xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 32675249600d817b5b5cc9f07eb7349a3845bc8a)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
17 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
18 
19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
20 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
21 
22 static struct socfpga_sdr_reg_file *sdr_reg_file =
23 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
24 
25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
26 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
27 
28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
29 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
30 
31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
32 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
33 
34 static struct socfpga_data_mgr *data_mgr =
35 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
36 
37 static struct socfpga_sdr_ctrl *sdr_ctrl =
38 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
39 
40 #define DELTA_D		1
41 
42 /*
43  * In order to reduce ROM size, most of the selectable calibration steps are
44  * decided at compile time based on the user's calibration mode selection,
45  * as captured by the STATIC_CALIB_STEPS selection below.
46  *
47  * However, to support simulation-time selection of fast simulation mode, where
48  * we skip everything except the bare minimum, we need a few of the steps to
49  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
50  * check, which is based on the rtl-supplied value, or we dynamically compute
51  * the value to use based on the dynamically-chosen calibration mode
52  */
53 
54 #define DLEVEL 0
55 #define STATIC_IN_RTL_SIM 0
56 #define STATIC_SKIP_DELAY_LOOPS 0
57 
58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
59 	STATIC_SKIP_DELAY_LOOPS)
60 
61 /* calibration steps requested by the rtl */
62 uint16_t dyn_calib_steps;
63 
64 /*
65  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
66  * instead of static, we use boolean logic to select between
67  * non-skip and skip values
68  *
69  * The mask is set to include all bits when not-skipping, but is
70  * zero when skipping
71  */
72 
73 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
74 
75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
76 	((non_skip_value) & skip_delay_mask)
77 
78 struct gbl_type *gbl;
79 struct param_type *param;
80 uint32_t curr_shadow_reg;
81 
82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
83 	uint32_t write_group, uint32_t use_dm,
84 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
85 
86 static void set_failing_group_stage(uint32_t group, uint32_t stage,
87 	uint32_t substage)
88 {
89 	/*
90 	 * Only set the global stage if there was not been any other
91 	 * failing group
92 	 */
93 	if (gbl->error_stage == CAL_STAGE_NIL)	{
94 		gbl->error_substage = substage;
95 		gbl->error_stage = stage;
96 		gbl->error_group = group;
97 	}
98 }
99 
100 static void reg_file_set_group(u16 set_group)
101 {
102 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
103 }
104 
105 static void reg_file_set_stage(u8 set_stage)
106 {
107 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
108 }
109 
110 static void reg_file_set_sub_stage(u8 set_sub_stage)
111 {
112 	set_sub_stage &= 0xff;
113 	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
114 }
115 
116 static void initialize(void)
117 {
118 	debug("%s:%d\n", __func__, __LINE__);
119 	/* USER calibration has control over path to memory */
120 	/*
121 	 * In Hard PHY this is a 2-bit control:
122 	 * 0: AFI Mux Select
123 	 * 1: DDIO Mux Select
124 	 */
125 	writel(0x3, &phy_mgr_cfg->mux_sel);
126 
127 	/* USER memory clock is not stable we begin initialization  */
128 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
129 
130 	/* USER calibration status all set to zero */
131 	writel(0, &phy_mgr_cfg->cal_status);
132 
133 	writel(0, &phy_mgr_cfg->cal_debug_info);
134 
135 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
136 		param->read_correct_mask_vg  = ((uint32_t)1 <<
137 			(RW_MGR_MEM_DQ_PER_READ_DQS /
138 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
139 		param->write_correct_mask_vg = ((uint32_t)1 <<
140 			(RW_MGR_MEM_DQ_PER_READ_DQS /
141 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
142 		param->read_correct_mask     = ((uint32_t)1 <<
143 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
144 		param->write_correct_mask    = ((uint32_t)1 <<
145 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
146 		param->dm_correct_mask       = ((uint32_t)1 <<
147 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
148 			- 1;
149 	}
150 }
151 
152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
153 {
154 	uint32_t odt_mask_0 = 0;
155 	uint32_t odt_mask_1 = 0;
156 	uint32_t cs_and_odt_mask;
157 
158 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
159 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
160 			/*
161 			 * 1 Rank
162 			 * Read: ODT = 0
163 			 * Write: ODT = 1
164 			 */
165 			odt_mask_0 = 0x0;
166 			odt_mask_1 = 0x1;
167 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
168 			/* 2 Ranks */
169 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
170 				/* - Dual-Slot , Single-Rank
171 				 * (1 chip-select per DIMM)
172 				 * OR
173 				 * - RDIMM, 4 total CS (2 CS per DIMM)
174 				 * means 2 DIMM
175 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
176 				 * both single rank
177 				 * with 2 CS each (special for RDIMM)
178 				 * Read: Turn on ODT on the opposite rank
179 				 * Write: Turn on ODT on all ranks
180 				 */
181 				odt_mask_0 = 0x3 & ~(1 << rank);
182 				odt_mask_1 = 0x3;
183 			} else {
184 				/*
185 				 * USER - Single-Slot , Dual-rank DIMMs
186 				 * (2 chip-selects per DIMM)
187 				 * USER Read: Turn on ODT off on all ranks
188 				 * USER Write: Turn on ODT on active rank
189 				 */
190 				odt_mask_0 = 0x0;
191 				odt_mask_1 = 0x3 & (1 << rank);
192 			}
193 		} else {
194 			/* 4 Ranks
195 			 * Read:
196 			 * ----------+-----------------------+
197 			 *           |                       |
198 			 *           |         ODT           |
199 			 * Read From +-----------------------+
200 			 *   Rank    |  3  |  2  |  1  |  0  |
201 			 * ----------+-----+-----+-----+-----+
202 			 *     0     |  0  |  1  |  0  |  0  |
203 			 *     1     |  1  |  0  |  0  |  0  |
204 			 *     2     |  0  |  0  |  0  |  1  |
205 			 *     3     |  0  |  0  |  1  |  0  |
206 			 * ----------+-----+-----+-----+-----+
207 			 *
208 			 * Write:
209 			 * ----------+-----------------------+
210 			 *           |                       |
211 			 *           |         ODT           |
212 			 * Write To  +-----------------------+
213 			 *   Rank    |  3  |  2  |  1  |  0  |
214 			 * ----------+-----+-----+-----+-----+
215 			 *     0     |  0  |  1  |  0  |  1  |
216 			 *     1     |  1  |  0  |  1  |  0  |
217 			 *     2     |  0  |  1  |  0  |  1  |
218 			 *     3     |  1  |  0  |  1  |  0  |
219 			 * ----------+-----+-----+-----+-----+
220 			 */
221 			switch (rank) {
222 			case 0:
223 				odt_mask_0 = 0x4;
224 				odt_mask_1 = 0x5;
225 				break;
226 			case 1:
227 				odt_mask_0 = 0x8;
228 				odt_mask_1 = 0xA;
229 				break;
230 			case 2:
231 				odt_mask_0 = 0x1;
232 				odt_mask_1 = 0x5;
233 				break;
234 			case 3:
235 				odt_mask_0 = 0x2;
236 				odt_mask_1 = 0xA;
237 				break;
238 			}
239 		}
240 	} else {
241 		odt_mask_0 = 0x0;
242 		odt_mask_1 = 0x0;
243 	}
244 
245 	cs_and_odt_mask =
246 		(0xFF & ~(1 << rank)) |
247 		((0xFF & odt_mask_0) << 8) |
248 		((0xFF & odt_mask_1) << 16);
249 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
250 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
251 }
252 
253 /**
254  * scc_mgr_set() - Set SCC Manager register
255  * @off:	Base offset in SCC Manager space
256  * @grp:	Read/Write group
257  * @val:	Value to be set
258  *
259  * This function sets the SCC Manager (Scan Chain Control Manager) register.
260  */
261 static void scc_mgr_set(u32 off, u32 grp, u32 val)
262 {
263 	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
264 }
265 
266 /**
267  * scc_mgr_initialize() - Initialize SCC Manager registers
268  *
269  * Initialize SCC Manager registers.
270  */
271 static void scc_mgr_initialize(void)
272 {
273 	/*
274 	 * Clear register file for HPS. 16 (2^4) is the size of the
275 	 * full register file in the scc mgr:
276 	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
277 	 *                             MEM_IF_READ_DQS_WIDTH - 1);
278 	 */
279 	int i;
280 
281 	for (i = 0; i < 16; i++) {
282 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
283 			   __func__, __LINE__, i);
284 		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i);
285 	}
286 }
287 
288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
289 {
290 	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
291 }
292 
293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
294 {
295 	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
296 }
297 
298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
299 {
300 	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
301 }
302 
303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
304 {
305 	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
306 }
307 
308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay)
309 {
310 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
311 		    delay);
312 }
313 
314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay)
315 {
316 	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
317 }
318 
319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay)
320 {
321 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
322 }
323 
324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay)
325 {
326 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS,
327 		    delay);
328 }
329 
330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay)
331 {
332 	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
333 		    RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm,
334 		    delay);
335 }
336 
337 /* load up dqs config settings */
338 static void scc_mgr_load_dqs(uint32_t dqs)
339 {
340 	writel(dqs, &sdr_scc_mgr->dqs_ena);
341 }
342 
343 /* load up dqs io config settings */
344 static void scc_mgr_load_dqs_io(void)
345 {
346 	writel(0, &sdr_scc_mgr->dqs_io_ena);
347 }
348 
349 /* load up dq config settings */
350 static void scc_mgr_load_dq(uint32_t dq_in_group)
351 {
352 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
353 }
354 
355 /* load up dm config settings */
356 static void scc_mgr_load_dm(uint32_t dm)
357 {
358 	writel(dm, &sdr_scc_mgr->dm_ena);
359 }
360 
361 /**
362  * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
363  * @off:	Base offset in SCC Manager space
364  * @grp:	Read/Write group
365  * @val:	Value to be set
366  * @update:	If non-zero, trigger SCC Manager update for all ranks
367  *
368  * This function sets the SCC Manager (Scan Chain Control Manager) register
369  * and optionally triggers the SCC update for all ranks.
370  */
371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
372 				  const int update)
373 {
374 	u32 r;
375 
376 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
377 	     r += NUM_RANKS_PER_SHADOW_REG) {
378 		scc_mgr_set(off, grp, val);
379 
380 		if (update || (r == 0)) {
381 			writel(grp, &sdr_scc_mgr->dqs_ena);
382 			writel(0, &sdr_scc_mgr->update);
383 		}
384 	}
385 }
386 
387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
388 {
389 	/*
390 	 * USER although the h/w doesn't support different phases per
391 	 * shadow register, for simplicity our scc manager modeling
392 	 * keeps different phase settings per shadow reg, and it's
393 	 * important for us to keep them in sync to match h/w.
394 	 * for efficiency, the scan chain update should occur only
395 	 * once to sr0.
396 	 */
397 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
398 			      read_group, phase, 0);
399 }
400 
401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
402 						     uint32_t phase)
403 {
404 	/*
405 	 * USER although the h/w doesn't support different phases per
406 	 * shadow register, for simplicity our scc manager modeling
407 	 * keeps different phase settings per shadow reg, and it's
408 	 * important for us to keep them in sync to match h/w.
409 	 * for efficiency, the scan chain update should occur only
410 	 * once to sr0.
411 	 */
412 	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
413 			      write_group, phase, 0);
414 }
415 
416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
417 					       uint32_t delay)
418 {
419 	/*
420 	 * In shadow register mode, the T11 settings are stored in
421 	 * registers in the core, which are updated by the DQS_ENA
422 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 	 * save lots of rank switching overhead, by calling
424 	 * select_shadow_regs_for_update with update_scan_chains
425 	 * set to 0.
426 	 */
427 	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
428 			      read_group, delay, 1);
429 	writel(0, &sdr_scc_mgr->update);
430 }
431 
432 /**
433  * scc_mgr_set_oct_out1_delay() - Set OCT output delay
434  * @write_group:	Write group
435  * @delay:		Delay value
436  *
437  * This function sets the OCT output delay in SCC manager.
438  */
439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
440 {
441 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
442 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
443 	const int base = write_group * ratio;
444 	int i;
445 	/*
446 	 * Load the setting in the SCC manager
447 	 * Although OCT affects only write data, the OCT delay is controlled
448 	 * by the DQS logic block which is instantiated once per read group.
449 	 * For protocols where a write group consists of multiple read groups,
450 	 * the setting must be set multiple times.
451 	 */
452 	for (i = 0; i < ratio; i++)
453 		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
454 }
455 
456 static void scc_mgr_set_hhp_extras(void)
457 {
458 	/*
459 	 * Load the fixed setting in the SCC manager
460 	 * bits: 0:0 = 1'b1   - dqs bypass
461 	 * bits: 1:1 = 1'b1   - dq bypass
462 	 * bits: 4:2 = 3'b001   - rfifo_mode
463 	 * bits: 6:5 = 2'b01  - rfifo clock_select
464 	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
465 	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
466 	 */
467 	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
468 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
469 
470 	writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
471 }
472 
473 /*
474  * USER Zero all DQS config
475  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
476  */
477 static void scc_mgr_zero_all(void)
478 {
479 	uint32_t i, r;
480 
481 	/*
482 	 * USER Zero all DQS config settings, across all groups and all
483 	 * shadow registers
484 	 */
485 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
486 	     NUM_RANKS_PER_SHADOW_REG) {
487 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
488 			/*
489 			 * The phases actually don't exist on a per-rank basis,
490 			 * but there's no harm updating them several times, so
491 			 * let's keep the code simple.
