1 /* 2 * Copyright Altera Corporation (C) 2012-2015 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <common.h> 8 #include <asm/io.h> 9 #include <asm/arch/sdram.h> 10 #include "sequencer.h" 11 #include "sequencer_auto.h" 12 #include "sequencer_auto_ac_init.h" 13 #include "sequencer_auto_inst_init.h" 14 #include "sequencer_defines.h" 15 16 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = 17 (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); 18 19 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = 20 (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); 21 22 static struct socfpga_sdr_reg_file *sdr_reg_file = 23 (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; 24 25 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = 26 (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); 27 28 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = 29 (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; 30 31 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = 32 (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); 33 34 static struct socfpga_data_mgr *data_mgr = 35 (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; 36 37 static struct socfpga_sdr_ctrl *sdr_ctrl = 38 (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; 39 40 #define DELTA_D 1 41 42 /* 43 * In order to reduce ROM size, most of the selectable calibration steps are 44 * decided at compile time based on the user's calibration mode selection, 45 * as captured by the STATIC_CALIB_STEPS selection below. 46 * 47 * However, to support simulation-time selection of fast simulation mode, where 48 * we skip everything except the bare minimum, we need a few of the steps to 49 * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the 50 * check, which is based on the rtl-supplied value, or we dynamically compute 51 * the value to use based on the dynamically-chosen calibration mode 52 */ 53 54 #define DLEVEL 0 55 #define STATIC_IN_RTL_SIM 0 56 #define STATIC_SKIP_DELAY_LOOPS 0 57 58 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ 59 STATIC_SKIP_DELAY_LOOPS) 60 61 /* calibration steps requested by the rtl */ 62 uint16_t dyn_calib_steps; 63 64 /* 65 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option 66 * instead of static, we use boolean logic to select between 67 * non-skip and skip values 68 * 69 * The mask is set to include all bits when not-skipping, but is 70 * zero when skipping 71 */ 72 73 uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ 74 75 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ 76 ((non_skip_value) & skip_delay_mask) 77 78 struct gbl_type *gbl; 79 struct param_type *param; 80 uint32_t curr_shadow_reg; 81 82 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 83 uint32_t write_group, uint32_t use_dm, 84 uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); 85 86 static void set_failing_group_stage(uint32_t group, uint32_t stage, 87 uint32_t substage) 88 { 89 /* 90 * Only set the global stage if there was not been any other 91 * failing group 92 */ 93 if (gbl->error_stage == CAL_STAGE_NIL) { 94 gbl->error_substage = substage; 95 gbl->error_stage = stage; 96 gbl->error_group = group; 97 } 98 } 99 100 static void reg_file_set_group(u16 set_group) 101 { 102 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); 103 } 104 105 static void reg_file_set_stage(u8 set_stage) 106 { 107 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); 108 } 109 110 static void reg_file_set_sub_stage(u8 set_sub_stage) 111 { 112 set_sub_stage &= 0xff; 113 clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); 114 } 115 116 static void initialize(void) 117 { 118 debug("%s:%d\n", __func__, __LINE__); 119 /* USER calibration has control over path to memory */ 120 /* 121 * In Hard PHY this is a 2-bit control: 122 * 0: AFI Mux Select 123 * 1: DDIO Mux Select 124 */ 125 writel(0x3, &phy_mgr_cfg->mux_sel); 126 127 /* USER memory clock is not stable we begin initialization */ 128 writel(0, &phy_mgr_cfg->reset_mem_stbl); 129 130 /* USER calibration status all set to zero */ 131 writel(0, &phy_mgr_cfg->cal_status); 132 133 writel(0, &phy_mgr_cfg->cal_debug_info); 134 135 if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) { 136 param->read_correct_mask_vg = ((uint32_t)1 << 137 (RW_MGR_MEM_DQ_PER_READ_DQS / 138 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 139 param->write_correct_mask_vg = ((uint32_t)1 << 140 (RW_MGR_MEM_DQ_PER_READ_DQS / 141 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1; 142 param->read_correct_mask = ((uint32_t)1 << 143 RW_MGR_MEM_DQ_PER_READ_DQS) - 1; 144 param->write_correct_mask = ((uint32_t)1 << 145 RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; 146 param->dm_correct_mask = ((uint32_t)1 << 147 (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) 148 - 1; 149 } 150 } 151 152 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode) 153 { 154 uint32_t odt_mask_0 = 0; 155 uint32_t odt_mask_1 = 0; 156 uint32_t cs_and_odt_mask; 157 158 if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) { 159 if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) { 160 /* 161 * 1 Rank 162 * Read: ODT = 0 163 * Write: ODT = 1 164 */ 165 odt_mask_0 = 0x0; 166 odt_mask_1 = 0x1; 167 } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) { 168 /* 2 Ranks */ 169 if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { 170 /* - Dual-Slot , Single-Rank 171 * (1 chip-select per DIMM) 172 * OR 173 * - RDIMM, 4 total CS (2 CS per DIMM) 174 * means 2 DIMM 175 * Since MEM_NUMBER_OF_RANKS is 2 they are 176 * both single rank 177 * with 2 CS each (special for RDIMM) 178 * Read: Turn on ODT on the opposite rank 179 * Write: Turn on ODT on all ranks 180 */ 181 odt_mask_0 = 0x3 & ~(1 << rank); 182 odt_mask_1 = 0x3; 183 } else { 184 /* 185 * USER - Single-Slot , Dual-rank DIMMs 186 * (2 chip-selects per DIMM) 187 * USER Read: Turn on ODT off on all ranks 188 * USER Write: Turn on ODT on active rank 189 */ 190 odt_mask_0 = 0x0; 191 odt_mask_1 = 0x3 & (1 << rank); 192 } 193 } else { 194 /* 4 Ranks 195 * Read: 196 * ----------+-----------------------+ 197 * | | 198 * | ODT | 199 * Read From +-----------------------+ 200 * Rank | 3 | 2 | 1 | 0 | 201 * ----------+-----+-----+-----+-----+ 202 * 0 | 0 | 1 | 0 | 0 | 203 * 1 | 1 | 0 | 0 | 0 | 204 * 2 | 0 | 0 | 0 | 1 | 205 * 3 | 0 | 0 | 1 | 0 | 206 * ----------+-----+-----+-----+-----+ 207 * 208 * Write: 209 * ----------+-----------------------+ 210 * | | 211 * | ODT | 212 * Write To +-----------------------+ 213 * Rank | 3 | 2 | 1 | 0 | 214 * ----------+-----+-----+-----+-----+ 215 * 0 | 0 | 1 | 0 | 1 | 216 * 1 | 1 | 0 | 1 | 0 | 217 * 2 | 0 | 1 | 0 | 1 | 218 * 3 | 1 | 0 | 1 | 0 | 219 * ----------+-----+-----+-----+-----+ 220 */ 221 switch (rank) { 222 case 0: 223 odt_mask_0 = 0x4; 224 odt_mask_1 = 0x5; 225 break; 226 case 1: 227 odt_mask_0 = 0x8; 228 odt_mask_1 = 0xA; 229 break; 230 case 2: 231 odt_mask_0 = 0x1; 232 odt_mask_1 = 0x5; 233 break; 234 case 3: 235 odt_mask_0 = 0x2; 236 odt_mask_1 = 0xA; 237 break; 238 } 239 } 240 } else { 241 odt_mask_0 = 0x0; 242 odt_mask_1 = 0x0; 243 } 244 245 cs_and_odt_mask = 246 (0xFF & ~(1 << rank)) | 247 ((0xFF & odt_mask_0) << 8) | 248 ((0xFF & odt_mask_1) << 16); 249 writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | 250 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 251 } 252 253 /** 254 * scc_mgr_set() - Set SCC Manager register 255 * @off: Base offset in SCC Manager space 256 * @grp: Read/Write group 257 * @val: Value to be set 258 * 259 * This function sets the SCC Manager (Scan Chain Control Manager) register. 260 */ 261 static void scc_mgr_set(u32 off, u32 grp, u32 val) 262 { 263 writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); 264 } 265 266 /** 267 * scc_mgr_initialize() - Initialize SCC Manager registers 268 * 269 * Initialize SCC Manager registers. 270 */ 271 static void scc_mgr_initialize(void) 272 { 273 /* 274 * Clear register file for HPS. 16 (2^4) is the size of the 275 * full register file in the scc mgr: 276 * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + 277 * MEM_IF_READ_DQS_WIDTH - 1); 278 */ 279 int i; 280 281 for (i = 0; i < 16; i++) { 282 debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", 283 __func__, __LINE__, i); 284 scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); 285 } 286 } 287 288 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) 289 { 290 scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); 291 } 292 293 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) 294 { 295 scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); 296 } 297 298 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) 299 { 300 scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); 301 } 302 303 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) 304 { 305 scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); 306 } 307 308 static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) 309 { 310 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 311 delay); 312 } 313 314 static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) 315 { 316 scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); 317 } 318 319 static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) 320 { 321 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); 322 } 323 324 static void scc_mgr_set_dqs_out1_delay(uint32_t delay) 325 { 326 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, 327 delay); 328 } 329 330 static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) 331 { 332 scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, 333 RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, 334 delay); 335 } 336 337 /* load up dqs config settings */ 338 static void scc_mgr_load_dqs(uint32_t dqs) 339 { 340 writel(dqs, &sdr_scc_mgr->dqs_ena); 341 } 342 343 /* load up dqs io config settings */ 344 static void scc_mgr_load_dqs_io(void) 345 { 346 writel(0, &sdr_scc_mgr->dqs_io_ena); 347 } 348 349 /* load up dq config settings */ 350 static void scc_mgr_load_dq(uint32_t dq_in_group) 351 { 352 writel(dq_in_group, &sdr_scc_mgr->dq_ena); 353 } 354 355 /* load up dm config settings */ 356 static void scc_mgr_load_dm(uint32_t dm) 357 { 358 writel(dm, &sdr_scc_mgr->dm_ena); 359 } 360 361 /** 362 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks 363 * @off: Base offset in SCC Manager space 364 * @grp: Read/Write group 365 * @val: Value to be set 366 * @update: If non-zero, trigger SCC Manager update for all ranks 367 * 368 * This function sets the SCC Manager (Scan Chain Control Manager) register 369 * and optionally triggers the SCC update for all ranks. 370 */ 371 static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, 372 const int update) 373 { 374 u32 r; 375 376 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 377 r += NUM_RANKS_PER_SHADOW_REG) { 378 scc_mgr_set(off, grp, val); 379 380 if (update || (r == 0)) { 381 writel(grp, &sdr_scc_mgr->dqs_ena); 382 writel(0, &sdr_scc_mgr->update); 383 } 384 } 385 } 386 387 static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) 388 { 389 /* 390 * USER although the h/w doesn't support different phases per 391 * shadow register, for simplicity our scc manager modeling 392 * keeps different phase settings per shadow reg, and it's 393 * important for us to keep them in sync to match h/w. 394 * for efficiency, the scan chain update should occur only 395 * once to sr0. 396 */ 397 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, 398 read_group, phase, 0); 399 } 400 401 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, 402 uint32_t phase) 403 { 404 /* 405 * USER although the h/w doesn't support different phases per 406 * shadow register, for simplicity our scc manager modeling 407 * keeps different phase settings per shadow reg, and it's 408 * important for us to keep them in sync to match h/w. 409 * for efficiency, the scan chain update should occur only 410 * once to sr0. 411 */ 412 scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, 413 write_group, phase, 0); 414 } 415 416 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, 417 uint32_t delay) 418 { 419 /* 420 * In shadow register mode, the T11 settings are stored in 421 * registers in the core, which are updated by the DQS_ENA 422 * signals. Not issuing the SCC_MGR_UPD command allows us to 423 * save lots of rank switching overhead, by calling 424 * select_shadow_regs_for_update with update_scan_chains 425 * set to 0. 426 */ 427 scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, 428 read_group, delay, 1); 429 writel(0, &sdr_scc_mgr->update); 430 } 431 432 /** 433 * scc_mgr_set_oct_out1_delay() - Set OCT output delay 434 * @write_group: Write group 435 * @delay: Delay value 436 * 437 * This function sets the OCT output delay in SCC manager. 438 */ 439 static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) 440 { 441 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 442 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 443 const int base = write_group * ratio; 444 int i; 445 /* 446 * Load the setting in the SCC manager 447 * Although OCT affects only write data, the OCT delay is controlled 448 * by the DQS logic block which is instantiated once per read group. 449 * For protocols where a write group consists of multiple read groups, 450 * the setting must be set multiple times. 451 */ 452 for (i = 0; i < ratio; i++) 453 scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); 454 } 455 456 static void scc_mgr_set_hhp_extras(void) 457 { 458 /* 459 * Load the fixed setting in the SCC manager 460 * bits: 0:0 = 1'b1 - dqs bypass 461 * bits: 1:1 = 1'b1 - dq bypass 462 * bits: 4:2 = 3'b001 - rfifo_mode 463 * bits: 6:5 = 2'b01 - rfifo clock_select 464 * bits: 7:7 = 1'b0 - separate gating from ungating setting 465 * bits: 8:8 = 1'b0 - separate OE from Output delay setting 466 */ 467 uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0); 468 uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET; 469 470 writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET); 471 } 472 473 /* 474 * USER Zero all DQS config 475 * TODO: maybe rename to scc_mgr_zero_dqs_config (or something) 476 */ 477 static void scc_mgr_zero_all(void) 478 { 479 uint32_t i, r; 480 481 /* 482 * USER Zero all DQS config settings, across all groups and all 483 * shadow registers 484 */ 485 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 486 NUM_RANKS_PER_SHADOW_REG) { 487 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 488 /* 489 * The phases actually don't exist on a per-rank basis, 490 * but there's no harm updating them several times, so 491 * let's keep the code simple. 492 */ 493 scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); 494 scc_mgr_set_dqs_en_phase(i, 0); 495 scc_mgr_set_dqs_en_delay(i, 0); 496 } 497 498 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 499 scc_mgr_set_dqdqs_output_phase(i, 0); 500 /* av/cv don't have out2 */ 501 scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); 502 } 503 } 504 505 /* multicast to all DQS group enables */ 506 writel(0xff, &sdr_scc_mgr->dqs_ena); 507 writel(0, &sdr_scc_mgr->update); 508 } 509 510 /** 511 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update 512 * @write_group: Write group 513 * 514 * Set bypass mode and trigger SCC update. 