1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 /** 117 * phy_mgr_initialize() - Initialize PHY Manager 118 * 119 * Initialize PHY Manager. 120 */ 121 static void phy_mgr_initialize(void) 122 { 123 u32 ratio; 124 125 debug("%s:%d\n", __func__, __LINE__); 126 /* Calibration has control over path to memory */ 127 /* 128 * In Hard PHY this is a 2-bit control: 129 * 0: AFI Mux Select 130 * 1: DDIO Mux Select 131 */ 132 writel(0x3, &phy_mgr_cfg->mux_sel); 133 134 /* USER memory clock is not stable we begin initialization */ 135 writel(0, &phy_mgr_cfg->reset_mem_stbl); 136 137 /* USER calibration status all set to zero */ 138 writel(0, &phy_mgr_cfg->cal_status); 139 140 writel(0, &phy_mgr_cfg->cal_debug_info); 141 142 /* Init params only if we do NOT skip calibration. */ 143 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) 144 return; 145 146 ratio = RW_MGR_MEM_DQ_PER_READ_DQS / 147 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; 148 param->read_correct_mask_vg = (1 << ratio) - 1; 149 param->write_correct_mask_vg = (1 << ratio) - 1; 150 param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 151 param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 152 ratio = RW_MGR_MEM_DATA_WIDTH / 153 RW_MGR_MEM_DATA_MASK_WIDTH; 154 param->dm_correct_mask = (1 << ratio) - 1; 155 } 156 157 /** 158 * set_rank_and_odt_mask() - Set Rank and ODT mask 159 * @rank: Rank mask 160 * @odt_mode: ODT mode, OFF or READ_WRITE 161 * 162 * Set Rank and ODT mask (On-Die Termination). 163 */ 164 static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) 165 { 166 u32 odt_mask_0 = 0; 167 u32 odt_mask_1 = 0; 168 u32 cs_and_odt_mask; 169 170 if (odt_mode == RW_MGR_ODT_MODE_OFF) { 171 odt_mask_0 = 0x0; 172 odt_mask_1 = 0x0; 173 } else { /* RW_MGR_ODT_MODE_READ_WRITE */ 174 switch (RW_MGR_MEM_NUMBER_OF_RANKS) { 175 case 1: /* 1 Rank */ 176 /* Read: ODT = 0 ; Write: ODT = 1 */ 177 odt_mask_0 = 0x0; 178 odt_mask_1 = 0x1; 179 break; 180 case 2: /* 2 Ranks */ 181 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 182 /* 183 * - Dual-Slot , Single-Rank (1 CS per DIMM) 184 * OR 185 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) 186 * 187 * Since MEM_NUMBER_OF_RANKS is 2, they 188 * are both single rank with 2 CS each 189 * (special for RDIMM). 190 * 191 * Read: Turn on ODT on the opposite rank 192 * Write: Turn on ODT on all ranks 193 */ 194 odt_mask_0 = 0x3 & ~(1 << rank); 195 odt_mask_1 = 0x3; 196 } else { 197 /* 198 * - Single-Slot , Dual-Rank (2 CS per DIMM) 199 * 200 * Read: Turn on ODT off on all ranks 201 * Write: Turn on ODT on active rank 202 */ 203 odt_mask_0 = 0x0; 204 odt_mask_1 = 0x3 & (1 << rank); 205 } 206 break; 207 case 4: /* 4 Ranks */ 208 /* Read: 209 * ----------+-----------------------+ 210 * | ODT | 211 * Read From +-----------------------+ 212 * Rank | 3 | 2 | 1 | 0 | 213 * ----------+-----+-----+-----+-----+ 214 * 0 | 0 | 1 | 0 | 0 | 215 * 1 | 1 | 0 | 0 | 0 | 216 * 2 | 0 | 0 | 0 | 1 | 217 * 3 | 0 | 0 | 1 | 0 | 218 * ----------+-----+-----+-----+-----+ 219 * 220 * Write: 221 * ----------+-----------------------+ 222 * | ODT | 223 * Write To +-----------------------+ 224 * Rank | 3 | 2 | 1 | 0 | 225 * ----------+-----+-----+-----+-----+ 226 * 0 | 0 | 1 | 0 | 1 | 227 * 1 | 1 | 0 | 1 | 0 | 228 * 2 | 0 | 1 | 0 | 1 | 229 * 3 | 1 | 0 | 1 | 0 | 230 * ----------+-----+-----+-----+-----+ 231 */ 232 switch (rank) { 233 case 0: 234 odt_mask_0 = 0x4; 235 odt_mask_1 = 0x5; 236 break; 237 case 1: 238 odt_mask_0 = 0x8; 239 odt_mask_1 = 0xA; 240 break; 241 case 2: 242 odt_mask_0 = 0x1; 243 odt_mask_1 = 0x5; 244 break; 245 case 3: 246 odt_mask_0 = 0x2; 247 odt_mask_1 = 0xA; 248 break; 249 } 250 break; 251 } 252 } 253 254 cs_and_odt_mask = (0xFF & ~(1 << rank)) | 255 ((0xFF & odt_mask_0) << 8) | 256 ((0xFF & odt_mask_1) << 16); 257 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 258 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 259 } 260 261 /** 262 * scc_mgr_set() - Set SCC Manager register 263 * @off: Base offset in SCC Manager space 264 * @grp: Read/Write group 265 * @val: Value to be set 266 * 267 * This function sets the SCC Manager (Scan Chain Control Manager) register. 268 */ 269 static void scc_mgr_set(u32 off, u32 grp, u32 val) 270 { 271 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 272 } 273 274 /** 275 * scc_mgr_initialize() - Initialize SCC Manager registers 276 * 277 * Initialize SCC Manager registers. 278 */ 279 static void scc_mgr_initialize(void) 280 { 281 /* 282 * Clear register file for HPS. 16 (2^4) is the size of the 283 * full register file in the scc mgr: 284 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 285 * MEM_IF_READ_DQS_WIDTH - 1); 286 */ 287 int i; 288 289 for (i = 0; i < 16; i++) { 290 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 291 __func__, __LINE__, i); 292 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 293 } 294 } 295 296 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 297 { 298 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 299 } 300 301 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 302 { 303 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 304 } 305 306 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 307 { 308 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 309 } 310 311 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 312 { 313 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 314 } 315 316 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 317 { 318 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 319 delay); 320 } 321 322 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 323 { 324 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 325 } 326 327 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 328 { 329 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 330 } 331 332 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 333 { 334 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 335 delay); 336 } 337 338 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 339 { 340 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 341 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 342 delay); 343 } 344 345 /* load up dqs config settings */ 346 static void scc_mgr_load_dqs(uint32_t dqs) 347 { 348 writel(dqs, &sdr_scc_mgr->dqs_ena); 349 } 350 351 /* load up dqs io config settings */ 352 static void scc_mgr_load_dqs_io(void) 353 { 354 writel(0, &sdr_scc_mgr->dqs_io_ena); 355 } 356 357 /* load up dq config settings */ 358 static void scc_mgr_load_dq(uint32_t dq_in_group) 359 { 360 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 361 } 362 363 /* load up dm config settings */ 364 static void scc_mgr_load_dm(uint32_t dm) 365 { 366 writel(dm, &sdr_scc_mgr->dm_ena); 367 } 368 369 /** 370 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 371 * @off: Base offset in SCC Manager space 372 * @grp: Read/Write group 373 * @val: Value to be set 374 * @update: If non-zero, trigger SCC Manager update for all ranks 375 * 376 * This function sets the SCC Manager (Scan Chain Control Manager) register 377 * and optionally triggers the SCC update for all ranks. 378 */ 379 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 380 const int update) 381 { 382 u32 r; 383 384 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 385 r += NUM_RANKS_PER_SHADOW_REG) { 386 scc_mgr_set(off, grp, val); 387 388 if (update || (r == 0)) { 389 writel(grp, &sdr_scc_mgr->dqs_ena); 390 writel(0, &sdr_scc_mgr->update); 391 } 392 } 393 } 394 395 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 396 { 397 /* 398 * USER although the h/w doesn't support different phases per 399 * shadow register, for simplicity our scc manager modeling 400 * keeps different phase settings per shadow reg, and it's 401 * important for us to keep them in sync to match h/w. 402 * for efficiency, the scan chain update should occur only 403 * once to sr0. 404 */ 405 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 406 read_group, phase, 0); 407 } 408 409 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 410 uint32_t phase) 411 { 412 /* 413 * USER although the h/w doesn't support different phases per 414 * shadow register, for simplicity our scc manager modeling 415 * keeps different phase settings per shadow reg, and it's 416 * important for us to keep them in sync to match h/w. 417 * for efficiency, the scan chain update should occur only 418 * once to sr0. 419 */ 420 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 421 write_group, phase, 0); 422 } 423 424 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 425 uint32_t delay) 426 { 427 /* 428 * In shadow register mode, the T11 settings are stored in 429 * registers in the core, which are updated by the DQS_ENA 430 * signals. Not issuing the SCC_MGR_UPD command allows us to 431 * save lots of rank switching overhead, by calling 432 * select_shadow_regs_for_update with update_scan_chains 433 * set to 0. 434 */ 435 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 436 read_group, delay, 1); 437 writel(0, &sdr_scc_mgr->update); 438 } 439 440 /** 441 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 442 * @write_group: Write group 443 * @delay: Delay value 444 * 445 * This function sets the OCT output delay in SCC manager. 446 */ 447 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 448 { 449 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 450 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 451 const int base = write_group * ratio; 452 int i; 453 /* 454 * Load the setting in the SCC manager 455 * Although OCT affects only write data, the OCT delay is controlled 456 * by the DQS logic block which is instantiated once per read group. 457 * For protocols where a write group consists of multiple read groups, 458 * the setting must be set multiple times. 459 */ 460 for (i = 0; i < ratio; i++) 461 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 462 } 463 464 /** 465 * scc_mgr_set_hhp_extras() - Set HHP extras. 466 * 467 * Load the fixed setting in the SCC manager HHP extras. 468 */ 469 static void scc_mgr_set_hhp_extras(void) 470 { 471 /* 472 * Load the fixed setting in the SCC manager 473 * bits: 0:0 = 1'b1 - DQS bypass 474 * bits: 1:1 = 1'b1 - DQ bypass 475 * bits: 4:2 = 3'b001 - rfifo_mode 476 * bits: 6:5 = 2'b01 - rfifo clock_select 477 * bits: 7:7 = 1'b0 - separate gating from ungating setting 478 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 479 */ 480 const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | 481 (1 << 2) | (1 << 1) | (1 << 0); 482 const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | 483 SCC_MGR_HHP_GLOBALS_OFFSET | 484 SCC_MGR_HHP_EXTRAS_OFFSET; 485 486 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", 487 __func__, __LINE__); 488 writel(value, addr); 489 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 490 __func__, __LINE__); 491 } 492 493 /** 494 * scc_mgr_zero_all() - Zero all DQS config 495 * 496 * Zero all DQS config. 497 */ 498 static void scc_mgr_zero_all(void) 499 { 500 int i, r; 501 502 /* 503 * USER Zero all DQS config settings, across all groups and all 504 * shadow registers 505 */ 506 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 507 r += NUM_RANKS_PER_SHADOW_REG) { 508 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 509 /* 510 * The phases actually don't exist on a per-rank basis, 511 * but there's no harm updating them several times, so 512 * let's keep the code simple. 513 */ 514 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 515 scc_mgr_set_dqs_en_phase(i, 0); 516 scc_mgr_set_dqs_en_delay(i, 0); 517 } 518 519 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 520 scc_mgr_set_dqdqs_output_phase(i, 0); 521 /* Arria V/Cyclone V don't have out2. */ 522 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 523 } 524 } 525 526 /* Multicast to all DQS group enables. */ 527 writel(0xff, &sdr_scc_mgr->dqs_ena); 528 writel(0, &sdr_scc_mgr->update); 529 } 530 531 /** 532 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 533 * @write_group: Write group 534 * 535 * Set bypass mode and trigger SCC update. 536 */ 537 static void scc_set_bypass_mode(const u32 write_group) 538 { 539 /* Multicast to all DQ enables. */ 540 writel(0xff, &sdr_scc_mgr->dq_ena); 541 writel(0xff, &sdr_scc_mgr->dm_ena); 542 543 /* Update current DQS IO enable. */ 544 writel(0, &sdr_scc_mgr->dqs_io_ena); 545 546 /* Update the DQS logic. */ 547 writel(write_group, &sdr_scc_mgr->dqs_ena); 548 549 /* Hit update. */ 550 writel(0, &sdr_scc_mgr->update); 551 } 552 553 /** 554 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 555 * @write_group: Write group 556 * 557 * Load DQS settings for Write Group, do not trigger SCC update. 558 */ 559 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 560 { 561 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 562 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 563 const int base = write_group * ratio; 564 int i; 565 /* 566 * Load the setting in the SCC manager 567 * Although OCT affects only write data, the OCT delay is controlled 568 * by the DQS logic block which is instantiated once per read group. 569 * For protocols where a write group consists of multiple read groups, 570 * the setting must be set multiple times. 571 */ 572 for (i = 0; i < ratio; i++) 573 writel(base + i, &sdr_scc_mgr->dqs_ena); 574 } 575 576 /** 577 * scc_mgr_zero_group() - Zero all configs for a group 578 * 579 * Zero DQ, DM, DQS and OCT configs for a group. 