492 			 */
493 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
494 			scc_mgr_set_dqs_en_phase(i, 0);
495 			scc_mgr_set_dqs_en_delay(i, 0);
496 		}
497 
498 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
499 			scc_mgr_set_dqdqs_output_phase(i, 0);
500 			/* av/cv don't have out2 */
501 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
502 		}
503 	}
504 
505 	/* multicast to all DQS group enables */
506 	writel(0xff, &sdr_scc_mgr->dqs_ena);
507 	writel(0, &sdr_scc_mgr->update);
508 }
509 
510 /**
511  * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
512  * @write_group:	Write group
513  *
514  * Set bypass mode and trigger SCC update.
515  */
516 static void scc_set_bypass_mode(const u32 write_group)
517 {
518 	/* Only needed once to set all groups, pins, DQ, DQS, DM. */
519 	if (write_group == 0) {
520 		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
521 			   __LINE__);
522 		scc_mgr_set_hhp_extras();
523 		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
524 			  __func__, __LINE__);
525 	}
526 
527 	/* Multicast to all DQ enables. */
528 	writel(0xff, &sdr_scc_mgr->dq_ena);
529 	writel(0xff, &sdr_scc_mgr->dm_ena);
530 
531 	/* Update current DQS IO enable. */
532 	writel(0, &sdr_scc_mgr->dqs_io_ena);
533 
534 	/* Update the DQS logic. */
535 	writel(write_group, &sdr_scc_mgr->dqs_ena);
536 
537 	/* Hit update. */
538 	writel(0, &sdr_scc_mgr->update);
539 }
540 
541 /**
542  * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
543  * @write_group:	Write group
544  *
545  * Load DQS settings for Write Group, do not trigger SCC update.
546  */
547 static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
548 {
549 	const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH /
550 			  RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
551 	const int base = write_group * ratio;
552 	int i;
553 	/*
554 	 * Load the setting in the SCC manager
555 	 * Although OCT affects only write data, the OCT delay is controlled
556 	 * by the DQS logic block which is instantiated once per read group.
557 	 * For protocols where a write group consists of multiple read groups,
558 	 * the setting must be set multiple times.
559 	 */
560 	for (i = 0; i < ratio; i++)
561 		writel(base + i, &sdr_scc_mgr->dqs_ena);
562 }
563 
564 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
565 			       int32_t out_only)
566 {
567 	uint32_t i, r;
568 
569 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
570 		NUM_RANKS_PER_SHADOW_REG) {
571 		/* Zero all DQ config settings */
572 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
573 			scc_mgr_set_dq_out1_delay(i, 0);
574 			if (!out_only)
575 				scc_mgr_set_dq_in_delay(i, 0);
576 		}
577 
578 		/* multicast to all DQ enables */
579 		writel(0xff, &sdr_scc_mgr->dq_ena);
580 
581 		/* Zero all DM config settings */
582 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
583 			scc_mgr_set_dm_out1_delay(i, 0);
584 		}
585 
586 		/* multicast to all DM enables */
587 		writel(0xff, &sdr_scc_mgr->dm_ena);
588 
589 		/* zero all DQS io settings */
590 		if (!out_only)
591 			scc_mgr_set_dqs_io_in_delay(0);
592 		/* av/cv don't have out2 */
593 		scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE);
594 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
595 		scc_mgr_load_dqs_for_write_group(write_group);
596 
597 		/* multicast to all DQS IO enables (only 1) */
598 		writel(0, &sdr_scc_mgr->dqs_io_ena);
599 
600 		/* hit update to zero everything */
601 		writel(0, &sdr_scc_mgr->update);
602 	}
603 }
604 
605 /*
606  * apply and load a particular input delay for the DQ pins in a group
607  * group_bgn is the index of the first dq pin (in the write group)
608  */
609 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay)
610 {
611 	uint32_t i, p;
612 
613 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
614 		scc_mgr_set_dq_in_delay(p, delay);
615 		scc_mgr_load_dq(p);
616 	}
617 }
618 
619 /**
620  * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
621  * @delay:		Delay value
622  *
623  * Apply and load a particular output delay for the DQ pins in a group.
624  */
625 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
626 {
627 	int i;
628 
629 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
630 		scc_mgr_set_dq_out1_delay(i, delay);
631 		scc_mgr_load_dq(i);
632 	}
633 }
634 
635 /* apply and load a particular output delay for the DM pins in a group */
636 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1)
637 {
638 	uint32_t i;
639 
640 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
641 		scc_mgr_set_dm_out1_delay(i, delay1);
642 		scc_mgr_load_dm(i);
643 	}
644 }
645 
646 
647 /* apply and load delay on both DQS and OCT out1 */
648 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
649 						    uint32_t delay)
650 {
651 	scc_mgr_set_dqs_out1_delay(delay);
652 	scc_mgr_load_dqs_io();
653 
654 	scc_mgr_set_oct_out1_delay(write_group, delay);
655 	scc_mgr_load_dqs_for_write_group(write_group);
656 }
657 
658 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
659 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
660 						  uint32_t group_bgn,
661 						  uint32_t delay)
662 {
663 	uint32_t i, p, new_delay;
664 
665 	/* dq shift */
666 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
667 		new_delay = READ_SCC_DQ_OUT2_DELAY;
668 		new_delay += delay;
669 
670 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
671 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
672 				   %u > %lu => %lu", __func__, __LINE__,
673 				   write_group, group_bgn, delay, i, p, new_delay,
674 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
675 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
676 			new_delay = IO_IO_OUT2_DELAY_MAX;
677 		}
678 
679 		scc_mgr_load_dq(i);
680 	}
681 
682 	/* dm shift */
683 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
684 		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
685 		new_delay += delay;
686 
687 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
688 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
689 				   %u > %lu => %lu\n",  __func__, __LINE__,
690 				   write_group, group_bgn, delay, i, new_delay,
691 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
692 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
693 			new_delay = IO_IO_OUT2_DELAY_MAX;
694 		}
695 
696 		scc_mgr_load_dm(i);
697 	}
698 
699 	/* dqs shift */
700 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
701 	new_delay += delay;
702 
703 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
704 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
705 			   " adding %u to OUT1\n", __func__, __LINE__,
706 			   write_group, group_bgn, delay, new_delay,
707 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
708 			   new_delay - IO_IO_OUT2_DELAY_MAX);
709 		scc_mgr_set_dqs_out1_delay(new_delay -
710 					   IO_IO_OUT2_DELAY_MAX);
711 		new_delay = IO_IO_OUT2_DELAY_MAX;
712 	}
713 
714 	scc_mgr_load_dqs_io();
715 
716 	/* oct shift */
717 	new_delay = READ_SCC_OCT_OUT2_DELAY;
718 	new_delay += delay;
719 
720 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
721 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
722 			   " adding %u to OUT1\n", __func__, __LINE__,
723 			   write_group, group_bgn, delay, new_delay,
724 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
725 			   new_delay - IO_IO_OUT2_DELAY_MAX);
726 		scc_mgr_set_oct_out1_delay(write_group, new_delay -
727 					   IO_IO_OUT2_DELAY_MAX);
728 		new_delay = IO_IO_OUT2_DELAY_MAX;
729 	}
730 
731 	scc_mgr_load_dqs_for_write_group(write_group);
732 }
733 
734 /*
735  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
736  * and to all ranks
737  */
738 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
739 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
740 {
741 	uint32_t r;
742 
743 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
744 		r += NUM_RANKS_PER_SHADOW_REG) {
745 		scc_mgr_apply_group_all_out_delay_add(write_group,
746 						      group_bgn, delay);
747 		writel(0, &sdr_scc_mgr->update);
748 	}
749 }
750 
751 /* optimization used to recover some slots in ddr3 inst_rom */
752 /* could be applied to other protocols if we wanted to */
753 static void set_jump_as_return(void)
754 {
755 	/*
756 	 * to save space, we replace return with jump to special shared
757 	 * RETURN instruction so we set the counter to large value so that
758 	 * we always jump
759 	 */
760 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
761 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
762 }
763 
764 /*
765  * should always use constants as argument to ensure all computations are
766  * performed at compile time
767  */
768 static void delay_for_n_mem_clocks(const uint32_t clocks)
769 {
770 	uint32_t afi_clocks;
771 	uint8_t inner = 0;
772 	uint8_t outer = 0;
773 	uint16_t c_loop = 0;
774 
775 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
776 
777 
778 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
779 	/* scale (rounding up) to get afi clocks */
780 
781 	/*
782 	 * Note, we don't bother accounting for being off a little bit
783 	 * because of a few extra instructions in outer loops
784 	 * Note, the loops have a test at the end, and do the test before
785 	 * the decrement, and so always perform the loop
786 	 * 1 time more than the counter value
787 	 */
788 	if (afi_clocks == 0) {
789 		;
790 	} else if (afi_clocks <= 0x100) {
791 		inner = afi_clocks-1;
792 		outer = 0;
793 		c_loop = 0;
794 	} else if (afi_clocks <= 0x10000) {
795 		inner = 0xff;
796 		outer = (afi_clocks-1) >> 8;
797 		c_loop = 0;
798 	} else {
799 		inner = 0xff;
800 		outer = 0xff;
801 		c_loop = (afi_clocks-1) >> 16;
802 	}
803 
804 	/*
805 	 * rom instructions are structured as follows:
806 	 *
807 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
808 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
809 	 *                return
810 	 *
811 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
812 	 * TARGET_B is set to IDLE_LOOP2 as well
813 	 *
814 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
815 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
816 	 *
817 	 * a little confusing, but it helps save precious space in the inst_rom
818 	 * and sequencer rom and keeps the delays more accurate and reduces
819 	 * overhead
820 	 */
821 	if (afi_clocks <= 0x100) {
822 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
823 			&sdr_rw_load_mgr_regs->load_cntr1);
824 
825 		writel(RW_MGR_IDLE_LOOP1,
826 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
827 
828 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
829 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
830 	} else {
831 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
832 			&sdr_rw_load_mgr_regs->load_cntr0);
833 
834 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
835 			&sdr_rw_load_mgr_regs->load_cntr1);
836 
837 		writel(RW_MGR_IDLE_LOOP2,
838 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
839 
840 		writel(RW_MGR_IDLE_LOOP2,
841 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
842 
843 		/* hack to get around compiler not being smart enough */
844 		if (afi_clocks <= 0x10000) {
845 			/* only need to run once */
846 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
847 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
848 		} else {
849 			do {
850 				writel(RW_MGR_IDLE_LOOP2,
851 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
852 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
853 			} while (c_loop-- != 0);
854 		}
855 	}
856 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
857 }
858 
859 static void rw_mgr_mem_initialize(void)
860 {
861 	uint32_t r;
862 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
863 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
864 
865 	debug("%s:%d\n", __func__, __LINE__);
866 
867 	/* The reset / cke part of initialization is broadcasted to all ranks */
868 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
869 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
870 
871 	/*
872 	 * Here's how you load register for a loop
873 	 * Counters are located @ 0x800
874 	 * Jump address are located @ 0xC00
875 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
876 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
877 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
878 	 * significant bits
879 	 */
880 
881 	/* start with memory RESET activated */
882 
883 	/* tINIT = 200us */
884 
885 	/*
886 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
887 	 * If a and b are the number of iteration in 2 nested loops
888 	 * it takes the following number of cycles to complete the operation:
889 	 * number_of_cycles = ((2 + n) * a + 2) * b
890 	 * where n is the number of instruction in the inner loop
891 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
892 	 * b = 6A
893 	 */
894 
895 	/* Load counters */
896 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
897 	       &sdr_rw_load_mgr_regs->load_cntr0);
898 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
899 	       &sdr_rw_load_mgr_regs->load_cntr1);
900 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
901 	       &sdr_rw_load_mgr_regs->load_cntr2);
902 
903 	/* Load jump address */
904 	writel(RW_MGR_INIT_RESET_0_CKE_0,
905 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
906 	writel(RW_MGR_INIT_RESET_0_CKE_0,
907 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
908 	writel(RW_MGR_INIT_RESET_0_CKE_0,
909 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
910 
911 	/* Execute count instruction */
912 	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
913 
914 	/* indicate that memory is stable */
915 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
916 
917 	/*
918 	 * transition the RESET to high
919 	 * Wait for 500us
920 	 */
921 
922 	/*
923 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
924 	 * If a and b are the number of iteration in 2 nested loops
925 	 * it takes the following number of cycles to complete the operation
926 	 * number_of_cycles = ((2 + n) * a + 2) * b
927 	 * where n is the number of instruction in the inner loop
928 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
929 	 * b = FF
930 	 */
931 
932 	/* Load counters */
933 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
934 	       &sdr_rw_load_mgr_regs->load_cntr0);
935 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
936 	       &sdr_rw_load_mgr_regs->load_cntr1);
937 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
938 	       &sdr_rw_load_mgr_regs->load_cntr2);
939 
940 	/* Load jump address */
941 	writel(RW_MGR_INIT_RESET_1_CKE_0,
942 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
943 	writel(RW_MGR_INIT_RESET_1_CKE_0,
944 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
945 	writel(RW_MGR_INIT_RESET_1_CKE_0,
946 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
947 
948 	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
949 
950 	/* bring up clock enable */
951 
952 	/* tXRP < 250 ck cycles */
953 	delay_for_n_mem_clocks(250);
954 
955 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
956 		if (param->skip_ranks[r]) {
957 			/* request to skip the rank */
958 			continue;
959 		}
960 
961 		/* set rank */
962 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
963 
964 		/*
965 		 * USER Use Mirror-ed commands for odd ranks if address
966 		 * mirrorring is on
967 		 */
968 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
969 			set_jump_as_return();
970 			writel(RW_MGR_MRS2_MIRR, grpaddr);
971 			delay_for_n_mem_clocks(4);
972 			set_jump_as_return();
973 			writel(RW_MGR_MRS3_MIRR, grpaddr);
974 			delay_for_n_mem_clocks(4);
975 			set_jump_as_return();
976 			writel(RW_MGR_MRS1_MIRR, grpaddr);
977 			delay_for_n_mem_clocks(4);
978 			set_jump_as_return();
979 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
980 		} else {
981 			set_jump_as_return();
982 			writel(RW_MGR_MRS2, grpaddr);
983 			delay_for_n_mem_clocks(4);
984 			set_jump_as_return();
985 			writel(RW_MGR_MRS3, grpaddr);
986 			delay_for_n_mem_clocks(4);
987 			set_jump_as_return();
988 			writel(RW_MGR_MRS1, grpaddr);
989 			set_jump_as_return();
990 			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
991 		}
992 		set_jump_as_return();
993 		writel(RW_MGR_ZQCL, grpaddr);
994 
995 		/* tZQinit = tDLLK = 512 ck cycles */
996 		delay_for_n_mem_clocks(512);
997 	}
998 }
999 
1000 /*
1001  * At the end of calibration we have to program the user settings in, and
1002  * USER  hand off the memory to the user.