515 */ 516 static void scc_set_bypass_mode(const u32 write_group) 517 { 518 /* Only needed once to set all groups, pins, DQ, DQS, DM. */ 519 if (write_group == 0) { 520 debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, 521 __LINE__); 522 scc_mgr_set_hhp_extras(); 523 debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", 524 __func__, __LINE__); 525 } 526 527 /* Multicast to all DQ enables. */ 528 writel(0xff, &sdr_scc_mgr->dq_ena); 529 writel(0xff, &sdr_scc_mgr->dm_ena); 530 531 /* Update current DQS IO enable. */ 532 writel(0, &sdr_scc_mgr->dqs_io_ena); 533 534 /* Update the DQS logic. */ 535 writel(write_group, &sdr_scc_mgr->dqs_ena); 536 537 /* Hit update. */ 538 writel(0, &sdr_scc_mgr->update); 539 } 540 541 /** 542 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group 543 * @write_group: Write group 544 * 545 * Load DQS settings for Write Group, do not trigger SCC update. 546 */ 547 static void scc_mgr_load_dqs_for_write_group(const u32 write_group) 548 { 549 const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / 550 RW_MGR_MEM_IF_WRITE_DQS_WIDTH; 551 const int base = write_group * ratio; 552 int i; 553 /* 554 * Load the setting in the SCC manager 555 * Although OCT affects only write data, the OCT delay is controlled 556 * by the DQS logic block which is instantiated once per read group. 557 * For protocols where a write group consists of multiple read groups, 558 * the setting must be set multiple times. 559 */ 560 for (i = 0; i < ratio; i++) 561 writel(base + i, &sdr_scc_mgr->dqs_ena); 562 } 563 564 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, 565 int32_t out_only) 566 { 567 uint32_t i, r; 568 569 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += 570 NUM_RANKS_PER_SHADOW_REG) { 571 /* Zero all DQ config settings */ 572 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 573 scc_mgr_set_dq_out1_delay(i, 0); 574 if (!out_only) 575 scc_mgr_set_dq_in_delay(i, 0); 576 } 577 578 /* multicast to all DQ enables */ 579 writel(0xff, &sdr_scc_mgr->dq_ena); 580 581 /* Zero all DM config settings */ 582 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 583 scc_mgr_set_dm_out1_delay(i, 0); 584 } 585 586 /* multicast to all DM enables */ 587 writel(0xff, &sdr_scc_mgr->dm_ena); 588 589 /* zero all DQS io settings */ 590 if (!out_only) 591 scc_mgr_set_dqs_io_in_delay(0); 592 /* av/cv don't have out2 */ 593 scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); 594 scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); 595 scc_mgr_load_dqs_for_write_group(write_group); 596 597 /* multicast to all DQS IO enables (only 1) */ 598 writel(0, &sdr_scc_mgr->dqs_io_ena); 599 600 /* hit update to zero everything */ 601 writel(0, &sdr_scc_mgr->update); 602 } 603 } 604 605 /* 606 * apply and load a particular input delay for the DQ pins in a group 607 * group_bgn is the index of the first dq pin (in the write group) 608 */ 609 static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) 610 { 611 uint32_t i, p; 612 613 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 614 scc_mgr_set_dq_in_delay(p, delay); 615 scc_mgr_load_dq(p); 616 } 617 } 618 619 /** 620 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group 621 * @delay: Delay value 622 * 623 * Apply and load a particular output delay for the DQ pins in a group. 624 */ 625 static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) 626 { 627 int i; 628 629 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 630 scc_mgr_set_dq_out1_delay(i, delay); 631 scc_mgr_load_dq(i); 632 } 633 } 634 635 /* apply and load a particular output delay for the DM pins in a group */ 636 static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) 637 { 638 uint32_t i; 639 640 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 641 scc_mgr_set_dm_out1_delay(i, delay1); 642 scc_mgr_load_dm(i); 643 } 644 } 645 646 647 /* apply and load delay on both DQS and OCT out1 */ 648 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, 649 uint32_t delay) 650 { 651 scc_mgr_set_dqs_out1_delay(delay); 652 scc_mgr_load_dqs_io(); 653 654 scc_mgr_set_oct_out1_delay(write_group, delay); 655 scc_mgr_load_dqs_for_write_group(write_group); 656 } 657 658 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */ 659 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, 660 uint32_t group_bgn, 661 uint32_t delay) 662 { 663 uint32_t i, p, new_delay; 664 665 /* dq shift */ 666 for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 667 new_delay = READ_SCC_DQ_OUT2_DELAY; 668 new_delay += delay; 669 670 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 671 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\ 672 %u > %lu => %lu", __func__, __LINE__, 673 write_group, group_bgn, delay, i, p, new_delay, 674 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 675 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 676 new_delay = IO_IO_OUT2_DELAY_MAX; 677 } 678 679 scc_mgr_load_dq(i); 680 } 681 682 /* dm shift */ 683 for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { 684 new_delay = READ_SCC_DM_IO_OUT2_DELAY; 685 new_delay += delay; 686 687 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 688 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\ 689 %u > %lu => %lu\n", __func__, __LINE__, 690 write_group, group_bgn, delay, i, new_delay, 691 (long unsigned int)IO_IO_OUT2_DELAY_MAX, 692 (long unsigned int)IO_IO_OUT2_DELAY_MAX); 693 new_delay = IO_IO_OUT2_DELAY_MAX; 694 } 695 696 scc_mgr_load_dm(i); 697 } 698 699 /* dqs shift */ 700 new_delay = READ_SCC_DQS_IO_OUT2_DELAY; 701 new_delay += delay; 702 703 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 704 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 705 " adding %u to OUT1\n", __func__, __LINE__, 706 write_group, group_bgn, delay, new_delay, 707 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 708 new_delay - IO_IO_OUT2_DELAY_MAX); 709 scc_mgr_set_dqs_out1_delay(new_delay - 710 IO_IO_OUT2_DELAY_MAX); 711 new_delay = IO_IO_OUT2_DELAY_MAX; 712 } 713 714 scc_mgr_load_dqs_io(); 715 716 /* oct shift */ 717 new_delay = READ_SCC_OCT_OUT2_DELAY; 718 new_delay += delay; 719 720 if (new_delay > IO_IO_OUT2_DELAY_MAX) { 721 debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;" 722 " adding %u to OUT1\n", __func__, __LINE__, 723 write_group, group_bgn, delay, new_delay, 724 IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX, 725 new_delay - IO_IO_OUT2_DELAY_MAX); 726 scc_mgr_set_oct_out1_delay(write_group, new_delay - 727 IO_IO_OUT2_DELAY_MAX); 728 new_delay = IO_IO_OUT2_DELAY_MAX; 729 } 730 731 scc_mgr_load_dqs_for_write_group(write_group); 732 } 733 734 /* 735 * USER apply a delay to the entire output side (DQ, DM, DQS, OCT) 736 * and to all ranks 737 */ 738 static void scc_mgr_apply_group_all_out_delay_add_all_ranks( 739 uint32_t write_group, uint32_t group_bgn, uint32_t delay) 740 { 741 uint32_t r; 742 743 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 744 r += NUM_RANKS_PER_SHADOW_REG) { 745 scc_mgr_apply_group_all_out_delay_add(write_group, 746 group_bgn, delay); 747 writel(0, &sdr_scc_mgr->update); 748 } 749 } 750 751 /* optimization used to recover some slots in ddr3 inst_rom */ 752 /* could be applied to other protocols if we wanted to */ 753 static void set_jump_as_return(void) 754 { 755 /* 756 * to save space, we replace return with jump to special shared 757 * RETURN instruction so we set the counter to large value so that 758 * we always jump 759 */ 760 writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); 761 writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 762 } 763 764 /* 765 * should always use constants as argument to ensure all computations are 766 * performed at compile time 767 */ 768 static void delay_for_n_mem_clocks(const uint32_t clocks) 769 { 770 uint32_t afi_clocks; 771 uint8_t inner = 0; 772 uint8_t outer = 0; 773 uint16_t c_loop = 0; 774 775 debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); 776 777 778 afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; 779 /* scale (rounding up) to get afi clocks */ 780 781 /* 782 * Note, we don't bother accounting for being off a little bit 783 * because of a few extra instructions in outer loops 784 * Note, the loops have a test at the end, and do the test before 785 * the decrement, and so always perform the loop 786 * 1 time more than the counter value 787 */ 788 if (afi_clocks == 0) { 789 ; 790 } else if (afi_clocks <= 0x100) { 791 inner = afi_clocks-1; 792 outer = 0; 793 c_loop = 0; 794 } else if (afi_clocks <= 0x10000) { 795 inner = 0xff; 796 outer = (afi_clocks-1) >> 8; 797 c_loop = 0; 798 } else { 799 inner = 0xff; 800 outer = 0xff; 801 c_loop = (afi_clocks-1) >> 16; 802 } 803 804 /* 805 * rom instructions are structured as follows: 806 * 807 * IDLE_LOOP2: jnz cntr0, TARGET_A 808 * IDLE_LOOP1: jnz cntr1, TARGET_B 809 * return 810 * 811 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and 812 * TARGET_B is set to IDLE_LOOP2 as well 813 * 814 * if we have no outer loop, though, then we can use IDLE_LOOP1 only, 815 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely 816 * 817 * a little confusing, but it helps save precious space in the inst_rom 818 * and sequencer rom and keeps the delays more accurate and reduces 819 * overhead 820 */ 821 if (afi_clocks <= 0x100) { 822 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 823 &sdr_rw_load_mgr_regs->load_cntr1); 824 825 writel(RW_MGR_IDLE_LOOP1, 826 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 827 828 writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 829 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 830 } else { 831 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), 832 &sdr_rw_load_mgr_regs->load_cntr0); 833 834 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), 835 &sdr_rw_load_mgr_regs->load_cntr1); 836 837 writel(RW_MGR_IDLE_LOOP2, 838 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 839 840 writel(RW_MGR_IDLE_LOOP2, 841 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 842 843 /* hack to get around compiler not being smart enough */ 844 if (afi_clocks <= 0x10000) { 845 /* only need to run once */ 846 writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | 847 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 848 } else { 849 do { 850 writel(RW_MGR_IDLE_LOOP2, 851 SDR_PHYGRP_RWMGRGRP_ADDRESS | 852 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 853 } while (c_loop-- != 0); 854 } 855 } 856 debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); 857 } 858 859 static void rw_mgr_mem_initialize(void) 860 { 861 uint32_t r; 862 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 863 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 864 865 debug("%s:%d\n", __func__, __LINE__); 866 867 /* The reset / cke part of initialization is broadcasted to all ranks */ 868 writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 869 RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); 870 871 /* 872 * Here's how you load register for a loop 873 * Counters are located @ 0x800 874 * Jump address are located @ 0xC00 875 * For both, registers 0 to 3 are selected using bits 3 and 2, like 876 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C 877 * I know this ain't pretty, but Avalon bus throws away the 2 least 878 * significant bits 879 */ 880 881 /* start with memory RESET activated */ 882 883 /* tINIT = 200us */ 884 885 /* 886 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles 887 * If a and b are the number of iteration in 2 nested loops 888 * it takes the following number of cycles to complete the operation: 889 * number_of_cycles = ((2 + n) * a + 2) * b 890 * where n is the number of instruction in the inner loop 891 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, 892 * b = 6A 893 */ 894 895 /* Load counters */ 896 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL), 897 &sdr_rw_load_mgr_regs->load_cntr0); 898 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL), 899 &sdr_rw_load_mgr_regs->load_cntr1); 900 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL), 901 &sdr_rw_load_mgr_regs->load_cntr2); 902 903 /* Load jump address */ 904 writel(RW_MGR_INIT_RESET_0_CKE_0, 905 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 906 writel(RW_MGR_INIT_RESET_0_CKE_0, 907 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 908 writel(RW_MGR_INIT_RESET_0_CKE_0, 909 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 910 911 /* Execute count instruction */ 912 writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr); 913 914 /* indicate that memory is stable */ 915 writel(1, &phy_mgr_cfg->reset_mem_stbl); 916 917 /* 918 * transition the RESET to high 919 * Wait for 500us 920 */ 921 922 /* 923 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles 924 * If a and b are the number of iteration in 2 nested loops 925 * it takes the following number of cycles to complete the operation 926 * number_of_cycles = ((2 + n) * a + 2) * b 927 * where n is the number of instruction in the inner loop 928 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, 929 * b = FF 930 */ 931 932 /* Load counters */ 933 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL), 934 &sdr_rw_load_mgr_regs->load_cntr0); 935 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL), 936 &sdr_rw_load_mgr_regs->load_cntr1); 937 writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL), 938 &sdr_rw_load_mgr_regs->load_cntr2); 939 940 /* Load jump address */ 941 writel(RW_MGR_INIT_RESET_1_CKE_0, 942 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 943 writel(RW_MGR_INIT_RESET_1_CKE_0, 944 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 945 writel(RW_MGR_INIT_RESET_1_CKE_0, 946 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 947 948 writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr); 949 950 /* bring up clock enable */ 951 952 /* tXRP < 250 ck cycles */ 953 delay_for_n_mem_clocks(250); 954 955 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 956 if (param->skip_ranks[r]) { 957 /* request to skip the rank */ 958 continue; 959 } 960 961 /* set rank */ 962 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 963 964 /* 965 * USER Use Mirror-ed commands for odd ranks if address 966 * mirrorring is on 967 */ 968 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 969 set_jump_as_return(); 970 writel(RW_MGR_MRS2_MIRR, grpaddr); 971 delay_for_n_mem_clocks(4); 972 set_jump_as_return(); 973 writel(RW_MGR_MRS3_MIRR, grpaddr); 974 delay_for_n_mem_clocks(4); 975 set_jump_as_return(); 976 writel(RW_MGR_MRS1_MIRR, grpaddr); 977 delay_for_n_mem_clocks(4); 978 set_jump_as_return(); 979 writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr); 980 } else { 981 set_jump_as_return(); 982 writel(RW_MGR_MRS2, grpaddr); 983 delay_for_n_mem_clocks(4); 984 set_jump_as_return(); 985 writel(RW_MGR_MRS3, grpaddr); 986 delay_for_n_mem_clocks(4); 987 set_jump_as_return(); 988 