xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 2ca151f86c38443ce7b71039b5aab753bfc73fec)
1 /*
2  * Copyright Altera Corporation (C) 2012-2015
3  *
4  * SPDX-License-Identifier:    BSD-3-Clause
5  */
6 
7 #include <common.h>
8 #include <asm/io.h>
9 #include <asm/arch/sdram.h>
10 #include "sequencer.h"
11 #include "sequencer_auto.h"
12 #include "sequencer_auto_ac_init.h"
13 #include "sequencer_auto_inst_init.h"
14 #include "sequencer_defines.h"
15 
16 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group);
17 
18 static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
19 	(struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
20 
21 static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
22 	(struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
23 
24 static struct socfpga_sdr_reg_file *sdr_reg_file =
25 	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
26 
27 static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
28 	(struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
29 
30 static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
31 	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
32 
33 static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
34 	(struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
35 
36 static struct socfpga_data_mgr *data_mgr =
37 	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
38 
39 static struct socfpga_sdr_ctrl *sdr_ctrl =
40 	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
41 
42 #define DELTA_D		1
43 
44 /*
45  * In order to reduce ROM size, most of the selectable calibration steps are
46  * decided at compile time based on the user's calibration mode selection,
47  * as captured by the STATIC_CALIB_STEPS selection below.
48  *
49  * However, to support simulation-time selection of fast simulation mode, where
50  * we skip everything except the bare minimum, we need a few of the steps to
51  * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
52  * check, which is based on the rtl-supplied value, or we dynamically compute
53  * the value to use based on the dynamically-chosen calibration mode
54  */
55 
56 #define DLEVEL 0
57 #define STATIC_IN_RTL_SIM 0
58 #define STATIC_SKIP_DELAY_LOOPS 0
59 
60 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
61 	STATIC_SKIP_DELAY_LOOPS)
62 
63 /* calibration steps requested by the rtl */
64 uint16_t dyn_calib_steps;
65 
66 /*
67  * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
68  * instead of static, we use boolean logic to select between
69  * non-skip and skip values
70  *
71  * The mask is set to include all bits when not-skipping, but is
72  * zero when skipping
73  */
74 
75 uint16_t skip_delay_mask;	/* mask off bits when skipping/not-skipping */
76 
77 #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
78 	((non_skip_value) & skip_delay_mask)
79 
80 struct gbl_type *gbl;
81 struct param_type *param;
82 uint32_t curr_shadow_reg;
83 
84 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
85 	uint32_t write_group, uint32_t use_dm,
86 	uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks);
87 
88 static void set_failing_group_stage(uint32_t group, uint32_t stage,
89 	uint32_t substage)
90 {
91 	/*
92 	 * Only set the global stage if there was not been any other
93 	 * failing group
94 	 */
95 	if (gbl->error_stage == CAL_STAGE_NIL)	{
96 		gbl->error_substage = substage;
97 		gbl->error_stage = stage;
98 		gbl->error_group = group;
99 	}
100 }
101 
102 static void reg_file_set_group(uint32_t set_group)
103 {
104 	/* Read the current group and stage */
105 	uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
106 
107 	/* Clear the group */
108 	cur_stage_group &= 0x0000FFFF;
109 
110 	/* Set the group */
111 	cur_stage_group |= (set_group << 16);
112 
113 	/* Write the data back */
114 	writel(cur_stage_group, &sdr_reg_file->cur_stage);
115 }
116 
117 static void reg_file_set_stage(uint32_t set_stage)
118 {
119 	/* Read the current group and stage */
120 	uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
121 
122 	/* Clear the stage and substage */
123 	cur_stage_group &= 0xFFFF0000;
124 
125 	/* Set the stage */
126 	cur_stage_group |= (set_stage & 0x000000FF);
127 
128 	/* Write the data back */
129 	writel(cur_stage_group, &sdr_reg_file->cur_stage);
130 }
131 
132 static void reg_file_set_sub_stage(uint32_t set_sub_stage)
133 {
134 	/* Read the current group and stage */
135 	uint32_t cur_stage_group = readl(&sdr_reg_file->cur_stage);
136 
137 	/* Clear the substage */
138 	cur_stage_group &= 0xFFFF00FF;
139 
140 	/* Set the sub stage */
141 	cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
142 
143 	/* Write the data back */
144 	writel(cur_stage_group, &sdr_reg_file->cur_stage);
145 }
146 
147 static void initialize(void)
148 {
149 	debug("%s:%d\n", __func__, __LINE__);
150 	/* USER calibration has control over path to memory */
151 	/*
152 	 * In Hard PHY this is a 2-bit control:
153 	 * 0: AFI Mux Select
154 	 * 1: DDIO Mux Select
155 	 */
156 	writel(0x3, &phy_mgr_cfg->mux_sel);
157 
158 	/* USER memory clock is not stable we begin initialization  */
159 	writel(0, &phy_mgr_cfg->reset_mem_stbl);
160 
161 	/* USER calibration status all set to zero */
162 	writel(0, &phy_mgr_cfg->cal_status);
163 
164 	writel(0, &phy_mgr_cfg->cal_debug_info);
165 
166 	if ((dyn_calib_steps & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
167 		param->read_correct_mask_vg  = ((uint32_t)1 <<
168 			(RW_MGR_MEM_DQ_PER_READ_DQS /
169 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
170 		param->write_correct_mask_vg = ((uint32_t)1 <<
171 			(RW_MGR_MEM_DQ_PER_READ_DQS /
172 			RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
173 		param->read_correct_mask     = ((uint32_t)1 <<
174 			RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
175 		param->write_correct_mask    = ((uint32_t)1 <<
176 			RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
177 		param->dm_correct_mask       = ((uint32_t)1 <<
178 			(RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH))
179 			- 1;
180 	}
181 }
182 
183 static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
184 {
185 	uint32_t odt_mask_0 = 0;
186 	uint32_t odt_mask_1 = 0;
187 	uint32_t cs_and_odt_mask;
188 
189 	if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
190 		if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
191 			/*
192 			 * 1 Rank
193 			 * Read: ODT = 0
194 			 * Write: ODT = 1
195 			 */
196 			odt_mask_0 = 0x0;
197 			odt_mask_1 = 0x1;
198 		} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
199 			/* 2 Ranks */
200 			if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
201 				/* - Dual-Slot , Single-Rank
202 				 * (1 chip-select per DIMM)
203 				 * OR
204 				 * - RDIMM, 4 total CS (2 CS per DIMM)
205 				 * means 2 DIMM
206 				 * Since MEM_NUMBER_OF_RANKS is 2 they are
207 				 * both single rank
208 				 * with 2 CS each (special for RDIMM)
209 				 * Read: Turn on ODT on the opposite rank
210 				 * Write: Turn on ODT on all ranks
211 				 */
212 				odt_mask_0 = 0x3 & ~(1 << rank);
213 				odt_mask_1 = 0x3;
214 			} else {
215 				/*
216 				 * USER - Single-Slot , Dual-rank DIMMs
217 				 * (2 chip-selects per DIMM)
218 				 * USER Read: Turn on ODT off on all ranks
219 				 * USER Write: Turn on ODT on active rank
220 				 */
221 				odt_mask_0 = 0x0;
222 				odt_mask_1 = 0x3 & (1 << rank);
223 			}
224 		} else {
225 			/* 4 Ranks
226 			 * Read:
227 			 * ----------+-----------------------+
228 			 *           |                       |
229 			 *           |         ODT           |
230 			 * Read From +-----------------------+
231 			 *   Rank    |  3  |  2  |  1  |  0  |
232 			 * ----------+-----+-----+-----+-----+
233 			 *     0     |  0  |  1  |  0  |  0  |
234 			 *     1     |  1  |  0  |  0  |  0  |
235 			 *     2     |  0  |  0  |  0  |  1  |
236 			 *     3     |  0  |  0  |  1  |  0  |
237 			 * ----------+-----+-----+-----+-----+
238 			 *
239 			 * Write:
240 			 * ----------+-----------------------+
241 			 *           |                       |
242 			 *           |         ODT           |
243 			 * Write To  +-----------------------+
244 			 *   Rank    |  3  |  2  |  1  |  0  |
245 			 * ----------+-----+-----+-----+-----+
246 			 *     0     |  0  |  1  |  0  |  1  |
247 			 *     1     |  1  |  0  |  1  |  0  |
248 			 *     2     |  0  |  1  |  0  |  1  |
249 			 *     3     |  1  |  0  |  1  |  0  |
250 			 * ----------+-----+-----+-----+-----+
251 			 */
252 			switch (rank) {
253 			case 0:
254 				odt_mask_0 = 0x4;
255 				odt_mask_1 = 0x5;
256 				break;
257 			case 1:
258 				odt_mask_0 = 0x8;
259 				odt_mask_1 = 0xA;
260 				break;
261 			case 2:
262 				odt_mask_0 = 0x1;
263 				odt_mask_1 = 0x5;
264 				break;
265 			case 3:
266 				odt_mask_0 = 0x2;
267 				odt_mask_1 = 0xA;
268 				break;
269 			}
270 		}
271 	} else {
272 		odt_mask_0 = 0x0;
273 		odt_mask_1 = 0x0;
274 	}
275 
276 	cs_and_odt_mask =
277 		(0xFF & ~(1 << rank)) |
278 		((0xFF & odt_mask_0) << 8) |
279 		((0xFF & odt_mask_1) << 16);
280 	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
281 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
282 }
283 
284 static void scc_mgr_initialize(void)
285 {
286 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_RFILE_OFFSET;
287 
288 	/*
289 	 * Clear register file for HPS
290 	 * 16 (2^4) is the size of the full register file in the scc mgr:
291 	 *	RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
292 	 * MEM_IF_READ_DQS_WIDTH - 1) + 1;
293 	 */
294 	uint32_t i;
295 	for (i = 0; i < 16; i++) {
296 		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
297 			   __func__, __LINE__, i);
298 		writel(0, addr + (i << 2));
299 	}
300 }
301 
302 static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group,
303 						uint32_t delay)
304 {
305 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
306 
307 	/* Load the setting in the SCC manager */
308 	writel(delay, addr + (read_group << 2));
309 }
310 
311 static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
312 	uint32_t delay)
313 {
314 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
315 
316 	writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
317 }
318 
319 static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
320 {
321 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_PHASE_OFFSET;
322 
323 	/* Load the setting in the SCC manager */
324 	writel(phase, addr + (read_group << 2));
325 }
326 
327 static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group,
328 					       uint32_t phase)
329 {
330 	uint32_t r;
331 	uint32_t update_scan_chains;
332 
333 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
334 	     r += NUM_RANKS_PER_SHADOW_REG) {
335 		/*
336 		 * USER although the h/w doesn't support different phases per
337 		 * shadow register, for simplicity our scc manager modeling
338 		 * keeps different phase settings per shadow reg, and it's
339 		 * important for us to keep them in sync to match h/w.
340 		 * for efficiency, the scan chain update should occur only
341 		 * once to sr0.
342 		 */
343 		update_scan_chains = (r == 0) ? 1 : 0;
344 
345 		scc_mgr_set_dqs_en_phase(read_group, phase);
346 
347 		if (update_scan_chains) {
348 			writel(read_group, &sdr_scc_mgr->dqs_ena);
349 			writel(0, &sdr_scc_mgr->update);
350 		}
351 	}
352 }
353 
354 static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
355 						  uint32_t phase)
356 {
357 	u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQDQS_OUT_PHASE_OFFSET;
358 
359 	/* Load the setting in the SCC manager */
360 	writel(phase, addr + (write_group << 2));
361 }
362 
363 static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group,
364 						     uint32_t phase)
365 {
366 	uint32_t r;
367 	uint32_t update_scan_chains;
368 
369 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
370 	     r += NUM_RANKS_PER_SHADOW_REG) {
371 		/*
372 		 * USER although the h/w doesn't support different phases per
373 		 * shadow register, for simplicity our scc manager modeling
374 		 * keeps different phase settings per shadow reg, and it's
375 		 * important for us to keep them in sync to match h/w.
376 		 * for efficiency, the scan chain update should occur only
377 		 * once to sr0.
378 		 */
379 		update_scan_chains = (r == 0) ? 1 : 0;
380 
381 		scc_mgr_set_dqdqs_output_phase(write_group, phase);
382 
383 		if (update_scan_chains) {
384 			writel(write_group, &sdr_scc_mgr->dqs_ena);
385 			writel(0, &sdr_scc_mgr->update);
386 		}
387 	}
388 }
389 
390 static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
391 {
392 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_EN_DELAY_OFFSET;
393 
394 	/* Load the setting in the SCC manager */
395 	writel(delay + IO_DQS_EN_DELAY_OFFSET, addr +
396 	       (read_group << 2));
397 }
398 
399 static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group,
400 					       uint32_t delay)
401 {
402 	uint32_t r;
403 
404 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
405 		r += NUM_RANKS_PER_SHADOW_REG) {
406 		scc_mgr_set_dqs_en_delay(read_group, delay);
407 
408 		writel(read_group, &sdr_scc_mgr->dqs_ena);
409 		/*
410 		 * In shadow register mode, the T11 settings are stored in
411 		 * registers in the core, which are updated by the DQS_ENA
412 		 * signals. Not issuing the SCC_MGR_UPD command allows us to
413 		 * save lots of rank switching overhead, by calling
414 		 * select_shadow_regs_for_update with update_scan_chains
415 		 * set to 0.
416 		 */
417 		writel(0, &sdr_scc_mgr->update);
418 	}
419 	/*
420 	 * In shadow register mode, the T11 settings are stored in
421 	 * registers in the core, which are updated by the DQS_ENA
422 	 * signals. Not issuing the SCC_MGR_UPD command allows us to
423 	 * save lots of rank switching overhead, by calling
424 	 * select_shadow_regs_for_update with update_scan_chains
425 	 * set to 0.
426 	 */
427 	writel(0, &sdr_scc_mgr->update);
428 }
429 
430 static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
431 {
432 	uint32_t read_group;
433 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_OCT_OUT1_DELAY_OFFSET;
434 
435 	/*
436 	 * Load the setting in the SCC manager
437 	 * Although OCT affects only write data, the OCT delay is controlled
438 	 * by the DQS logic block which is instantiated once per read group.
439 	 * For protocols where a write group consists of multiple read groups,
440 	 * the setting must be set multiple times.
441 	 */
442 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
443 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
444 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
445 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
446 		writel(delay, addr + (read_group << 2));
447 }
448 
449 static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
450 				      uint32_t dq_in_group, uint32_t delay)
451 {
452 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
453 
454 	/* Load the setting in the SCC manager */
455 	writel(delay, addr + (dq_in_group << 2));
456 }
457 
458 static void scc_mgr_set_dq_in_delay(uint32_t write_group,
459 	uint32_t dq_in_group, uint32_t delay)
460 {
461 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
462 
463 	/* Load the setting in the SCC manager */
464 	writel(delay, addr + (dq_in_group << 2));
465 }
466 
467 static void scc_mgr_set_hhp_extras(void)
468 {
469 	/*
470 	 * Load the fixed setting in the SCC manager
471 	 * bits: 0:0 = 1'b1   - dqs bypass
472 	 * bits: 1:1 = 1'b1   - dq bypass
473 	 * bits: 4:2 = 3'b001   - rfifo_mode
474 	 * bits: 6:5 = 2'b01  - rfifo clock_select
475 	 * bits: 7:7 = 1'b0  - separate gating from ungating setting
476 	 * bits: 8:8 = 1'b0  - separate OE from Output delay setting
477 	 */
478 	uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
479 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET;
480 
481 	writel(value, addr + SCC_MGR_HHP_EXTRAS_OFFSET);
482 }
483 
484 static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
485 					      uint32_t delay)
486 {
487 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
488 
489 	/* Load the setting in the SCC manager */
490 	writel(delay, addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
491 }
492 
493 static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
494 					     uint32_t dm, uint32_t delay)
495 {
496 	uint32_t addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
497 
498 	/* Load the setting in the SCC manager */
499 	writel(delay, addr +
500 		((RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm) << 2));
501 }
502 
503 /*
504  * USER Zero all DQS config
505  * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
506  */
507 static void scc_mgr_zero_all(void)
508 {
509 	uint32_t i, r;
510 
511 	/*
512 	 * USER Zero all DQS config settings, across all groups and all
513 	 * shadow registers
514 	 */
515 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
516 	     NUM_RANKS_PER_SHADOW_REG) {
517 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
518 			/*
519 			 * The phases actually don't exist on a per-rank basis,
520 			 * but there's no harm updating them several times, so
521 			 * let's keep the code simple.
