xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 3589fbfbc3b5e178fc9f57882006a49946debd45)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 /**
117  * phy_mgr_initialize() - Initialize PHY Manager
118  *
119  * Initialize PHY Manager.
120  */
121 static void phy_mgr_initialize(void)
122 {
123 	u32 ratio;
124 
125 	debug("%s:%d\n", __func__, __LINE__);
126 	/* Calibration has control over path to memory */
127 	/*
128 	 * In Hard PHY this is a 2-bit control:
129 	 * 0: AFI Mux Select
130 	 * 1: DDIO Mux Select
131 	 */
132 	writel(0x3, &phy_mgr_cfg->mux_sel);
133 
134 	/* USER memory clock is not stable we begin initialization  */
135 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
136 
137 	/* USER calibration status all set to zero */
138 	writel(0, &phy_mgr_cfg->cal_status);
139 
140 	writel(0, &phy_mgr_cfg->cal_debug_info);
141 
142 	/* Init params only if we do NOT skip calibration. */
143 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
144 		return;
145 
146 	ratio = RW_MGR_MEM_DQ_PER_READ_DQS /
147 		RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS;
148 	param->read_correct_mask_vg = (1 << ratio) - 1;
149 	param->write_correct_mask_vg = (1 << ratio) - 1;
150 	param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
151 	param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
152 	ratio = RW_MGR_MEM_DATA_WIDTH /
153 		RW_MGR_MEM_DATA_MASK_WIDTH;
154 	param->dm_correct_mask = (1 << ratio) - 1;
155 }
156 
157 /**
158  * set_rank_and_odt_mask() - Set Rank and ODT mask
159  * @rank:	Rank mask
160  * @odt_mode:	ODT mode, OFF or READ_WRITE
161  *
162  * Set Rank and ODT mask (On-Die Termination).
163  */
164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
165 {
166 	u32 odt_mask_0 = 0;
167 	u32 odt_mask_1 = 0;
168 	u32 cs_and_odt_mask;
169 
170 	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
171 		odt_mask_0 = 0x0;
172 		odt_mask_1 = 0x0;
173 	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
174 		switch (RW_MGR_MEM_NUMBER_OF_RANKS) {
175 		case 1:	/* 1 Rank */
176 			/* Read: ODT = 0 ; Write: ODT = 1 */
177 			odt_mask_0 = 0x0;
178 			odt_mask_1 = 0x1;
179 			break;
180 		case 2:	/* 2 Ranks */
181 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
182 				/*
183 				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
184 				 *   OR
185 				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
186 				 *
187 				 * Since MEM_NUMBER_OF_RANKS is 2, they
188 				 * are both single rank with 2 CS each
189 				 * (special for RDIMM).
190 				 *
191 				 * Read: Turn on ODT on the opposite rank
192 				 * Write: Turn on ODT on all ranks
193 				 */
194 				odt_mask_0 = 0x3 & ~(1 << rank);
195 				odt_mask_1 = 0x3;
196 			} else {
197 				/*
198 				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
199 				 *
200 				 * Read: Turn on ODT off on all ranks
201 				 * Write: Turn on ODT on active rank
202 				 */
203 				odt_mask_0 = 0x0;
204 				odt_mask_1 = 0x3 & (1 << rank);
205 			}
206 			break;
207 		case 4:	/* 4 Ranks */
208 			/* Read:
209 			 * ----------+-----------------------+
210 			 *           |         ODT           |
211 			 * Read From +-----------------------+
212 			 *   Rank    |  3  |  2  |  1  |  0  |
213 			 * ----------+-----+-----+-----+-----+
214 			 *     0     |  0  |  1  |  0  |  0  |
215 			 *     1     |  1  |  0  |  0  |  0  |
216 			 *     2     |  0  |  0  |  0  |  1  |
217 			 *     3     |  0  |  0  |  1  |  0  |
218 			 * ----------+-----+-----+-----+-----+
219 			 *
220 			 * Write:
221 			 * ----------+-----------------------+
222 			 *           |         ODT           |
223 			 * Write To  +-----------------------+
224 			 *   Rank    |  3  |  2  |  1  |  0  |
225 			 * ----------+-----+-----+-----+-----+
226 			 *     0     |  0  |  1  |  0  |  1  |
227 			 *     1     |  1  |  0  |  1  |  0  |
228 			 *     2     |  0  |  1  |  0  |  1  |
229 			 *     3     |  1  |  0  |  1  |  0  |
230 			 * ----------+-----+-----+-----+-----+
231 			 */
232 			switch (rank) {
233 			case 0:
234 				odt_mask_0 = 0x4;
235 				odt_mask_1 = 0x5;
236 				break;
237 			case 1:
238 				odt_mask_0 = 0x8;
239 				odt_mask_1 = 0xA;
240 				break;
241 			case 2:
242 				odt_mask_0 = 0x1;
243 				odt_mask_1 = 0x5;
244 				break;
245 			case 3:
246 				odt_mask_0 = 0x2;
247 				odt_mask_1 = 0xA;
248 				break;
249 			}
250 			break;
251 		}
252 	}
253 
254 	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
255 			  ((0xFF & odt_mask_0) << 8) |
256 			  ((0xFF & odt_mask_1) << 16);
257 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
258 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
259 }
260 
261 /**
262  * scc_mgr_set() - Set SCC Manager register
263  * @off:	Base offset in SCC Manager space
264  * @grp:	Read/Write group
265  * @val:	Value to be set
266  *
267  * This function sets the SCC Manager (Scan Chain Control Manager) register.
268  */
269 static void scc_mgr_set(u32 off, u32 grp, u32 val)
270 {
271 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
272 }
273 
274 /**
275  * scc_mgr_initialize() - Initialize SCC Manager registers
276  *
277  * Initialize SCC Manager registers.
278  */
279 static void scc_mgr_initialize(void)
280 {
281 	/*
282 	 * Clear register file for HPS. 16 (2^4) is the size of the
283 	 * full register file in the scc mgr:
284 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
285 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
286 	 */
287 	int i;
288 
289 	for (i = 0; i < 16; i++) {
290 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
291 			   __func__, __LINE__, i);
292 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
293 	}
294 }
295 
296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
297 {
298 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
299 }
300 
301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
302 {
303 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
304 }
305 
306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
307 {
308 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
309 }
310 
311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
312 {
313 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
314 }
315 
316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
317 {
318 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
319 		    delay);
320 }
321 
322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
323 {
324 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
325 }
326 
327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
328 {
329 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
330 }
331 
332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
333 {
334 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
335 		    delay);
336 }
337 
338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
339 {
340 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
341 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
342 		    delay);
343 }
344 
345 /* load up dqs config settings */
346 static void scc_mgr_load_dqs(uint32_t dqs)
347 {
348 	writel(dqs, &sdr_scc_mgr->dqs_ena);
349 }
350 
351 /* load up dqs io config settings */
352 static void scc_mgr_load_dqs_io(void)
353 {
354 	writel(0, &sdr_scc_mgr->dqs_io_ena);
355 }
356 
357 /* load up dq config settings */
358 static void scc_mgr_load_dq(uint32_t dq_in_group)
359 {
360 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
361 }
362 
363 /* load up dm config settings */
364 static void scc_mgr_load_dm(uint32_t dm)
365 {
366 	writel(dm, &sdr_scc_mgr->dm_ena);
367 }
368 
369 /**
370  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
371  * @off:	Base offset in SCC Manager space
372  * @grp:	Read/Write group
373  * @val:	Value to be set
374  * @update:	If non-zero, trigger SCC Manager update for all ranks
375  *
376  * This function sets the SCC Manager (Scan Chain Control Manager) register
377  * and optionally triggers the SCC update for all ranks.
378  */
379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
380 				  const int update)
381 {
382 	u32 r;
383 
384 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
385 	     r += NUM_RANKS_PER_SHADOW_REG) {
386 		scc_mgr_set(off, grp, val);
387 
388 		if (update || (r == 0)) {
389 			writel(grp, &sdr_scc_mgr->dqs_ena);
390 			writel(0, &sdr_scc_mgr->update);
391 		}
392 	}
393 }
394 
395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
396 {
397 	/*
398 	 * USER although the h/w doesn't support different phases per
399 	 * shadow register, for simplicity our scc manager modeling
400 	 * keeps different phase settings per shadow reg, and it's
401 	 * important for us to keep them in sync to match h/w.
402 	 * for efficiency, the scan chain update should occur only
403 	 * once to sr0.
404 	 */
405 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
406 			      read_group, phase, 0);
407 }
408 
409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
410 						     uint32_t phase)
411 {
412 	/*
413 	 * USER although the h/w doesn't support different phases per
414 	 * shadow register, for simplicity our scc manager modeling
415 	 * keeps different phase settings per shadow reg, and it's
416 	 * important for us to keep them in sync to match h/w.
417 	 * for efficiency, the scan chain update should occur only
418 	 * once to sr0.
419 	 */
420 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
421 			      write_group, phase, 0);
422 }
423 
424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
425 					       uint32_t delay)
426 {
427 	/*
428 	 * In shadow register mode, the T11 settings are stored in
429 	 * registers in the core, which are updated by the DQS_ENA
430 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
431 	 * save lots of rank switching overhead, by calling
432 	 * select_shadow_regs_for_update with update_scan_chains
433 	 * set to 0.
434 	 */
435 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
436 			      read_group, delay, 1);
437 	writel(0, &sdr_scc_mgr->update);
438 }
439 
440 /**
441  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
442  * @write_group:	Write group
443  * @delay:		Delay value
444  *
445  * This function sets the OCT output delay in SCC manager.
446  */
447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
448 {
449 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
450 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
451 	const int base = write_group * ratio;
452 	int i;
453 	/*
454 	 * Load the setting in the SCC manager
455 	 * Although OCT affects only write data, the OCT delay is controlled
456 	 * by the DQS logic block which is instantiated once per read group.
457 	 * For protocols where a write group consists of multiple read groups,
458 	 * the setting must be set multiple times.
459 	 */
460 	for (i = 0; i < ratio; i++)
461 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
462 }
463 
464 /**
465  * scc_mgr_set_hhp_extras() - Set HHP extras.
466  *
467  * Load the fixed setting in the SCC manager HHP extras.
468  */
469 static void scc_mgr_set_hhp_extras(void)
470 {
471 	/*
472 	 * Load the fixed setting in the SCC manager
473 	 * bits: 0:0 = 1'b1	- DQS bypass
474 	 * bits: 1:1 = 1'b1	- DQ bypass
475 	 * bits: 4:2 = 3'b001	- rfifo_mode
476 	 * bits: 6:5 = 2'b01	- rfifo clock_select
477 	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
478 	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
479 	 */
480 	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
481 			  (1 << 2) | (1 << 1) | (1 << 0);
482 	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
483 			 SCC_MGR_HHP_GLOBALS_OFFSET |
484 			 SCC_MGR_HHP_EXTRAS_OFFSET;
485 
486 	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
487 		   __func__, __LINE__);
488 	writel(value, addr);
489 	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
490 		   __func__, __LINE__);
491 }
492 
493 /**
494  * scc_mgr_zero_all() - Zero all DQS config
495  *
496  * Zero all DQS config.
497  */
498 static void scc_mgr_zero_all(void)
499 {
500 	int i, r;
501 
502 	/*
503 	 * USER Zero all DQS config settings, across all groups and all
504 	 * shadow registers
505 	 */
506 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
507 	     r += NUM_RANKS_PER_SHADOW_REG) {
508 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
509 			/*
510 			 * The phases actually don't exist on a per-rank basis,
511 			 * but there's no harm updating them several times, so
512 			 * let's keep the code simple.
513 			 */
514 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
515 			scc_mgr_set_dqs_en_phase(i, 0);
516 			scc_mgr_set_dqs_en_delay(i, 0);
517 		}
518 
519 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
520 			scc_mgr_set_dqdqs_output_phase(i, 0);
521 			/* Arria V/Cyclone V don't have out2. */
522 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
523 		}
524 	}
525 
526 	/* Multicast to all DQS group enables. */
527 	writel(0xff, &sdr_scc_mgr->dqs_ena);
528 	writel(0, &sdr_scc_mgr->update);
529 }
530 
531 /**
532  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
533  * @write_group:	Write group
534  *
535  * Set bypass mode and trigger SCC update.
536  */
537 static void scc_set_bypass_mode(const u32 write_group)
538 {
539 	/* Multicast to all DQ enables. */
540 	writel(0xff, &sdr_scc_mgr->dq_ena);
541 	writel(0xff, &sdr_scc_mgr->dm_ena);
542 
543 	/* Update current DQS IO enable. */
544 	writel(0, &sdr_scc_mgr->dqs_io_ena);
545 
546 	/* Update the DQS logic. */
547 	writel(write_group, &sdr_scc_mgr->dqs_ena);
548 
549 	/* Hit update. */
550 	writel(0, &sdr_scc_mgr->update);
551 }
552 
553 /**
554  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
555  * @write_group:	Write group
556  *
557  * Load DQS settings for Write Group, do not trigger SCC update.