writel(RW_MGR_MRS1, grpaddr); 989 set_jump_as_return(); 990 writel(RW_MGR_MRS0_DLL_RESET, grpaddr); 991 } 992 set_jump_as_return(); 993 writel(RW_MGR_ZQCL, grpaddr); 994 995 /* tZQinit = tDLLK = 512 ck cycles */ 996 delay_for_n_mem_clocks(512); 997 } 998 } 999 1000 /* 1001 * At the end of calibration we have to program the user settings in, and 1002 * USER hand off the memory to the user. 1003 */ 1004 static void rw_mgr_mem_handoff(void) 1005 { 1006 uint32_t r; 1007 uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | 1008 RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1009 1010 debug("%s:%d\n", __func__, __LINE__); 1011 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 1012 if (param->skip_ranks[r]) 1013 /* request to skip the rank */ 1014 continue; 1015 /* set rank */ 1016 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 1017 1018 /* precharge all banks ... */ 1019 writel(RW_MGR_PRECHARGE_ALL, grpaddr); 1020 1021 /* load up MR settings specified by user */ 1022 1023 /* 1024 * Use Mirror-ed commands for odd ranks if address 1025 * mirrorring is on 1026 */ 1027 if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { 1028 set_jump_as_return(); 1029 writel(RW_MGR_MRS2_MIRR, grpaddr); 1030 delay_for_n_mem_clocks(4); 1031 set_jump_as_return(); 1032 writel(RW_MGR_MRS3_MIRR, grpaddr); 1033 delay_for_n_mem_clocks(4); 1034 set_jump_as_return(); 1035 writel(RW_MGR_MRS1_MIRR, grpaddr); 1036 delay_for_n_mem_clocks(4); 1037 set_jump_as_return(); 1038 writel(RW_MGR_MRS0_USER_MIRR, grpaddr); 1039 } else { 1040 set_jump_as_return(); 1041 writel(RW_MGR_MRS2, grpaddr); 1042 delay_for_n_mem_clocks(4); 1043 set_jump_as_return(); 1044 writel(RW_MGR_MRS3, grpaddr); 1045 delay_for_n_mem_clocks(4); 1046 set_jump_as_return(); 1047 writel(RW_MGR_MRS1, grpaddr); 1048 delay_for_n_mem_clocks(4); 1049 set_jump_as_return(); 1050 writel(RW_MGR_MRS0_USER, grpaddr); 1051 } 1052 /* 1053 * USER need to wait tMOD (12CK or 15ns) time before issuing 1054 * other commands, but we will have plenty of NIOS cycles before 1055 * actual handoff so its okay. 1056 */ 1057 } 1058 } 1059 1060 /* 1061 * performs a guaranteed read on the patterns we are going to use during a 1062 * read test to ensure memory works 1063 */ 1064 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, 1065 uint32_t group, uint32_t num_tries, uint32_t *bit_chk, 1066 uint32_t all_ranks) 1067 { 1068 uint32_t r, vg; 1069 uint32_t correct_mask_vg; 1070 uint32_t tmp_bit_chk; 1071 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1072 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1073 uint32_t addr; 1074 uint32_t base_rw_mgr; 1075 1076 *bit_chk = param->read_correct_mask; 1077 correct_mask_vg = param->read_correct_mask_vg; 1078 1079 for (r = rank_bgn; r < rank_end; r++) { 1080 if (param->skip_ranks[r]) 1081 /* request to skip the rank */ 1082 continue; 1083 1084 /* set rank */ 1085 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1086 1087 /* Load up a constant bursts of read commands */ 1088 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1089 writel(RW_MGR_GUARANTEED_READ, 1090 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1091 1092 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1093 writel(RW_MGR_GUARANTEED_READ_CONT, 1094 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1095 1096 tmp_bit_chk = 0; 1097 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1098 /* reset the fifos to get pointers to known state */ 1099 1100 writel(0, &phy_mgr_cmd->fifo_reset); 1101 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1102 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1103 1104 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1105 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1106 1107 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1108 writel(RW_MGR_GUARANTEED_READ, addr + 1109 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1110 vg) << 2)); 1111 1112 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1113 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr)); 1114 1115 if (vg == 0) 1116 break; 1117 } 1118 *bit_chk &= tmp_bit_chk; 1119 } 1120 1121 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1122 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1123 1124 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1125 debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\ 1126 %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask, 1127 (long unsigned int)(*bit_chk == param->read_correct_mask)); 1128 return *bit_chk == param->read_correct_mask; 1129 } 1130 1131 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks 1132 (uint32_t group, uint32_t num_tries, uint32_t *bit_chk) 1133 { 1134 return rw_mgr_mem_calibrate_read_test_patterns(0, group, 1135 num_tries, bit_chk, 1); 1136 } 1137 1138 /* load up the patterns we are going to use during a read test */ 1139 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, 1140 uint32_t all_ranks) 1141 { 1142 uint32_t r; 1143 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1144 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1145 1146 debug("%s:%d\n", __func__, __LINE__); 1147 for (r = rank_bgn; r < rank_end; r++) { 1148 if (param->skip_ranks[r]) 1149 /* request to skip the rank */ 1150 continue; 1151 1152 /* set rank */ 1153 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1154 1155 /* Load up a constant bursts */ 1156 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); 1157 1158 writel(RW_MGR_GUARANTEED_WRITE_WAIT0, 1159 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1160 1161 writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); 1162 1163 writel(RW_MGR_GUARANTEED_WRITE_WAIT1, 1164 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1165 1166 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); 1167 1168 writel(RW_MGR_GUARANTEED_WRITE_WAIT2, 1169 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1170 1171 writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); 1172 1173 writel(RW_MGR_GUARANTEED_WRITE_WAIT3, 1174 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1175 1176 writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1177 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 1178 } 1179 1180 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1181 } 1182 1183 /* 1184 * try a read and see if it returns correct data back. has dummy reads 1185 * inserted into the mix used to align dqs enable. has more thorough checks 1186 * than the regular read test. 1187 */ 1188 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, 1189 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1190 uint32_t all_groups, uint32_t all_ranks) 1191 { 1192 uint32_t r, vg; 1193 uint32_t correct_mask_vg; 1194 uint32_t tmp_bit_chk; 1195 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 1196 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 1197 uint32_t addr; 1198 uint32_t base_rw_mgr; 1199 1200 *bit_chk = param->read_correct_mask; 1201 correct_mask_vg = param->read_correct_mask_vg; 1202 1203 uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & 1204 CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); 1205 1206 for (r = rank_bgn; r < rank_end; r++) { 1207 if (param->skip_ranks[r]) 1208 /* request to skip the rank */ 1209 continue; 1210 1211 /* set rank */ 1212 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 1213 1214 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); 1215 1216 writel(RW_MGR_READ_B2B_WAIT1, 1217 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 1218 1219 writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); 1220 writel(RW_MGR_READ_B2B_WAIT2, 1221 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 1222 1223 if (quick_read_mode) 1224 writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); 1225 /* need at least two (1+1) reads to capture failures */ 1226 else if (all_groups) 1227 writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); 1228 else 1229 writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); 1230 1231 writel(RW_MGR_READ_B2B, 1232 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 1233 if (all_groups) 1234 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * 1235 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, 1236 &sdr_rw_load_mgr_regs->load_cntr3); 1237 else 1238 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); 1239 1240 writel(RW_MGR_READ_B2B, 1241 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 1242 1243 tmp_bit_chk = 0; 1244 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { 1245 /* reset the fifos to get pointers to known state */ 1246 writel(0, &phy_mgr_cmd->fifo_reset); 1247 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 1248 RW_MGR_RESET_READ_DATAPATH_OFFSET); 1249 1250 tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS 1251 / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); 1252 1253 if (all_groups) 1254 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; 1255 else 1256 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1257 1258 writel(RW_MGR_READ_B2B, addr + 1259 ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + 1260 vg) << 2)); 1261 1262 base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); 1263 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 1264 1265 if (vg == 0) 1266 break; 1267 } 1268 *bit_chk &= tmp_bit_chk; 1269 } 1270 1271 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 1272 writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); 1273 1274 if (all_correct) { 1275 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1276 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ 1277 (%u == %u) => %lu", __func__, __LINE__, group, 1278 all_groups, *bit_chk, param->read_correct_mask, 1279 (long unsigned int)(*bit_chk == 1280 param->read_correct_mask)); 1281 return *bit_chk == param->read_correct_mask; 1282 } else { 1283 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 1284 debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ 1285 (%u != %lu) => %lu\n", __func__, __LINE__, 1286 group, all_groups, *bit_chk, (long unsigned int)0, 1287 (long unsigned int)(*bit_chk != 0x00)); 1288 return *bit_chk != 0x00; 1289 } 1290 } 1291 1292 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, 1293 uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, 1294 uint32_t all_groups) 1295 { 1296 return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, 1297 bit_chk, all_groups, 1); 1298 } 1299 1300 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) 1301 { 1302 writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); 1303 (*v)++; 1304 } 1305 1306 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) 1307 { 1308 uint32_t i; 1309 1310 for (i = 0; i < VFIFO_SIZE-1; i++) 1311 rw_mgr_incr_vfifo(grp, v); 1312 } 1313 1314 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) 1315 { 1316 uint32_t v; 1317 uint32_t fail_cnt = 0; 1318 uint32_t test_status; 1319 1320 for (v = 0; v < VFIFO_SIZE; ) { 1321 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", 1322 __func__, __LINE__, v); 1323 test_status = rw_mgr_mem_calibrate_read_test_all_ranks 1324 (grp, 1, PASS_ONE_BIT, bit_chk, 0); 1325 if (!test_status) { 1326 fail_cnt++; 1327 1328 if (fail_cnt == 2) 1329 break; 1330 } 1331 1332 /* fiddle with FIFO */ 1333 rw_mgr_incr_vfifo(grp, &v); 1334 } 1335 1336 if (v >= VFIFO_SIZE) { 1337 /* no failing read found!! Something must have gone wrong */ 1338 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", 1339 __func__, __LINE__); 1340 return 0; 1341 } else { 1342 return v; 1343 } 1344 } 1345 1346 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk, 1347 uint32_t dtaps_per_ptap, uint32_t *work_bgn, 1348 uint32_t *v, uint32_t *d, uint32_t *p, 1349 uint32_t *i, uint32_t *max_working_cnt) 1350 { 1351 uint32_t found_begin = 0; 1352 uint32_t tmp_delay = 0; 1353 uint32_t test_status; 1354 1355 for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay += 1356 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1357 *work_bgn = tmp_delay; 1358 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1359 1360 for (*i = 0; *i < VFIFO_SIZE; (*i)++) { 1361 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn += 1362 IO_DELAY_PER_OPA_TAP) { 1363 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1364 1365 test_status = 1366 rw_mgr_mem_calibrate_read_test_all_ranks 1367 (*grp, 1, PASS_ONE_BIT, bit_chk, 0); 1368 1369 if (test_status) { 1370 *max_working_cnt = 1; 1371 found_begin = 1; 1372 break; 1373 } 1374 } 1375 1376 if (found_begin) 1377 break; 1378 1379 if (*p > IO_DQS_EN_PHASE_MAX) 1380 /* fiddle with FIFO */ 1381 rw_mgr_incr_vfifo(*grp, v); 1382 } 1383 1384 if (found_begin) 1385 break; 1386 } 1387 1388 if (*i >= VFIFO_SIZE) { 1389 /* cannot find working solution */ 1390 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\ 1391 ptap/dtap\n", __func__, __LINE__); 1392 return 0; 1393 } else { 1394 return 1; 1395 } 1396 } 1397 1398 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk, 1399 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1400 uint32_t *p, uint32_t *max_working_cnt) 1401 { 1402 uint32_t found_begin = 0; 1403 uint32_t tmp_delay; 1404 1405 /* Special case code for backing up a phase */ 1406 if (*p == 0) { 1407 *p = IO_DQS_EN_PHASE_MAX; 1408 rw_mgr_decr_vfifo(*grp, v); 1409 } else { 1410 (*p)--; 1411 } 1412 tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; 1413 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1414 1415 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; 1416 (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1417 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1418 1419 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1420 PASS_ONE_BIT, 1421 bit_chk, 0)) { 1422 found_begin = 1; 1423 *work_bgn = tmp_delay; 1424 break; 1425 } 1426 } 1427 1428 /* We have found a working dtap before the ptap found above */ 1429 if (found_begin == 1) 1430 (*max_working_cnt)++; 1431 1432 /* 1433 * Restore VFIFO to old state before we decremented it 1434 * (if needed). 