522 			 */
523 			scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
524 			scc_mgr_set_dqs_en_phase(i, 0);
525 			scc_mgr_set_dqs_en_delay(i, 0);
526 		}
527 
528 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
529 			scc_mgr_set_dqdqs_output_phase(i, 0);
530 			/* av/cv don't have out2 */
531 			scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
532 		}
533 	}
534 
535 	/* multicast to all DQS group enables */
536 	writel(0xff, &sdr_scc_mgr->dqs_ena);
537 	writel(0, &sdr_scc_mgr->update);
538 }
539 
540 static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
541 {
542 	/* mode = 0 : Do NOT bypass - Half Rate Mode */
543 	/* mode = 1 : Bypass - Full Rate Mode */
544 
545 	/* only need to set once for all groups, pins, dq, dqs, dm */
546 	if (write_group == 0) {
547 		debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__,
548 			   __LINE__);
549 		scc_mgr_set_hhp_extras();
550 		debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
551 			  __func__, __LINE__);
552 	}
553 	/* multicast to all DQ enables */
554 	writel(0xff, &sdr_scc_mgr->dq_ena);
555 	writel(0xff, &sdr_scc_mgr->dm_ena);
556 
557 	/* update current DQS IO enable */
558 	writel(0, &sdr_scc_mgr->dqs_io_ena);
559 
560 	/* update the DQS logic */
561 	writel(write_group, &sdr_scc_mgr->dqs_ena);
562 
563 	/* hit update */
564 	writel(0, &sdr_scc_mgr->update);
565 }
566 
567 static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin,
568 			       int32_t out_only)
569 {
570 	uint32_t i, r;
571 
572 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
573 		NUM_RANKS_PER_SHADOW_REG) {
574 		/* Zero all DQ config settings */
575 		for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
576 			scc_mgr_set_dq_out1_delay(write_group, i, 0);
577 			if (!out_only)
578 				scc_mgr_set_dq_in_delay(write_group, i, 0);
579 		}
580 
581 		/* multicast to all DQ enables */
582 		writel(0xff, &sdr_scc_mgr->dq_ena);
583 
584 		/* Zero all DM config settings */
585 		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
586 			scc_mgr_set_dm_out1_delay(write_group, i, 0);
587 		}
588 
589 		/* multicast to all DM enables */
590 		writel(0xff, &sdr_scc_mgr->dm_ena);
591 
592 		/* zero all DQS io settings */
593 		if (!out_only)
594 			scc_mgr_set_dqs_io_in_delay(write_group, 0);
595 		/* av/cv don't have out2 */
596 		scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
597 		scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
598 		scc_mgr_load_dqs_for_write_group(write_group);
599 
600 		/* multicast to all DQS IO enables (only 1) */
601 		writel(0, &sdr_scc_mgr->dqs_io_ena);
602 
603 		/* hit update to zero everything */
604 		writel(0, &sdr_scc_mgr->update);
605 	}
606 }
607 
608 /* load up dqs config settings */
609 static void scc_mgr_load_dqs(uint32_t dqs)
610 {
611 	writel(dqs, &sdr_scc_mgr->dqs_ena);
612 }
613 
614 static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
615 {
616 	uint32_t read_group;
617 	uint32_t addr = (u32)&sdr_scc_mgr->dqs_ena;
618 	/*
619 	 * Although OCT affects only write data, the OCT delay is controlled
620 	 * by the DQS logic block which is instantiated once per read group.
621 	 * For protocols where a write group consists of multiple read groups,
622 	 * the setting must be scanned multiple times.
623 	 */
624 	for (read_group = write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
625 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
626 	     read_group < (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
627 	     RW_MGR_MEM_IF_WRITE_DQS_WIDTH; ++read_group)
628 		writel(read_group, addr);
629 }
630 
631 /* load up dqs io config settings */
632 static void scc_mgr_load_dqs_io(void)
633 {
634 	writel(0, &sdr_scc_mgr->dqs_io_ena);
635 }
636 
637 /* load up dq config settings */
638 static void scc_mgr_load_dq(uint32_t dq_in_group)
639 {
640 	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
641 }
642 
643 /* load up dm config settings */
644 static void scc_mgr_load_dm(uint32_t dm)
645 {
646 	writel(dm, &sdr_scc_mgr->dm_ena);
647 }
648 
649 /*
650  * apply and load a particular input delay for the DQ pins in a group
651  * group_bgn is the index of the first dq pin (in the write group)
652  */
653 static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group,
654 					    uint32_t group_bgn, uint32_t delay)
655 {
656 	uint32_t i, p;
657 
658 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
659 		scc_mgr_set_dq_in_delay(write_group, p, delay);
660 		scc_mgr_load_dq(p);
661 	}
662 }
663 
664 /* apply and load a particular output delay for the DQ pins in a group */
665 static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group,
666 					      uint32_t group_bgn,
667 					      uint32_t delay1)
668 {
669 	uint32_t i, p;
670 
671 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
672 		scc_mgr_set_dq_out1_delay(write_group, i, delay1);
673 		scc_mgr_load_dq(i);
674 	}
675 }
676 
677 /* apply and load a particular output delay for the DM pins in a group */
678 static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group,
679 					      uint32_t delay1)
680 {
681 	uint32_t i;
682 
683 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
684 		scc_mgr_set_dm_out1_delay(write_group, i, delay1);
685 		scc_mgr_load_dm(i);
686 	}
687 }
688 
689 
690 /* apply and load delay on both DQS and OCT out1 */
691 static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group,
692 						    uint32_t delay)
693 {
694 	scc_mgr_set_dqs_out1_delay(write_group, delay);
695 	scc_mgr_load_dqs_io();
696 
697 	scc_mgr_set_oct_out1_delay(write_group, delay);
698 	scc_mgr_load_dqs_for_write_group(write_group);
699 }
700 
701 /* apply a delay to the entire output side: DQ, DM, DQS, OCT */
702 static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group,
703 						  uint32_t group_bgn,
704 						  uint32_t delay)
705 {
706 	uint32_t i, p, new_delay;
707 
708 	/* dq shift */
709 	for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
710 		new_delay = READ_SCC_DQ_OUT2_DELAY;
711 		new_delay += delay;
712 
713 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
714 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQ[%u,%u]:\
715 				   %u > %lu => %lu", __func__, __LINE__,
716 				   write_group, group_bgn, delay, i, p, new_delay,
717 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
718 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
719 			new_delay = IO_IO_OUT2_DELAY_MAX;
720 		}
721 
722 		scc_mgr_load_dq(i);
723 	}
724 
725 	/* dm shift */
726 	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
727 		new_delay = READ_SCC_DM_IO_OUT2_DELAY;
728 		new_delay += delay;
729 
730 		if (new_delay > IO_IO_OUT2_DELAY_MAX) {
731 			debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DM[%u]:\
732 				   %u > %lu => %lu\n",  __func__, __LINE__,
733 				   write_group, group_bgn, delay, i, new_delay,
734 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX,
735 				   (long unsigned int)IO_IO_OUT2_DELAY_MAX);
736 			new_delay = IO_IO_OUT2_DELAY_MAX;
737 		}
738 
739 		scc_mgr_load_dm(i);
740 	}
741 
742 	/* dqs shift */
743 	new_delay = READ_SCC_DQS_IO_OUT2_DELAY;
744 	new_delay += delay;
745 
746 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
747 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
748 			   " adding %u to OUT1\n", __func__, __LINE__,
749 			   write_group, group_bgn, delay, new_delay,
750 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
751 			   new_delay - IO_IO_OUT2_DELAY_MAX);
752 		scc_mgr_set_dqs_out1_delay(write_group, new_delay -
753 					   IO_IO_OUT2_DELAY_MAX);
754 		new_delay = IO_IO_OUT2_DELAY_MAX;
755 	}
756 
757 	scc_mgr_load_dqs_io();
758 
759 	/* oct shift */
760 	new_delay = READ_SCC_OCT_OUT2_DELAY;
761 	new_delay += delay;
762 
763 	if (new_delay > IO_IO_OUT2_DELAY_MAX) {
764 		debug_cond(DLEVEL == 1, "%s:%d (%u, %u, %u) DQS: %u > %d => %d;"
765 			   " adding %u to OUT1\n", __func__, __LINE__,
766 			   write_group, group_bgn, delay, new_delay,
767 			   IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
768 			   new_delay - IO_IO_OUT2_DELAY_MAX);
769 		scc_mgr_set_oct_out1_delay(write_group, new_delay -
770 					   IO_IO_OUT2_DELAY_MAX);
771 		new_delay = IO_IO_OUT2_DELAY_MAX;
772 	}
773 
774 	scc_mgr_load_dqs_for_write_group(write_group);
775 }
776 
777 /*
778  * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
779  * and to all ranks
780  */
781 static void scc_mgr_apply_group_all_out_delay_add_all_ranks(
782 	uint32_t write_group, uint32_t group_bgn, uint32_t delay)
783 {
784 	uint32_t r;
785 
786 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
787 		r += NUM_RANKS_PER_SHADOW_REG) {
788 		scc_mgr_apply_group_all_out_delay_add(write_group,
789 						      group_bgn, delay);
790 		writel(0, &sdr_scc_mgr->update);
791 	}
792 }
793 
794 /* optimization used to recover some slots in ddr3 inst_rom */
795 /* could be applied to other protocols if we wanted to */
796 static void set_jump_as_return(void)
797 {
798 	/*
799 	 * to save space, we replace return with jump to special shared
800 	 * RETURN instruction so we set the counter to large value so that
801 	 * we always jump
802 	 */
803 	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
804 	writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
805 }
806 
807 /*
808  * should always use constants as argument to ensure all computations are
809  * performed at compile time
810  */
811 static void delay_for_n_mem_clocks(const uint32_t clocks)
812 {
813 	uint32_t afi_clocks;
814 	uint8_t inner = 0;
815 	uint8_t outer = 0;
816 	uint16_t c_loop = 0;
817 
818 	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
819 
820 
821 	afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
822 	/* scale (rounding up) to get afi clocks */
823 
824 	/*
825 	 * Note, we don't bother accounting for being off a little bit
826 	 * because of a few extra instructions in outer loops
827 	 * Note, the loops have a test at the end, and do the test before
828 	 * the decrement, and so always perform the loop
829 	 * 1 time more than the counter value
830 	 */
831 	if (afi_clocks == 0) {
832 		;
833 	} else if (afi_clocks <= 0x100) {
834 		inner = afi_clocks-1;
835 		outer = 0;
836 		c_loop = 0;
837 	} else if (afi_clocks <= 0x10000) {
838 		inner = 0xff;
839 		outer = (afi_clocks-1) >> 8;
840 		c_loop = 0;
841 	} else {
842 		inner = 0xff;
843 		outer = 0xff;
844 		c_loop = (afi_clocks-1) >> 16;
845 	}
846 
847 	/*
848 	 * rom instructions are structured as follows:
849 	 *
850 	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
851 	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
852 	 *                return
853 	 *
854 	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
855 	 * TARGET_B is set to IDLE_LOOP2 as well
856 	 *
857 	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
858 	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
859 	 *
860 	 * a little confusing, but it helps save precious space in the inst_rom
861 	 * and sequencer rom and keeps the delays more accurate and reduces
862 	 * overhead
863 	 */
864 	if (afi_clocks <= 0x100) {
865 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
866 			&sdr_rw_load_mgr_regs->load_cntr1);
867 
868 		writel(RW_MGR_IDLE_LOOP1,
869 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
870 
871 		writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
872 					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
873 	} else {
874 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
875 			&sdr_rw_load_mgr_regs->load_cntr0);
876 
877 		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
878 			&sdr_rw_load_mgr_regs->load_cntr1);
879 
880 		writel(RW_MGR_IDLE_LOOP2,
881 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
882 
883 		writel(RW_MGR_IDLE_LOOP2,
884 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
885 
886 		/* hack to get around compiler not being smart enough */
887 		if (afi_clocks <= 0x10000) {
888 			/* only need to run once */
889 			writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS |
890 						  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
891 		} else {
892 			do {
893 				writel(RW_MGR_IDLE_LOOP2,
894 					SDR_PHYGRP_RWMGRGRP_ADDRESS |
895 					RW_MGR_RUN_SINGLE_GROUP_OFFSET);
896 			} while (c_loop-- != 0);
897 		}
898 	}
899 	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
900 }
901 
902 static void rw_mgr_mem_initialize(void)
903 {
904 	uint32_t r;
905 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
906 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
907 
908 	debug("%s:%d\n", __func__, __LINE__);
909 
910 	/* The reset / cke part of initialization is broadcasted to all ranks */
911 	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
912 				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
913 
914 	/*
915 	 * Here's how you load register for a loop
916 	 * Counters are located @ 0x800
917 	 * Jump address are located @ 0xC00
918 	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
919 	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
920 	 * I know this ain't pretty, but Avalon bus throws away the 2 least
921 	 * significant bits
922 	 */
923 
924 	/* start with memory RESET activated */
925 
926 	/* tINIT = 200us */
927 
928 	/*
929 	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
930 	 * If a and b are the number of iteration in 2 nested loops
931 	 * it takes the following number of cycles to complete the operation:
932 	 * number_of_cycles = ((2 + n) * a + 2) * b
933 	 * where n is the number of instruction in the inner loop
934 	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
935 	 * b = 6A
936 	 */
937 
938 	/* Load counters */
939 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL),
940 	       &sdr_rw_load_mgr_regs->load_cntr0);
941 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL),
942 	       &sdr_rw_load_mgr_regs->load_cntr1);
943 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL),
944 	       &sdr_rw_load_mgr_regs->load_cntr2);
945 
946 	/* Load jump address */
947 	writel(RW_MGR_INIT_RESET_0_CKE_0,
948 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
949 	writel(RW_MGR_INIT_RESET_0_CKE_0,
950 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
951 	writel(RW_MGR_INIT_RESET_0_CKE_0,
952 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
953 
954 	/* Execute count instruction */
955 	writel(RW_MGR_INIT_RESET_0_CKE_0, grpaddr);
956 
957 	/* indicate that memory is stable */
958 	writel(1, &phy_mgr_cfg->reset_mem_stbl);
959 
960 	/*
961 	 * transition the RESET to high
962 	 * Wait for 500us
963 	 */
964 
965 	/*
966 	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
967 	 * If a and b are the number of iteration in 2 nested loops
968 	 * it takes the following number of cycles to complete the operation
969 	 * number_of_cycles = ((2 + n) * a + 2) * b
970 	 * where n is the number of instruction in the inner loop
971 	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
972 	 * b = FF
973 	 */
974 
975 	/* Load counters */
976 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL),
977 	       &sdr_rw_load_mgr_regs->load_cntr0);
978 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL),
979 	       &sdr_rw_load_mgr_regs->load_cntr1);
980 	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL),
981 	       &sdr_rw_load_mgr_regs->load_cntr2);
982 
983 	/* Load jump address */
984 	writel(RW_MGR_INIT_RESET_1_CKE_0,
985 		&sdr_rw_load_jump_mgr_regs->load_jump_add0);
986 	writel(RW_MGR_INIT_RESET_1_CKE_0,
987 		&sdr_rw_load_jump_mgr_regs->load_jump_add1);
988 	writel(RW_MGR_INIT_RESET_1_CKE_0,
989 		&sdr_rw_load_jump_mgr_regs->load_jump_add2);
990 
991 	writel(RW_MGR_INIT_RESET_1_CKE_0, grpaddr);
992 
993 	/* bring up clock enable */
994 
995 	/* tXRP < 250 ck cycles */
996 	delay_for_n_mem_clocks(250);
997 
998 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
999 		if (param->skip_ranks[r]) {
1000 			/* request to skip the rank */
1001 			continue;
1002 		}
1003 
1004 		/* set rank */
1005 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1006 
1007 		/*
1008 		 * USER Use Mirror-ed commands for odd ranks if address
1009 		 * mirrorring is on
1010 		 */
1011 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1012 			set_jump_as_return();
1013 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1014 			delay_for_n_mem_clocks(4);
1015 			set_jump_as_return();
1016 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1017 			delay_for_n_mem_clocks(4);
1018 			set_jump_as_return();
1019 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1020 			delay_for_n_mem_clocks(4);
1021 			set_jump_as_return();
1022 			writel(RW_MGR_MRS0_DLL_RESET_MIRR, grpaddr);
1023 		} else {
1024 			set_jump_as_return();
1025 			writel(RW_MGR_MRS2, grpaddr);
1026 			delay_for_n_mem_clocks(4);
1027 			set_jump_as_return();
1028 			writel(RW_MGR_MRS3, grpaddr);
1029 			delay_for_n_mem_clocks(4);
1030 			set_jump_as_return();
1031 			writel(RW_MGR_MRS1, grpaddr);
1032 			set_jump_as_return();
1033 			writel(RW_MGR_MRS0_DLL_RESET, grpaddr);
1034 		}
1035 		set_jump_as_return();
1036 		writel(RW_MGR_ZQCL, grpaddr);
1037 
1038 		/* tZQinit = tDLLK = 512 ck cycles */
1039 		delay_for_n_mem_clocks(512);
1040 	}
1041 }
1042 
1043 /*
1044  * At the end of calibration we have to program the user settings in, and
1045  * USER  hand off the memory to the user.