1003  */
1004 static void rw_mgr_mem_handoff(void)
1005 {
1006 	uint32_t r;
1007 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1008 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1009 
1010 	debug("%s:%d\n", __func__, __LINE__);
1011 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1012 		if (param->skip_ranks[r])
1013 			/* request to skip the rank */
1014 			continue;
1015 		/* set rank */
1016 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1017 
1018 		/* precharge all banks ... */
1019 		writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1020 
1021 		/* load up MR settings specified by user */
1022 
1023 		/*
1024 		 * Use Mirror-ed commands for odd ranks if address
1025 		 * mirrorring is on
1026 		 */
1027 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1028 			set_jump_as_return();
1029 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1030 			delay_for_n_mem_clocks(4);
1031 			set_jump_as_return();
1032 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1033 			delay_for_n_mem_clocks(4);
1034 			set_jump_as_return();
1035 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1036 			delay_for_n_mem_clocks(4);
1037 			set_jump_as_return();
1038 			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1039 		} else {
1040 			set_jump_as_return();
1041 			writel(RW_MGR_MRS2, grpaddr);
1042 			delay_for_n_mem_clocks(4);
1043 			set_jump_as_return();
1044 			writel(RW_MGR_MRS3, grpaddr);
1045 			delay_for_n_mem_clocks(4);
1046 			set_jump_as_return();
1047 			writel(RW_MGR_MRS1, grpaddr);
1048 			delay_for_n_mem_clocks(4);
1049 			set_jump_as_return();
1050 			writel(RW_MGR_MRS0_USER, grpaddr);
1051 		}
1052 		/*
1053 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1054 		 * other commands, but we will have plenty of NIOS cycles before
1055 		 * actual handoff so its okay.
1056 		 */
1057 	}
1058 }
1059 
1060 /*
1061  * performs a guaranteed read on the patterns we are going to use during a
1062  * read test to ensure memory works
1063  */
1064 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1065 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1066 	uint32_t all_ranks)
1067 {
1068 	uint32_t r, vg;
1069 	uint32_t correct_mask_vg;
1070 	uint32_t tmp_bit_chk;
1071 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1072 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1073 	uint32_t addr;
1074 	uint32_t base_rw_mgr;
1075 
1076 	*bit_chk = param->read_correct_mask;
1077 	correct_mask_vg = param->read_correct_mask_vg;
1078 
1079 	for (r = rank_bgn; r < rank_end; r++) {
1080 		if (param->skip_ranks[r])
1081 			/* request to skip the rank */
1082 			continue;
1083 
1084 		/* set rank */
1085 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1086 
1087 		/* Load up a constant bursts of read commands */
1088 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1089 		writel(RW_MGR_GUARANTEED_READ,
1090 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1091 
1092 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1093 		writel(RW_MGR_GUARANTEED_READ_CONT,
1094 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1095 
1096 		tmp_bit_chk = 0;
1097 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1098 			/* reset the fifos to get pointers to known state */
1099 
1100 			writel(0, &phy_mgr_cmd->fifo_reset);
1101 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1102 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1103 
1104 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1105 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1106 
1107 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1108 			writel(RW_MGR_GUARANTEED_READ, addr +
1109 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1110 				vg) << 2));
1111 
1112 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1113 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1114 
1115 			if (vg == 0)
1116 				break;
1117 		}
1118 		*bit_chk &= tmp_bit_chk;
1119 	}
1120 
1121 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1122 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1123 
1124 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1125 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1126 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1127 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1128 	return *bit_chk == param->read_correct_mask;
1129 }
1130 
1131 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1132 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1133 {
1134 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1135 		num_tries, bit_chk, 1);
1136 }
1137 
1138 /* load up the patterns we are going to use during a read test */
1139 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1140 	uint32_t all_ranks)
1141 {
1142 	uint32_t r;
1143 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1144 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1145 
1146 	debug("%s:%d\n", __func__, __LINE__);
1147 	for (r = rank_bgn; r < rank_end; r++) {
1148 		if (param->skip_ranks[r])
1149 			/* request to skip the rank */
1150 			continue;
1151 
1152 		/* set rank */
1153 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1154 
1155 		/* Load up a constant bursts */
1156 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1157 
1158 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1159 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1160 
1161 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1162 
1163 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1164 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1165 
1166 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1167 
1168 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1169 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1170 
1171 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1172 
1173 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1174 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1175 
1176 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1177 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1178 	}
1179 
1180 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1181 }
1182 
1183 /*
1184  * try a read and see if it returns correct data back. has dummy reads
1185  * inserted into the mix used to align dqs enable. has more thorough checks
1186  * than the regular read test.
1187  */
1188 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1189 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1190 	uint32_t all_groups, uint32_t all_ranks)
1191 {
1192 	uint32_t r, vg;
1193 	uint32_t correct_mask_vg;
1194 	uint32_t tmp_bit_chk;
1195 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1196 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1197 	uint32_t addr;
1198 	uint32_t base_rw_mgr;
1199 
1200 	*bit_chk = param->read_correct_mask;
1201 	correct_mask_vg = param->read_correct_mask_vg;
1202 
1203 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1204 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1205 
1206 	for (r = rank_bgn; r < rank_end; r++) {
1207 		if (param->skip_ranks[r])
1208 			/* request to skip the rank */
1209 			continue;
1210 
1211 		/* set rank */
1212 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1213 
1214 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1215 
1216 		writel(RW_MGR_READ_B2B_WAIT1,
1217 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1218 
1219 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1220 		writel(RW_MGR_READ_B2B_WAIT2,
1221 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1222 
1223 		if (quick_read_mode)
1224 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1225 			/* need at least two (1+1) reads to capture failures */
1226 		else if (all_groups)
1227 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1228 		else
1229 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1230 
1231 		writel(RW_MGR_READ_B2B,
1232 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1233 		if (all_groups)
1234 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1235 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1236 			       &sdr_rw_load_mgr_regs->load_cntr3);
1237 		else
1238 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1239 
1240 		writel(RW_MGR_READ_B2B,
1241 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1242 
1243 		tmp_bit_chk = 0;
1244 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1245 			/* reset the fifos to get pointers to known state */
1246 			writel(0, &phy_mgr_cmd->fifo_reset);
1247 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1248 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1249 
1250 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1251 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1252 
1253 			if (all_groups)
1254 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1255 			else
1256 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1257 
1258 			writel(RW_MGR_READ_B2B, addr +
1259 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1260 			       vg) << 2));
1261 
1262 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1263 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1264 
1265 			if (vg == 0)
1266 				break;
1267 		}
1268 		*bit_chk &= tmp_bit_chk;
1269 	}
1270 
1271 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1272 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1273 
1274 	if (all_correct) {
1275 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1276 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1277 			   (%u == %u) => %lu", __func__, __LINE__, group,
1278 			   all_groups, *bit_chk, param->read_correct_mask,
1279 			   (long unsigned int)(*bit_chk ==
1280 			   param->read_correct_mask));
1281 		return *bit_chk == param->read_correct_mask;
1282 	} else	{
1283 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1284 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1285 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1286 			   group, all_groups, *bit_chk, (long unsigned int)0,
1287 			   (long unsigned int)(*bit_chk != 0x00));
1288 		return *bit_chk != 0x00;
1289 	}
1290 }
1291 
1292 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1293 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1294 	uint32_t all_groups)
1295 {
1296 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1297 					      bit_chk, all_groups, 1);
1298 }
1299 
1300 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1301 {
1302 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1303 	(*v)++;
1304 }
1305 
1306 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1307 {
1308 	uint32_t i;
1309 
1310 	for (i = 0; i < VFIFO_SIZE-1; i++)
1311 		rw_mgr_incr_vfifo(grp, v);
1312 }
1313 
1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1315 {
1316 	uint32_t  v;
1317 	uint32_t fail_cnt = 0;
1318 	uint32_t test_status;
1319 
1320 	for (v = 0; v < VFIFO_SIZE; ) {
1321 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1322 			   __func__, __LINE__, v);
1323 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1324 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1325 		if (!test_status) {
1326 			fail_cnt++;
1327 
1328 			if (fail_cnt == 2)
1329 				break;
1330 		}
1331 
1332 		/* fiddle with FIFO */
1333 		rw_mgr_incr_vfifo(grp, &v);
1334 	}
1335 
1336 	if (v >= VFIFO_SIZE) {
1337 		/* no failing read found!! Something must have gone wrong */
1338 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1339 			   __func__, __LINE__);
1340 		return 0;
1341 	} else {
1342 		return v;
1343 	}
1344 }
1345 
1346 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1347 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1348 			      uint32_t *v, uint32_t *d, uint32_t *p,
1349 			      uint32_t *i, uint32_t *max_working_cnt)
1350 {
1351 	uint32_t found_begin = 0;
1352 	uint32_t tmp_delay = 0;
1353 	uint32_t test_status;
1354 
1355 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1356 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1357 		*work_bgn = tmp_delay;
1358 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1359 
1360 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1361 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1362 				IO_DELAY_PER_OPA_TAP) {
1363 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1364 
1365 				test_status =
1366 				rw_mgr_mem_calibrate_read_test_all_ranks
1367 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1368 
1369 				if (test_status) {
1370 					*max_working_cnt = 1;
1371 					found_begin = 1;
1372 					break;
1373 				}
1374 			}
1375 
1376 			if (found_begin)
1377 				break;
1378 
1379 			if (*p > IO_DQS_EN_PHASE_MAX)
1380 				/* fiddle with FIFO */
1381 				rw_mgr_incr_vfifo(*grp, v);
1382 		}
1383 
1384 		if (found_begin)
1385 			break;
1386 	}
1387 
1388 	if (*i >= VFIFO_SIZE) {
1389 		/* cannot find working solution */
1390 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1391 			   ptap/dtap\n", __func__, __LINE__);
1392 		return 0;
1393 	} else {
1394 		return 1;
1395 	}
1396 }
1397 
1398 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1399 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1400 			     uint32_t *p, uint32_t *max_working_cnt)
1401 {
1402 	uint32_t found_begin = 0;
1403 	uint32_t tmp_delay;
1404 
1405 	/* Special case code for backing up a phase */
1406 	if (*p == 0) {
1407 		*p = IO_DQS_EN_PHASE_MAX;
1408 		rw_mgr_decr_vfifo(*grp, v);
1409 	} else {
1410 		(*p)--;
1411 	}
1412 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1413 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1414 
1415 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1416 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1417 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1418 
1419 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1420 							     PASS_ONE_BIT,
1421 							     bit_chk, 0)) {
1422 			found_begin = 1;
1423 			*work_bgn = tmp_delay;
1424 			break;
1425 		}
1426 	}
1427 
1428 	/* We have found a working dtap before the ptap found above */
1429 	if (found_begin == 1)
1430 		(*max_working_cnt)++;
1431 
1432 	/*
1433 	 * Restore VFIFO to old state before we decremented it
1434 	 * (if needed).