1435 */ 1436 (*p)++; 1437 if (*p > IO_DQS_EN_PHASE_MAX) { 1438 *p = 0; 1439 rw_mgr_incr_vfifo(*grp, v); 1440 } 1441 1442 scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0); 1443 } 1444 1445 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk, 1446 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1447 uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, 1448 uint32_t *work_end) 1449 { 1450 uint32_t found_end = 0; 1451 1452 (*p)++; 1453 *work_end += IO_DELAY_PER_OPA_TAP; 1454 if (*p > IO_DQS_EN_PHASE_MAX) { 1455 /* fiddle with FIFO */ 1456 *p = 0; 1457 rw_mgr_incr_vfifo(*grp, v); 1458 } 1459 1460 for (; *i < VFIFO_SIZE + 1; (*i)++) { 1461 for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end 1462 += IO_DELAY_PER_OPA_TAP) { 1463 scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p); 1464 1465 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1466 (*grp, 1, PASS_ONE_BIT, bit_chk, 0)) { 1467 found_end = 1; 1468 break; 1469 } else { 1470 (*max_working_cnt)++; 1471 } 1472 } 1473 1474 if (found_end) 1475 break; 1476 1477 if (*p > IO_DQS_EN_PHASE_MAX) { 1478 /* fiddle with FIFO */ 1479 rw_mgr_incr_vfifo(*grp, v); 1480 *p = 0; 1481 } 1482 } 1483 1484 if (*i >= VFIFO_SIZE + 1) { 1485 /* cannot see edge of failing read */ 1486 debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\ 1487 failed\n", __func__, __LINE__); 1488 return 0; 1489 } else { 1490 return 1; 1491 } 1492 } 1493 1494 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk, 1495 uint32_t *work_bgn, uint32_t *v, uint32_t *d, 1496 uint32_t *p, uint32_t *work_mid, 1497 uint32_t *work_end) 1498 { 1499 int i; 1500 int tmp_delay = 0; 1501 1502 *work_mid = (*work_bgn + *work_end) / 2; 1503 1504 debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", 1505 *work_bgn, *work_end, *work_mid); 1506 /* Get the middle delay to be less than a VFIFO delay */ 1507 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; 1508 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1509 ; 1510 debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); 1511 while (*work_mid > tmp_delay) 1512 *work_mid -= tmp_delay; 1513 debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid); 1514 1515 tmp_delay = 0; 1516 for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid; 1517 (*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP) 1518 ; 1519 tmp_delay -= IO_DELAY_PER_OPA_TAP; 1520 debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay); 1521 for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++, 1522 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) 1523 ; 1524 debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay); 1525 1526 scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1); 1527 scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d); 1528 1529 /* 1530 * push vfifo until we can successfully calibrate. We can do this 1531 * because the largest possible margin in 1 VFIFO cycle. 1532 */ 1533 for (i = 0; i < VFIFO_SIZE; i++) { 1534 debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", 1535 *v); 1536 if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1, 1537 PASS_ONE_BIT, 1538 bit_chk, 0)) { 1539 break; 1540 } 1541 1542 /* fiddle with FIFO */ 1543 rw_mgr_incr_vfifo(*grp, v); 1544 } 1545 1546 if (i >= VFIFO_SIZE) { 1547 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \ 1548 failed\n", __func__, __LINE__); 1549 return 0; 1550 } else { 1551 return 1; 1552 } 1553 } 1554 1555 /* find a good dqs enable to use */ 1556 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) 1557 { 1558 uint32_t v, d, p, i; 1559 uint32_t max_working_cnt; 1560 uint32_t bit_chk; 1561 uint32_t dtaps_per_ptap; 1562 uint32_t work_bgn, work_mid, work_end; 1563 uint32_t found_passing_read, found_failing_read, initial_failing_dtap; 1564 1565 debug("%s:%d %u\n", __func__, __LINE__, grp); 1566 1567 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 1568 1569 scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); 1570 scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); 1571 1572 /* ************************************************************** */ 1573 /* * Step 0 : Determine number of delay taps for each phase tap * */ 1574 dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1575 1576 /* ********************************************************* */ 1577 /* * Step 1 : First push vfifo until we get a failing read * */ 1578 v = find_vfifo_read(grp, &bit_chk); 1579 1580 max_working_cnt = 0; 1581 1582 /* ******************************************************** */ 1583 /* * step 2: find first working phase, increment in ptaps * */ 1584 work_bgn = 0; 1585 if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d, 1586 &p, &i, &max_working_cnt) == 0) 1587 return 0; 1588 1589 work_end = work_bgn; 1590 1591 /* 1592 * If d is 0 then the working window covers a phase tap and 1593 * we can follow the old procedure otherwise, we've found the beginning, 1594 * and we need to increment the dtaps until we find the end. 1595 */ 1596 if (d == 0) { 1597 /* ********************************************************* */ 1598 /* * step 3a: if we have room, back off by one and 1599 increment in dtaps * */ 1600 1601 sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1602 &max_working_cnt); 1603 1604 /* ********************************************************* */ 1605 /* * step 4a: go forward from working phase to non working 1606 phase, increment in ptaps * */ 1607 if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1608 &i, &max_working_cnt, &work_end) == 0) 1609 return 0; 1610 1611 /* ********************************************************* */ 1612 /* * step 5a: back off one from last, increment in dtaps * */ 1613 1614 /* Special case code for backing up a phase */ 1615 if (p == 0) { 1616 p = IO_DQS_EN_PHASE_MAX; 1617 rw_mgr_decr_vfifo(grp, &v); 1618 } else { 1619 p = p - 1; 1620 } 1621 1622 work_end -= IO_DELAY_PER_OPA_TAP; 1623 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1624 1625 /* * The actual increment of dtaps is done outside of 1626 the if/else loop to share code */ 1627 d = 0; 1628 1629 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ 1630 vfifo=%u ptap=%u\n", __func__, __LINE__, 1631 v, p); 1632 } else { 1633 /* ******************************************************* */ 1634 /* * step 3-5b: Find the right edge of the window using 1635 delay taps * */ 1636 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ 1637 ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, 1638 v, p, d, work_bgn); 1639 1640 work_end = work_bgn; 1641 1642 /* * The actual increment of dtaps is done outside of the 1643 if/else loop to share code */ 1644 1645 /* Only here to counterbalance a subtract later on which is 1646 not needed if this branch of the algorithm is taken */ 1647 max_working_cnt++; 1648 } 1649 1650 /* The dtap increment to find the failing edge is done here */ 1651 for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += 1652 IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { 1653 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1654 end-2: dtap=%u\n", __func__, __LINE__, d); 1655 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1656 1657 if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1658 PASS_ONE_BIT, 1659 &bit_chk, 0)) { 1660 break; 1661 } 1662 } 1663 1664 /* Go back to working dtap */ 1665 if (d != 0) 1666 work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 1667 1668 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ 1669 ptap=%u dtap=%u end=%u\n", __func__, __LINE__, 1670 v, p, d-1, work_end); 1671 1672 if (work_end < work_bgn) { 1673 /* nil range */ 1674 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ 1675 failed\n", __func__, __LINE__); 1676 return 0; 1677 } 1678 1679 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", 1680 __func__, __LINE__, work_bgn, work_end); 1681 1682 /* *************************************************************** */ 1683 /* 1684 * * We need to calculate the number of dtaps that equal a ptap 1685 * * To do that we'll back up a ptap and re-find the edge of the 1686 * * window using dtaps 1687 */ 1688 1689 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ 1690 for tracking\n", __func__, __LINE__); 1691 1692 /* Special case code for backing up a phase */ 1693 if (p == 0) { 1694 p = IO_DQS_EN_PHASE_MAX; 1695 rw_mgr_decr_vfifo(grp, &v); 1696 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1697 cycle/phase: v=%u p=%u\n", __func__, __LINE__, 1698 v, p); 1699 } else { 1700 p = p - 1; 1701 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ 1702 phase only: v=%u p=%u", __func__, __LINE__, 1703 v, p); 1704 } 1705 1706 scc_mgr_set_dqs_en_phase_all_ranks(grp, p); 1707 1708 /* 1709 * Increase dtap until we first see a passing read (in case the 1710 * window is smaller than a ptap), 1711 * and then a failing read to mark the edge of the window again 1712 */ 1713 1714 /* Find a passing read */ 1715 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", 1716 __func__, __LINE__); 1717 found_passing_read = 0; 1718 found_failing_read = 0; 1719 initial_failing_dtap = d; 1720 for (; d <= IO_DQS_EN_DELAY_MAX; d++) { 1721 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ 1722 read d=%u\n", __func__, __LINE__, d); 1723 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1724 1725 if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, 1726 PASS_ONE_BIT, 1727 &bit_chk, 0)) { 1728 found_passing_read = 1; 1729 break; 1730 } 1731 } 1732 1733 if (found_passing_read) { 1734 /* Find a failing read */ 1735 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ 1736 read\n", __func__, __LINE__); 1737 for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { 1738 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ 1739 testing read d=%u\n", __func__, __LINE__, d); 1740 scc_mgr_set_dqs_en_delay_all_ranks(grp, d); 1741 1742 if (!rw_mgr_mem_calibrate_read_test_all_ranks 1743 (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { 1744 found_failing_read = 1; 1745 break; 1746 } 1747 } 1748 } else { 1749 debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ 1750 calculate dtaps", __func__, __LINE__); 1751 debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); 1752 } 1753 1754 /* 1755 * The dynamically calculated dtaps_per_ptap is only valid if we 1756 * found a passing/failing read. If we didn't, it means d hit the max 1757 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its 1758 * statically calculated value. 1759 */ 1760 if (found_passing_read && found_failing_read) 1761 dtaps_per_ptap = d - initial_failing_dtap; 1762 1763 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 1764 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ 1765 - %u = %u", __func__, __LINE__, d, 1766 initial_failing_dtap, dtaps_per_ptap); 1767 1768 /* ******************************************** */ 1769 /* * step 6: Find the centre of the window * */ 1770 if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p, 1771 &work_mid, &work_end) == 0) 1772 return 0; 1773 1774 debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \ 1775 vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, 1776 v, p-1, d); 1777 return 1; 1778 } 1779 1780 /* 1781 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different 1782 * dq_in_delay values 1783 */ 1784 static uint32_t 1785 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 1786 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn) 1787 { 1788 uint32_t found; 1789 uint32_t i; 1790 uint32_t p; 1791 uint32_t d; 1792 uint32_t r; 1793 1794 const uint32_t delay_step = IO_IO_IN_DELAY_MAX / 1795 (RW_MGR_MEM_DQ_PER_READ_DQS-1); 1796 /* we start at zero, so have one less dq to devide among */ 1797 1798 debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group, 1799 test_bgn); 1800 1801 /* try different dq_in_delays since the dq path is shorter than dqs */ 1802 1803 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1804 r += NUM_RANKS_PER_SHADOW_REG) { 1805 for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { 1806 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\ 1807 vfifo_find_dqs_", __func__, __LINE__); 1808 debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ", 1809 write_group, read_group); 1810 debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d); 1811 scc_mgr_set_dq_in_delay(p, d); 1812 scc_mgr_load_dq(p); 1813 } 1814 writel(0, &sdr_scc_mgr->update); 1815 } 1816 1817 found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group); 1818 1819 debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\ 1820 en_phase_sweep_dq", __func__, __LINE__); 1821 debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \ 1822 chain to zero\n", write_group, read_group, found); 1823 1824 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 1825 r += NUM_RANKS_PER_SHADOW_REG) { 1826 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; 1827 i++, p++) { 1828 scc_mgr_set_dq_in_delay(p, 0); 1829 scc_mgr_load_dq(p); 1830 } 1831 writel(0, &sdr_scc_mgr->update); 1832 } 1833 1834 return found; 1835 } 1836 1837 /* per-bit deskew DQ and center */ 1838 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, 1839 uint32_t write_group, uint32_t read_group, uint32_t test_bgn, 1840 uint32_t use_read_test, uint32_t update_fom) 1841 { 1842 uint32_t i, p, d, min_index; 1843 /* 1844 * Store these as signed since there are comparisons with 1845 * signed numbers. 1846 */ 1847 uint32_t bit_chk; 1848 uint32_t sticky_bit_chk; 1849 int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1850 int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; 1851 int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; 1852 int32_t mid; 1853 int32_t orig_mid_min, mid_min; 1854 int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, 1855 final_dqs_en; 1856 int32_t dq_margin, dqs_margin; 1857 uint32_t stop; 1858 uint32_t temp_dq_in_delay1, temp_dq_in_delay2; 1859 uint32_t addr; 1860 1861 debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); 1862 1863 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; 1864 start_dqs = readl(addr + (read_group << 2)); 1865 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 1866 start_dqs_en = readl(addr + ((read_group << 2) 1867 - IO_DQS_EN_DELAY_OFFSET)); 1868 1869 /* set the left and right edge of each bit to an illegal value */ 1870 /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ 1871 sticky_bit_chk = 0; 1872 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1873 left_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1874 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1875 } 1876 1877 /* Search for the left edge of the window for each bit */ 1878 for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { 1879 scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); 1880 1881 writel(0, &sdr_scc_mgr->update); 1882 1883 /* 1884 * Stop searching when the read test doesn't pass AND when 1885 * we've seen a passing read on every bit. 1886 */ 1887 if (use_read_test) { 1888 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1889 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1890 &bit_chk, 0, 0); 1891 } else { 1892 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1893 0, PASS_ONE_BIT, 1894 &bit_chk, 0); 1895 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1896 (read_group - (write_group * 1897 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1898 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1899 stop = (bit_chk == 0); 1900 } 1901 sticky_bit_chk = sticky_bit_chk | bit_chk; 1902 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1903 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ 1904 && %u", __func__, __LINE__, d, 1905 sticky_bit_chk, 1906 param->read_correct_mask, stop); 1907 1908 if (stop == 1) { 1909 break; 1910 } else { 1911 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 1912 if (bit_chk & 1) { 1913 /* Remember a passing test as the 1914 left_edge */ 1915 left_edge[i] = d; 1916 } else { 1917 /* If a left edge has not been seen yet, 1918 then a future passing test will mark 1919 this edge as the right edge */ 1920 if (left_edge[i] == 1921 IO_IO_IN_DELAY_MAX + 1) { 1922 right_edge[i] = -(d + 1); 1923 } 1924 } 1925 bit_chk = bit_chk >> 1; 1926 } 1927 } 1928 } 1929 1930 /* Reset DQ delay chains to 0 */ 1931 scc_mgr_apply_group_dq_in_delay(test_bgn, 0); 1932 sticky_bit_chk = 0; 1933 for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { 1934 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 1935 %d right_edge[%u]: %d\n", __func__, __LINE__, 1936 i, left_edge[i], i, right_edge[i]); 1937 1938 /* 1939 * Check for cases where we haven't found the left edge, 1940 * which makes our assignment of the the right edge invalid. 