1046  */
1047 static void rw_mgr_mem_handoff(void)
1048 {
1049 	uint32_t r;
1050 	uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1051 			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1052 
1053 	debug("%s:%d\n", __func__, __LINE__);
1054 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
1055 		if (param->skip_ranks[r])
1056 			/* request to skip the rank */
1057 			continue;
1058 		/* set rank */
1059 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
1060 
1061 		/* precharge all banks ... */
1062 		writel(RW_MGR_PRECHARGE_ALL, grpaddr);
1063 
1064 		/* load up MR settings specified by user */
1065 
1066 		/*
1067 		 * Use Mirror-ed commands for odd ranks if address
1068 		 * mirrorring is on
1069 		 */
1070 		if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
1071 			set_jump_as_return();
1072 			writel(RW_MGR_MRS2_MIRR, grpaddr);
1073 			delay_for_n_mem_clocks(4);
1074 			set_jump_as_return();
1075 			writel(RW_MGR_MRS3_MIRR, grpaddr);
1076 			delay_for_n_mem_clocks(4);
1077 			set_jump_as_return();
1078 			writel(RW_MGR_MRS1_MIRR, grpaddr);
1079 			delay_for_n_mem_clocks(4);
1080 			set_jump_as_return();
1081 			writel(RW_MGR_MRS0_USER_MIRR, grpaddr);
1082 		} else {
1083 			set_jump_as_return();
1084 			writel(RW_MGR_MRS2, grpaddr);
1085 			delay_for_n_mem_clocks(4);
1086 			set_jump_as_return();
1087 			writel(RW_MGR_MRS3, grpaddr);
1088 			delay_for_n_mem_clocks(4);
1089 			set_jump_as_return();
1090 			writel(RW_MGR_MRS1, grpaddr);
1091 			delay_for_n_mem_clocks(4);
1092 			set_jump_as_return();
1093 			writel(RW_MGR_MRS0_USER, grpaddr);
1094 		}
1095 		/*
1096 		 * USER  need to wait tMOD (12CK or 15ns) time before issuing
1097 		 * other commands, but we will have plenty of NIOS cycles before
1098 		 * actual handoff so its okay.
1099 		 */
1100 	}
1101 }
1102 
1103 /*
1104  * performs a guaranteed read on the patterns we are going to use during a
1105  * read test to ensure memory works
1106  */
1107 static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn,
1108 	uint32_t group, uint32_t num_tries, uint32_t *bit_chk,
1109 	uint32_t all_ranks)
1110 {
1111 	uint32_t r, vg;
1112 	uint32_t correct_mask_vg;
1113 	uint32_t tmp_bit_chk;
1114 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1115 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1116 	uint32_t addr;
1117 	uint32_t base_rw_mgr;
1118 
1119 	*bit_chk = param->read_correct_mask;
1120 	correct_mask_vg = param->read_correct_mask_vg;
1121 
1122 	for (r = rank_bgn; r < rank_end; r++) {
1123 		if (param->skip_ranks[r])
1124 			/* request to skip the rank */
1125 			continue;
1126 
1127 		/* set rank */
1128 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1129 
1130 		/* Load up a constant bursts of read commands */
1131 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1132 		writel(RW_MGR_GUARANTEED_READ,
1133 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1134 
1135 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1136 		writel(RW_MGR_GUARANTEED_READ_CONT,
1137 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1138 
1139 		tmp_bit_chk = 0;
1140 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1141 			/* reset the fifos to get pointers to known state */
1142 
1143 			writel(0, &phy_mgr_cmd->fifo_reset);
1144 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1145 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1146 
1147 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1148 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1149 
1150 			addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1151 			writel(RW_MGR_GUARANTEED_READ, addr +
1152 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1153 				vg) << 2));
1154 
1155 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1156 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & (~base_rw_mgr));
1157 
1158 			if (vg == 0)
1159 				break;
1160 		}
1161 		*bit_chk &= tmp_bit_chk;
1162 	}
1163 
1164 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1165 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1166 
1167 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1168 	debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) =>\
1169 		   %lu\n", __func__, __LINE__, group, *bit_chk, param->read_correct_mask,
1170 		   (long unsigned int)(*bit_chk == param->read_correct_mask));
1171 	return *bit_chk == param->read_correct_mask;
1172 }
1173 
1174 static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
1175 	(uint32_t group, uint32_t num_tries, uint32_t *bit_chk)
1176 {
1177 	return rw_mgr_mem_calibrate_read_test_patterns(0, group,
1178 		num_tries, bit_chk, 1);
1179 }
1180 
1181 /* load up the patterns we are going to use during a read test */
1182 static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn,
1183 	uint32_t all_ranks)
1184 {
1185 	uint32_t r;
1186 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1187 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1188 
1189 	debug("%s:%d\n", __func__, __LINE__);
1190 	for (r = rank_bgn; r < rank_end; r++) {
1191 		if (param->skip_ranks[r])
1192 			/* request to skip the rank */
1193 			continue;
1194 
1195 		/* set rank */
1196 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1197 
1198 		/* Load up a constant bursts */
1199 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1200 
1201 		writel(RW_MGR_GUARANTEED_WRITE_WAIT0,
1202 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1203 
1204 		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1205 
1206 		writel(RW_MGR_GUARANTEED_WRITE_WAIT1,
1207 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1208 
1209 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1210 
1211 		writel(RW_MGR_GUARANTEED_WRITE_WAIT2,
1212 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1213 
1214 		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1215 
1216 		writel(RW_MGR_GUARANTEED_WRITE_WAIT3,
1217 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1218 
1219 		writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1220 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1221 	}
1222 
1223 	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1224 }
1225 
1226 /*
1227  * try a read and see if it returns correct data back. has dummy reads
1228  * inserted into the mix used to align dqs enable. has more thorough checks
1229  * than the regular read test.
1230  */
1231 static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
1232 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1233 	uint32_t all_groups, uint32_t all_ranks)
1234 {
1235 	uint32_t r, vg;
1236 	uint32_t correct_mask_vg;
1237 	uint32_t tmp_bit_chk;
1238 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
1239 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1240 	uint32_t addr;
1241 	uint32_t base_rw_mgr;
1242 
1243 	*bit_chk = param->read_correct_mask;
1244 	correct_mask_vg = param->read_correct_mask_vg;
1245 
1246 	uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) &
1247 		CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION);
1248 
1249 	for (r = rank_bgn; r < rank_end; r++) {
1250 		if (param->skip_ranks[r])
1251 			/* request to skip the rank */
1252 			continue;
1253 
1254 		/* set rank */
1255 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1256 
1257 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1258 
1259 		writel(RW_MGR_READ_B2B_WAIT1,
1260 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
1261 
1262 		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1263 		writel(RW_MGR_READ_B2B_WAIT2,
1264 			&sdr_rw_load_jump_mgr_regs->load_jump_add2);
1265 
1266 		if (quick_read_mode)
1267 			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1268 			/* need at least two (1+1) reads to capture failures */
1269 		else if (all_groups)
1270 			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1271 		else
1272 			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1273 
1274 		writel(RW_MGR_READ_B2B,
1275 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
1276 		if (all_groups)
1277 			writel(RW_MGR_MEM_IF_READ_DQS_WIDTH *
1278 			       RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1,
1279 			       &sdr_rw_load_mgr_regs->load_cntr3);
1280 		else
1281 			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1282 
1283 		writel(RW_MGR_READ_B2B,
1284 			&sdr_rw_load_jump_mgr_regs->load_jump_add3);
1285 
1286 		tmp_bit_chk = 0;
1287 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
1288 			/* reset the fifos to get pointers to known state */
1289 			writel(0, &phy_mgr_cmd->fifo_reset);
1290 			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1291 				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1292 
1293 			tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
1294 				/ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
1295 
1296 			if (all_groups)
1297 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET;
1298 			else
1299 				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1300 
1301 			writel(RW_MGR_READ_B2B, addr +
1302 			       ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
1303 			       vg) << 2));
1304 
1305 			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1306 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
1307 
1308 			if (vg == 0)
1309 				break;
1310 		}
1311 		*bit_chk &= tmp_bit_chk;
1312 	}
1313 
1314 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1315 	writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2));
1316 
1317 	if (all_correct) {
1318 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1319 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\
1320 			   (%u == %u) => %lu", __func__, __LINE__, group,
1321 			   all_groups, *bit_chk, param->read_correct_mask,
1322 			   (long unsigned int)(*bit_chk ==
1323 			   param->read_correct_mask));
1324 		return *bit_chk == param->read_correct_mask;
1325 	} else	{
1326 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1327 		debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\
1328 			   (%u != %lu) => %lu\n", __func__, __LINE__,
1329 			   group, all_groups, *bit_chk, (long unsigned int)0,
1330 			   (long unsigned int)(*bit_chk != 0x00));
1331 		return *bit_chk != 0x00;
1332 	}
1333 }
1334 
1335 static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group,
1336 	uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk,
1337 	uint32_t all_groups)
1338 {
1339 	return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct,
1340 					      bit_chk, all_groups, 1);
1341 }
1342 
1343 static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
1344 {
1345 	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1346 	(*v)++;
1347 }
1348 
1349 static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
1350 {
1351 	uint32_t i;
1352 
1353 	for (i = 0; i < VFIFO_SIZE-1; i++)
1354 		rw_mgr_incr_vfifo(grp, v);
1355 }
1356 
1357 static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk)
1358 {
1359 	uint32_t  v;
1360 	uint32_t fail_cnt = 0;
1361 	uint32_t test_status;
1362 
1363 	for (v = 0; v < VFIFO_SIZE; ) {
1364 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n",
1365 			   __func__, __LINE__, v);
1366 		test_status = rw_mgr_mem_calibrate_read_test_all_ranks
1367 			(grp, 1, PASS_ONE_BIT, bit_chk, 0);
1368 		if (!test_status) {
1369 			fail_cnt++;
1370 
1371 			if (fail_cnt == 2)
1372 				break;
1373 		}
1374 
1375 		/* fiddle with FIFO */
1376 		rw_mgr_incr_vfifo(grp, &v);
1377 	}
1378 
1379 	if (v >= VFIFO_SIZE) {
1380 		/* no failing read found!! Something must have gone wrong */
1381 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n",
1382 			   __func__, __LINE__);
1383 		return 0;
1384 	} else {
1385 		return v;
1386 	}
1387 }
1388 
1389 static int find_working_phase(uint32_t *grp, uint32_t *bit_chk,
1390 			      uint32_t dtaps_per_ptap, uint32_t *work_bgn,
1391 			      uint32_t *v, uint32_t *d, uint32_t *p,
1392 			      uint32_t *i, uint32_t *max_working_cnt)
1393 {
1394 	uint32_t found_begin = 0;
1395 	uint32_t tmp_delay = 0;
1396 	uint32_t test_status;
1397 
1398 	for (*d = 0; *d <= dtaps_per_ptap; (*d)++, tmp_delay +=
1399 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1400 		*work_bgn = tmp_delay;
1401 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1402 
1403 		for (*i = 0; *i < VFIFO_SIZE; (*i)++) {
1404 			for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_bgn +=
1405 				IO_DELAY_PER_OPA_TAP) {
1406 				scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1407 
1408 				test_status =
1409 				rw_mgr_mem_calibrate_read_test_all_ranks
1410 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0);
1411 
1412 				if (test_status) {
1413 					*max_working_cnt = 1;
1414 					found_begin = 1;
1415 					break;
1416 				}
1417 			}
1418 
1419 			if (found_begin)
1420 				break;
1421 
1422 			if (*p > IO_DQS_EN_PHASE_MAX)
1423 				/* fiddle with FIFO */
1424 				rw_mgr_incr_vfifo(*grp, v);
1425 		}
1426 
1427 		if (found_begin)
1428 			break;
1429 	}
1430 
1431 	if (*i >= VFIFO_SIZE) {
1432 		/* cannot find working solution */
1433 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/\
1434 			   ptap/dtap\n", __func__, __LINE__);
1435 		return 0;
1436 	} else {
1437 		return 1;
1438 	}
1439 }
1440 
1441 static void sdr_backup_phase(uint32_t *grp, uint32_t *bit_chk,
1442 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1443 			     uint32_t *p, uint32_t *max_working_cnt)
1444 {
1445 	uint32_t found_begin = 0;
1446 	uint32_t tmp_delay;
1447 
1448 	/* Special case code for backing up a phase */
1449 	if (*p == 0) {
1450 		*p = IO_DQS_EN_PHASE_MAX;
1451 		rw_mgr_decr_vfifo(*grp, v);
1452 	} else {
1453 		(*p)--;
1454 	}
1455 	tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP;
1456 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1457 
1458 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn;
1459 		(*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1460 		scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1461 
1462 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1463 							     PASS_ONE_BIT,
1464 							     bit_chk, 0)) {
1465 			found_begin = 1;
1466 			*work_bgn = tmp_delay;
1467 			break;
1468 		}
1469 	}
1470 
1471 	/* We have found a working dtap before the ptap found above */
1472 	if (found_begin == 1)
1473 		(*max_working_cnt)++;
1474 
1475 	/*
1476 	 * Restore VFIFO to old state before we decremented it
1477 	 * (if needed).