558  */
559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
560 {
561 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
562 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
563 	const int base = write_group * ratio;
564 	int i;
565 	/*
566 	 * Load the setting in the SCC manager
567 	 * Although OCT affects only write data, the OCT delay is controlled
568 	 * by the DQS logic block which is instantiated once per read group.
569 	 * For protocols where a write group consists of multiple read groups,
570 	 * the setting must be set multiple times.
571 	 */
572 	for (i = 0; i < ratio; i++)
573 		writel(base + i, &sdr_scc_mgr->dqs_ena);
574 }
575 
576 /**
577  * scc_mgr_zero_group() - Zero all configs for a group
578  *
579  * Zero DQ, DM, DQS and OCT configs for a group.
580  */
581 static void scc_mgr_zero_group(const u32 write_group, const int out_only)
582 {
583 	int i, r;
584 
585 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
586 	     r += NUM_RANKS_PER_SHADOW_REG) {
587 		/* Zero all DQ config settings. */
588 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
589 			scc_mgr_set_dq_out1_delay(i, 0);
590 			if (!out_only)
591 				scc_mgr_set_dq_in_delay(i, 0);
592 		}
593 
594 		/* Multicast to all DQ enables. */
595 		writel(0xff, &sdr_scc_mgr->dq_ena);
596 
597 		/* Zero all DM config settings. */
598 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
599 			scc_mgr_set_dm_out1_delay(i, 0);
600 
601 		/* Multicast to all DM enables. */
602 		writel(0xff, &sdr_scc_mgr->dm_ena);
603 
604 		/* Zero all DQS IO settings. */
605 		if (!out_only)
606 			scc_mgr_set_dqs_io_in_delay(0);
607 
608 		/* Arria V/Cyclone V don't have out2. */
609 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
610 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
611 		scc_mgr_load_dqs_for_write_group(write_group);
612 
613 		/* Multicast to all DQS IO enables (only 1 in total). */
614 		writel(0, &sdr_scc_mgr->dqs_io_ena);
615 
616 		/* Hit update to zero everything. */
617 		writel(0, &sdr_scc_mgr->update);
618 	}
619 }
620 
621 /*
622  * apply and load a particular input delay for the DQ pins in a group
623  * group_bgn is the index of the first dq pin (in the write group)
624  */
625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
626 {
627 	uint32_t i, p;
628 
629 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
630 		scc_mgr_set_dq_in_delay(p, delay);
631 		scc_mgr_load_dq(p);
632 	}
633 }
634 
635 /**
636  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
637  * @delay:		Delay value
638  *
639  * Apply and load a particular output delay for the DQ pins in a group.
640  */
641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
642 {
643 	int i;
644 
645 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
646 		scc_mgr_set_dq_out1_delay(i, delay);
647 		scc_mgr_load_dq(i);
648 	}
649 }
650 
651 /* apply and load a particular output delay for the DM pins in a group */
652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
653 {
654 	uint32_t i;
655 
656 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
657 		scc_mgr_set_dm_out1_delay(i, delay1);
658 		scc_mgr_load_dm(i);
659 	}
660 }
661 
662 
663 /* apply and load delay on both DQS and OCT out1 */
664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
665 						    uint32_t delay)
666 {
667 	scc_mgr_set_dqs_out1_delay(delay);
668 	scc_mgr_load_dqs_io();
669 
670 	scc_mgr_set_oct_out1_delay(write_group, delay);
671 	scc_mgr_load_dqs_for_write_group(write_group);
672 }
673 
674 /**
675  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
676  * @write_group:	Write group
677  * @delay:		Delay value
678  *
679  * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
680  */
681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
682 						  const u32 delay)
683 {
684 	u32 i, new_delay;
685 
686 	/* DQ shift */
687 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++)
688 		scc_mgr_load_dq(i);
689 
690 	/* DM shift */
691 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
692 		scc_mgr_load_dm(i);
693 
694 	/* DQS shift */
695 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
696 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
697 		debug_cond(DLEVEL == 1,
698 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
699 			   __func__, __LINE__, write_group, delay, new_delay,
700 			   IO_IO_OUT2_DELAY_MAX,
701 			   new_delay - IO_IO_OUT2_DELAY_MAX);
702 		new_delay -= IO_IO_OUT2_DELAY_MAX;
703 		scc_mgr_set_dqs_out1_delay(new_delay);
704 	}
705 
706 	scc_mgr_load_dqs_io();
707 
708 	/* OCT shift */
709 	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
710 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
711 		debug_cond(DLEVEL == 1,
712 			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
713 			   __func__, __LINE__, write_group, delay,
714 			   new_delay, IO_IO_OUT2_DELAY_MAX,
715 			   new_delay - IO_IO_OUT2_DELAY_MAX);
716 		new_delay -= IO_IO_OUT2_DELAY_MAX;
717 		scc_mgr_set_oct_out1_delay(write_group, new_delay);
718 	}
719 
720 	scc_mgr_load_dqs_for_write_group(write_group);
721 }
722 
723 /**
724  * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
725  * @write_group:	Write group
726  * @delay:		Delay value
727  *
728  * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
729  */
730 static void
731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
732 						const u32 delay)
733 {
734 	int r;
735 
736 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
737 	     r += NUM_RANKS_PER_SHADOW_REG) {
738 		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
739 		writel(0, &sdr_scc_mgr->update);
740 	}
741 }
742 
743 /**
744  * set_jump_as_return() - Return instruction optimization
745  *
746  * Optimization used to recover some slots in ddr3 inst_rom could be
747  * applied to other protocols if we wanted to
748  */
749 static void set_jump_as_return(void)
750 {
751 	/*
752 	 * To save space, we replace return with jump to special shared
753 	 * RETURN instruction so we set the counter to large value so that
754 	 * we always jump.
755 	 */
756 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
757 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
758 }
759 
760 /*
761  * should always use constants as argument to ensure all computations are
762  * performed at compile time
763  */
764 static void delay_for_n_mem_clocks(const uint32_t clocks)
765 {
766 	uint32_t afi_clocks;
767 	uint8_t inner = 0;
768 	uint8_t outer = 0;
769 	uint16_t c_loop = 0;
770 
771 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772 
773 
774 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
775 	/* scale (rounding up) to get afi clocks */
776 
777 	/*
778 	 * Note, we don't bother accounting for being off a little bit
779 	 * because of a few extra instructions in outer loops
780 	 * Note, the loops have a test at the end, and do the test before
781 	 * the decrement, and so always perform the loop
782 	 * 1 time more than the counter value
783 	 */
784 	if (afi_clocks == 0) {
785 		;
786 	} else if (afi_clocks <= 0x100) {
787 		inner = afi_clocks-1;
788 		outer = 0;
789 		c_loop = 0;
790 	} else if (afi_clocks <= 0x10000) {
791 		inner = 0xff;
792 		outer = (afi_clocks-1) >> 8;
793 		c_loop = 0;
794 	} else {
795 		inner = 0xff;
796 		outer = 0xff;
797 		c_loop = (afi_clocks-1) >> 16;
798 	}
799 
800 	/*
801 	 * rom instructions are structured as follows:
802 	 *
803 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
804 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
805 	 *                return
806 	 *
807 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
808 	 * TARGET_B is set to IDLE_LOOP2 as well
809 	 *
810 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
811 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
812 	 *
813 	 * a little confusing, but it helps save precious space in the inst_rom
814 	 * and sequencer rom and keeps the delays more accurate and reduces
815 	 * overhead
816 	 */
817 	if (afi_clocks <= 0x100) {
818 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
819 			&sdr_rw_load_mgr_regs->load_cntr1);
820 
821 		writel(RW_MGR_IDLE_LOOP1,
822 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
823 
824 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
825 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
826 	} else {
827 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
828 			&sdr_rw_load_mgr_regs->load_cntr0);
829 
830 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
831 			&sdr_rw_load_mgr_regs->load_cntr1);
832 
833 		writel(RW_MGR_IDLE_LOOP2,
834 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
835 
836 		writel(RW_MGR_IDLE_LOOP2,
837 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
838 
839 		/* hack to get around compiler not being smart enough */
840 		if (afi_clocks <= 0x10000) {
841 			/* only need to run once */
842 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
843 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
844 		} else {
845 			do {
846 				writel(RW_MGR_IDLE_LOOP2,
847 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
848 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
849 			} while (c_loop-- != 0);
850 		}
851 	}
852 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
853 }
854 
855 /**
856  * rw_mgr_mem_init_load_regs() - Load instruction registers
857  * @cntr0:	Counter 0 value
858  * @cntr1:	Counter 1 value
859  * @cntr2:	Counter 2 value
860  * @jump:	Jump instruction value
861  *
862  * Load instruction registers.
863  */
864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
865 {
866 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
867 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
868 
869 	/* Load counters */
870 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
871 	       &sdr_rw_load_mgr_regs->load_cntr0);
872 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
873 	       &sdr_rw_load_mgr_regs->load_cntr1);
874 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
875 	       &sdr_rw_load_mgr_regs->load_cntr2);
876 
877 	/* Load jump address */
878 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
879 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
880 	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
881 
882 	/* Execute count instruction */
883 	writel(jump, grpaddr);
884 }
885 
886 /**
887  * rw_mgr_mem_load_user() - Load user calibration values
888  * @fin1:	Final instruction 1
889  * @fin2:	Final instruction 2
890  * @precharge:	If 1, precharge the banks at the end
891  *
892  * Load user calibration values and optionally precharge the banks.
893  */
894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
895 				 const int precharge)
896 {
897 	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
898 		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
899 	u32 r;
900 
901 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
902 		if (param->skip_ranks[r]) {
903 			/* request to skip the rank */
904 			continue;
905 		}
906 
907 		/* set rank */
908 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
909 
910 		/* precharge all banks ... */
911 		if (precharge)
912 			writel(RW_MGR_PRECHARGE_ALL, grpaddr);
913 
914 		/*
915 		 * USER Use Mirror-ed commands for odd ranks if address
916 		 * mirrorring is on
917 		 */
918 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
919 			set_jump_as_return();
920 			writel(RW_MGR_MRS2_MIRR, grpaddr);
921 			delay_for_n_mem_clocks(4);
922 			set_jump_as_return();
923 			writel(RW_MGR_MRS3_MIRR, grpaddr);
924 			delay_for_n_mem_clocks(4);
925 			set_jump_as_return();
926 			writel(RW_MGR_MRS1_MIRR, grpaddr);
927 			delay_for_n_mem_clocks(4);
928 			set_jump_as_return();
929 			writel(fin1, grpaddr);
930 		} else {
931 			set_jump_as_return();
932 			writel(RW_MGR_MRS2, grpaddr);
933 			delay_for_n_mem_clocks(4);
934 			set_jump_as_return();
935 			writel(RW_MGR_MRS3, grpaddr);
936 			delay_for_n_mem_clocks(4);
937 			set_jump_as_return();
938 			writel(RW_MGR_MRS1, grpaddr);
939 			set_jump_as_return();
940 			writel(fin2, grpaddr);
941 		}
942 
943 		if (precharge)
944 			continue;
945 
946 		set_jump_as_return();
947 		writel(RW_MGR_ZQCL, grpaddr);
948 
949 		/* tZQinit = tDLLK = 512 ck cycles */
950 		delay_for_n_mem_clocks(512);
951 	}
952 }
953 
954 static void rw_mgr_mem_initialize(void)
955 {
956 	debug("%s:%d\n", __func__, __LINE__);
957 
958 	/* The reset / cke part of initialization is broadcasted to all ranks */
959 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
960 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
961 
962 	/*
963 	 * Here's how you load register for a loop
964 	 * Counters are located @ 0x800
965 	 * Jump address are located @ 0xC00
966 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
967 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
968 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
969 	 * significant bits
970 	 */
971 
972 	/* start with memory RESET activated */
973 
974 	/* tINIT = 200us */
975 
976 	/*
977 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
978 	 * If a and b are the number of iteration in 2 nested loops
979 	 * it takes the following number of cycles to complete the operation:
980 	 * number_of_cycles = ((2 + n) * a + 2) * b
981 	 * where n is the number of instruction in the inner loop
982 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
983 	 * b = 6A
984 	 */
985 	rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL,
986 				  SEQ_TINIT_CNTR2_VAL,
987 				  RW_MGR_INIT_RESET_0_CKE_0);
988 
989 	/* indicate that memory is stable */
990 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
991 
992 	/*
993 	 * transition the RESET to high
994 	 * Wait for 500us
995 	 */
996 
997 	/*
998 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
999 	 * If a and b are the number of iteration in 2 nested loops
1000 	 * it takes the following number of cycles to complete the operation
1001 	 * number_of_cycles = ((2 + n) * a + 2) * b
1002 	 * where n is the number of instruction in the inner loop
1003 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
1004 	 * b = FF
1005 	 */
1006 	rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL,
1007 				  SEQ_TRESET_CNTR2_VAL,
1008 				  RW_MGR_INIT_RESET_1_CKE_0);
1009 
1010 	/* bring up clock enable */
1011 
1012 	/* tXRP < 250 ck cycles */
1013 	delay_for_n_mem_clocks(250);
1014 
1015 	rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET,
1016 			     0);
1017 }
1018 
1019 /*
1020  * At the end of calibration we have to program the user settings in, and
1021  * USER  hand off the memory to the user.