1941 * Reset it to the illegal value. 1942 */ 1943 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( 1944 right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1945 right_edge[i] = IO_IO_IN_DELAY_MAX + 1; 1946 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ 1947 right_edge[%u]: %d\n", __func__, __LINE__, 1948 i, right_edge[i]); 1949 } 1950 1951 /* 1952 * Reset sticky bit (except for bits where we have seen 1953 * both the left and right edge). 1954 */ 1955 sticky_bit_chk = sticky_bit_chk << 1; 1956 if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && 1957 (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { 1958 sticky_bit_chk = sticky_bit_chk | 1; 1959 } 1960 1961 if (i == 0) 1962 break; 1963 } 1964 1965 /* Search for the right edge of the window for each bit */ 1966 for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { 1967 scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); 1968 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 1969 uint32_t delay = d + start_dqs_en; 1970 if (delay > IO_DQS_EN_DELAY_MAX) 1971 delay = IO_DQS_EN_DELAY_MAX; 1972 scc_mgr_set_dqs_en_delay(read_group, delay); 1973 } 1974 scc_mgr_load_dqs(read_group); 1975 1976 writel(0, &sdr_scc_mgr->update); 1977 1978 /* 1979 * Stop searching when the read test doesn't pass AND when 1980 * we've seen a passing read on every bit. 1981 */ 1982 if (use_read_test) { 1983 stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, 1984 read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, 1985 &bit_chk, 0, 0); 1986 } else { 1987 rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1988 0, PASS_ONE_BIT, 1989 &bit_chk, 0); 1990 bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * 1991 (read_group - (write_group * 1992 RW_MGR_MEM_IF_READ_DQS_WIDTH / 1993 RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); 1994 stop = (bit_chk == 0); 1995 } 1996 sticky_bit_chk = sticky_bit_chk | bit_chk; 1997 stop = stop && (sticky_bit_chk == param->read_correct_mask); 1998 1999 debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ 2000 %u && %u", __func__, __LINE__, d, 2001 sticky_bit_chk, param->read_correct_mask, stop); 2002 2003 if (stop == 1) { 2004 break; 2005 } else { 2006 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2007 if (bit_chk & 1) { 2008 /* Remember a passing test as 2009 the right_edge */ 2010 right_edge[i] = d; 2011 } else { 2012 if (d != 0) { 2013 /* If a right edge has not been 2014 seen yet, then a future passing 2015 test will mark this edge as the 2016 left edge */ 2017 if (right_edge[i] == 2018 IO_IO_IN_DELAY_MAX + 1) { 2019 left_edge[i] = -(d + 1); 2020 } 2021 } else { 2022 /* d = 0 failed, but it passed 2023 when testing the left edge, 2024 so it must be marginal, 2025 set it to -1 */ 2026 if (right_edge[i] == 2027 IO_IO_IN_DELAY_MAX + 1 && 2028 left_edge[i] != 2029 IO_IO_IN_DELAY_MAX 2030 + 1) { 2031 right_edge[i] = -1; 2032 } 2033 /* If a right edge has not been 2034 seen yet, then a future passing 2035 test will mark this edge as the 2036 left edge */ 2037 else if (right_edge[i] == 2038 IO_IO_IN_DELAY_MAX + 2039 1) { 2040 left_edge[i] = -(d + 1); 2041 } 2042 } 2043 } 2044 2045 debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ 2046 d=%u]: ", __func__, __LINE__, d); 2047 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", 2048 (int)(bit_chk & 1), i, left_edge[i]); 2049 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2050 right_edge[i]); 2051 bit_chk = bit_chk >> 1; 2052 } 2053 } 2054 } 2055 2056 /* Check that all bits have a window */ 2057 for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2058 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ 2059 %d right_edge[%u]: %d", __func__, __LINE__, 2060 i, left_edge[i], i, right_edge[i]); 2061 if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] 2062 == IO_IO_IN_DELAY_MAX + 1)) { 2063 /* 2064 * Restore delay chain settings before letting the loop 2065 * in rw_mgr_mem_calibrate_vfifo to retry different 2066 * dqs/ck relationships. 2067 */ 2068 scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); 2069 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2070 scc_mgr_set_dqs_en_delay(read_group, 2071 start_dqs_en); 2072 } 2073 scc_mgr_load_dqs(read_group); 2074 writel(0, &sdr_scc_mgr->update); 2075 2076 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ 2077 find edge [%u]: %d %d", __func__, __LINE__, 2078 i, left_edge[i], right_edge[i]); 2079 if (use_read_test) { 2080 set_failing_group_stage(read_group * 2081 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2082 CAL_STAGE_VFIFO, 2083 CAL_SUBSTAGE_VFIFO_CENTER); 2084 } else { 2085 set_failing_group_stage(read_group * 2086 RW_MGR_MEM_DQ_PER_READ_DQS + i, 2087 CAL_STAGE_VFIFO_AFTER_WRITES, 2088 CAL_SUBSTAGE_VFIFO_CENTER); 2089 } 2090 return 0; 2091 } 2092 } 2093 2094 /* Find middle of window for each DQ bit */ 2095 mid_min = left_edge[0] - right_edge[0]; 2096 min_index = 0; 2097 for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { 2098 mid = left_edge[i] - right_edge[i]; 2099 if (mid < mid_min) { 2100 mid_min = mid; 2101 min_index = i; 2102 } 2103 } 2104 2105 /* 2106 * -mid_min/2 represents the amount that we need to move DQS. 2107 * If mid_min is odd and positive we'll need to add one to 2108 * make sure the rounding in further calculations is correct 2109 * (always bias to the right), so just add 1 for all positive values. 2110 */ 2111 if (mid_min > 0) 2112 mid_min++; 2113 2114 mid_min = mid_min / 2; 2115 2116 debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", 2117 __func__, __LINE__, mid_min, min_index); 2118 2119 /* Determine the amount we can change DQS (which is -mid_min) */ 2120 orig_mid_min = mid_min; 2121 new_dqs = start_dqs - mid_min; 2122 if (new_dqs > IO_DQS_IN_DELAY_MAX) 2123 new_dqs = IO_DQS_IN_DELAY_MAX; 2124 else if (new_dqs < 0) 2125 new_dqs = 0; 2126 2127 mid_min = start_dqs - new_dqs; 2128 debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", 2129 mid_min, new_dqs); 2130 2131 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2132 if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) 2133 mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; 2134 else if (start_dqs_en - mid_min < 0) 2135 mid_min += start_dqs_en - mid_min; 2136 } 2137 new_dqs = start_dqs - mid_min; 2138 2139 debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ 2140 new_dqs=%d mid_min=%d\n", start_dqs, 2141 IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, 2142 new_dqs, mid_min); 2143 2144 /* Initialize data for export structures */ 2145 dqs_margin = IO_IO_IN_DELAY_MAX + 1; 2146 dq_margin = IO_IO_IN_DELAY_MAX + 1; 2147 2148 /* add delay to bring centre of all DQ windows to the same "level" */ 2149 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { 2150 /* Use values before divide by 2 to reduce round off error */ 2151 shift_dq = (left_edge[i] - right_edge[i] - 2152 (left_edge[min_index] - right_edge[min_index]))/2 + 2153 (orig_mid_min - mid_min); 2154 2155 debug_cond(DLEVEL == 2, "vfifo_center: before: \ 2156 shift_dq[%u]=%d\n", i, shift_dq); 2157 2158 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; 2159 temp_dq_in_delay1 = readl(addr + (p << 2)); 2160 temp_dq_in_delay2 = readl(addr + (i << 2)); 2161 2162 if (shift_dq + (int32_t)temp_dq_in_delay1 > 2163 (int32_t)IO_IO_IN_DELAY_MAX) { 2164 shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; 2165 } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { 2166 shift_dq = -(int32_t)temp_dq_in_delay1; 2167 } 2168 debug_cond(DLEVEL == 2, "vfifo_center: after: \ 2169 shift_dq[%u]=%d\n", i, shift_dq); 2170 final_dq[i] = temp_dq_in_delay1 + shift_dq; 2171 scc_mgr_set_dq_in_delay(p, final_dq[i]); 2172 scc_mgr_load_dq(p); 2173 2174 debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, 2175 left_edge[i] - shift_dq + (-mid_min), 2176 right_edge[i] + shift_dq - (-mid_min)); 2177 /* To determine values for export structures */ 2178 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2179 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2180 2181 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2182 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2183 } 2184 2185 final_dqs = new_dqs; 2186 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) 2187 final_dqs_en = start_dqs_en - mid_min; 2188 2189 /* Move DQS-en */ 2190 if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { 2191 scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); 2192 scc_mgr_load_dqs(read_group); 2193 } 2194 2195 /* Move DQS */ 2196 scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); 2197 scc_mgr_load_dqs(read_group); 2198 debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ 2199 dqs_margin=%d", __func__, __LINE__, 2200 dq_margin, dqs_margin); 2201 2202 /* 2203 * Do not remove this line as it makes sure all of our decisions 2204 * have been applied. Apply the update bit. 2205 */ 2206 writel(0, &sdr_scc_mgr->update); 2207 2208 return (dq_margin >= 0) && (dqs_margin >= 0); 2209 } 2210 2211 /* 2212 * calibrate the read valid prediction FIFO. 2213 * 2214 * - read valid prediction will consist of finding a good DQS enable phase, 2215 * DQS enable delay, DQS input phase, and DQS input delay. 2216 * - we also do a per-bit deskew on the DQ lines. 2217 */ 2218 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, 2219 uint32_t test_bgn) 2220 { 2221 uint32_t p, d, rank_bgn, sr; 2222 uint32_t dtaps_per_ptap; 2223 uint32_t tmp_delay; 2224 uint32_t bit_chk; 2225 uint32_t grp_calibrated; 2226 uint32_t write_group, write_test_bgn; 2227 uint32_t failed_substage; 2228 2229 debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn); 2230 2231 /* update info for sims */ 2232 reg_file_set_stage(CAL_STAGE_VFIFO); 2233 2234 write_group = read_group; 2235 write_test_bgn = test_bgn; 2236 2237 /* USER Determine number of delay taps for each phase tap */ 2238 dtaps_per_ptap = 0; 2239 tmp_delay = 0; 2240 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 2241 dtaps_per_ptap++; 2242 tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; 2243 } 2244 dtaps_per_ptap--; 2245 tmp_delay = 0; 2246 2247 /* update info for sims */ 2248 reg_file_set_group(read_group); 2249 2250 grp_calibrated = 0; 2251 2252 reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); 2253 failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; 2254 2255 for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) { 2256 /* 2257 * In RLDRAMX we may be messing the delay of pins in 2258 * the same write group but outside of the current read 2259 * the group, but that's ok because we haven't 2260 * calibrated output side yet. 2261 */ 2262 if (d > 0) { 2263 scc_mgr_apply_group_all_out_delay_add_all_ranks 2264 (write_group, write_test_bgn, d); 2265 } 2266 2267 for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; 2268 p++) { 2269 /* set a particular dqdqs phase */ 2270 scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p); 2271 2272 debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \ 2273 p=%u d=%u\n", __func__, __LINE__, 2274 read_group, p, d); 2275 2276 /* 2277 * Load up the patterns used by read calibration 2278 * using current DQDQS phase. 2279 */ 2280 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2281 if (!(gbl->phy_debug_mode_flags & 2282 PHY_DEBUG_DISABLE_GUARANTEED_READ)) { 2283 if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks 2284 (read_group, 1, &bit_chk)) { 2285 debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:", 2286 __func__, __LINE__); 2287 debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n", 2288 read_group, p, d); 2289 break; 2290 } 2291 } 2292 2293 /* case:56390 */ 2294 grp_calibrated = 1; 2295 if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay 2296 (write_group, read_group, test_bgn)) { 2297 /* 2298 * USER Read per-bit deskew can be done on a 2299 * per shadow register basis. 2300 */ 2301 for (rank_bgn = 0, sr = 0; 2302 rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2303 rank_bgn += NUM_RANKS_PER_SHADOW_REG, 2304 ++sr) { 2305 /* 2306 * Determine if this set of ranks 2307 * should be skipped entirely. 2308 */ 2309 if (!param->skip_shadow_regs[sr]) { 2310 /* 2311 * If doing read after write 2312 * calibration, do not update 2313 * FOM, now - do it then. 2314 */ 2315 if (!rw_mgr_mem_calibrate_vfifo_center 2316 (rank_bgn, write_group, 2317 read_group, test_bgn, 1, 0)) { 2318 grp_calibrated = 0; 2319 failed_substage = 2320 CAL_SUBSTAGE_VFIFO_CENTER; 2321 } 2322 } 2323 } 2324 } else { 2325 grp_calibrated = 0; 2326 failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; 2327 } 2328 } 2329 } 2330 2331 if (grp_calibrated == 0) { 2332 set_failing_group_stage(write_group, CAL_STAGE_VFIFO, 2333 failed_substage); 2334 return 0; 2335 } 2336 2337 /* 2338 * Reset the delay chains back to zero if they have moved > 1 2339 * (check for > 1 because loop will increase d even when pass in 2340 * first case). 2341 */ 2342 if (d > 2) 2343 scc_mgr_zero_group(write_group, write_test_bgn, 1); 2344 2345 return 1; 2346 } 2347 2348 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ 2349 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, 2350 uint32_t test_bgn) 2351 { 2352 uint32_t rank_bgn, sr; 2353 uint32_t grp_calibrated; 2354 uint32_t write_group; 2355 2356 debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); 2357 2358 /* update info for sims */ 2359 2360 reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); 2361 reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); 2362 2363 write_group = read_group; 2364 2365 /* update info for sims */ 2366 reg_file_set_group(read_group); 2367 2368 grp_calibrated = 1; 2369 /* Read per-bit deskew can be done on a per shadow register basis */ 2370 for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; 2371 rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { 2372 /* Determine if this set of ranks should be skipped entirely */ 2373 if (!param->skip_shadow_regs[sr]) { 2374 /* This is the last calibration round, update FOM here */ 2375 if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, 2376 write_group, 2377 read_group, 2378 test_bgn, 0, 2379 1)) { 2380 grp_calibrated = 0; 2381 } 2382 } 2383 } 2384 2385 2386 if (grp_calibrated == 0) { 2387 set_failing_group_stage(write_group, 2388 CAL_STAGE_VFIFO_AFTER_WRITES, 2389 CAL_SUBSTAGE_VFIFO_CENTER); 2390 return 0; 2391 } 2392 2393 return 1; 2394 } 2395 2396 /* Calibrate LFIFO to find smallest read latency */ 2397 static uint32_t rw_mgr_mem_calibrate_lfifo(void) 2398 { 2399 uint32_t found_one; 2400 uint32_t bit_chk; 2401 2402 debug("%s:%d\n", __func__, __LINE__); 2403 2404 /* update info for sims */ 2405 reg_file_set_stage(CAL_STAGE_LFIFO); 2406 reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); 2407 2408 /* Load up the patterns used by read calibration for all ranks */ 2409 rw_mgr_mem_calibrate_read_load_patterns(0, 1); 2410 found_one = 0; 2411 2412 do { 2413 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2414 debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", 2415 __func__, __LINE__, gbl->curr_read_lat); 2416 2417 if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, 2418 NUM_READ_TESTS, 2419 PASS_ALL_BITS, 2420 &bit_chk, 1)) { 2421 break; 2422 } 2423 2424 found_one = 1; 2425 /* reduce read latency and see if things are working */ 2426 /* correctly */ 2427 gbl->curr_read_lat--; 2428 } while (gbl->curr_read_lat > 0); 2429 2430 /* reset the fifos to get pointers to known state */ 2431 2432 writel(0, &phy_mgr_cmd->fifo_reset); 2433 2434 if (found_one) { 2435 /* add a fudge factor to the read latency that was determined */ 2436 gbl->curr_read_lat += 2; 2437 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 2438 debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ 2439 read_lat=%u\n", __func__, __LINE__, 2440 gbl->curr_read_lat); 2441 return 1; 2442 } else { 2443 set_failing_group_stage(0xff, CAL_STAGE_LFIFO, 2444 CAL_SUBSTAGE_READ_LATENCY); 2445 2446 debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ 2447 read_lat=%u\n", __func__, __LINE__, 2448 gbl->curr_read_lat); 2449 return 0; 2450 } 2451 } 2452 2453 /* 2454 * issue write test command. 