1478 	 */
1479 	(*p)++;
1480 	if (*p > IO_DQS_EN_PHASE_MAX) {
1481 		*p = 0;
1482 		rw_mgr_incr_vfifo(*grp, v);
1483 	}
1484 
1485 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, 0);
1486 }
1487 
1488 static int sdr_nonworking_phase(uint32_t *grp, uint32_t *bit_chk,
1489 			     uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1490 			     uint32_t *p, uint32_t *i, uint32_t *max_working_cnt,
1491 			     uint32_t *work_end)
1492 {
1493 	uint32_t found_end = 0;
1494 
1495 	(*p)++;
1496 	*work_end += IO_DELAY_PER_OPA_TAP;
1497 	if (*p > IO_DQS_EN_PHASE_MAX) {
1498 		/* fiddle with FIFO */
1499 		*p = 0;
1500 		rw_mgr_incr_vfifo(*grp, v);
1501 	}
1502 
1503 	for (; *i < VFIFO_SIZE + 1; (*i)++) {
1504 		for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++, *work_end
1505 			+= IO_DELAY_PER_OPA_TAP) {
1506 			scc_mgr_set_dqs_en_phase_all_ranks(*grp, *p);
1507 
1508 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1509 				(*grp, 1, PASS_ONE_BIT, bit_chk, 0)) {
1510 				found_end = 1;
1511 				break;
1512 			} else {
1513 				(*max_working_cnt)++;
1514 			}
1515 		}
1516 
1517 		if (found_end)
1518 			break;
1519 
1520 		if (*p > IO_DQS_EN_PHASE_MAX) {
1521 			/* fiddle with FIFO */
1522 			rw_mgr_incr_vfifo(*grp, v);
1523 			*p = 0;
1524 		}
1525 	}
1526 
1527 	if (*i >= VFIFO_SIZE + 1) {
1528 		/* cannot see edge of failing read */
1529 		debug_cond(DLEVEL == 2, "%s:%d sdr_nonworking_phase: end:\
1530 			   failed\n", __func__, __LINE__);
1531 		return 0;
1532 	} else {
1533 		return 1;
1534 	}
1535 }
1536 
1537 static int sdr_find_window_centre(uint32_t *grp, uint32_t *bit_chk,
1538 				  uint32_t *work_bgn, uint32_t *v, uint32_t *d,
1539 				  uint32_t *p, uint32_t *work_mid,
1540 				  uint32_t *work_end)
1541 {
1542 	int i;
1543 	int tmp_delay = 0;
1544 
1545 	*work_mid = (*work_bgn + *work_end) / 2;
1546 
1547 	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1548 		   *work_bgn, *work_end, *work_mid);
1549 	/* Get the middle delay to be less than a VFIFO delay */
1550 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX;
1551 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1552 		;
1553 	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
1554 	while (*work_mid > tmp_delay)
1555 		*work_mid -= tmp_delay;
1556 	debug_cond(DLEVEL == 2, "new work_mid %d\n", *work_mid);
1557 
1558 	tmp_delay = 0;
1559 	for (*p = 0; *p <= IO_DQS_EN_PHASE_MAX && tmp_delay < *work_mid;
1560 		(*p)++, tmp_delay += IO_DELAY_PER_OPA_TAP)
1561 		;
1562 	tmp_delay -= IO_DELAY_PER_OPA_TAP;
1563 	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", (*p) - 1, tmp_delay);
1564 	for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_mid; (*d)++,
1565 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
1566 		;
1567 	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", *d, tmp_delay);
1568 
1569 	scc_mgr_set_dqs_en_phase_all_ranks(*grp, (*p) - 1);
1570 	scc_mgr_set_dqs_en_delay_all_ranks(*grp, *d);
1571 
1572 	/*
1573 	 * push vfifo until we can successfully calibrate. We can do this
1574 	 * because the largest possible margin in 1 VFIFO cycle.
1575 	 */
1576 	for (i = 0; i < VFIFO_SIZE; i++) {
1577 		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n",
1578 			   *v);
1579 		if (rw_mgr_mem_calibrate_read_test_all_ranks(*grp, 1,
1580 							     PASS_ONE_BIT,
1581 							     bit_chk, 0)) {
1582 			break;
1583 		}
1584 
1585 		/* fiddle with FIFO */
1586 		rw_mgr_incr_vfifo(*grp, v);
1587 	}
1588 
1589 	if (i >= VFIFO_SIZE) {
1590 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center: \
1591 			   failed\n", __func__, __LINE__);
1592 		return 0;
1593 	} else {
1594 		return 1;
1595 	}
1596 }
1597 
1598 /* find a good dqs enable to use */
1599 static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
1600 {
1601 	uint32_t v, d, p, i;
1602 	uint32_t max_working_cnt;
1603 	uint32_t bit_chk;
1604 	uint32_t dtaps_per_ptap;
1605 	uint32_t work_bgn, work_mid, work_end;
1606 	uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
1607 
1608 	debug("%s:%d %u\n", __func__, __LINE__, grp);
1609 
1610 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1611 
1612 	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1613 	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1614 
1615 	/* ************************************************************** */
1616 	/* * Step 0 : Determine number of delay taps for each phase tap * */
1617 	dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1618 
1619 	/* ********************************************************* */
1620 	/* * Step 1 : First push vfifo until we get a failing read * */
1621 	v = find_vfifo_read(grp, &bit_chk);
1622 
1623 	max_working_cnt = 0;
1624 
1625 	/* ******************************************************** */
1626 	/* * step 2: find first working phase, increment in ptaps * */
1627 	work_bgn = 0;
1628 	if (find_working_phase(&grp, &bit_chk, dtaps_per_ptap, &work_bgn, &v, &d,
1629 				&p, &i, &max_working_cnt) == 0)
1630 		return 0;
1631 
1632 	work_end = work_bgn;
1633 
1634 	/*
1635 	 * If d is 0 then the working window covers a phase tap and
1636 	 * we can follow the old procedure otherwise, we've found the beginning,
1637 	 * and we need to increment the dtaps until we find the end.
1638 	 */
1639 	if (d == 0) {
1640 		/* ********************************************************* */
1641 		/* * step 3a: if we have room, back off by one and
1642 		increment in dtaps * */
1643 
1644 		sdr_backup_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1645 				 &max_working_cnt);
1646 
1647 		/* ********************************************************* */
1648 		/* * step 4a: go forward from working phase to non working
1649 		phase, increment in ptaps * */
1650 		if (sdr_nonworking_phase(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1651 					 &i, &max_working_cnt, &work_end) == 0)
1652 			return 0;
1653 
1654 		/* ********************************************************* */
1655 		/* * step 5a:  back off one from last, increment in dtaps  * */
1656 
1657 		/* Special case code for backing up a phase */
1658 		if (p == 0) {
1659 			p = IO_DQS_EN_PHASE_MAX;
1660 			rw_mgr_decr_vfifo(grp, &v);
1661 		} else {
1662 			p = p - 1;
1663 		}
1664 
1665 		work_end -= IO_DELAY_PER_OPA_TAP;
1666 		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1667 
1668 		/* * The actual increment of dtaps is done outside of
1669 		the if/else loop to share code */
1670 		d = 0;
1671 
1672 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \
1673 			   vfifo=%u ptap=%u\n", __func__, __LINE__,
1674 			   v, p);
1675 	} else {
1676 		/* ******************************************************* */
1677 		/* * step 3-5b:  Find the right edge of the window using
1678 		delay taps   * */
1679 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \
1680 			   ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__,
1681 			   v, p, d, work_bgn);
1682 
1683 		work_end = work_bgn;
1684 
1685 		/* * The actual increment of dtaps is done outside of the
1686 		if/else loop to share code */
1687 
1688 		/* Only here to counterbalance a subtract later on which is
1689 		not needed if this branch of the algorithm is taken */
1690 		max_working_cnt++;
1691 	}
1692 
1693 	/* The dtap increment to find the failing edge is done here */
1694 	for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
1695 		IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
1696 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1697 				   end-2: dtap=%u\n", __func__, __LINE__, d);
1698 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1699 
1700 			if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1701 								      PASS_ONE_BIT,
1702 								      &bit_chk, 0)) {
1703 				break;
1704 			}
1705 	}
1706 
1707 	/* Go back to working dtap */
1708 	if (d != 0)
1709 		work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
1710 
1711 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \
1712 		   ptap=%u dtap=%u end=%u\n", __func__, __LINE__,
1713 		   v, p, d-1, work_end);
1714 
1715 	if (work_end < work_bgn) {
1716 		/* nil range */
1717 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \
1718 			   failed\n", __func__, __LINE__);
1719 		return 0;
1720 	}
1721 
1722 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n",
1723 		   __func__, __LINE__, work_bgn, work_end);
1724 
1725 	/* *************************************************************** */
1726 	/*
1727 	 * * We need to calculate the number of dtaps that equal a ptap
1728 	 * * To do that we'll back up a ptap and re-find the edge of the
1729 	 * * window using dtaps
1730 	 */
1731 
1732 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \
1733 		   for tracking\n", __func__, __LINE__);
1734 
1735 	/* Special case code for backing up a phase */
1736 	if (p == 0) {
1737 		p = IO_DQS_EN_PHASE_MAX;
1738 		rw_mgr_decr_vfifo(grp, &v);
1739 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1740 			   cycle/phase: v=%u p=%u\n", __func__, __LINE__,
1741 			   v, p);
1742 	} else {
1743 		p = p - 1;
1744 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \
1745 			   phase only: v=%u p=%u", __func__, __LINE__,
1746 			   v, p);
1747 	}
1748 
1749 	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1750 
1751 	/*
1752 	 * Increase dtap until we first see a passing read (in case the
1753 	 * window is smaller than a ptap),
1754 	 * and then a failing read to mark the edge of the window again
1755 	 */
1756 
1757 	/* Find a passing read */
1758 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n",
1759 		   __func__, __LINE__);
1760 	found_passing_read = 0;
1761 	found_failing_read = 0;
1762 	initial_failing_dtap = d;
1763 	for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
1764 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \
1765 			   read d=%u\n", __func__, __LINE__, d);
1766 		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1767 
1768 		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1769 							     PASS_ONE_BIT,
1770 							     &bit_chk, 0)) {
1771 			found_passing_read = 1;
1772 			break;
1773 		}
1774 	}
1775 
1776 	if (found_passing_read) {
1777 		/* Find a failing read */
1778 		debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \
1779 			   read\n", __func__, __LINE__);
1780 		for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
1781 			debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \
1782 				   testing read d=%u\n", __func__, __LINE__, d);
1783 			scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1784 
1785 			if (!rw_mgr_mem_calibrate_read_test_all_ranks
1786 				(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
1787 				found_failing_read = 1;
1788 				break;
1789 			}
1790 		}
1791 	} else {
1792 		debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \
1793 			   calculate dtaps", __func__, __LINE__);
1794 		debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n");
1795 	}
1796 
1797 	/*
1798 	 * The dynamically calculated dtaps_per_ptap is only valid if we
1799 	 * found a passing/failing read. If we didn't, it means d hit the max
1800 	 * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
1801 	 * statically calculated value.
1802 	 */
1803 	if (found_passing_read && found_failing_read)
1804 		dtaps_per_ptap = d - initial_failing_dtap;
1805 
1806 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1807 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \
1808 		   - %u = %u",  __func__, __LINE__, d,
1809 		   initial_failing_dtap, dtaps_per_ptap);
1810 
1811 	/* ******************************************** */
1812 	/* * step 6:  Find the centre of the window   * */
1813 	if (sdr_find_window_centre(&grp, &bit_chk, &work_bgn, &v, &d, &p,
1814 				   &work_mid, &work_end) == 0)
1815 		return 0;
1816 
1817 	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: center found: \
1818 		   vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__,
1819 		   v, p-1, d);
1820 	return 1;
1821 }
1822 
1823 /*
1824  * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
1825  * dq_in_delay values
1826  */
1827 static uint32_t
1828 rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
1829 (uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
1830 {
1831 	uint32_t found;
1832 	uint32_t i;
1833 	uint32_t p;
1834 	uint32_t d;
1835 	uint32_t r;
1836 
1837 	const uint32_t delay_step = IO_IO_IN_DELAY_MAX /
1838 		(RW_MGR_MEM_DQ_PER_READ_DQS-1);
1839 		/* we start at zero, so have one less dq to devide among */
1840 
1841 	debug("%s:%d (%u,%u,%u)", __func__, __LINE__, write_group, read_group,
1842 	      test_bgn);
1843 
1844 	/* try different dq_in_delays since the dq path is shorter than dqs */
1845 
1846 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1847 	     r += NUM_RANKS_PER_SHADOW_REG) {
1848 		for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1849 			i++, p++, d += delay_step) {
1850 			debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_\
1851 				   vfifo_find_dqs_", __func__, __LINE__);
1852 			debug_cond(DLEVEL == 1, "en_phase_sweep_dq_in_delay: g=%u/%u ",
1853 			       write_group, read_group);
1854 			debug_cond(DLEVEL == 1, "r=%u, i=%u p=%u d=%u\n", r, i , p, d);
1855 			scc_mgr_set_dq_in_delay(write_group, p, d);
1856 			scc_mgr_load_dq(p);
1857 		}
1858 		writel(0, &sdr_scc_mgr->update);
1859 	}
1860 
1861 	found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
1862 
1863 	debug_cond(DLEVEL == 1, "%s:%d rw_mgr_mem_calibrate_vfifo_find_dqs_\
1864 		   en_phase_sweep_dq", __func__, __LINE__);
1865 	debug_cond(DLEVEL == 1, "_in_delay: g=%u/%u found=%u; Reseting delay \
1866 		   chain to zero\n", write_group, read_group, found);
1867 
1868 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
1869 	     r += NUM_RANKS_PER_SHADOW_REG) {
1870 		for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
1871 			i++, p++) {
1872 			scc_mgr_set_dq_in_delay(write_group, p, 0);
1873 			scc_mgr_load_dq(p);
1874 		}
1875 		writel(0, &sdr_scc_mgr->update);
1876 	}
1877 
1878 	return found;
1879 }
1880 
1881 /* per-bit deskew DQ and center */
1882 static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn,
1883 	uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
1884 	uint32_t use_read_test, uint32_t update_fom)
1885 {
1886 	uint32_t i, p, d, min_index;
1887 	/*
1888 	 * Store these as signed since there are comparisons with
1889 	 * signed numbers.
1890 	 */
1891 	uint32_t bit_chk;
1892 	uint32_t sticky_bit_chk;
1893 	int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1894 	int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
1895 	int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
1896 	int32_t mid;
1897 	int32_t orig_mid_min, mid_min;
1898 	int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
1899 		final_dqs_en;
1900 	int32_t dq_margin, dqs_margin;
1901 	uint32_t stop;
1902 	uint32_t temp_dq_in_delay1, temp_dq_in_delay2;
1903 	uint32_t addr;
1904 
1905 	debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn);
1906 
1907 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET;
1908 	start_dqs = readl(addr + (read_group << 2));
1909 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
1910 		start_dqs_en = readl(addr + ((read_group << 2)
1911 				     - IO_DQS_EN_DELAY_OFFSET));
1912 
1913 	/* set the left and right edge of each bit to an illegal value */
1914 	/* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
1915 	sticky_bit_chk = 0;
1916 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1917 		left_edge[i]  = IO_IO_IN_DELAY_MAX + 1;
1918 		right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1919 	}
1920 
1921 	/* Search for the left edge of the window for each bit */
1922 	for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
1923 		scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
1924 
1925 		writel(0, &sdr_scc_mgr->update);
1926 
1927 		/*
1928 		 * Stop searching when the read test doesn't pass AND when
1929 		 * we've seen a passing read on every bit.