580 */ 581 static void scc_mgr_zero_group(const u32 write_group, const int out_only) 582 { 583 int i, r; 584 585 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 586 r += NUM_RANKS_PER_SHADOW_REG) { 587 /* Zero all DQ config settings. */ 588 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 589 scc_mgr_set_dq_out1_delay(i, 0); 590 if (!out_only) 591 scc_mgr_set_dq_in_delay(i, 0); 592 } 593 594 /* Multicast to all DQ enables. */ 595 writel(0xff, &sdr_scc_mgr->dq_ena); 596 597 /* Zero all DM config settings. */ 598 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 599 scc_mgr_set_dm_out1_delay(i, 0); 600 601 /* Multicast to all DM enables. */ 602 writel(0xff, &sdr_scc_mgr->dm_ena); 603 604 /* Zero all DQS IO settings. */ 605 if (!out_only) 606 scc_mgr_set_dqs_io_in_delay(0); 607 608 /* Arria V/Cyclone V don't have out2. */ 609 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 610 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 611 scc_mgr_load_dqs_for_write_group(write_group); 612 613 /* Multicast to all DQS IO enables (only 1 in total). */ 614 writel(0, &sdr_scc_mgr->dqs_io_ena); 615 616 /* Hit update to zero everything. */ 617 writel(0, &sdr_scc_mgr->update); 618 } 619 } 620 621 /* 622 * apply and load a particular input delay for the DQ pins in a group 623 * group_bgn is the index of the first dq pin (in the write group) 624 */ 625 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 626 { 627 uint32_t i, p; 628 629 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 630 scc_mgr_set_dq_in_delay(p, delay); 631 scc_mgr_load_dq(p); 632 } 633 } 634 635 /** 636 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 637 * @delay: Delay value 638 * 639 * Apply and load a particular output delay for the DQ pins in a group. 640 */ 641 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 642 { 643 int i; 644 645 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 646 scc_mgr_set_dq_out1_delay(i, delay); 647 scc_mgr_load_dq(i); 648 } 649 } 650 651 /* apply and load a particular output delay for the DM pins in a group */ 652 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 653 { 654 uint32_t i; 655 656 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 657 scc_mgr_set_dm_out1_delay(i, delay1); 658 scc_mgr_load_dm(i); 659 } 660 } 661 662 663 /* apply and load delay on both DQS and OCT out1 */ 664 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 665 uint32_t delay) 666 { 667 scc_mgr_set_dqs_out1_delay(delay); 668 scc_mgr_load_dqs_io(); 669 670 scc_mgr_set_oct_out1_delay(write_group, delay); 671 scc_mgr_load_dqs_for_write_group(write_group); 672 } 673 674 /** 675 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT 676 * @write_group: Write group 677 * @delay: Delay value 678 * 679 * Apply a delay to the entire output side: DQ, DM, DQS, OCT. 680 */ 681 static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, 682 const u32 delay) 683 { 684 u32 i, new_delay; 685 686 /* DQ shift */ 687 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) 688 scc_mgr_load_dq(i); 689 690 /* DM shift */ 691 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) 692 scc_mgr_load_dm(i); 693 694 /* DQS shift */ 695 new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; 696 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 697 debug_cond(DLEVEL == 1, 698 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 699 __func__, __LINE__, write_group, delay, new_delay, 700 IO_IO_OUT2_DELAY_MAX, 701 new_delay - IO_IO_OUT2_DELAY_MAX); 702 new_delay -= IO_IO_OUT2_DELAY_MAX; 703 scc_mgr_set_dqs_out1_delay(new_delay); 704 } 705 706 scc_mgr_load_dqs_io(); 707 708 /* OCT shift */ 709 new_delay = READ_SCC_OCT_OUT2_DELAY + delay; 710 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 711 debug_cond(DLEVEL == 1, 712 "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", 713 __func__, __LINE__, write_group, delay, 714 new_delay, IO_IO_OUT2_DELAY_MAX, 715 new_delay - IO_IO_OUT2_DELAY_MAX); 716 new_delay -= IO_IO_OUT2_DELAY_MAX; 717 scc_mgr_set_oct_out1_delay(write_group, new_delay); 718 } 719 720 scc_mgr_load_dqs_for_write_group(write_group); 721 } 722 723 /** 724 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks 725 * @write_group: Write group 726 * @delay: Delay value 727 * 728 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. 729 */ 730 static void 731 scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, 732 const u32 delay) 733 { 734 int r; 735 736 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 737 r += NUM_RANKS_PER_SHADOW_REG) { 738 scc_mgr_apply_group_all_out_delay_add(write_group, delay); 739 writel(0, &sdr_scc_mgr->update); 740 } 741 } 742 743 /** 744 * set_jump_as_return() - Return instruction optimization 745 * 746 * Optimization used to recover some slots in ddr3 inst_rom could be 747 * applied to other protocols if we wanted to 748 */ 749 static void set_jump_as_return(void) 750 { 751 /* 752 * To save space, we replace return with jump to special shared 753 * RETURN instruction so we set the counter to large value so that 754 * we always jump. 755 */ 756 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 757 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 758 } 759 760 /* 761 * should always use constants as argument to ensure all computations are 762 * performed at compile time 763 */ 764 static void delay_for_n_mem_clocks(const uint32_t clocks) 765 { 766 uint32_t afi_clocks; 767 uint8_t inner = 0; 768 uint8_t outer = 0; 769 uint16_t c_loop = 0; 770 771 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 772 773 774 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 775 /* scale (rounding up) to get afi clocks */ 776 777 /* 778 * Note, we don't bother accounting for being off a little bit 779 * because of a few extra instructions in outer loops 780 * Note, the loops have a test at the end, and do the test before 781 * the decrement, and so always perform the loop 782 * 1 time more than the counter value 783 */ 784 if (afi_clocks == 0) { 785 ; 786 } else if (afi_clocks <= 0x100) { 787 inner = afi_clocks-1; 788 outer = 0; 789 c_loop = 0; 790 } else if (afi_clocks <= 0x10000) { 791 inner = 0xff; 792 outer = (afi_clocks-1) >> 8; 793 c_loop = 0; 794 } else { 795 inner = 0xff; 796 outer = 0xff; 797 c_loop = (afi_clocks-1) >> 16; 798 } 799 800 /* 801 * rom instructions are structured as follows: 802 * 803 * IDLE_LOOP2: jnz cntr0, TARGET_A 804 * IDLE_LOOP1: jnz cntr1, TARGET_B 805 * return 806 * 807 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 808 * TARGET_B is set to IDLE_LOOP2 as well 809 * 810 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 811 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 812 * 813 * a little confusing, but it helps save precious space in the inst_rom 814 * and sequencer rom and keeps the delays more accurate and reduces 815 * overhead 816 */ 817 if (afi_clocks <= 0x100) { 818 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 819 &sdr_rw_load_mgr_regs->load_cntr1); 820 821 writel(RW_MGR_IDLE_LOOP1, 822 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 823 824 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 825 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 826 } else { 827 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 828 &sdr_rw_load_mgr_regs->load_cntr0); 829 830 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 831 &sdr_rw_load_mgr_regs->load_cntr1); 832 833 writel(RW_MGR_IDLE_LOOP2, 834 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 835 836 writel(RW_MGR_IDLE_LOOP2, 837 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 838 839 /* hack to get around compiler not being smart enough */ 840 if (afi_clocks <= 0x10000) { 841 /* only need to run once */ 842 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 843 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 844 } else { 845 do { 846 writel(RW_MGR_IDLE_LOOP2, 847 SDR_PHYGRP_RWMGRGRP_ADDRESS | 848 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 849 } while (c_loop-- != 0); 850 } 851 } 852 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 853 } 854 855 /** 856 * rw_mgr_mem_init_load_regs() - Load instruction registers 857 * @cntr0: Counter 0 value 858 * @cntr1: Counter 1 value 859 * @cntr2: Counter 2 value 860 * @jump: Jump instruction value 861 * 862 * Load instruction registers. 863 */ 864 static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) 865 { 866 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 867 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 868 869 /* Load counters */ 870 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), 871 &sdr_rw_load_mgr_regs->load_cntr0); 872 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), 873 &sdr_rw_load_mgr_regs->load_cntr1); 874 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), 875 &sdr_rw_load_mgr_regs->load_cntr2); 876 877 /* Load jump address */ 878 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 879 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); 880 writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 881 882 /* Execute count instruction */ 883 writel(jump, grpaddr); 884 } 885 886 /** 887 * rw_mgr_mem_load_user() - Load user calibration values 888 * @fin1: Final instruction 1 889 * @fin2: Final instruction 2 890 * @precharge: If 1, precharge the banks at the end 891 * 892 * Load user calibration values and optionally precharge the banks. 893 */ 894 static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, 895 const int precharge) 896 { 897 u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 898 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 899 u32 r; 900 901 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 902 if (param->skip_ranks[r]) { 903 /* request to skip the rank */ 904 continue; 905 } 906 907 /* set rank */ 908 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 909 910 /* precharge all banks ... */ 911 if (precharge) 912 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 913 914 /* 915 * USER Use Mirror-ed commands for odd ranks if address 916 * mirrorring is on 917 */ 918 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 919 set_jump_as_return(); 920 writel(RW_MGR_MRS2_MIRR, grpaddr); 921 delay_for_n_mem_clocks(4); 922 set_jump_as_return(); 923 writel(RW_MGR_MRS3_MIRR, grpaddr); 924 delay_for_n_mem_clocks(4); 925 set_jump_as_return(); 926 writel(RW_MGR_MRS1_MIRR, grpaddr); 927 delay_for_n_mem_clocks(4); 928 set_jump_as_return(); 929 writel(fin1, grpaddr); 930 } else { 931 set_jump_as_return(); 932 writel(RW_MGR_MRS2, grpaddr); 933 delay_for_n_mem_clocks(4); 934 set_jump_as_return(); 935 writel(RW_MGR_MRS3, grpaddr); 936 delay_for_n_mem_clocks(4); 937 set_jump_as_return(); 938 writel(RW_MGR_MRS1, grpaddr); 939 set_jump_as_return(); 940 writel(fin2, grpaddr); 941 } 942 943 if (precharge) 944 continue; 945 946 set_jump_as_return(); 947 writel(RW_MGR_ZQCL, grpaddr); 948 949 /* tZQinit = tDLLK = 512 ck cycles */ 950 delay_for_n_mem_clocks(512); 951 } 952 } 953 954 static void rw_mgr_mem_initialize(void) 955 { 956 debug("%s:%d\n", __func__, __LINE__); 957 958 /* The reset / cke part of initialization is broadcasted to all ranks */ 959 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 960 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 961 962 /* 963 * Here's how you load register for a loop 964 * Counters are located @ 0x800 965 * Jump address are located @ 0xC00 966 * For both, registers 0 to 3 are selected using bits 3 and 2, like 967 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 968 * I know this ain't pretty, but Avalon bus throws away the 2 least 969 * significant bits 970 */ 971 972 /* start with memory RESET activated */ 973 974 /* tINIT = 200us */ 975 976 /* 977 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 978 * If a and b are the number of iteration in 2 nested loops 979 * it takes the following number of cycles to complete the operation: 980 * number_of_cycles = ((2 + n) * a + 2) * b 981 * where n is the number of instruction in the inner loop 982 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 983 * b = 6A 984 */ 985 rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, 986 SEQ_TINIT_CNTR2_VAL, 987 RW_MGR_INIT_RESET_0_CKE_0); 988 989 /* indicate that memory is stable */ 990 writel(1, &phy_mgr_cfg->reset_mem_stbl); 991 992 /* 993 * transition the RESET to high 994 * Wait for 500us 995 */ 996 997 /* 998 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 999 * If a and b are the number of iteration in 2 nested loops 1000 * it takes the following number of cycles to complete the operation 1001 * number_of_cycles = ((2 + n) * a + 2) * b 1002 * where n is the number of instruction in the inner loop 1003 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 1004 * b = FF 1005 */ 1006 rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, 1007 SEQ_TRESET_CNTR2_VAL, 1008 RW_MGR_INIT_RESET_1_CKE_0); 1009 1010 /* bring up clock enable */ 1011 1012 /* tXRP < 250 ck cycles */ 1013 delay_for_n_mem_clocks(250); 1014 1015 rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 1016 0); 1017 } 1018 1019 /* 1020 * At the end of calibration we have to program the user settings in, and 1021 * USER hand off the memory to the user. 1022 */ 1023 static void rw_mgr_mem_handoff(void) 1024 { 1025 rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); 1026 /* 1027 * USER need to wait tMOD (12CK or 15ns) time before issuing 1028 * other commands, but we will have plenty of NIOS cycles before 1029 * actual handoff so its okay. 1030 */ 1031 } 1032 1033 /* 1034 * performs a guaranteed read on the patterns we are going to use during a 1035 * read test to ensure memory works 1036 */ 1037 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1038 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1039 uint32_t all_ranks) 1040 { 1041 uint32_t r, vg; 1042 uint32_t correct_mask_vg; 1043 uint32_t tmp_bit_chk; 1044 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1045 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1046 uint32_t addr; 1047 uint32_t base_rw_mgr; 1048 1049 *bit_chk = param->read_correct_mask; 1050 correct_mask_vg = param->read_correct_mask_vg; 1051 1052 for (r = rank_bgn; r < rank_end; r++) { 1053 if (param->skip_ranks[r]) 1054 /* request to skip the rank */ 1055 continue; 1056 1057 /* set rank */ 1058 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1059 1060 /* Load up a constant bursts of read commands */ 1061 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1062 writel(RW_MGR_GUARANTEED_READ, 1063 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1064 1065 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1066 writel(RW_MGR_GUARANTEED_READ_CONT, 1067 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1068 1069 tmp_bit_chk = 0; 1070 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1071 /* reset the fifos to get pointers to known state */ 