED\n", __FILE__); 3590 3591 debug_info = gbl->error_stage; 3592 debug_info |= gbl->error_substage << 8; 3593 debug_info |= gbl->error_group << 16; 3594 3595 writel(debug_info, &sdr_reg_file->failing_stage); 3596 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3597 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3598 3599 /* Update the failing group/stage in the register file */ 3600 debug_info = gbl->error_stage; 3601 debug_info |= gbl->error_substage << 8; 3602 debug_info |= gbl->error_group << 16; 3603 writel(debug_info, &sdr_reg_file->failing_stage); 3604 } 3605 3606 printf("%s: Calibration complete\n", __FILE__); 3607 } 3608 3609 /** 3610 * hc_initialize_rom_data() - Initialize ROM data 3611 * 3612 * Initialize ROM data. 3613 */ 3614 static void hc_initialize_rom_data(void) 3615 { 3616 u32 i, addr; 3617 3618 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3619 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3620 writel(inst_rom_init[i], addr + (i << 2)); 3621 3622 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3623 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3624 writel(ac_rom_init[i], addr + (i << 2)); 3625 } 3626 3627 /** 3628 * initialize_reg_file() - Initialize SDR register file 3629 * 3630 * Initialize SDR register file. 3631 */ 3632 static void initialize_reg_file(void) 3633 { 3634 /* Initialize the register file with the correct data */ 3635 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3636 writel(0, &sdr_reg_file->debug_data_addr); 3637 writel(0, &sdr_reg_file->cur_stage); 3638 writel(0, &sdr_reg_file->fom); 3639 writel(0, &sdr_reg_file->failing_stage); 3640 writel(0, &sdr_reg_file->debug1); 3641 writel(0, &sdr_reg_file->debug2); 3642 } 3643 3644 /** 3645 * initialize_hps_phy() - Initialize HPS PHY 3646 * 3647 * Initialize HPS PHY. 3648 */ 3649 static void initialize_hps_phy(void) 3650 { 3651 uint32_t reg; 3652 /* 3653 * Tracking also gets configured here because it's in the 3654 * same register. 3655 */ 3656 uint32_t trk_sample_count = 7500; 3657 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3658 /* 3659 * Format is number of outer loops in the 16 MSB, sample 3660 * count in 16 LSB. 3661 */ 3662 3663 reg = 0; 3664 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3665 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3666 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3667 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3668 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3669 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3670 /* 3671 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3672 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3673 */ 3674 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3675 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3676 trk_sample_count); 3677 writel(reg, &sdr_ctrl->phy_ctrl0); 3678 3679 reg = 0; 3680 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3681 trk_sample_count >> 3682 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3683 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3684 trk_long_idle_sample_count); 3685 writel(reg, &sdr_ctrl->phy_ctrl1); 3686 3687 reg = 0; 3688 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3689 trk_long_idle_sample_count >> 3690 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3691 writel(reg, &sdr_ctrl->phy_ctrl2); 3692 } 3693 3694 /** 3695 * initialize_tracking() - Initialize tracking 3696 * 3697 * Initialize the register file with usable initial data. 3698 */ 3699 static void initialize_tracking(void) 3700 { 3701 /* 3702 * Initialize the register file with the correct data. 3703 * Compute usable version of value in case we skip full 3704 * computation later. 3705 */ 3706 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3707 &sdr_reg_file->dtaps_per_ptap); 3708 3709 /* trk_sample_count */ 3710 writel(7500, &sdr_reg_file->trk_sample_count); 3711 3712 /* longidle outer loop [15:0] */ 3713 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3714 3715 /* 3716 * longidle sample count [31:24] 3717 * trfc, worst case of 933Mhz 4Gb [23:16] 3718 * trcd, worst case [15:8] 3719 * vfifo wait [7:0] 3720 */ 3721 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3722 &sdr_reg_file->delays); 3723 3724 /* mux delay */ 3725 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3726 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3727 &sdr_reg_file->trk_rw_mgr_addr); 3728 3729 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3730 &sdr_reg_file->trk_read_dqs_width); 3731 3732 /* trefi [7:0] */ 3733 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3734 &sdr_reg_file->trk_rfsh); 3735 } 3736 3737 int sdram_calibration_full(void) 3738 { 3739 struct param_type my_param; 3740 struct gbl_type my_gbl; 3741 uint32_t pass; 3742 3743 memset(&my_param, 0, sizeof(my_param)); 3744 memset(&my_gbl, 0, sizeof(my_gbl)); 3745 3746 param = &my_param; 3747 gbl = &my_gbl; 3748 3749 /* Set the calibration enabled by default */ 3750 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3751 /* 3752 * Only sweep all groups (regardless of fail state) by default 3753 * Set enabled read test by default. 3754 */ 3755 #if DISABLE_GUARANTEED_READ 3756 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3757 #endif 3758 /* Initialize the register file */ 3759 initialize_reg_file(); 3760 3761 /* Initialize any PHY CSR */ 3762 initialize_hps_phy(); 3763 3764 scc_mgr_initialize(); 3765 3766 initialize_tracking(); 3767 3768 printf("%s: Preparing to start memory calibration\n", __FILE__); 3769 3770 debug("%s:%d\n", __func__, __LINE__); 3771 debug_cond(DLEVEL == 1, 3772 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3773 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3774 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3775 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3776 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3777 debug_cond(DLEVEL == 1, 3778 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3779 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3780 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3781 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3782 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3783 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3784 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3785 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3786 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3787 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3788 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3789 IO_IO_OUT2_DELAY_MAX); 3790 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3791 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3792 3793 hc_initialize_rom_data(); 3794 3795 /* update info for sims */ 3796 reg_file_set_stage(CAL_STAGE_NIL); 3797 reg_file_set_group(0); 3798 3799 /* 3800 * Load global needed for those actions that require 3801 * some dynamic calibration support. 3802 */ 3803 dyn_calib_steps = STATIC_CALIB_STEPS; 3804 /* 3805 * Load global to allow dynamic selection of delay loop settings 3806 * based on calibration mode. 3807 */ 3808 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3809 skip_delay_mask = 0xff; 3810 else 3811 skip_delay_mask = 0x0; 3812 3813 pass = run_mem_calibrate(); 3814 debug_mem_calibrate(pass); 3815 return pass; 3816 } 3817