1930 		 */
1931 		if (use_read_test) {
1932 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
1933 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
1934 				&bit_chk, 0, 0);
1935 		} else {
1936 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1937 							0, PASS_ONE_BIT,
1938 							&bit_chk, 0);
1939 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
1940 				(read_group - (write_group *
1941 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
1942 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
1943 			stop = (bit_chk == 0);
1944 		}
1945 		sticky_bit_chk = sticky_bit_chk | bit_chk;
1946 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
1947 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \
1948 			   && %u", __func__, __LINE__, d,
1949 			   sticky_bit_chk,
1950 			param->read_correct_mask, stop);
1951 
1952 		if (stop == 1) {
1953 			break;
1954 		} else {
1955 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
1956 				if (bit_chk & 1) {
1957 					/* Remember a passing test as the
1958 					left_edge */
1959 					left_edge[i] = d;
1960 				} else {
1961 					/* If a left edge has not been seen yet,
1962 					then a future passing test will mark
1963 					this edge as the right edge */
1964 					if (left_edge[i] ==
1965 						IO_IO_IN_DELAY_MAX + 1) {
1966 						right_edge[i] = -(d + 1);
1967 					}
1968 				}
1969 				bit_chk = bit_chk >> 1;
1970 			}
1971 		}
1972 	}
1973 
1974 	/* Reset DQ delay chains to 0 */
1975 	scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
1976 	sticky_bit_chk = 0;
1977 	for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
1978 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
1979 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
1980 			   i, left_edge[i], i, right_edge[i]);
1981 
1982 		/*
1983 		 * Check for cases where we haven't found the left edge,
1984 		 * which makes our assignment of the the right edge invalid.
1985 		 * Reset it to the illegal value.
1986 		 */
1987 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
1988 			right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
1989 			right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
1990 			debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \
1991 				   right_edge[%u]: %d\n", __func__, __LINE__,
1992 				   i, right_edge[i]);
1993 		}
1994 
1995 		/*
1996 		 * Reset sticky bit (except for bits where we have seen
1997 		 * both the left and right edge).
1998 		 */
1999 		sticky_bit_chk = sticky_bit_chk << 1;
2000 		if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
2001 		    (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
2002 			sticky_bit_chk = sticky_bit_chk | 1;
2003 		}
2004 
2005 		if (i == 0)
2006 			break;
2007 	}
2008 
2009 	/* Search for the right edge of the window for each bit */
2010 	for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
2011 		scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2012 		if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2013 			uint32_t delay = d + start_dqs_en;
2014 			if (delay > IO_DQS_EN_DELAY_MAX)
2015 				delay = IO_DQS_EN_DELAY_MAX;
2016 			scc_mgr_set_dqs_en_delay(read_group, delay);
2017 		}
2018 		scc_mgr_load_dqs(read_group);
2019 
2020 		writel(0, &sdr_scc_mgr->update);
2021 
2022 		/*
2023 		 * Stop searching when the read test doesn't pass AND when
2024 		 * we've seen a passing read on every bit.
2025 		 */
2026 		if (use_read_test) {
2027 			stop = !rw_mgr_mem_calibrate_read_test(rank_bgn,
2028 				read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
2029 				&bit_chk, 0, 0);
2030 		} else {
2031 			rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2032 							0, PASS_ONE_BIT,
2033 							&bit_chk, 0);
2034 			bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
2035 				(read_group - (write_group *
2036 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
2037 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
2038 			stop = (bit_chk == 0);
2039 		}
2040 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2041 		stop = stop && (sticky_bit_chk == param->read_correct_mask);
2042 
2043 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \
2044 			   %u && %u", __func__, __LINE__, d,
2045 			   sticky_bit_chk, param->read_correct_mask, stop);
2046 
2047 		if (stop == 1) {
2048 			break;
2049 		} else {
2050 			for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2051 				if (bit_chk & 1) {
2052 					/* Remember a passing test as
2053 					the right_edge */
2054 					right_edge[i] = d;
2055 				} else {
2056 					if (d != 0) {
2057 						/* If a right edge has not been
2058 						seen yet, then a future passing
2059 						test will mark this edge as the
2060 						left edge */
2061 						if (right_edge[i] ==
2062 						IO_IO_IN_DELAY_MAX + 1) {
2063 							left_edge[i] = -(d + 1);
2064 						}
2065 					} else {
2066 						/* d = 0 failed, but it passed
2067 						when testing the left edge,
2068 						so it must be marginal,
2069 						set it to -1 */
2070 						if (right_edge[i] ==
2071 							IO_IO_IN_DELAY_MAX + 1 &&
2072 							left_edge[i] !=
2073 							IO_IO_IN_DELAY_MAX
2074 							+ 1) {
2075 							right_edge[i] = -1;
2076 						}
2077 						/* If a right edge has not been
2078 						seen yet, then a future passing
2079 						test will mark this edge as the
2080 						left edge */
2081 						else if (right_edge[i] ==
2082 							IO_IO_IN_DELAY_MAX +
2083 							1) {
2084 							left_edge[i] = -(d + 1);
2085 						}
2086 					}
2087 				}
2088 
2089 				debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\
2090 					   d=%u]: ", __func__, __LINE__, d);
2091 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ",
2092 					   (int)(bit_chk & 1), i, left_edge[i]);
2093 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2094 					   right_edge[i]);
2095 				bit_chk = bit_chk >> 1;
2096 			}
2097 		}
2098 	}
2099 
2100 	/* Check that all bits have a window */
2101 	for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2102 		debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \
2103 			   %d right_edge[%u]: %d", __func__, __LINE__,
2104 			   i, left_edge[i], i, right_edge[i]);
2105 		if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
2106 			== IO_IO_IN_DELAY_MAX + 1)) {
2107 			/*
2108 			 * Restore delay chain settings before letting the loop
2109 			 * in rw_mgr_mem_calibrate_vfifo to retry different
2110 			 * dqs/ck relationships.
2111 			 */
2112 			scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
2113 			if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2114 				scc_mgr_set_dqs_en_delay(read_group,
2115 							 start_dqs_en);
2116 			}
2117 			scc_mgr_load_dqs(read_group);
2118 			writel(0, &sdr_scc_mgr->update);
2119 
2120 			debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \
2121 				   find edge [%u]: %d %d", __func__, __LINE__,
2122 				   i, left_edge[i], right_edge[i]);
2123 			if (use_read_test) {
2124 				set_failing_group_stage(read_group *
2125 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2126 					CAL_STAGE_VFIFO,
2127 					CAL_SUBSTAGE_VFIFO_CENTER);
2128 			} else {
2129 				set_failing_group_stage(read_group *
2130 					RW_MGR_MEM_DQ_PER_READ_DQS + i,
2131 					CAL_STAGE_VFIFO_AFTER_WRITES,
2132 					CAL_SUBSTAGE_VFIFO_CENTER);
2133 			}
2134 			return 0;
2135 		}
2136 	}
2137 
2138 	/* Find middle of window for each DQ bit */
2139 	mid_min = left_edge[0] - right_edge[0];
2140 	min_index = 0;
2141 	for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
2142 		mid = left_edge[i] - right_edge[i];
2143 		if (mid < mid_min) {
2144 			mid_min = mid;
2145 			min_index = i;
2146 		}
2147 	}
2148 
2149 	/*
2150 	 * -mid_min/2 represents the amount that we need to move DQS.
2151 	 * If mid_min is odd and positive we'll need to add one to
2152 	 * make sure the rounding in further calculations is correct
2153 	 * (always bias to the right), so just add 1 for all positive values.
2154 	 */
2155 	if (mid_min > 0)
2156 		mid_min++;
2157 
2158 	mid_min = mid_min / 2;
2159 
2160 	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n",
2161 		   __func__, __LINE__, mid_min, min_index);
2162 
2163 	/* Determine the amount we can change DQS (which is -mid_min) */
2164 	orig_mid_min = mid_min;
2165 	new_dqs = start_dqs - mid_min;
2166 	if (new_dqs > IO_DQS_IN_DELAY_MAX)
2167 		new_dqs = IO_DQS_IN_DELAY_MAX;
2168 	else if (new_dqs < 0)
2169 		new_dqs = 0;
2170 
2171 	mid_min = start_dqs - new_dqs;
2172 	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2173 		   mid_min, new_dqs);
2174 
2175 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2176 		if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX)
2177 			mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
2178 		else if (start_dqs_en - mid_min < 0)
2179 			mid_min += start_dqs_en - mid_min;
2180 	}
2181 	new_dqs = start_dqs - mid_min;
2182 
2183 	debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \
2184 		   new_dqs=%d mid_min=%d\n", start_dqs,
2185 		   IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
2186 		   new_dqs, mid_min);
2187 
2188 	/* Initialize data for export structures */
2189 	dqs_margin = IO_IO_IN_DELAY_MAX + 1;
2190 	dq_margin  = IO_IO_IN_DELAY_MAX + 1;
2191 
2192 	/* add delay to bring centre of all DQ windows to the same "level" */
2193 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
2194 		/* Use values before divide by 2 to reduce round off error */
2195 		shift_dq = (left_edge[i] - right_edge[i] -
2196 			(left_edge[min_index] - right_edge[min_index]))/2  +
2197 			(orig_mid_min - mid_min);
2198 
2199 		debug_cond(DLEVEL == 2, "vfifo_center: before: \
2200 			   shift_dq[%u]=%d\n", i, shift_dq);
2201 
2202 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET;
2203 		temp_dq_in_delay1 = readl(addr + (p << 2));
2204 		temp_dq_in_delay2 = readl(addr + (i << 2));
2205 
2206 		if (shift_dq + (int32_t)temp_dq_in_delay1 >
2207 			(int32_t)IO_IO_IN_DELAY_MAX) {
2208 			shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2;
2209 		} else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) {
2210 			shift_dq = -(int32_t)temp_dq_in_delay1;
2211 		}
2212 		debug_cond(DLEVEL == 2, "vfifo_center: after: \
2213 			   shift_dq[%u]=%d\n", i, shift_dq);
2214 		final_dq[i] = temp_dq_in_delay1 + shift_dq;
2215 		scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
2216 		scc_mgr_load_dq(p);
2217 
2218 		debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i,
2219 			   left_edge[i] - shift_dq + (-mid_min),
2220 			   right_edge[i] + shift_dq - (-mid_min));
2221 		/* To determine values for export structures */
2222 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2223 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2224 
2225 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2226 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2227 	}
2228 
2229 	final_dqs = new_dqs;
2230 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS)
2231 		final_dqs_en = start_dqs_en - mid_min;
2232 
2233 	/* Move DQS-en */
2234 	if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
2235 		scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
2236 		scc_mgr_load_dqs(read_group);
2237 	}
2238 
2239 	/* Move DQS */
2240 	scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
2241 	scc_mgr_load_dqs(read_group);
2242 	debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \
2243 		   dqs_margin=%d", __func__, __LINE__,
2244 		   dq_margin, dqs_margin);
2245 
2246 	/*
2247 	 * Do not remove this line as it makes sure all of our decisions
2248 	 * have been applied. Apply the update bit.
2249 	 */
2250 	writel(0, &sdr_scc_mgr->update);
2251 
2252 	return (dq_margin >= 0) && (dqs_margin >= 0);
2253 }
2254 
2255 /*
2256  * calibrate the read valid prediction FIFO.
2257  *
2258  *  - read valid prediction will consist of finding a good DQS enable phase,
2259  * DQS enable delay, DQS input phase, and DQS input delay.
2260  *  - we also do a per-bit deskew on the DQ lines.
2261  */
2262 static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group,
2263 					   uint32_t test_bgn)
2264 {
2265 	uint32_t p, d, rank_bgn, sr;
2266 	uint32_t dtaps_per_ptap;
2267 	uint32_t tmp_delay;
2268 	uint32_t bit_chk;
2269 	uint32_t grp_calibrated;
2270 	uint32_t write_group, write_test_bgn;
2271 	uint32_t failed_substage;
2272 
2273 	debug("%s:%d: %u %u\n", __func__, __LINE__, read_group, test_bgn);
2274 
2275 	/* update info for sims */
2276 	reg_file_set_stage(CAL_STAGE_VFIFO);
2277 
2278 	write_group = read_group;
2279 	write_test_bgn = test_bgn;
2280 
2281 	/* USER Determine number of delay taps for each phase tap */
2282 	dtaps_per_ptap = 0;
2283 	tmp_delay = 0;
2284 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
2285 		dtaps_per_ptap++;
2286 		tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
2287 	}
2288 	dtaps_per_ptap--;
2289 	tmp_delay = 0;
2290 
2291 	/* update info for sims */
2292 	reg_file_set_group(read_group);
2293 
2294 	grp_calibrated = 0;
2295 
2296 	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2297 	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2298 
2299 	for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
2300 		/*
2301 		 * In RLDRAMX we may be messing the delay of pins in
2302 		 * the same write group but outside of the current read
2303 		 * the group, but that's ok because we haven't
2304 		 * calibrated output side yet.
2305 		 */
2306 		if (d > 0) {
2307 			scc_mgr_apply_group_all_out_delay_add_all_ranks
2308 			(write_group, write_test_bgn, d);
2309 		}
2310 
2311 		for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0;
2312 			p++) {
2313 			/* set a particular dqdqs phase */
2314 			scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
2315 
2316 			debug_cond(DLEVEL == 1, "%s:%d calibrate_vfifo: g=%u \
2317 				   p=%u d=%u\n", __func__, __LINE__,
2318 				   read_group, p, d);
2319 
2320 			/*
2321 			 * Load up the patterns used by read calibration
2322 			 * using current DQDQS phase.
2323 			 */
2324 			rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2325 			if (!(gbl->phy_debug_mode_flags &
2326 				PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
2327 				if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
2328 				    (read_group, 1, &bit_chk)) {
2329 					debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed:",
2330 						   __func__, __LINE__);
2331 					debug_cond(DLEVEL == 1, " g=%u p=%u d=%u\n",
2332 						   read_group, p, d);
2333 					break;
2334 				}
2335 			}
2336 
2337 /* case:56390 */
2338 			grp_calibrated = 1;
2339 		if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
2340 		    (write_group, read_group, test_bgn)) {
2341 				/*
2342 				 * USER Read per-bit deskew can be done on a
2343 				 * per shadow register basis.
2344 				 */
2345 				for (rank_bgn = 0, sr = 0;
2346 					rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2347 					rank_bgn += NUM_RANKS_PER_SHADOW_REG,
2348 					++sr) {
2349 					/*
2350 					 * Determine if this set of ranks
2351 					 * should be skipped entirely.
2352 					 */
2353 					if (!param->skip_shadow_regs[sr]) {
2354 						/*
2355 						 * If doing read after write
2356 						 * calibration, do not update
2357 						 * FOM, now - do it then.
2358 						 */
2359 					if (!rw_mgr_mem_calibrate_vfifo_center
2360 						(rank_bgn, write_group,
2361 						read_group, test_bgn, 1, 0)) {
2362 							grp_calibrated = 0;
2363 							failed_substage =
2364 						CAL_SUBSTAGE_VFIFO_CENTER;
2365 						}
2366 					}
2367 				}
2368 			} else {
2369 				grp_calibrated = 0;
2370 				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2371 			}
2372 		}
2373 	}
2374 
2375 	if (grp_calibrated == 0) {
2376 		set_failing_group_stage(write_group, CAL_STAGE_VFIFO,
2377 					failed_substage);
2378 		return 0;
2379 	}
2380 
2381 	/*
2382 	 * Reset the delay chains back to zero if they have moved > 1
2383 	 * (check for > 1 because loop will increase d even when pass in
2384 	 * first case).