1022  */
1023 static void rw_mgr_mem_handoff(void)
1024 {
1025 	rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1);
1026 	/*
1027 	 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1028 	 * other commands, but we will have plenty of NIOS cycles before
1029 	 * actual handoff so its okay.
1030 	 */
1031 }
1032 
1033 /*
1034  * performs a guaranteed read on the patterns we are going to use during a
1035  * read test to ensure memory works
1036  */
1037 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1038 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1039 	uint32_t all_ranks)
1040 {
1041 	uint32_t r, vg;
1042 	uint32_t correct_mask_vg;
1043 	uint32_t tmp_bit_chk;
1044 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1045 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1046 	uint32_t addr;
1047 	uint32_t base_rw_mgr;
1048 
1049 	*bit_chk = param->read_correct_mask;
1050 	correct_mask_vg = param->read_correct_mask_vg;
1051 
1052 	for (r = rank_bgn; r < rank_end; r++) {
1053 		if (param->skip_ranks[r])
1054 			/* request to skip the rank */
1055 			continue;
1056 
1057 		/* set rank */
1058 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1059 
1060 		/* Load up a constant bursts of read commands */
1061 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1062 		writel(RW_MGR_GUARANTEED_READ,
1063 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1064 
1065 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1066 		writel(RW_MGR_GUARANTEED_READ_CONT,
1067 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1068 
1069 		tmp_bit_chk = 0;
1070 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1071 			/* reset the fifos to get pointers to known state */
1072 
1073 			writel(0, &phy_mgr_cmd->fifo_reset);
1074 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1075 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1076 
1077 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1078 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1079 
1080 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1081 			writel(RW_MGR_GUARANTEED_READ, addr +
1082 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1083 				vg) << 2));
1084 
1085 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1086 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1087 
1088 			if (vg == 0)
1089 				break;
1090 		}
1091 		*bit_chk &= tmp_bit_chk;
1092 	}
1093 
1094 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1095 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1096 
1097 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1098 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1099 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1100 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1101 	return *bit_chk == param->read_correct_mask;
1102 }
1103 
1104 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1105 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1106 {
1107 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1108 		num_tries, bit_chk, 1);
1109 }
1110 
1111 /* load up the patterns we are going to use during a read test */
1112 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1113 	uint32_t all_ranks)
1114 {
1115 	uint32_t r;
1116 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1117 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1118 
1119 	debug("%s:%d\n", __func__, __LINE__);
1120 	for (r = rank_bgn; r < rank_end; r++) {
1121 		if (param->skip_ranks[r])
1122 			/* request to skip the rank */
1123 			continue;
1124 
1125 		/* set rank */
1126 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1127 
1128 		/* Load up a constant bursts */
1129 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1130 
1131 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1132 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1133 
1134 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1135 
1136 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1137 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1138 
1139 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1140 
1141 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1142 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1143 
1144 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1145 
1146 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1147 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1148 
1149 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1150 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1151 	}
1152 
1153 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1154 }
1155 
1156 /*
1157  * try a read and see if it returns correct data back. has dummy reads
1158  * inserted into the mix used to align dqs enable. has more thorough checks
1159  * than the regular read test.
1160  */
1161 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1162 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1163 	uint32_t all_groups, uint32_t all_ranks)
1164 {
1165 	uint32_t r, vg;
1166 	uint32_t correct_mask_vg;
1167 	uint32_t tmp_bit_chk;
1168 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1169 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1170 	uint32_t addr;
1171 	uint32_t base_rw_mgr;
1172 
1173 	*bit_chk = param->read_correct_mask;
1174 	correct_mask_vg = param->read_correct_mask_vg;
1175 
1176 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1177 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1178 
1179 	for (r = rank_bgn; r < rank_end; r++) {
1180 		if (param->skip_ranks[r])
1181 			/* request to skip the rank */
1182 			continue;
1183 
1184 		/* set rank */
1185 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1186 
1187 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1188 
1189 		writel(RW_MGR_READ_B2B_WAIT1,
1190 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1191 
1192 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1193 		writel(RW_MGR_READ_B2B_WAIT2,
1194 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1195 
1196 		if (quick_read_mode)
1197 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1198 			/* need at least two (1+1) reads to capture failures */
1199 		else if (all_groups)
1200 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1201 		else
1202 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1203 
1204 		writel(RW_MGR_READ_B2B,
1205 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1206 		if (all_groups)
1207 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1208 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1209 			       &sdr_rw_load_mgr_regs->load_cntr3);
1210 		else
1211 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1212 
1213 		writel(RW_MGR_READ_B2B,
1214 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1215 
1216 		tmp_bit_chk = 0;
1217 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1218 			/* reset the fifos to get pointers to known state */
1219 			writel(0, &phy_mgr_cmd->fifo_reset);
1220 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1221 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1222 
1223 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1224 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1225 
1226 			if (all_groups)
1227 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1228 			else
1229 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1230 
1231 			writel(RW_MGR_READ_B2B, addr +
1232 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1233 			       vg) << 2));
1234 
1235 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1236 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1237 
1238 			if (vg == 0)
1239 				break;
1240 		}
1241 		*bit_chk &= tmp_bit_chk;
1242 	}
1243 
1244 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1245 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1246 
1247 	if (all_correct) {
1248 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1249 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1250 			   (%u == %u) => %lu", __func__, __LINE__, group,
1251 			   all_groups, *bit_chk, param->read_correct_mask,
1252 			   (long unsigned int)(*bit_chk ==
1253 			   param->read_correct_mask));
1254 		return *bit_chk == param->read_correct_mask;
1255 	} else	{
1256 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1257 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1258 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1259 			   group, all_groups, *bit_chk, (long unsigned int)0,
1260 			   (long unsigned int)(*bit_chk != 0x00));
1261 		return *bit_chk != 0x00;
1262 	}
1263 }
1264 
1265 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1266 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1267 	uint32_t all_groups)
1268 {
1269 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1270 					      bit_chk, all_groups, 1);
1271 }
1272 
1273 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1274 {
1275 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1276 	(*v)++;
1277 }
1278 
1279 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1280 {
1281 	uint32_t i;
1282 
1283 	for (i = 0; i < VFIFO_SIZE-1; i++)
1284 		rw_mgr_incr_vfifo(grp, v);
1285 }
1286 
1287 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1288 {
1289 	uint32_t  v;
1290 	uint32_t fail_cnt = 0;
1291 	uint32_t test_status;
1292 
1293 	for (v = 0; v < VFIFO_SIZE; ) {
1294 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1295 			   __func__, __LINE__, v);
1296 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1297 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1298 		if (!test_status) {
1299 			fail_cnt++;
1300 
1301 			if (fail_cnt == 2)
1302 				break;
1303 		}
1304 
1305 		/* fiddle with FIFO */
1306 		rw_mgr_incr_vfifo(grp, &v);
1307 	}
1308 
1309 	if (v >= VFIFO_SIZE) {
1310 		/* no failing read found!! Something must have gone wrong */
1311 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1312 			   __func__, __LINE__);
1313 		return 0;
1314 	} else {
1315 		return v;
1316 	}
1317 }
1318 
1319 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1320 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1321 			      uint32_t *v, uint32_t *d, uint32_t *p,
1322 			      uint32_t *i, uint32_t *max_working_cnt)
1323 {
1324 	uint32_t found_begin = 0;
1325 	uint32_t tmp_delay = 0;
1326 	uint32_t test_status;
1327 
1328 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1329 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1330 		*work_bgn = tmp_delay;
1331 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1332 
1333 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1334 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1335 				IO_DELAY_PER_OPA_TAP) {
1336 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1337 
1338 				test_status =
1339 				rw_mgr_mem_calibrate_read_test_all_ranks
1340 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1341 
1342 				if (test_status) {
1343 					*max_working_cnt = 1;
1344 					found_begin = 1;
1345 					break;
1346 				}
1347 			}
1348 
1349 			if (found_begin)
1350 				break;
1351 
1352 			if (*p > IO_DQS_EN_PHASE_MAX)
1353 				/* fiddle with FIFO */
1354 				rw_mgr_incr_vfifo(*grp, v);
1355 		}
1356 
1357 		if (found_begin)
1358 			break;
1359 	}
1360 
1361 	if (*i >= VFIFO_SIZE) {
1362 		/* cannot find working solution */
1363 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1364 			   ptap/dtap\n", __func__, __LINE__);
1365 		return 0;
1366 	} else {
1367 		return 1;
1368 	}
1369 }
1370 
1371 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1372 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1373 			     uint32_t *p, uint32_t *max_working_cnt)
1374 {
1375 	uint32_t found_begin = 0;
1376 	uint32_t tmp_delay;
1377 
1378 	/* Special case code for backing up a phase */
1379 	if (*p == 0) {
1380 		*p = IO_DQS_EN_PHASE_MAX;
1381 		rw_mgr_decr_vfifo(*grp, v);
1382 	} else {
1383 		(*p)--;
1384 	}
1385 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1386 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1387 
1388 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1389 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1390 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1391 
1392 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1393 							     PASS_ONE_BIT,
1394 							     bit_chk, 0)) {
1395 			found_begin = 1;
1396 			*work_bgn = tmp_delay;
1397 			break;
1398 		}
1399 	}
1400 
1401 	/* We have found a working dtap before the ptap found above */
1402 	if (found_begin == 1)
1403 		(*max_working_cnt)++;
1404 
1405 	/*
1406 	 * Restore VFIFO to old state before we decremented it
1407 	 * (if needed).
1408 	 */
1409 	(*p)++;
1410 	if (*p > IO_DQS_EN_PHASE_MAX) {
1411 		*p = 0;
1412 		rw_mgr_incr_vfifo(*grp, v);
1413 	}
1414 
1415 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1416 }
1417 
1418 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1419 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1420 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1421 			     uint32_t *work_end)
1422 {
1423 	uint32_t found_end = 0;
1424 
1425 	(*p)++;
1426 	*work_end += IO_DELAY_PER_OPA_TAP;
1427 	if (*p > IO_DQS_EN_PHASE_MAX) {
1428 		/* fiddle with FIFO */
1429 		*p = 0;
1430 		rw_mgr_incr_vfifo(*grp, v);
1431 	}
1432 
1433 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1434 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1435 			+= IO_DELAY_PER_OPA_TAP) {
1436 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1437 
1438 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1439 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1440 				found_end = 1;
1441 				break;
1442 			} else {
1443 				(*max_working_cnt)++;
1444 			}
1445 		}
1446 
1447 		if (found_end)
1448 			break;
1449 
1450 		if (*p > IO_DQS_EN_PHASE_MAX) {
1451 			/* fiddle with FIFO */
1452 			rw_mgr_incr_vfifo(*grp, v);
1453 			*p = 0;
1454 		}
1455 	}
1456 
1457 	if (*i >= VFIFO_SIZE + 1) {
1458 		/* cannot see edge of failing read */
1459 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1460 			   failed\n", __func__, __LINE__);
1461 		return 0;
1462 	} else {
1463 		return 1;
1464 	}
1465 }
1466 
1467 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1468 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1469 				  uint32_t *p, uint32_t *work_mid,
1470 				  uint32_t *work_end)
1471 {
1472 	int i;
1473 	int tmp_delay = 0;
1474 
1475 	*work_mid = (*work_bgn + *work_end) / 2;
1476 
1477 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1478 		   *work_bgn, *work_end, *work_mid);
1479 	/* Get the middle delay to be less than a VFIFO delay */
1480 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1481 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1482 		;
1483 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1484 	while (*work_mid > tmp_delay)
1485 		*work_mid -= tmp_delay;
1486 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1487 
1488 	tmp_delay = 0;
1489 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1490 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1491 		;
1492 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1493 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1494 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1495 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1496 		;
1497 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1498 
1499 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1500 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1501 
1502 	/*
1503 	 * push vfifo until we can successfully calibrate. We can do this
1504 	 * because the largest possible margin in 1 VFIFO cycle.