1072 1073 writel(0, &phy_mgr_cmd->fifo_reset); 1074 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1075 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1076 1077 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1078 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1079 1080 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1081 writel(RW_MGR_GUARANTEED_READ, addr + 1082 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1083 vg) << 2)); 1084 1085 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1086 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1087 1088 if (vg == 0) 1089 break; 1090 } 1091 *bit_chk &= tmp_bit_chk; 1092 } 1093 1094 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1095 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1096 1097 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1098 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1099 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1100 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1101 return *bit_chk == param->read_correct_mask; 1102 } 1103 1104 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1105 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1106 { 1107 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1108 num_tries, bit_chk, 1); 1109 } 1110 1111 /* load up the patterns we are going to use during a read test */ 1112 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1113 uint32_t all_ranks) 1114 { 1115 uint32_t r; 1116 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1117 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1118 1119 debug("%s:%d\n", __func__, __LINE__); 1120 for (r = rank_bgn; r < rank_end; r++) { 1121 if (param->skip_ranks[r]) 1122 /* request to skip the rank */ 1123 continue; 1124 1125 /* set rank */ 1126 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1127 1128 /* Load up a constant bursts */ 1129 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1130 1131 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1132 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1133 1134 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1135 1136 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1137 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1138 1139 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1140 1141 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1142 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1143 1144 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1145 1146 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1147 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1148 1149 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1150 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1151 } 1152 1153 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1154 } 1155 1156 /* 1157 * try a read and see if it returns correct data back. has dummy reads 1158 * inserted into the mix used to align dqs enable. has more thorough checks 1159 * than the regular read test. 1160 */ 1161 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1162 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1163 uint32_t all_groups, uint32_t all_ranks) 1164 { 1165 uint32_t r, vg; 1166 uint32_t correct_mask_vg; 1167 uint32_t tmp_bit_chk; 1168 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1169 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1170 uint32_t addr; 1171 uint32_t base_rw_mgr; 1172 1173 *bit_chk = param->read_correct_mask; 1174 correct_mask_vg = param->read_correct_mask_vg; 1175 1176 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1177 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1178 1179 for (r = rank_bgn; r < rank_end; r++) { 1180 if (param->skip_ranks[r]) 1181 /* request to skip the rank */ 1182 continue; 1183 1184 /* set rank */ 1185 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1186 1187 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1188 1189 writel(RW_MGR_READ_B2B_WAIT1, 1190 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1191 1192 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1193 writel(RW_MGR_READ_B2B_WAIT2, 1194 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1195 1196 if (quick_read_mode) 1197 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1198 /* need at least two (1+1) reads to capture failures */ 1199 else if (all_groups) 1200 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1201 else 1202 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1203 1204 writel(RW_MGR_READ_B2B, 1205 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1206 if (all_groups) 1207 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1208 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1209 &sdr_rw_load_mgr_regs->load_cntr3); 1210 else 1211 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1212 1213 writel(RW_MGR_READ_B2B, 1214 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1215 1216 tmp_bit_chk = 0; 1217 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1218 /* reset the fifos to get pointers to known state */ 1219 writel(0, &phy_mgr_cmd->fifo_reset); 1220 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1221 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1222 1223 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1224 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1225 1226 if (all_groups) 1227 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1228 else 1229 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1230 1231 writel(RW_MGR_READ_B2B, addr + 1232 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1233 vg) << 2)); 1234 1235 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1236 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1237 1238 if (vg == 0) 1239 break; 1240 } 1241 *bit_chk &= tmp_bit_chk; 1242 } 1243 1244 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1245 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1246 1247 if (all_correct) { 1248 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1249 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1250 (%u == %u) => %lu", __func__, __LINE__, group, 1251 all_groups, *bit_chk, param->read_correct_mask, 1252 (long unsigned int)(*bit_chk == 1253 param->read_correct_mask)); 1254 return *bit_chk == param->read_correct_mask; 1255 } else { 1256 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1257 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1258 (%u != %lu) => %lu\n", __func__, __LINE__, 1259 group, all_groups, *bit_chk, (long unsigned int)0, 1260 (long unsigned int)(*bit_chk != 0x00)); 1261 return *bit_chk != 0x00; 1262 } 1263 } 1264 1265 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1266 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1267 uint32_t all_groups) 1268 { 1269 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1270 bit_chk, all_groups, 1); 1271 } 1272 1273 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1274 { 1275 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1276 (*v)++; 1277 } 1278 1279 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1280 { 1281 uint32_t i; 1282 1283 for (i = 0; i < VFIFO_SIZE-1; i++) 1284 rw_mgr_incr_vfifo(grp, v); 1285 } 1286 1287 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1288 { 1289 uint32_t v; 1290 uint32_t fail_cnt = 0; 1291 uint32_t test_status; 1292 1293 for (v = 0; v < VFIFO_SIZE; ) { 1294 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1295 __func__, __LINE__, v); 1296 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1297 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1298 if (!test_status) { 1299 fail_cnt++; 1300 1301 if (fail_cnt == 2) 1302 break; 1303 } 1304 1305 /* fiddle with FIFO */ 1306 rw_mgr_incr_vfifo(grp, &v); 1307 } 1308 1309 if (v >= VFIFO_SIZE) { 1310 /* no failing read found!! Something must have gone wrong */ 1311 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1312 __func__, __LINE__); 1313 return 0; 1314 } else { 1315 return v; 1316 } 1317 } 1318 1319 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1320 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1321 uint32_t *v, uint32_t *d, uint32_t *p, 1322 uint32_t *i, uint32_t *max_working_cnt) 1323 { 1324 uint32_t found_begin = 0; 1325 uint32_t tmp_delay = 0; 1326 uint32_t test_status; 1327 1328 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1329 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1330 *work_bgn = tmp_delay; 1331 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1332 1333 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1334 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1335 IO_DELAY_PER_OPA_TAP) { 1336 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1337 1338 test_status = 1339 rw_mgr_mem_calibrate_read_test_all_ranks 1340 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1341 1342 if (test_status) { 1343 *max_working_cnt = 1; 1344 found_begin = 1; 1345 break; 1346 } 1347 } 1348 1349 if (found_begin) 1350 break; 1351 1352 if (*p > IO_DQS_EN_PHASE_MAX) 1353 /* fiddle with FIFO */ 1354 rw_mgr_incr_vfifo(*grp, v); 1355 } 1356 1357 if (found_begin) 1358 break; 1359 } 1360 1361 if (*i >= VFIFO_SIZE) { 1362 /* cannot find working solution */ 1363 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1364 ptap/dtap\n", __func__, __LINE__); 1365 return 0; 1366 } else { 1367 return 1; 1368 } 1369 } 1370 1371 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1372 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1373 uint32_t *p, uint32_t *max_working_cnt) 1374 { 1375 uint32_t found_begin = 0; 1376 uint32_t tmp_delay; 1377 1378 /* Special case code for backing up a phase */ 1379 if (*p == 0) { 1380 *p = IO_DQS_EN_PHASE_MAX; 1381 rw_mgr_decr_vfifo(*grp, v); 1382 } else { 1383 (*p)--; 1384 } 1385 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1386 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1387 1388 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1389 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1390 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1391 1392 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1393 PASS_ONE_BIT, 1394 bit_chk, 0)) { 1395 found_begin = 1; 1396 *work_bgn = tmp_delay; 1397 break; 1398 } 1399 } 1400 1401 /* We have found a working dtap before the ptap found above */ 1402 if (found_begin == 1) 1403 (*max_working_cnt)++; 1404 1405 /* 1406 * Restore VFIFO to old state before we decremented it 1407 * (if needed). 1408 */ 1409 (*p)++; 1410 if (*p > IO_DQS_EN_PHASE_MAX) { 1411 *p = 0; 1412 rw_mgr_incr_vfifo(*grp, v); 1413 } 1414 1415 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1416 } 1417 1418 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1419 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1420 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1421 uint32_t *work_end) 1422 { 1423 uint32_t found_end = 0; 1424 1425 (*p)++; 1426 *work_end += IO_DELAY_PER_OPA_TAP; 1427 if (*p > IO_DQS_EN_PHASE_MAX) { 1428 /* fiddle with FIFO */ 1429 *p = 0; 1430 rw_mgr_incr_vfifo(*grp, v); 1431 } 1432 1433 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1434 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1435 += IO_DELAY_PER_OPA_TAP) { 1436 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1437 1438 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1439 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1440 found_end = 1; 1441 break; 1442 } else { 1443 (*max_working_cnt)++; 1444 } 1445 } 1446 1447 if (found_end) 1448 break; 1449 1450 if (*p > IO_DQS_EN_PHASE_MAX) { 1451 /* fiddle with FIFO */ 1452 rw_mgr_incr_vfifo(*grp, v); 1453 *p = 0; 1454 } 1455 } 1456 1457 if (*i >= VFIFO_SIZE + 1) { 1458 /* cannot see edge of failing read */ 1459 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1460 failed\n", __func__, __LINE__); 1461 return 0; 1462 } else { 1463 return 1; 1464 } 1465 } 1466 1467 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1468 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1469 uint32_t *p, uint32_t *work_mid, 1470 uint32_t *work_end) 1471 { 1472 int i; 1473 int tmp_delay = 0; 1474 1475 *work_mid = (*work_bgn + *work_end) / 2; 1476 1477 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1478 *work_bgn, *work_end, *work_mid); 1479 /* Get the middle delay to be less than a VFIFO delay */ 1480 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1481 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1482 ; 1483 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1484 while (*work_mid > tmp_delay) 1485 *work_mid -= tmp_delay; 1486 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1487 1488 tmp_delay = 0; 1489 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1490 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1491 ; 1492 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1493 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1494 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1495 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1496 ; 1497 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1498 1499 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1500 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1501 1502 /* 1503 * push vfifo until we can successfully calibrate. We can do this 1504 * because the largest possible margin in 1 VFIFO cycle. 