2385 	 */
2386 	if (d > 2)
2387 		scc_mgr_zero_group(write_group, write_test_bgn, 1);
2388 
2389 	return 1;
2390 }
2391 
2392 /* VFIFO Calibration -- Read Deskew Calibration after write deskew */
2393 static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group,
2394 					       uint32_t test_bgn)
2395 {
2396 	uint32_t rank_bgn, sr;
2397 	uint32_t grp_calibrated;
2398 	uint32_t write_group;
2399 
2400 	debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn);
2401 
2402 	/* update info for sims */
2403 
2404 	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2405 	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2406 
2407 	write_group = read_group;
2408 
2409 	/* update info for sims */
2410 	reg_file_set_group(read_group);
2411 
2412 	grp_calibrated = 1;
2413 	/* Read per-bit deskew can be done on a per shadow register basis */
2414 	for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
2415 		rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
2416 		/* Determine if this set of ranks should be skipped entirely */
2417 		if (!param->skip_shadow_regs[sr]) {
2418 		/* This is the last calibration round, update FOM here */
2419 			if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn,
2420 								write_group,
2421 								read_group,
2422 								test_bgn, 0,
2423 								1)) {
2424 				grp_calibrated = 0;
2425 			}
2426 		}
2427 	}
2428 
2429 
2430 	if (grp_calibrated == 0) {
2431 		set_failing_group_stage(write_group,
2432 					CAL_STAGE_VFIFO_AFTER_WRITES,
2433 					CAL_SUBSTAGE_VFIFO_CENTER);
2434 		return 0;
2435 	}
2436 
2437 	return 1;
2438 }
2439 
2440 /* Calibrate LFIFO to find smallest read latency */
2441 static uint32_t rw_mgr_mem_calibrate_lfifo(void)
2442 {
2443 	uint32_t found_one;
2444 	uint32_t bit_chk;
2445 
2446 	debug("%s:%d\n", __func__, __LINE__);
2447 
2448 	/* update info for sims */
2449 	reg_file_set_stage(CAL_STAGE_LFIFO);
2450 	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2451 
2452 	/* Load up the patterns used by read calibration for all ranks */
2453 	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2454 	found_one = 0;
2455 
2456 	do {
2457 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2458 		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
2459 			   __func__, __LINE__, gbl->curr_read_lat);
2460 
2461 		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0,
2462 							      NUM_READ_TESTS,
2463 							      PASS_ALL_BITS,
2464 							      &bit_chk, 1)) {
2465 			break;
2466 		}
2467 
2468 		found_one = 1;
2469 		/* reduce read latency and see if things are working */
2470 		/* correctly */
2471 		gbl->curr_read_lat--;
2472 	} while (gbl->curr_read_lat > 0);
2473 
2474 	/* reset the fifos to get pointers to known state */
2475 
2476 	writel(0, &phy_mgr_cmd->fifo_reset);
2477 
2478 	if (found_one) {
2479 		/* add a fudge factor to the read latency that was determined */
2480 		gbl->curr_read_lat += 2;
2481 		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2482 		debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \
2483 			   read_lat=%u\n", __func__, __LINE__,
2484 			   gbl->curr_read_lat);
2485 		return 1;
2486 	} else {
2487 		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2488 					CAL_SUBSTAGE_READ_LATENCY);
2489 
2490 		debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \
2491 			   read_lat=%u\n", __func__, __LINE__,
2492 			   gbl->curr_read_lat);
2493 		return 0;
2494 	}
2495 }
2496 
2497 /*
2498  * issue write test command.
2499  * two variants are provided. one that just tests a write pattern and
2500  * another that tests datamask functionality.
2501  */
2502 static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group,
2503 						  uint32_t test_dm)
2504 {
2505 	uint32_t mcc_instruction;
2506 	uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) &&
2507 		ENABLE_SUPER_QUICK_CALIBRATION);
2508 	uint32_t rw_wl_nop_cycles;
2509 	uint32_t addr;
2510 
2511 	/*
2512 	 * Set counter and jump addresses for the right
2513 	 * number of NOP cycles.
2514 	 * The number of supported NOP cycles can range from -1 to infinity
2515 	 * Three different cases are handled:
2516 	 *
2517 	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
2518 	 *    mechanism will be used to insert the right number of NOPs
2519 	 *
2520 	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
2521 	 *    issuing the write command will jump straight to the
2522 	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
2523 	 *    data (for RLD), skipping
2524 	 *    the NOP micro-instruction all together
2525 	 *
2526 	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
2527 	 *    turned on in the same micro-instruction that issues the write
2528 	 *    command. Then we need
2529 	 *    to directly jump to the micro-instruction that sends out the data
2530 	 *
2531 	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
2532 	 *       (2 and 3). One jump-counter (0) is used to perform multiple
2533 	 *       write-read operations.
2534 	 *       one counter left to issue this command in "multiple-group" mode
2535 	 */
2536 
2537 	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
2538 
2539 	if (rw_wl_nop_cycles == -1) {
2540 		/*
2541 		 * CNTR 2 - We want to execute the special write operation that
2542 		 * turns on DQS right away and then skip directly to the
2543 		 * instruction that sends out the data. We set the counter to a
2544 		 * large number so that the jump is always taken.
2545 		 */
2546 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2547 
2548 		/* CNTR 3 - Not used */
2549 		if (test_dm) {
2550 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
2551 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA,
2552 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2553 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2554 			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
2555 		} else {
2556 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
2557 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA,
2558 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2559 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2560 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2561 		}
2562 	} else if (rw_wl_nop_cycles == 0) {
2563 		/*
2564 		 * CNTR 2 - We want to skip the NOP operation and go straight
2565 		 * to the DQS enable instruction. We set the counter to a large
2566 		 * number so that the jump is always taken.
2567 		 */
2568 		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
2569 
2570 		/* CNTR 3 - Not used */
2571 		if (test_dm) {
2572 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2573 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS,
2574 			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2575 		} else {
2576 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2577 			writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS,
2578 				&sdr_rw_load_jump_mgr_regs->load_jump_add2);
2579 		}
2580 	} else {
2581 		/*
2582 		 * CNTR 2 - In this case we want to execute the next instruction
2583 		 * and NOT take the jump. So we set the counter to 0. The jump
2584 		 * address doesn't count.
2585 		 */
2586 		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
2587 		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
2588 
2589 		/*
2590 		 * CNTR 3 - Set the nop counter to the number of cycles we
2591 		 * need to loop for, minus 1.
2592 		 */
2593 		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
2594 		if (test_dm) {
2595 			mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0;
2596 			writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP,
2597 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2598 		} else {
2599 			mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0;
2600 			writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP,
2601 				&sdr_rw_load_jump_mgr_regs->load_jump_add3);
2602 		}
2603 	}
2604 
2605 	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
2606 		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
2607 
2608 	if (quick_write_mode)
2609 		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
2610 	else
2611 		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
2612 
2613 	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
2614 
2615 	/*
2616 	 * CNTR 1 - This is used to ensure enough time elapses
2617 	 * for read data to come back.
2618 	 */
2619 	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
2620 
2621 	if (test_dm) {
2622 		writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT,
2623 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2624 	} else {
2625 		writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT,
2626 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
2627 	}
2628 
2629 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
2630 	writel(mcc_instruction, addr + (group << 2));
2631 }
2632 
2633 /* Test writes, can check for a single bit pass or multiple bit pass */
2634 static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
2635 	uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
2636 	uint32_t *bit_chk, uint32_t all_ranks)
2637 {
2638 	uint32_t r;
2639 	uint32_t correct_mask_vg;
2640 	uint32_t tmp_bit_chk;
2641 	uint32_t vg;
2642 	uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
2643 		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
2644 	uint32_t addr_rw_mgr;
2645 	uint32_t base_rw_mgr;
2646 
2647 	*bit_chk = param->write_correct_mask;
2648 	correct_mask_vg = param->write_correct_mask_vg;
2649 
2650 	for (r = rank_bgn; r < rank_end; r++) {
2651 		if (param->skip_ranks[r]) {
2652 			/* request to skip the rank */
2653 			continue;
2654 		}
2655 
2656 		/* set rank */
2657 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
2658 
2659 		tmp_bit_chk = 0;
2660 		addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS;
2661 		for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) {
2662 			/* reset the fifos to get pointers to known state */
2663 			writel(0, &phy_mgr_cmd->fifo_reset);
2664 
2665 			tmp_bit_chk = tmp_bit_chk <<
2666 				(RW_MGR_MEM_DQ_PER_WRITE_DQS /
2667 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
2668 			rw_mgr_mem_calibrate_write_test_issue(write_group *
2669 				RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg,
2670 				use_dm);
2671 
2672 			base_rw_mgr = readl(addr_rw_mgr);
2673 			tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr));
2674 			if (vg == 0)
2675 				break;
2676 		}
2677 		*bit_chk &= tmp_bit_chk;
2678 	}
2679 
2680 	if (all_correct) {
2681 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2682 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \
2683 			   %u => %lu", write_group, use_dm,
2684 			   *bit_chk, param->write_correct_mask,
2685 			   (long unsigned int)(*bit_chk ==
2686 			   param->write_correct_mask));
2687 		return *bit_chk == param->write_correct_mask;
2688 	} else {
2689 		set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
2690 		debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ",
2691 		       write_group, use_dm, *bit_chk);
2692 		debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0,
2693 			(long unsigned int)(*bit_chk != 0));
2694 		return *bit_chk != 0x00;
2695 	}
2696 }
2697 
2698 /*
2699  * center all windows. do per-bit-deskew to possibly increase size of
2700  * certain windows.
2701  */
2702 static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn,
2703 	uint32_t write_group, uint32_t test_bgn)
2704 {
2705 	uint32_t i, p, min_index;
2706 	int32_t d;
2707 	/*
2708 	 * Store these as signed since there are comparisons with
2709 	 * signed numbers.
2710 	 */
2711 	uint32_t bit_chk;
2712 	uint32_t sticky_bit_chk;
2713 	int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2714 	int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
2715 	int32_t mid;
2716 	int32_t mid_min, orig_mid_min;
2717 	int32_t new_dqs, start_dqs, shift_dq;
2718 	int32_t dq_margin, dqs_margin, dm_margin;
2719 	uint32_t stop;
2720 	uint32_t temp_dq_out1_delay;
2721 	uint32_t addr;
2722 
2723 	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2724 
2725 	dm_margin = 0;
2726 
2727 	addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2728 	start_dqs = readl(addr +
2729 			  (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2));
2730 
2731 	/* per-bit deskew */
2732 
2733 	/*
2734 	 * set the left and right edge of each bit to an illegal value
2735 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value.
2736 	 */
2737 	sticky_bit_chk = 0;
2738 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2739 		left_edge[i]  = IO_IO_OUT1_DELAY_MAX + 1;
2740 		right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2741 	}
2742 
2743 	/* Search for the left edge of the window for each bit */
2744 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
2745 		scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
2746 
2747 		writel(0, &sdr_scc_mgr->update);
2748 
2749 		/*
2750 		 * Stop searching when the read test doesn't pass AND when
2751 		 * we've seen a passing read on every bit.
2752 		 */
2753 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2754 			0, PASS_ONE_BIT, &bit_chk, 0);
2755 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2756 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2757 		debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \
2758 			   == %u && %u [bit_chk= %u ]\n",
2759 			d, sticky_bit_chk, param->write_correct_mask,
2760 			stop, bit_chk);
2761 
2762 		if (stop == 1) {
2763 			break;
2764 		} else {
2765 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2766 				if (bit_chk & 1) {
2767 					/*
2768 					 * Remember a passing test as the
2769 					 * left_edge.
2770 					 */
2771 					left_edge[i] = d;
2772 				} else {
2773 					/*
2774 					 * If a left edge has not been seen
2775 					 * yet, then a future passing test will
2776 					 * mark this edge as the right edge.
2777 					 */
2778 					if (left_edge[i] ==
2779 						IO_IO_OUT1_DELAY_MAX + 1) {
2780 						right_edge[i] = -(d + 1);
2781 					}
2782 				}
2783 				debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d);
2784 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2785 					   (int)(bit_chk & 1), i, left_edge[i]);
2786 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2787 				       right_edge[i]);
2788 				bit_chk = bit_chk >> 1;
2789 			}
2790 		}
2791 	}
2792 
2793 	/* Reset DQ delay chains to 0 */
2794 	scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
2795 	sticky_bit_chk = 0;
2796 	for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
2797 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2798 			   %d right_edge[%u]: %d\n", __func__, __LINE__,
2799 			   i, left_edge[i], i, right_edge[i]);
2800 
2801 		/*
2802 		 * Check for cases where we haven't found the left edge,
2803 		 * which makes our assignment of the the right edge invalid.
2804 		 * Reset it to the illegal value.
2805 		 */
2806 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
2807 		    (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
2808 			right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
2809 			debug_cond(DLEVEL == 2, "%s:%d write_center: reset \
2810 				   right_edge[%u]: %d\n", __func__, __LINE__,
2811 				   i, right_edge[i]);
2812 		}
2813 
2814 		/*
2815 		 * Reset sticky bit (except for bits where we have
2816 		 * seen the left edge).
2817 		 */
2818 		sticky_bit_chk = sticky_bit_chk << 1;
2819 		if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
2820 			sticky_bit_chk = sticky_bit_chk | 1;
2821 
2822 		if (i == 0)
2823 			break;
2824 	}
2825 
2826 	/* Search for the right edge of the window for each bit */
2827 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
2828 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2829 							d + start_dqs);
2830 
2831 		writel(0, &sdr_scc_mgr->update);
2832 
2833 		/*
2834 		 * Stop searching when the read test doesn't pass AND when
2835 		 * we've seen a passing read on every bit.
2836 		 */
2837 		stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
2838 			0, PASS_ONE_BIT, &bit_chk, 0);
2839 
2840 		sticky_bit_chk = sticky_bit_chk | bit_chk;
2841 		stop = stop && (sticky_bit_chk == param->write_correct_mask);
2842 
2843 		debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \
2844 			   %u && %u\n", d, sticky_bit_chk,
2845 			   param->write_correct_mask, stop);
2846 
2847 		if (stop == 1) {
2848 			if (d == 0) {
2849 				for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
2850 					i++) {
2851 					/* d = 0 failed, but it passed when
2852 					testing the left edge, so it must be
2853 					marginal, set it to -1 */
2854 					if (right_edge[i] ==
2855 						IO_IO_OUT1_DELAY_MAX + 1 &&
2856 						left_edge[i] !=
2857 						IO_IO_OUT1_DELAY_MAX + 1) {
2858 						right_edge[i] = -1;
2859 					}
2860 				}
2861 			}
2862 			break;
2863 		} else {
2864 			for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2865 				if (bit_chk & 1) {
2866 					/*
2867 					 * Remember a passing test as
2868 					 * the right_edge.
2869 					 */
2870 					right_edge[i] = d;
2871 				} else {
2872 					if (d != 0) {
2873 						/*
2874 						 * If a right edge has not
2875 						 * been seen yet, then a future
2876 						 * passing test will mark this
2877 						 * edge as the left edge.
2878 						 */
2879 						if (right_edge[i] ==
2880 						    IO_IO_OUT1_DELAY_MAX + 1)
2881 							left_edge[i] = -(d + 1);
2882 					} else {
2883 						/*
2884 						 * d = 0 failed, but it passed
2885 						 * when testing the left edge,
2886 						 * so it must be marginal, set
2887 						 * it to -1.
2888 						 */
2889 						if (right_edge[i] ==
2890 						    IO_IO_OUT1_DELAY_MAX + 1 &&
2891 						    left_edge[i] !=
2892 						    IO_IO_OUT1_DELAY_MAX + 1)
2893 							right_edge[i] = -1;
2894 						/*
2895 						 * If a right edge has not been
2896 						 * seen yet, then a future
2897 						 * passing test will mark this
2898 						 * edge as the left edge.
2899 						 */
2900 						else if (right_edge[i] ==
2901 							IO_IO_OUT1_DELAY_MAX +
2902 							1)
2903 							left_edge[i] = -(d + 1);
2904 					}
2905 				}
2906 				debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d);
2907 				debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d",
2908 					   (int)(bit_chk & 1), i, left_edge[i]);
2909 				debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
2910 					   right_edge[i]);
2911 				bit_chk = bit_chk >> 1;
2912 			}
2913 		}
2914 	}
2915 
2916 	/* Check that all bits have a window */
2917 	for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2918 		debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \
2919 			   %d right_edge[%u]: %d", __func__, __LINE__,
2920 			   i, left_edge[i], i, right_edge[i]);
2921 		if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
2922 		    (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
2923 			set_failing_group_stage(test_bgn + i,
2924 						CAL_STAGE_WRITES,
2925 						CAL_SUBSTAGE_WRITES_CENTER);
2926 			return 0;
2927 		}
2928 	}
2929 
2930 	/* Find middle of window for each DQ bit */
2931 	mid_min = left_edge[0] - right_edge[0];
2932 	min_index = 0;
2933 	for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
2934 		mid = left_edge[i] - right_edge[i];
2935 		if (mid < mid_min) {
2936 			mid_min = mid;
2937 			min_index = i;
2938 		}
2939 	}
2940 
2941 	/*
2942 	 * -mid_min/2 represents the amount that we need to move DQS.