1435 	 */
1436 	(*p)++;
1437 	if (*p > IO_DQS_EN_PHASE_MAX) {
1438 		*p = 0;
1439 		rw_mgr_incr_vfifo(*grp, v);
1440 	}
1441 
1442 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1443 }
1444 
1445 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1446 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1447 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1448 			     uint32_t *work_end)
1449 {
1450 	uint32_t found_end = 0;
1451 
1452 	(*p)++;
1453 	*work_end += IO_DELAY_PER_OPA_TAP;
1454 	if (*p > IO_DQS_EN_PHASE_MAX) {
1455 		/* fiddle with FIFO */
1456 		*p = 0;
1457 		rw_mgr_incr_vfifo(*grp, v);
1458 	}
1459 
1460 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1461 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1462 			+= IO_DELAY_PER_OPA_TAP) {
1463 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1464 
1465 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1466 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1467 				found_end = 1;
1468 				break;
1469 			} else {
1470 				(*max_working_cnt)++;
1471 			}
1472 		}
1473 
1474 		if (found_end)
1475 			break;
1476 
1477 		if (*p > IO_DQS_EN_PHASE_MAX) {
1478 			/* fiddle with FIFO */
1479 			rw_mgr_incr_vfifo(*grp, v);
1480 			*p = 0;
1481 		}
1482 	}
1483 
1484 	if (*i >= VFIFO_SIZE + 1) {
1485 		/* cannot see edge of failing read */
1486 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1487 			   failed\n", __func__, __LINE__);
1488 		return 0;
1489 	} else {
1490 		return 1;
1491 	}
1492 }
1493 
1494 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1495 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1496 				  uint32_t *p, uint32_t *work_mid,
1497 				  uint32_t *work_end)
1498 {
1499 	int i;
1500 	int tmp_delay = 0;
1501 
1502 	*work_mid = (*work_bgn + *work_end) / 2;
1503 
1504 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1505 		   *work_bgn, *work_end, *work_mid);
1506 	/* Get the middle delay to be less than a VFIFO delay */
1507 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1508 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1509 		;
1510 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1511 	while (*work_mid > tmp_delay)
1512 		*work_mid -= tmp_delay;
1513 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1514 
1515 	tmp_delay = 0;
1516 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1517 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1518 		;
1519 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1520 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1521 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1522 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1523 		;
1524 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1525 
1526 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1527 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1528 
1529 	/*
1530 	 * push vfifo until we can successfully calibrate. We can do this
1531 	 * because the largest possible margin in 1 VFIFO cycle.
1532 	 */
1533 	for (i = 0; i < VFIFO_SIZE; i++) {
1534 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1535 			   *v);
1536 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1537 							     PASS_ONE_BIT,
1538 							     bit_chk, 0)) {
1539 			break;
1540 		}
1541 
1542 		/* fiddle with FIFO */
1543 		rw_mgr_incr_vfifo(*grp, v);
1544 	}
1545 
1546 	if (i >= VFIFO_SIZE) {
1547 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1548 			   failed\n", __func__, __LINE__);
1549 		return 0;
1550 	} else {
1551 		return 1;
1552 	}
1553 }
1554 
1555 /* find a good dqs enable to use */
1556 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1557 {
1558 	uint32_t v, d, p, i;
1559 	uint32_t max_working_cnt;
1560 	uint32_t bit_chk;
1561 	uint32_t dtaps_per_ptap;
1562 	uint32_t work_bgn, work_mid, work_end;
1563 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1564 
1565 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1566 
1567 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1568 
1569 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1570 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1571 
1572 	/* ************************************************************** */
1573 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1574 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1575 
1576 	/* ********************************************************* */
1577 	/* * Step 1 : First push vfifo until we get a failing read * */
1578 	v = find_vfifo_read(grp, &bit_chk);
1579 
1580 	max_working_cnt = 0;
1581 
1582 	/* ******************************************************** */
1583 	/* * step 2: find first working phase, increment in ptaps * */
1584 	work_bgn = 0;
1585 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1586 				&p, &i, &max_working_cnt) == 0)
1587 		return 0;
1588 
1589 	work_end = work_bgn;
1590 
1591 	/*
1592 	 * If d is 0 then the working window covers a phase tap and
1593 	 * we can follow the old procedure otherwise, we've found the beginning,
1594 	 * and we need to increment the dtaps until we find the end.
1595 	 */
1596 	if (d == 0) {
1597 		/* ********************************************************* */
1598 		/* * step 3a: if we have room, back off by one and
1599 		increment in dtaps * */
1600 
1601 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1602 				 &max_working_cnt);
1603 
1604 		/* ********************************************************* */
1605 		/* * step 4a: go forward from working phase to non working
1606 		phase, increment in ptaps * */
1607 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1608 					 &i, &max_working_cnt, &work_end) == 0)
1609 			return 0;
1610 
1611 		/* ********************************************************* */
1612 		/* * step 5a:  back off one from last, increment in dtaps  * */
1613 
1614 		/* Special case code for backing up a phase */
1615 		if (p == 0) {
1616 			p = IO_DQS_EN_PHASE_MAX;
1617 			rw_mgr_decr_vfifo(grp, &v);
1618 		} else {
1619 			p = p - 1;
1620 		}
1621 
1622 		work_end -= IO_DELAY_PER_OPA_TAP;
1623 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1624 
1625 		/* * The actual increment of dtaps is done outside of
1626 		the if/else loop to share code */
1627 		d = 0;
1628 
1629 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1630 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1631 			   v, p);
1632 	} else {
1633 		/* ******************************************************* */
1634 		/* * step 3-5b:  Find the right edge of the window using
1635 		delay taps   * */
1636 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1637 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1638 			   v, p, d, work_bgn);
1639 
1640 		work_end = work_bgn;
1641 
1642 		/* * The actual increment of dtaps is done outside of the
1643 		if/else loop to share code */
1644 
1645 		/* Only here to counterbalance a subtract later on which is
1646 		not needed if this branch of the algorithm is taken */
1647 		max_working_cnt++;
1648 	}
1649 
1650 	/* The dtap increment to find the failing edge is done here */
1651 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1652 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1653 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1654 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1655 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1656 
1657 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1658 								      PASS_ONE_BIT,
1659 								      &bit_chk, 0)) {
1660 				break;
1661 			}
1662 	}
1663 
1664 	/* Go back to working dtap */
1665 	if (d != 0)
1666 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1667 
1668 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1669 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1670 		   v, p, d-1, work_end);
1671 
1672 	if (work_end < work_bgn) {
1673 		/* nil range */
1674 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1675 			   failed\n", __func__, __LINE__);
1676 		return 0;
1677 	}
1678 
1679 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1680 		   __func__, __LINE__, work_bgn, work_end);
1681 
1682 	/* *************************************************************** */
1683 	/*
1684 	 * * We need to calculate the number of dtaps that equal a ptap
1685 	 * * To do that we'll back up a ptap and re-find the edge of the
1686 	 * * window using dtaps
1687 	 */
1688 
1689 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1690 		   for tracking\n", __func__, __LINE__);
1691 
1692 	/* Special case code for backing up a phase */
1693 	if (p == 0) {
1694 		p = IO_DQS_EN_PHASE_MAX;
1695 		rw_mgr_decr_vfifo(grp, &v);
1696 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1697 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1698 			   v, p);
1699 	} else {
1700 		p = p - 1;
1701 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1702 			   phase only: v=%u p=%u", __func__, __LINE__,
1703 			   v, p);
1704 	}
1705 
1706 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1707 
1708 	/*
1709 	 * Increase dtap until we first see a passing read (in case the
1710 	 * window is smaller than a ptap),
1711 	 * and then a failing read to mark the edge of the window again
1712 	 */
1713 
1714 	/* Find a passing read */
1715 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1716 		   __func__, __LINE__);
1717 	found_passing_read = 0;
1718 	found_failing_read = 0;
1719 	initial_failing_dtap = d;
1720 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1721 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1722 			   read d=%u\n", __func__, __LINE__, d);
1723 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1724 
1725 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1726 							     PASS_ONE_BIT,
1727 							     &bit_chk, 0)) {
1728 			found_passing_read = 1;
1729 			break;
1730 		}
1731 	}
1732 
1733 	if (found_passing_read) {
1734 		/* Find a failing read */
1735 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1736 			   read\n", __func__, __LINE__);
1737 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1738 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1739 				   testing read d=%u\n", __func__, __LINE__, d);
1740 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1741 
1742 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1743 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1744 				found_failing_read = 1;
1745 				break;
1746 			}
1747 		}
1748 	} else {
1749 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1750 			   calculate dtaps", __func__, __LINE__);
1751 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1752 	}
1753 
1754 	/*
1755 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1756 	 * found a passing/failing read. If we didn't, it means d hit the max
1757 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1758 	 * statically calculated value.
1759 	 */
1760 	if (found_passing_read && found_failing_read)
1761 		dtaps_per_ptap = d - initial_failing_dtap;
1762 
1763 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1764 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1765 		   - %u = %u",  __func__, __LINE__, d,
1766 		   initial_failing_dtap, dtaps_per_ptap);
1767 
1768 	/* ******************************************** */
1769 	/* * step 6:  Find the centre of the window   * */
1770 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1771 				   &work_mid, &work_end) == 0)
1772 		return 0;
1773 
1774 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1775 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1776 		   v, p-1, d);
1777 	return 1;
1778 }
1779 
1780 /*
1781  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1782  * dq_in_delay values
1783  */
1784 static uint32_t
1785 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1786 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1787 {
1788 	uint32_t found;
1789 	uint32_t i;
1790 	uint32_t p;
1791 	uint32_t d;
1792 	uint32_t r;
1793 
1794 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1795 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1796 		/* we start at zero, so have one less dq to devide among */
1797 
1798 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1799 	      test_bgn);
1800 
1801 	/* try different dq_in_delays since the dq path is shorter than dqs */
1802 
1803 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1804 	     r += NUM_RANKS_PER_SHADOW_REG) {
1805 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) {
1806 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1807 				   vfifo_find_dqs_", __func__, __LINE__);
1808 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1809 			       write_group, read_group);
1810 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1811 			scc_mgr_set_dq_in_delay(p, d);
1812 			scc_mgr_load_dq(p);
1813 		}
1814 		writel(0, &sdr_scc_mgr->update);
1815 	}
1816 
1817 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1818 
1819 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1820 		   en_phase_sweep_dq", __func__, __LINE__);
1821 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1822 		   chain to zero\n", write_group, read_group, found);
1823 
1824 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1825 	     r += NUM_RANKS_PER_SHADOW_REG) {
1826 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1827 			i++, p++) {
1828 			scc_mgr_set_dq_in_delay(p, 0);
1829 			scc_mgr_load_dq(p);
1830 		}
1831 		writel(0, &sdr_scc_mgr->update);
1832 	}
1833 
1834 	return found;
1835 }
1836 
1837 /* per-bit deskew DQ and center */
1838 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1839 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1840 	uint32_t use_read_test, uint32_t update_fom)
1841 {
1842 	uint32_t i, p, d, min_index;
1843 	/*
1844 	 * Store these as signed since there are comparisons with
1845 	 * signed numbers.
1846 	 */
1847 	uint32_t bit_chk;
1848 	uint32_t sticky_bit_chk;
1849 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1850 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1851 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1852 	int32_t mid;
1853 	int32_t orig_mid_min, mid_min;
1854 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1855 		final_dqs_en;
1856 	int32_t dq_margin, dqs_margin;
1857 	uint32_t stop;
1858 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1859 	uint32_t addr;
1860 
1861 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1862 
1863 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1864 	start_dqs = readl(addr + (read_group << 2));
1865 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1866 		start_dqs_en = readl(addr + ((read_group << 2)
1867 				     - IO_DQS_EN_DELAY_OFFSET));
1868 
1869 	/* set the left and right edge of each bit to an illegal value */
1870 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1871 	sticky_bit_chk = 0;
1872 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1873 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1874 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1875 	}
1876 
1877 	/* Search for the left edge of the window for each bit */
1878 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1879 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1880 
1881 		writel(0, &sdr_scc_mgr->update);
1882 
1883 		/*
1884 		 * Stop searching when the read test doesn't pass AND when
1885 		 * we've seen a passing read on every bit.
1886 		 */
1887 		if (use_read_test) {
1888 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1889 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1890 				&bit_chk, 0, 0);
1891 		} else {
1892 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1893 							0, PASS_ONE_BIT,
1894 							&bit_chk, 0);
1895 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1896 				(read_group - (write_group *
1897 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1898 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1899 			stop = (bit_chk == 0);
1900 		}
1901 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1902 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1903 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1904 			   && %u", __func__, __LINE__, d,
1905 			   sticky_bit_chk,
1906 			param->read_correct_mask, stop);
1907 
1908 		if (stop == 1) {
1909 			break;
1910 		} else {
1911 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1912 				if (bit_chk & 1) {
1913 					/* Remember a passing test as the
1914 					left_edge */
1915 					left_edge[i] = d;
1916 				} else {
1917 					/* If a left edge has not been seen yet,
1918 					then a future passing test will mark
1919 					this edge as the right edge */
1920 					if (left_edge[i] ==
1921 						IO_IO_IN_DELAY_MAX + 1) {
1922 						right_edge[i] = -(d + 1);
1923 					}
1924 				}
1925 				bit_chk = bit_chk >> 1;
1926 			}
1927 		}
1928 	}
1929 
1930 	/* Reset DQ delay chains to 0 */
1931 	scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
1932 	sticky_bit_chk = 0;
1933 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1934 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1935 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1936 			   i, left_edge[i], i, right_edge[i]);
1937 
1938 		/*
1939 		 * Check for cases where we haven't found the left edge,
1940 		 * which makes our assignment of the the right edge invalid.
1941 		 * Reset it to the illegal value.
1942 		 */
1943 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1944 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1945 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1946 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1947 				   right_edge[%u]: %d\n", __func__, __LINE__,
1948 				   i, right_edge[i]);
1949 		}
1950 
1951 		/*
1952 		 * Reset sticky bit (except for bits where we have seen
1953 		 * both the left and right edge).
1954 		 */
1955 		sticky_bit_chk = sticky_bit_chk << 1;
1956 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
1957 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1958 			sticky_bit_chk = sticky_bit_chk | 1;
1959 		}
1960 
1961 		if (i == 0)
1962 			break;
1963 	}
1964 
1965 	/* Search for the right edge of the window for each bit */
1966 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
1967 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
1968 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
1969 			uint32_t delay = d + start_dqs_en;
1970 			if (delay > IO_DQS_EN_DELAY_MAX)
1971 				delay = IO_DQS_EN_DELAY_MAX;
1972 			scc_mgr_set_dqs_en_delay(read_group, delay);
1973 		}
1974 		scc_mgr_load_dqs(read_group);
1975 
1976 		writel(0, &sdr_scc_mgr->update);
1977 
1978 		/*
1979 		 * Stop searching when the read test doesn't pass AND when
1980 		 * we've seen a passing read on every bit.