1505 */ 1506 for (i = 0; i < VFIFO_SIZE; i++) { 1507 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1508 *v); 1509 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1510 PASS_ONE_BIT, 1511 bit_chk, 0)) { 1512 break; 1513 } 1514 1515 /* fiddle with FIFO */ 1516 rw_mgr_incr_vfifo(*grp, v); 1517 } 1518 1519 if (i >= VFIFO_SIZE) { 1520 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1521 failed\n", __func__, __LINE__); 1522 return 0; 1523 } else { 1524 return 1; 1525 } 1526 } 1527 1528 /* find a good dqs enable to use */ 1529 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1530 { 1531 uint32_t v, d, p, i; 1532 uint32_t max_working_cnt; 1533 uint32_t bit_chk; 1534 uint32_t dtaps_per_ptap; 1535 uint32_t work_bgn, work_mid, work_end; 1536 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1537 1538 debug("%s:%d %u\n", __func__, __LINE__, grp); 1539 1540 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1541 1542 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1543 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1544 1545 /* ************************************************************** */ 1546 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1547 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1548 1549 /* ********************************************************* */ 1550 /* * Step 1 : First push vfifo until we get a failing read * */ 1551 v = find_vfifo_read(grp, &bit_chk); 1552 1553 max_working_cnt = 0; 1554 1555 /* ******************************************************** */ 1556 /* * step 2: find first working phase, increment in ptaps * */ 1557 work_bgn = 0; 1558 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1559 &p, &i, &max_working_cnt) == 0) 1560 return 0; 1561 1562 work_end = work_bgn; 1563 1564 /* 1565 * If d is 0 then the working window covers a phase tap and 1566 * we can follow the old procedure otherwise, we've found the beginning, 1567 * and we need to increment the dtaps until we find the end. 1568 */ 1569 if (d == 0) { 1570 /* ********************************************************* */ 1571 /* * step 3a: if we have room, back off by one and 1572 increment in dtaps * */ 1573 1574 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1575 &max_working_cnt); 1576 1577 /* ********************************************************* */ 1578 /* * step 4a: go forward from working phase to non working 1579 phase, increment in ptaps * */ 1580 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1581 &i, &max_working_cnt, &work_end) == 0) 1582 return 0; 1583 1584 /* ********************************************************* */ 1585 /* * step 5a: back off one from last, increment in dtaps * */ 1586 1587 /* Special case code for backing up a phase */ 1588 if (p == 0) { 1589 p = IO_DQS_EN_PHASE_MAX; 1590 rw_mgr_decr_vfifo(grp, &v); 1591 } else { 1592 p = p - 1; 1593 } 1594 1595 work_end -= IO_DELAY_PER_OPA_TAP; 1596 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1597 1598 /* * The actual increment of dtaps is done outside of 1599 the if/else loop to share code */ 1600 d = 0; 1601 1602 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1603 vfifo=%u ptap=%u\n", __func__, __LINE__, 1604 v, p); 1605 } else { 1606 /* ******************************************************* */ 1607 /* * step 3-5b: Find the right edge of the window using 1608 delay taps * */ 1609 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1610 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1611 v, p, d, work_bgn); 1612 1613 work_end = work_bgn; 1614 1615 /* * The actual increment of dtaps is done outside of the 1616 if/else loop to share code */ 1617 1618 /* Only here to counterbalance a subtract later on which is 1619 not needed if this branch of the algorithm is taken */ 1620 max_working_cnt++; 1621 } 1622 1623 /* The dtap increment to find the failing edge is done here */ 1624 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1625 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1626 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1627 end-2: dtap=%u\n", __func__, __LINE__, d); 1628 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1629 1630 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1631 PASS_ONE_BIT, 1632 &bit_chk, 0)) { 1633 break; 1634 } 1635 } 1636 1637 /* Go back to working dtap */ 1638 if (d != 0) 1639 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1640 1641 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1642 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1643 v, p, d-1, work_end); 1644 1645 if (work_end < work_bgn) { 1646 /* nil range */ 1647 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1648 failed\n", __func__, __LINE__); 1649 return 0; 1650 } 1651 1652 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1653 __func__, __LINE__, work_bgn, work_end); 1654 1655 /* *************************************************************** */ 1656 /* 1657 * * We need to calculate the number of dtaps that equal a ptap 1658 * * To do that we'll back up a ptap and re-find the edge of the 1659 * * window using dtaps 1660 */ 1661 1662 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1663 for tracking\n", __func__, __LINE__); 1664 1665 /* Special case code for backing up a phase */ 1666 if (p == 0) { 1667 p = IO_DQS_EN_PHASE_MAX; 1668 rw_mgr_decr_vfifo(grp, &v); 1669 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1670 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1671 v, p); 1672 } else { 1673 p = p - 1; 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1675 phase only: v=%u p=%u", __func__, __LINE__, 1676 v, p); 1677 } 1678 1679 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1680 1681 /* 1682 * Increase dtap until we first see a passing read (in case the 1683 * window is smaller than a ptap), 1684 * and then a failing read to mark the edge of the window again 1685 */ 1686 1687 /* Find a passing read */ 1688 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1689 __func__, __LINE__); 1690 found_passing_read = 0; 1691 found_failing_read = 0; 1692 initial_failing_dtap = d; 1693 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1694 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1695 read d=%u\n", __func__, __LINE__, d); 1696 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1697 1698 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1699 PASS_ONE_BIT, 1700 &bit_chk, 0)) { 1701 found_passing_read = 1; 1702 break; 1703 } 1704 } 1705 1706 if (found_passing_read) { 1707 /* Find a failing read */ 1708 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1709 read\n", __func__, __LINE__); 1710 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1711 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1712 testing read d=%u\n", __func__, __LINE__, d); 1713 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1714 1715 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1716 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1717 found_failing_read = 1; 1718 break; 1719 } 1720 } 1721 } else { 1722 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1723 calculate dtaps", __func__, __LINE__); 1724 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1725 } 1726 1727 /* 1728 * The dynamically calculated dtaps_per_ptap is only valid if we 1729 * found a passing/failing read. If we didn't, it means d hit the max 1730 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1731 * statically calculated value. 1732 */ 1733 if (found_passing_read && found_failing_read) 1734 dtaps_per_ptap = d - initial_failing_dtap; 1735 1736 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1737 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1738 - %u = %u", __func__, __LINE__, d, 1739 initial_failing_dtap, dtaps_per_ptap); 1740 1741 /* ******************************************** */ 1742 /* * step 6: Find the centre of the window * */ 1743 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1744 &work_mid, &work_end) == 0) 1745 return 0; 1746 1747 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1748 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1749 v, p-1, d); 1750 return 1; 1751 } 1752 1753 /* 1754 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1755 * dq_in_delay values 1756 */ 1757 static uint32_t 1758 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1759 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1760 { 1761 uint32_t found; 1762 uint32_t i; 1763 uint32_t p; 1764 uint32_t d; 1765 uint32_t r; 1766 1767 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1768 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1769 /* we start at zero, so have one less dq to devide among */ 1770 1771 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1772 test_bgn); 1773 1774 /* try different dq_in_delays since the dq path is shorter than dqs */ 1775 1776 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1777 r += NUM_RANKS_PER_SHADOW_REG) { 1778 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1779 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1780 vfifo_find_dqs_", __func__, __LINE__); 1781 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1782 write_group, read_group); 1783 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1784 scc_mgr_set_dq_in_delay(p, d); 1785 scc_mgr_load_dq(p); 1786 } 1787 writel(0, &sdr_scc_mgr->update); 1788 } 1789 1790 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1791 1792 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1793 en_phase_sweep_dq", __func__, __LINE__); 1794 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1795 chain to zero\n", write_group, read_group, found); 1796 1797 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1798 r += NUM_RANKS_PER_SHADOW_REG) { 1799 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1800 i++, p++) { 1801 scc_mgr_set_dq_in_delay(p, 0); 1802 scc_mgr_load_dq(p); 1803 } 1804 writel(0, &sdr_scc_mgr->update); 1805 } 1806 1807 return found; 1808 } 1809 1810 /* per-bit deskew DQ and center */ 1811 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1812 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1813 uint32_t use_read_test, uint32_t update_fom) 1814 { 1815 uint32_t i, p, d, min_index; 1816 /* 1817 * Store these as signed since there are comparisons with 1818 * signed numbers. 1819 */ 1820 uint32_t bit_chk; 1821 uint32_t sticky_bit_chk; 1822 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1823 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1824 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1825 int32_t mid; 1826 int32_t orig_mid_min, mid_min; 1827 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1828 final_dqs_en; 1829 int32_t dq_margin, dqs_margin; 1830 uint32_t stop; 1831 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1832 uint32_t addr; 1833 1834 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1835 1836 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1837 start_dqs = readl(addr + (read_group << 2)); 1838 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1839 start_dqs_en = readl(addr + ((read_group << 2) 1840 - IO_DQS_EN_DELAY_OFFSET)); 1841 1842 /* set the left and right edge of each bit to an illegal value */ 1843 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1844 sticky_bit_chk = 0; 1845 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1846 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1847 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1848 } 1849 1850 /* Search for the left edge of the window for each bit */ 1851 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1852 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1853 1854 writel(0, &sdr_scc_mgr->update); 1855 1856 /* 1857 * Stop searching when the read test doesn't pass AND when 1858 * we've seen a passing read on every bit. 1859 */ 1860 if (use_read_test) { 1861 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1862 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1863 &bit_chk, 0, 0); 1864 } else { 1865 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1866 0, PASS_ONE_BIT, 1867 &bit_chk, 0); 1868 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1869 (read_group - (write_group * 1870 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1871 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1872 stop = (bit_chk == 0); 1873 } 1874 sticky_bit_chk = sticky_bit_chk | bit_chk; 1875 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1876 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1877 && %u", __func__, __LINE__, d, 1878 sticky_bit_chk, 1879 param->read_correct_mask, stop); 1880 1881 if (stop == 1) { 1882 break; 1883 } else { 1884 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1885 if (bit_chk & 1) { 1886 /* Remember a passing test as the 1887 left_edge */ 1888 left_edge[i] = d; 1889 } else { 1890 /* If a left edge has not been seen yet, 1891 then a future passing test will mark 1892 this edge as the right edge */ 1893 if (left_edge[i] == 1894 IO_IO_IN_DELAY_MAX + 1) { 1895 right_edge[i] = -(d + 1); 1896 } 1897 } 1898 bit_chk = bit_chk >> 1; 1899 } 1900 } 1901 } 1902 1903 /* Reset DQ delay chains to 0 */ 1904 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1905 sticky_bit_chk = 0; 1906 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1907 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1908 %d right_edge[%u]: %d\n", __func__, __LINE__, 1909 i, left_edge[i], i, right_edge[i]); 1910 1911 /* 1912 * Check for cases where we haven't found the left edge, 1913 * which makes our assignment of the the right edge invalid. 1914 * Reset it to the illegal value. 1915 */ 1916 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1917 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1918 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1919 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1920 right_edge[%u]: %d\n", __func__, __LINE__, 1921 i, right_edge[i]); 1922 } 1923 1924 /* 1925 * Reset sticky bit (except for bits where we have seen 1926 * both the left and right edge). 