2943 	 * If mid_min is odd and positive we'll need to add one to
2944 	 * make sure the rounding in further calculations is correct
2945 	 * (always bias to the right), so just add 1 for all positive values.
2946 	 */
2947 	if (mid_min > 0)
2948 		mid_min++;
2949 	mid_min = mid_min / 2;
2950 	debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__,
2951 		   __LINE__, mid_min);
2952 
2953 	/* Determine the amount we can change DQS (which is -mid_min) */
2954 	orig_mid_min = mid_min;
2955 	new_dqs = start_dqs;
2956 	mid_min = 0;
2957 	debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \
2958 		   mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min);
2959 	/* Initialize data for export structures */
2960 	dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
2961 	dq_margin  = IO_IO_OUT1_DELAY_MAX + 1;
2962 
2963 	/* add delay to bring centre of all DQ windows to the same "level" */
2964 	for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
2965 		/* Use values before divide by 2 to reduce round off error */
2966 		shift_dq = (left_edge[i] - right_edge[i] -
2967 			(left_edge[min_index] - right_edge[min_index]))/2  +
2968 		(orig_mid_min - mid_min);
2969 
2970 		debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \
2971 			   [%u]=%d\n", __func__, __LINE__, i, shift_dq);
2972 
2973 		addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET;
2974 		temp_dq_out1_delay = readl(addr + (i << 2));
2975 		if (shift_dq + (int32_t)temp_dq_out1_delay >
2976 			(int32_t)IO_IO_OUT1_DELAY_MAX) {
2977 			shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay;
2978 		} else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) {
2979 			shift_dq = -(int32_t)temp_dq_out1_delay;
2980 		}
2981 		debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n",
2982 			   i, shift_dq);
2983 		scc_mgr_set_dq_out1_delay(write_group, i, temp_dq_out1_delay +
2984 					  shift_dq);
2985 		scc_mgr_load_dq(i);
2986 
2987 		debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i,
2988 			   left_edge[i] - shift_dq + (-mid_min),
2989 			   right_edge[i] + shift_dq - (-mid_min));
2990 		/* To determine values for export structures */
2991 		if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
2992 			dq_margin = left_edge[i] - shift_dq + (-mid_min);
2993 
2994 		if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
2995 			dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2996 	}
2997 
2998 	/* Move DQS */
2999 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3000 	writel(0, &sdr_scc_mgr->update);
3001 
3002 	/* Centre DM */
3003 	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3004 
3005 	/*
3006 	 * set the left and right edge of each bit to an illegal value,
3007 	 * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value,
3008 	 */
3009 	left_edge[0]  = IO_IO_OUT1_DELAY_MAX + 1;
3010 	right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
3011 	int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3012 	int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3013 	int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
3014 	int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
3015 	int32_t win_best = 0;
3016 
3017 	/* Search for the/part of the window with DM shift */
3018 	for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
3019 		scc_mgr_apply_group_dm_out1_delay(write_group, d);
3020 		writel(0, &sdr_scc_mgr->update);
3021 
3022 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3023 						    PASS_ALL_BITS, &bit_chk,
3024 						    0)) {
3025 			/* USE Set current end of the window */
3026 			end_curr = -d;
3027 			/*
3028 			 * If a starting edge of our window has not been seen
3029 			 * this is our current start of the DM window.
3030 			 */
3031 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3032 				bgn_curr = -d;
3033 
3034 			/*
3035 			 * If current window is bigger than best seen.
3036 			 * Set best seen to be current window.
3037 			 */
3038 			if ((end_curr-bgn_curr+1) > win_best) {
3039 				win_best = end_curr-bgn_curr+1;
3040 				bgn_best = bgn_curr;
3041 				end_best = end_curr;
3042 			}
3043 		} else {
3044 			/* We just saw a failing test. Reset temp edge */
3045 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3046 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3047 			}
3048 		}
3049 
3050 
3051 	/* Reset DM delay chains to 0 */
3052 	scc_mgr_apply_group_dm_out1_delay(write_group, 0);
3053 
3054 	/*
3055 	 * Check to see if the current window nudges up aganist 0 delay.
3056 	 * If so we need to continue the search by shifting DQS otherwise DQS
3057 	 * search begins as a new search. */
3058 	if (end_curr != 0) {
3059 		bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3060 		end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3061 	}
3062 
3063 	/* Search for the/part of the window with DQS shifts */
3064 	for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
3065 		/*
3066 		 * Note: This only shifts DQS, so are we limiting ourselve to
3067 		 * width of DQ unnecessarily.
3068 		 */
3069 		scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
3070 							d + new_dqs);
3071 
3072 		writel(0, &sdr_scc_mgr->update);
3073 		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
3074 						    PASS_ALL_BITS, &bit_chk,
3075 						    0)) {
3076 			/* USE Set current end of the window */
3077 			end_curr = d;
3078 			/*
3079 			 * If a beginning edge of our window has not been seen
3080 			 * this is our current begin of the DM window.
3081 			 */
3082 			if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
3083 				bgn_curr = d;
3084 
3085 			/*
3086 			 * If current window is bigger than best seen. Set best
3087 			 * seen to be current window.
3088 			 */
3089 			if ((end_curr-bgn_curr+1) > win_best) {
3090 				win_best = end_curr-bgn_curr+1;
3091 				bgn_best = bgn_curr;
3092 				end_best = end_curr;
3093 			}
3094 		} else {
3095 			/* We just saw a failing test. Reset temp edge */
3096 			bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
3097 			end_curr = IO_IO_OUT1_DELAY_MAX + 1;
3098 
3099 			/* Early exit optimization: if ther remaining delay
3100 			chain space is less than already seen largest window
3101 			we can exit */
3102 			if ((win_best-1) >
3103 				(IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
3104 					break;
3105 				}
3106 			}
3107 		}
3108 
3109 	/* assign left and right edge for cal and reporting; */
3110 	left_edge[0] = -1*bgn_best;
3111 	right_edge[0] = end_best;
3112 
3113 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__,
3114 		   __LINE__, left_edge[0], right_edge[0]);
3115 
3116 	/* Move DQS (back to orig) */
3117 	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3118 
3119 	/* Move DM */
3120 
3121 	/* Find middle of window for the DM bit */
3122 	mid = (left_edge[0] - right_edge[0]) / 2;
3123 
3124 	/* only move right, since we are not moving DQS/DQ */
3125 	if (mid < 0)
3126 		mid = 0;
3127 
3128 	/* dm_marign should fail if we never find a window */
3129 	if (win_best == 0)
3130 		dm_margin = -1;
3131 	else
3132 		dm_margin = left_edge[0] - mid;
3133 
3134 	scc_mgr_apply_group_dm_out1_delay(write_group, mid);
3135 	writel(0, &sdr_scc_mgr->update);
3136 
3137 	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \
3138 		   dm_margin=%d\n", __func__, __LINE__, left_edge[0],
3139 		   right_edge[0], mid, dm_margin);
3140 	/* Export values */
3141 	gbl->fom_out += dq_margin + dqs_margin;
3142 
3143 	debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \
3144 		   dqs_margin=%d dm_margin=%d\n", __func__, __LINE__,
3145 		   dq_margin, dqs_margin, dm_margin);
3146 
3147 	/*
3148 	 * Do not remove this line as it makes sure all of our
3149 	 * decisions have been applied.
3150 	 */
3151 	writel(0, &sdr_scc_mgr->update);
3152 	return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
3153 }
3154 
3155 /* calibrate the write operations */
3156 static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g,
3157 	uint32_t test_bgn)
3158 {
3159 	/* update info for sims */
3160 	debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn);
3161 
3162 	reg_file_set_stage(CAL_STAGE_WRITES);
3163 	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3164 
3165 	reg_file_set_group(g);
3166 
3167 	if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
3168 		set_failing_group_stage(g, CAL_STAGE_WRITES,
3169 					CAL_SUBSTAGE_WRITES_CENTER);
3170 		return 0;
3171 	}
3172 
3173 	return 1;
3174 }
3175 
3176 /* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
3177 static void mem_precharge_and_activate(void)
3178 {
3179 	uint32_t r;
3180 
3181 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
3182 		if (param->skip_ranks[r]) {
3183 			/* request to skip the rank */
3184 			continue;
3185 		}
3186 
3187 		/* set rank */
3188 		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3189 
3190 		/* precharge all banks ... */
3191 		writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3192 					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3193 
3194 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3195 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1,
3196 			&sdr_rw_load_jump_mgr_regs->load_jump_add0);
3197 
3198 		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3199 		writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2,
3200 			&sdr_rw_load_jump_mgr_regs->load_jump_add1);
3201 
3202 		/* activate rows */
3203 		writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3204 						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3205 	}
3206 }
3207 
3208 /* Configure various memory related parameters. */
3209 static void mem_config(void)
3210 {
3211 	uint32_t rlat, wlat;
3212 	uint32_t rw_wl_nop_cycles;
3213 	uint32_t max_latency;
3214 
3215 	debug("%s:%d\n", __func__, __LINE__);
3216 	/* read in write and read latency */
3217 	wlat = readl(&data_mgr->t_wl_add);
3218 	wlat += readl(&data_mgr->mem_t_add);
3219 
3220 	/* WL for hard phy does not include additive latency */
3221 
3222 	/*
3223 	 * add addtional write latency to offset the address/command extra
3224 	 * clock cycle. We change the AC mux setting causing AC to be delayed
3225 	 * by one mem clock cycle. Only do this for DDR3
3226 	 */
3227 	wlat = wlat + 1;
3228 
3229 	rlat = readl(&data_mgr->t_rl_add);
3230 
3231 	rw_wl_nop_cycles = wlat - 2;
3232 	gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
3233 
3234 	/*
3235 	 * For AV/CV, lfifo is hardened and always runs at full rate so
3236 	 * max latency in AFI clocks, used here, is correspondingly smaller.
3237 	 */
3238 	max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
3239 	/* configure for a burst length of 8 */
3240 
3241 	/* write latency */
3242 	/* Adjust Write Latency for Hard PHY */
3243 	wlat = wlat + 1;
3244 
3245 	/* set a pretty high read latency initially */
3246 	gbl->curr_read_lat = rlat + 16;
3247 
3248 	if (gbl->curr_read_lat > max_latency)
3249 		gbl->curr_read_lat = max_latency;
3250 
3251 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3252 
3253 	/* advertise write latency */
3254 	gbl->curr_write_lat = wlat;
3255 	writel(wlat - 2, &phy_mgr_cfg->afi_wlat);
3256 
3257 	/* initialize bit slips */
3258 	mem_precharge_and_activate();
3259 }
3260 
3261 /* Set VFIFO and LFIFO to instant-on settings in skip calibration mode */
3262 static void mem_skip_calibrate(void)
3263 {
3264 	uint32_t vfifo_offset;
3265 	uint32_t i, j, r;
3266 
3267 	debug("%s:%d\n", __func__, __LINE__);
3268 	/* Need to update every shadow register set used by the interface */
3269 	for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
3270 		r += NUM_RANKS_PER_SHADOW_REG) {
3271 		/*
3272 		 * Set output phase alignment settings appropriate for
3273 		 * skip calibration.
3274 		 */
3275 		for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3276 			scc_mgr_set_dqs_en_phase(i, 0);
3277 #if IO_DLL_CHAIN_LENGTH == 6
3278 			scc_mgr_set_dqdqs_output_phase(i, 6);
3279 #else
3280 			scc_mgr_set_dqdqs_output_phase(i, 7);
3281 #endif
3282 			/*
3283 			 * Case:33398
3284 			 *
3285 			 * Write data arrives to the I/O two cycles before write
3286 			 * latency is reached (720 deg).
3287 			 *   -> due to bit-slip in a/c bus
3288 			 *   -> to allow board skew where dqs is longer than ck
3289 			 *      -> how often can this happen!?
3290 			 *      -> can claim back some ptaps for high freq
3291 			 *       support if we can relax this, but i digress...
3292 			 *
3293 			 * The write_clk leads mem_ck by 90 deg
3294 			 * The minimum ptap of the OPA is 180 deg
3295 			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3296 			 * The write_clk is always delayed by 2 ptaps
3297 			 *
3298 			 * Hence, to make DQS aligned to CK, we need to delay
3299 			 * DQS by:
3300 			 *    (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
3301 			 *
3302 			 * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH)
3303 			 * gives us the number of ptaps, which simplies to:
3304 			 *
3305 			 *    (1.25 * IO_DLL_CHAIN_LENGTH - 2)
3306 			 */
3307 			scc_mgr_set_dqdqs_output_phase(i, (1.25 *
3308 				IO_DLL_CHAIN_LENGTH - 2));
3309 		}
3310 		writel(0xff, &sdr_scc_mgr->dqs_ena);
3311 		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3312 
3313 		for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
3314 			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3315 				  SCC_MGR_GROUP_COUNTER_OFFSET);
3316 		}
3317 		writel(0xff, &sdr_scc_mgr->dq_ena);
3318 		writel(0xff, &sdr_scc_mgr->dm_ena);
3319 		writel(0, &sdr_scc_mgr->update);
3320 	}
3321 
3322 	/* Compensate for simulation model behaviour */
3323 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3324 		scc_mgr_set_dqs_bus_in_delay(i, 10);
3325 		scc_mgr_load_dqs(i);
3326 	}
3327 	writel(0, &sdr_scc_mgr->update);
3328 
3329 	/*
3330 	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3331 	 * in sequencer.
3332 	 */
3333 	vfifo_offset = CALIB_VFIFO_OFFSET;
3334 	for (j = 0; j < vfifo_offset; j++) {
3335 		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3336 	}
3337 	writel(0, &phy_mgr_cmd->fifo_reset);
3338 
3339 	/*
3340 	 * For ACV with hard lfifo, we get the skip-cal setting from
3341 	 * generation-time constant.
3342 	 */
3343 	gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
3344 	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3345 }
3346 
3347 /* Memory calibration entry point */
3348 static uint32_t mem_calibrate(void)
3349 {
3350 	uint32_t i;
3351 	uint32_t rank_bgn, sr;
3352 	uint32_t write_group, write_test_bgn;
3353 	uint32_t read_group, read_test_bgn;
3354 	uint32_t run_groups, current_run;
3355 	uint32_t failing_groups = 0;
3356 	uint32_t group_failed = 0;
3357 	uint32_t sr_failed = 0;
3358 
3359 	debug("%s:%d\n", __func__, __LINE__);
3360 	/* Initialize the data settings */
3361 
3362 	gbl->error_substage = CAL_SUBSTAGE_NIL;
3363 	gbl->error_stage = CAL_STAGE_NIL;
3364 	gbl->error_group = 0xff;
3365 	gbl->fom_in = 0;
3366 	gbl->fom_out = 0;
3367 
3368 	mem_config();
3369 
3370 	uint32_t bypass_mode = 0x1;
3371 	for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
3372 		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3373 			  SCC_MGR_GROUP_COUNTER_OFFSET);
3374 		scc_set_bypass_mode(i, bypass_mode);
3375 	}
3376 
3377 	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3378 		/*
3379 		 * Set VFIFO and LFIFO to instant-on settings in skip
3380 		 * calibration mode.