2455 * two variants are provided. one that just tests a write pattern and 2456 * another that tests datamask functionality. 2457 */ 2458 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, 2459 uint32_t test_dm) 2460 { 2461 uint32_t mcc_instruction; 2462 uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && 2463 ENABLE_SUPER_QUICK_CALIBRATION); 2464 uint32_t rw_wl_nop_cycles; 2465 uint32_t addr; 2466 2467 /* 2468 * Set counter and jump addresses for the right 2469 * number of NOP cycles. 2470 * The number of supported NOP cycles can range from -1 to infinity 2471 * Three different cases are handled: 2472 * 2473 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping 2474 * mechanism will be used to insert the right number of NOPs 2475 * 2476 * 2. For a number of NOP cycles equals to 0, the micro-instruction 2477 * issuing the write command will jump straight to the 2478 * micro-instruction that turns on DQS (for DDRx), or outputs write 2479 * data (for RLD), skipping 2480 * the NOP micro-instruction all together 2481 * 2482 * 3. A number of NOP cycles equal to -1 indicates that DQS must be 2483 * turned on in the same micro-instruction that issues the write 2484 * command. Then we need 2485 * to directly jump to the micro-instruction that sends out the data 2486 * 2487 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters 2488 * (2 and 3). One jump-counter (0) is used to perform multiple 2489 * write-read operations. 2490 * one counter left to issue this command in "multiple-group" mode 2491 */ 2492 2493 rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; 2494 2495 if (rw_wl_nop_cycles == -1) { 2496 /* 2497 * CNTR 2 - We want to execute the special write operation that 2498 * turns on DQS right away and then skip directly to the 2499 * instruction that sends out the data. We set the counter to a 2500 * large number so that the jump is always taken. 2501 */ 2502 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2503 2504 /* CNTR 3 - Not used */ 2505 if (test_dm) { 2506 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; 2507 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, 2508 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2509 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2510 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2511 } else { 2512 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; 2513 writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, 2514 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2515 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2516 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2517 } 2518 } else if (rw_wl_nop_cycles == 0) { 2519 /* 2520 * CNTR 2 - We want to skip the NOP operation and go straight 2521 * to the DQS enable instruction. We set the counter to a large 2522 * number so that the jump is always taken. 2523 */ 2524 writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); 2525 2526 /* CNTR 3 - Not used */ 2527 if (test_dm) { 2528 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2529 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, 2530 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2531 } else { 2532 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2533 writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, 2534 &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2535 } 2536 } else { 2537 /* 2538 * CNTR 2 - In this case we want to execute the next instruction 2539 * and NOT take the jump. So we set the counter to 0. The jump 2540 * address doesn't count. 2541 */ 2542 writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); 2543 writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); 2544 2545 /* 2546 * CNTR 3 - Set the nop counter to the number of cycles we 2547 * need to loop for, minus 1. 2548 */ 2549 writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); 2550 if (test_dm) { 2551 mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; 2552 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, 2553 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2554 } else { 2555 mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; 2556 writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, 2557 &sdr_rw_load_jump_mgr_regs->load_jump_add3); 2558 } 2559 } 2560 2561 writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | 2562 RW_MGR_RESET_READ_DATAPATH_OFFSET); 2563 2564 if (quick_write_mode) 2565 writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); 2566 else 2567 writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); 2568 2569 writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); 2570 2571 /* 2572 * CNTR 1 - This is used to ensure enough time elapses 2573 * for read data to come back. 2574 */ 2575 writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); 2576 2577 if (test_dm) { 2578 writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, 2579 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2580 } else { 2581 writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, 2582 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 2583 } 2584 2585 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; 2586 writel(mcc_instruction, addr + (group << 2)); 2587 } 2588 2589 /* Test writes, can check for a single bit pass or multiple bit pass */ 2590 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, 2591 uint32_t write_group, uint32_t use_dm, uint32_t all_correct, 2592 uint32_t *bit_chk, uint32_t all_ranks) 2593 { 2594 uint32_t r; 2595 uint32_t correct_mask_vg; 2596 uint32_t tmp_bit_chk; 2597 uint32_t vg; 2598 uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : 2599 (rank_bgn + NUM_RANKS_PER_SHADOW_REG); 2600 uint32_t addr_rw_mgr; 2601 uint32_t base_rw_mgr; 2602 2603 *bit_chk = param->write_correct_mask; 2604 correct_mask_vg = param->write_correct_mask_vg; 2605 2606 for (r = rank_bgn; r < rank_end; r++) { 2607 if (param->skip_ranks[r]) { 2608 /* request to skip the rank */ 2609 continue; 2610 } 2611 2612 /* set rank */ 2613 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); 2614 2615 tmp_bit_chk = 0; 2616 addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; 2617 for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { 2618 /* reset the fifos to get pointers to known state */ 2619 writel(0, &phy_mgr_cmd->fifo_reset); 2620 2621 tmp_bit_chk = tmp_bit_chk << 2622 (RW_MGR_MEM_DQ_PER_WRITE_DQS / 2623 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 2624 rw_mgr_mem_calibrate_write_test_issue(write_group * 2625 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, 2626 use_dm); 2627 2628 base_rw_mgr = readl(addr_rw_mgr); 2629 tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); 2630 if (vg == 0) 2631 break; 2632 } 2633 *bit_chk &= tmp_bit_chk; 2634 } 2635 2636 if (all_correct) { 2637 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2638 debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ 2639 %u => %lu", write_group, use_dm, 2640 *bit_chk, param->write_correct_mask, 2641 (long unsigned int)(*bit_chk == 2642 param->write_correct_mask)); 2643 return *bit_chk == param->write_correct_mask; 2644 } else { 2645 set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); 2646 debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", 2647 write_group, use_dm, *bit_chk); 2648 debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, 2649 (long unsigned int)(*bit_chk != 0)); 2650 return *bit_chk != 0x00; 2651 } 2652 } 2653 2654 /* 2655 * center all windows. do per-bit-deskew to possibly increase size of 2656 * certain windows. 2657 */ 2658 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, 2659 uint32_t write_group, uint32_t test_bgn) 2660 { 2661 uint32_t i, p, min_index; 2662 int32_t d; 2663 /* 2664 * Store these as signed since there are comparisons with 2665 * signed numbers. 2666 */ 2667 uint32_t bit_chk; 2668 uint32_t sticky_bit_chk; 2669 int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2670 int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; 2671 int32_t mid; 2672 int32_t mid_min, orig_mid_min; 2673 int32_t new_dqs, start_dqs, shift_dq; 2674 int32_t dq_margin, dqs_margin, dm_margin; 2675 uint32_t stop; 2676 uint32_t temp_dq_out1_delay; 2677 uint32_t addr; 2678 2679 debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); 2680 2681 dm_margin = 0; 2682 2683 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2684 start_dqs = readl(addr + 2685 (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); 2686 2687 /* per-bit deskew */ 2688 2689 /* 2690 * set the left and right edge of each bit to an illegal value 2691 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. 2692 */ 2693 sticky_bit_chk = 0; 2694 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2695 left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2696 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2697 } 2698 2699 /* Search for the left edge of the window for each bit */ 2700 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { 2701 scc_mgr_apply_group_dq_out1_delay(write_group, d); 2702 2703 writel(0, &sdr_scc_mgr->update); 2704 2705 /* 2706 * Stop searching when the read test doesn't pass AND when 2707 * we've seen a passing read on every bit. 2708 */ 2709 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2710 0, PASS_ONE_BIT, &bit_chk, 0); 2711 sticky_bit_chk = sticky_bit_chk | bit_chk; 2712 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2713 debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ 2714 == %u && %u [bit_chk= %u ]\n", 2715 d, sticky_bit_chk, param->write_correct_mask, 2716 stop, bit_chk); 2717 2718 if (stop == 1) { 2719 break; 2720 } else { 2721 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2722 if (bit_chk & 1) { 2723 /* 2724 * Remember a passing test as the 2725 * left_edge. 2726 */ 2727 left_edge[i] = d; 2728 } else { 2729 /* 2730 * If a left edge has not been seen 2731 * yet, then a future passing test will 2732 * mark this edge as the right edge. 2733 */ 2734 if (left_edge[i] == 2735 IO_IO_OUT1_DELAY_MAX + 1) { 2736 right_edge[i] = -(d + 1); 2737 } 2738 } 2739 debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); 2740 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2741 (int)(bit_chk & 1), i, left_edge[i]); 2742 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2743 right_edge[i]); 2744 bit_chk = bit_chk >> 1; 2745 } 2746 } 2747 } 2748 2749 /* Reset DQ delay chains to 0 */ 2750 scc_mgr_apply_group_dq_out1_delay(0); 2751 sticky_bit_chk = 0; 2752 for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { 2753 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2754 %d right_edge[%u]: %d\n", __func__, __LINE__, 2755 i, left_edge[i], i, right_edge[i]); 2756 2757 /* 2758 * Check for cases where we haven't found the left edge, 2759 * which makes our assignment of the the right edge invalid. 2760 * Reset it to the illegal value. 2761 */ 2762 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && 2763 (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { 2764 right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; 2765 debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ 2766 right_edge[%u]: %d\n", __func__, __LINE__, 2767 i, right_edge[i]); 2768 } 2769 2770 /* 2771 * Reset sticky bit (except for bits where we have 2772 * seen the left edge). 2773 */ 2774 sticky_bit_chk = sticky_bit_chk << 1; 2775 if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) 2776 sticky_bit_chk = sticky_bit_chk | 1; 2777 2778 if (i == 0) 2779 break; 2780 } 2781 2782 /* Search for the right edge of the window for each bit */ 2783 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { 2784 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 2785 d + start_dqs); 2786 2787 writel(0, &sdr_scc_mgr->update); 2788 2789 /* 2790 * Stop searching when the read test doesn't pass AND when 2791 * we've seen a passing read on every bit. 2792 */ 2793 stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 2794 0, PASS_ONE_BIT, &bit_chk, 0); 2795 2796 sticky_bit_chk = sticky_bit_chk | bit_chk; 2797 stop = stop && (sticky_bit_chk == param->write_correct_mask); 2798 2799 debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ 2800 %u && %u\n", d, sticky_bit_chk, 2801 param->write_correct_mask, stop); 2802 2803 if (stop == 1) { 2804 if (d == 0) { 2805 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; 2806 i++) { 2807 /* d = 0 failed, but it passed when 2808 testing the left edge, so it must be 2809 marginal, set it to -1 */ 2810 if (right_edge[i] == 2811 IO_IO_OUT1_DELAY_MAX + 1 && 2812 left_edge[i] != 2813 IO_IO_OUT1_DELAY_MAX + 1) { 2814 right_edge[i] = -1; 2815 } 2816 } 2817 } 2818 break; 2819 } else { 2820 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2821 if (bit_chk & 1) { 2822 /* 2823 * Remember a passing test as 2824 * the right_edge. 2825 */ 2826 right_edge[i] = d; 2827 } else { 2828 if (d != 0) { 2829 /* 2830 * If a right edge has not 2831 * been seen yet, then a future 2832 * passing test will mark this 2833 * edge as the left edge. 2834 */ 2835 if (right_edge[i] == 2836 IO_IO_OUT1_DELAY_MAX + 1) 2837 left_edge[i] = -(d + 1); 2838 } else { 2839 /* 2840 * d = 0 failed, but it passed 2841 * when testing the left edge, 2842 * so it must be marginal, set 2843 * it to -1. 