1927 */ 1928 sticky_bit_chk = sticky_bit_chk << 1; 1929 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1930 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1931 sticky_bit_chk = sticky_bit_chk | 1; 1932 } 1933 1934 if (i == 0) 1935 break; 1936 } 1937 1938 /* Search for the right edge of the window for each bit */ 1939 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1940 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1941 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1942 uint32_t delay = d + start_dqs_en; 1943 if (delay > IO_DQS_EN_DELAY_MAX) 1944 delay = IO_DQS_EN_DELAY_MAX; 1945 scc_mgr_set_dqs_en_delay(read_group, delay); 1946 } 1947 scc_mgr_load_dqs(read_group); 1948 1949 writel(0, &sdr_scc_mgr->update); 1950 1951 /* 1952 * Stop searching when the read test doesn't pass AND when 1953 * we've seen a passing read on every bit. 1954 */ 1955 if (use_read_test) { 1956 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1957 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1958 &bit_chk, 0, 0); 1959 } else { 1960 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1961 0, PASS_ONE_BIT, 1962 &bit_chk, 0); 1963 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1964 (read_group - (write_group * 1965 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1966 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1967 stop = (bit_chk == 0); 1968 } 1969 sticky_bit_chk = sticky_bit_chk | bit_chk; 1970 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1971 1972 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 1973 %u && %u", __func__, __LINE__, d, 1974 sticky_bit_chk, param->read_correct_mask, stop); 1975 1976 if (stop == 1) { 1977 break; 1978 } else { 1979 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1980 if (bit_chk & 1) { 1981 /* Remember a passing test as 1982 the right_edge */ 1983 right_edge[i] = d; 1984 } else { 1985 if (d != 0) { 1986 /* If a right edge has not been 1987 seen yet, then a future passing 1988 test will mark this edge as the 1989 left edge */ 1990 if (right_edge[i] == 1991 IO_IO_IN_DELAY_MAX + 1) { 1992 left_edge[i] = -(d + 1); 1993 } 1994 } else { 1995 /* d = 0 failed, but it passed 1996 when testing the left edge, 1997 so it must be marginal, 1998 set it to -1 */ 1999 if (right_edge[i] == 2000 IO_IO_IN_DELAY_MAX + 1 && 2001 left_edge[i] != 2002 IO_IO_IN_DELAY_MAX 2003 + 1) { 2004 right_edge[i] = -1; 2005 } 2006 /* If a right edge has not been 2007 seen yet, then a future passing 2008 test will mark this edge as the 2009 left edge */ 2010 else if (right_edge[i] == 2011 IO_IO_IN_DELAY_MAX + 2012 1) { 2013 left_edge[i] = -(d + 1); 2014 } 2015 } 2016 } 2017 2018 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2019 d=%u]: ", __func__, __LINE__, d); 2020 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2021 (int)(bit_chk & 1), i, left_edge[i]); 2022 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2023 right_edge[i]); 2024 bit_chk = bit_chk >> 1; 2025 } 2026 } 2027 } 2028 2029 /* Check that all bits have a window */ 2030 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2031 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2032 %d right_edge[%u]: %d", __func__, __LINE__, 2033 i, left_edge[i], i, right_edge[i]); 2034 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2035 == IO_IO_IN_DELAY_MAX + 1)) { 2036 /* 2037 * Restore delay chain settings before letting the loop 2038 * in rw_mgr_mem_calibrate_vfifo to retry different 2039 * dqs/ck relationships. 2040 */ 2041 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2042 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2043 scc_mgr_set_dqs_en_delay(read_group, 2044 start_dqs_en); 2045 } 2046 scc_mgr_load_dqs(read_group); 2047 writel(0, &sdr_scc_mgr->update); 2048 2049 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2050 find edge [%u]: %d %d", __func__, __LINE__, 2051 i, left_edge[i], right_edge[i]); 2052 if (use_read_test) { 2053 set_failing_group_stage(read_group * 2054 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2055 CAL_STAGE_VFIFO, 2056 CAL_SUBSTAGE_VFIFO_CENTER); 2057 } else { 2058 set_failing_group_stage(read_group * 2059 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2060 CAL_STAGE_VFIFO_AFTER_WRITES, 2061 CAL_SUBSTAGE_VFIFO_CENTER); 2062 } 2063 return 0; 2064 } 2065 } 2066 2067 /* Find middle of window for each DQ bit */ 2068 mid_min = left_edge[0] - right_edge[0]; 2069 min_index = 0; 2070 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2071 mid = left_edge[i] - right_edge[i]; 2072 if (mid < mid_min) { 2073 mid_min = mid; 2074 min_index = i; 2075 } 2076 } 2077 2078 /* 2079 * -mid_min/2 represents the amount that we need to move DQS. 2080 * If mid_min is odd and positive we'll need to add one to 2081 * make sure the rounding in further calculations is correct 2082 * (always bias to the right), so just add 1 for all positive values. 2083 */ 2084 if (mid_min > 0) 2085 mid_min++; 2086 2087 mid_min = mid_min / 2; 2088 2089 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2090 __func__, __LINE__, mid_min, min_index); 2091 2092 /* Determine the amount we can change DQS (which is -mid_min) */ 2093 orig_mid_min = mid_min; 2094 new_dqs = start_dqs - mid_min; 2095 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2096 new_dqs = IO_DQS_IN_DELAY_MAX; 2097 else if (new_dqs < 0) 2098 new_dqs = 0; 2099 2100 mid_min = start_dqs - new_dqs; 2101 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2102 mid_min, new_dqs); 2103 2104 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2105 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2106 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2107 else if (start_dqs_en - mid_min < 0) 2108 mid_min += start_dqs_en - mid_min; 2109 } 2110 new_dqs = start_dqs - mid_min; 2111 2112 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2113 new_dqs=%d mid_min=%d\n", start_dqs, 2114 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2115 new_dqs, mid_min); 2116 2117 /* Initialize data for export structures */ 2118 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2119 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2120 2121 /* add delay to bring centre of all DQ windows to the same "level" */ 2122 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2123 /* Use values before divide by 2 to reduce round off error */ 2124 shift_dq = (left_edge[i] - right_edge[i] - 2125 (left_edge[min_index] - right_edge[min_index]))/2 + 2126 (orig_mid_min - mid_min); 2127 2128 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2129 shift_dq[%u]=%d\n", i, shift_dq); 2130 2131 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2132 temp_dq_in_delay1 = readl(addr + (p << 2)); 2133 temp_dq_in_delay2 = readl(addr + (i << 2)); 2134 2135 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2136 (int32_t)IO_IO_IN_DELAY_MAX) { 2137 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2138 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2139 shift_dq = -(int32_t)temp_dq_in_delay1; 2140 } 2141 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2142 shift_dq[%u]=%d\n", i, shift_dq); 2143 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2144 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2145 scc_mgr_load_dq(p); 2146 2147 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2148 left_edge[i] - shift_dq + (-mid_min), 2149 right_edge[i] + shift_dq - (-mid_min)); 2150 /* To determine values for export structures */ 2151 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2152 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2153 2154 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2155 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2156 } 2157 2158 final_dqs = new_dqs; 2159 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2160 final_dqs_en = start_dqs_en - mid_min; 2161 2162 /* Move DQS-en */ 2163 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2164 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2165 scc_mgr_load_dqs(read_group); 2166 } 2167 2168 /* Move DQS */ 2169 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2170 scc_mgr_load_dqs(read_group); 2171 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2172 dqs_margin=%d", __func__, __LINE__, 2173 dq_margin, dqs_margin); 2174 2175 /* 2176 * Do not remove this line as it makes sure all of our decisions 2177 * have been applied. Apply the update bit. 2178 */ 2179 writel(0, &sdr_scc_mgr->update); 2180 2181 return (dq_margin >= 0) && (dqs_margin >= 0); 2182 } 2183 2184 /* 2185 * calibrate the read valid prediction FIFO. 2186 * 2187 * - read valid prediction will consist of finding a good DQS enable phase, 2188 * DQS enable delay, DQS input phase, and DQS input delay. 2189 * - we also do a per-bit deskew on the DQ lines. 2190 */ 2191 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2192 uint32_t test_bgn) 2193 { 2194 uint32_t p, d, rank_bgn, sr; 2195 uint32_t dtaps_per_ptap; 2196 uint32_t bit_chk; 2197 uint32_t grp_calibrated; 2198 uint32_t write_group, write_test_bgn; 2199 uint32_t failed_substage; 2200 2201 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2202 2203 /* update info for sims */ 2204 reg_file_set_stage(CAL_STAGE_VFIFO); 2205 2206 write_group = read_group; 2207 write_test_bgn = test_bgn; 2208 2209 /* USER Determine number of delay taps for each phase tap */ 2210 dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, 2211 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; 2212 2213 /* update info for sims */ 2214 reg_file_set_group(read_group); 2215 2216 grp_calibrated = 0; 2217 2218 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2219 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2220 2221 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2222 /* 2223 * In RLDRAMX we may be messing the delay of pins in 2224 * the same write group but outside of the current read 2225 * the group, but that's ok because we haven't 2226 * calibrated output side yet. 2227 */ 2228 if (d > 0) { 2229 scc_mgr_apply_group_all_out_delay_add_all_ranks( 2230 write_group, d); 2231 } 2232 2233 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2234 p++) { 2235 /* set a particular dqdqs phase */ 2236 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2237 2238 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2239 p=%u d=%u\n", __func__, __LINE__, 2240 read_group, p, d); 2241 2242 /* 2243 * Load up the patterns used by read calibration 2244 * using current DQDQS phase. 2245 */ 2246 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2247 if (!(gbl->phy_debug_mode_flags & 2248 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2249 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2250 (read_group, 1, &bit_chk)) { 2251 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2252 __func__, __LINE__); 2253 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2254 read_group, p, d); 2255 break; 2256 } 2257 } 2258 2259 /* case:56390 */ 2260 grp_calibrated = 1; 2261 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2262 (write_group, read_group, test_bgn)) { 2263 /* 2264 * USER Read per-bit deskew can be done on a 2265 * per shadow register basis. 2266 */ 2267 for (rank_bgn = 0, sr = 0; 2268 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2269 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2270 ++sr) { 2271 /* 2272 * Determine if this set of ranks 2273 * should be skipped entirely. 2274 */ 2275 if (!param->skip_shadow_regs[sr]) { 2276 /* 2277 * If doing read after write 2278 * calibration, do not update 2279 * FOM, now - do it then. 2280 */ 2281 if (!rw_mgr_mem_calibrate_vfifo_center 2282 (rank_bgn, write_group, 2283 read_group, test_bgn, 1, 0)) { 2284 grp_calibrated = 0; 2285 failed_substage = 2286 CAL_SUBSTAGE_VFIFO_CENTER; 2287 } 2288 } 2289 } 2290 } else { 2291 grp_calibrated = 0; 2292 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2293 } 2294 } 2295 } 2296 2297 if (grp_calibrated == 0) { 2298 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2299 failed_substage); 2300 return 0; 2301 } 2302 2303 /* 2304 * Reset the delay chains back to zero if they have moved > 1 2305 * (check for > 1 because loop will increase d even when pass in 2306 * first case). 2307 */ 2308 if (d > 2) 2309 scc_mgr_zero_group(write_group, 1); 2310 2311 return 1; 2312 } 2313 2314 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2315 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2316 uint32_t test_bgn) 2317 { 2318 uint32_t rank_bgn, sr; 2319 uint32_t grp_calibrated; 2320 uint32_t write_group; 2321 2322 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2323 2324 /* update info for sims */ 2325 2326 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2327 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2328 2329 write_group = read_group; 2330 2331 /* update info for sims */ 2332 reg_file_set_group(read_group); 2333 2334 grp_calibrated = 1; 2335 /* Read per-bit deskew can be done on a per shadow register basis */ 2336 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2337 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2338 /* Determine if this set of ranks should be skipped entirely */ 2339 if (!param->skip_shadow_regs[sr]) { 2340 /* This is the last calibration round, update FOM here */ 2341 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2342 write_group, 2343 read_group, 2344 test_bgn, 0, 2345 1)) { 2346 grp_calibrated = 0; 2347 } 2348 } 2349 } 2350 2351 2352 if (grp_calibrated == 0) { 2353 set_failing_group_stage(write_group, 2354 CAL_STAGE_VFIFO_AFTER_WRITES, 2355 CAL_SUBSTAGE_VFIFO_CENTER); 2356 return 0; 2357 } 2358 2359 return 1; 2360 } 2361 2362 /* Calibrate LFIFO to find smallest read latency */ 2363 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2364 { 2365 uint32_t found_one; 2366 uint32_t bit_chk; 2367 2368 debug("%s:%d\n", __func__, __LINE__); 2369 2370 /* update info for sims */ 2371 reg_file_set_stage(CAL_STAGE_LFIFO); 2372 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2373 2374 /* Load up the patterns used by read calibration for all ranks */ 2375 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2376 found_one = 0; 2377 2378 do { 2379 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2380 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2381 __func__, __LINE__, gbl->curr_read_lat); 2382 2383 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2384 NUM_READ_TESTS, 2385 PASS_ALL_BITS, 2386 &bit_chk, 1)) { 2387 break; 2388 } 2389 2390 found_one = 1; 2391 /* reduce read latency and see if things are working */ 2392 /* correctly */ 2393 gbl->curr_read_lat--; 2394 } while (gbl->curr_read_lat > 0); 2395 2396 /* reset the fifos to get pointers to known state */ 2397 2398 writel(0, &phy_mgr_cmd->fifo_reset); 2399 2400 if (found_one) { 2401 /* add a fudge factor to the read latency that was determined */ 2402 gbl->curr_read_lat += 2; 2403 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2404 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2405 read_lat=%u\n", __func__, __LINE__, 2406 gbl->curr_read_lat); 2407 return 1; 2408 } else { 2409 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2410 CAL_SUBSTAGE_READ_LATENCY); 2411 2412 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2413 read_lat=%u\n", __func__, __LINE__, 2414 gbl->curr_read_lat); 2415 return 0; 2416 } 2417 } 2418 2419 /* 2420 * issue write test command. 