3381 		 */
3382 		mem_skip_calibrate();
3383 	} else {
3384 		for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3385 			/*
3386 			 * Zero all delay chain/phase settings for all
3387 			 * groups and all shadow register sets.
3388 			 */
3389 			scc_mgr_zero_all();
3390 
3391 			run_groups = ~param->skip_groups;
3392 
3393 			for (write_group = 0, write_test_bgn = 0; write_group
3394 				< RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
3395 				write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
3396 				/* Initialized the group failure */
3397 				group_failed = 0;
3398 
3399 				current_run = run_groups & ((1 <<
3400 					RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3401 				run_groups = run_groups >>
3402 					RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3403 
3404 				if (current_run == 0)
3405 					continue;
3406 
3407 				writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3408 						    SCC_MGR_GROUP_COUNTER_OFFSET);
3409 				scc_mgr_zero_group(write_group, write_test_bgn,
3410 						   0);
3411 
3412 				for (read_group = write_group *
3413 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3414 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3415 					read_test_bgn = 0;
3416 					read_group < (write_group + 1) *
3417 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3418 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3419 					group_failed == 0;
3420 					read_group++, read_test_bgn +=
3421 					RW_MGR_MEM_DQ_PER_READ_DQS) {
3422 					/* Calibrate the VFIFO */
3423 					if (!((STATIC_CALIB_STEPS) &
3424 						CALIB_SKIP_VFIFO)) {
3425 						if (!rw_mgr_mem_calibrate_vfifo
3426 							(read_group,
3427 							read_test_bgn)) {
3428 							group_failed = 1;
3429 
3430 							if (!(gbl->
3431 							phy_debug_mode_flags &
3432 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3433 								return 0;
3434 							}
3435 						}
3436 					}
3437 				}
3438 
3439 				/* Calibrate the output side */
3440 				if (group_failed == 0)	{
3441 					for (rank_bgn = 0, sr = 0; rank_bgn
3442 						< RW_MGR_MEM_NUMBER_OF_RANKS;
3443 						rank_bgn +=
3444 						NUM_RANKS_PER_SHADOW_REG,
3445 						++sr) {
3446 						sr_failed = 0;
3447 						if (!((STATIC_CALIB_STEPS) &
3448 						CALIB_SKIP_WRITES)) {
3449 							if ((STATIC_CALIB_STEPS)
3450 						& CALIB_SKIP_DELAY_SWEEPS) {
3451 						/* not needed in quick mode! */
3452 							} else {
3453 						/*
3454 						 * Determine if this set of
3455 						 * ranks should be skipped
3456 						 * entirely.
3457 						 */
3458 					if (!param->skip_shadow_regs[sr]) {
3459 						if (!rw_mgr_mem_calibrate_writes
3460 						(rank_bgn, write_group,
3461 						write_test_bgn)) {
3462 							sr_failed = 1;
3463 							if (!(gbl->
3464 							phy_debug_mode_flags &
3465 						PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3466 								return 0;
3467 									}
3468 									}
3469 								}
3470 							}
3471 						}
3472 						if (sr_failed != 0)
3473 							group_failed = 1;
3474 					}
3475 				}
3476 
3477 				if (group_failed == 0) {
3478 					for (read_group = write_group *
3479 					RW_MGR_MEM_IF_READ_DQS_WIDTH /
3480 					RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3481 					read_test_bgn = 0;
3482 						read_group < (write_group + 1)
3483 						* RW_MGR_MEM_IF_READ_DQS_WIDTH
3484 						/ RW_MGR_MEM_IF_WRITE_DQS_WIDTH &&
3485 						group_failed == 0;
3486 						read_group++, read_test_bgn +=
3487 						RW_MGR_MEM_DQ_PER_READ_DQS) {
3488 						if (!((STATIC_CALIB_STEPS) &
3489 							CALIB_SKIP_WRITES)) {
3490 					if (!rw_mgr_mem_calibrate_vfifo_end
3491 						(read_group, read_test_bgn)) {
3492 							group_failed = 1;
3493 
3494 						if (!(gbl->phy_debug_mode_flags
3495 						& PHY_DEBUG_SWEEP_ALL_GROUPS)) {
3496 								return 0;
3497 								}
3498 							}
3499 						}
3500 					}
3501 				}
3502 
3503 				if (group_failed != 0)
3504 					failing_groups++;
3505 			}
3506 
3507 			/*
3508 			 * USER If there are any failing groups then report
3509 			 * the failure.
3510 			 */
3511 			if (failing_groups != 0)
3512 				return 0;
3513 
3514 			/* Calibrate the LFIFO */
3515 			if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
3516 				/*
3517 				 * If we're skipping groups as part of debug,
3518 				 * don't calibrate LFIFO.
3519 				 */
3520 				if (param->skip_groups == 0) {
3521 					if (!rw_mgr_mem_calibrate_lfifo())
3522 						return 0;
3523 				}
3524 			}
3525 		}
3526 	}
3527 
3528 	/*
3529 	 * Do not remove this line as it makes sure all of our decisions
3530 	 * have been applied.
3531 	 */
3532 	writel(0, &sdr_scc_mgr->update);
3533 	return 1;
3534 }
3535 
3536 static uint32_t run_mem_calibrate(void)
3537 {
3538 	uint32_t pass;
3539 	uint32_t debug_info;
3540 
3541 	debug("%s:%d\n", __func__, __LINE__);
3542 
3543 	/* Reset pass/fail status shown on afi_cal_success/fail */
3544 	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3545 
3546 	/* stop tracking manger */
3547 	uint32_t ctrlcfg = readl(&sdr_ctrl->ctrl_cfg);
3548 
3549 	writel(ctrlcfg & 0xFFBFFFFF, &sdr_ctrl->ctrl_cfg);
3550 
3551 	initialize();
3552 	rw_mgr_mem_initialize();
3553 
3554 	pass = mem_calibrate();
3555 
3556 	mem_precharge_and_activate();
3557 	writel(0, &phy_mgr_cmd->fifo_reset);
3558 
3559 	/*
3560 	 * Handoff:
3561 	 * Don't return control of the PHY back to AFI when in debug mode.
3562 	 */
3563 	if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
3564 		rw_mgr_mem_handoff();
3565 		/*
3566 		 * In Hard PHY this is a 2-bit control:
3567 		 * 0: AFI Mux Select
3568 		 * 1: DDIO Mux Select
3569 		 */
3570 		writel(0x2, &phy_mgr_cfg->mux_sel);
3571 	}
3572 
3573 	writel(ctrlcfg, &sdr_ctrl->ctrl_cfg);
3574 
3575 	if (pass) {
3576 		printf("%s: CALIBRATION PASSED\n", __FILE__);
3577 
3578 		gbl->fom_in /= 2;
3579 		gbl->fom_out /= 2;
3580 
3581 		if (gbl->fom_in > 0xff)
3582 			gbl->fom_in = 0xff;
3583 
3584 		if (gbl->fom_out > 0xff)
3585 			gbl->fom_out = 0xff;
3586 
3587 		/* Update the FOM in the register file */
3588 		debug_info = gbl->fom_in;
3589 		debug_info |= gbl->fom_out << 8;
3590 		writel(debug_info, &sdr_reg_file->fom);
3591 
3592 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3593 		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3594 	} else {
3595 		printf("%s: CALIBRATION FAILED\n", __FILE__);
3596 
3597 		debug_info = gbl->error_stage;
3598 		debug_info |= gbl->error_substage << 8;
3599 		debug_info |= gbl->error_group << 16;
3600 
3601 		writel(debug_info, &sdr_reg_file->failing_stage);
3602 		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3603 		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3604 
3605 		/* Update the failing group/stage in the register file */
3606 		debug_info = gbl->error_stage;
3607 		debug_info |= gbl->error_substage << 8;
3608 		debug_info |= gbl->error_group << 16;
3609 		writel(debug_info, &sdr_reg_file->failing_stage);
3610 	}
3611 
3612 	return pass;
3613 }
3614 
3615 /**
3616  * hc_initialize_rom_data() - Initialize ROM data
3617  *
3618  * Initialize ROM data.
3619  */
3620 static void hc_initialize_rom_data(void)
3621 {
3622 	u32 i, addr;
3623 
3624 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3625 	for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++)
3626 		writel(inst_rom_init[i], addr + (i << 2));
3627 
3628 	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3629 	for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++)
3630 		writel(ac_rom_init[i], addr + (i << 2));
3631 }
3632 
3633 /**
3634  * initialize_reg_file() - Initialize SDR register file
3635  *
3636  * Initialize SDR register file.
3637  */
3638 static void initialize_reg_file(void)
3639 {
3640 	/* Initialize the register file with the correct data */
3641 	writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature);
3642 	writel(0, &sdr_reg_file->debug_data_addr);
3643 	writel(0, &sdr_reg_file->cur_stage);
3644 	writel(0, &sdr_reg_file->fom);
3645 	writel(0, &sdr_reg_file->failing_stage);
3646 	writel(0, &sdr_reg_file->debug1);
3647 	writel(0, &sdr_reg_file->debug2);
3648 }
3649 
3650 /**
3651  * initialize_hps_phy() - Initialize HPS PHY
3652  *
3653  * Initialize HPS PHY.
3654  */
3655 static void initialize_hps_phy(void)
3656 {
3657 	uint32_t reg;
3658 	/*
3659 	 * Tracking also gets configured here because it's in the
3660 	 * same register.
3661 	 */
3662 	uint32_t trk_sample_count = 7500;
3663 	uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
3664 	/*
3665 	 * Format is number of outer loops in the 16 MSB, sample
3666 	 * count in 16 LSB.
3667 	 */
3668 
3669 	reg = 0;
3670 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3671 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3672 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3673 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3674 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3675 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3676 	/*
3677 	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3678 	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3679 	 */
3680 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3681 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3682 		trk_sample_count);
3683 	writel(reg, &sdr_ctrl->phy_ctrl0);
3684 
3685 	reg = 0;
3686 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3687 		trk_sample_count >>
3688 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3689 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3690 		trk_long_idle_sample_count);
3691 	writel(reg, &sdr_ctrl->phy_ctrl1);
3692 
3693 	reg = 0;
3694 	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3695 		trk_long_idle_sample_count >>
3696 		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3697 	writel(reg, &sdr_ctrl->phy_ctrl2);
3698 }
3699 
3700 static void initialize_tracking(void)
3701 {
3702 	uint32_t concatenated_longidle = 0x0;
3703 	uint32_t concatenated_delays = 0x0;
3704 	uint32_t concatenated_rw_addr = 0x0;
3705 	uint32_t concatenated_refresh = 0x0;
3706 	uint32_t trk_sample_count = 7500;
3707 	uint32_t dtaps_per_ptap;
3708 	uint32_t tmp_delay;
3709 
3710 	/*
3711 	 * compute usable version of value in case we skip full
3712 	 * computation later
3713 	 */
3714 	dtaps_per_ptap = 0;
3715 	tmp_delay = 0;
3716 	while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
3717 		dtaps_per_ptap++;
3718 		tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
3719 	}
3720 	dtaps_per_ptap--;
3721 
3722 	concatenated_longidle = concatenated_longidle ^ 10;
3723 		/*longidle outer loop */
3724 	concatenated_longidle = concatenated_longidle << 16;
3725 	concatenated_longidle = concatenated_longidle ^ 100;
3726 		/*longidle sample count */
3727 	concatenated_delays = concatenated_delays ^ 243;
3728 		/* trfc, worst case of 933Mhz 4Gb */
3729 	concatenated_delays = concatenated_delays << 8;
3730 	concatenated_delays = concatenated_delays ^ 14;
3731 		/* trcd, worst case */
3732 	concatenated_delays = concatenated_delays << 8;
3733 	concatenated_delays = concatenated_delays ^ 10;
3734 		/* vfifo wait */
3735 	concatenated_delays = concatenated_delays << 8;
3736 	concatenated_delays = concatenated_delays ^ 4;
3737 		/* mux delay */
3738 
3739 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_IDLE;
3740 	concatenated_rw_addr = concatenated_rw_addr << 8;
3741 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_ACTIVATE_1;
3742 	concatenated_rw_addr = concatenated_rw_addr << 8;
3743 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_SGLE_READ;
3744 	concatenated_rw_addr = concatenated_rw_addr << 8;
3745 	concatenated_rw_addr = concatenated_rw_addr ^ RW_MGR_PRECHARGE_ALL;
3746 
3747 	concatenated_refresh = concatenated_refresh ^ RW_MGR_REFRESH_ALL;
3748 	concatenated_refresh = concatenated_refresh << 24;
3749 	concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
3750 
3751 	/* Initialize the register file with the correct data */
3752 	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
3753 	writel(trk_sample_count, &sdr_reg_file->trk_sample_count);
3754 	writel(concatenated_longidle, &sdr_reg_file->trk_longidle);
3755 	writel(concatenated_delays, &sdr_reg_file->delays);
3756 	writel(concatenated_rw_addr, &sdr_reg_file->trk_rw_mgr_addr);
3757 	writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width);
3758 	writel(concatenated_refresh, &sdr_reg_file->trk_rfsh);
3759 }
3760 
3761 int sdram_calibration_full(void)
3762 {
3763 	struct param_type my_param;
3764 	struct gbl_type my_gbl;
3765 	uint32_t pass;
3766 	uint32_t i;
3767 
3768 	param = &my_param;
3769 	gbl = &my_gbl;
3770 
3771 	/* Initialize the debug mode flags */
3772 	gbl->phy_debug_mode_flags = 0;
3773 	/* Set the calibration enabled by default */
3774 	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3775 	/*
3776 	 * Only sweep all groups (regardless of fail state) by default
3777 	 * Set enabled read test by default.
3778 	 */
3779 #if DISABLE_GUARANTEED_READ
3780 	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3781 #endif
3782 	/* Initialize the register file */
3783 	initialize_reg_file();
3784 
3785 	/* Initialize any PHY CSR */
3786 	initialize_hps_phy();
3787 
3788 	scc_mgr_initialize();
3789 
3790 	initialize_tracking();
3791 
3792 	/* USER Enable all ranks, groups */
3793 	for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
3794 		param->skip_ranks[i] = 0;
3795 	for (i = 0; i < NUM_SHADOW_REGS; ++i)
3796 		param->skip_shadow_regs[i] = 0;
3797 	param->skip_groups = 0;
3798 
3799 	printf("%s: Preparing to start memory calibration\n", __FILE__);
3800 
3801 	debug("%s:%d\n", __func__, __LINE__);
3802 	debug_cond(DLEVEL == 1,
3803 		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3804 		   RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
3805 		   RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS,
3806 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
3807 		   RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
3808 	debug_cond(DLEVEL == 1,
3809 		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3810 		   RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
3811 		   RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH,
3812 		   IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP);
3813 	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
3814 		   IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH);
3815 	debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3816 		   IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX,
3817 		   IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX);
3818 	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3819 		   IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX,
3820 		   IO_IO_OUT2_DELAY_MAX);
3821 	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3822 		   IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE);
3823 
3824 	hc_initialize_rom_data();
3825 
3826 	/* update info for sims */
3827 	reg_file_set_stage(CAL_STAGE_NIL);
3828 	reg_file_set_group(0);
3829 
3830 	/*
3831 	 * Load global needed for those actions that require
3832 	 * some dynamic calibration support.
3833 	 */
3834 	dyn_calib_steps = STATIC_CALIB_STEPS;
3835 	/*
3836 	 * Load global to allow dynamic selection of delay loop settings
3837 	 * based on calibration mode.
3838 	 */
3839 	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3840 		skip_delay_mask = 0xff;
3841 	else
3842 		skip_delay_mask = 0x0;
3843 
3844 	pass = run_mem_calibrate();
3845 
3846 	printf("%s: Calibration complete\n", __FILE__);
3847 	return pass;
3848 }
3849