2844 */ 2845 if (right_edge[i] == 2846 IO_IO_OUT1_DELAY_MAX + 1 && 2847 left_edge[i] != 2848 IO_IO_OUT1_DELAY_MAX + 1) 2849 right_edge[i] = -1; 2850 /* 2851 * If a right edge has not been 2852 * seen yet, then a future 2853 * passing test will mark this 2854 * edge as the left edge. 2855 */ 2856 else if (right_edge[i] == 2857 IO_IO_OUT1_DELAY_MAX + 2858 1) 2859 left_edge[i] = -(d + 1); 2860 } 2861 } 2862 debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); 2863 debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", 2864 (int)(bit_chk & 1), i, left_edge[i]); 2865 debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, 2866 right_edge[i]); 2867 bit_chk = bit_chk >> 1; 2868 } 2869 } 2870 } 2871 2872 /* Check that all bits have a window */ 2873 for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2874 debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ 2875 %d right_edge[%u]: %d", __func__, __LINE__, 2876 i, left_edge[i], i, right_edge[i]); 2877 if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || 2878 (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { 2879 set_failing_group_stage(test_bgn + i, 2880 CAL_STAGE_WRITES, 2881 CAL_SUBSTAGE_WRITES_CENTER); 2882 return 0; 2883 } 2884 } 2885 2886 /* Find middle of window for each DQ bit */ 2887 mid_min = left_edge[0] - right_edge[0]; 2888 min_index = 0; 2889 for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { 2890 mid = left_edge[i] - right_edge[i]; 2891 if (mid < mid_min) { 2892 mid_min = mid; 2893 min_index = i; 2894 } 2895 } 2896 2897 /* 2898 * -mid_min/2 represents the amount that we need to move DQS. 2899 * If mid_min is odd and positive we'll need to add one to 2900 * make sure the rounding in further calculations is correct 2901 * (always bias to the right), so just add 1 for all positive values. 2902 */ 2903 if (mid_min > 0) 2904 mid_min++; 2905 mid_min = mid_min / 2; 2906 debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, 2907 __LINE__, mid_min); 2908 2909 /* Determine the amount we can change DQS (which is -mid_min) */ 2910 orig_mid_min = mid_min; 2911 new_dqs = start_dqs; 2912 mid_min = 0; 2913 debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ 2914 mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); 2915 /* Initialize data for export structures */ 2916 dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; 2917 dq_margin = IO_IO_OUT1_DELAY_MAX + 1; 2918 2919 /* add delay to bring centre of all DQ windows to the same "level" */ 2920 for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { 2921 /* Use values before divide by 2 to reduce round off error */ 2922 shift_dq = (left_edge[i] - right_edge[i] - 2923 (left_edge[min_index] - right_edge[min_index]))/2 + 2924 (orig_mid_min - mid_min); 2925 2926 debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ 2927 [%u]=%d\n", __func__, __LINE__, i, shift_dq); 2928 2929 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; 2930 temp_dq_out1_delay = readl(addr + (i << 2)); 2931 if (shift_dq + (int32_t)temp_dq_out1_delay > 2932 (int32_t)IO_IO_OUT1_DELAY_MAX) { 2933 shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; 2934 } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { 2935 shift_dq = -(int32_t)temp_dq_out1_delay; 2936 } 2937 debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", 2938 i, shift_dq); 2939 scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); 2940 scc_mgr_load_dq(i); 2941 2942 debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, 2943 left_edge[i] - shift_dq + (-mid_min), 2944 right_edge[i] + shift_dq - (-mid_min)); 2945 /* To determine values for export structures */ 2946 if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) 2947 dq_margin = left_edge[i] - shift_dq + (-mid_min); 2948 2949 if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) 2950 dqs_margin = right_edge[i] + shift_dq - (-mid_min); 2951 } 2952 2953 /* Move DQS */ 2954 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 2955 writel(0, &sdr_scc_mgr->update); 2956 2957 /* Centre DM */ 2958 debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); 2959 2960 /* 2961 * set the left and right edge of each bit to an illegal value, 2962 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, 2963 */ 2964 left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2965 right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; 2966 int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 2967 int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; 2968 int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; 2969 int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; 2970 int32_t win_best = 0; 2971 2972 /* Search for the/part of the window with DM shift */ 2973 for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { 2974 scc_mgr_apply_group_dm_out1_delay(d); 2975 writel(0, &sdr_scc_mgr->update); 2976 2977 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 2978 PASS_ALL_BITS, &bit_chk, 2979 0)) { 2980 /* USE Set current end of the window */ 2981 end_curr = -d; 2982 /* 2983 * If a starting edge of our window has not been seen 2984 * this is our current start of the DM window. 2985 */ 2986 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 2987 bgn_curr = -d; 2988 2989 /* 2990 * If current window is bigger than best seen. 2991 * Set best seen to be current window. 2992 */ 2993 if ((end_curr-bgn_curr+1) > win_best) { 2994 win_best = end_curr-bgn_curr+1; 2995 bgn_best = bgn_curr; 2996 end_best = end_curr; 2997 } 2998 } else { 2999 /* We just saw a failing test. Reset temp edge */ 3000 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3001 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3002 } 3003 } 3004 3005 3006 /* Reset DM delay chains to 0 */ 3007 scc_mgr_apply_group_dm_out1_delay(0); 3008 3009 /* 3010 * Check to see if the current window nudges up aganist 0 delay. 3011 * If so we need to continue the search by shifting DQS otherwise DQS 3012 * search begins as a new search. */ 3013 if (end_curr != 0) { 3014 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3015 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3016 } 3017 3018 /* Search for the/part of the window with DQS shifts */ 3019 for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { 3020 /* 3021 * Note: This only shifts DQS, so are we limiting ourselve to 3022 * width of DQ unnecessarily. 3023 */ 3024 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, 3025 d + new_dqs); 3026 3027 writel(0, &sdr_scc_mgr->update); 3028 if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, 3029 PASS_ALL_BITS, &bit_chk, 3030 0)) { 3031 /* USE Set current end of the window */ 3032 end_curr = d; 3033 /* 3034 * If a beginning edge of our window has not been seen 3035 * this is our current begin of the DM window. 3036 */ 3037 if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) 3038 bgn_curr = d; 3039 3040 /* 3041 * If current window is bigger than best seen. Set best 3042 * seen to be current window. 3043 */ 3044 if ((end_curr-bgn_curr+1) > win_best) { 3045 win_best = end_curr-bgn_curr+1; 3046 bgn_best = bgn_curr; 3047 end_best = end_curr; 3048 } 3049 } else { 3050 /* We just saw a failing test. Reset temp edge */ 3051 bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; 3052 end_curr = IO_IO_OUT1_DELAY_MAX + 1; 3053 3054 /* Early exit optimization: if ther remaining delay 3055 chain space is less than already seen largest window 3056 we can exit */ 3057 if ((win_best-1) > 3058 (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { 3059 break; 3060 } 3061 } 3062 } 3063 3064 /* assign left and right edge for cal and reporting; */ 3065 left_edge[0] = -1*bgn_best; 3066 right_edge[0] = end_best; 3067 3068 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, 3069 __LINE__, left_edge[0], right_edge[0]); 3070 3071 /* Move DQS (back to orig) */ 3072 scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); 3073 3074 /* Move DM */ 3075 3076 /* Find middle of window for the DM bit */ 3077 mid = (left_edge[0] - right_edge[0]) / 2; 3078 3079 /* only move right, since we are not moving DQS/DQ */ 3080 if (mid < 0) 3081 mid = 0; 3082 3083 /* dm_marign should fail if we never find a window */ 3084 if (win_best == 0) 3085 dm_margin = -1; 3086 else 3087 dm_margin = left_edge[0] - mid; 3088 3089 scc_mgr_apply_group_dm_out1_delay(mid); 3090 writel(0, &sdr_scc_mgr->update); 3091 3092 debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ 3093 dm_margin=%d\n", __func__, __LINE__, left_edge[0], 3094 right_edge[0], mid, dm_margin); 3095 /* Export values */ 3096 gbl->fom_out += dq_margin + dqs_margin; 3097 3098 debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ 3099 dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, 3100 dq_margin, dqs_margin, dm_margin); 3101 3102 /* 3103 * Do not remove this line as it makes sure all of our 3104 * decisions have been applied. 3105 */ 3106 writel(0, &sdr_scc_mgr->update); 3107 return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); 3108 } 3109 3110 /* calibrate the write operations */ 3111 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, 3112 uint32_t test_bgn) 3113 { 3114 /* update info for sims */ 3115 debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); 3116 3117 reg_file_set_stage(CAL_STAGE_WRITES); 3118 reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); 3119 3120 reg_file_set_group(g); 3121 3122 if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { 3123 set_failing_group_stage(g, CAL_STAGE_WRITES, 3124 CAL_SUBSTAGE_WRITES_CENTER); 3125 return 0; 3126 } 3127 3128 return 1; 3129 } 3130 3131 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */ 3132 static void mem_precharge_and_activate(void) 3133 { 3134 uint32_t r; 3135 3136 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { 3137 if (param->skip_ranks[r]) { 3138 /* request to skip the rank */ 3139 continue; 3140 } 3141 3142 /* set rank */ 3143 set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); 3144 3145 /* precharge all banks ... */ 3146 writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3147 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3148 3149 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); 3150 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, 3151 &sdr_rw_load_jump_mgr_regs->load_jump_add0); 3152 3153 writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); 3154 writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, 3155 &sdr_rw_load_jump_mgr_regs->load_jump_add1); 3156 3157 /* activate rows */ 3158 writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | 3159 RW_MGR_RUN_SINGLE_GROUP_OFFSET); 3160 } 3161 } 3162 3163 /* Configure various memory related parameters. */ 3164 static void mem_config(void) 3165 { 3166 uint32_t rlat, wlat; 3167 uint32_t rw_wl_nop_cycles; 3168 uint32_t max_latency; 3169 3170 debug("%s:%d\n", __func__, __LINE__); 3171 /* read in write and read latency */ 3172 wlat = readl(&data_mgr->t_wl_add); 3173 wlat += readl(&data_mgr->mem_t_add); 3174 3175 /* WL for hard phy does not include additive latency */ 3176 3177 /* 3178 * add addtional write latency to offset the address/command extra 3179 * clock cycle. We change the AC mux setting causing AC to be delayed 3180 * by one mem clock cycle. Only do this for DDR3 3181 */ 3182 wlat = wlat + 1; 3183 3184 rlat = readl(&data_mgr->t_rl_add); 3185 3186 rw_wl_nop_cycles = wlat - 2; 3187 gbl->rw_wl_nop_cycles = rw_wl_nop_cycles; 3188 3189 /* 3190 * For AV/CV, lfifo is hardened and always runs at full rate so 3191 * max latency in AFI clocks, used here, is correspondingly smaller. 3192 */ 3193 max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1; 3194 /* configure for a burst length of 8 */ 3195 3196 /* write latency */ 3197 /* Adjust Write Latency for Hard PHY */ 3198 wlat = wlat + 1; 3199 3200 /* set a pretty high read latency initially */ 3201 gbl->curr_read_lat = rlat + 16; 3202 3203 if (gbl->curr_read_lat > max_latency) 3204 gbl->curr_read_lat = max_latency; 3205 3206 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3207 3208 /* advertise write latency */ 3209 gbl->curr_write_lat = wlat; 3210 writel(wlat - 2, &phy_mgr_cfg->afi_wlat); 3211 3212 /* initialize bit slips */ 3213 mem_precharge_and_activate(); 3214 } 3215 3216 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */ 3217 static void mem_skip_calibrate(void) 3218 { 3219 uint32_t vfifo_offset; 3220 uint32_t i, j, r; 3221 3222 debug("%s:%d\n", __func__, __LINE__); 3223 /* Need to update every shadow register set used by the interface */ 3224 for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; 3225 r += NUM_RANKS_PER_SHADOW_REG) { 3226 /* 3227 * Set output phase alignment settings appropriate for 3228 * skip calibration. 3229 */ 3230 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3231 scc_mgr_set_dqs_en_phase(i, 0); 3232 #if IO_DLL_CHAIN_LENGTH == 6 3233 scc_mgr_set_dqdqs_output_phase(i, 6); 3234 #else 3235 scc_mgr_set_dqdqs_output_phase(i, 7); 3236 #endif 3237 /* 3238 * Case:33398 3239 * 3240 * Write data arrives to the I/O two cycles before write 3241 * latency is reached (720 deg). 3242 * -> due to bit-slip in a/c bus 3243 * -> to allow board skew where dqs is longer than ck 3244 * -> how often can this happen!? 3245 * -> can claim back some ptaps for high freq 3246 * support if we can relax this, but i digress... 3247 * 3248 * The write_clk leads mem_ck by 90 deg 3249 * The minimum ptap of the OPA is 180 deg 3250 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay 3251 * The write_clk is always delayed by 2 ptaps 3252 * 3253 * Hence, to make DQS aligned to CK, we need to delay 3254 * DQS by: 3255 * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) 3256 * 3257 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) 3258 * gives us the number of ptaps, which simplies to: 3259 * 3260 * (1.25 * IO_DLL_CHAIN_LENGTH - 2) 3261 */ 3262 scc_mgr_set_dqdqs_output_phase(i, (1.25 * 3263 IO_DLL_CHAIN_LENGTH - 2)); 3264 } 3265 writel(0xff, &sdr_scc_mgr->dqs_ena); 3266 writel(0xff, &sdr_scc_mgr->dqs_io_ena); 3267 3268 for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { 3269 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3270 SCC_MGR_GROUP_COUNTER_OFFSET); 3271 } 3272 writel(0xff, &sdr_scc_mgr->dq_ena); 3273 writel(0xff, &sdr_scc_mgr->dm_ena); 3274 writel(0, &sdr_scc_mgr->update); 3275 } 3276 3277 /* Compensate for simulation model behaviour */ 3278 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3279 scc_mgr_set_dqs_bus_in_delay(i, 10); 3280 scc_mgr_load_dqs(i); 3281 } 3282 writel(0, &sdr_scc_mgr->update); 3283 3284 /* 3285 * ArriaV has hard FIFOs that can only be initialized by incrementing 3286 * in sequencer. 3287 */ 3288 vfifo_offset = CALIB_VFIFO_OFFSET; 3289 for (j = 0; j < vfifo_offset; j++) { 3290 writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); 3291 } 3292 writel(0, &phy_mgr_cmd->fifo_reset); 3293 3294 /* 3295 * For ACV with hard lfifo, we get the skip-cal setting from 3296 * generation-time constant. 