1505 	 */
1506 	for (i = 0; i < VFIFO_SIZE; i++) {
1507 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1508 			   *v);
1509 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1510 							     PASS_ONE_BIT,
1511 							     bit_chk, 0)) {
1512 			break;
1513 		}
1514 
1515 		/* fiddle with FIFO */
1516 		rw_mgr_incr_vfifo(*grp, v);
1517 	}
1518 
1519 	if (i >= VFIFO_SIZE) {
1520 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1521 			   failed\n", __func__, __LINE__);
1522 		return 0;
1523 	} else {
1524 		return 1;
1525 	}
1526 }
1527 
1528 /* find a good dqs enable to use */
1529 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1530 {
1531 	uint32_t v, d, p, i;
1532 	uint32_t max_working_cnt;
1533 	uint32_t bit_chk;
1534 	uint32_t dtaps_per_ptap;
1535 	uint32_t work_bgn, work_mid, work_end;
1536 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1537 
1538 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1539 
1540 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1541 
1542 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1543 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1544 
1545 	/* ************************************************************** */
1546 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1547 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1548 
1549 	/* ********************************************************* */
1550 	/* * Step 1 : First push vfifo until we get a failing read * */
1551 	v = find_vfifo_read(grp, &bit_chk);
1552 
1553 	max_working_cnt = 0;
1554 
1555 	/* ******************************************************** */
1556 	/* * step 2: find first working phase, increment in ptaps * */
1557 	work_bgn = 0;
1558 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1559 				&p, &i, &max_working_cnt) == 0)
1560 		return 0;
1561 
1562 	work_end = work_bgn;
1563 
1564 	/*
1565 	 * If d is 0 then the working window covers a phase tap and
1566 	 * we can follow the old procedure otherwise, we've found the beginning,
1567 	 * and we need to increment the dtaps until we find the end.
1568 	 */
1569 	if (d == 0) {
1570 		/* ********************************************************* */
1571 		/* * step 3a: if we have room, back off by one and
1572 		increment in dtaps * */
1573 
1574 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1575 				 &max_working_cnt);
1576 
1577 		/* ********************************************************* */
1578 		/* * step 4a: go forward from working phase to non working
1579 		phase, increment in ptaps * */
1580 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1581 					 &i, &max_working_cnt, &work_end) == 0)
1582 			return 0;
1583 
1584 		/* ********************************************************* */
1585 		/* * step 5a:  back off one from last, increment in dtaps  * */
1586 
1587 		/* Special case code for backing up a phase */
1588 		if (p == 0) {
1589 			p = IO_DQS_EN_PHASE_MAX;
1590 			rw_mgr_decr_vfifo(grp, &v);
1591 		} else {
1592 			p = p - 1;
1593 		}
1594 
1595 		work_end -= IO_DELAY_PER_OPA_TAP;
1596 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1597 
1598 		/* * The actual increment of dtaps is done outside of
1599 		the if/else loop to share code */
1600 		d = 0;
1601 
1602 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1603 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1604 			   v, p);
1605 	} else {
1606 		/* ******************************************************* */
1607 		/* * step 3-5b:  Find the right edge of the window using
1608 		delay taps   * */
1609 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1610 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1611 			   v, p, d, work_bgn);
1612 
1613 		work_end = work_bgn;
1614 
1615 		/* * The actual increment of dtaps is done outside of the
1616 		if/else loop to share code */
1617 
1618 		/* Only here to counterbalance a subtract later on which is
1619 		not needed if this branch of the algorithm is taken */
1620 		max_working_cnt++;
1621 	}
1622 
1623 	/* The dtap increment to find the failing edge is done here */
1624 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1625 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1626 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1627 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1628 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1629 
1630 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1631 								      PASS_ONE_BIT,
1632 								      &bit_chk, 0)) {
1633 				break;
1634 			}
1635 	}
1636 
1637 	/* Go back to working dtap */
1638 	if (d != 0)
1639 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1640 
1641 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1642 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1643 		   v, p, d-1, work_end);
1644 
1645 	if (work_end < work_bgn) {
1646 		/* nil range */
1647 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1648 			   failed\n", __func__, __LINE__);
1649 		return 0;
1650 	}
1651 
1652 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1653 		   __func__, __LINE__, work_bgn, work_end);
1654 
1655 	/* *************************************************************** */
1656 	/*
1657 	 * * We need to calculate the number of dtaps that equal a ptap
1658 	 * * To do that we'll back up a ptap and re-find the edge of the
1659 	 * * window using dtaps
1660 	 */
1661 
1662 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1663 		   for tracking\n", __func__, __LINE__);
1664 
1665 	/* Special case code for backing up a phase */
1666 	if (p == 0) {
1667 		p = IO_DQS_EN_PHASE_MAX;
1668 		rw_mgr_decr_vfifo(grp, &v);
1669 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1670 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1671 			   v, p);
1672 	} else {
1673 		p = p - 1;
1674 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1675 			   phase only: v=%u p=%u", __func__, __LINE__,
1676 			   v, p);
1677 	}
1678 
1679 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1680 
1681 	/*
1682 	 * Increase dtap until we first see a passing read (in case the
1683 	 * window is smaller than a ptap),
1684 	 * and then a failing read to mark the edge of the window again
1685 	 */
1686 
1687 	/* Find a passing read */
1688 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1689 		   __func__, __LINE__);
1690 	found_passing_read = 0;
1691 	found_failing_read = 0;
1692 	initial_failing_dtap = d;
1693 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1694 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1695 			   read d=%u\n", __func__, __LINE__, d);
1696 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1697 
1698 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1699 							     PASS_ONE_BIT,
1700 							     &bit_chk, 0)) {
1701 			found_passing_read = 1;
1702 			break;
1703 		}
1704 	}
1705 
1706 	if (found_passing_read) {
1707 		/* Find a failing read */
1708 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1709 			   read\n", __func__, __LINE__);
1710 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1711 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1712 				   testing read d=%u\n", __func__, __LINE__, d);
1713 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1714 
1715 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1716 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1717 				found_failing_read = 1;
1718 				break;
1719 			}
1720 		}
1721 	} else {
1722 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1723 			   calculate dtaps", __func__, __LINE__);
1724 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1725 	}
1726 
1727 	/*
1728 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1729 	 * found a passing/failing read. If we didn't, it means d hit the max
1730 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1731 	 * statically calculated value.
1732 	 */
1733 	if (found_passing_read && found_failing_read)
1734 		dtaps_per_ptap = d - initial_failing_dtap;
1735 
1736 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1737 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1738 		   - %u = %u",  __func__, __LINE__, d,
1739 		   initial_failing_dtap, dtaps_per_ptap);
1740 
1741 	/* ******************************************** */
1742 	/* * step 6:  Find the centre of the window   * */
1743 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1744 				   &work_mid, &work_end) == 0)
1745 		return 0;
1746 
1747 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1748 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1749 		   v, p-1, d);
1750 	return 1;
1751 }
1752 
1753 /*
1754  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1755  * dq_in_delay values
1756  */
1757 static uint32_t
1758 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1759 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1760 {
1761 	uint32_t found;
1762 	uint32_t i;
1763 	uint32_t p;
1764 	uint32_t d;
1765 	uint32_t r;
1766 
1767 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1768 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1769 		/* we start at zero, so have one less dq to devide among */
1770 
1771 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1772 	      test_bgn);
1773 
1774 	/* try different dq_in_delays since the dq path is shorter than dqs */
1775 
1776 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1777 	     r += NUM_RANKS_PER_SHADOW_REG) {
1778 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1779 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1780 				   vfifo_find_dqs_", __func__, __LINE__);
1781 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1782 			       write_group, read_group);
1783 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1784 			scc_mgr_set_dq_in_delay(p, d);
1785 			scc_mgr_load_dq(p);
1786 		}
1787 		writel(0, &sdr_scc_mgr->update);
1788 	}
1789 
1790 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1791 
1792 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1793 		   en_phase_sweep_dq", __func__, __LINE__);
1794 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1795 		   chain to zero\n", write_group, read_group, found);
1796 
1797 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1798 	     r += NUM_RANKS_PER_SHADOW_REG) {
1799 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1800 			i++, p++) {
1801 			scc_mgr_set_dq_in_delay(p, 0);
1802 			scc_mgr_load_dq(p);
1803 		}
1804 		writel(0, &sdr_scc_mgr->update);
1805 	}
1806 
1807 	return found;
1808 }
1809 
1810 /* per-bit deskew DQ and center */
1811 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1812 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1813 	uint32_t use_read_test, uint32_t update_fom)
1814 {
1815 	uint32_t i, p, d, min_index;
1816 	/*
1817 	 * Store these as signed since there are comparisons with
1818 	 * signed numbers.
1819 	 */
1820 	uint32_t bit_chk;
1821 	uint32_t sticky_bit_chk;
1822 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1823 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1824 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1825 	int32_t mid;
1826 	int32_t orig_mid_min, mid_min;
1827 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1828 		final_dqs_en;
1829 	int32_t dq_margin, dqs_margin;
1830 	uint32_t stop;
1831 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1832 	uint32_t addr;
1833 
1834 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1835 
1836 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1837 	start_dqs = readl(addr + (read_group << 2));
1838 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1839 		start_dqs_en = readl(addr + ((read_group << 2)
1840 				     - IO_DQS_EN_DELAY_OFFSET));
1841 
1842 	/* set the left and right edge of each bit to an illegal value */
1843 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1844 	sticky_bit_chk = 0;
1845 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1846 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1847 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1848 	}
1849 
1850 	/* Search for the left edge of the window for each bit */
1851 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1852 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1853 
1854 		writel(0, &sdr_scc_mgr->update);
1855 
1856 		/*
1857 		 * Stop searching when the read test doesn't pass AND when
1858 		 * we've seen a passing read on every bit.
1859 		 */
1860 		if (use_read_test) {
1861 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1862 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1863 				&bit_chk, 0, 0);
1864 		} else {
1865 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1866 							0, PASS_ONE_BIT,
1867 							&bit_chk, 0);
1868 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1869 				(read_group - (write_group *
1870 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1871 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1872 			stop = (bit_chk == 0);
1873 		}
1874 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1875 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1876 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1877 			   && %u", __func__, __LINE__, d,
1878 			   sticky_bit_chk,
1879 			param->read_correct_mask, stop);
1880 
1881 		if (stop == 1) {
1882 			break;
1883 		} else {
1884 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1885 				if (bit_chk & 1) {
1886 					/* Remember a passing test as the
1887 					left_edge */
1888 					left_edge[i] = d;
1889 				} else {
1890 					/* If a left edge has not been seen yet,
1891 					then a future passing test will mark
1892 					this edge as the right edge */
1893 					if (left_edge[i] ==
1894 						IO_IO_IN_DELAY_MAX + 1) {
1895 						right_edge[i] = -(d + 1);
1896 					}
1897 				}
1898 				bit_chk = bit_chk >> 1;
1899 			}
1900 		}
1901 	}
1902 
1903 	/* Reset DQ delay chains to 0 */
1904 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1905 	sticky_bit_chk = 0;
1906 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1907 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1908 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1909 			   i, left_edge[i], i, right_edge[i]);
1910 
1911 		/*
1912 		 * Check for cases where we haven't found the left edge,
1913 		 * which makes our assignment of the the right edge invalid.
1914 		 * Reset it to the illegal value.
1915 		 */
1916 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1917 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1918 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1919 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1920 				   right_edge[%u]: %d\n", __func__, __LINE__,
1921 				   i, right_edge[i]);
1922 		}
1923 
1924 		/*
1925 		 * Reset sticky bit (except for bits where we have seen
1926 		 * both the left and right edge).
1927 		 */
1928 		sticky_bit_chk = sticky_bit_chk << 1;
1929 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1930 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1931 			sticky_bit_chk = sticky_bit_chk | 1;
1932 		}
1933 
1934 		if (i == 0)
1935 			break;
1936 	}
1937 
1938 	/* Search for the right edge of the window for each bit */
1939 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1940 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1941 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1942 			uint32_t delay = d + start_dqs_en;
1943 			if (delay > IO_DQS_EN_DELAY_MAX)
1944 				delay = IO_DQS_EN_DELAY_MAX;
1945 			scc_mgr_set_dqs_en_delay(read_group, delay);
1946 		}
1947 		scc_mgr_load_dqs(read_group);
1948 
1949 		writel(0, &sdr_scc_mgr->update);
1950 
1951 		/*
1952 		 * Stop searching when the read test doesn't pass AND when
1953 		 * we've seen a passing read on every bit.