2421 * two variants are provided. one that just tests a write pattern and 2422 * another that tests datamask functionality. 2423 */ 2424 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2425 uint32_t test_dm) 2426 { 2427 uint32_t mcc_instruction; 2428 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2429 ENABLE_SUPER_QUICK_CALIBRATION); 2430 uint32_t rw_wl_nop_cycles; 2431 uint32_t addr; 2432 2433 /* 2434 * Set counter and jump addresses for the right 2435 * number of NOP cycles. 2436 * The number of supported NOP cycles can range from -1 to infinity 2437 * Three different cases are handled: 2438 * 2439 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2440 * mechanism will be used to insert the right number of NOPs 2441 * 2442 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2443 * issuing the write command will jump straight to the 2444 * micro-instruction that turns on DQS (for DDRx), or outputs write 2445 * data (for RLD), skipping 2446 * the NOP micro-instruction all together 2447 * 2448 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2449 * turned on in the same micro-instruction that issues the write 2450 * command. Then we need 2451 * to directly jump to the micro-instruction that sends out the data 2452 * 2453 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2454 * (2 and 3). One jump-counter (0) is used to perform multiple 2455 * write-read operations. 2456 * one counter left to issue this command in "multiple-group" mode 2457 */ 2458 2459 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2460 2461 if (rw_wl_nop_cycles == -1) { 2462 /* 2463 * CNTR 2 - We want to execute the special write operation that 2464 * turns on DQS right away and then skip directly to the 2465 * instruction that sends out the data. We set the counter to a 2466 * large number so that the jump is always taken. 2467 */ 2468 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2469 2470 /* CNTR 3 - Not used */ 2471 if (test_dm) { 2472 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2473 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2474 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2475 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2476 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2477 } else { 2478 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2479 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2480 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2481 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2482 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2483 } 2484 } else if (rw_wl_nop_cycles == 0) { 2485 /* 2486 * CNTR 2 - We want to skip the NOP operation and go straight 2487 * to the DQS enable instruction. We set the counter to a large 2488 * number so that the jump is always taken. 2489 */ 2490 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2491 2492 /* CNTR 3 - Not used */ 2493 if (test_dm) { 2494 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2495 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2496 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2497 } else { 2498 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2499 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2500 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2501 } 2502 } else { 2503 /* 2504 * CNTR 2 - In this case we want to execute the next instruction 2505 * and NOT take the jump. So we set the counter to 0. The jump 2506 * address doesn't count. 2507 */ 2508 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2509 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2510 2511 /* 2512 * CNTR 3 - Set the nop counter to the number of cycles we 2513 * need to loop for, minus 1. 2514 */ 2515 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2516 if (test_dm) { 2517 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2518 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2519 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2520 } else { 2521 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2522 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2523 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2524 } 2525 } 2526 2527 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2528 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2529 2530 if (quick_write_mode) 2531 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2532 else 2533 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2534 2535 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2536 2537 /* 2538 * CNTR 1 - This is used to ensure enough time elapses 2539 * for read data to come back. 2540 */ 2541 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2542 2543 if (test_dm) { 2544 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2545 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2546 } else { 2547 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2548 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2549 } 2550 2551 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2552 writel(mcc_instruction, addr + (group << 2)); 2553 } 2554 2555 /* Test writes, can check for a single bit pass or multiple bit pass */ 2556 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2557 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2558 uint32_t *bit_chk, uint32_t all_ranks) 2559 { 2560 uint32_t r; 2561 uint32_t correct_mask_vg; 2562 uint32_t tmp_bit_chk; 2563 uint32_t vg; 2564 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2565 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2566 uint32_t addr_rw_mgr; 2567 uint32_t base_rw_mgr; 2568 2569 *bit_chk = param->write_correct_mask; 2570 correct_mask_vg = param->write_correct_mask_vg; 2571 2572 for (r = rank_bgn; r < rank_end; r++) { 2573 if (param->skip_ranks[r]) { 2574 /* request to skip the rank */ 2575 continue; 2576 } 2577 2578 /* set rank */ 2579 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2580 2581 tmp_bit_chk = 0; 2582 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2583 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2584 /* reset the fifos to get pointers to known state */ 2585 writel(0, &phy_mgr_cmd->fifo_reset); 2586 2587 tmp_bit_chk = tmp_bit_chk << 2588 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2589 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2590 rw_mgr_mem_calibrate_write_test_issue(write_group * 2591 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2592 use_dm); 2593 2594 base_rw_mgr = readl(addr_rw_mgr); 2595 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2596 if (vg == 0) 2597 break; 2598 } 2599 *bit_chk &= tmp_bit_chk; 2600 } 2601 2602 if (all_correct) { 2603 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2604 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2605 %u => %lu", write_group, use_dm, 2606 *bit_chk, param->write_correct_mask, 2607 (long unsigned int)(*bit_chk == 2608 param->write_correct_mask)); 2609 return *bit_chk == param->write_correct_mask; 2610 } else { 2611 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2612 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2613 write_group, use_dm, *bit_chk); 2614 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2615 (long unsigned int)(*bit_chk != 0)); 2616 return *bit_chk != 0x00; 2617 } 2618 } 2619 2620 /* 2621 * center all windows. do per-bit-deskew to possibly increase size of 2622 * certain windows. 2623 */ 2624 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2625 uint32_t write_group, uint32_t test_bgn) 2626 { 2627 uint32_t i, p, min_index; 2628 int32_t d; 2629 /* 2630 * Store these as signed since there are comparisons with 2631 * signed numbers. 2632 */ 2633 uint32_t bit_chk; 2634 uint32_t sticky_bit_chk; 2635 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2636 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2637 int32_t mid; 2638 int32_t mid_min, orig_mid_min; 2639 int32_t new_dqs, start_dqs, shift_dq; 2640 int32_t dq_margin, dqs_margin, dm_margin; 2641 uint32_t stop; 2642 uint32_t temp_dq_out1_delay; 2643 uint32_t addr; 2644 2645 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2646 2647 dm_margin = 0; 2648 2649 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2650 start_dqs = readl(addr + 2651 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2652 2653 /* per-bit deskew */ 2654 2655 /* 2656 * set the left and right edge of each bit to an illegal value 2657 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2658 */ 2659 sticky_bit_chk = 0; 2660 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2661 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2662 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2663 } 2664 2665 /* Search for the left edge of the window for each bit */ 2666 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2667 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2668 2669 writel(0, &sdr_scc_mgr->update); 2670 2671 /* 2672 * Stop searching when the read test doesn't pass AND when 2673 * we've seen a passing read on every bit. 2674 */ 2675 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2676 0, PASS_ONE_BIT, &bit_chk, 0); 2677 sticky_bit_chk = sticky_bit_chk | bit_chk; 2678 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2679 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2680 == %u && %u [bit_chk= %u ]\n", 2681 d, sticky_bit_chk, param->write_correct_mask, 2682 stop, bit_chk); 2683 2684 if (stop == 1) { 2685 break; 2686 } else { 2687 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2688 if (bit_chk & 1) { 2689 /* 2690 * Remember a passing test as the 2691 * left_edge. 2692 */ 2693 left_edge[i] = d; 2694 } else { 2695 /* 2696 * If a left edge has not been seen 2697 * yet, then a future passing test will 2698 * mark this edge as the right edge. 2699 */ 2700 if (left_edge[i] == 2701 IO_IO_OUT1_DELAY_MAX + 1) { 2702 right_edge[i] = -(d + 1); 2703 } 2704 } 2705 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2706 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2707 (int)(bit_chk & 1), i, left_edge[i]); 2708 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2709 right_edge[i]); 2710 bit_chk = bit_chk >> 1; 2711 } 2712 } 2713 } 2714 2715 /* Reset DQ delay chains to 0 */ 2716 scc_mgr_apply_group_dq_out1_delay(0); 2717 sticky_bit_chk = 0; 2718 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2719 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2720 %d right_edge[%u]: %d\n", __func__, __LINE__, 2721 i, left_edge[i], i, right_edge[i]); 2722 2723 /* 2724 * Check for cases where we haven't found the left edge, 2725 * which makes our assignment of the the right edge invalid. 2726 * Reset it to the illegal value. 2727 */ 2728 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2729 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2730 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2731 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2732 right_edge[%u]: %d\n", __func__, __LINE__, 2733 i, right_edge[i]); 2734 } 2735 2736 /* 2737 * Reset sticky bit (except for bits where we have 2738 * seen the left edge). 2739 */ 2740 sticky_bit_chk = sticky_bit_chk << 1; 2741 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2742 sticky_bit_chk = sticky_bit_chk | 1; 2743 2744 if (i == 0) 2745 break; 2746 } 2747 2748 /* Search for the right edge of the window for each bit */ 2749 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2750 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2751 d + start_dqs); 2752 2753 writel(0, &sdr_scc_mgr->update); 2754 2755 /* 2756 * Stop searching when the read test doesn't pass AND when 2757 * we've seen a passing read on every bit. 2758 */ 2759 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2760 0, PASS_ONE_BIT, &bit_chk, 0); 2761 2762 sticky_bit_chk = sticky_bit_chk | bit_chk; 2763 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2764 2765 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2766 %u && %u\n", d, sticky_bit_chk, 2767 param->write_correct_mask, stop); 2768 2769 if (stop == 1) { 2770 if (d == 0) { 2771 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2772 i++) { 2773 /* d = 0 failed, but it passed when 2774 testing the left edge, so it must be 2775 marginal, set it to -1 */ 2776 if (right_edge[i] == 2777 IO_IO_OUT1_DELAY_MAX + 1 && 2778 left_edge[i] != 2779 IO_IO_OUT1_DELAY_MAX + 1) { 2780 right_edge[i] = -1; 2781 } 2782 } 2783 } 2784 break; 2785 } else { 2786 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2787 if (bit_chk & 1) { 2788 /* 2789 * Remember a passing test as 2790 * the right_edge. 2791 */ 2792 right_edge[i] = d; 2793 } else { 2794 if (d != 0) { 2795 /* 2796 * If a right edge has not 2797 * been seen yet, then a future 2798 * passing test will mark this 2799 * edge as the left edge. 2800 */ 2801 if (right_edge[i] == 2802 IO_IO_OUT1_DELAY_MAX + 1) 2803 left_edge[i] = -(d + 1); 2804 } else { 2805 /* 2806 * d = 0 failed, but it passed 2807 * when testing the left edge, 2808 * so it must be marginal, set 2809 * it to -1. 2810 */ 2811 if (right_edge[i] == 2812 IO_IO_OUT1_DELAY_MAX + 1 && 2813 left_edge[i] != 2814 IO_IO_OUT1_DELAY_MAX + 1) 2815 right_edge[i] = -1; 2816 /* 2817 * If a right edge has not been 2818 * seen yet, then a future 2819 * passing test will mark this 2820 * edge as the left edge. 2821 */ 2822 else if (right_edge[i] == 2823 IO_IO_OUT1_DELAY_MAX + 2824 1) 2825 left_edge[i] = -(d + 1); 2826 } 2827 } 2828 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2829 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2830 (int)(bit_chk & 1), i, left_edge[i]); 2831 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2832 right_edge[i]); 2833 bit_chk = bit_chk >> 1; 2834 } 2835 } 2836 } 2837 2838 /* Check that all bits have a window */ 2839 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2840 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2841 %d right_edge[%u]: %d", __func__, __LINE__, 2842 i, left_edge[i], i, right_edge[i]); 2843 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2844 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2845 set_failing_group_stage(test_bgn + i, 2846 CAL_STAGE_WRITES, 2847 CAL_SUBSTAGE_WRITES_CENTER); 2848 return 0; 2849 } 2850 } 2851 2852 /* Find middle of window for each DQ bit */ 2853 mid_min = left_edge[0] - right_edge[0]; 2854 min_index = 0; 2855 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2856 mid = left_edge[i] - right_edge[i]; 2857 if (mid < mid_min) { 2858 mid_min = mid; 2859 min_index = i; 2860 } 2861 } 2862 2863 /* 2864 * -mid_min/2 represents the amount that we need to move DQS. 2865 * If mid_min is odd and positive we'll need to add one to 2866 * make sure the rounding in further calculations is correct 2867 * (always bias to the right), so just add 1 for all positive values. 