1981 		 */
1982 		if (use_read_test) {
1983 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1984 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1985 				&bit_chk, 0, 0);
1986 		} else {
1987 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1988 							0, PASS_ONE_BIT,
1989 							&bit_chk, 0);
1990 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1991 				(read_group - (write_group *
1992 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1993 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1994 			stop = (bit_chk == 0);
1995 		}
1996 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1997 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1998 
1999 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2000 			   %u && %u", __func__, __LINE__, d,
2001 			   sticky_bit_chk, param->read_correct_mask, stop);
2002 
2003 		if (stop == 1) {
2004 			break;
2005 		} else {
2006 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2007 				if (bit_chk & 1) {
2008 					/* Remember a passing test as
2009 					the right_edge */
2010 					right_edge[i] = d;
2011 				} else {
2012 					if (d != 0) {
2013 						/* If a right edge has not been
2014 						seen yet, then a future passing
2015 						test will mark this edge as the
2016 						left edge */
2017 						if (right_edge[i] ==
2018 						IO_IO_IN_DELAY_MAX + 1) {
2019 							left_edge[i] = -(d + 1);
2020 						}
2021 					} else {
2022 						/* d = 0 failed, but it passed
2023 						when testing the left edge,
2024 						so it must be marginal,
2025 						set it to -1 */
2026 						if (right_edge[i] ==
2027 							IO_IO_IN_DELAY_MAX + 1 &&
2028 							left_edge[i] !=
2029 							IO_IO_IN_DELAY_MAX
2030 							+ 1) {
2031 							right_edge[i] = -1;
2032 						}
2033 						/* If a right edge has not been
2034 						seen yet, then a future passing
2035 						test will mark this edge as the
2036 						left edge */
2037 						else if (right_edge[i] ==
2038 							IO_IO_IN_DELAY_MAX +
2039 							1) {
2040 							left_edge[i] = -(d + 1);
2041 						}
2042 					}
2043 				}
2044 
2045 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2046 					   d=%u]: ", __func__, __LINE__, d);
2047 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2048 					   (int)(bit_chk & 1), i, left_edge[i]);
2049 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2050 					   right_edge[i]);
2051 				bit_chk = bit_chk >> 1;
2052 			}
2053 		}
2054 	}
2055 
2056 	/* Check that all bits have a window */
2057 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2058 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2059 			   %d right_edge[%u]: %d", __func__, __LINE__,
2060 			   i, left_edge[i], i, right_edge[i]);
2061 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2062 			== IO_IO_IN_DELAY_MAX + 1)) {
2063 			/*
2064 			 * Restore delay chain settings before letting the loop
2065 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2066 			 * dqs/ck relationships.
2067 			 */
2068 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2069 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2070 				scc_mgr_set_dqs_en_delay(read_group,
2071 							 start_dqs_en);
2072 			}
2073 			scc_mgr_load_dqs(read_group);
2074 			writel(0, &sdr_scc_mgr->update);
2075 
2076 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2077 				   find edge [%u]: %d %d", __func__, __LINE__,
2078 				   i, left_edge[i], right_edge[i]);
2079 			if (use_read_test) {
2080 				set_failing_group_stage(read_group *
2081 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2082 					CAL_STAGE_VFIFO,
2083 					CAL_SUBSTAGE_VFIFO_CENTER);
2084 			} else {
2085 				set_failing_group_stage(read_group *
2086 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2087 					CAL_STAGE_VFIFO_AFTER_WRITES,
2088 					CAL_SUBSTAGE_VFIFO_CENTER);
2089 			}
2090 			return 0;
2091 		}
2092 	}
2093 
2094 	/* Find middle of window for each DQ bit */
2095 	mid_min = left_edge[0] - right_edge[0];
2096 	min_index = 0;
2097 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2098 		mid = left_edge[i] - right_edge[i];
2099 		if (mid < mid_min) {
2100 			mid_min = mid;
2101 			min_index = i;
2102 		}
2103 	}
2104 
2105 	/*
2106 	 * -mid_min/2 represents the amount that we need to move DQS.
2107 	 * If mid_min is odd and positive we'll need to add one to
2108 	 * make sure the rounding in further calculations is correct
2109 	 * (always bias to the right), so just add 1 for all positive values.
2110 	 */
2111 	if (mid_min > 0)
2112 		mid_min++;
2113 
2114 	mid_min = mid_min / 2;
2115 
2116 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2117 		   __func__, __LINE__, mid_min, min_index);
2118 
2119 	/* Determine the amount we can change DQS (which is -mid_min) */
2120 	orig_mid_min = mid_min;
2121 	new_dqs = start_dqs - mid_min;
2122 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2123 		new_dqs = IO_DQS_IN_DELAY_MAX;
2124 	else if (new_dqs < 0)
2125 		new_dqs = 0;
2126 
2127 	mid_min = start_dqs - new_dqs;
2128 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2129 		   mid_min, new_dqs);
2130 
2131 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2132 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2133 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2134 		else if (start_dqs_en - mid_min < 0)
2135 			mid_min += start_dqs_en - mid_min;
2136 	}
2137 	new_dqs = start_dqs - mid_min;
2138 
2139 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2140 		   new_dqs=%d mid_min=%d\n", start_dqs,
2141 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2142 		   new_dqs, mid_min);
2143 
2144 	/* Initialize data for export structures */
2145 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2146 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2147 
2148 	/* add delay to bring centre of all DQ windows to the same "level" */
2149 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2150 		/* Use values before divide by 2 to reduce round off error */
2151 		shift_dq = (left_edge[i] - right_edge[i] -
2152 			(left_edge[min_index] - right_edge[min_index]))/2  +
2153 			(orig_mid_min - mid_min);
2154 
2155 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2156 			   shift_dq[%u]=%d\n", i, shift_dq);
2157 
2158 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2159 		temp_dq_in_delay1 = readl(addr + (p << 2));
2160 		temp_dq_in_delay2 = readl(addr + (i << 2));
2161 
2162 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2163 			(int32_t)IO_IO_IN_DELAY_MAX) {
2164 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2165 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2166 			shift_dq = -(int32_t)temp_dq_in_delay1;
2167 		}
2168 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2169 			   shift_dq[%u]=%d\n", i, shift_dq);
2170 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2171 		scc_mgr_set_dq_in_delay(p, final_dq[i]);
2172 		scc_mgr_load_dq(p);
2173 
2174 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2175 			   left_edge[i] - shift_dq + (-mid_min),
2176 			   right_edge[i] + shift_dq - (-mid_min));
2177 		/* To determine values for export structures */
2178 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2179 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2180 
2181 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2182 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2183 	}
2184 
2185 	final_dqs = new_dqs;
2186 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2187 		final_dqs_en = start_dqs_en - mid_min;
2188 
2189 	/* Move DQS-en */
2190 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2191 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2192 		scc_mgr_load_dqs(read_group);
2193 	}
2194 
2195 	/* Move DQS */
2196 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2197 	scc_mgr_load_dqs(read_group);
2198 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2199 		   dqs_margin=%d", __func__, __LINE__,
2200 		   dq_margin, dqs_margin);
2201 
2202 	/*
2203 	 * Do not remove this line as it makes sure all of our decisions
2204 	 * have been applied. Apply the update bit.
2205 	 */
2206 	writel(0, &sdr_scc_mgr->update);
2207 
2208 	return (dq_margin >= 0) && (dqs_margin >= 0);
2209 }
2210 
2211 /*
2212  * calibrate the read valid prediction FIFO.
2213  *
2214  *  - read valid prediction will consist of finding a good DQS enable phase,
2215  * DQS enable delay, DQS input phase, and DQS input delay.
2216  *  - we also do a per-bit deskew on the DQ lines.
2217  */
2218 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2219 					   uint32_t test_bgn)
2220 {
2221 	uint32_t p, d, rank_bgn, sr;
2222 	uint32_t dtaps_per_ptap;
2223 	uint32_t tmp_delay;
2224 	uint32_t bit_chk;
2225 	uint32_t grp_calibrated;
2226 	uint32_t write_group, write_test_bgn;
2227 	uint32_t failed_substage;
2228 
2229 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2230 
2231 	/* update info for sims */
2232 	reg_file_set_stage(CAL_STAGE_VFIFO);
2233 
2234 	write_group = read_group;
2235 	write_test_bgn = test_bgn;
2236 
2237 	/* USER Determine number of delay taps for each phase tap */
2238 	dtaps_per_ptap = 0;
2239 	tmp_delay = 0;
2240 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2241 		dtaps_per_ptap++;
2242 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2243 	}
2244 	dtaps_per_ptap--;
2245 	tmp_delay = 0;
2246 
2247 	/* update info for sims */
2248 	reg_file_set_group(read_group);
2249 
2250 	grp_calibrated = 0;
2251 
2252 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2253 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2254 
2255 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2256 		/*
2257 		 * In RLDRAMX we may be messing the delay of pins in
2258 		 * the same write group but outside of the current read
2259 		 * the group, but that's ok because we haven't
2260 		 * calibrated output side yet.
2261 		 */
2262 		if (d > 0) {
2263 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2264 			(write_group, write_test_bgn, d);
2265 		}
2266 
2267 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2268 			p++) {
2269 			/* set a particular dqdqs phase */
2270 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2271 
2272 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2273 				   p=%u d=%u\n", __func__, __LINE__,
2274 				   read_group, p, d);
2275 
2276 			/*
2277 			 * Load up the patterns used by read calibration
2278 			 * using current DQDQS phase.
2279 			 */
2280 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2281 			if (!(gbl->phy_debug_mode_flags &
2282 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2283 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2284 				    (read_group, 1, &bit_chk)) {
2285 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2286 						   __func__, __LINE__);
2287 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2288 						   read_group, p, d);
2289 					break;
2290 				}
2291 			}
2292 
2293 /* case:56390 */
2294 			grp_calibrated = 1;
2295 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2296 		    (write_group, read_group, test_bgn)) {
2297 				/*
2298 				 * USER Read per-bit deskew can be done on a
2299 				 * per shadow register basis.
2300 				 */
2301 				for (rank_bgn = 0, sr = 0;
2302 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2303 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2304 					++sr) {
2305 					/*
2306 					 * Determine if this set of ranks
2307 					 * should be skipped entirely.
2308 					 */
2309 					if (!param->skip_shadow_regs[sr]) {
2310 						/*
2311 						 * If doing read after write
2312 						 * calibration, do not update
2313 						 * FOM, now - do it then.
2314 						 */
2315 					if (!rw_mgr_mem_calibrate_vfifo_center
2316 						(rank_bgn, write_group,
2317 						read_group, test_bgn, 1, 0)) {
2318 							grp_calibrated = 0;
2319 							failed_substage =
2320 						CAL_SUBSTAGE_VFIFO_CENTER;
2321 						}
2322 					}
2323 				}
2324 			} else {
2325 				grp_calibrated = 0;
2326 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2327 			}
2328 		}
2329 	}
2330 
2331 	if (grp_calibrated == 0) {
2332 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2333 					failed_substage);
2334 		return 0;
2335 	}
2336 
2337 	/*
2338 	 * Reset the delay chains back to zero if they have moved > 1
2339 	 * (check for > 1 because loop will increase d even when pass in
2340 	 * first case).
2341 	 */
2342 	if (d > 2)
2343 		scc_mgr_zero_group(write_group, write_test_bgn, 1);
2344 
2345 	return 1;
2346 }
2347 
2348 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2349 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2350 					       uint32_t test_bgn)
2351 {
2352 	uint32_t rank_bgn, sr;
2353 	uint32_t grp_calibrated;
2354 	uint32_t write_group;
2355 
2356 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2357 
2358 	/* update info for sims */
2359 
2360 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2361 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2362 
2363 	write_group = read_group;
2364 
2365 	/* update info for sims */
2366 	reg_file_set_group(read_group);
2367 
2368 	grp_calibrated = 1;
2369 	/* Read per-bit deskew can be done on a per shadow register basis */
2370 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2371 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2372 		/* Determine if this set of ranks should be skipped entirely */
2373 		if (!param->skip_shadow_regs[sr]) {
2374 		/* This is the last calibration round, update FOM here */
2375 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2376 								write_group,
2377 								read_group,
2378 								test_bgn, 0,
2379 								1)) {
2380 				grp_calibrated = 0;
2381 			}
2382 		}
2383 	}
2384 
2385 
2386 	if (grp_calibrated == 0) {
2387 		set_failing_group_stage(write_group,
2388 					CAL_STAGE_VFIFO_AFTER_WRITES,
2389 					CAL_SUBSTAGE_VFIFO_CENTER);
2390 		return 0;
2391 	}
2392 
2393 	return 1;
2394 }
2395 
2396 /* Calibrate LFIFO to find smallest read latency */
2397 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2398 {
2399 	uint32_t found_one;
2400 	uint32_t bit_chk;
2401 
2402 	debug("%s:%d\n", __func__, __LINE__);
2403 
2404 	/* update info for sims */
2405 	reg_file_set_stage(CAL_STAGE_LFIFO);
2406 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2407 
2408 	/* Load up the patterns used by read calibration for all ranks */
2409 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2410 	found_one = 0;
2411 
2412 	do {
2413 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2414 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2415 			   __func__, __LINE__, gbl->curr_read_lat);
2416 
2417 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2418 							      NUM_READ_TESTS,
2419 							      PASS_ALL_BITS,
2420 							      &bit_chk, 1)) {
2421 			break;
2422 		}
2423 
2424 		found_one = 1;
2425 		/* reduce read latency and see if things are working */
2426 		/* correctly */
2427 		gbl->curr_read_lat--;
2428 	} while (gbl->curr_read_lat > 0);
2429 
2430 	/* reset the fifos to get pointers to known state */
2431 
2432 	writel(0, &phy_mgr_cmd->fifo_reset);
2433 
2434 	if (found_one) {
2435 		/* add a fudge factor to the read latency that was determined */
2436 		gbl->curr_read_lat += 2;
2437 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2438 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2439 			   read_lat=%u\n", __func__, __LINE__,
2440 			   gbl->curr_read_lat);
2441 		return 1;
2442 	} else {
2443 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2444 					CAL_SUBSTAGE_READ_LATENCY);
2445 
2446 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2447 			   read_lat=%u\n", __func__, __LINE__,
2448 			   gbl->curr_read_lat);
2449 		return 0;
2450 	}
2451 }
2452 
2453 /*
2454  * issue write test command.