1954 		 */
1955 		if (use_read_test) {
1956 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1957 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1958 				&bit_chk, 0, 0);
1959 		} else {
1960 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1961 							0, PASS_ONE_BIT,
1962 							&bit_chk, 0);
1963 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1964 				(read_group - (write_group *
1965 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1966 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1967 			stop = (bit_chk == 0);
1968 		}
1969 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1970 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1971 
1972 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
1973 			   %u && %u", __func__, __LINE__, d,
1974 			   sticky_bit_chk, param->read_correct_mask, stop);
1975 
1976 		if (stop == 1) {
1977 			break;
1978 		} else {
1979 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1980 				if (bit_chk & 1) {
1981 					/* Remember a passing test as
1982 					the right_edge */
1983 					right_edge[i] = d;
1984 				} else {
1985 					if (d != 0) {
1986 						/* If a right edge has not been
1987 						seen yet, then a future passing
1988 						test will mark this edge as the
1989 						left edge */
1990 						if (right_edge[i] ==
1991 						IO_IO_IN_DELAY_MAX + 1) {
1992 							left_edge[i] = -(d + 1);
1993 						}
1994 					} else {
1995 						/* d = 0 failed, but it passed
1996 						when testing the left edge,
1997 						so it must be marginal,
1998 						set it to -1 */
1999 						if (right_edge[i] ==
2000 							IO_IO_IN_DELAY_MAX + 1 &&
2001 							left_edge[i] !=
2002 							IO_IO_IN_DELAY_MAX
2003 							+ 1) {
2004 							right_edge[i] = -1;
2005 						}
2006 						/* If a right edge has not been
2007 						seen yet, then a future passing
2008 						test will mark this edge as the
2009 						left edge */
2010 						else if (right_edge[i] ==
2011 							IO_IO_IN_DELAY_MAX +
2012 							1) {
2013 							left_edge[i] = -(d + 1);
2014 						}
2015 					}
2016 				}
2017 
2018 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2019 					   d=%u]: ", __func__, __LINE__, d);
2020 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2021 					   (int)(bit_chk & 1), i, left_edge[i]);
2022 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2023 					   right_edge[i]);
2024 				bit_chk = bit_chk >> 1;
2025 			}
2026 		}
2027 	}
2028 
2029 	/* Check that all bits have a window */
2030 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2031 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2032 			   %d right_edge[%u]: %d", __func__, __LINE__,
2033 			   i, left_edge[i], i, right_edge[i]);
2034 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2035 			== IO_IO_IN_DELAY_MAX + 1)) {
2036 			/*
2037 			 * Restore delay chain settings before letting the loop
2038 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2039 			 * dqs/ck relationships.
2040 			 */
2041 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2042 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2043 				scc_mgr_set_dqs_en_delay(read_group,
2044 							 start_dqs_en);
2045 			}
2046 			scc_mgr_load_dqs(read_group);
2047 			writel(0, &sdr_scc_mgr->update);
2048 
2049 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2050 				   find edge [%u]: %d %d", __func__, __LINE__,
2051 				   i, left_edge[i], right_edge[i]);
2052 			if (use_read_test) {
2053 				set_failing_group_stage(read_group *
2054 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2055 					CAL_STAGE_VFIFO,
2056 					CAL_SUBSTAGE_VFIFO_CENTER);
2057 			} else {
2058 				set_failing_group_stage(read_group *
2059 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2060 					CAL_STAGE_VFIFO_AFTER_WRITES,
2061 					CAL_SUBSTAGE_VFIFO_CENTER);
2062 			}
2063 			return 0;
2064 		}
2065 	}
2066 
2067 	/* Find middle of window for each DQ bit */
2068 	mid_min = left_edge[0] - right_edge[0];
2069 	min_index = 0;
2070 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2071 		mid = left_edge[i] - right_edge[i];
2072 		if (mid < mid_min) {
2073 			mid_min = mid;
2074 			min_index = i;
2075 		}
2076 	}
2077 
2078 	/*
2079 	 * -mid_min/2 represents the amount that we need to move DQS.
2080 	 * If mid_min is odd and positive we'll need to add one to
2081 	 * make sure the rounding in further calculations is correct
2082 	 * (always bias to the right), so just add 1 for all positive values.
2083 	 */
2084 	if (mid_min > 0)
2085 		mid_min++;
2086 
2087 	mid_min = mid_min / 2;
2088 
2089 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2090 		   __func__, __LINE__, mid_min, min_index);
2091 
2092 	/* Determine the amount we can change DQS (which is -mid_min) */
2093 	orig_mid_min = mid_min;
2094 	new_dqs = start_dqs - mid_min;
2095 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2096 		new_dqs = IO_DQS_IN_DELAY_MAX;
2097 	else if (new_dqs < 0)
2098 		new_dqs = 0;
2099 
2100 	mid_min = start_dqs - new_dqs;
2101 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2102 		   mid_min, new_dqs);
2103 
2104 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2105 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2106 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2107 		else if (start_dqs_en - mid_min < 0)
2108 			mid_min += start_dqs_en - mid_min;
2109 	}
2110 	new_dqs = start_dqs - mid_min;
2111 
2112 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2113 		   new_dqs=%d mid_min=%d\n", start_dqs,
2114 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2115 		   new_dqs, mid_min);
2116 
2117 	/* Initialize data for export structures */
2118 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2119 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2120 
2121 	/* add delay to bring centre of all DQ windows to the same "level" */
2122 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2123 		/* Use values before divide by 2 to reduce round off error */
2124 		shift_dq = (left_edge[i] - right_edge[i] -
2125 			(left_edge[min_index] - right_edge[min_index]))/2  +
2126 			(orig_mid_min - mid_min);
2127 
2128 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2129 			   shift_dq[%u]=%d\n", i, shift_dq);
2130 
2131 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2132 		temp_dq_in_delay1 = readl(addr + (p << 2));
2133 		temp_dq_in_delay2 = readl(addr + (i << 2));
2134 
2135 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2136 			(int32_t)IO_IO_IN_DELAY_MAX) {
2137 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2138 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2139 			shift_dq = -(int32_t)temp_dq_in_delay1;
2140 		}
2141 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2142 			   shift_dq[%u]=%d\n", i, shift_dq);
2143 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2144 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2145 		scc_mgr_load_dq(p);
2146 
2147 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2148 			   left_edge[i] - shift_dq + (-mid_min),
2149 			   right_edge[i] + shift_dq - (-mid_min));
2150 		/* To determine values for export structures */
2151 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2152 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2153 
2154 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2155 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2156 	}
2157 
2158 	final_dqs = new_dqs;
2159 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2160 		final_dqs_en = start_dqs_en - mid_min;
2161 
2162 	/* Move DQS-en */
2163 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2164 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2165 		scc_mgr_load_dqs(read_group);
2166 	}
2167 
2168 	/* Move DQS */
2169 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2170 	scc_mgr_load_dqs(read_group);
2171 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2172 		   dqs_margin=%d", __func__, __LINE__,
2173 		   dq_margin, dqs_margin);
2174 
2175 	/*
2176 	 * Do not remove this line as it makes sure all of our decisions
2177 	 * have been applied. Apply the update bit.
2178 	 */
2179 	writel(0, &sdr_scc_mgr->update);
2180 
2181 	return (dq_margin >= 0) && (dqs_margin >= 0);
2182 }
2183 
2184 /*
2185  * calibrate the read valid prediction FIFO.
2186  *
2187  *  - read valid prediction will consist of finding a good DQS enable phase,
2188  * DQS enable delay, DQS input phase, and DQS input delay.
2189  *  - we also do a per-bit deskew on the DQ lines.
2190  */
2191 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2192 					   uint32_t test_bgn)
2193 {
2194 	uint32_t p, d, rank_bgn, sr;
2195 	uint32_t dtaps_per_ptap;
2196 	uint32_t bit_chk;
2197 	uint32_t grp_calibrated;
2198 	uint32_t write_group, write_test_bgn;
2199 	uint32_t failed_substage;
2200 
2201 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2202 
2203 	/* update info for sims */
2204 	reg_file_set_stage(CAL_STAGE_VFIFO);
2205 
2206 	write_group = read_group;
2207 	write_test_bgn = test_bgn;
2208 
2209 	/* USER Determine number of delay taps for each phase tap */
2210 	dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP,
2211 				      IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1;
2212 
2213 	/* update info for sims */
2214 	reg_file_set_group(read_group);
2215 
2216 	grp_calibrated = 0;
2217 
2218 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2219 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2220 
2221 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2222 		/*
2223 		 * In RLDRAMX we may be messing the delay of pins in
2224 		 * the same write group but outside of the current read
2225 		 * the group, but that's ok because we haven't
2226 		 * calibrated output side yet.
2227 		 */
2228 		if (d > 0) {
2229 			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2230 								write_group, d);
2231 		}
2232 
2233 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2234 			p++) {
2235 			/* set a particular dqdqs phase */
2236 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2237 
2238 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2239 				   p=%u d=%u\n", __func__, __LINE__,
2240 				   read_group, p, d);
2241 
2242 			/*
2243 			 * Load up the patterns used by read calibration
2244 			 * using current DQDQS phase.
2245 			 */
2246 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2247 			if (!(gbl->phy_debug_mode_flags &
2248 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2249 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2250 				    (read_group, 1, &bit_chk)) {
2251 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2252 						   __func__, __LINE__);
2253 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2254 						   read_group, p, d);
2255 					break;
2256 				}
2257 			}
2258 
2259 /* case:56390 */
2260 			grp_calibrated = 1;
2261 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2262 		    (write_group, read_group, test_bgn)) {
2263 				/*
2264 				 * USER Read per-bit deskew can be done on a
2265 				 * per shadow register basis.
2266 				 */
2267 				for (rank_bgn = 0, sr = 0;
2268 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2269 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2270 					++sr) {
2271 					/*
2272 					 * Determine if this set of ranks
2273 					 * should be skipped entirely.
2274 					 */
2275 					if (!param->skip_shadow_regs[sr]) {
2276 						/*
2277 						 * If doing read after write
2278 						 * calibration, do not update
2279 						 * FOM, now - do it then.
2280 						 */
2281 					if (!rw_mgr_mem_calibrate_vfifo_center
2282 						(rank_bgn, write_group,
2283 						read_group, test_bgn, 1, 0)) {
2284 							grp_calibrated = 0;
2285 							failed_substage =
2286 						CAL_SUBSTAGE_VFIFO_CENTER;
2287 						}
2288 					}
2289 				}
2290 			} else {
2291 				grp_calibrated = 0;
2292 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2293 			}
2294 		}
2295 	}
2296 
2297 	if (grp_calibrated == 0) {
2298 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2299 					failed_substage);
2300 		return 0;
2301 	}
2302 
2303 	/*
2304 	 * Reset the delay chains back to zero if they have moved > 1
2305 	 * (check for > 1 because loop will increase d even when pass in
2306 	 * first case).
2307 	 */
2308 	if (d > 2)
2309 		scc_mgr_zero_group(write_group, 1);
2310 
2311 	return 1;
2312 }
2313 
2314 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2315 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2316 					       uint32_t test_bgn)
2317 {
2318 	uint32_t rank_bgn, sr;
2319 	uint32_t grp_calibrated;
2320 	uint32_t write_group;
2321 
2322 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2323 
2324 	/* update info for sims */
2325 
2326 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2327 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2328 
2329 	write_group = read_group;
2330 
2331 	/* update info for sims */
2332 	reg_file_set_group(read_group);
2333 
2334 	grp_calibrated = 1;
2335 	/* Read per-bit deskew can be done on a per shadow register basis */
2336 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2337 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2338 		/* Determine if this set of ranks should be skipped entirely */
2339 		if (!param->skip_shadow_regs[sr]) {
2340 		/* This is the last calibration round, update FOM here */
2341 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2342 								write_group,
2343 								read_group,
2344 								test_bgn, 0,
2345 								1)) {
2346 				grp_calibrated = 0;
2347 			}
2348 		}
2349 	}
2350 
2351 
2352 	if (grp_calibrated == 0) {
2353 		set_failing_group_stage(write_group,
2354 					CAL_STAGE_VFIFO_AFTER_WRITES,
2355 					CAL_SUBSTAGE_VFIFO_CENTER);
2356 		return 0;
2357 	}
2358 
2359 	return 1;
2360 }
2361 
2362 /* Calibrate LFIFO to find smallest read latency */
2363 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2364 {
2365 	uint32_t found_one;
2366 	uint32_t bit_chk;
2367 
2368 	debug("%s:%d\n", __func__, __LINE__);
2369 
2370 	/* update info for sims */
2371 	reg_file_set_stage(CAL_STAGE_LFIFO);
2372 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2373 
2374 	/* Load up the patterns used by read calibration for all ranks */
2375 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2376 	found_one = 0;
2377 
2378 	do {
2379 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2380 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2381 			   __func__, __LINE__, gbl->curr_read_lat);
2382 
2383 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2384 							      NUM_READ_TESTS,
2385 							      PASS_ALL_BITS,
2386 							      &bit_chk, 1)) {
2387 			break;
2388 		}
2389 
2390 		found_one = 1;
2391 		/* reduce read latency and see if things are working */
2392 		/* correctly */
2393 		gbl->curr_read_lat--;
2394 	} while (gbl->curr_read_lat > 0);
2395 
2396 	/* reset the fifos to get pointers to known state */
2397 
2398 	writel(0, &phy_mgr_cmd->fifo_reset);
2399 
2400 	if (found_one) {
2401 		/* add a fudge factor to the read latency that was determined */
2402 		gbl->curr_read_lat += 2;
2403 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2404 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2405 			   read_lat=%u\n", __func__, __LINE__,
2406 			   gbl->curr_read_lat);
2407 		return 1;
2408 	} else {
2409 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2410 					CAL_SUBSTAGE_READ_LATENCY);
2411 
2412 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2413 			   read_lat=%u\n", __func__, __LINE__,
2414 			   gbl->curr_read_lat);
2415 		return 0;
2416 	}
2417 }
2418 
2419 /*
2420  * issue write test command.