2868 */ 2869 if (mid_min > 0) 2870 mid_min++; 2871 mid_min = mid_min / 2; 2872 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2873 __LINE__, mid_min); 2874 2875 /* Determine the amount we can change DQS (which is -mid_min) */ 2876 orig_mid_min = mid_min; 2877 new_dqs = start_dqs; 2878 mid_min = 0; 2879 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2880 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2881 /* Initialize data for export structures */ 2882 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2883 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2884 2885 /* add delay to bring centre of all DQ windows to the same "level" */ 2886 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2887 /* Use values before divide by 2 to reduce round off error */ 2888 shift_dq = (left_edge[i] - right_edge[i] - 2889 (left_edge[min_index] - right_edge[min_index]))/2 + 2890 (orig_mid_min - mid_min); 2891 2892 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2893 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2894 2895 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2896 temp_dq_out1_delay = readl(addr + (i << 2)); 2897 if (shift_dq + (int32_t)temp_dq_out1_delay > 2898 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2899 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2900 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2901 shift_dq = -(int32_t)temp_dq_out1_delay; 2902 } 2903 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2904 i, shift_dq); 2905 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2906 scc_mgr_load_dq(i); 2907 2908 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2909 left_edge[i] - shift_dq + (-mid_min), 2910 right_edge[i] + shift_dq - (-mid_min)); 2911 /* To determine values for export structures */ 2912 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2913 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2914 2915 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2916 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2917 } 2918 2919 /* Move DQS */ 2920 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2921 writel(0, &sdr_scc_mgr->update); 2922 2923 /* Centre DM */ 2924 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2925 2926 /* 2927 * set the left and right edge of each bit to an illegal value, 2928 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2929 */ 2930 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2931 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2932 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2933 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2934 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2935 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2936 int32_t win_best = 0; 2937 2938 /* Search for the/part of the window with DM shift */ 2939 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2940 scc_mgr_apply_group_dm_out1_delay(d); 2941 writel(0, &sdr_scc_mgr->update); 2942 2943 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2944 PASS_ALL_BITS, &bit_chk, 2945 0)) { 2946 /* USE Set current end of the window */ 2947 end_curr = -d; 2948 /* 2949 * If a starting edge of our window has not been seen 2950 * this is our current start of the DM window. 2951 */ 2952 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2953 bgn_curr = -d; 2954 2955 /* 2956 * If current window is bigger than best seen. 2957 * Set best seen to be current window. 2958 */ 2959 if ((end_curr-bgn_curr+1) > win_best) { 2960 win_best = end_curr-bgn_curr+1; 2961 bgn_best = bgn_curr; 2962 end_best = end_curr; 2963 } 2964 } else { 2965 /* We just saw a failing test. Reset temp edge */ 2966 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2967 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2968 } 2969 } 2970 2971 2972 /* Reset DM delay chains to 0 */ 2973 scc_mgr_apply_group_dm_out1_delay(0); 2974 2975 /* 2976 * Check to see if the current window nudges up aganist 0 delay. 2977 * If so we need to continue the search by shifting DQS otherwise DQS 2978 * search begins as a new search. */ 2979 if (end_curr != 0) { 2980 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2981 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2982 } 2983 2984 /* Search for the/part of the window with DQS shifts */ 2985 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 2986 /* 2987 * Note: This only shifts DQS, so are we limiting ourselve to 2988 * width of DQ unnecessarily. 2989 */ 2990 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2991 d + new_dqs); 2992 2993 writel(0, &sdr_scc_mgr->update); 2994 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2995 PASS_ALL_BITS, &bit_chk, 2996 0)) { 2997 /* USE Set current end of the window */ 2998 end_curr = d; 2999 /* 3000 * If a beginning edge of our window has not been seen 3001 * this is our current begin of the DM window. 3002 */ 3003 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3004 bgn_curr = d; 3005 3006 /* 3007 * If current window is bigger than best seen. Set best 3008 * seen to be current window. 3009 */ 3010 if ((end_curr-bgn_curr+1) > win_best) { 3011 win_best = end_curr-bgn_curr+1; 3012 bgn_best = bgn_curr; 3013 end_best = end_curr; 3014 } 3015 } else { 3016 /* We just saw a failing test. Reset temp edge */ 3017 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3018 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3019 3020 /* Early exit optimization: if ther remaining delay 3021 chain space is less than already seen largest window 3022 we can exit */ 3023 if ((win_best-1) > 3024 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3025 break; 3026 } 3027 } 3028 } 3029 3030 /* assign left and right edge for cal and reporting; */ 3031 left_edge[0] = -1*bgn_best; 3032 right_edge[0] = end_best; 3033 3034 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3035 __LINE__, left_edge[0], right_edge[0]); 3036 3037 /* Move DQS (back to orig) */ 3038 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3039 3040 /* Move DM */ 3041 3042 /* Find middle of window for the DM bit */ 3043 mid = (left_edge[0] - right_edge[0]) / 2; 3044 3045 /* only move right, since we are not moving DQS/DQ */ 3046 if (mid < 0) 3047 mid = 0; 3048 3049 /* dm_marign should fail if we never find a window */ 3050 if (win_best == 0) 3051 dm_margin = -1; 3052 else 3053 dm_margin = left_edge[0] - mid; 3054 3055 scc_mgr_apply_group_dm_out1_delay(mid); 3056 writel(0, &sdr_scc_mgr->update); 3057 3058 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3059 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3060 right_edge[0], mid, dm_margin); 3061 /* Export values */ 3062 gbl->fom_out += dq_margin + dqs_margin; 3063 3064 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3065 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3066 dq_margin, dqs_margin, dm_margin); 3067 3068 /* 3069 * Do not remove this line as it makes sure all of our 3070 * decisions have been applied. 3071 */ 3072 writel(0, &sdr_scc_mgr->update); 3073 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3074 } 3075 3076 /* calibrate the write operations */ 3077 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3078 uint32_t test_bgn) 3079 { 3080 /* update info for sims */ 3081 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3082 3083 reg_file_set_stage(CAL_STAGE_WRITES); 3084 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3085 3086 reg_file_set_group(g); 3087 3088 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3089 set_failing_group_stage(g, CAL_STAGE_WRITES, 3090 CAL_SUBSTAGE_WRITES_CENTER); 3091 return 0; 3092 } 3093 3094 return 1; 3095 } 3096 3097 /** 3098 * mem_precharge_and_activate() - Precharge all banks and activate 3099 * 3100 * Precharge all banks and activate row 0 in bank "000..." and bank "111...". 3101 */ 3102 static void mem_precharge_and_activate(void) 3103 { 3104 int r; 3105 3106 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3107 /* Test if the rank should be skipped. */ 3108 if (param->skip_ranks[r]) 3109 continue; 3110 3111 /* Set rank. */ 3112 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3113 3114 /* Precharge all banks. */ 3115 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3116 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3117 3118 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3119 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3120 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3121 3122 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3123 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3124 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3125 3126 /* Activate rows. */ 3127 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3128 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3129 } 3130 } 3131 3132 /** 3133 * mem_init_latency() - Configure memory RLAT and WLAT settings 3134 * 3135 * Configure memory RLAT and WLAT parameters. 3136 */ 3137 static void mem_init_latency(void) 3138 { 3139 /* 3140 * For AV/CV, LFIFO is hardened and always runs at full rate 3141 * so max latency in AFI clocks, used here, is correspondingly 3142 * smaller. 3143 */ 3144 const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; 3145 u32 rlat, wlat; 3146 3147 debug("%s:%d\n", __func__, __LINE__); 3148 3149 /* 3150 * Read in write latency. 3151 * WL for Hard PHY does not include additive latency. 3152 */ 3153 wlat = readl(&data_mgr->t_wl_add); 3154 wlat += readl(&data_mgr->mem_t_add); 3155 3156 gbl->rw_wl_nop_cycles = wlat - 1; 3157 3158 /* Read in readl latency. */ 3159 rlat = readl(&data_mgr->t_rl_add); 3160 3161 /* Set a pretty high read latency initially. */ 3162 gbl->curr_read_lat = rlat + 16; 3163 if (gbl->curr_read_lat > max_latency) 3164 gbl->curr_read_lat = max_latency; 3165 3166 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3167 3168 /* Advertise write latency. */ 3169 writel(wlat, &phy_mgr_cfg->afi_wlat); 3170 } 3171 3172 /** 3173 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings 3174 * 3175 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. 3176 */ 3177 static void mem_skip_calibrate(void) 3178 { 3179 uint32_t vfifo_offset; 3180 uint32_t i, j, r; 3181 3182 debug("%s:%d\n", __func__, __LINE__); 3183 /* Need to update every shadow register set used by the interface */ 3184 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3185 r += NUM_RANKS_PER_SHADOW_REG) { 3186 /* 3187 * Set output phase alignment settings appropriate for 3188 * skip calibration. 3189 */ 3190 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3191 scc_mgr_set_dqs_en_phase(i, 0); 3192 #if IO_DLL_CHAIN_LENGTH == 6 3193 scc_mgr_set_dqdqs_output_phase(i, 6); 3194 #else 3195 scc_mgr_set_dqdqs_output_phase(i, 7); 3196 #endif 3197 /* 3198 * Case:33398 3199 * 3200 * Write data arrives to the I/O two cycles before write 3201 * latency is reached (720 deg). 3202 * -> due to bit-slip in a/c bus 3203 * -> to allow board skew where dqs is longer than ck 3204 * -> how often can this happen!? 3205 * -> can claim back some ptaps for high freq 3206 * support if we can relax this, but i digress... 3207 * 3208 * The write_clk leads mem_ck by 90 deg 3209 * The minimum ptap of the OPA is 180 deg 3210 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3211 * The write_clk is always delayed by 2 ptaps 3212 * 3213 * Hence, to make DQS aligned to CK, we need to delay 3214 * DQS by: 3215 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3216 * 3217 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3218 * gives us the number of ptaps, which simplies to: 3219 * 3220 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3221 */ 3222 scc_mgr_set_dqdqs_output_phase(i, 3223 1.25 * IO_DLL_CHAIN_LENGTH - 2); 3224 } 3225 writel(0xff, &sdr_scc_mgr->dqs_ena); 3226 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3227 3228 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3229 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3230 SCC_MGR_GROUP_COUNTER_OFFSET); 3231 } 3232 writel(0xff, &sdr_scc_mgr->dq_ena); 3233 writel(0xff, &sdr_scc_mgr->dm_ena); 3234 writel(0, &sdr_scc_mgr->update); 3235 } 3236 3237 /* Compensate for simulation model behaviour */ 3238 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3239 scc_mgr_set_dqs_bus_in_delay(i, 10); 3240 scc_mgr_load_dqs(i); 3241 } 3242 writel(0, &sdr_scc_mgr->update); 3243 3244 /* 3245 * ArriaV has hard FIFOs that can only be initialized by incrementing 3246 * in sequencer. 3247 */ 3248 vfifo_offset = CALIB_VFIFO_OFFSET; 3249 for (j = 0; j < vfifo_offset; j++) 3250 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3251 writel(0, &phy_mgr_cmd->fifo_reset); 3252 3253 /* 3254 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal 3255 * setting from generation-time constant. 3256 */ 3257 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3258 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3259 } 3260 3261 /** 3262 * mem_calibrate() - Memory calibration entry point. 3263 * 3264 * Perform memory calibration. 