2455  * two variants are provided. one that just tests a write pattern and
2456  * another that tests datamask functionality.
2457  */
2458 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2459 						  uint32_t test_dm)
2460 {
2461 	uint32_t mcc_instruction;
2462 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2463 		ENABLE_SUPER_QUICK_CALIBRATION);
2464 	uint32_t rw_wl_nop_cycles;
2465 	uint32_t addr;
2466 
2467 	/*
2468 	 * Set counter and jump addresses for the right
2469 	 * number of NOP cycles.
2470 	 * The number of supported NOP cycles can range from -1 to infinity
2471 	 * Three different cases are handled:
2472 	 *
2473 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2474 	 *    mechanism will be used to insert the right number of NOPs
2475 	 *
2476 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2477 	 *    issuing the write command will jump straight to the
2478 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2479 	 *    data (for RLD), skipping
2480 	 *    the NOP micro-instruction all together
2481 	 *
2482 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2483 	 *    turned on in the same micro-instruction that issues the write
2484 	 *    command. Then we need
2485 	 *    to directly jump to the micro-instruction that sends out the data
2486 	 *
2487 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2488 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2489 	 *       write-read operations.
2490 	 *       one counter left to issue this command in "multiple-group" mode
2491 	 */
2492 
2493 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2494 
2495 	if (rw_wl_nop_cycles == -1) {
2496 		/*
2497 		 * CNTR 2 - We want to execute the special write operation that
2498 		 * turns on DQS right away and then skip directly to the
2499 		 * instruction that sends out the data. We set the counter to a
2500 		 * large number so that the jump is always taken.
2501 		 */
2502 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2503 
2504 		/* CNTR 3 - Not used */
2505 		if (test_dm) {
2506 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2507 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2508 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2509 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2510 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2511 		} else {
2512 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2513 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2514 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2515 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2516 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2517 		}
2518 	} else if (rw_wl_nop_cycles == 0) {
2519 		/*
2520 		 * CNTR 2 - We want to skip the NOP operation and go straight
2521 		 * to the DQS enable instruction. We set the counter to a large
2522 		 * number so that the jump is always taken.
2523 		 */
2524 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2525 
2526 		/* CNTR 3 - Not used */
2527 		if (test_dm) {
2528 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2529 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2530 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2531 		} else {
2532 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2533 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2534 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2535 		}
2536 	} else {
2537 		/*
2538 		 * CNTR 2 - In this case we want to execute the next instruction
2539 		 * and NOT take the jump. So we set the counter to 0. The jump
2540 		 * address doesn't count.
2541 		 */
2542 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2543 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2544 
2545 		/*
2546 		 * CNTR 3 - Set the nop counter to the number of cycles we
2547 		 * need to loop for, minus 1.
2548 		 */
2549 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2550 		if (test_dm) {
2551 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2552 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2553 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2554 		} else {
2555 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2556 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2557 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2558 		}
2559 	}
2560 
2561 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2562 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2563 
2564 	if (quick_write_mode)
2565 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2566 	else
2567 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2568 
2569 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2570 
2571 	/*
2572 	 * CNTR 1 - This is used to ensure enough time elapses
2573 	 * for read data to come back.
2574 	 */
2575 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2576 
2577 	if (test_dm) {
2578 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2579 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2580 	} else {
2581 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2582 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2583 	}
2584 
2585 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2586 	writel(mcc_instruction, addr + (group << 2));
2587 }
2588 
2589 /* Test writes, can check for a single bit pass or multiple bit pass */
2590 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2591 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2592 	uint32_t *bit_chk, uint32_t all_ranks)
2593 {
2594 	uint32_t r;
2595 	uint32_t correct_mask_vg;
2596 	uint32_t tmp_bit_chk;
2597 	uint32_t vg;
2598 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2599 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2600 	uint32_t addr_rw_mgr;
2601 	uint32_t base_rw_mgr;
2602 
2603 	*bit_chk = param->write_correct_mask;
2604 	correct_mask_vg = param->write_correct_mask_vg;
2605 
2606 	for (r = rank_bgn; r < rank_end; r++) {
2607 		if (param->skip_ranks[r]) {
2608 			/* request to skip the rank */
2609 			continue;
2610 		}
2611 
2612 		/* set rank */
2613 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2614 
2615 		tmp_bit_chk = 0;
2616 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2617 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2618 			/* reset the fifos to get pointers to known state */
2619 			writel(0, &phy_mgr_cmd->fifo_reset);
2620 
2621 			tmp_bit_chk = tmp_bit_chk <<
2622 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2623 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2624 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2625 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2626 				use_dm);
2627 
2628 			base_rw_mgr = readl(addr_rw_mgr);
2629 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2630 			if (vg == 0)
2631 				break;
2632 		}
2633 		*bit_chk &= tmp_bit_chk;
2634 	}
2635 
2636 	if (all_correct) {
2637 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2638 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2639 			   %u => %lu", write_group, use_dm,
2640 			   *bit_chk, param->write_correct_mask,
2641 			   (long unsigned int)(*bit_chk ==
2642 			   param->write_correct_mask));
2643 		return *bit_chk == param->write_correct_mask;
2644 	} else {
2645 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2646 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2647 		       write_group, use_dm, *bit_chk);
2648 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2649 			(long unsigned int)(*bit_chk != 0));
2650 		return *bit_chk != 0x00;
2651 	}
2652 }
2653 
2654 /*
2655  * center all windows. do per-bit-deskew to possibly increase size of
2656  * certain windows.
2657  */
2658 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2659 	uint32_t write_group, uint32_t test_bgn)
2660 {
2661 	uint32_t i, p, min_index;
2662 	int32_t d;
2663 	/*
2664 	 * Store these as signed since there are comparisons with
2665 	 * signed numbers.
2666 	 */
2667 	uint32_t bit_chk;
2668 	uint32_t sticky_bit_chk;
2669 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2670 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2671 	int32_t mid;
2672 	int32_t mid_min, orig_mid_min;
2673 	int32_t new_dqs, start_dqs, shift_dq;
2674 	int32_t dq_margin, dqs_margin, dm_margin;
2675 	uint32_t stop;
2676 	uint32_t temp_dq_out1_delay;
2677 	uint32_t addr;
2678 
2679 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2680 
2681 	dm_margin = 0;
2682 
2683 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2684 	start_dqs = readl(addr +
2685 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2686 
2687 	/* per-bit deskew */
2688 
2689 	/*
2690 	 * set the left and right edge of each bit to an illegal value
2691 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2692 	 */
2693 	sticky_bit_chk = 0;
2694 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2695 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2696 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2697 	}
2698 
2699 	/* Search for the left edge of the window for each bit */
2700 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2701 		scc_mgr_apply_group_dq_out1_delay(write_group, d);
2702 
2703 		writel(0, &sdr_scc_mgr->update);
2704 
2705 		/*
2706 		 * Stop searching when the read test doesn't pass AND when
2707 		 * we've seen a passing read on every bit.
2708 		 */
2709 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2710 			0, PASS_ONE_BIT, &bit_chk, 0);
2711 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2712 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2713 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2714 			   == %u && %u [bit_chk= %u ]\n",
2715 			d, sticky_bit_chk, param->write_correct_mask,
2716 			stop, bit_chk);
2717 
2718 		if (stop == 1) {
2719 			break;
2720 		} else {
2721 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2722 				if (bit_chk & 1) {
2723 					/*
2724 					 * Remember a passing test as the
2725 					 * left_edge.
2726 					 */
2727 					left_edge[i] = d;
2728 				} else {
2729 					/*
2730 					 * If a left edge has not been seen
2731 					 * yet, then a future passing test will
2732 					 * mark this edge as the right edge.
2733 					 */
2734 					if (left_edge[i] ==
2735 						IO_IO_OUT1_DELAY_MAX + 1) {
2736 						right_edge[i] = -(d + 1);
2737 					}
2738 				}
2739 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2740 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2741 					   (int)(bit_chk & 1), i, left_edge[i]);
2742 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2743 				       right_edge[i]);
2744 				bit_chk = bit_chk >> 1;
2745 			}
2746 		}
2747 	}
2748 
2749 	/* Reset DQ delay chains to 0 */
2750 	scc_mgr_apply_group_dq_out1_delay(0);
2751 	sticky_bit_chk = 0;
2752 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2753 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2754 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2755 			   i, left_edge[i], i, right_edge[i]);
2756 
2757 		/*
2758 		 * Check for cases where we haven't found the left edge,
2759 		 * which makes our assignment of the the right edge invalid.
2760 		 * Reset it to the illegal value.
2761 		 */
2762 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2763 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2764 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2765 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2766 				   right_edge[%u]: %d\n", __func__, __LINE__,
2767 				   i, right_edge[i]);
2768 		}
2769 
2770 		/*
2771 		 * Reset sticky bit (except for bits where we have
2772 		 * seen the left edge).
2773 		 */
2774 		sticky_bit_chk = sticky_bit_chk << 1;
2775 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2776 			sticky_bit_chk = sticky_bit_chk | 1;
2777 
2778 		if (i == 0)
2779 			break;
2780 	}
2781 
2782 	/* Search for the right edge of the window for each bit */
2783 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2784 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2785 							d + start_dqs);
2786 
2787 		writel(0, &sdr_scc_mgr->update);
2788 
2789 		/*
2790 		 * Stop searching when the read test doesn't pass AND when
2791 		 * we've seen a passing read on every bit.
2792 		 */
2793 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2794 			0, PASS_ONE_BIT, &bit_chk, 0);
2795 
2796 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2797 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2798 
2799 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2800 			   %u && %u\n", d, sticky_bit_chk,
2801 			   param->write_correct_mask, stop);
2802 
2803 		if (stop == 1) {
2804 			if (d == 0) {
2805 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2806 					i++) {
2807 					/* d = 0 failed, but it passed when
2808 					testing the left edge, so it must be
2809 					marginal, set it to -1 */
2810 					if (right_edge[i] ==
2811 						IO_IO_OUT1_DELAY_MAX + 1 &&
2812 						left_edge[i] !=
2813 						IO_IO_OUT1_DELAY_MAX + 1) {
2814 						right_edge[i] = -1;
2815 					}
2816 				}
2817 			}
2818 			break;
2819 		} else {
2820 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2821 				if (bit_chk & 1) {
2822 					/*
2823 					 * Remember a passing test as
2824 					 * the right_edge.
2825 					 */
2826 					right_edge[i] = d;
2827 				} else {
2828 					if (d != 0) {
2829 						/*
2830 						 * If a right edge has not
2831 						 * been seen yet, then a future
2832 						 * passing test will mark this
2833 						 * edge as the left edge.
2834 						 */
2835 						if (right_edge[i] ==
2836 						    IO_IO_OUT1_DELAY_MAX + 1)
2837 							left_edge[i] = -(d + 1);
2838 					} else {
2839 						/*
2840 						 * d = 0 failed, but it passed
2841 						 * when testing the left edge,
2842 						 * so it must be marginal, set
2843 						 * it to -1.
2844 						 */
2845 						if (right_edge[i] ==
2846 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2847 						    left_edge[i] !=
2848 						    IO_IO_OUT1_DELAY_MAX + 1)
2849 							right_edge[i] = -1;
2850 						/*
2851 						 * If a right edge has not been
2852 						 * seen yet, then a future
2853 						 * passing test will mark this
2854 						 * edge as the left edge.
2855 						 */
2856 						else if (right_edge[i] ==
2857 							IO_IO_OUT1_DELAY_MAX +
2858 							1)
2859 							left_edge[i] = -(d + 1);
2860 					}
2861 				}
2862 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2863 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2864 					   (int)(bit_chk & 1), i, left_edge[i]);
2865 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2866 					   right_edge[i]);
2867 				bit_chk = bit_chk >> 1;
2868 			}
2869 		}
2870 	}
2871 
2872 	/* Check that all bits have a window */
2873 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2874 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2875 			   %d right_edge[%u]: %d", __func__, __LINE__,
2876 			   i, left_edge[i], i, right_edge[i]);
2877 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2878 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2879 			set_failing_group_stage(test_bgn + i,
2880 						CAL_STAGE_WRITES,
2881 						CAL_SUBSTAGE_WRITES_CENTER);
2882 			return 0;
2883 		}
2884 	}
2885 
2886 	/* Find middle of window for each DQ bit */
2887 	mid_min = left_edge[0] - right_edge[0];
2888 	min_index = 0;
2889 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2890 		mid = left_edge[i] - right_edge[i];
2891 		if (mid < mid_min) {
2892 			mid_min = mid;
2893 			min_index = i;
2894 		}
2895 	}
2896 
2897 	/*
2898 	 * -mid_min/2 represents the amount that we need to move DQS.