2421  * two variants are provided. one that just tests a write pattern and
2422  * another that tests datamask functionality.
2423  */
2424 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2425 						  uint32_t test_dm)
2426 {
2427 	uint32_t mcc_instruction;
2428 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2429 		ENABLE_SUPER_QUICK_CALIBRATION);
2430 	uint32_t rw_wl_nop_cycles;
2431 	uint32_t addr;
2432 
2433 	/*
2434 	 * Set counter and jump addresses for the right
2435 	 * number of NOP cycles.
2436 	 * The number of supported NOP cycles can range from -1 to infinity
2437 	 * Three different cases are handled:
2438 	 *
2439 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2440 	 *    mechanism will be used to insert the right number of NOPs
2441 	 *
2442 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2443 	 *    issuing the write command will jump straight to the
2444 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2445 	 *    data (for RLD), skipping
2446 	 *    the NOP micro-instruction all together
2447 	 *
2448 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2449 	 *    turned on in the same micro-instruction that issues the write
2450 	 *    command. Then we need
2451 	 *    to directly jump to the micro-instruction that sends out the data
2452 	 *
2453 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2454 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2455 	 *       write-read operations.
2456 	 *       one counter left to issue this command in "multiple-group" mode
2457 	 */
2458 
2459 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2460 
2461 	if (rw_wl_nop_cycles == -1) {
2462 		/*
2463 		 * CNTR 2 - We want to execute the special write operation that
2464 		 * turns on DQS right away and then skip directly to the
2465 		 * instruction that sends out the data. We set the counter to a
2466 		 * large number so that the jump is always taken.
2467 		 */
2468 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2469 
2470 		/* CNTR 3 - Not used */
2471 		if (test_dm) {
2472 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2473 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2474 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2475 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2476 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2477 		} else {
2478 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2479 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2480 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2481 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2482 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2483 		}
2484 	} else if (rw_wl_nop_cycles == 0) {
2485 		/*
2486 		 * CNTR 2 - We want to skip the NOP operation and go straight
2487 		 * to the DQS enable instruction. We set the counter to a large
2488 		 * number so that the jump is always taken.
2489 		 */
2490 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2491 
2492 		/* CNTR 3 - Not used */
2493 		if (test_dm) {
2494 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2495 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2496 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2497 		} else {
2498 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2499 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2500 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2501 		}
2502 	} else {
2503 		/*
2504 		 * CNTR 2 - In this case we want to execute the next instruction
2505 		 * and NOT take the jump. So we set the counter to 0. The jump
2506 		 * address doesn't count.
2507 		 */
2508 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2509 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2510 
2511 		/*
2512 		 * CNTR 3 - Set the nop counter to the number of cycles we
2513 		 * need to loop for, minus 1.
2514 		 */
2515 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2516 		if (test_dm) {
2517 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2518 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2519 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2520 		} else {
2521 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2522 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2523 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2524 		}
2525 	}
2526 
2527 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2528 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2529 
2530 	if (quick_write_mode)
2531 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2532 	else
2533 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2534 
2535 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2536 
2537 	/*
2538 	 * CNTR 1 - This is used to ensure enough time elapses
2539 	 * for read data to come back.
2540 	 */
2541 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2542 
2543 	if (test_dm) {
2544 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2545 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2546 	} else {
2547 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2548 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2549 	}
2550 
2551 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2552 	writel(mcc_instruction, addr + (group << 2));
2553 }
2554 
2555 /* Test writes, can check for a single bit pass or multiple bit pass */
2556 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2557 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2558 	uint32_t *bit_chk, uint32_t all_ranks)
2559 {
2560 	uint32_t r;
2561 	uint32_t correct_mask_vg;
2562 	uint32_t tmp_bit_chk;
2563 	uint32_t vg;
2564 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2565 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2566 	uint32_t addr_rw_mgr;
2567 	uint32_t base_rw_mgr;
2568 
2569 	*bit_chk = param->write_correct_mask;
2570 	correct_mask_vg = param->write_correct_mask_vg;
2571 
2572 	for (r = rank_bgn; r < rank_end; r++) {
2573 		if (param->skip_ranks[r]) {
2574 			/* request to skip the rank */
2575 			continue;
2576 		}
2577 
2578 		/* set rank */
2579 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2580 
2581 		tmp_bit_chk = 0;
2582 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2583 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2584 			/* reset the fifos to get pointers to known state */
2585 			writel(0, &phy_mgr_cmd->fifo_reset);
2586 
2587 			tmp_bit_chk = tmp_bit_chk <<
2588 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2589 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2590 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2591 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2592 				use_dm);
2593 
2594 			base_rw_mgr = readl(addr_rw_mgr);
2595 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2596 			if (vg == 0)
2597 				break;
2598 		}
2599 		*bit_chk &= tmp_bit_chk;
2600 	}
2601 
2602 	if (all_correct) {
2603 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2604 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2605 			   %u => %lu", write_group, use_dm,
2606 			   *bit_chk, param->write_correct_mask,
2607 			   (long unsigned int)(*bit_chk ==
2608 			   param->write_correct_mask));
2609 		return *bit_chk == param->write_correct_mask;
2610 	} else {
2611 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2612 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2613 		       write_group, use_dm, *bit_chk);
2614 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2615 			(long unsigned int)(*bit_chk != 0));
2616 		return *bit_chk != 0x00;
2617 	}
2618 }
2619 
2620 /*
2621  * center all windows. do per-bit-deskew to possibly increase size of
2622  * certain windows.
2623  */
2624 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2625 	uint32_t write_group, uint32_t test_bgn)
2626 {
2627 	uint32_t i, p, min_index;
2628 	int32_t d;
2629 	/*
2630 	 * Store these as signed since there are comparisons with
2631 	 * signed numbers.
2632 	 */
2633 	uint32_t bit_chk;
2634 	uint32_t sticky_bit_chk;
2635 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2636 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2637 	int32_t mid;
2638 	int32_t mid_min, orig_mid_min;
2639 	int32_t new_dqs, start_dqs, shift_dq;
2640 	int32_t dq_margin, dqs_margin, dm_margin;
2641 	uint32_t stop;
2642 	uint32_t temp_dq_out1_delay;
2643 	uint32_t addr;
2644 
2645 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2646 
2647 	dm_margin = 0;
2648 
2649 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2650 	start_dqs = readl(addr +
2651 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2652 
2653 	/* per-bit deskew */
2654 
2655 	/*
2656 	 * set the left and right edge of each bit to an illegal value
2657 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2658 	 */
2659 	sticky_bit_chk = 0;
2660 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2661 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2662 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2663 	}
2664 
2665 	/* Search for the left edge of the window for each bit */
2666 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2667 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2668 
2669 		writel(0, &sdr_scc_mgr->update);
2670 
2671 		/*
2672 		 * Stop searching when the read test doesn't pass AND when
2673 		 * we've seen a passing read on every bit.
2674 		 */
2675 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2676 			0, PASS_ONE_BIT, &bit_chk, 0);
2677 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2678 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2679 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2680 			   == %u && %u [bit_chk= %u ]\n",
2681 			d, sticky_bit_chk, param->write_correct_mask,
2682 			stop, bit_chk);
2683 
2684 		if (stop == 1) {
2685 			break;
2686 		} else {
2687 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2688 				if (bit_chk & 1) {
2689 					/*
2690 					 * Remember a passing test as the
2691 					 * left_edge.
2692 					 */
2693 					left_edge[i] = d;
2694 				} else {
2695 					/*
2696 					 * If a left edge has not been seen
2697 					 * yet, then a future passing test will
2698 					 * mark this edge as the right edge.
2699 					 */
2700 					if (left_edge[i] ==
2701 						IO_IO_OUT1_DELAY_MAX + 1) {
2702 						right_edge[i] = -(d + 1);
2703 					}
2704 				}
2705 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2706 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2707 					   (int)(bit_chk & 1), i, left_edge[i]);
2708 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2709 				       right_edge[i]);
2710 				bit_chk = bit_chk >> 1;
2711 			}
2712 		}
2713 	}
2714 
2715 	/* Reset DQ delay chains to 0 */
2716 	scc_mgr_apply_group_dq_out1_delay(0);
2717 	sticky_bit_chk = 0;
2718 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2719 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2720 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2721 			   i, left_edge[i], i, right_edge[i]);
2722 
2723 		/*
2724 		 * Check for cases where we haven't found the left edge,
2725 		 * which makes our assignment of the the right edge invalid.
2726 		 * Reset it to the illegal value.
2727 		 */
2728 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2729 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2730 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2731 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2732 				   right_edge[%u]: %d\n", __func__, __LINE__,
2733 				   i, right_edge[i]);
2734 		}
2735 
2736 		/*
2737 		 * Reset sticky bit (except for bits where we have
2738 		 * seen the left edge).
2739 		 */
2740 		sticky_bit_chk = sticky_bit_chk << 1;
2741 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2742 			sticky_bit_chk = sticky_bit_chk | 1;
2743 
2744 		if (i == 0)
2745 			break;
2746 	}
2747 
2748 	/* Search for the right edge of the window for each bit */
2749 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2750 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2751 							d + start_dqs);
2752 
2753 		writel(0, &sdr_scc_mgr->update);
2754 
2755 		/*
2756 		 * Stop searching when the read test doesn't pass AND when
2757 		 * we've seen a passing read on every bit.
2758 		 */
2759 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2760 			0, PASS_ONE_BIT, &bit_chk, 0);
2761 
2762 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2763 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2764 
2765 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2766 			   %u && %u\n", d, sticky_bit_chk,
2767 			   param->write_correct_mask, stop);
2768 
2769 		if (stop == 1) {
2770 			if (d == 0) {
2771 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2772 					i++) {
2773 					/* d = 0 failed, but it passed when
2774 					testing the left edge, so it must be
2775 					marginal, set it to -1 */
2776 					if (right_edge[i] ==
2777 						IO_IO_OUT1_DELAY_MAX + 1 &&
2778 						left_edge[i] !=
2779 						IO_IO_OUT1_DELAY_MAX + 1) {
2780 						right_edge[i] = -1;
2781 					}
2782 				}
2783 			}
2784 			break;
2785 		} else {
2786 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2787 				if (bit_chk & 1) {
2788 					/*
2789 					 * Remember a passing test as
2790 					 * the right_edge.
2791 					 */
2792 					right_edge[i] = d;
2793 				} else {
2794 					if (d != 0) {
2795 						/*
2796 						 * If a right edge has not
2797 						 * been seen yet, then a future
2798 						 * passing test will mark this
2799 						 * edge as the left edge.
2800 						 */
2801 						if (right_edge[i] ==
2802 						    IO_IO_OUT1_DELAY_MAX + 1)
2803 							left_edge[i] = -(d + 1);
2804 					} else {
2805 						/*
2806 						 * d = 0 failed, but it passed
2807 						 * when testing the left edge,
2808 						 * so it must be marginal, set
2809 						 * it to -1.
2810 						 */
2811 						if (right_edge[i] ==
2812 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2813 						    left_edge[i] !=
2814 						    IO_IO_OUT1_DELAY_MAX + 1)
2815 							right_edge[i] = -1;
2816 						/*
2817 						 * If a right edge has not been
2818 						 * seen yet, then a future
2819 						 * passing test will mark this
2820 						 * edge as the left edge.
2821 						 */
2822 						else if (right_edge[i] ==
2823 							IO_IO_OUT1_DELAY_MAX +
2824 							1)
2825 							left_edge[i] = -(d + 1);
2826 					}
2827 				}
2828 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2829 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2830 					   (int)(bit_chk & 1), i, left_edge[i]);
2831 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2832 					   right_edge[i]);
2833 				bit_chk = bit_chk >> 1;
2834 			}
2835 		}
2836 	}
2837 
2838 	/* Check that all bits have a window */
2839 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2840 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2841 			   %d right_edge[%u]: %d", __func__, __LINE__,
2842 			   i, left_edge[i], i, right_edge[i]);
2843 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2844 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2845 			set_failing_group_stage(test_bgn + i,
2846 						CAL_STAGE_WRITES,
2847 						CAL_SUBSTAGE_WRITES_CENTER);
2848 			return 0;
2849 		}
2850 	}
2851 
2852 	/* Find middle of window for each DQ bit */
2853 	mid_min = left_edge[0] - right_edge[0];
2854 	min_index = 0;
2855 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2856 		mid = left_edge[i] - right_edge[i];
2857 		if (mid < mid_min) {
2858 			mid_min = mid;
2859 			min_index = i;
2860 		}
2861 	}
2862 
2863 	/*
2864 	 * -mid_min/2 represents the amount that we need to move DQS.
2865 	 * If mid_min is odd and positive we'll need to add one to
2866 	 * make sure the rounding in further calculations is correct
2867 	 * (always bias to the right), so just add 1 for all positive values.