3265 */ 3266 static uint32_t mem_calibrate(void) 3267 { 3268 uint32_t i; 3269 uint32_t rank_bgn, sr; 3270 uint32_t write_group, write_test_bgn; 3271 uint32_t read_group, read_test_bgn; 3272 uint32_t run_groups, current_run; 3273 uint32_t failing_groups = 0; 3274 uint32_t group_failed = 0; 3275 3276 const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 3277 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 3278 3279 debug("%s:%d\n", __func__, __LINE__); 3280 3281 /* Initialize the data settings */ 3282 gbl->error_substage = CAL_SUBSTAGE_NIL; 3283 gbl->error_stage = CAL_STAGE_NIL; 3284 gbl->error_group = 0xff; 3285 gbl->fom_in = 0; 3286 gbl->fom_out = 0; 3287 3288 /* Initialize WLAT and RLAT. */ 3289 mem_init_latency(); 3290 3291 /* Initialize bit slips. */ 3292 mem_precharge_and_activate(); 3293 3294 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3295 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3296 SCC_MGR_GROUP_COUNTER_OFFSET); 3297 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 3298 if (i == 0) 3299 scc_mgr_set_hhp_extras(); 3300 3301 scc_set_bypass_mode(i); 3302 } 3303 3304 /* Calibration is skipped. */ 3305 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3306 /* 3307 * Set VFIFO and LFIFO to instant-on settings in skip 3308 * calibration mode. 3309 */ 3310 mem_skip_calibrate(); 3311 3312 /* 3313 * Do not remove this line as it makes sure all of our 3314 * decisions have been applied. 3315 */ 3316 writel(0, &sdr_scc_mgr->update); 3317 return 1; 3318 } 3319 3320 /* Calibration is not skipped. */ 3321 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3322 /* 3323 * Zero all delay chain/phase settings for all 3324 * groups and all shadow register sets. 3325 */ 3326 scc_mgr_zero_all(); 3327 3328 run_groups = ~param->skip_groups; 3329 3330 for (write_group = 0, write_test_bgn = 0; write_group 3331 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3332 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3333 3334 /* Initialize the group failure */ 3335 group_failed = 0; 3336 3337 current_run = run_groups & ((1 << 3338 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3339 run_groups = run_groups >> 3340 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3341 3342 if (current_run == 0) 3343 continue; 3344 3345 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3346 SCC_MGR_GROUP_COUNTER_OFFSET); 3347 scc_mgr_zero_group(write_group, 0); 3348 3349 for (read_group = write_group * rwdqs_ratio, 3350 read_test_bgn = 0; 3351 read_group < (write_group + 1) * rwdqs_ratio; 3352 read_group++, 3353 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3354 if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) 3355 continue; 3356 3357 /* Calibrate the VFIFO */ 3358 if (rw_mgr_mem_calibrate_vfifo(read_group, 3359 read_test_bgn)) 3360 continue; 3361 3362 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3363 return 0; 3364 3365 /* The group failed, we're done. */ 3366 goto grp_failed; 3367 } 3368 3369 /* Calibrate the output side */ 3370 for (rank_bgn = 0, sr = 0; 3371 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 3372 rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { 3373 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3374 continue; 3375 3376 /* Not needed in quick mode! */ 3377 if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) 3378 continue; 3379 3380 /* 3381 * Determine if this set of ranks 3382 * should be skipped entirely. 3383 */ 3384 if (param->skip_shadow_regs[sr]) 3385 continue; 3386 3387 /* Calibrate WRITEs */ 3388 if (rw_mgr_mem_calibrate_writes(rank_bgn, 3389 write_group, write_test_bgn)) 3390 continue; 3391 3392 group_failed = 1; 3393 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3394 return 0; 3395 } 3396 3397 /* Some group failed, we're done. */ 3398 if (group_failed) 3399 goto grp_failed; 3400 3401 for (read_group = write_group * rwdqs_ratio, 3402 read_test_bgn = 0; 3403 read_group < (write_group + 1) * rwdqs_ratio; 3404 read_group++, 3405 read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { 3406 if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) 3407 continue; 3408 3409 if (rw_mgr_mem_calibrate_vfifo_end(read_group, 3410 read_test_bgn)) 3411 continue; 3412 3413 if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) 3414 return 0; 3415 3416 /* The group failed, we're done. */ 3417 goto grp_failed; 3418 } 3419 3420 /* No group failed, continue as usual. */ 3421 continue; 3422 3423 grp_failed: /* A group failed, increment the counter. */ 3424 failing_groups++; 3425 } 3426 3427 /* 3428 * USER If there are any failing groups then report 3429 * the failure. 3430 */ 3431 if (failing_groups != 0) 3432 return 0; 3433 3434 if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) 3435 continue; 3436 3437 /* 3438 * If we're skipping groups as part of debug, 3439 * don't calibrate LFIFO. 3440 */ 3441 if (param->skip_groups != 0) 3442 continue; 3443 3444 /* Calibrate the LFIFO */ 3445 if (!rw_mgr_mem_calibrate_lfifo()) 3446 return 0; 3447 } 3448 3449 /* 3450 * Do not remove this line as it makes sure all of our decisions 3451 * have been applied. 3452 */ 3453 writel(0, &sdr_scc_mgr->update); 3454 return 1; 3455 } 3456 3457 /** 3458 * run_mem_calibrate() - Perform memory calibration 3459 * 3460 * This function triggers the entire memory calibration procedure. 3461 */ 3462 static int run_mem_calibrate(void) 3463 { 3464 int pass; 3465 3466 debug("%s:%d\n", __func__, __LINE__); 3467 3468 /* Reset pass/fail status shown on afi_cal_success/fail */ 3469 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3470 3471 /* Stop tracking manager. */ 3472 clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3473 3474 phy_mgr_initialize(); 3475 rw_mgr_mem_initialize(); 3476 3477 /* Perform the actual memory calibration. */ 3478 pass = mem_calibrate(); 3479 3480 mem_precharge_and_activate(); 3481 writel(0, &phy_mgr_cmd->fifo_reset); 3482 3483 /* Handoff. */ 3484 rw_mgr_mem_handoff(); 3485 /* 3486 * In Hard PHY this is a 2-bit control: 3487 * 0: AFI Mux Select 3488 * 1: DDIO Mux Select 3489 */ 3490 writel(0x2, &phy_mgr_cfg->mux_sel); 3491 3492 /* Start tracking manager. */ 3493 setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); 3494 3495 return pass; 3496 } 3497 3498 /** 3499 * debug_mem_calibrate() - Report result of memory calibration 3500 * @pass: Value indicating whether calibration passed or failed 3501 * 3502 * This function reports the results of the memory calibration 3503 * and writes debug information into the register file. 3504 */ 3505 static void debug_mem_calibrate(int pass) 3506 { 3507 uint32_t debug_info; 3508 3509 if (pass) { 3510 printf("%s: CALIBRATION PASSED\n", __FILE__); 3511 3512 gbl->fom_in /= 2; 3513 gbl->fom_out /= 2; 3514 3515 if (gbl->fom_in > 0xff) 3516 gbl->fom_in = 0xff; 3517 3518 if (gbl->fom_out > 0xff) 3519 gbl->fom_out = 0xff; 3520 3521 /* Update the FOM in the register file */ 3522 debug_info = gbl->fom_in; 3523 debug_info |= gbl->fom_out << 8; 3524 writel(debug_info, &sdr_reg_file->fom); 3525 3526 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3527 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3528 } else { 3529 printf("%s: CALIBRATION FAILED\n", __FILE__); 3530 3531 debug_info = gbl->error_stage; 3532 debug_info |= gbl->error_substage << 8; 3533 debug_info |= gbl->error_group << 16; 3534 3535 writel(debug_info, &sdr_reg_file->failing_stage); 3536 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3537 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3538 3539 /* Update the failing group/stage in the register file */ 3540 debug_info = gbl->error_stage; 3541 debug_info |= gbl->error_substage << 8; 3542 debug_info |= gbl->error_group << 16; 3543 writel(debug_info, &sdr_reg_file->failing_stage); 3544 } 3545 3546 printf("%s: Calibration complete\n", __FILE__); 3547 } 3548 3549 /** 3550 * hc_initialize_rom_data() - Initialize ROM data 3551 * 3552 * Initialize ROM data. 3553 */ 3554 static void hc_initialize_rom_data(void) 3555 { 3556 u32 i, addr; 3557 3558 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3559 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3560 writel(inst_rom_init[i], addr + (i << 2)); 3561 3562 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3563 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3564 writel(ac_rom_init[i], addr + (i << 2)); 3565 } 3566 3567 /** 3568 * initialize_reg_file() - Initialize SDR register file 3569 * 3570 * Initialize SDR register file. 3571 */ 3572 static void initialize_reg_file(void) 3573 { 3574 /* Initialize the register file with the correct data */ 3575 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3576 writel(0, &sdr_reg_file->debug_data_addr); 3577 writel(0, &sdr_reg_file->cur_stage); 3578 writel(0, &sdr_reg_file->fom); 3579 writel(0, &sdr_reg_file->failing_stage); 3580 writel(0, &sdr_reg_file->debug1); 3581 writel(0, &sdr_reg_file->debug2); 3582 } 3583 3584 /** 3585 * initialize_hps_phy() - Initialize HPS PHY 3586 * 3587 * Initialize HPS PHY. 3588 */ 3589 static void initialize_hps_phy(void) 3590 { 3591 uint32_t reg; 3592 /* 3593 * Tracking also gets configured here because it's in the 3594 * same register. 3595 */ 3596 uint32_t trk_sample_count = 7500; 3597 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3598 /* 3599 * Format is number of outer loops in the 16 MSB, sample 3600 * count in 16 LSB. 3601 */ 3602 3603 reg = 0; 3604 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3605 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3606 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3607 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3608 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3609 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3610 /* 3611 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3612 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3613 */ 3614 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3615 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3616 trk_sample_count); 3617 writel(reg, &sdr_ctrl->phy_ctrl0); 3618 3619 reg = 0; 3620 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3621 trk_sample_count >> 3622 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3623 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3624 trk_long_idle_sample_count); 3625 writel(reg, &sdr_ctrl->phy_ctrl1); 3626 3627 reg = 0; 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3629 trk_long_idle_sample_count >> 3630 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3631 writel(reg, &sdr_ctrl->phy_ctrl2); 3632 } 3633 3634 /** 3635 * initialize_tracking() - Initialize tracking 3636 * 3637 * Initialize the register file with usable initial data. 3638 */ 3639 static void initialize_tracking(void) 3640 { 3641 /* 3642 * Initialize the register file with the correct data. 3643 * Compute usable version of value in case we skip full 3644 * computation later. 3645 */ 3646 writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, 3647 &sdr_reg_file->dtaps_per_ptap); 3648 3649 /* trk_sample_count */ 3650 writel(7500, &sdr_reg_file->trk_sample_count); 3651 3652 /* longidle outer loop [15:0] */ 3653 writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); 3654 3655 /* 3656 * longidle sample count [31:24] 3657 * trfc, worst case of 933Mhz 4Gb [23:16] 3658 * trcd, worst case [15:8] 3659 * vfifo wait [7:0] 3660 */ 3661 writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), 3662 &sdr_reg_file->delays); 3663 3664 /* mux delay */ 3665 writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | 3666 (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), 3667 &sdr_reg_file->trk_rw_mgr_addr); 3668 3669 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, 3670 &sdr_reg_file->trk_read_dqs_width); 3671 3672 /* trefi [7:0] */ 3673 writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), 3674 &sdr_reg_file->trk_rfsh); 3675 } 3676 3677 int sdram_calibration_full(void) 3678 { 3679 struct param_type my_param; 3680 struct gbl_type my_gbl; 3681 uint32_t pass; 3682 3683 memset(&my_param, 0, sizeof(my_param)); 3684 memset(&my_gbl, 0, sizeof(my_gbl)); 3685 3686 param = &my_param; 3687 gbl = &my_gbl; 3688 3689 /* Set the calibration enabled by default */ 3690 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3691 /* 3692 * Only sweep all groups (regardless of fail state) by default 3693 * Set enabled read test by default. 3694 */ 3695 #if DISABLE_GUARANTEED_READ 3696 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3697 #endif 3698 /* Initialize the register file */ 3699 initialize_reg_file(); 3700 3701 /* Initialize any PHY CSR */ 3702 initialize_hps_phy(); 3703 3704 scc_mgr_initialize(); 3705 3706 initialize_tracking(); 3707 3708 printf("%s: Preparing to start memory calibration\n", __FILE__); 3709 3710 debug("%s:%d\n", __func__, __LINE__); 3711 debug_cond(DLEVEL == 1, 3712 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3713 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3714 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3715 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3716 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3717 debug_cond(DLEVEL == 1, 3718 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3719 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3720 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3721 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3722 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3723 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3724 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3725 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3726 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3727 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3728 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3729 IO_IO_OUT2_DELAY_MAX); 3730 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3731 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3732 3733 hc_initialize_rom_data(); 3734 3735 /* update info for sims */ 3736 reg_file_set_stage(CAL_STAGE_NIL); 3737 reg_file_set_group(0); 3738 3739 /* 3740 * Load global needed for those actions that require 3741 * some dynamic calibration support. 3742 */ 3743 dyn_calib_steps = STATIC_CALIB_STEPS; 3744 /* 3745 * Load global to allow dynamic selection of delay loop settings 3746 * based on calibration mode. 3747 */ 3748 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3749 skip_delay_mask = 0xff; 3750 else 3751 skip_delay_mask = 0x0; 3752 3753 pass = run_mem_calibrate(); 3754 debug_mem_calibrate(pass); 3755 return pass; 3756 } 3757