2899 	 * If mid_min is odd and positive we'll need to add one to
2900 	 * make sure the rounding in further calculations is correct
2901 	 * (always bias to the right), so just add 1 for all positive values.
2902 	 */
2903 	if (mid_min > 0)
2904 		mid_min++;
2905 	mid_min = mid_min / 2;
2906 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2907 		   __LINE__, mid_min);
2908 
2909 	/* Determine the amount we can change DQS (which is -mid_min) */
2910 	orig_mid_min = mid_min;
2911 	new_dqs = start_dqs;
2912 	mid_min = 0;
2913 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2914 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2915 	/* Initialize data for export structures */
2916 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2917 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2918 
2919 	/* add delay to bring centre of all DQ windows to the same "level" */
2920 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2921 		/* Use values before divide by 2 to reduce round off error */
2922 		shift_dq = (left_edge[i] - right_edge[i] -
2923 			(left_edge[min_index] - right_edge[min_index]))/2  +
2924 		(orig_mid_min - mid_min);
2925 
2926 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2927 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2928 
2929 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2930 		temp_dq_out1_delay = readl(addr + (i << 2));
2931 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2932 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2933 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2934 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2935 			shift_dq = -(int32_t)temp_dq_out1_delay;
2936 		}
2937 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2938 			   i, shift_dq);
2939 		scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq);
2940 		scc_mgr_load_dq(i);
2941 
2942 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2943 			   left_edge[i] - shift_dq + (-mid_min),
2944 			   right_edge[i] + shift_dq - (-mid_min));
2945 		/* To determine values for export structures */
2946 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2947 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2948 
2949 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2950 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2951 	}
2952 
2953 	/* Move DQS */
2954 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
2955 	writel(0, &sdr_scc_mgr->update);
2956 
2957 	/* Centre DM */
2958 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
2959 
2960 	/*
2961 	 * set the left and right edge of each bit to an illegal value,
2962 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
2963 	 */
2964 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
2965 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
2966 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
2967 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
2968 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
2969 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
2970 	int32_t win_best = 0;
2971 
2972 	/* Search for the/part of the window with DM shift */
2973 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
2974 		scc_mgr_apply_group_dm_out1_delay(d);
2975 		writel(0, &sdr_scc_mgr->update);
2976 
2977 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2978 						    PASS_ALL_BITS, &bit_chk,
2979 						    0)) {
2980 			/* USE Set current end of the window */
2981 			end_curr = -d;
2982 			/*
2983 			 * If a starting edge of our window has not been seen
2984 			 * this is our current start of the DM window.
2985 			 */
2986 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
2987 				bgn_curr = -d;
2988 
2989 			/*
2990 			 * If current window is bigger than best seen.
2991 			 * Set best seen to be current window.
2992 			 */
2993 			if ((end_curr-bgn_curr+1) > win_best) {
2994 				win_best = end_curr-bgn_curr+1;
2995 				bgn_best = bgn_curr;
2996 				end_best = end_curr;
2997 			}
2998 		} else {
2999 			/* We just saw a failing test. Reset temp edge */
3000 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3001 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3002 			}
3003 		}
3004 
3005 
3006 	/* Reset DM delay chains to 0 */
3007 	scc_mgr_apply_group_dm_out1_delay(0);
3008 
3009 	/*
3010 	 * Check to see if the current window nudges up aganist 0 delay.
3011 	 * If so we need to continue the search by shifting DQS otherwise DQS
3012 	 * search begins as a new search. */
3013 	if (end_curr != 0) {
3014 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3015 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3016 	}
3017 
3018 	/* Search for the/part of the window with DQS shifts */
3019 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3020 		/*
3021 		 * Note: This only shifts DQS, so are we limiting ourselve to
3022 		 * width of DQ unnecessarily.
3023 		 */
3024 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3025 							d + new_dqs);
3026 
3027 		writel(0, &sdr_scc_mgr->update);
3028 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3029 						    PASS_ALL_BITS, &bit_chk,
3030 						    0)) {
3031 			/* USE Set current end of the window */
3032 			end_curr = d;
3033 			/*
3034 			 * If a beginning edge of our window has not been seen
3035 			 * this is our current begin of the DM window.
3036 			 */
3037 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3038 				bgn_curr = d;
3039 
3040 			/*
3041 			 * If current window is bigger than best seen. Set best
3042 			 * seen to be current window.
3043 			 */
3044 			if ((end_curr-bgn_curr+1) > win_best) {
3045 				win_best = end_curr-bgn_curr+1;
3046 				bgn_best = bgn_curr;
3047 				end_best = end_curr;
3048 			}
3049 		} else {
3050 			/* We just saw a failing test. Reset temp edge */
3051 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3052 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3053 
3054 			/* Early exit optimization: if ther remaining delay
3055 			chain space is less than already seen largest window
3056 			we can exit */
3057 			if ((win_best-1) >
3058 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3059 					break;
3060 				}
3061 			}
3062 		}
3063 
3064 	/* assign left and right edge for cal and reporting; */
3065 	left_edge[0] = -1*bgn_best;
3066 	right_edge[0] = end_best;
3067 
3068 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3069 		   __LINE__, left_edge[0], right_edge[0]);
3070 
3071 	/* Move DQS (back to orig) */
3072 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3073 
3074 	/* Move DM */
3075 
3076 	/* Find middle of window for the DM bit */
3077 	mid = (left_edge[0] - right_edge[0]) / 2;
3078 
3079 	/* only move right, since we are not moving DQS/DQ */
3080 	if (mid < 0)
3081 		mid = 0;
3082 
3083 	/* dm_marign should fail if we never find a window */
3084 	if (win_best == 0)
3085 		dm_margin = -1;
3086 	else
3087 		dm_margin = left_edge[0] - mid;
3088 
3089 	scc_mgr_apply_group_dm_out1_delay(mid);
3090 	writel(0, &sdr_scc_mgr->update);
3091 
3092 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3093 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3094 		   right_edge[0], mid, dm_margin);
3095 	/* Export values */
3096 	gbl->fom_out += dq_margin + dqs_margin;
3097 
3098 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3099 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3100 		   dq_margin, dqs_margin, dm_margin);
3101 
3102 	/*
3103 	 * Do not remove this line as it makes sure all of our
3104 	 * decisions have been applied.
3105 	 */
3106 	writel(0, &sdr_scc_mgr->update);
3107 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3108 }
3109 
3110 /* calibrate the write operations */
3111 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3112 	uint32_t test_bgn)
3113 {
3114 	/* update info for sims */
3115 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3116 
3117 	reg_file_set_stage(CAL_STAGE_WRITES);
3118 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3119 
3120 	reg_file_set_group(g);
3121 
3122 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3123 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3124 					CAL_SUBSTAGE_WRITES_CENTER);
3125 		return 0;
3126 	}
3127 
3128 	return 1;
3129 }
3130 
3131 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3132 static void mem_precharge_and_activate(void)
3133 {
3134 	uint32_t r;
3135 
3136 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3137 		if (param->skip_ranks[r]) {
3138 			/* request to skip the rank */
3139 			continue;
3140 		}
3141 
3142 		/* set rank */
3143 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3144 
3145 		/* precharge all banks ... */
3146 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3147 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3148 
3149 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3150 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3151 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3152 
3153 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3154 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3155 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3156 
3157 		/* activate rows */
3158 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3159 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3160 	}
3161 }
3162 
3163 /* Configure various memory related parameters. */
3164 static void mem_config(void)
3165 {
3166 	uint32_t rlat, wlat;
3167 	uint32_t rw_wl_nop_cycles;
3168 	uint32_t max_latency;
3169 
3170 	debug("%s:%d\n", __func__, __LINE__);
3171 	/* read in write and read latency */
3172 	wlat = readl(&data_mgr->t_wl_add);
3173 	wlat += readl(&data_mgr->mem_t_add);
3174 
3175 	/* WL for hard phy does not include additive latency */
3176 
3177 	/*
3178 	 * add addtional write latency to offset the address/command extra
3179 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3180 	 * by one mem clock cycle. Only do this for DDR3
3181 	 */
3182 	wlat = wlat + 1;
3183 
3184 	rlat = readl(&data_mgr->t_rl_add);
3185 
3186 	rw_wl_nop_cycles = wlat - 2;
3187 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3188 
3189 	/*
3190 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3191 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3192 	 */
3193 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3194 	/* configure for a burst length of 8 */
3195 
3196 	/* write latency */
3197 	/* Adjust Write Latency for Hard PHY */
3198 	wlat = wlat + 1;
3199 
3200 	/* set a pretty high read latency initially */
3201 	gbl->curr_read_lat = rlat + 16;
3202 
3203 	if (gbl->curr_read_lat > max_latency)
3204 		gbl->curr_read_lat = max_latency;
3205 
3206 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3207 
3208 	/* advertise write latency */
3209 	gbl->curr_write_lat = wlat;
3210 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3211 
3212 	/* initialize bit slips */
3213 	mem_precharge_and_activate();
3214 }
3215 
3216 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3217 static void mem_skip_calibrate(void)
3218 {
3219 	uint32_t vfifo_offset;
3220 	uint32_t i, j, r;
3221 
3222 	debug("%s:%d\n", __func__, __LINE__);
3223 	/* Need to update every shadow register set used by the interface */
3224 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3225 		r += NUM_RANKS_PER_SHADOW_REG) {
3226 		/*
3227 		 * Set output phase alignment settings appropriate for
3228 		 * skip calibration.
3229 		 */
3230 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3231 			scc_mgr_set_dqs_en_phase(i, 0);
3232 #if IO_DLL_CHAIN_LENGTH == 6
3233 			scc_mgr_set_dqdqs_output_phase(i, 6);
3234 #else
3235 			scc_mgr_set_dqdqs_output_phase(i, 7);
3236 #endif
3237 			/*
3238 			 * Case:33398
3239 			 *
3240 			 * Write data arrives to the I/O two cycles before write
3241 			 * latency is reached (720 deg).
3242 			 *   -> due to bit-slip in a/c bus
3243 			 *   -> to allow board skew where dqs is longer than ck
3244 			 *      -> how often can this happen!?
3245 			 *      -> can claim back some ptaps for high freq
3246 			 *       support if we can relax this, but i digress...
3247 			 *
3248 			 * The write_clk leads mem_ck by 90 deg
3249 			 * The minimum ptap of the OPA is 180 deg
3250 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3251 			 * The write_clk is always delayed by 2 ptaps
3252 			 *
3253 			 * Hence, to make DQS aligned to CK, we need to delay
3254 			 * DQS by:
3255 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3256 			 *
3257 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3258 			 * gives us the number of ptaps, which simplies to:
3259 			 *
3260 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3261 			 */
3262 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3263 				IO_DLL_CHAIN_LENGTH - 2));
3264 		}
3265 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3266 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3267 
3268 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3269 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3270 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3271 		}
3272 		writel(0xff, &sdr_scc_mgr->dq_ena);
3273 		writel(0xff, &sdr_scc_mgr->dm_ena);
3274 		writel(0, &sdr_scc_mgr->update);
3275 	}
3276 
3277 	/* Compensate for simulation model behaviour */
3278 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3279 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3280 		scc_mgr_load_dqs(i);
3281 	}
3282 	writel(0, &sdr_scc_mgr->update);
3283 
3284 	/*
3285 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3286 	 * in sequencer.
3287 	 */
3288 	vfifo_offset = CALIB_VFIFO_OFFSET;
3289 	for (j = 0; j < vfifo_offset; j++) {
3290 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3291 	}
3292 	writel(0, &phy_mgr_cmd->fifo_reset);
3293 
3294 	/*
3295 	 * For ACV with hard lfifo, we get the skip-cal setting from
3296 	 * generation-time constant.
3297 	 */
3298 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3299 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3300 }
3301 
3302 /* Memory calibration entry point */
3303 static uint32_t mem_calibrate(void)
3304 {
3305 	uint32_t i;
3306 	uint32_t rank_bgn, sr;
3307 	uint32_t write_group, write_test_bgn;
3308 	uint32_t read_group, read_test_bgn;
3309 	uint32_t run_groups, current_run;
3310 	uint32_t failing_groups = 0;
3311 	uint32_t group_failed = 0;
3312 	uint32_t sr_failed = 0;
3313 
3314 	debug("%s:%d\n", __func__, __LINE__);
3315 	/* Initialize the data settings */
3316 
3317 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3318 	gbl->error_stage = CAL_STAGE_NIL;
3319 	gbl->error_group = 0xff;
3320 	gbl->fom_in = 0;
3321 	gbl->fom_out = 0;
3322 
3323 	mem_config();
3324 
3325 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3326 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3327 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3328 		scc_set_bypass_mode(i);
3329 	}
3330 
3331 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3332 		/*
3333 		 * Set VFIFO and LFIFO to instant-on settings in skip
3334 		 * calibration mode.
3335 		 */
3336 		mem_skip_calibrate();
3337 	} else {
3338 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3339 			/*
3340 			 * Zero all delay chain/phase settings for all
3341 			 * groups and all shadow register sets.