2868 	 */
2869 	if (mid_min > 0)
2870 		mid_min++;
2871 	mid_min = mid_min / 2;
2872 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2873 		   __LINE__, mid_min);
2874 
2875 	/* Determine the amount we can change DQS (which is -mid_min) */
2876 	orig_mid_min = mid_min;
2877 	new_dqs = start_dqs;
2878 	mid_min = 0;
2879 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2880 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2881 	/* Initialize data for export structures */
2882 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2883 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2884 
2885 	/* add delay to bring centre of all DQ windows to the same "level" */
2886 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2887 		/* Use values before divide by 2 to reduce round off error */
2888 		shift_dq = (left_edge[i] - right_edge[i] -
2889 			(left_edge[min_index] - right_edge[min_index]))/2  +
2890 		(orig_mid_min - mid_min);
2891 
2892 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2893 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2894 
2895 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2896 		temp_dq_out1_delay = readl(addr + (i << 2));
2897 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2898 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2899 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2900 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2901 			shift_dq = -(int32_t)temp_dq_out1_delay;
2902 		}
2903 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2904 			   i, shift_dq);
2905 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2906 		scc_mgr_load_dq(i);
2907 
2908 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2909 			   left_edge[i] - shift_dq + (-mid_min),
2910 			   right_edge[i] + shift_dq - (-mid_min));
2911 		/* To determine values for export structures */
2912 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2913 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2914 
2915 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2916 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2917 	}
2918 
2919 	/* Move DQS */
2920 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2921 	writel(0, &sdr_scc_mgr->update);
2922 
2923 	/* Centre DM */
2924 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2925 
2926 	/*
2927 	 * set the left and right edge of each bit to an illegal value,
2928 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2929 	 */
2930 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2931 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2932 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2933 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2934 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2935 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2936 	int32_t win_best = 0;
2937 
2938 	/* Search for the/part of the window with DM shift */
2939 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2940 		scc_mgr_apply_group_dm_out1_delay(d);
2941 		writel(0, &sdr_scc_mgr->update);
2942 
2943 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2944 						    PASS_ALL_BITS, &bit_chk,
2945 						    0)) {
2946 			/* USE Set current end of the window */
2947 			end_curr = -d;
2948 			/*
2949 			 * If a starting edge of our window has not been seen
2950 			 * this is our current start of the DM window.
2951 			 */
2952 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2953 				bgn_curr = -d;
2954 
2955 			/*
2956 			 * If current window is bigger than best seen.
2957 			 * Set best seen to be current window.
2958 			 */
2959 			if ((end_curr-bgn_curr+1) > win_best) {
2960 				win_best = end_curr-bgn_curr+1;
2961 				bgn_best = bgn_curr;
2962 				end_best = end_curr;
2963 			}
2964 		} else {
2965 			/* We just saw a failing test. Reset temp edge */
2966 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2967 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2968 			}
2969 		}
2970 
2971 
2972 	/* Reset DM delay chains to 0 */
2973 	scc_mgr_apply_group_dm_out1_delay(0);
2974 
2975 	/*
2976 	 * Check to see if the current window nudges up aganist 0 delay.
2977 	 * If so we need to continue the search by shifting DQS otherwise DQS
2978 	 * search begins as a new search. */
2979 	if (end_curr != 0) {
2980 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2981 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2982 	}
2983 
2984 	/* Search for the/part of the window with DQS shifts */
2985 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
2986 		/*
2987 		 * Note: This only shifts DQS, so are we limiting ourselve to
2988 		 * width of DQ unnecessarily.
2989 		 */
2990 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2991 							d + new_dqs);
2992 
2993 		writel(0, &sdr_scc_mgr->update);
2994 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2995 						    PASS_ALL_BITS, &bit_chk,
2996 						    0)) {
2997 			/* USE Set current end of the window */
2998 			end_curr = d;
2999 			/*
3000 			 * If a beginning edge of our window has not been seen
3001 			 * this is our current begin of the DM window.
3002 			 */
3003 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3004 				bgn_curr = d;
3005 
3006 			/*
3007 			 * If current window is bigger than best seen. Set best
3008 			 * seen to be current window.
3009 			 */
3010 			if ((end_curr-bgn_curr+1) > win_best) {
3011 				win_best = end_curr-bgn_curr+1;
3012 				bgn_best = bgn_curr;
3013 				end_best = end_curr;
3014 			}
3015 		} else {
3016 			/* We just saw a failing test. Reset temp edge */
3017 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3018 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3019 
3020 			/* Early exit optimization: if ther remaining delay
3021 			chain space is less than already seen largest window
3022 			we can exit */
3023 			if ((win_best-1) >
3024 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3025 					break;
3026 				}
3027 			}
3028 		}
3029 
3030 	/* assign left and right edge for cal and reporting; */
3031 	left_edge[0] = -1*bgn_best;
3032 	right_edge[0] = end_best;
3033 
3034 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3035 		   __LINE__, left_edge[0], right_edge[0]);
3036 
3037 	/* Move DQS (back to orig) */
3038 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3039 
3040 	/* Move DM */
3041 
3042 	/* Find middle of window for the DM bit */
3043 	mid = (left_edge[0] - right_edge[0]) / 2;
3044 
3045 	/* only move right, since we are not moving DQS/DQ */
3046 	if (mid < 0)
3047 		mid = 0;
3048 
3049 	/* dm_marign should fail if we never find a window */
3050 	if (win_best == 0)
3051 		dm_margin = -1;
3052 	else
3053 		dm_margin = left_edge[0] - mid;
3054 
3055 	scc_mgr_apply_group_dm_out1_delay(mid);
3056 	writel(0, &sdr_scc_mgr->update);
3057 
3058 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3059 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3060 		   right_edge[0], mid, dm_margin);
3061 	/* Export values */
3062 	gbl->fom_out += dq_margin + dqs_margin;
3063 
3064 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3065 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3066 		   dq_margin, dqs_margin, dm_margin);
3067 
3068 	/*
3069 	 * Do not remove this line as it makes sure all of our
3070 	 * decisions have been applied.
3071 	 */
3072 	writel(0, &sdr_scc_mgr->update);
3073 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3074 }
3075 
3076 /* calibrate the write operations */
3077 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3078 	uint32_t test_bgn)
3079 {
3080 	/* update info for sims */
3081 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3082 
3083 	reg_file_set_stage(CAL_STAGE_WRITES);
3084 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3085 
3086 	reg_file_set_group(g);
3087 
3088 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3089 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3090 					CAL_SUBSTAGE_WRITES_CENTER);
3091 		return 0;
3092 	}
3093 
3094 	return 1;
3095 }
3096 
3097 /**
3098  * mem_precharge_and_activate() - Precharge all banks and activate
3099  *
3100  * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3101  */
3102 static void mem_precharge_and_activate(void)
3103 {
3104 	int r;
3105 
3106 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3107 		/* Test if the rank should be skipped. */
3108 		if (param->skip_ranks[r])
3109 			continue;
3110 
3111 		/* Set rank. */
3112 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3113 
3114 		/* Precharge all banks. */
3115 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3116 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3117 
3118 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3119 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3120 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3121 
3122 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3123 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3124 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3125 
3126 		/* Activate rows. */
3127 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3128 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3129 	}
3130 }
3131 
3132 /**
3133  * mem_init_latency() - Configure memory RLAT and WLAT settings
3134  *
3135  * Configure memory RLAT and WLAT parameters.
3136  */
3137 static void mem_init_latency(void)
3138 {
3139 	/*
3140 	 * For AV/CV, LFIFO is hardened and always runs at full rate
3141 	 * so max latency in AFI clocks, used here, is correspondingly
3142 	 * smaller.
3143 	 */
3144 	const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1;
3145 	u32 rlat, wlat;
3146 
3147 	debug("%s:%d\n", __func__, __LINE__);
3148 
3149 	/*
3150 	 * Read in write latency.
3151 	 * WL for Hard PHY does not include additive latency.
3152 	 */
3153 	wlat = readl(&data_mgr->t_wl_add);
3154 	wlat += readl(&data_mgr->mem_t_add);
3155 
3156 	gbl->rw_wl_nop_cycles = wlat - 1;
3157 
3158 	/* Read in readl latency. */
3159 	rlat = readl(&data_mgr->t_rl_add);
3160 
3161 	/* Set a pretty high read latency initially. */
3162 	gbl->curr_read_lat = rlat + 16;
3163 	if (gbl->curr_read_lat > max_latency)
3164 		gbl->curr_read_lat = max_latency;
3165 
3166 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3167 
3168 	/* Advertise write latency. */
3169 	writel(wlat, &phy_mgr_cfg->afi_wlat);
3170 }
3171 
3172 /**
3173  * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3174  *
3175  * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3176  */
3177 static void mem_skip_calibrate(void)
3178 {
3179 	uint32_t vfifo_offset;
3180 	uint32_t i, j, r;
3181 
3182 	debug("%s:%d\n", __func__, __LINE__);
3183 	/* Need to update every shadow register set used by the interface */
3184 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3185 	     r += NUM_RANKS_PER_SHADOW_REG) {
3186 		/*
3187 		 * Set output phase alignment settings appropriate for
3188 		 * skip calibration.
3189 		 */
3190 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3191 			scc_mgr_set_dqs_en_phase(i, 0);
3192 #if IO_DLL_CHAIN_LENGTH == 6
3193 			scc_mgr_set_dqdqs_output_phase(i, 6);
3194 #else
3195 			scc_mgr_set_dqdqs_output_phase(i, 7);
3196 #endif
3197 			/*
3198 			 * Case:33398
3199 			 *
3200 			 * Write data arrives to the I/O two cycles before write
3201 			 * latency is reached (720 deg).
3202 			 *   -> due to bit-slip in a/c bus
3203 			 *   -> to allow board skew where dqs is longer than ck
3204 			 *      -> how often can this happen!?
3205 			 *      -> can claim back some ptaps for high freq
3206 			 *       support if we can relax this, but i digress...
3207 			 *
3208 			 * The write_clk leads mem_ck by 90 deg
3209 			 * The minimum ptap of the OPA is 180 deg
3210 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3211 			 * The write_clk is always delayed by 2 ptaps
3212 			 *
3213 			 * Hence, to make DQS aligned to CK, we need to delay
3214 			 * DQS by:
3215 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3216 			 *
3217 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3218 			 * gives us the number of ptaps, which simplies to:
3219 			 *
3220 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3221 			 */
3222 			scc_mgr_set_dqdqs_output_phase(i,
3223 					1.25 * IO_DLL_CHAIN_LENGTH - 2);
3224 		}
3225 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3226 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3227 
3228 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3229 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3230 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3231 		}
3232 		writel(0xff, &sdr_scc_mgr->dq_ena);
3233 		writel(0xff, &sdr_scc_mgr->dm_ena);
3234 		writel(0, &sdr_scc_mgr->update);
3235 	}
3236 
3237 	/* Compensate for simulation model behaviour */
3238 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3239 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3240 		scc_mgr_load_dqs(i);
3241 	}
3242 	writel(0, &sdr_scc_mgr->update);
3243 
3244 	/*
3245 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3246 	 * in sequencer.
3247 	 */
3248 	vfifo_offset = CALIB_VFIFO_OFFSET;
3249 	for (j = 0; j < vfifo_offset; j++)
3250 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3251 	writel(0, &phy_mgr_cmd->fifo_reset);
3252 
3253 	/*
3254 	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3255 	 * setting from generation-time constant.
3256 	 */
3257 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3258 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3259 }
3260 
3261 /**
3262  * mem_calibrate() - Memory calibration entry point.
3263  *
3264  * Perform memory calibration.
3265  */
3266 static uint32_t mem_calibrate(void)
3267 {
3268 	uint32_t i;
3269 	uint32_t rank_bgn, sr;
3270 	uint32_t write_group, write_test_bgn;
3271 	uint32_t read_group, read_test_bgn;
3272 	uint32_t run_groups, current_run;
3273 	uint32_t failing_groups = 0;
3274 	uint32_t group_failed = 0;
3275 
3276 	const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
3277 				RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
3278 
3279 	debug("%s:%d\n", __func__, __LINE__);
3280 
3281 	/* Initialize the data settings */
3282 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3283 	gbl->error_stage = CAL_STAGE_NIL;
3284 	gbl->error_group = 0xff;
3285 	gbl->fom_in = 0;
3286 	gbl->fom_out = 0;
3287 
3288 	/* Initialize WLAT and RLAT. */
3289 	mem_init_latency();
3290 
3291 	/* Initialize bit slips. */
3292 	mem_precharge_and_activate();
3293 
3294 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3295 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3296 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3297 		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3298 		if (i == 0)
3299 			scc_mgr_set_hhp_extras();
3300 
3301 		scc_set_bypass_mode(i);
3302 	}
3303 
3304 	/* Calibration is skipped. */
3305 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3306 		/*
3307 		 * Set VFIFO and LFIFO to instant-on settings in skip
3308 		 * calibration mode.