3297 */ 3298 gbl->curr_read_lat = CALIB_LFIFO_OFFSET; 3299 writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); 3300 } 3301 3302 /* Memory calibration entry point */ 3303 static uint32_t mem_calibrate(void) 3304 { 3305 uint32_t i; 3306 uint32_t rank_bgn, sr; 3307 uint32_t write_group, write_test_bgn; 3308 uint32_t read_group, read_test_bgn; 3309 uint32_t run_groups, current_run; 3310 uint32_t failing_groups = 0; 3311 uint32_t group_failed = 0; 3312 uint32_t sr_failed = 0; 3313 3314 debug("%s:%d\n", __func__, __LINE__); 3315 /* Initialize the data settings */ 3316 3317 gbl->error_substage = CAL_SUBSTAGE_NIL; 3318 gbl->error_stage = CAL_STAGE_NIL; 3319 gbl->error_group = 0xff; 3320 gbl->fom_in = 0; 3321 gbl->fom_out = 0; 3322 3323 mem_config(); 3324 3325 for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { 3326 writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | 3327 SCC_MGR_GROUP_COUNTER_OFFSET); 3328 scc_set_bypass_mode(i); 3329 } 3330 3331 if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { 3332 /* 3333 * Set VFIFO and LFIFO to instant-on settings in skip 3334 * calibration mode. 3335 */ 3336 mem_skip_calibrate(); 3337 } else { 3338 for (i = 0; i < NUM_CALIB_REPEAT; i++) { 3339 /* 3340 * Zero all delay chain/phase settings for all 3341 * groups and all shadow register sets. 3342 */ 3343 scc_mgr_zero_all(); 3344 3345 run_groups = ~param->skip_groups; 3346 3347 for (write_group = 0, write_test_bgn = 0; write_group 3348 < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, 3349 write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { 3350 /* Initialized the group failure */ 3351 group_failed = 0; 3352 3353 current_run = run_groups & ((1 << 3354 RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); 3355 run_groups = run_groups >> 3356 RW_MGR_NUM_DQS_PER_WRITE_GROUP; 3357 3358 if (current_run == 0) 3359 continue; 3360 3361 writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | 3362 SCC_MGR_GROUP_COUNTER_OFFSET); 3363 scc_mgr_zero_group(write_group, write_test_bgn, 3364 0); 3365 3366 for (read_group = write_group * 3367 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3368 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3369 read_test_bgn = 0; 3370 read_group < (write_group + 1) * 3371 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3372 RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3373 group_failed == 0; 3374 read_group++, read_test_bgn += 3375 RW_MGR_MEM_DQ_PER_READ_DQS) { 3376 /* Calibrate the VFIFO */ 3377 if (!((STATIC_CALIB_STEPS) & 3378 CALIB_SKIP_VFIFO)) { 3379 if (!rw_mgr_mem_calibrate_vfifo 3380 (read_group, 3381 read_test_bgn)) { 3382 group_failed = 1; 3383 3384 if (!(gbl-> 3385 phy_debug_mode_flags & 3386 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3387 return 0; 3388 } 3389 } 3390 } 3391 } 3392 3393 /* Calibrate the output side */ 3394 if (group_failed == 0) { 3395 for (rank_bgn = 0, sr = 0; rank_bgn 3396 < RW_MGR_MEM_NUMBER_OF_RANKS; 3397 rank_bgn += 3398 NUM_RANKS_PER_SHADOW_REG, 3399 ++sr) { 3400 sr_failed = 0; 3401 if (!((STATIC_CALIB_STEPS) & 3402 CALIB_SKIP_WRITES)) { 3403 if ((STATIC_CALIB_STEPS) 3404 & CALIB_SKIP_DELAY_SWEEPS) { 3405 /* not needed in quick mode! */ 3406 } else { 3407 /* 3408 * Determine if this set of 3409 * ranks should be skipped 3410 * entirely. 3411 */ 3412 if (!param->skip_shadow_regs[sr]) { 3413 if (!rw_mgr_mem_calibrate_writes 3414 (rank_bgn, write_group, 3415 write_test_bgn)) { 3416 sr_failed = 1; 3417 if (!(gbl-> 3418 phy_debug_mode_flags & 3419 PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3420 return 0; 3421 } 3422 } 3423 } 3424 } 3425 } 3426 if (sr_failed != 0) 3427 group_failed = 1; 3428 } 3429 } 3430 3431 if (group_failed == 0) { 3432 for (read_group = write_group * 3433 RW_MGR_MEM_IF_READ_DQS_WIDTH / 3434 RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3435 read_test_bgn = 0; 3436 read_group < (write_group + 1) 3437 * RW_MGR_MEM_IF_READ_DQS_WIDTH 3438 / RW_MGR_MEM_IF_WRITE_DQS_WIDTH && 3439 group_failed == 0; 3440 read_group++, read_test_bgn += 3441 RW_MGR_MEM_DQ_PER_READ_DQS) { 3442 if (!((STATIC_CALIB_STEPS) & 3443 CALIB_SKIP_WRITES)) { 3444 if (!rw_mgr_mem_calibrate_vfifo_end 3445 (read_group, read_test_bgn)) { 3446 group_failed = 1; 3447 3448 if (!(gbl->phy_debug_mode_flags 3449 & PHY_DEBUG_SWEEP_ALL_GROUPS)) { 3450 return 0; 3451 } 3452 } 3453 } 3454 } 3455 } 3456 3457 if (group_failed != 0) 3458 failing_groups++; 3459 } 3460 3461 /* 3462 * USER If there are any failing groups then report 3463 * the failure. 3464 */ 3465 if (failing_groups != 0) 3466 return 0; 3467 3468 /* Calibrate the LFIFO */ 3469 if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) { 3470 /* 3471 * If we're skipping groups as part of debug, 3472 * don't calibrate LFIFO. 3473 */ 3474 if (param->skip_groups == 0) { 3475 if (!rw_mgr_mem_calibrate_lfifo()) 3476 return 0; 3477 } 3478 } 3479 } 3480 } 3481 3482 /* 3483 * Do not remove this line as it makes sure all of our decisions 3484 * have been applied. 3485 */ 3486 writel(0, &sdr_scc_mgr->update); 3487 return 1; 3488 } 3489 3490 static uint32_t run_mem_calibrate(void) 3491 { 3492 uint32_t pass; 3493 uint32_t debug_info; 3494 3495 debug("%s:%d\n", __func__, __LINE__); 3496 3497 /* Reset pass/fail status shown on afi_cal_success/fail */ 3498 writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); 3499 3500 /* stop tracking manger */ 3501 uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg); 3502 3503 writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg); 3504 3505 initialize(); 3506 rw_mgr_mem_initialize(); 3507 3508 pass = mem_calibrate(); 3509 3510 mem_precharge_and_activate(); 3511 writel(0, &phy_mgr_cmd->fifo_reset); 3512 3513 /* 3514 * Handoff: 3515 * Don't return control of the PHY back to AFI when in debug mode. 3516 */ 3517 if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) { 3518 rw_mgr_mem_handoff(); 3519 /* 3520 * In Hard PHY this is a 2-bit control: 3521 * 0: AFI Mux Select 3522 * 1: DDIO Mux Select 3523 */ 3524 writel(0x2, &phy_mgr_cfg->mux_sel); 3525 } 3526 3527 writel(ctrlcfg, &sdr_ctrl->ctrl_cfg); 3528 3529 if (pass) { 3530 printf("%s: CALIBRATION PASSED\n", __FILE__); 3531 3532 gbl->fom_in /= 2; 3533 gbl->fom_out /= 2; 3534 3535 if (gbl->fom_in > 0xff) 3536 gbl->fom_in = 0xff; 3537 3538 if (gbl->fom_out > 0xff) 3539 gbl->fom_out = 0xff; 3540 3541 /* Update the FOM in the register file */ 3542 debug_info = gbl->fom_in; 3543 debug_info |= gbl->fom_out << 8; 3544 writel(debug_info, &sdr_reg_file->fom); 3545 3546 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3547 writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); 3548 } else { 3549 printf("%s: CALIBRATION FAILED\n", __FILE__); 3550 3551 debug_info = gbl->error_stage; 3552 debug_info |= gbl->error_substage << 8; 3553 debug_info |= gbl->error_group << 16; 3554 3555 writel(debug_info, &sdr_reg_file->failing_stage); 3556 writel(debug_info, &phy_mgr_cfg->cal_debug_info); 3557 writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); 3558 3559 /* Update the failing group/stage in the register file */ 3560 debug_info = gbl->error_stage; 3561 debug_info |= gbl->error_substage << 8; 3562 debug_info |= gbl->error_group << 16; 3563 writel(debug_info, &sdr_reg_file->failing_stage); 3564 } 3565 3566 return pass; 3567 } 3568 3569 /** 3570 * hc_initialize_rom_data() - Initialize ROM data 3571 * 3572 * Initialize ROM data. 3573 */ 3574 static void hc_initialize_rom_data(void) 3575 { 3576 u32 i, addr; 3577 3578 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; 3579 for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) 3580 writel(inst_rom_init[i], addr + (i << 2)); 3581 3582 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; 3583 for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) 3584 writel(ac_rom_init[i], addr + (i << 2)); 3585 } 3586 3587 /** 3588 * initialize_reg_file() - Initialize SDR register file 3589 * 3590 * Initialize SDR register file. 3591 */ 3592 static void initialize_reg_file(void) 3593 { 3594 /* Initialize the register file with the correct data */ 3595 writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); 3596 writel(0, &sdr_reg_file->debug_data_addr); 3597 writel(0, &sdr_reg_file->cur_stage); 3598 writel(0, &sdr_reg_file->fom); 3599 writel(0, &sdr_reg_file->failing_stage); 3600 writel(0, &sdr_reg_file->debug1); 3601 writel(0, &sdr_reg_file->debug2); 3602 } 3603 3604 /** 3605 * initialize_hps_phy() - Initialize HPS PHY 3606 * 3607 * Initialize HPS PHY. 3608 */ 3609 static void initialize_hps_phy(void) 3610 { 3611 uint32_t reg; 3612 /* 3613 * Tracking also gets configured here because it's in the 3614 * same register. 3615 */ 3616 uint32_t trk_sample_count = 7500; 3617 uint32_t trk_long_idle_sample_count = (10 << 16) | 100; 3618 /* 3619 * Format is number of outer loops in the 16 MSB, sample 3620 * count in 16 LSB. 3621 */ 3622 3623 reg = 0; 3624 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); 3625 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); 3626 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); 3627 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); 3628 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); 3629 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); 3630 /* 3631 * This field selects the intrinsic latency to RDATA_EN/FULL path. 3632 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. 3633 */ 3634 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); 3635 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( 3636 trk_sample_count); 3637 writel(reg, &sdr_ctrl->phy_ctrl0); 3638 3639 reg = 0; 3640 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( 3641 trk_sample_count >> 3642 SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); 3643 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( 3644 trk_long_idle_sample_count); 3645 writel(reg, &sdr_ctrl->phy_ctrl1); 3646 3647 reg = 0; 3648 reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( 3649 trk_long_idle_sample_count >> 3650 SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); 3651 writel(reg, &sdr_ctrl->phy_ctrl2); 3652 } 3653 3654 static void initialize_tracking(void) 3655 { 3656 uint32_t concatenated_longidle = 0x0; 3657 uint32_t concatenated_delays = 0x0; 3658 uint32_t concatenated_rw_addr = 0x0; 3659 uint32_t concatenated_refresh = 0x0; 3660 uint32_t trk_sample_count = 7500; 3661 uint32_t dtaps_per_ptap; 3662 uint32_t tmp_delay; 3663 3664 /* 3665 * compute usable version of value in case we skip full 3666 * computation later 3667 */ 3668 dtaps_per_ptap = 0; 3669 tmp_delay = 0; 3670 while (tmp_delay < IO_DELAY_PER_OPA_TAP) { 3671 dtaps_per_ptap++; 3672 tmp_delay += IO_DELAY_PER_DCHAIN_TAP; 3673 } 3674 dtaps_per_ptap--; 3675 3676 concatenated_longidle = concatenated_longidle ^ 10; 3677 /*longidle outer loop */ 3678 concatenated_longidle = concatenated_longidle << 16; 3679 concatenated_longidle = concatenated_longidle ^ 100; 3680 /*longidle sample count */ 3681 concatenated_delays = concatenated_delays ^ 243; 3682 /* trfc, worst case of 933Mhz 4Gb */ 3683 concatenated_delays = concatenated_delays << 8; 3684 concatenated_delays = concatenated_delays ^ 14; 3685 /* trcd, worst case */ 3686 concatenated_delays = concatenated_delays << 8; 3687 concatenated_delays = concatenated_delays ^ 10; 3688 /* vfifo wait */ 3689 concatenated_delays = concatenated_delays << 8; 3690 concatenated_delays = concatenated_delays ^ 4; 3691 /* mux delay */ 3692 3693 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE; 3694 concatenated_rw_addr = concatenated_rw_addr << 8; 3695 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1; 3696 concatenated_rw_addr = concatenated_rw_addr << 8; 3697 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ; 3698 concatenated_rw_addr = concatenated_rw_addr << 8; 3699 concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL; 3700 3701 concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL; 3702 concatenated_refresh = concatenated_refresh << 24; 3703 concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */ 3704 3705 /* Initialize the register file with the correct data */ 3706 writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); 3707 writel(trk_sample_count, &sdr_reg_file->trk_sample_count); 3708 writel(concatenated_longidle, &sdr_reg_file->trk_longidle); 3709 writel(concatenated_delays, &sdr_reg_file->delays); 3710 writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr); 3711 writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); 3712 writel(concatenated_refresh, &sdr_reg_file->trk_rfsh); 3713 } 3714 3715 int sdram_calibration_full(void) 3716 { 3717 struct param_type my_param; 3718 struct gbl_type my_gbl; 3719 uint32_t pass; 3720 uint32_t i; 3721 3722 param = &my_param; 3723 gbl = &my_gbl; 3724 3725 /* Initialize the debug mode flags */ 3726 gbl->phy_debug_mode_flags = 0; 3727 /* Set the calibration enabled by default */ 3728 gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; 3729 /* 3730 * Only sweep all groups (regardless of fail state) by default 3731 * Set enabled read test by default. 3732 */ 3733 #if DISABLE_GUARANTEED_READ 3734 gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; 3735 #endif 3736 /* Initialize the register file */ 3737 initialize_reg_file(); 3738 3739 /* Initialize any PHY CSR */ 3740 initialize_hps_phy(); 3741 3742 scc_mgr_initialize(); 3743 3744 initialize_tracking(); 3745 3746 /* USER Enable all ranks, groups */ 3747 for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) 3748 param->skip_ranks[i] = 0; 3749 for (i = 0; i < NUM_SHADOW_REGS; ++i) 3750 param->skip_shadow_regs[i] = 0; 3751 param->skip_groups = 0; 3752 3753 printf("%s: Preparing to start memory calibration\n", __FILE__); 3754 3755 debug("%s:%d\n", __func__, __LINE__); 3756 debug_cond(DLEVEL == 1, 3757 "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", 3758 RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, 3759 RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, 3760 RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, 3761 RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); 3762 debug_cond(DLEVEL == 1, 3763 "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", 3764 RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, 3765 RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, 3766 IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); 3767 debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", 3768 IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); 3769 debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", 3770 IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, 3771 IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); 3772 debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", 3773 IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, 3774 IO_IO_OUT2_DELAY_MAX); 3775 debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", 3776 IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); 3777 3778 hc_initialize_rom_data(); 3779 3780 /* update info for sims */ 3781 reg_file_set_stage(CAL_STAGE_NIL); 3782 reg_file_set_group(0); 3783 3784 /* 3785 * Load global needed for those actions that require 3786 * some dynamic calibration support. 3787 */ 3788 dyn_calib_steps = STATIC_CALIB_STEPS; 3789 /* 3790 * Load global to allow dynamic selection of delay loop settings 3791 * based on calibration mode. 3792 */ 3793 if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) 3794 skip_delay_mask = 0xff; 3795 else 3796 skip_delay_mask = 0x0; 3797 3798 pass = run_mem_calibrate(); 3799 3800 printf("%s: Calibration complete\n", __FILE__); 3801 return pass; 3802 } 3803