3342 			 */
3343 			scc_mgr_zero_all();
3344 
3345 			run_groups = ~param->skip_groups;
3346 
3347 			for (write_group = 0, write_test_bgn = 0; write_group
3348 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3349 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3350 				/* Initialized the group failure */
3351 				group_failed = 0;
3352 
3353 				current_run = run_groups & ((1 <<
3354 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3355 				run_groups = run_groups >>
3356 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3357 
3358 				if (current_run == 0)
3359 					continue;
3360 
3361 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3362 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3363 				scc_mgr_zero_group(write_group, write_test_bgn,
3364 						   0);
3365 
3366 				for (read_group = write_group *
3367 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3368 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3369 					read_test_bgn = 0;
3370 					read_group < (write_group + 1) *
3371 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3372 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3373 					group_failed == 0;
3374 					read_group++, read_test_bgn +=
3375 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3376 					/* Calibrate the VFIFO */
3377 					if (!((STATIC_CALIB_STEPS) &
3378 						CALIB_SKIP_VFIFO)) {
3379 						if (!rw_mgr_mem_calibrate_vfifo
3380 							(read_group,
3381 							read_test_bgn)) {
3382 							group_failed = 1;
3383 
3384 							if (!(gbl->
3385 							phy_debug_mode_flags &
3386 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3387 								return 0;
3388 							}
3389 						}
3390 					}
3391 				}
3392 
3393 				/* Calibrate the output side */
3394 				if (group_failed == 0)	{
3395 					for (rank_bgn = 0, sr = 0; rank_bgn
3396 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3397 						rank_bgn +=
3398 						NUM_RANKS_PER_SHADOW_REG,
3399 						++sr) {
3400 						sr_failed = 0;
3401 						if (!((STATIC_CALIB_STEPS) &
3402 						CALIB_SKIP_WRITES)) {
3403 							if ((STATIC_CALIB_STEPS)
3404 						& CALIB_SKIP_DELAY_SWEEPS) {
3405 						/* not needed in quick mode! */
3406 							} else {
3407 						/*
3408 						 * Determine if this set of
3409 						 * ranks should be skipped
3410 						 * entirely.
3411 						 */
3412 					if (!param->skip_shadow_regs[sr]) {
3413 						if (!rw_mgr_mem_calibrate_writes
3414 						(rank_bgn, write_group,
3415 						write_test_bgn)) {
3416 							sr_failed = 1;
3417 							if (!(gbl->
3418 							phy_debug_mode_flags &
3419 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3420 								return 0;
3421 									}
3422 									}
3423 								}
3424 							}
3425 						}
3426 						if (sr_failed != 0)
3427 							group_failed = 1;
3428 					}
3429 				}
3430 
3431 				if (group_failed == 0) {
3432 					for (read_group = write_group *
3433 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3434 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3435 					read_test_bgn = 0;
3436 						read_group < (write_group + 1)
3437 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3438 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3439 						group_failed == 0;
3440 						read_group++, read_test_bgn +=
3441 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3442 						if (!((STATIC_CALIB_STEPS) &
3443 							CALIB_SKIP_WRITES)) {
3444 					if (!rw_mgr_mem_calibrate_vfifo_end
3445 						(read_group, read_test_bgn)) {
3446 							group_failed = 1;
3447 
3448 						if (!(gbl->phy_debug_mode_flags
3449 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3450 								return 0;
3451 								}
3452 							}
3453 						}
3454 					}
3455 				}
3456 
3457 				if (group_failed != 0)
3458 					failing_groups++;
3459 			}
3460 
3461 			/*
3462 			 * USER If there are any failing groups then report
3463 			 * the failure.
3464 			 */
3465 			if (failing_groups != 0)
3466 				return 0;
3467 
3468 			/* Calibrate the LFIFO */
3469 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3470 				/*
3471 				 * If we're skipping groups as part of debug,
3472 				 * don't calibrate LFIFO.
3473 				 */
3474 				if (param->skip_groups == 0) {
3475 					if (!rw_mgr_mem_calibrate_lfifo())
3476 						return 0;
3477 				}
3478 			}
3479 		}
3480 	}
3481 
3482 	/*
3483 	 * Do not remove this line as it makes sure all of our decisions
3484 	 * have been applied.
3485 	 */
3486 	writel(0, &sdr_scc_mgr->update);
3487 	return 1;
3488 }
3489 
3490 static uint32_t run_mem_calibrate(void)
3491 {
3492 	uint32_t pass;
3493 	uint32_t debug_info;
3494 
3495 	debug("%s:%d\n", __func__, __LINE__);
3496 
3497 	/* Reset pass/fail status shown on afi_cal_success/fail */
3498 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3499 
3500 	/* stop tracking manger */
3501 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3502 
3503 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3504 
3505 	initialize();
3506 	rw_mgr_mem_initialize();
3507 
3508 	pass = mem_calibrate();
3509 
3510 	mem_precharge_and_activate();
3511 	writel(0, &phy_mgr_cmd->fifo_reset);
3512 
3513 	/*
3514 	 * Handoff:
3515 	 * Don't return control of the PHY back to AFI when in debug mode.
3516 	 */
3517 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3518 		rw_mgr_mem_handoff();
3519 		/*
3520 		 * In Hard PHY this is a 2-bit control:
3521 		 * 0: AFI Mux Select
3522 		 * 1: DDIO Mux Select
3523 		 */
3524 		writel(0x2, &phy_mgr_cfg->mux_sel);
3525 	}
3526 
3527 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3528 
3529 	if (pass) {
3530 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3531 
3532 		gbl->fom_in /= 2;
3533 		gbl->fom_out /= 2;
3534 
3535 		if (gbl->fom_in > 0xff)
3536 			gbl->fom_in = 0xff;
3537 
3538 		if (gbl->fom_out > 0xff)
3539 			gbl->fom_out = 0xff;
3540 
3541 		/* Update the FOM in the register file */
3542 		debug_info = gbl->fom_in;
3543 		debug_info |= gbl->fom_out << 8;
3544 		writel(debug_info, &sdr_reg_file->fom);
3545 
3546 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3547 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3548 	} else {
3549 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3550 
3551 		debug_info = gbl->error_stage;
3552 		debug_info |= gbl->error_substage << 8;
3553 		debug_info |= gbl->error_group << 16;
3554 
3555 		writel(debug_info, &sdr_reg_file->failing_stage);
3556 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3557 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3558 
3559 		/* Update the failing group/stage in the register file */
3560 		debug_info = gbl->error_stage;
3561 		debug_info |= gbl->error_substage << 8;
3562 		debug_info |= gbl->error_group << 16;
3563 		writel(debug_info, &sdr_reg_file->failing_stage);
3564 	}
3565 
3566 	return pass;
3567 }
3568 
3569 /**
3570  * hc_initialize_rom_data() - Initialize ROM data
3571  *
3572  * Initialize ROM data.
3573  */
3574 static void hc_initialize_rom_data(void)
3575 {
3576 	u32 i, addr;
3577 
3578 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3579 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3580 		writel(inst_rom_init[i], addr + (i << 2));
3581 
3582 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3583 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3584 		writel(ac_rom_init[i], addr + (i << 2));
3585 }
3586 
3587 /**
3588  * initialize_reg_file() - Initialize SDR register file
3589  *
3590  * Initialize SDR register file.
3591  */
3592 static void initialize_reg_file(void)
3593 {
3594 	/* Initialize the register file with the correct data */
3595 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3596 	writel(0, &sdr_reg_file->debug_data_addr);
3597 	writel(0, &sdr_reg_file->cur_stage);
3598 	writel(0, &sdr_reg_file->fom);
3599 	writel(0, &sdr_reg_file->failing_stage);
3600 	writel(0, &sdr_reg_file->debug1);
3601 	writel(0, &sdr_reg_file->debug2);
3602 }
3603 
3604 /**
3605  * initialize_hps_phy() - Initialize HPS PHY
3606  *
3607  * Initialize HPS PHY.
3608  */
3609 static void initialize_hps_phy(void)
3610 {
3611 	uint32_t reg;
3612 	/*
3613 	 * Tracking also gets configured here because it's in the
3614 	 * same register.
3615 	 */
3616 	uint32_t trk_sample_count = 7500;
3617 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3618 	/*
3619 	 * Format is number of outer loops in the 16 MSB, sample
3620 	 * count in 16 LSB.
3621 	 */
3622 
3623 	reg = 0;
3624 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3625 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3626 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3627 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3628 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3629 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3630 	/*
3631 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3632 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3633 	 */
3634 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3635 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3636 		trk_sample_count);
3637 	writel(reg, &sdr_ctrl->phy_ctrl0);
3638 
3639 	reg = 0;
3640 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3641 		trk_sample_count >>
3642 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3643 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3644 		trk_long_idle_sample_count);
3645 	writel(reg, &sdr_ctrl->phy_ctrl1);
3646 
3647 	reg = 0;
3648 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3649 		trk_long_idle_sample_count >>
3650 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3651 	writel(reg, &sdr_ctrl->phy_ctrl2);
3652 }
3653 
3654 static void initialize_tracking(void)
3655 {
3656 	uint32_t concatenated_longidle = 0x0;
3657 	uint32_t concatenated_delays = 0x0;
3658 	uint32_t concatenated_rw_addr = 0x0;
3659 	uint32_t concatenated_refresh = 0x0;
3660 	uint32_t trk_sample_count = 7500;
3661 	uint32_t dtaps_per_ptap;
3662 	uint32_t tmp_delay;
3663 
3664 	/*
3665 	 * compute usable version of value in case we skip full
3666 	 * computation later
3667 	 */
3668 	dtaps_per_ptap = 0;
3669 	tmp_delay = 0;
3670 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3671 		dtaps_per_ptap++;
3672 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3673 	}
3674 	dtaps_per_ptap--;
3675 
3676 	concatenated_longidle = concatenated_longidle ^ 10;
3677 		/*longidle outer loop */
3678 	concatenated_longidle = concatenated_longidle << 16;
3679 	concatenated_longidle = concatenated_longidle ^ 100;
3680 		/*longidle sample count */
3681 	concatenated_delays = concatenated_delays ^ 243;
3682 		/* trfc, worst case of 933Mhz 4Gb */
3683 	concatenated_delays = concatenated_delays << 8;
3684 	concatenated_delays = concatenated_delays ^ 14;
3685 		/* trcd, worst case */
3686 	concatenated_delays = concatenated_delays << 8;
3687 	concatenated_delays = concatenated_delays ^ 10;
3688 		/* vfifo wait */
3689 	concatenated_delays = concatenated_delays << 8;
3690 	concatenated_delays = concatenated_delays ^ 4;
3691 		/* mux delay */
3692 
3693 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3694 	concatenated_rw_addr = concatenated_rw_addr << 8;
3695 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3696 	concatenated_rw_addr = concatenated_rw_addr << 8;
3697 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3698 	concatenated_rw_addr = concatenated_rw_addr << 8;
3699 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3700 
3701 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3702 	concatenated_refresh = concatenated_refresh << 24;
3703 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3704 
3705 	/* Initialize the register file with the correct data */
3706 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3707 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3708 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3709 	writel(concatenated_delays, &sdr_reg_file->delays);
3710 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3711 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3712 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3713 }
3714 
3715 int sdram_calibration_full(void)
3716 {
3717 	struct param_type my_param;
3718 	struct gbl_type my_gbl;
3719 	uint32_t pass;
3720 	uint32_t i;
3721 
3722 	param = &my_param;
3723 	gbl = &my_gbl;
3724 
3725 	/* Initialize the debug mode flags */
3726 	gbl->phy_debug_mode_flags = 0;
3727 	/* Set the calibration enabled by default */
3728 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3729 	/*
3730 	 * Only sweep all groups (regardless of fail state) by default
3731 	 * Set enabled read test by default.
3732 	 */
3733 #if DISABLE_GUARANTEED_READ
3734 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3735 #endif
3736 	/* Initialize the register file */
3737 	initialize_reg_file();
3738 
3739 	/* Initialize any PHY CSR */
3740 	initialize_hps_phy();
3741 
3742 	scc_mgr_initialize();
3743 
3744 	initialize_tracking();
3745 
3746 	/* USER Enable all ranks, groups */
3747 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3748 		param->skip_ranks[i] = 0;
3749 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3750 		param->skip_shadow_regs[i] = 0;
3751 	param->skip_groups = 0;
3752 
3753 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3754 
3755 	debug("%s:%d\n", __func__, __LINE__);
3756 	debug_cond(DLEVEL == 1,
3757 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3758 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3759 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3760 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3761 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3762 	debug_cond(DLEVEL == 1,
3763 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3764 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3765 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3766 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3767 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3768 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3769 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3770 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3771 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3772 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3773 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3774 		   IO_IO_OUT2_DELAY_MAX);
3775 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3776 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3777 
3778 	hc_initialize_rom_data();
3779 
3780 	/* update info for sims */
3781 	reg_file_set_stage(CAL_STAGE_NIL);
3782 	reg_file_set_group(0);
3783 
3784 	/*
3785 	 * Load global needed for those actions that require
3786 	 * some dynamic calibration support.
3787 	 */
3788 	dyn_calib_steps = STATIC_CALIB_STEPS;
3789 	/*
3790 	 * Load global to allow dynamic selection of delay loop settings
3791 	 * based on calibration mode.
3792 	 */
3793 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3794 		skip_delay_mask = 0xff;
3795 	else
3796 		skip_delay_mask = 0x0;
3797 
3798 	pass = run_mem_calibrate();
3799 
3800 	printf("%s: Calibration complete\n", __FILE__);
3801 	return pass;
3802 }
3803