3309 		 */
3310 		mem_skip_calibrate();
3311 
3312 		/*
3313 		 * Do not remove this line as it makes sure all of our
3314 		 * decisions have been applied.
3315 		 */
3316 		writel(0, &sdr_scc_mgr->update);
3317 		return 1;
3318 	}
3319 
3320 	/* Calibration is not skipped. */
3321 	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3322 		/*
3323 		 * Zero all delay chain/phase settings for all
3324 		 * groups and all shadow register sets.
3325 		 */
3326 		scc_mgr_zero_all();
3327 
3328 		run_groups = ~param->skip_groups;
3329 
3330 		for (write_group = 0, write_test_bgn = 0; write_group
3331 			< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3332 			write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3333 
3334 			/* Initialize the group failure */
3335 			group_failed = 0;
3336 
3337 			current_run = run_groups & ((1 <<
3338 				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3339 			run_groups = run_groups >>
3340 				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3341 
3342 			if (current_run == 0)
3343 				continue;
3344 
3345 			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3346 					    SCC_MGR_GROUP_COUNTER_OFFSET);
3347 			scc_mgr_zero_group(write_group, 0);
3348 
3349 			for (read_group = write_group * rwdqs_ratio,
3350 			     read_test_bgn = 0;
3351 			     read_group < (write_group + 1) * rwdqs_ratio;
3352 			     read_group++,
3353 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3354 				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3355 					continue;
3356 
3357 				/* Calibrate the VFIFO */
3358 				if (rw_mgr_mem_calibrate_vfifo(read_group,
3359 							       read_test_bgn))
3360 					continue;
3361 
3362 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3363 					return 0;
3364 
3365 				/* The group failed, we're done. */
3366 				goto grp_failed;
3367 			}
3368 
3369 			/* Calibrate the output side */
3370 			for (rank_bgn = 0, sr = 0;
3371 			     rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
3372 			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3373 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3374 					continue;
3375 
3376 				/* Not needed in quick mode! */
3377 				if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS)
3378 					continue;
3379 
3380 				/*
3381 				 * Determine if this set of ranks
3382 				 * should be skipped entirely.
3383 				 */
3384 				if (param->skip_shadow_regs[sr])
3385 					continue;
3386 
3387 				/* Calibrate WRITEs */
3388 				if (rw_mgr_mem_calibrate_writes(rank_bgn,
3389 						write_group, write_test_bgn))
3390 					continue;
3391 
3392 				group_failed = 1;
3393 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3394 					return 0;
3395 			}
3396 
3397 			/* Some group failed, we're done. */
3398 			if (group_failed)
3399 				goto grp_failed;
3400 
3401 			for (read_group = write_group * rwdqs_ratio,
3402 			     read_test_bgn = 0;
3403 			     read_group < (write_group + 1) * rwdqs_ratio;
3404 			     read_group++,
3405 			     read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
3406 				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3407 					continue;
3408 
3409 				if (rw_mgr_mem_calibrate_vfifo_end(read_group,
3410 								read_test_bgn))
3411 					continue;
3412 
3413 				if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS))
3414 					return 0;
3415 
3416 				/* The group failed, we're done. */
3417 				goto grp_failed;
3418 			}
3419 
3420 			/* No group failed, continue as usual. */
3421 			continue;
3422 
3423 grp_failed:		/* A group failed, increment the counter. */
3424 			failing_groups++;
3425 		}
3426 
3427 		/*
3428 		 * USER If there are any failing groups then report
3429 		 * the failure.
3430 		 */
3431 		if (failing_groups != 0)
3432 			return 0;
3433 
3434 		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3435 			continue;
3436 
3437 		/*
3438 		 * If we're skipping groups as part of debug,
3439 		 * don't calibrate LFIFO.
3440 		 */
3441 		if (param->skip_groups != 0)
3442 			continue;
3443 
3444 		/* Calibrate the LFIFO */
3445 		if (!rw_mgr_mem_calibrate_lfifo())
3446 			return 0;
3447 	}
3448 
3449 	/*
3450 	 * Do not remove this line as it makes sure all of our decisions
3451 	 * have been applied.
3452 	 */
3453 	writel(0, &sdr_scc_mgr->update);
3454 	return 1;
3455 }
3456 
3457 /**
3458  * run_mem_calibrate() - Perform memory calibration
3459  *
3460  * This function triggers the entire memory calibration procedure.
3461  */
3462 static int run_mem_calibrate(void)
3463 {
3464 	int pass;
3465 
3466 	debug("%s:%d\n", __func__, __LINE__);
3467 
3468 	/* Reset pass/fail status shown on afi_cal_success/fail */
3469 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3470 
3471 	/* Stop tracking manager. */
3472 	clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3473 
3474 	phy_mgr_initialize();
3475 	rw_mgr_mem_initialize();
3476 
3477 	/* Perform the actual memory calibration. */
3478 	pass = mem_calibrate();
3479 
3480 	mem_precharge_and_activate();
3481 	writel(0, &phy_mgr_cmd->fifo_reset);
3482 
3483 	/* Handoff. */
3484 	rw_mgr_mem_handoff();
3485 	/*
3486 	 * In Hard PHY this is a 2-bit control:
3487 	 * 0: AFI Mux Select
3488 	 * 1: DDIO Mux Select
3489 	 */
3490 	writel(0x2, &phy_mgr_cfg->mux_sel);
3491 
3492 	/* Start tracking manager. */
3493 	setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22);
3494 
3495 	return pass;
3496 }
3497 
3498 /**
3499  * debug_mem_calibrate() - Report result of memory calibration
3500  * @pass:	Value indicating whether calibration passed or failed
3501  *
3502  * This function reports the results of the memory calibration
3503  * and writes debug information into the register file.
3504  */
3505 static void debug_mem_calibrate(int pass)
3506 {
3507 	uint32_t debug_info;
3508 
3509 	if (pass) {
3510 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3511 
3512 		gbl->fom_in /= 2;
3513 		gbl->fom_out /= 2;
3514 
3515 		if (gbl->fom_in > 0xff)
3516 			gbl->fom_in = 0xff;
3517 
3518 		if (gbl->fom_out > 0xff)
3519 			gbl->fom_out = 0xff;
3520 
3521 		/* Update the FOM in the register file */
3522 		debug_info = gbl->fom_in;
3523 		debug_info |= gbl->fom_out << 8;
3524 		writel(debug_info, &sdr_reg_file->fom);
3525 
3526 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3527 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3528 	} else {
3529 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3530 
3531 		debug_info = gbl->error_stage;
3532 		debug_info |= gbl->error_substage << 8;
3533 		debug_info |= gbl->error_group << 16;
3534 
3535 		writel(debug_info, &sdr_reg_file->failing_stage);
3536 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3537 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3538 
3539 		/* Update the failing group/stage in the register file */
3540 		debug_info = gbl->error_stage;
3541 		debug_info |= gbl->error_substage << 8;
3542 		debug_info |= gbl->error_group << 16;
3543 		writel(debug_info, &sdr_reg_file->failing_stage);
3544 	}
3545 
3546 	printf("%s: Calibration complete\n", __FILE__);
3547 }
3548 
3549 /**
3550  * hc_initialize_rom_data() - Initialize ROM data
3551  *
3552  * Initialize ROM data.
3553  */
3554 static void hc_initialize_rom_data(void)
3555 {
3556 	u32 i, addr;
3557 
3558 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3559 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3560 		writel(inst_rom_init[i], addr + (i << 2));
3561 
3562 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3563 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3564 		writel(ac_rom_init[i], addr + (i << 2));
3565 }
3566 
3567 /**
3568  * initialize_reg_file() - Initialize SDR register file
3569  *
3570  * Initialize SDR register file.
3571  */
3572 static void initialize_reg_file(void)
3573 {
3574 	/* Initialize the register file with the correct data */
3575 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3576 	writel(0, &sdr_reg_file->debug_data_addr);
3577 	writel(0, &sdr_reg_file->cur_stage);
3578 	writel(0, &sdr_reg_file->fom);
3579 	writel(0, &sdr_reg_file->failing_stage);
3580 	writel(0, &sdr_reg_file->debug1);
3581 	writel(0, &sdr_reg_file->debug2);
3582 }
3583 
3584 /**
3585  * initialize_hps_phy() - Initialize HPS PHY
3586  *
3587  * Initialize HPS PHY.
3588  */
3589 static void initialize_hps_phy(void)
3590 {
3591 	uint32_t reg;
3592 	/*
3593 	 * Tracking also gets configured here because it's in the
3594 	 * same register.
3595 	 */
3596 	uint32_t trk_sample_count = 7500;
3597 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3598 	/*
3599 	 * Format is number of outer loops in the 16 MSB, sample
3600 	 * count in 16 LSB.
3601 	 */
3602 
3603 	reg = 0;
3604 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3605 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3606 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3607 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3608 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3609 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3610 	/*
3611 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3612 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3613 	 */
3614 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3615 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3616 		trk_sample_count);
3617 	writel(reg, &sdr_ctrl->phy_ctrl0);
3618 
3619 	reg = 0;
3620 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3621 		trk_sample_count >>
3622 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3623 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3624 		trk_long_idle_sample_count);
3625 	writel(reg, &sdr_ctrl->phy_ctrl1);
3626 
3627 	reg = 0;
3628 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3629 		trk_long_idle_sample_count >>
3630 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3631 	writel(reg, &sdr_ctrl->phy_ctrl2);
3632 }
3633 
3634 /**
3635  * initialize_tracking() - Initialize tracking
3636  *
3637  * Initialize the register file with usable initial data.
3638  */
3639 static void initialize_tracking(void)
3640 {
3641 	/*
3642 	 * Initialize the register file with the correct data.
3643 	 * Compute usable version of value in case we skip full
3644 	 * computation later.
3645 	 */
3646 	writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1,
3647 	       &sdr_reg_file->dtaps_per_ptap);
3648 
3649 	/* trk_sample_count */
3650 	writel(7500, &sdr_reg_file->trk_sample_count);
3651 
3652 	/* longidle outer loop [15:0] */
3653 	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3654 
3655 	/*
3656 	 * longidle sample count [31:24]
3657 	 * trfc, worst case of 933Mhz 4Gb [23:16]
3658 	 * trcd, worst case [15:8]
3659 	 * vfifo wait [7:0]
3660 	 */
3661 	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3662 	       &sdr_reg_file->delays);
3663 
3664 	/* mux delay */
3665 	writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) |
3666 	       (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0),
3667 	       &sdr_reg_file->trk_rw_mgr_addr);
3668 
3669 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH,
3670 	       &sdr_reg_file->trk_read_dqs_width);
3671 
3672 	/* trefi [7:0] */
3673 	writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0),
3674 	       &sdr_reg_file->trk_rfsh);
3675 }
3676 
3677 int sdram_calibration_full(void)
3678 {
3679 	struct param_type my_param;
3680 	struct gbl_type my_gbl;
3681 	uint32_t pass;
3682 
3683 	memset(&my_param, 0, sizeof(my_param));
3684 	memset(&my_gbl, 0, sizeof(my_gbl));
3685 
3686 	param = &my_param;
3687 	gbl = &my_gbl;
3688 
3689 	/* Set the calibration enabled by default */
3690 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3691 	/*
3692 	 * Only sweep all groups (regardless of fail state) by default
3693 	 * Set enabled read test by default.
3694 	 */
3695 #if DISABLE_GUARANTEED_READ
3696 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3697 #endif
3698 	/* Initialize the register file */
3699 	initialize_reg_file();
3700 
3701 	/* Initialize any PHY CSR */
3702 	initialize_hps_phy();
3703 
3704 	scc_mgr_initialize();
3705 
3706 	initialize_tracking();
3707 
3708 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3709 
3710 	debug("%s:%d\n", __func__, __LINE__);
3711 	debug_cond(DLEVEL == 1,
3712 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3713 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3714 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3715 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3716 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3717 	debug_cond(DLEVEL == 1,
3718 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3719 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3720 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3721 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3722 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3723 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3724 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3725 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3726 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3727 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3728 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3729 		   IO_IO_OUT2_DELAY_MAX);
3730 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3731 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3732 
3733 	hc_initialize_rom_data();
3734 
3735 	/* update info for sims */
3736 	reg_file_set_stage(CAL_STAGE_NIL);
3737 	reg_file_set_group(0);
3738 
3739 	/*
3740 	 * Load global needed for those actions that require
3741 	 * some dynamic calibration support.
3742 	 */
3743 	dyn_calib_steps = STATIC_CALIB_STEPS;
3744 	/*
3745 	 * Load global to allow dynamic selection of delay loop settings
3746 	 * based on calibration mode.
3747 	 */
3748 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3749 		skip_delay_mask = 0xff;
3750 	else
3751 		skip_delay_mask = 0x0;
3752 
3753 	pass = run_mem_calibrate();
3754 	debug_mem_calibrate(pass);
3755 	return pass;
3756 }
3757